2015年 高考数学模拟试卷(四) (1)

合集下载

2015年高考数学模拟试题及答案

2015年高考数学模拟试题及答案
2 2
(1)求数列 a n 的通项公式; (2)设 bn
1 ,数列 bn 的前 n 项和为 Tn ,求证: Tn 2 . 2 an
20. (本小题共 13 分) 若双曲线 E :
x2 y 2 1(a 0, b 0) 的离心率等于 2 ,焦点到渐近线的距离为 1,直线 y kx 1 与双 a 2 b2
D C
A.
3 10 10
B.
10 10
C.
5 10
D.
5 15
E
B A 7. 已知正四棱柱 ABCD A1B1C1D1 中,AB 2, CC1 2 2 ,E 为 CC1 的中点, 则直线 AC1 与平面 BED
的距离为 A.2 B.
3
C. 2
D.1
8.将甲、乙、丙等六人分配到高中三个年级,每个年级 2 人,要求甲必须在高一年级,乙和丙均不能在高 三年级,则不同的安排种数为
(2)由(1)可知 bn 20. (本小题共 13 分)
c a 2 1 2 解: (1)由 a 得 b2 1 b 1
设 A x1 , y1 , B x2 , y2 , 由
故双曲线 E 的方程为 x y 1
2 2
y kx 1 得 1 k 2 x 2 2kx 2 0 2 2 x y 1




x 1 0 , 则 A B x 3
2 3
D. (, 1)
A. (3, )
B. (1, )
2 3
C. ( ,3)
2
2. 设 x R , i 是虚数单位,则“ x 3 ”是“复数 z ( x 2 x 3) ( x 1)i 为纯虚数” 的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3.某几何体的正视图和侧视图均如图 1 所示,则该几何体的俯视图不可能是

2015年高考数学模拟试题及答案

2015年高考数学模拟试题及答案

2015年高考数学模拟试题及答案本试卷分第一卷(选择题)和第二卷(非选择题)两部分。

第一卷1至2页,第二卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

考试时间120分钟。

第一卷(选择题 共60分)注意事项:1. 作答第一卷前,请考生务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米的签字笔填写在答题卡上,并认真核对监考员所粘贴的条形码上的姓名、考试证号是否正确。

2. 第一卷答案必须用2B 铅笔填涂在答题卡上,在其他位置作答一律无效。

每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

参考公式:三角函数的和差化积公式sin sin 2sincos22a b a ba b +-+= sin sin 2cossin22a b a ba b +--= cos cos 2cos cos22a b a ba b +-+=cos cos 2sinsin22a b a ba b +--=- 若事件A 在一次试验中发生的概率是p ,由它在n 次独立重复试验中恰好发生k 次的概率()C (1)kk n k n n P k p p -=-一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均值一.选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设集合{}1,2A =,{}1,2,3B =,{}2,3,4C =,则()AB C =(A ){}1,2,3(B ){}1,2,4(C ){}2,3,4(D ){}1,2,3,4(2) 函数123()x y x -=+∈R 的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2xy -= (D )22log 3y x=- (3) 在各项都为正数的等比数列{}n a 中,首项13a =,前三项的和为21,则345a a a ++=(A ) 33(B ) 72(C ) 84(D ) 189(4) 在正三棱柱111ABC A B C -中,若2AB =,11AA =,则点A 到平面1A BC 的距离为(A )34(B )32(C )334(D )3(5) ABC △中,3A p=,3BC =,则ABC △的周长为 (A )43sin()33B p ++ (B )43sin()36B p++(C )6sin()33B p ++ (D )6sin()36B p++(6) 抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716(B )1516(C )78(D ) 0(7) 在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4 8.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A ) 9.4,0.484 (B ) 9.4,0.016 (C ) 9.5,0.04 (D ) 9.5,0.016(8) 设a 、b 、g 为两两不重合的平面,l 、m 、n 为两两不重合的直线,给出下列四个命题:① 若a g ⊥,b g ⊥,则//a b ;② 若m a ⊂,n a ⊂,//m b ,//n b ,则//a b ;③ 若//a b ,l a ⊂,则//l b ;④ 若l a b =,m b g =,n g a =,//l g ,则//m n . 其中真命题的个数是 (A ) 1(B ) 2(C ) 3(D ) 4(9) 设1,2,3,4,5k =,则5(2)x +的展开式中k x 的系数不可能...是 (A ) 10 (B ) 40(C ) 50(D ) 80(10) 若1sin()63p a -=,则2cos(2)3pa += (A )79-(B )13- (C )13(D )79(11) 点(3,1)P -在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为(2,5)=-a 的光线,经过直线2y =-反射后通过椭圆的左焦点,则这个椭圆的离心率为 (A )33 (B )13 (C )22(D )12 (12) 四棱锥的8条棱分别代表8种不同的化工产品,有公共点的两条棱所代表的化工产品放在同一仓库是危险的,没有公共点的两条棱所代表的化工产品放在同一仓库是安全的.现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 (A ) 96(B ) 48(C ) 24(D ) 0S 数学试题 第 3 页(共 4 页)第二卷(非选择题 共90分)注意事项:请用书写黑色字迹的0.5毫米的签字笔在答题卡上指定区域内作答,在试题卷上作答一律无效。

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。

注意事项:1.答题前,请务必填写自己的姓名和考籍号。

2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。

3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,请只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。

2015年高考数学模拟试卷 1

2015年高考数学模拟试卷 1

2015年高考数学模拟试卷1.若关于x 的方程2(1)--+x x m =0在[1,1]-上有解,则m 的取值范围是 ( )A .11-≤≤m B. C.1≤m2.设函数()f x 是定义在R 上的奇函数,且(3)2f -=,则(3)(0)f f +=( )A .3B .3-C .2D .2-3.1x 0(e 2x)dx +⎰等于( )A.1B.e-1C.e+1D.e4.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,, ≤则( )5.已知,则等于( ) A. B. C. D.6.下列求导运算正确的是( )A (x2x )′C (3)′=3log 3eD (x 2cos x )′=-2sin x7.使“1lg <m ”成立的一个充分不必要条件是 ( )A . ),0(+∞∈mB . (),10m ∈-∞C .()0,10m ∈D . {}1, 2m ∈8.如果函数()f x 对于任意实数x ,存在常数M ,使该不等式就称函数()f x 为有界泛涵,下面有4个函数:①()1f x = ②2()f x x =③()(cos sin )f x x x x =+( )A. ①②B. ②④C. ①③D. ③④9.曲线 在x=2处切线方程的斜率是( )A. 4B. 2C. 1D.10.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,则)2(-f 的值为 ( ) A .1 B .2 C .4 D .511.关于x 的函数y=log 21(a 2-ax)在[0,+∞)上为减函数,则实数a 的取值范围是( ). A .(-∞,-1) B .(-∞,0) C .(1-,0) D .(0,2]12.函数()f x 在定义域R 上的导函数是()f x ',若()()2f xf x =-,且当(),1x ∈-∞时,()()10x f x '-<,设()0a f =、、()2log 8c f =,则 ( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<13.曲线y=x 3在点(1,1)切线方程为___________________.14____________.15.若函数kxxe x f =)(在区间(1,1)-内单调递增,则k 的取值范围是____________.16.设函数()(1)()f x x x a =++为偶函数,则17.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且,()22f x x =+。

2015届高三第四次全国大联考 理科数学 PDF版含答案

2015届高三第四次全国大联考 理科数学 PDF版含答案

。 种不同的安排方法 ( 用数字作答 )
已知中心在原点的椭圆与双曲线有公共焦 点 , 且 左、 右 焦 点 分 别 为 F1 、 这两条曲线在第 1 6. F2 , 一象限的交点为 P, 椭圆与双曲线 △P F1F2 是以 P F1 为底边的等腰三角形 。 若| P F1 |=1 0, 的离心率分别为 e 则e e e 1、 2, 1· 2 的取值范围为 。
( C. x) = s i n 4 x+ f(
π) 2
π ( B. x) =c o s 2 x+ ) f( 2
D. x) =c o s 6 x f(
则实数 m 的取值范围是
C. R
( ) A. -∞ , 0 ∪( 2, +∞ )
[ ] B. 0, 2 D. Ø
(
)
ì y⩽5 ï ï 若实数 x、 则 z=| 7. 2 x-y+3⩽0, x |+2 y 满足不等式组 í y 的最大值是 ï ï x+y-1⩾0 î A. 1 0 B. 1 1 C. 1 3
本试卷分第 Ⅰ 卷 ( 选择题 ) 和第 Ⅱ 卷 ( 非选择题 ) 两部分 , 总分 1 考试时间 1 5 0分, 2 0 分钟 。
第 Ⅰ 卷 ( 选择题 , 共 6 0分)
4 5 6 7 8
题号 答案
1
2
3
9
1 0
1 1
1 2
一、 选择题 ( 本大题共 1 每小题 5 分 , 共6 只有一项 2 个小题 , 0 分 。 在每小题给出的四个选项中 , 1) 2 x } , ( } , 设集合 M = { 集合 N = { 则 M ∪N = 1. x | x +3 x+2<0 x | ⩽4 2

静安区2015年高三数学文科一模试卷

静安区2015年高三数学文科一模试卷

静安区2014学年第一学期高三年级高考数学模拟文理合卷(试卷满分150分 考试时间120分钟) 2014.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.计算:=++∞→712lim22n n n . 2.已知集合{}0,2>==x x y y M ,{})2lg(2x x y x N -==,则=N M . 3.已知等差数列{}n a 的首项为3,公差为4,则该数列的前n 项和=n S ________. 4.一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果.(用数值作答) 5.不等式0124<--x x 的解集是 . 6.设8877108)1(x a x a x a a x ++++=- ,则=++++8710a a a a . 7.已知圆锥底面圆的半径为1,侧面展开图是一个圆心角为32π的扇形,则该圆锥的侧面积是 .8.已知角α的顶点与直角坐标系的原点重合,始边在x 轴的正半轴上,终边在射线)0(2≤-=x x y 上,则=α2sin .9.已知两个向量a ,b 的夹角为30°,3=,b 为单位向量,b t a t c )1(-+=, 若c b ⋅=0,则t = .10.已知两条直线的方程分别为01:1=+-y x l 和022:2=+-y x l ,则这两条直线的夹角大小为 .(结果用反三角函数值表示)11.已知αtan 、βtan 是方程04332=++x x 的两根,α、)2,2(ππβ-∈,则βα+= .12.直线l 经过点)1,2(-P 且点)1,2(--A 到直线l 的距离等于1,则直线l 的方程是 .13.已知实数x 、y 满足1+≥y x ,则xy 2-的取值范围是 . 14.一个无穷等比数列的首项为2,公比为负数,各项和为S ,则S 的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.在下列幂函数中,是偶函数且在),0(+∞上是增函数的是 ( ) A .2-=x y ; B .21-=xy ; C .31x y =; D .32x y =16.已知直线06)2(3:1=++-y k x l 与直线02)32(:2=+-+y k kx l ,记32)2(3-+-=k kk D .0=D 是两条直线1l 与直线2l 平行的( )A .充分不必要条件;B .必要不充分条件 ;C .充要条件;D .既不充分也不必要条件17.已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数1zi+的点是 ( ) A .M B .N C .P D .Q18.到空间不共面的四点距离相等的平面个数为( ) A .1个; B .4个; C .7个;D .8个三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 在锐角ABC ∆中,a 、b 、c 分别为内角A 、B 、C 所对的边长,且满足ba A 23sin =. (1)求∠B 的大小; (2)若b = ABC ∆的面积ABC S ∆=,求a c +的值.x20.(本题满分14分) 本题共有2个小题,第1小题满分4分,第2小题满分10分. 某地的出租车价格规定:起步费a 元,可行3公里,3公里以后按每公里b 元计算,可再行7公里;超过10公里按每公里c 元计算(这里a 、b 、c 规定为正的常数,且b c >),假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)若取14=a ,4.2=b ,6.3=c ,小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费y (元)与行车里程x (公里)之间的函数关系式)(x f y =.21.文:(本题满分14分) 本题共有2个小题,第1小题满分8分,第2小题满分6分. 如图,正方体1111D C B A ABCD -的棱长为2,点P 为面11A ADD 的对角线1AD 的中点.⊥PM 平面ABCD 交AD 于点M ,BD MN ⊥于点N .(1)求异面直线PN 与11C A 所成角的大小;(结果用反三角函数值表示) (2)求三棱锥BMN P -的体积.22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数)1(log )(2x x x f a ++=(其中1>a ). (1)判断函数)(x f y =的奇偶性,并说明理由; (2)文:求函数)(x f y =的反函数)(1x fy -=;(3)若两个函数)(x F 与)(x G 在闭区间],[q p 上恒满足2)()(>-x G x F ,则称函数)(x F 与)(x G 在闭区间],[q p 上是分离的.试判断)(x f y =的反函数)(1x fy -=与x a x g =)(在闭区间]2,1[上是否分离?若分离,求出实数a 的取值范围;若不分离,请说明理由.A B CD A 1B 1C 1D 1PM N23.(本题满分16分) 文:本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.理:本题共有3个小题,第1小题满分6分,第2小题满分3分,第3小题满分7分. 在数列{}n a 中,已知12=a ,前n 项和为n S ,且2)(1a a n S n n -=.(其中*N n ∈) (1)文:求1a ;(2)文:求数列{}n a 的通项公式; (3)设nn n a b 31lg +=,问是否存在正整数p 、q (其中q p <<1),使得1b ,p b ,q b 成等比数列?若存在,求出所有满足条件的数组),(q p ;否则,说明理由.静安区2014学年第一学期高三年级高考数学模拟文理合卷参考答案一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.文:121; 2. 文:)2,0( 3. 文:n n +22; 4.文:45 5. 文:)4,21(; 6. 文: 25628= 7. 文:π3; 8. 文:54-9. 文:-2; 10. 文:10103arccos (或31arctan ) 11. 文:31- 12. 文:03213=++-y x 或03213=-+--y x13. 文:]2,2[-; 14. 文:12S <<二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 15.D ; 16.B ; 17. D ;18.C三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .19.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. (1)根据正弦定理Bb A a sin sin =,得b B b a A sin 23sin ==,所以23sin =B ,………(4分) 又由角B 为锐角,得3π=B ;…………………………(6分)(2)B ac S ABC sin 21=∆,又ABC S ∆=3=ac ,…………………………(8分) 根据余弦定理B ac c a b cos 2222-+=,得1037cos 2222=+=+=+B ac b c a ,…………………………(12分)所以ac c a c a 2)(222++=+=16,从而a c +=4.…………………………(14分)20.(本题满分14分) 本题共有2个小题,第1小题满分4分,第2小题满分10分. (1)他应付出租车费26元;……………………………( 4分)(2) , )10( 107c )013( 3b )30( ,⎪⎩⎪⎨⎧>-++≤<-+≤<=x c b a x x b a x x a y 文21.(本题满分14分) 本题共有2个小题,第1小题满分8分,第2小题满分6分. (1)因为点P 为面11A ADD 的对角线1AD 的中点.⊥PM 平面ABCD ,所以PM 为△1ADD 的中位线,得1=PM , 又BD MN ⊥,所以2222===MD ND MN ………………( 2分) 因为在底面ABCD 中,BD AC B M ⊥⊥,D N ,所以AC MN //,又AC C A //11,∠PNM 为异面直线PN 与11C A 所成角的平面角,………………( 6分)在△PMN 中,∠PMN 为直角,2tan =∠PNM ,所以2arctan =∠PNM 。

