习题答案-《概率论》课后习题答案

合集下载

概率论课后答案

概率论课后答案

第 一 章 习 题 一1(4)解:设1B =“两件都是不合格品”,2B =“一件是合格品,另一件是不合格品”,A =“已知所取两件中有一件是不合格品”,则12A B B =+,由题意知,1226442210101112()()282,,()()()15153C C C P B P B B B C C P A P P =====+=故P{1B |A}=11()()()()2/1512/35P AB P B P A P A ===3. 解:A:表示两个一级队被分在不同组,则A :表示两个一级队被分在同一组192181020()()1()0.4740.526,C C P A P A P A C ==-==5.解:设一段长为x ,另一段长为y ,样本空间:0,0,0x a y a x y a Ω<<<<<+<,所求事件满足:0202()a x a y x y a x y ⎧<<⎪⎪⎪<<⎨⎪+>--⎪⎪⎩从而所求概率=14CDEOABS S=. 6.解:设所取两数为,,X Y 样本空间占有区域Ω,两数之积小于14:14XY <,故所求概率()()1()()1S S D S D P S Ω--==Ω,而11411()(1)1(1ln 4)44S D dx x =-=-+⎰,故所求概率为1(1l n4)4+.8.解:设A —某种动物由出生算起活到20年以上,()0.8P A =,B —某种动物由出生 算起活到25年以上,()0.4P B =,则所求的概率为()()0.4()()0.5()()0.8P AB P B BBP P A A P A P A ===== 9.解:设A —某地区后30年内发生特大洪灾,()0.8P A =,B —某地区后40年内发生特大洪灾,()0.85P B =,则所求的概率为 ()()0.15()1()1110.250.2()()P BA P B B B P P A A P A P A =-=-=-=-=.10.解:设A={收报台收到信号“.”},则A ={收报台收到信号“-”},设B={发报台发出信号“.”},则B ={发报台发出信号“-”},由题意知道:()0.4,(|)0.8,(|)0.2,(|)0.1,(|)0.9,P B P A B P A B P A B P A B =====P(B)=0.6,1()0.65,AP B =32()0.7,()0.85AAP P B B ==由贝叶斯公式得:()(|)(|)0.923()(|)()(|)P B P A B P B A P B P A B P B P A B =≈+()(|)(|)0.75()(|)()(|)P B P A B P B A P B P A B P B P A B =≈+12.解:设1A :所抽螺钉来自甲厂 , 2A :所抽螺钉来自乙厂,3A :所抽螺钉来自丙厂,B :所抽螺钉是次品,则1()25%P A =,2()35%P A =,3()40%P A =,1(|)5%P B A =,2(|)4%P B A =,3(|)2%P B A =(1)由全概率公式:112233()()(|)()(|)()(|)0.0345P B P A P B A P A P B A P A P B A =⋅+⋅+⋅=(2)由贝叶斯公式:111(|)()(|)0.3623()P B A P A P A B P B ==.13.解:设A:{直到第n 次才取k 次()k n ≤红 球}={第n 次取到红球}{前n-1次取到k-1次红球},则所求的概率为11111119()101010191010k n kk n kn kk n P A C C -------⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭14.解:设A 表示灯泡使用寿命在1000h 以上,则由题意得()0.2P A =,()0.8P A =,设事件B 表示三个灯泡使用1000h 后恰有i 个坏了,则“三个灯泡使用1000h 后最多只有一个坏了”这一事件课表示为01B B +,由二项概率公式所求概率为01()P B B +=31230313()()0.2(0.2)0.80.104P B P B C +=+⋅= 15.解:设试验E —从二盒火柴中任取一盒,A —取到先用完的哪盒,1()2P A =,则所求概率为将E 重复独立作2n r -次A 发生n 次的概率,故所求的概率为222211()()()222nnn n r n r n rn r n rC P n C-----==.16.设甲、乙两袋,甲袋中有2只白球,4只红球;乙袋中有3只白球,2只红球.今从甲袋中任意取一球放入乙袋中,再从乙袋中任意取一球. 1)问取到白球的概率是多少?2)假设取到白球,问该球来自甲袋的概率是多少?解:设A :取到白球,B :从甲球袋取白球24431) ()(/)()(/)()5/9 6666P A P A B P B P A B P B =+=⋅+⋅=(/)()2/92) (/)()/()2/5()5/9P A B P B P B A P AB P A P A ====17.3个射手向一敌机射击,射中的概率分别是0.4,0.6和0.7.如果一人射中,敌机被击落的概率为0.2;二人射中,被击落的概率为0.6;三人射中则必被击落.(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率. 解:设A={敌机被击落},B i ={i 个射手击中},i=1,2,3. 则B 1,B 2,B 3互不相容.由题意知:132()0.2,()0.6,()1A A AP P P B B B ===,由于3个射手射击是互相独立的,所以1()0.40.40.30.60.60.30.60.40.70.324P B =⨯⨯+⨯⨯+⨯⨯= 2()0.40.60.30.40.70.40.60.70.60.436P B =⨯⨯+⨯⨯+⨯⨯=3()0.40.60.70.168P B =⨯⨯=因为事件A 能且只能与互不相容事件B 1,B 2,B 3之一同时发生.于是 (1)由全概率公式得31()()(|)0.3240.20.4360.60.16810.4944i i i P A P B P A B ===⨯+⨯+⨯=∑(2)由Bayes 公式得33331()(|)0.168(|)0.340.4944()(|)iii P B P A B P B A P B P A B ====∑. 第 二 章1(4).设随机变量X 的密度函数为2, 01()0 , x x p x <<⎧=⎨⎩其它,用Y表示对X 的3次独立重复观察中事件1{}2X ≤出现的次数,{2}__P Y ==.解:(3,)Yp B ,1211{}224p P X xdx =≤==⎰,由二项概率公式 223139{2}()()4464P Y C ===.2.解:{报童赔钱}⇔{卖出的报纸钱不够成本},而当 0.15 X <1000× 0.1时,报童赔钱,故{报童赔钱} ⇔{X ≤666}3.解:设X 表示取出次品的只数,则(1)X 的分布律为{}31331322035C P X C ===,{}1221331312135C C P X C ===,{}212133131235C C P X C ===或者(2)X 的分布函数为0 ,022{0} = ,0135()34{0}{1} ,1235{0}{1}x P X x F x P X P X x P X P X <=≤<==+==≤<=+={2} =1 ,2P X x ⎧⎪⎪⎪⎨⎪⎪⎪+=≥⎩,则分布律的图像即为F(x)的分段函数图像。