湖北省2015年理科数学高考模拟卷1(包含答案)

湖北省2015年理科数学高考模拟卷1(包含答案)

湖北省2015年高考理科数学模拟试卷(一)出题人:彭连兵一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数z 满足i z i 31)3(+-=-(其中i 是虚数单位),则z 的实部为 (A )6 (B )1 (C )1- (D )6- 2.已知,x y R ∈,且2323xyyx --+>+,则下列各式中正确的是A.0x y ->B. 0x y +<C. 0x y -<D.0x y +> 3.一空间几何体的三视图如图所示,则该几何体的体积为 A.B.C.D.4.执行如图所示的程序框图,要使输出的S 值小于1,则输入的t 值不能是下面的 A .2012 B .2013 C .2014 D .20155.已知等比数列{}n a 的前10项的积为32,则以下说法中正确的个数是①数列{}n a 的各项均为正数; ②数列{}n a {}n a 的公比必是正数; ④数列{}n a 中的首项和公比中必有一个大于1.(A )1个 (B )2个 (C )3个 (D )4个6.“n =10”是“n”的展开式中有常数项的 (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 7.某班组织文艺晚会,准备从A,B 等8个节目中选出4个节目演出,要求:A,B 两个节目至少有一个选中,且A,B 同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的和数为 A.1860B.1320C.1140D.10208.设函数()()()222ln 2f x x a x a=-+-,其中0x >,R a ∈,存在0x 使得()045f x ≤成立,则实数a 的值为 A .15 B .25 C .12D .1 9.已知中心在原点的椭圆与双曲线有公共焦点,且左右焦点分别为,两条曲线在第一象限的交点记为P ,是以为底边的等腰三角形.若,椭圆与双曲线的离心率分别为12,e e ,则12e e ⋅的取值范围是(A ))51,0( (B ))31,51( (C )1(,)3+∞ (D )1(,)5+∞10.已知函数2)(x e x f x -=,b ax x g +=)((0>a ),若对]2,0[1∈∀x ,]2,0[2∈∃x ,使得)()(21x g x f =,则实数a ,b 的取值范围是(A )2502-≤<e a ,1≥b (B )2502-≤<e a ,1≤b (C )252-≥e a ,1≥b (D )252-≥e a ,1≤b二、填空题:本大题共5小题,每小题5分.11.已知ΔABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a = 1,2cos C + c = 2b ,则ΔABC 的周长的取值范围是_____。

2015年河南省高考数学试卷(理科)(全国新课标ⅰ)

2015年河南省高考数学试卷(理科)(全国新课标ⅰ)

2015年河南省高考数学试卷(理科)(全国新课标I)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足上%i,贝lj|z|=()l~zA.1B.C.V3D.22.(5分)sin20°cosl0°-cosl60°sinl0°=()A.jZIB.C.D.L22223.(5分)设命题p:3nGN,n2>2%则「p为()A.V n6N,n2>2nB.3nGN,n2^2nC.V nGN,n2^2nD.3nEN,n2=2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3122c5.(5分)已知M(xo,yo)是双曲线C:上的一点,Fi,F2是C的左、右两个焦点,若则yo的取值范围是()A.(乎争B.(华华C.(号,誓)D.(琴,誓)6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:"今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?"其意思为:"在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A. 14 斛B. 22 斛C. 36 斛D. 66 斛7. (5分)设D 为Z^ABC 所在平面内一点,BC=3CD>贝J ()A. AD=-yAB+yAC B - ADABAC c - AD=yAB+yAC D - AD AB-y AC8. (5分)函数f (x ) =cos (cox+4))的部分图象如图所示,则f (x )的单调递减区间为( )C. (k - k +旦),k£zD.(兀」,2k+旦),k£z 4 4 瓜4 彳9. (5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的8 ( )/输入//S・l/・0, m[s・s.招=5_2 m 7^7(W)A. 5B. 6C. 7D. 810. (5分)(x2+x+y ) 5的展开式中,x5y2的系数为()A. 10B. 20C. 30D. 6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20JI,12.(5分)设函数f(x)=e x(2x-1)-ax+a,其中a<l,若存在唯一的整数Xo使得f(Xo)<0,则a的取值范围是()A.1)B.[_J-,旦)C.[旦,2)D.[旦,1)2e2e42e42e二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+旗渗)为偶函数.贝"=—.2214.(5分)一个圆经过椭圆。

2015年全国统一高考数学试卷(完整版+答案解析)(新课标ⅱ)

2015年全国统一高考数学试卷(完整版+答案解析)(新课标ⅱ)

2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体=V C﹣AOB===36,故积最大,设球O的半径为R,此时V O﹣ABCR=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tan x,AP==,此时f(x)=+tan x,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tan x=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tan x,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为8.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y =ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,P(∁A),P(∁B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(∁A)=(0.01+0.02+0.03)×10=0.6得P(∁B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a 的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;﹣S (2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC计算即可.△AEF【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

2015年高考数学(理科)模拟试卷四.doc

2015年高考数学(理科)模拟试卷四.doc

2015年高考数学(理科)模拟试卷四一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项符合题目要求.1.复数等于 A. B. C. D.2.已知集合,,则A. B. C. D.3.已知两个单位向量,的夹角为,且满足,则实数的值是A. B. C. D.4.已知、,则“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.已知、满足约束条件,则的最大值为A. B. C. D.6.下列函数中,可以是奇函数的为A.,B.,C.,D.,7.已知异面直线、均与平面相交,下列命题:①存在直线,使得或;②存在直线,使得且;③存在直线,使得与和所成的角相等,其中不正确的命题个数是 A. B. C. D.8.有10个乒乓球,将它们任意分成两堆,求出这两堆乒乓球个数的乘积,再将每堆乒乓球任意分成两堆并求出这两堆乒乓球个数的乘积,如此下去,直到不能再分为止,则所有乘积的和为A. B. C. D.二、填空题:本大题共7小题,分为必做题和选做题两部分,每小题5分,满分30分.(一)必做题(第9题至13题为必做题,每道题都必须作答)9.如果,那么 .10.不等式恒成立,则的取值范围是 .11.已知点、到直线:的距离相等,则的值为 .12.某市有40%的家庭订阅了《南方都市报》,从该市中任取4个家庭,则这4个家庭中恰好有4个家庭订阅了《南方都市报》的概率为 .13.如图,为了测量河对岸、两点之间的距离,观察者找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、;找到一点,从点可以观察到点、,并测量得到一些数据:,,,,,,,则、两点之间的距离为 .()(二)选做题(14-15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图,是圆外一点,、是圆的两条切线,切点分别为、,的中点为,过作圆的一条割线交圆于、两点,若,,则 .15.(坐标系与参数方程选讲选做题)在极坐标中,曲线:与曲线:()的一个交点在极轴上,则, .三、解答题:本大题共6小题,满分80分,解答题须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数(,)的最小正周期为.(Ⅰ)求;(Ⅱ)在平面直角坐标系中,画出函数在区间上的图象,并根据图象写出其在上的单调递减区间.17.(本小题满分12分)某地区“腾笼换鸟”的政策促进了区内环境改善和产业转型,空气质量也有所改善,现从当地天气网站上收集该地区近两年11月份(30天)的空气质量指数(AQI)(单位:)资料如下:2013年11月份AQI数据频率分布直方图2014年11月份AQI数据(1)请填好2014年11月份AQI数据的频率分布表并完成频率分布直方图;(Ⅱ)该地区环保部门2014年12月1日发布的11月份环评报告中声称该地区“比去年同期空气质量的优良率提高了20多个百分点”(当AQI时,空气为优良),试问此人收集到的资料信息是否支持该观点?18.(本小题满分14分)如图,四棱锥,侧面是边长为的正三角形,且与底面垂直,底面是的菱形,是棱上的动点,且().(Ⅰ)求证:为直角三角形;(Ⅱ)试确定的值,使得二面角的平面角的余弦值为.19.(本小题满分14分)数列的前项和为,已知,,.(Ⅰ)求,的值;(Ⅱ)求数列的通项公式;(Ⅲ)设,数列前项和为,证明:,.20.(本小题满分14分)已知曲线:,(Ⅰ)曲线为双曲线,求实数的取值范围;(Ⅱ)已知,和曲线:,若是曲线上任意一点,线段的垂直平分线为,试判断直线与曲线的位置关系,并证明你的结论.21.(本小题满分14分)已知函数.(Ⅰ)若,证明:函数是上的减函数;(Ⅱ)若曲线在点处的切线与直线平行,求的值;(Ⅲ)若,证明:(其中为自然对数的底数).2015年高考数学(理科)模拟试卷四参考答案和评分标准一、选择题:本大题共8小题,每小题5分,满分40分.[必做题] 9.10.11.12.(或) 13.[选做题] 14.15.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.【解析】(Ⅰ)依题意得,解得,所以,………………2分所以.………4分(Ⅱ)因为,所以,列表如下:……………………6分由图象可知函数在上的单调递减区间为,.…………12分17.【解析】(Ⅰ) 频率分布表(3分);频率分布直方图(6分)(Ⅱ) 支持,理由如下:年月的优良率为:, …………8分………10分年月的优良率为:, …………9分因此…………11分所以数据信息可支持“比去年同期空气质量的优良率提高了多个百分点”.…………………12分18.【解析】(Ⅰ)取中点,连结,依题意可知△,△均为正三角形,所以,,又,平面,平面,所以平面,又平面,所以,因为,所以,即,从而△为直角三角形.………………5分说明:利用平面证明正确,同样满分!(Ⅱ)[向量法]由(Ⅰ)可知,又平面平面,平面平面,平面,所以平面.………………6分以为原点,建立空间直角坐标系如图所示,则,,,,………………7分由可得点的坐标为,………………9分所以,,设平面的法向量为,则,即解得,令,得,………………11分显然平面的一个法向量为,………………12分依题意,解得或(舍去),所以,当时,二面角的余弦值为.………………14分[传统法]由(Ⅰ)可知平面,所以,,所以为二面角的平面角,即,………………8分在△中,,,,所以,………10分由正弦定理可得,即,解得,………………12分又,所以,所以,当时,二面角的余弦值为.………………14分19.【解析】(Ⅰ)当时,,解得;……………………………………1分当时,, 解得;…………………………………………2分(Ⅱ)方法一:当时,,整理得,即……………………………………………5分所以数列是首项为,公差为的等差数列. ……………………………………………6分所以,即……………………………………………7分代入中可得. ……………………………………………8分方法二:由(Ⅰ)知:,猜想,…………………………………4分下面用数学归纳法证明:①当时,,猜想成立;……………………………………………5分②假设,猜想也成立,即,则当时,有整理得,从而,于是即时猜想也成立.所以对于任意的正整数,均有. ……………………………………………8分(Ⅲ) 由(Ⅱ)得,, …………………………………………9分当时,………11分当时,成立;…………………………………………………12分当时,所以综上所述,命题得证. (14)分20.【解析】(Ⅰ) 因为曲线为双曲线,所以,解得,所以实数的取值范围为.…………………………………………………4分(Ⅱ)结论:与曲线相切.………………………5分证明:当时,曲线为,即,设,其中,……………………………………6分线段的中点为,直线的斜率为,………………………………7分当时,直线与曲线相切成立.当时,直线的方程为,即,…9分因为,所以,所以,………………10分代入得,化简得,…………12分即,所以所以直线与曲线相切.……………………………………………………14分说明:利用参数方程求解正确同等给分!21.【解析】(Ⅰ)当时,函数的定义域是,………………1分对求导得,………………………………………………2分令,只需证:时,.又,………………………………3分故是上的减函数,所以…………………………5分所以,函数是上的减函数. …………………………………………………6分(Ⅱ)由题意知,,…………………………………………7分即,…………………………………8分令,则,…………………………………9分故是上的增函数,又,因此是的唯一零点,即方程有唯一实根,所以,…………………………………10分[说明]利用两函数与图象求出(必须画出大致图象),同样给至10分.(Ⅲ)因为,故原不等式等价于,………11分由(Ⅰ)知,当时,是上的减函数,…………………………………12分故要证原不等式成立,只需证明:当时,,令,则,是上的增函数,…………………………13分所以,即,故,即…………………………………………………………14分。

2015年四川省高考数学试题及答案【解析版】

2015年四川省高考数学试题及答案【解析版】

2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+co s2x D.y=sinx+cos x考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S 的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin =,输出S 的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A =2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时,e33k+b=(e k)33?(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时,xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=,y=5时,取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.解答:解:设A(x1,y1),B(x2,y2),M(x0,y0),则斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,所以2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= 2i .考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i ﹣=i ﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12.(5分)(2015•四川)lg0.01+log216的值是 2 .考对数的运算性质.点:函数的性质及应用.专题:直接利用对数的运算法则化简求解即可.分析:解:lg0.01+log216=﹣2+4=2.解答:故答案为:2.本题考查对数的运算法则的应用,考查计算能力.点评:13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1 .考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0,即sinα=﹣2c osα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.解答:解:对于①,由于2>1,由指数函数的单调性可得f(x)在R 上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n ﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号32145324513 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号32145324513241532541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客 P1 P2 P3 P4 P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是,所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.解解:(Ⅰ)点F,G,H的位置如图所示.答:(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH?平面ACH,BE?平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG?平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF?平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.解答:解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、?=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时?+λ?=﹣3;②当直线AB的斜率不存在时,+λ?=﹣3.解答:解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且?=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得?+λ?为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而?+λ?=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时?+λ?=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时?+λ?=+=﹣2﹣1=﹣3;故存在常数λ=1,使得?+λ?为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x ﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.63.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.48.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.1610.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= .12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3214532451(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2020-2-8。

2015年高考数学(文)模拟试题(四,含答案)

2015年高考数学(文)模拟试题(四,含答案)

2015年高考数学(文)模拟试题(四)一.选择题(每题5分,共60分) 1.设集合}0{,},{,}ln ,2{=⋂==B A y x B x A 若,则y 的值为( )A .eB .1C .e1D .0 2.若复数Z 满足(1+i )Z=i ,则Z 的虚部为( ) A .i 21-B .21-C . 21D . i 21 3.下列结论正确的是( )A .若向量b a // ,则存在唯一实数b a λλ=使B .已知向量b a ,为非零向量,则“b a ,的夹角为钝角”的充要条件是“0<⋅b a ”C .“若21cos ,3==θπθ则”的否命题为“若21cos ,3≠≠θπθ则” D .若命题01,:,01,:22>+-∈∀⌝<+-∈∃x x R x p x x R x p 则 4.将函数f(x)=sin ωx(其中ω>0)的图像向右平移π4个单位长度,所得图像经过点⎝⎛⎭⎫3π4,0,则ω的最小值是( ) A.13B .1 C.53D .25.已知向量c b a c b k a ⊥-===)32,)1,2(,)4,1(,)3,(且( ,则实数k 的值为( ) A .29-B .0C .3D .2156.执行如图所示的程序框图,输出的S 值为 ( )A.9B.16C.25D.367.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )(A )22(B )52(C )62(D )38.已知不等式组⎪⎩⎪⎨⎧≤-≥-≥+224x y x y x ,表示的平面区域为D ,点)0,1(),0,0(A O .若点M 是D 上的动点,则||OM OM OA ⋅的最小值是( )A.22 B.55 C.1010 D.101039.在△ABC 中,cos 2B 2=a +c2c (a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A . 直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形10.已知数列{a n }的通项公式a n =log 2n +1n +2(n ∈N *),设{a n }的前n 项和为S n ,则使S n <-5成立的自然数n ( )A .有最大值63B .有最小值63C .有最大值31D .有最小值3111.已知F 2,F 1是双曲线)0,0(12222>>=-b a by a y 的上,下两个焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为( )A . 2B .3C . 3D .212.已知)(x f 的定义域为),0(+∞,)()(x f x f 为'的导函数,且满足)()(x f x x f '-<,则不等式)1()1()1(2-->+x f x x f 的解集是 ( )A .)1,0(B .),1(+∞C .(1,2)D .),2(+∞ 二.填空题(每题5分,共20分) 13一元二次不等式)(022b a b x ax >>++的解集为⎭⎬⎫⎩⎨⎧-≠a x x 1|,则b a b a -+22的最小值为__________14. 已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若13,4,,12,A B A C A B A C A A ==⊥=,则球O 的半径为 __________.15.设S n 是数列{a n }的前n 项和,若S 2nS n(n ∈N *)是非零常数,则称数列{a n }为“和等比数列”.若数列{2b n }是首项为2,公比为4的等比数列,则数列{b n }__________(填“是”或“不是”)“和等比数列”.16数()2log 1f x a x =+(0a ≠),定义函数()()(),0F ,0f x x x f x x >⎧⎪=⎨-<⎪⎩,给出下列命题:①()()F x f x =;②函数()F x 是偶函数;③当0a <时,若01m n <<<,则有()()F F 0m n -<成立;④当0a >时,函数()F 2y x =-有4个零点.其中正确命题的个数为 .三.解答题17.(本题12分) 设n S 为数列{n a }的前项和,已知01≠a ,2n n S S a a ∙=-11,∈n N *(Ⅰ)求1a ,2a ,并求数列{n a }的通项公式; (Ⅱ) 求数列{n na }的前n 项和。

辽宁省大连二十四中高考数学模拟试卷文(含解析)

辽宁省大连二十四中高考数学模拟试卷文(含解析)