概率论·课后答案(绝对详解)

概率论·课后答案(绝对详解)

i习题一3 设,,B A 为二事件,化简下列事件:B B B A B BA B A B A B A =⋃=⋃⋃=⋃⋃)()())()(1(B B A B B A A A B A B A =⋃⋃⋃=⋃⋃)())()(2(4 电话号码由5个数字组成,每个数字可能是从0到9这10个数字中的任一个,求电话号码由5个不同数字组成的概率。

3024.010302410427210678910445==⋅=⋅⋅⋅⋅=p5 n 张奖券中有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

答案:.1k n k mn C C --6 从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”的概率是多少?解;将这五双靴子分别编号分组},,,,{};,,,,{5432154321b b b b b B a a a a a A ==,则C 表示:“至少有两只配成一双”;从5双不同的鞋子中任取4只,其可能选法有.45C不能配对只能是:一组中选i 只,另一组中选4-i 只,且编号不同,其可能选法为)0,1,2,3,4(;455=--i C C i i i41045341523251235451)(1)(C C C C C C C C C C P C P ++++-=-= 2113218177224161247720104060401011234789105453245224551=-=⋅⋅-=⋅++++-=⋅⋅⋅⋅⋅⋅⋅+⋅+⋅⋅+⋅⋅+-= 7在[—1,1]上任取一点,求该点到原点的距离不超过51的概率。

答案:518在长度为a 的线段内任取两点,将其分成三段,求它们可以构成三角形的概率。

,0,0a y a x <<<<且a y x <+<0,又41222,,=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>+⇒⎪⎩⎪⎨⎧--<---<--->+P ay a x a y x y x a x y y x a y x y x a y x 9在区间)1,0(内任取两个数,求这两个数的积小于41的概率。