辽宁省大连二十四中2015届高考数学模拟试卷(文科)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合A={x|x2+x﹣6≤0},集合B为函数的定义域,则A∩B=()A.(1,2)B.[1,2] C.[1,2)D.(1,2]2.(5分)若复数z满足iz=2+4i,则在复平面内z对应的点的坐标是()A.(2,4)B.(2,﹣4)C.(4,﹣2)D.(4,2)3.(5分)一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点.甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为()A.B.C.D.4.(5分)变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.55.(5分)将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为()A.B.C.D.6.(5分)某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到所示联表:做不到“光盘”能做到“光盘”男45 10女30 15P(K2≥k)0.10 0.05 0.01k 2.706 3.841 6.635附:K2=,则下列结论正确的是()A.在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”B.有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”C.在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”D.有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”7.(5分)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.38.(5分)如图所示程序框图中,输出S=()A.45 B.﹣55 C.﹣66 D.669.(5分)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.310.(5分)如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1 B.C.y=(x2﹣2x)e x D.11.(5分)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,记椭圆与双曲线的离心率分别为e1,e2,则e1•e2的取值范围是()A.(,+∞)B.(,+∞)C.(,+∞)D.(0,+∞)12.(5分)若a是f(x)=sinx﹣xcosx在x∈(0,2π)的一个零点,则∀x∈(0,2π),下列不等式恒成立的是()A.B.cosa≥C.≤a≤2πD.a﹣cos a≥x﹣cosx二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.(5分)在△ABC中,角A,B,C所对边分别为a,b,c,且c=4,B=45°,面积S=2,则b等于.14.(5分)已知三棱柱ABC﹣A1B1C1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O的表面上,且球O的表面积为7π,则此三棱柱的体积为.15.(5分)在直角三角形ABC中,∠ACB=90°,AC=BC=2,点P是斜边AB上的一个三等分点,则=.16.(5分)已知函数,若∃x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),则实数a的取值范围是.三.解答题(本大题共8小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)已知等比数列{a n}的前n项和为S n,a n>0,a1=,且﹣,,成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b n•log3(1﹣S n+1)=1,求适合方程b1b2+b2b3+…+b n b n+1=的正整数n的值.18.(12分)2014年“五一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/t)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如图所示的频率分布直方图.(Ⅰ)求这40辆小型车辆车速的众数及平均车速(可用中值代替各组数据平均值);(Ⅱ)若从车速在[60,70)的车辆中任抽取2辆,求车速在[65,70)的车辆至少有一辆的概率.19.(12分)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(Ⅰ)求证:AC⊥平面BDEF;(Ⅱ)求证:平面BDGH∥平面AEF;(Ⅲ)求多面体ABCDEF的体积.20.(12分)已知椭圆C1:+=1(a>b>0)的离心率e=,且经过点(1,),抛物线C2:x2=2py(p>0)的焦点F与椭圆C1的一个焦点重合.(Ⅰ)过F的直线与抛物线C2交于M,N两点,过M,N分别作抛物线C2的切线l1,l2,求直线l1,l2的交点Q的轨迹方程;(Ⅱ)从圆O:x2+y2=5上任意一点P作椭圆C1的两条切线,切点为A,B,证明:∠APB为定值,并求出这个定值.21.(12分)已知函数f(x)的导函数f′(x)=x2+2ax+b(ab≠0),且f(0)=0.设曲线y=f(x)在原点处的切线l1的斜率为k1,过原点的另一条切线l2的斜率为k2.(1)若k1:k2=4:5,求函数f(x)的单调区间;(2)若k2=tk1时,函数f(x)无极值,且存在实数t使f(b)<f(1﹣2t)成立,求实数a 的取值范围.22.(10分)如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O 相交于点.(1)求BD长;(2)当CE⊥OD时,求证:AO=AD.23.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为θ=,曲线C的参数方程为.(1)写出直线l与曲线C的直角坐标方程;(2)过点M平行于直线l1的直线与曲线C交于A、B两点,若|MA|•|MB|=,求点M轨迹的直角坐标方程.24.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.辽宁省大连二十四中2015届高考数学模拟试卷(文科)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合A={x|x2+x﹣6≤0},集合B为函数的定义域,则A∩B=()A.(1,2)B.[1,2] C.[1,2)D.(1,2]考点:并集及其运算.专题:集合.分析:根据函数成立的条件,求出函数的定义域B,根据不等式的性质求出集合A,然后根据并集的定义即可得到结论.解答:解:A={x|x2+x﹣6≤0}={x|﹣3≤x≤2}=[﹣3,2],要使函数y=有意义,则x﹣1>0,即x>1,∴函数的定义域B=(1,+∞),则A∩B=(1,2],故选:D.点评:本题主要考查集合的基本运算,利用函数成立的条件求出函数的定义域y以及利用不等式的解法求出集合A是解决本题的关键,比较基础2.(5分)若复数z满足iz=2+4i,则在复平面内z对应的点的坐标是()A.(2,4)B.(2,﹣4)C.(4,﹣2)D.(4,2)考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:通过化简可得z=4﹣2i,进而可得结论.解答:解:∵iz=2+4i,∴z===4﹣2i,∴在复平面内z对应的点的坐标为(4,﹣2),故选:C.点评:本题考查复数的几何意义,注意解题方法的积累,属于基础题.3.(5分)一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点.甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为()A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:列举出所有情况,看甲掷得的向上的点数比乙大的情况占总情况的多少即可.解答:解:甲、乙二人各掷骰子一次,得到所有的基本事件有(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共36种,显然甲掷得的向上的点数比乙大的有15种,故甲掷得的向上的点数比乙大的概率为P=.故选:C.点评:此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比4.(5分)变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.5考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,设z=(x﹣2)2+y2,利用距离公式进行求解即可.解答:解:作出不等式组对应的平面区域,设z=(x﹣2)2+y2,则z的几何意义为区域内的点到定点D(2,0)的距离的平方,由图象知CD的距离最小,此时z最小.由得,即C(0,1),此时z=(x﹣2)2+y2=4+1=5,故选:D.点评:本题主要考查线性规划的应用,结合目标函数的几何意义以及两点间的距离公式,利用数形结合是解决此类问题的基本方法.5.(5分)将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:转化思想.分析:利用函数左加右减的原则,求出平移后的函数解析式,然后通过伸缩变换求出函数的解析式即可.解答:解:将函数的图象上所有的点向左平移个单位长度,得到函数,再把图象上各点的横坐标扩大到原来的2倍,得到函数.故选B.点评:本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力.6.(5分)某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到所示联表:做不到“光盘”能做到“光盘”男45 10女30 15P(K2≥k)0.10 0.05 0.01k 2.706 3.841 6.635附:K2=,则下列结论正确的是()A.在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”B.有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”C.在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”D.有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”考点:独立性检验.专题:概率与统计.分析:通过图表读取数据,代入观测值公式计算,然后参照临界值表即可得到正确结论解答:解:由2×2列联表得到a=45,b=10,c=30,d=15.则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.代入K2=,得k2的观测值k=.因为2.706<3.030<3.841.所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.即在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”故选C.点评:本题是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关,此题是基础题.7.(5分)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3考点:三角函数的恒等变换及化简求值;数量积判断两个平面向量的垂直关系.专题:计算题.分析:由题意可得=0,即解得tanθ=2,再由sin2θ+cos2θ==,运算求得结果.解答:解:由题意可得=sinθ﹣2cosθ=0,即 tanθ=2.∴sin2θ+cos2θ===1,故选A.点评:本题主要考查两个向量数量积公式的应用,两个向量垂直的性质;同角三角函数的基本关系的应用,属于中档题.8.(5分)如图所示程序框图中,输出S=()A.45 B.﹣55 C.﹣66 D.66考点:循环结构.专题:计算题;简易逻辑.分析:根据程序框图的流程,可判断程序的功能是求S=12﹣22+32﹣42+…+(﹣1)n+1•n2,判断程序运行终止时的n值,计算可得答案.解答:解:由程序框图知,第一次运行T=(﹣1)2•12=1,S=0+1=1,n=1+1=2;第二次运行T=(﹣1)3•22=﹣4,S=1﹣4=﹣3,n=2+1=3;第三次运行T=(﹣1)4•32=9,S=1﹣4+9=6,n=3+1=4;…直到n=9+1=10时,满足条件n>9,运行终止,此时T=(﹣1)10•92,S=1﹣4+9﹣16+…+92﹣102=1+(2+3)+(4+5)+(6+7)+(8+9)﹣100=×9﹣100=﹣55.故选:B.点评:本题考查了循环结构的程序框图,判断算法的功能是解答本题的关键.9.(5分)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.3考点:简单空间图形的三视图.专题:计算题;空间位置关系与距离.分析:根据三视图判断几何体为四棱锥,再利用体积公式求高x即可.解答:解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选D.点评:由三视图正确恢复原几何体是解题的关键.10.(5分)如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1 B.C.y=(x2﹣2x)e x D.考点:函数的图象.专题:函数的性质及应用.分析:根据函数解析式得出当x<0时,y=2x﹣x2﹣1有负值,y=有无数个零点,y=,的图象在x轴上方,无零点,可以得出答案.解答:解:根据函数的图象得出:当x<0时,y=2x﹣x2﹣1有负值,故A不正确,y=有无数个零点,故B不正确,y=,y′=,y′==0,x=ey′=>0,x>ey′=<0,0<x<e故(0,e)上单调递减,(e,+∞)单调递增,x=e时,y=e>0,∴y=,的图象在x轴上方,故D不正确,排除A,B,D故选:C点评:本题考查了运用函数的图象解决函数解析式的判断问题,整体把握图象,看单调性,零点,对称性.11.(5分)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,记椭圆与双曲线的离心率分别为e1,e2,则e1•e2的取值范围是()A.(,+∞)B.(,+∞)C.(,+∞)D.(0,+∞)考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由条件可得m=10,n=2c,再由椭圆和双曲线的定义可得a1=5+c,a2=5﹣c,(c<5),运用三角形的三边关系求得c的范围,再由离心率公式,计算即可得到所求范围.解答:解:设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由于△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,即有m=10,n=2c,由椭圆的定义可得m+n=2a1,由双曲线的定义可得m﹣n=2a2,即有a1=5+c,a2=5﹣c,(c<5),再由三角形的两边之和大于第三边,可得2c+2c>10,可得c>,即有<c<5.由离心率公式可得e1•e2===,由于1<<4,则有>.则e1•e2的取值范围为(,+∞).故选:A.点评:本题考查椭圆和双曲线的定义和性质,考查离心率的求法,考查三角形的三边关系,考查运算能力,属于中档题.12.(5分)若a是f(x)=sinx﹣xcosx在x∈(0,2π)的一个零点,则∀x∈(0,2π),下列不等式恒成立的是()A.B.cosa≥C.≤a≤2πD.a﹣cosa≥x﹣cosx考点:函数的零点.专题:函数的性质及应用.分析:利用导数研究单调性,运用零点的存在性定理判断出a所在的范围,根据f(x)的正负确定g(x)=的最小值.解答:解:f′(x)=xsinx,当x∈(0,π),f′(x)>0,函数f(x)单调递增,当x∈(π,2π),f′(x)<0,函数f(x)单调递减,又f(0)=0,f(π)>0,f(2π)<0,∴a∈(π,2π),∴当x∈(0,a),f(x)>0,当x∈(a,2π),f(x)<0,令g(x)=,g′(x)=,∴当x∈(0,a),g′(x)<0,函数g(x)单调递减,当x∈(a,2π),g′(x)>0,函数g(x)单调递增,∴g(x)≥g(a).故选:A.点评:本题主要考查零点的存在性定理,利用导数求最值及计算能力.二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.(5分)在△ABC中,角A,B,C所对边分别为a,b,c,且c=4,B=45°,面积S=2,则b等于5.考点:余弦定理;正弦定理.专题:解三角形.分析:先利用面积公式和已知条件求得a,进而利用余弦定理求得b.解答:解:由余弦定理知cosB===,∴a2﹣b2=8a﹣32,①∵S=acsinB=a•=2,∴a=1,代入①得b=5,故答案为5.点评:本题主要考查了余弦定理和正弦定理的应用.解三角形问题中的边和角的问题常需要正弦定理和余弦定理结合,故应能灵活运用.14.(5分)已知三棱柱ABC﹣A1B1C1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O的表面上,且球O的表面积为7π,则此三棱柱的体积为.考点:棱柱、棱锥、棱台的体积;球内接多面体.专题:空间位置关系与距离.分析:通过球的内接体,说明几何体的中心是球的直径,由球的表面积求出球的半径,设出三棱柱的底面边长,通过解直角三角形求得a,然后由棱柱的体积公式得答案.解答:解:如图,∵三棱柱ABC﹣A1B1C1的所有棱长都相等,6个顶点都在球O的球面上,∴三棱柱为正三棱柱,且其中心为球的球心,设为O,再设球的半径为r,由球O的表面积为7π,得4πr2=7π,∴r=.设三棱柱的底面边长为a,则上底面所在圆的半径为a,且球心O到上底面中心H的距离OH=,∴r2=()2+(a)2,即r=a,∴a=.则三棱柱的底面积为S==.∴==.故答案为:.点评:本题考查球的内接体与球的关系,球的半径的求解,考查计算能力,是中档题.15.(5分)在直角三角形ABC中,∠ACB=90°,AC=BC=2,点P是斜边AB上的一个三等分点,则=4.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意建立直角坐标系,可得及,的坐标,而原式可化为,代入化简可得答案.解答:解:由题意可建立如图所示的坐标系可得A(2,0)B(0,2),P(,)或P(,),故可得=(,)或(,),=(2, 0),=(0,2),所以+=(2,0)+(0,2)=(2,2),故==(,)•(2,2)=4或=(,)•(2,2)=4,故答案为:4点评:本题考查平面向量的数量积的运算,建立坐标系是解决问题的关键,属基础题.16.(5分)已知函数,若∃x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),则实数a的取值范围是(﹣∞,2)∪(3,5).考点:函数恒成立问题.专题:计算题;函数的性质及应用.分析:分类讨论,利用二次函数的单调性,结合∃x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),即可求得实数a的取值范围.解答:解:由题意,或∴a<2或3<a<5故答案为:(﹣∞,2)∪(3,5).点评:本题考查分类讨论的数学思想,考查学生的计算能力,属于基础题.三.解答题(本大题共8小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)已知等比数列{a n}的前n项和为S n,a n>0,a1=,且﹣,,成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b n•log3(1﹣S n+1)=1,求适合方程b1b2+b2b3+…+b n b n+1=的正整数n的值.考点:等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)由﹣,,成等差数列建立关于q的方程,解出q,即可求数列{a n}的通项公式;(Ⅱ)利用前n项和公式表示出S n+1,从而表示出b n,利用裂项相消法求出b1b2+b2b3+…+b n b n+1,建立关于n的方程,求解即可.解答:解:(Ⅰ)设数列{a n}的公比q,由﹣,,,成等差数列,得,解得或q=﹣1(舍去),∴;(Ⅱ)∵,∴=﹣n﹣1,∴,,==,解得:n=100.点评:本题考查等比数列和等差数列的概念与性质,以及等比数列的前n项和公式和裂项相消法求和,属于中档题.18.(12分)2014年“五一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/t)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如图所示的频率分布直方图.(Ⅰ)求这40辆小型车辆车速的众数及平均车速(可用中值代替各组数据平均值);(Ⅱ)若从车速在[60,70)的车辆中任抽取2辆,求车速在[65,70)的车辆至少有一辆的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(1)众数的估计值为最高的矩形的中点,即众数的估计值等于77.5,然后求解这40辆小型车辆的平均车速.(2)从图中可知,车速在[60,65)的车辆数,车速在[65,70)的车辆数,设车速在[60,65)的车辆设为a,b,车速在[65,70)的车辆设为c,d,e,f,列出所有基本事件,车速在[65,70)的车辆数,然后求解概率.解答:解:(1)众数的估计值为最高的矩形的中点,即众数的估计值等于77.5…(2分)这40辆小型车辆的平均车速为:(km/t)…(5分)(2)从图中可知,车速在[60,65)的车辆数为:m1=0.01×5×40=2(辆)车速在[65,70)的车辆数为:m2=0.02×5×40=4(辆)设车速在[60,65)的车辆设为a,b,车速在[65,70)的车辆设为c,d,e,f,则所有基本事件有:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f)(c,d),(c,e),(c,f),(d,e),(d,f)(e,f)共15种其中车速在[65,70)的车辆至少有一辆的事件有:(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共14种所以,车速在[65,70)的车辆至少有一辆的概率为.…(12分)点评:本题考查频率分布直方图的应用,古典概型概率公式的应用,基本知识的考查.19.(12分)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(Ⅰ)求证:AC⊥平面BDEF;(Ⅱ)求证:平面BDGH∥平面AEF;(Ⅲ)求多面体ABCDEF的体积.考点:组合几何体的面积、体积问题;平面与平面平行的判定;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(I)由面面垂直的性质可证AC与平面BDEF垂直;(II)利用线线平行证明GH∥平面AEF,OH∥平面AEF.由面面平行的判定定理可证面面平行;(III)把多面体分割成四棱锥A﹣BDEF和四棱锥C﹣BDEF,分别求出体积,再求和.解答:解:(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD.又∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,∴AC⊥平面BDEF;(Ⅱ)证明:在△CEF中,∵G、H分别是CE、CF的中点,∴GH∥EF,又∵GH⊄平面AEF,EF⊂平面AEF,∴GH∥平面AEF,设AC∩BD=O,连接OH,在△ACF中,∵OA=OC,CH=HF,∴OH∥AF,又∵OH⊄平面AEF,AF⊂平面AEF,∴OH∥平面AEF.又∵OH∩GH=H,OH、GH⊂平面BDGH,∴平面BDGH∥平面AEF.(Ⅲ)由(Ⅰ),得AC⊥平面BDEF,又∵AO=,四边形BDEF的面积S=3×=6,∴四棱锥A﹣BDEF的体积V1=×AO×S=4,同理,四棱锥C﹣BDEF的体积V2=4.∴多面体ABCDEF的体积V=8.点评:本题考查了面面垂直的性质,面面平行的判定,考查了用分割法求多面体的体积,考查了学生的空间想象能力与推理论证能力.20.(12分)已知椭圆C1:+=1(a>b>0)的离心率e=,且经过点(1,),抛物线C2:x2=2py(p>0)的焦点F与椭圆C1的一个焦点重合.(Ⅰ)过F的直线与抛物线C2交于M,N两点,过M,N分别作抛物线C2的切线l1,l2,求直线l1,l2的交点Q的轨迹方程;(Ⅱ)从圆O:x2+y2=5上任意一点P作椭圆C1的两条切线,切点为A,B,证明:∠AP B为定值,并求出这个定值.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设椭圆的半焦距为c,以及,设椭圆方程为,将点的坐标代入得c,然后求解椭圆方程,求出抛物线方程,设直线MN:y=kx+1,M(x1,y1),N(x2,y2),代入抛物线方程得x2﹣4kx﹣4=0,利用韦达定理结合函数的导数求解直线的斜率,直线方程,求出点Q的横坐标是,点Q的纵坐标,然后求解点Q的轨迹方程.(Ⅱ)①当两切线的之一的斜率不存在时,根据对称性,设点P在第一象限,求解∠APB的大小为定值.②当两条切线的斜率都存在时,即时,设P(x0,y0),切线的斜率为k,则切线方程与椭圆方程联立,利用△=0,切线PA,PB的斜率k1,k2是上述方程的两个实根,通过,求解∠APB的大小为定值.解答:解:(Ⅰ)设椭圆的半焦距为c,则,即,则,椭圆方程为,将点的坐标代入得c2=1,故所求的椭圆方程为焦点坐标为(0,±1),故抛物线方程为x2=4y…(2分)设直线MN:y=kx+1,M(x1,y1),N(x2,y2),代入抛物线方程得x2﹣4kx﹣4=0,则x1+x2=4k,x1x2=﹣4,由于,所以,故直线l1的斜率为,l1的方程为,即,同理l2的方程为,令,即,显然x1≠x2,故,即点Q的横坐标是,点Q的纵坐标是,即点Q(2k,﹣1),故点Q的轨迹方程是y=﹣1…(4分)(Ⅱ)证明:①当两切线的之一的斜率不存在时,根据对称性,设点P在第一象限,则此时P点横坐标为,代入圆的方程得P点的纵坐标为,此时两条切线方程分别为,此时,若∠APB的大小为定值,则这个定值只能是…(5分)②当两条切线的斜率都存在时,即时,设P(x0,y0),切线的斜率为k,则切线方程为y﹣y0=k(x﹣x0),与椭圆方程联立消元得…(6分)由于直线y﹣y0=k(x﹣x0)是椭圆的切线,故,整理得…(8分)切线PA,PB的斜率k1,k2是上述方程的两个实根,故,…(10分)点P在圆x2+y2=5上,故,所以k1k2=﹣1,所以.综上可知:∠APB的大小为定值,得证…(12分)点评:本题考查直线与椭圆的综合应用,椭圆以及抛物线的方程的求法,考查转化是以及计算能力.21.(12分)已知函数f(x)的导函数f′(x)=x2+2ax+b(ab≠0),且f(0)=0.设曲线y=f(x)在原点处的切线l1的斜率为k1,过原点的另一条切线l2的斜率为k2.(1)若k1:k2=4:5,求函数f(x)的单调区间;(2)若k2=tk1时,函数f(x)无极值,且存在实数t使f(b)<f(1﹣2t)成立,求实数a 的取值范围.考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:导数的综合应用.分析:(1)利用函数的导数,求出k1=f'(0)=b,设l2与曲线y=f(x)的切点为(x0,y0)(x0≠0),利用斜率相等推出b=﹣3a2,化简f'(x)=x2+2ax﹣3a2=(x+3a)(x﹣a),通过①当a>0时,②当a<0时,分别求解单调区间.(2)由(1)若k2=tk1,利用f(x)无极值,,求出t的范围,利用f (b)<f(1﹣2t),推出3a2<4(1﹣t)(1﹣2t),然后求解a的范围.解答:解:(1)由已知,k1=f'(0)=b,设l2与曲线y=f(x)的切点为(x0,y0)(x0≠0)则所以,即,则.又4k2=5k1,所以﹣3a2+4b=5b,即b=﹣3a2因此f'(x)=x2+2ax﹣3a2=(x+3a)(x﹣a)①当a>0时,f(x)的增区间为(﹣∞,﹣3a)和(a,+∞),减区间为(﹣3a,a).②当a<0时,f(x)的增区间为(﹣∞,a)和(﹣3a,+∞),减区间为(a,﹣3a).…(5分)(2)由(1)若k2=tk1,则,∵ab≠0,∴t≠1,于是,所以,由f(x)无极值可知,,即,所以由f(b)<f(1﹣2t)知,b<1﹣2t,即,就是3a2<4(1﹣t)(1﹣2t),而,故,所以,又a≠0,因此.…(12分)点评:本题考查函数的导数的应用,函数的极值以及函数的单调性考查分类讨论以及转化思想的应用,考查计算能力.22.(10分)如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O 相交于点.(1)求BD长;(2)当CE⊥OD时,求证:AO=AD.考点:相似三角形的判定.专题:推理和证明.分析:(1)证明△OBD∽△AOC,通过比例关系求出BD即可.(2)通过三角形的两角和,求解角即可.解答:解:(1)∵OC=OD,∴∠OCD=∠ODC,∴∠OAC=∠ODB.∵∠BOD=∠A,∴△OBD∽△AOC.∴,∵OC=OD=6,AC=4,∴,∴BD=9.…(5分)(2)证明:∵OC=OE,CE⊥OD.∴∠COD=∠BOD=∠A.∴∠AOD=180°﹣∠A﹣∠ODC=180°﹣∠COD﹣∠OCD=∠ADO.∴AD=AO …(10分)点评:本题考查三角形相似,角的求法,考查推理与证明,距离的求法.23.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为θ=,曲线C的参数方程为.(1)写出直线l与曲线C的直角坐标方程;(2)过点M平行于直线l1的直线与曲线C交于A、B两点,若|MA|•|MB|=,求点M轨迹的直角坐标方程.考点:直线与圆锥曲线的综合问题;简单曲线的极坐标方程;参数方程化成普通方程.专题:圆锥曲线的定义、性质与方程.分析:(1)利用极坐标与直角坐标方程的互化,直接写出直线l的普通方程,消去参数可得曲线C的直角坐标方程;(2)设点M(x0,y0)以及平行于直线l1的直线参数方程,直线l1与曲线C联立方程组,通过|MA|•|MB|=,即可求点M轨迹的直角坐标方程.通过两个交点推出轨迹方程的范围,解答:解:(1)直线l的极坐标方程为θ=,所以直线斜率为1,直线l:y=x;曲线C的参数方程为.消去参数θ,可得曲线…(4分)(2)设点M(x0,y0)及过点M的直线为由直线l1与曲线C相交可得:,即:,x2+2y2=6表示一椭圆…(8分)取y=x+m代入得:3x2+4mx+2m2﹣2=0由△≥0得故点M的轨迹是椭圆x2+2y2=6夹在平行直线之间的两段弧…(10分)点评:本题以直线与椭圆的参数方程为载体,考查直线与椭圆的综合应用,轨迹方程的求法,注意轨迹的范围的求解,是易错点.24.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.考点:函数恒成立问题;绝对值不等式的解法.专题:不等式的解法及应用.分析:(1)利用||x﹣1|+2|<5,转化为﹣7<|x﹣1|<3,然后求解不等式即可.(2)利用条件说明{y|y=f(x)}⊆{y|y=g(x)},通过函数的最值,列出不等式求解即可.解答:解:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5∴﹣7<|x﹣1|<3,得不等式的解为﹣2<x<4…(5分)(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,所以实数a的取值范围为a≥﹣1或a≤﹣5.…(10分)点评:本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用.。

2015年高考数学(理科)模拟试题(四)

2015年高考数学(理科)模拟试题(四)
2014-2015 年高考数学(理科)模拟试题(四)
一、选择题:(每小题 5 分,共 40 分)
1、设集合 U={1,2,3,4,5},A={1,3,5},B={2,3,5},
则 CU(A ∩B)等于 (
)
(A) {1,2,4} (B){4} (C) {3,5} (D)
Ф
2、已知 sin = 4 ,sin 2 <0, 则 tan 2 的值等于 (
(1) 试求 AD 的值; DC1
(2) 求二面角 F- AC1- C 的大小 ; (3) 求点 C1 到平面 AFC的距离 .
19.( 本小题满分 12 分) 已知定点 F(0, a)( a≠0) ,点 P、M分别在 x, y 轴上,满足 FP 2 MP =0,点 N 满 足 PM + PN = 0. (1) 求 N点的轨迹方程 C; (2) 过 F 作一条斜率为 k 的直线 l ,l 与曲线 C 交于 A、B 两点,设 G(0,- a), ∠ AGB= θ ,求证: 0<θ≤ 。 2
绩的所有可能情况有(
)种
(A)15 (B)20 (C)30 (D)35
二、填空题:(每小题 5 分,共 30 分)
9、若 a 与 b 的夹角为 1500, | a | 3 , | b | 4 ,则 | 2 a b |
10、抛物线 y x 2 cot (0
) 的焦点坐标是 (0 , 1 ) ,则 tan
已知甲击中目标的概率是 3 ;甲、丙同时轰炸一次,目标未被击中的概率为 1 ;乙、
4
12
丙同时轰炸一次,都击中目标的概率是 1 . 4
(1) 求乙、丙各自击中目标的概率;
(2) 求目标被击中的概率 .
17.( 本小题满分 14 分 ) 如图,正三棱柱 ABC- A1B1C1 的各棱长都等于 2,D在 AC1上,F 为 BB1 中点,且 FD⊥AC1,

江苏省南京外国语学校(仙林分校)高三数学下学期高考模拟试卷 文(含解析)

江苏省南京外国语学校(仙林分校)高三数学下学期高考模拟试卷 文(含解析)