概率论课后习题答案pdf

概率论课后习题答案pdf

概率论课后习题答案pdf概率论课后习题答案pdf概率论是数学中的一门重要学科,研究的是随机事件发生的规律性。

在学习概率论的过程中,课后习题是巩固知识、提高应用能力的重要途径。

然而,对于一些复杂的概率题目,学生可能会遇到困惑和难以解答的情况。

因此,提供一份概率论课后习题答案pdf对于学生来说是非常有益的。

一、基础概率题1. 一个标准的扑克牌中,红桃和黑桃的数量各有多少张?答案:扑克牌一共有52张,其中红桃和黑桃各有13张。

2. 从一副标准扑克牌中,随机抽取两张牌,求两张牌都是红桃的概率。

答案:首先,从52张牌中抽取第一张红桃的概率为13/52。

然后,从剩下的51张牌中抽取第二张红桃的概率为12/51。

因此,两张牌都是红桃的概率为(13/52) * (12/51) = 1/17。

二、条件概率题1. 一家电子产品公司生产的手机中,10%的手机存在质量问题。

现在从该公司生产的手机中随机选择一个,发现该手机存在质量问题。

求该手机是该公司生产的概率。

答案:设事件A表示选择的手机存在质量问题,事件B表示该手机是该公司生产的。

根据条件概率的定义,我们需要求解P(B|A)。

根据题意,P(A) = 0.1,即选择的手机存在质量问题的概率为0.1。

又因为只有该公司生产的手机存在质量问题,所以P(A|B) = 1。

根据条件概率的公式,有P(B|A) = P(A|B) * P(B) / P(A) = 1 * P(B) / 0.1 = 10 * P(B)。

由于概率的取值范围在0到1之间,所以P(B)的取值范围也在0到0.1之间。

因此,该手机是该公司生产的概率为10 * P(B),其中0 <= P(B) <= 0.1。

三、随机变量题1. 设随机变量X表示一次抛掷一枚骰子的结果,求X的期望。

答案:一枚骰子的结果有1、2、3、4、5、6六种可能,每种可能出现的概率为1/6。

根据期望的定义,期望E(X) = (1/6) * 1 + (1/6) * 2 + (1/6) * 3 + (1/6) * 4 + (1/6) * 5 + (1/6) * 6 = 3.5。

概率论课后习题答案

概率论课后习题答案

习题1解答1. 写出下列随机试验的样本空间Ω:(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为{|0,1,2,,100}ii n nΩ==.(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为{10|0,1,2,}k k Ω=+=,或写成{10,11,12,}.Ω=(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.(3)取直角坐标系,则有22{(,)|1}x y x y Ω=+<,若取极坐标系,则有{(,)|01,02π}ρθρθΩ=≤<≤<.2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1)A 发生而B 与C 不发生; (2)A 、B 、C 中恰好发生一个; (3)A 、B 、C 中至少有一个发生; (4)A 、B 、C 中恰好有两个发生; (5)A 、B 、C 中至少有两个发生; (6)A 、B 、C 中有不多于一个事件发生.解:(1)ABC 或A B C --或()A B C -;(2)ABC ABC ABC ;(3)AB C 或ABCABCABCABCABCABCABC ;(4)ABC ABCABC .(5)AB AC BC 或ABC ABC ABCABC ;(6)ABCABCABCABC .3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:(1)AB ;(2)A B -;(3)A B -;(4)A B .解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}AB x x x =≤<<≤或.4. 一个样本空间有三个样本点, 其对应的概率分别为22,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以2241 1.p p p ++-=解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以3p =- 5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;(3)()P AB .解:(1)由()()()()P AB P A P B P AB =+-得()()()()030.50.80P AB P A P B P A B =+-=+-=.(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P AB =-=-=-=6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P AB P A P B P AB =-=-=--+得()()1P A P B +=,从而()1.P B p =-7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求()P A B C .解:()()()()()()()()0.40.50.600.20.400.9.P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为34个.以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有34A 种方法,故34136().416A P A ==2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为211343C C C 种,故211343239().416C C C P A == 3A 表示3个球放入同一个杯子中,共有14C 种放法,故14331().416C P A ==9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为4987487987411098790P ⨯⨯⨯-⨯⨯+⨯⨯==⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217551010=+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一X 小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 23342/1/2P A A =⨯=.12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含79A 个样本点,于是7799)(A A P =.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次,求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在),60,0(记 “等待时间短于10分钟”为事件,A 则有(0,60),Ω=)60,50(=A ,⊂Ω于是)(A P 6010=.61= 14. 甲乙两人相约812-点在预定地点会面。

《概率论与数理统计教程》课后习题解答

《概率论与数理统计教程》课后习题解答

第一章 事件与概率1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2)C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

解 (1)n i iA 1=; (2) n i i n i i A A 11===; (3) n i nij j ji A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为nji j i jiAA ≠=1,;1.5 在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率。