江苏省南京外国语学校(仙林分校)2015届高考数学模拟试卷(文科)一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=__________.2.已知复数z=(3﹣4i)•i,则|z|=__________.3.双曲线的离心率是__________.4.若命题“∃x∈R,有x2﹣mx﹣m≤0”是假命题,则实数m的取值范围是__________.5.已知角α,β的终边在第一象限,则“α>β”是“sinα>sinβ”的__________条件.6.在大小相同的4个球中,红球2个,白球2个.若从中任意选取2个球,则所选的2个球恰好不同色的概率是__________.7.在样本容量为120的频率分布直方图中,共有11个小长方形,若正中间一个小长方形的面积等于其它10个小长方形面积的和的,则正中间一组的频数为__________.8.执行如图算法框图,若输入a=3,b=,则输出的值为__________.9.若△A BC的三个内角A、B、C所对边的长分别为a、b、c,向量,,若,则∠C等于__________.10.在等比数列{a n}中,已知a1+a2+a3=2,a3+a4+a5=8,则a4+a5+a6=__________.11.函数f(x)=sinx﹣cosx,x∈[0,π]的单调减区间为__________.12.若关于x的不等式(ax﹣50)lg≤0对任意的正实数x恒成立,则实数a的取值集合是__________.13.设函数y=x2﹣3×2n﹣1x+2×4n﹣1(n∈N*)的图象在x轴上截得的线段长为d n,记数列{d n}的前n项和为S n,若存在正整数n,使得log2(S n+1)≥60成立,则实数m的最小值为__________.14.已知函数f(x)=,若命题“∃t∈R,且t≠0,使得f (t)≥kt”是假命题,则正实数k的取值范围是__________.二、解答题:本大题共6小题,计80分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.设a为实数,给出命题p:关于x的不等式的解集为∅,命题q:函数f(x)=lg[ax2+(a﹣2)x+]的定义域为R,若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围.16.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,E,F分别为PC,BD的中点.证明(1)EF∥平面PAD;(2)EF⊥平面PDC.17.数列{a n}中,a1=2,a n+1=a n+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.(1)求c的值;(2)求{a n}的通项公式.18.如图是一块镀锌铁皮的边角料ABCD,其中AB、CD、DA都是线段,曲线段BC是抛物线的一部分,且点B是该抛物线的顶点,BA所在直线是该抛物线的对称轴,经测量,AB=2米,AD=3米,AB⊥AD,点C到AD、AB的距离CH、CR的长均为1米,现要用这块边角料截一个矩形AEFG(其中点F在曲线段BC或线段CD上,点E在线段AD上,点G在线段AB上).设BG的长为x米,矩形AEFG的面积为S平方米.(1)将S表示为x的函数;(2)当x为多少米时,S取得最大值,最大值是多少?19.已知椭圆E:+=1的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.(Ⅰ)求圆C的方程;(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;(Ⅲ)在平面上是否存在一点P,使得=?若存在,求出点P坐标;若不存在,请说明理由.20.已知函f(x)=x2﹣8lnx,g(x)=﹣x2+14x(1)求函数f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)与g(x)在区间(a,a+1)上均为增函数,求a的取值范围;(3)若方程f(x)=g(x)+m有唯一解,试求实数m的值.江苏省南京外国语学校(仙林分校)2015届高考数学模拟试卷(文科)一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)={2,4}.考点:交、并、补集的混合运算.专题:集合.分析:根据集合的基本运算即可.解答:解:∵全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},∴∁U B={2,4,6},A∩(∁U B)={2,4},故答案为:{2,4}点评:本题主要考查集合的基本运算,比较基础.2.已知复数z=(3﹣4i)•i,则|z|=5.考点:复数求模.专题:数系的扩充和复数.分析:利用复数的运算法则、模的计算公式即可得出.解答:解:复数z=(3﹣4i)•i=3i+4,则|z|==5.故答案为:5.点评:本题考查了复数的运算法则、模的计算公式,属于基础题.3.双曲线的离心率是.考点:双曲线的标准方程.分析:由双曲线的标准方程易知a、b,然后通过其性质c2=a2+b2求得c,最后由其离心率e=得出答案.解答:解:由题意知a2=2,b2=1,所以c2=a2+b2=3,则a=,c=,所以该双曲线的离心率e==.故答案为.点评:本题考查双曲线的标准方程与性质.4.若命题“∃x∈R,有x2﹣mx﹣m≤0”是假命题,则实数m的取值范围是(﹣4,0).考点:特称命题.专题:简易逻辑.分析:写出该命题的否定命题,根据否定命题求出m的取值范围即可.解答:解:命题“∃x∈R,有x2﹣mx﹣m≤0”是假命题,它的否定命题是“∀x∈R,有x2﹣mx﹣m>0”,是真命题,即m2+4m<0;解得﹣4<m<0,∴m的取值范围是(﹣4,0).故答案为:(﹣4,0).点评:本题考查了特称命题与全称命题之间的关系,解题时应注意特称命题的否定是全称命题,全称命题的否定是特称命题,是基础题.5.已知角α,β的终边在第一象限,则“α>β”是“sinα>sinβ”的既不充分也不必要条件.考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据三件函数的定义和关系式,结合充分条件和必要条件的定义进行判断.解答:解:∵角α,β的终边在第一象限,∴当α=+2π,β=,满足α>β,但sinα=sinβ,则sinα>sinβ不成立,即充分性不成立,若当α=,β=+2π,满足sinα>sinβ,但α>β不成立,即必要性不成立,故“α>β”是“sinα>sinβ”的既不必要也不充分条件,故答案为:既不必要也不充分条件.点评:本题主要考查充分条件和必要条件的判断,比较基础.6.在大小相同的4个球中,红球2个,白球2个.若从中任意选取2个球,则所选的2个球恰好不同色的概率是.考点:等可能事件的概率.专题:常规题型.分析:这是一个古典概型,在大小相同的4个球中任意选取2个球有C42种取法,题目要求所选的2个球恰好不同色包含选的两个球一个红色一个白色,满足条件的事件数是C21C21种结果,根据古典概型公式得到结果.解答:解:由题意知这是一个古典概型,∵在大小相同的4个球中任意选取2个球有C42种取法,∵题目要求所选的2个球恰好不同色包含选的两个球一个红色一个白色,∴满足条件的事件数是C21C21种结果,∴P==,故答案为:点评:本题是一个古典概型,在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.7.在样本容量为120的频率分布直方图中,共有11个小长方形,若正中间一个小长方形的面积等于其它10个小长方形面积的和的,则正中间一组的频数为30.考点:频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中所有小长方形的和为1,求出正中间一个小长方形的面积(频率),即可得出频数.解答:解:根据频率分布直方图中,所有小长方形的和(即频率和)为1,设正中间一个小长方形的面积为x,则其它10个小长方形面积的和为3x,∴x+3x=1,解得x=;∴正中间一组的频数为120×=30.故答案为:30.点评:本题考查了频率分布直方图的应用问题,也考查了频率=的应用问题,是基础题目.8.执行如图算法框图,若输入a=3,b=,则输出的值为.考点:程序框图.专题:算法和程序框图.分析:本题考查的是循环结构程序,我们很难写出程序运行结果对应的数学模型表达式,故可采用模拟试验的方法,即模拟程序运行,将程序运行过程各变量的值用表格表示,逐步分析,最后得到正确的答案.解答:解:程序在运行过程中各变量的值如下表示:是否继续循环_____a_____b循环前_________/______3_____第一圈_________是__________第二圈_________是__________第三圈_________是__________第四圈_________否故最后输出的a值为.故答案为:点评:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.若△ABC的三个内角A、B、C所对边的长分别为a、b、c,向量,,若,则∠C等于.考点:平面向量的坐标运算.专题:计算题.分析:利用向量垂直,求出数量积为0时的关系式,利用余弦定理求解即可.解答:解:向量,,若,所以:=0即:a2﹣c2+b2=ab,所以cosC=,∠C是三角形内角,所以∠C=故答案为:点评:本题考查平面向量的坐标运算,余弦定理的应用,是基础题.10.在等比数列{a n}中,已知a1+a2+a3=2,a3+a4+a5=8,则a4+a5+a6=±16.考点:等比数列的性质.专题:计算题.分析:根据等比数列的性质可知==都等于公比q的平方,由已知条件列出关于公比q的方程,求出q的值,然后再根据==都等于公比q的立方,把公比q的值代入即可求出值.解答:解:设等比数列的公比为q,由a1+a2+a3=2,则a3+a4+a5=q2(a1+a2+a3)=2q2=8,即q2=4,q=±2;所以a4+a5+a6=q3(a1+a2+a3)=±8×2=±16.故答案为:±16点评:本题主要考查了等比数列的性质,属基础题.学生做题时注意公比q的值有两个.11.函数f(x)=sinx﹣cosx,x∈[0,π]的单调减区间为[,π](也可以写成()).考点:正弦函数的单调性.专题:计算题.分析:先根据两角和与差的正弦公式进行化简,再由正弦函数的单调性可求出满足条件的所有x的区间,再结合x的范围可求出答案.解答:解:f(x)=sinx﹣cosx=2sin(x﹣)令,∴,k∈Z∵x∈[0,π]∴所求单调减区间为:[,π]故答案为:[,π].点评:本题主要考查两角和与差的正弦公式和正弦函数的单调性.考查对基础知识的掌握程度和理解程度.三角函数是2015届高考的重点,每年必考,一定要强化复习.12.若关于x的不等式(ax﹣50)lg≤0对任意的正实数x恒成立,则实数a的取值集合是{5}.考点:函数恒成立问题.专题:函数的性质及应用;不等式的解法及应用.分析:由题意可得a>0,x>0,设f(x)=(ax﹣50)lg,可得当x无限趋近于0时,f (x)无限趋近于﹣∞,当x无限趋近于+∞时,f(x)无限趋近于﹣∞,把f(x)≤0恒成立转化为f(x)有唯一的零点,进一步得到=2a,由此求得a的取值集合.解答:解:(ax﹣50)lg≤0对任意的正实数x恒成立,则a>0,x>0,设f(x)=(ax﹣50)lg,当x无限趋近于0时,f(x)无限趋近于﹣∞,当x无限趋近于+∞时,f(x)无限趋近于﹣∞,若f(x)≤0恒成立,需f(x)有唯一的零点,由f(x)=0,得ax﹣50=0或lg=0.解得:x=,x=2a.若f(x)有唯一的零点,则=2a,那么a2=25,即a=5.∴实数a的取值集合是{5}.故答案为:{5}.点评:本题考查了函数恒成立问题,考查了数学转化思想方法,把f(x)≤0恒成立转化为f(x)有唯一的零点是解答该题的关键,是中档题.13.设函数y=x2﹣3×2n﹣1x+2×4n﹣1(n∈N*)的图象在x轴上截得的线段长为d n,记数列{d n}的前n项和为S n,若存在正整数n,使得log2(S n+1)≥60成立,则实数m的最小值为29.考点:数列的求和.专题:等差数列与等比数列.分析:令y=x2﹣3×2n﹣1x+2×4n﹣1=0,可得d n=x2﹣x1=2n﹣1.利用等比数列的前n项和公式可得S n=2n﹣1.log2(S n+1)≥60化为n(m﹣n2)≥60,,变形利用基本不等式的性质即可得出.解答:解:令y=x2﹣3×2n﹣1x+2×4n﹣1=0,解得,,∴d n=x2﹣x1=2n﹣1.∴S n==2n﹣1.∴log2(S n+1)≥60化为n(m﹣n2)≥60,∴==90,取n=3时,m取得最小值29.故答案为:29.点评:本题考查了等比数列的前n项和公式、基本不等式的性质、一元二次方程的解法,考查了推理能力与计算能力,属于中档题.14.已知函数f(x)=,若命题“∃t∈R,且t≠0,使得f (t)≥kt”是假命题,则正实数k的取值范围是(,1].考点:命题的真假判断与应用.专题:函数的性质及应用.分析:由x<1时函数的单调性,画出函数f(x)的图象,把命题“存在t∈R,且t≠0,使得f(t)≥kt”是假命题转化为“任意t∈R,且t≠0,使得f(t)<kt恒成立”,作出直线y=kx,设直线与y=lnx(x≥1)图象相切于点(m,lnm),求出切点和斜率,设直线与y=x(x﹣1)2(x≤0)图象相切于点(0,0),得切线斜率k=1,由图象观察得出k的取值范围.解答:解:当x<1时,f(x)=﹣|x3﹣2x2+x|=﹣|x(x﹣1)2|=,当x<0,f′(x)=(x﹣1)(3x﹣1)>0,∴f(x)是增函数;当0≤x<1,f′(x)=﹣(x﹣1)(3x﹣1),∴f(x)在区间(0,)上是减函数,在(,1)上是增函数;画出函数y=f(x)在R上的图象,如图所示;命题“存在t∈R,且t≠0,使得f(t)≥kt“是假命题,即为任意t∈R,且t≠0时,使得f(t)<kt恒成立;作出直线y=kx,设直线与y=lnx(x≥1)图象相切于点(m,lnm),则由(lnx)′=,得k=,即lnm=km,解得m=e,k=;设直线与y=x(x﹣1)2(x≤0)的图象相切于点(0,0),∴y′=[x(x﹣1)2]′=(x﹣1)(3x﹣1),则有k=1,由图象可得,当直线绕着原点旋转时,转到与y=lnx(x≥1)图象相切,以及与y=x(x﹣1)2(x≤0)图象相切时,直线恒在上方,即f(t)<kt恒成立,∴k的取值范围是(,1].故答案为:(,1].点评:本题考查了分段函数的应用问题,也考查了存在性命题与全称性命题的互相转化问题以及不等式恒成立的问题,是较难的题目.二、解答题:本大题共6小题,计80分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.设a为实数,给出命题p:关于x的不等式的解集为∅,命题q:函数f(x)=lg[ax2+(a﹣2)x+]的定义域为R,若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围.考点:复合命题的真假.专题:函数的性质及应用;简易逻辑.分析:先根据指数函数的单调性,对数函数的定义域,以及一元二次不等式解的情况和判别式△的关系求出命题p,q下的a的取值范围,再根据p∨q为真,p∧q为假得到p,q一真一假,所以分别求出p真q假,p假q真时的a的取值范围并求并集即可.解答:解:命题p:|x﹣1|≥0,∴,∴a>1;命题q:不等式的解集为R,∴,解得;若命题“p∨q”为真,“p∧q”为假,则p,q一真一假;p真q假时,,解得a≥8;p假q真时,,解得;∴实数a的取值范围为:.点评:考查指数函数的单调性,空集的概念,对数函数的定义域,一元二次不等式的解的情况和判别式△的关系,以及p∨q,p∧q的真假和p,q真假的关系.16.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,E,F分别为PC,BD的中点.证明(1)EF∥平面PAD;(2)EF⊥平面PDC.考点:直线与平面平行的判定;直线与平面垂直的判定.专题:证明题.分析:(1)若证明EF∥平面PAD,关键是要找到平面PAD内一条可能与EF平行的直线,分别图形后发现PA即为所求,故连接AC后,利用中位线的性质,即可临到结论.(2)若证明EF⊥平面PDC,我们要证明EF与平面PDC中两条相交直线均垂直,已知中底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,结合(1)中结论,易证明出:CD⊥PA 且PA⊥PD,根据线面垂直的判定定理即可得到结论.解答:证明:(1)连接AC,在△CPA中,因为E,F分别为PC,BD的中点,所以EF∥PA.而PA⊂平面PAD,EF⊄平面PAD,所以直线EF∥平面PAD.(2)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,且CD⊥AD,所以CD⊥PA.又因为PA⊥PD,且CD,PD⊂平面PDC,所以PA⊥平面PDC.而EF∥PA,所以EF⊥平面PDC.点评:本题考查的知识眯是直线与平面平等的判定及直线与平面垂直的判定,熟练掌握线面关系的判定定理是解答此类问题的关键.17.数列{a n}中,a1=2,a n+1=a n+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.(1)求c的值;(2)求{a n}的通项公式.考点:数列的应用.专题:计算题.分析:(1)由题意知(2+c)2=2(2+3c),解得c=0或c=2.再由当c=0时,a1=a2=a3,不符合题意舍去,知c=2.(2)由题意知a n﹣a n﹣1=(n﹣1)c,所以.由此可知a n=n2﹣n+2(n=1,2,)解答:解:(1)a1=2,a2=2+c,a3=2+3c,因为a1,a2,a3成等比数列,所以(2+c)2=2(2+3c),解得c=0或c=2.当c=0时,a1=a2=a3,不符合题意舍去,故c=2.(2)当n≥2时,由于a2﹣a1=c,a3﹣a2=2c,a n﹣a n﹣1=(n﹣1)c,所以.又a1=2,c=2,故a n=2+n(n﹣1)=n2﹣n+2(n=2,3,).当n=1时,上式也成立,所以a n=n2﹣n+2(n=1,2,)点评:本题考查数列的性质和应用,解题时要注意计算能力的培养.18.如图是一块镀锌铁皮的边角料ABCD,其中AB、CD、DA都是线段,曲线段BC是抛物线的一部分,且点B是该抛物线的顶点,BA所在直线是该抛物线的对称轴,经测量,AB=2米,AD=3米,AB⊥AD,点C到AD、AB的距离CH、CR的长均为1米,现要用这块边角料截一个矩形AEFG(其中点F在曲线段BC或线段CD上,点E在线段AD上,点G在线段AB上).设BG的长为x米,矩形AEFG的面积为S平方米.(1)将S表示为x的函数;(2)当x为多少米时,S取得最大值,最大值是多少?考点:导数在最大值、最小值问题中的应用.专题:函数的性质及应用;导数的综合应用.分析:(1)由题意先根据已知条件建立平面直角坐标系,设出抛物线标准方程,然后将C点坐标给出来,代入方程求出p的值,然后分两段表示出S的值.(2)按照分段函数求最值的方法,在两段上分别求出其最大值,然后大中取大,注意前一段利用导数研究单调性后求最值.后一段是二次函数的最值问题.解答:解:(1)以点B为坐标原点,BA所在直线为x轴,建立平面直角坐标系,设曲线段BC所在抛物线方程为y2=2px(p>0).将点C(1,1)代入,得2p=1.所以曲线段BC的方程为y=(0≤x≤1).又由点C(1,1),D(2,3)得线段CD的方程为y=2x﹣1(1≤x≤2),而GA=2﹣x,所以,(2)①当0<x≤1时,因为,所以,令S′=0得.当时,S′>0,所以此时S递增;当时,S′<0,所以此时S递减,所以当时,.②当1<x<2时,因为.所以当x=时,.综上,因为,所以当米时,.答:当x取值为米时,矩形AEFG的面积最大为.点评:本题充分考查了分段函数的应用性问题,要注意抓住题目中的等量关系列出函数表达式,然后分两段研究其最值.19.已知椭圆E:+=1的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.(Ⅰ)求圆C的方程;(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;(Ⅲ)在平面上是否存在一点P,使得=?若存在,求出点P坐标;若不存在,请说明理由.考点:圆与圆锥曲线的综合;椭圆的简单性质.专题:计算题.分析:(1)由题易知圆C的圆心为()而a=,b=2可求出圆心为(﹣4,0)又圆C恰好经过坐标原点O故半径为4所以圆C的方程为(x+4)2+y2=16(2)可利用直线FG与直线l联立求出t点坐标再利用中点坐标公式求出G(﹣3,y G)再代入圆C的方程求出y G进而求出FG的方程为y=(x+2),然后利用圆心到直线的距离公式求出C(﹣4,0)到FG的距离d=再利用勾股定理即可求出弦长的一半进而求解.(3)假设存在P(s,t),G(x0,y0)使得=成立利用两点间的距离公式化简可得方程3(x02+y02)+(16+2s)x0+2ty0+16﹣s2﹣t2=0再结G(x0,y0)在圆C即x02+y02+8x0=o可得(2s﹣8)x0+2ty0+16﹣s2﹣t2=0对所有的x0,y0.成立故2s﹣8=0,2t=0,16﹣s2﹣t2=0所以s=4,t=0即存在p(4,0)满足题意.解答:解:(1)∵a=,b=2∴c=2∴左准线方程为x==﹣4∴圆心为(﹣4,0)∵圆C恰好经过坐标原点O故半径为4∴圆C的方程为(x+4)2+y2=16(2)由题意知,得G(﹣3,y G),代入(x+4)2+y2=16,得y=所以FG的斜率为K=y=,FG的方程为y=(x+2)所以C(﹣4,0)到FG的距离d=,直线FG被圆C截得弦长为2=7 故直线FG被圆C截得弦长为7.(3)设P(s,t),G(x0,y0),则由,得,整理得3(x02+y02)+(16+2s)x0+2ty0+16﹣s2﹣t2=0①又G(x0,y0)在圆C:(x+4)2+y2=16上,所以x02+y02+8x0=o②②代入①得(2s﹣8)x0+2ty0+16﹣s2﹣t2=0又G(x0,y0)为圆C上任意一点可知,2s﹣8=0,2t=0,16﹣s2﹣t2=0解得s=4,t=0.所以在平面上存在一点p,其坐标为(4,0).点评:此题第一问主要考查了利用椭圆的有关知识求圆的方程关键是要知道椭圆的左准线方程是x=.第二问考查了利用圆心到直线的距离公式求出d再利用半径,d,弦长的一半构成直角三角形再采用勾股定理即可求解.对于第三问较难但思路较简单即假设存在P (s,t),G(x0,y0)使得=成立,关键是得出(2s﹣8)x0+2ty0+16﹣s2﹣t2=0后怎么办是难点!实质上这是恒成立的问题只需系数和常数项为0即可求出s,t.20.已知函f(x)=x2﹣8lnx,g(x)=﹣x2+14x(1)求函数f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)与g(x)在区间(a,a+1)上均为增函数,求a的取值范围;(3)若方程f(x)=g(x)+m有唯一解,试求实数m的值.考点:利用导数研究曲线上某点切线方程;函数的单调性与导数的关系;利用导数研究函数的单调性.专题:综合题;压轴题.分析:(1)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.(2)由已知中函数f(x)=x2﹣8lnx,g(x)=﹣x2+14x的解析式,我们易求出他们导函数的解析式,进而求出导函数大于0的区间,构造关于a的不等式,即可得到实数a的取值范围;(3)若方程f(x)=g(x)+m有唯一解,则函数h(x)=f(x)﹣g(x)=2x2﹣8lnx﹣14x 与y=m的图象有且只有一个交点,求出h'(x)后,易求出函数的最值,分析函数的性质后,即可得到满足条件的实数m的值.解答:解:(1)因为f′(x)=2x﹣,所以切线的斜率k=f′(x)=﹣6又f(1)=1,故所求切线方程为y﹣1=﹣6(x﹣1)即y=﹣6x+7.(2)(x>0)当0<x<2时,f'(x)<0,当x>2时,f'(x)>0,要使f(x)在(a,a+1)上递增,必须a≥2g(x)=﹣x2+14x=﹣(x﹣7)2+49如使g(x)在(a,a+1)上递增,必须a+1≤7,即a≤6由上得出,当2≤a≤6时f(x),g(x)在(a,a+1)上均为增函数(3)方程f(x)=g(x)+m有唯一解有唯一解设h(x)=2x2﹣8lnx﹣14x(x>0)h'(x),h(x)随x变化如下表x (0,4) 4 (4,+∞)h'(x)﹣0 +h(x)↘极小值﹣24﹣16ln2 ↗由于在(0,+∞)上,h(x)只有一个极小值,∴h(x)的最小值为﹣24﹣16ln2,当m=﹣24﹣16ln2时,方程f(x)=g(x)+m有唯一解.点评:本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明第II卷(非选择题)请点击修改第II卷的文字说明一、新添加的题型1.复数1z i=-,则zz+对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若集合{}{}22|228,|20xA x ZB x R x x+=∈<≤=∈->,则RC BA()所含的元素个数为()A.0 B.1 C.2 D.33.设随机变量ξ服从正态分布2N1σ(,),若P2)0.8ξ<=(,则(01)Pξ<<的值为()A.0.2 B.0.3 C.0.4 D.0.64.已知双曲线的一个焦点与抛物线220x y=的焦点重合,且其渐近线的方程为340x y±=,则该双曲线的标准方程为()A.221916x y-= B.221169x y-= C.221916y x-= D.221169y x-=5.执行如图所示的程序框图,若输入2x=,则输出y的值为()A.2 B.5 C.11 D.236.已知等比数列{}n a,且48,a a+=⎰则62610(2)a a a a++的值为()A.2π B.4 C.π D.9π-7.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.852 B.0.8192 C.0.8 D.0.758.已知0a>,,x y满足约束条件13xx y⎧≥⎪+≤⎨,若2z x y=+的最小值为1,则a=( ) A .12B .13C .1 D.29.设函数()f x 是定义在R 上的奇函数,当0x >时,()23,x f x x =+-则()f x 的零点个数为( )A .1B .2C .3D .4 10.已知直线,m l ,平面,,αβ且,,m l αβ⊥⊂给出下列命题:①若α∥β,则m l ⊥; ②若αβ⊥,则m ∥l ; ③若m l ⊥,则αβ⊥; ④若m ∥l ,则αβ⊥. 其中正确的命题的个数是( ) A .1 B .2 C .3 D .411.三棱锥P ABC -中,PA ⊥平面ABC ,,1,AC BC AC BC PA ⊥==该三棱锥外接球的表面积为( )A .5πBC .20πD .4π12.ABC ∆的外接圆半径为1,圆心为O ,且3450OA OB OC ++=,则OC AB ⋅的值为( ) A .15-B .15C .65- D .6513.已知0m >,6260126(1),mx a a x a x a x +=++++若12663a a a +++=,则实数m =14.一个几何体的三视图如图所示,则该几何体的体积为15.如图,在ABC ∆中,45,B D ∠=是BC 边上一点,5,7,3AD AC DC ===,则AB 的长为ABCD16.已知函数2()43,f x x x =-+集合{}(,)|()()0M x y f x f y =+≤,集合{}(,)|()()0N x y f x f y =-≥,则集合MN 的面积为 .17.(本小题满分12分)已知公差不为0的等差数列{}n a 的前n 项和为n S ,770,S =且126,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)设248,n n S b n+=数列{}n b 的最小项是第几项,并求出该项的值. 18.(本小题满分12分)某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(2)从全市高中学生.......(.人数很多....).中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望()ξE . 19.(本小题满分12分)如图,在斜三棱柱111C B A ABC -中,O 是AC 的中点,O A 1⊥平面ABC ,︒=∠90BCA ,BC AC AA ==1.0.0750.0400.060服务时间/小时O(1)求证:11AC B A ⊥;(2)求二面角C BB A --1的余弦值.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,椭圆的短轴端点与双曲线2212y x -=的焦点重合,过点(4,0)P 且不垂直于x 轴的直线l 与椭圆C 相交于,A B 两点.(1)求椭圆C 的方程; (2)求OA OB ⋅的取值范围.21.(本小题满分12分)已知函数()sin xf x e x = (1)求函数()f x 的单调区间; (2)当[0,]2x π∈时,()f x kx ≥,求实数k 的取值范围22.(本小题满分10分)选修4—1,几何证明选讲 如图所示,圆O 的两弦AB 和CD 交于点E ,EF ∥CB ,EF 交AD 的延长线于点F ,FG 切圆O 于点G .(1)求证:△DEF ∽△EFA ; (2)如果1FG =,求EF 的长.23.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数),在同一平面直角坐标系中,将曲线C 上A BCO 1A 1B 1C的点按坐标变换1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩得到曲线C '.(1)求曲线C '的普通方程; (2)若点A 在曲线C '上,点B (3,0),当点A 在曲线C '上运动时,求AB 中点P 的轨迹方程. 24.(本小题满分10分)选修4-5:不等式选讲 已知()11f x x x =++-,不等式()4f x <的解集为M . (1)求M ;(2)当,a b M ∈时,证明:24a b ab +<+.参考答案1.D 【解析】 试题分析:()()()i i i ii iz z -++-+=-+-=+11111111223121i i i -=-++=,对应的点⎪⎭⎫⎝⎛-21,23在第四象限,故答案为D. 考点:复数的四则运算. 2.C 【解析】试题分析:由32222≤<+x ,得321≤+<x ,解得11≤<-x ,由于Z x ∈,{}1,0=A ,由022>-x x ,得2>x 或0<x ,因此{}20|≤≤=x x U C R ,因此{}1,0=U C A R 所含两个元素,故答案为C.考点:1、指数不等式的解法;2、一元二次不等式的解法. 3.B 【解析】试题分析:随机变量ξ服从正态分布()2,1σN ,因此()()5.011=<=>ξξP P ,()=<<21ξP ()()12<-<ξξP P 3.05.08.0=-=,()()3.02110=<<=<<ξξP P ,故答案为B.考点:正态分布的应用. 4.C 【解析】试题分析:抛物线的焦点坐标()5,0,设双曲线方程12222=-b x a y ,因此得⎪⎩⎪⎨⎧==+432522b a b a ,解得⎪⎩⎪⎨⎧==16922b a双曲线的方程为116922=-x y ,故答案为C. 考点:1、抛物线的简单几何性质;2、双曲线的标准方程. 5.D 【解析】试题分析:输入2=x ,5122=+⋅=y ,852>-不成立,执行循环体,5=x ,11152=+⋅=y ,8115>-不成立,执行循环体,11=x ,231112=+⋅=y ,82311>-成立,推出循环体,输出23=y ,故答案为D.考点:程序框图的应用. 6.A 【解析】 试题分析:dx x ⎰-224表示以原点为圆心,半径2=r 在第一象限的面积,因此dx x ⎰-224π=,()10666261062622a a a a a a a a a a ⋅+⋅+⋅=++2884242a a a a +⋅+=()2284π=+=a a ,故答案为A.考点:1、定积分的几何意义;2、等比数列的性质. 7.D 【解析】试题分析:由题意模拟射击4次的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示射击4次至少击中3次有:7527,0293,9857,0347,4373,8636,9647,4698,6233,2616,8045,3661,9597,7424,4281,共15组随机数,故所求的概率为75.0=P ,故答案为D. 考点:列举法求随机事件的概率. 