解 样本点总数为7828⨯=A 。

所得分数为既约分数必须分子分母或为7、11、13中的两个,或为2、4、6、8、12中的一个和7、11、13中的一个组合,所以事件A “所得分数为既约分数”包含6322151323⨯⨯=⨯+A A A 个样本点。

于是14978632)(=⨯⨯⨯=A P 。

1.8 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以相互吃掉的概率。

解 任意固定红“车”的位置,黑“车”可处于891109=-⨯个不同位置,当它处于和红“车”同行或同列的1789=+个位置之一时正好相互“吃掉”。

概率论课后习题答案北大

概率论课后习题答案北大

概率论课后习题答案北大概率论课后习题答案北大北大是中国著名的高等学府,其数学系在国内乃至国际上都享有盛誉。

概率论是数学系的一门重要课程,它研究的是随机现象的规律性。

作为一门理论性较强的学科,概率论的习题往往需要一定的思考和推理能力。

下面,我们就来看一下北大概率论课后习题的答案。

1. 设A、B、C为三个事件,且P(A)=0.3,P(B)=0.4,P(C)=0.5,且P(A∩B)=0.1,P(A∩C)=0.2,P(B∩C)=0.3,P(A∩B∩C)=0.05,求:(1) P(A∪B∪C)的值;(2) P(A'∩B'∩C')的值。

解答:(1) 根据概率的加法原理,有P(A∪B∪C) = P(A) + P(B) + P(C) - P(A∩B) -P(A∩C) - P(B∩C) + P(A∩B∩C)。

代入已知条件,可得P(A∪B∪C) = 0.3 + 0.4 + 0.5 - 0.1 - 0.2 - 0.3 + 0.05 =0.65。

(2) 根据概率的补集公式,有P(A'∩B'∩C') = 1 - P(A∪B∪C)。

代入已知条件,可得P(A'∩B'∩C') = 1 - 0.65 = 0.35。

2. 设随机变量X服从正态分布N(μ, σ^2),已知P(X > 2) = 0.3,P(X < -1) = 0.1,求:(1) X的期望μ和方差σ^2的值;(2) P(-1 < X < 2)的值。

解答:(1) 根据正态分布的性质,有P(X > 2) = P(Z > (2-μ)/σ) = 0.3,其中Z是标准正态分布。

查表可得,对应的Z值为0.524,即(2-μ)/σ = 0.524。

同理,有P(X < -1) = P(Z < (-1-μ)/σ) = 0.1,对应的Z值为-1.281,即(-1-μ)/σ = -1.281。

概率论第六章课后习题答案

概率论第六章课后习题答案

概率论第六章课后习题答案概率论第六章课后习题答案概率论是一门研究随机现象的数学分支,它在解决实际问题中具有广泛的应用。

第六章是概率论中的重要章节,主要涉及随机变量及其概率分布、数学期望和方差等内容。

在课后习题中,我们将通过解答一些典型问题,进一步加深对这些概念的理解。

1. 随机变量X的概率分布函数为F(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 3/4, 2 ≤ x < 3{ 1, x ≥ 3(1) 求随机变量X的概率密度函数f(x)。

(2) 求P(0.5 ≤ X ≤ 2.5)。

解:(1) 概率密度函数f(x)是概率分布函数F(x)的导数。

根据导数的定义,我们可以得到:f(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 1/4, 2 ≤ x < 3{ 0, x ≥ 3(2) P(0.5 ≤ X ≤ 2.5) = F(2.5) - F(0.5) = 3/4 - 1/4 = 1/2 2. 设随机变量X的概率密度函数为f(x) ={ c(1 - x^2), -1 ≤ x ≤ 1{ 0, 其他(1) 求常数c的值。

(2) 求P(|X| > 0.5)。

解:(1) 概率密度函数f(x)的积分值等于1。

我们可以计算:∫[-1,1] c(1 - x^2) dx = 1解这个积分方程,可得c = 3/4。

(2) P(|X| > 0.5) = 1 - P(|X| ≤ 0.5)= 1 - ∫[-0.5,0.5] c(1 - x^2) dx= 1 - 3/4 ∫[-0.5,0.5] (1 - x^2) dx= 1 - 3/4 [x - x^3/3] |[-0.5,0.5]= 1 - 3/4 [(0.5 - 0.5^3/3) - (-0.5 + 0.5^3/3)] = 1 - 3/4 [0.5 - 0.5/3 - (-0.5 + 0.5/3)]= 1 - 3/4 [1/3]= 1 - 1/4= 3/43. 设随机变量X的概率密度函数为f(x) ={ kx^2, 0 ≤ x ≤ 2{ 0, 其他(1) 求常数k的值。