8.A 【解析】试题分析:不等式表示的可行域如图所示,把目标函数y x z +=2转化为z x y +-=2表示的是斜率为2-,截距为z 的平行直线系,当截距最小时,z 最小,当直线y x z +=2经过点B 时,z 最小,由⎩⎨⎧=+=121y x x得⎩⎨⎧-==11y x ,因此()311-=-a ,解得21=a ,故答案为A.考点:线性规划的应用. 9.C 【解析】试题分析:由于()x f 是定义在R 上的奇函数,()00=∴f ,图象关于原点对称,当0>x 时,()03121=-+=f ,根据函数的奇偶性得()()011==-f f ,故函数有3个零点,答案为C.考点:函数零点个数的判断. 10.B 【解析】试题分析:若βα//,α⊥m ,则β⊥m ,又因为β⊂l ,l m ⊥∴,①正确;若βα⊥,α⊥m ,β⊂l ,则l m ,可能平行,相交,异面,②错误;若l m //,α⊥m ,α⊥∴l ,又由于β⊂l ,βα⊥∴,③正确, 故答案为B.考点:空间中的点、线、面的位置关系. 11.A 【解析】试题分析:PC 的中点O ,连接OB OA ,,由于⊥PA 平面ABC ,⊂AC 平面ABC ,所以AC PA ⊥,在APC Rt ∆中,PC OA 21=,由于BC PA ⊥,BC AB ⊥,A AB PA = ,⊥∴BC 平面PAB ,PC OB 21=∴,因此点O 是三棱锥ABC P -的外接球的球心,在PCA Rt ∆,2=AC ,3=PA ,5=∴PC ,外接球的半径2521==PC R ,因此外接球的表面积ππ542==R S ,故答案为A.考点:1、空间几何体的结构;2、球的表面积.12.A 【解析】试题分析:由543=++,得543-=+,平方得2222524169OC OB OA OB OA =⋅++,即252425=⋅+OB OA ,得0=⋅OB OA ,由于543+-=,()-⋅+-=⋅∴543()03451345122---=⎪⎭⎫ ⎝⎛⋅---=51-=,故答案为A.考点:平面向量数量积的运算.13.1 【解析】 试题分析:令=x ,得10=a ,令1=x 得()64631162106=+=++++=+a a a a m 62=,因此21=+m得1=m .考点:二项式定理的应用. 14.10 【解析】试题分析:由三视图可知,该几何体是四棱柱,底面积()523221=⋅+=S ,高2=h ,该几何体的体积1052=⋅=⋅=h S V .考点:求几何体的体积. 15.265【解析】试题分析:在ACD ∆中,14112cos 222=⋅-+=CD AC AD CD AC C ,1435cos 1sin 2=-=∴C C ,在ABC ∆中,由正弦定理得C AB B AC sin sin =,得265sin sin =⋅=B C AC AB . 考点:1、正弦定理的应用;2、余弦定理的应用.16.π 【解析】 试题分析:()342+-=x x x f ,()342+-=y y y f ,因此()()()()22222--+-=+y x y f x f ,由()()0≤+y f x f ,得()()22222≤-+-y x ,集合M 表示以()2,2为圆心,2为半径及其圆的内部,()()()y x y x y f x f ---=-422()()4-+-=y x y x ,由()()0≥-y f x f ,得()()04≥-+-y x y x ,N M 表示的区域为两个扇形,其面积为圆的面积的一半,()ππ==2221S .考点:1、不等式表示的区域;2、化简不等式. 17.(1)23-=n a n ;(2)最小项第4项,最小值23.【解析】 试题分析:(1)等差数列基本量的求解是等差数列的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用;(2)在求所列函数的最值时,若用基本不等式时,等号取不到时,可利用函数的单调性求解,基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.(3)解题时要善于类比要能正确区分等差、等比的性质,不要把两者的性质搞混了. 试题解析:解:(1)设公差为d ,则有1221672170a d a a a +=⎧⎨=⎩,即11211131013()(5)a d a d a d a a d +==⎧⎧⇒⎨⎨=+=+⎩⎩或1100a d =⎧⎨=⎩(舍),32n a n ∴=- (2)23[1(32)]22n n n nS n -=+-=,23484831123n n n b n n n -+∴==+-≥=,当且仅当483n n=时取=号,即4n =时取=号. 考点:1、等差数列的通项公式;2、等差数列的前n 项和公式;3、基本不等式的应用. 18.(1)52=P ;(2)()56=ξE 【解析】试题分析:(1)解决频率分布直方图的问题,关键在于找出图中数据之间的关系,这些数据中,比较明显的有组距、组距频率,间接的有频率,小长方形的面积,合理使用这些数据,再结合两个等量关系:小长方形的面积等于频率,小长方形的面积之和等于1,因此频率之和为1;(2)求随机变量的分布列的主要步骤:一是明确随机变量的取值,并确定随机变量服从何种概率分布;二是求每一个随机变量取值的概率,三是列成表格;(3)求出分布列后注意运用分布列的两条性质检验所求的分布列是否正确;(4)求解离散随机变量分布列和方差,首先要理解问题的关键,其次要准确无误的找出随机变量的所有可能值,计算出相对应的概率,写成随机变量的分布列,正确运用均值、方差公式进行计算. 试题解析:解:(1)根据题意,参加社区服务时间在时间段[)90,95小时的学生人数为 2000.060560⨯⨯=(人),参加社区服务时间在时间段[]95,100小时的学生人数为2000.020520⨯⨯=(人).所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. 所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率估计为6020802.2002005P +===(2)由(Ⅰ)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为2.5由已知得,随机变量ξ的可能取值为0,1,2,3.所以00332327(0)()()55125P C ξ==⋅=;11232354(1)()()55125P C ξ==⋅=;22132336(2)()()55125P C ξ==⋅=;3303238(3)()()55125P C ξ==⋅=.随机变量ξ的分布列为因为ξ~2(3,)5B ,所以26355E np ξ==⨯=. 考点:1、频率分布直方图的应用;2、离散型随机变量的分布列和数学期望. 19.(1)证明见解析;(2)772 【解析】 试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便,利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:解:(1)因为1A O ⊥平面ABC ,所以1AO BC ⊥.又BC AC ⊥,1AO AC A =,所以BC ⊥平面11A ACC ,所以1AC BC ⊥.因为1AA AC =,所以四边形11A ACC 是菱形,所以11AC AC ⊥,1BCAC C =,所以1AC ⊥平面1A BC ,所以11A B AC ⊥. (1)以12AA =,建立如图所示的空间直角坐标系O xyz -,则1(0,1,0),(2,1,0),(0,1,0),A B C C -,11(2,2,0),(0,1AB BB CC ===设(,,)m x y z =是面1ABB 的一个法向量,则10m AB m BB ⋅=⋅=,即2200x y y +=⎧⎪⎨+=⎪⎩,令1z =,取(3,m =. 同理面1CBC 的一个法向量为(0,3,1)n =-. 因为27cos ,7||||m n m n m n ⋅<>==⋅.所以二面角1A BB C --. 考点:直线与直线垂直的判定;2、平面与平面所成的角.20.(1)13422=+y x ;(2)⎪⎭⎫⎢⎣⎡-413,4 【解析】试题分析:(1)设椭圆的方程,若焦点明确,设椭圆的标准方程,结合条件用待定系数法求出22,b a 的值,若不明确,需分焦点在x 轴和y 轴上两种情况讨论;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式∆:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:解:(1)由题意知22222211,24c c a b e e a aa -==∴===, 2243a b =.又双曲线的焦点坐标为(0,b =224,3a b ∴==, ∴椭圆的方程为22143x y +=. (2)若直线l 的倾斜角为0,则(2,0),(2,0),4A B OA OB -⋅=-, 当直线l 的倾斜角不为0时,直线l 可设为4x my =+,22224(34)243603412x my m y my x y =+⎧⇒+++=⎨+=⎩,由 2220(24)4(34)3604m m m ∆>⇒-⨯+⨯>⇒>设1122(4,),(4,)A my y B my y ++,1212222436,3434m y y y y m m +=-=++, 21212121212(4)(4)416OA OB my my y y m y y my y y y ⋅=+++=+++2116434m =-+,2134,(4,)4m OA OB >∴⋅∈-,综上所述:范围为13[4,)4-. 考点:1、椭圆的标准方程;2、直线与椭圆的综合问题. 21.(1)函数()x f 的单调递增区间⎪⎭⎫⎝⎛+-432,42ππππk k Z k ∈,函数()x f 的单调递减区间⎪⎭⎫ ⎝⎛++472,432ππππk k Z k ∈; (2)(]1,∞- 【解析】试题分析:(1)函数()x f y =在某个区间内可导,则若()0>'x f ,则()x f 在这个区间内单调递增,若()0<'x f ,则()x f 在这个区间内单调递减;(2)若可导函数()x f 在指定的区间D 上单调递增(减),求参数问题,可转化为()0≥'x f ()()0≤'x f 或恒成立,从而构建不等式,要注意“=”是否可以取到.(3)利用导数方法证明不等式()()x g x f >在区间D 上恒成立的基本方法是构造函数()()()x g x f x h -=,然后根据函数的单调性,或者函数的最值证明函数()0>x h ,其中一个重要的技巧就是找到函数()x h 在什么地方可以等于零,这往往就是解决问题的一个突破口,观察式子的特点,找到特点证明不等式.试题解析:解:(1)()sin cos (sin cos )xxxf x e x e x e x x '=+=+,令sin cos ),4y x x x π=+=+当'3(2,2),()0,()44x k k f x f x ππππ∈-+>单调递增,'37(2,2),()0,()44x k k f x f x ππππ∈++<单调递减, 函数()x f 的单调递增区间⎪⎭⎫⎝⎛+-432,42ππππk k Z k ∈,函数()x f 的单调递减区间 ⎪⎭⎫ ⎝⎛++472,432ππππk k Z k ∈, (2)令()()sin xg x f x kx e x kx =-=-,即()0g x ≥恒成立, 而'()(sin cos )xg x e x x k =+-,令'()(sin cos )()(sin cos )(cos sin )2cos x x x x h x e x x h x e x x e x x e x =+⇒=++-='[0,],()0()2x h x h x π∈≥⇒在[0,]2π上单调递增,21()h x e π≤≤,当1k ≤时,'()0,()g x g x ≥在[0,]2π上单调递增,()(0)0g x g ≥=,符合题意; 当2k e π≥时,'()0()g x g x ≤⇒在[0,]2π上单调递减,()(0)0g x g ≤=,与题意不合; 当21k e π<<时,'()g x 为一个单调递增的函数,而''2(0)10,()02g k g e k ππ=-<=->,由零点存在性定理,必存在一个零点0x ,使得'0()0g x =,当0[0,)x x ∈时,'()0,g x ≤从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合, 综上所述:k 的取值范围为(,1]-∞.考点:1、利用导数求函数的单调区间;2、恒成立的问题. 22.(1)证明见解析;(2)1=EF 【解析】 试题分析:(1)判断三角形相似:一是平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似;二是如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似;三是如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似;四是如果两个三角形的三组对应边的比相等,那么这两个三角形相似;五是对应角相等,对应边成比例的两个三角形叫做相似三角;(2)切割线定理:切割线定理,是圆幂定理的一种,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 试题解析:证明: (1)//EF BC DEF EBC DEF BAD DEF BCD BAD ⇒∠=∠⎫⇒∠=∠⇒∆⎬∠=∠⎭∽EFA ∆(2)EFA ∆∽2EFD FE FD FA ∆⇒=⋅又因为FG 为切线,则2FG FD FA =⋅所以,1EF FG ==.考点:1、三角形相似的判断;2、求线段的弦长.23.(1)122=+y x ;(2)412322=+⎪⎭⎫ ⎝⎛-y x【解析】试题分析:(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若y x ,有范围限制,要标出y x ,的取值范围;(3)直角坐标方程化为极坐标方程,只需把公式θρcos =x 及θρsin =y 直接代入并化简即可;而极坐标方程化为极坐标方程要通过变形,构造形如θρcos ,θρsin ,2ρ的形式,进行整体代换,其中方程的两边同乘以(或同除以)ρ及方程的两边平方是常用的变形方法.试题解析:(1)C :3cos 2sin x y θθ=⎧⎨=⎩ ⇒ 22:194x y C +=, 将1312x x y y⎧'=⎪⎪⎨⎪'=⎪⎩ ⇒32x x y y '=⎧⎨'=⎩代入C 的普通方程得221x y ''+=,即22:1C x y '+=;(2)设(,),P x y 00(,)A x y , 则003,22x yx y +== 所以0023,2x x y y =-=,即(23,2)A x y -代入22:1C x y '+=,得22(23)(2)1x y -+=,即2231()24x y -+=AB 中点P 的轨迹方程为2231()24x y -+=.考点:1、参数方程与普通方程的互化;2、点的轨迹方程. 24.(1)()2,2-;(2)证明见解析 【解析】试题分析:(1)理解绝对值的几何意义,x 表示的是数轴的上点x 到原点离.(2)对于恒成立的问题,常用到以下两个结论:(1)()x f a ≥恒成立()max x f a ≥⇔,(2)()x f a ≤恒成立()min x f a ≤⇔(3)掌握一般不等式的解法:()()a x a a x ≥⇔>≥01或a x -≤,()()a x a a a x ≤≤-⇔>≤02.试题解析:(1)解不等式:114x x ++-< ;(4)逆向思维是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件,正确把握转化方向是使问题顺利获解的关键.124x x ≥⎧⎨<⎩ 或1124x -≤<⎧⎨<⎩ 或124x x <-⎧⎨-<⎩⇒12x ≤<或11x -≤<或21x -<<-,⇒22x -<<⇒()2,2M =-.(2)需证明:22224(2)816a ab b a b ab ++<++, 只需证明222244160a b a b --+>, 即需证明22(4)(4)0a b -->证明: 2222,(2,2)4,4(4)0,(4)0a b a b a b ∈-⇒<<⇒-<-<⇒22(4)(4)0a b -->,所以原不等式成立.考点:1、含绝对值不等式的解法;2、证明不等式.。

相关文档
最新文档