概率论第四版课本习题答案

概率论第四版课本习题答案

概率论第四版课本习题答案概率论是数学的一个重要分支,广泛应用于统计学、物理学、工程学等多个领域。

第四版课本习题答案的提供,可以帮助学生更好地理解和掌握概率论的基本概念和方法。

以下是一些概率论习题的解答示例:1. 随机事件的概率如果事件A的概率是P(A)=0.3,事件B的概率是P(B)=0.5,且事件A和B是互斥的,求事件A和B同时不发生的概率。

解答:由于A和B是互斥事件,事件A和B同时不发生的概率等于1减去它们各自发生的概率之和,即P(A' ∩ B') = 1 - P(A) - P(B) = 1 - 0.3 - 0.5 = 0.2。

2. 条件概率如果P(A|B) = 0.7,P(B) = 0.4,求P(A ∩ B)。

解答:根据条件概率的定义,P(A ∩ B) = P(A|B) * P(B) = 0.7* 0.4 = 0.28。

3. 独立事件如果事件A和事件B是独立的,且P(A) = 0.6,P(B) = 0.5,求P(A ∩ B)。

解答:对于独立的事件,P(A ∩ B) = P(A) * P(B) = 0.6 * 0.5= 0.3。

4. 全概率公式设事件A1, A2, ..., An是样本空间的一个划分,且P(Ai) > 0,对于任意事件B,证明P(B) = Σ[P(Ai) * P(B|Ai)]。

解答:根据全概率公式的定义,P(B)是事件B发生的概率,可以分解为所有可能的Ai发生时B发生的概率之和。

即P(B) = Σ[P(Ai ∩ B)]。

由于Ai和B是独立的,P(Ai ∩ B) = P(Ai) * P(B|Ai),因此P(B) = Σ[P(Ai) * P(B|Ai)]。

5. 贝叶斯定理如果P(A|B) = 0.8,P(B) = 0.01,P(A'|B') = 0.6,P(B') =0.99,求P(B|A)。

解答:使用贝叶斯定理,P(B|A) = [P(A|B) * P(B)] / [P(A|B) * P(B) + P(A'|B') * P(B')] = (0.8 * 0.01) / [(0.8 * 0.01) + (0.6 * 0.99)] ≈ 0.008 / 0.6042 ≈ 0.0132。

概率论第一章课后习题答案

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答习题一3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件:(1)A 发生,B 与C 不发生;(2)A 与B 都发生,而C 不发生;(3)A ,B ,C 都发生;(4)A ,B ,C 都不发生;(5)A ,B ,C 中至少有一个发生;(6)A ,B ,C 中恰有一个发生;(7)A ,B ,C 中至少有两个发生;(8)A ,B ,C 中最多有一个发生.解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ;(5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ;(8)BC AC AB 或C B C A B A .5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码.(1)求最小的号码为5的概率;(2)求最大的号码为5的概率.解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得(1)121)(31025==C C A P ; (2)201)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求:(1)任取3件产品恰有1件是废品的概率;(2)任取3件产品没有废品的概率;(3)任取3件产品中废品不少于2件的概率.解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得(1)0855.0)(32002194161≈=C C C A P ; (2)9122.0)(320031940≈=C C A P ; (3)0023.0)(32003611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率:A 表示“这三个数字中不含0和5”; B 表示“这三个数字中包含0或5”; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得157)(31038==C C A P ;158)(1)(=-=A P B P ;307)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P .解:4.08.05.0)|()()(=⨯==A B P A P AB P)]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-==3.0)4.06.05.0(1=-+-=10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()()()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少?解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为319.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.(1)求他拨号不超过三次而接通的概率;(2)若已知最后一个数字是奇数,那么他拨号不超过三次而接通的概率又是多少?解:设事件A 分别表示“他拨号不超过三次而接通”,事件B 分别表示“最后一个数字是奇数”,则所求的概率为(1)103819810991109101)(=⨯⨯+⨯+=A P (2)53314354415451)|(=⨯⨯+⨯+=B A P 13.一盒里有10个电子元件,其中有7个正品,3个次品.从中每次抽取一个,不放回地连续抽取四次,求第一、第二次取得次品且第三、第四次取得正品的概率. 解:设事件i A 表示“第i 次取得次品”(4,3,2,1=i ),则所求的概率为 )|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =201768792103=⨯⨯⨯= 14.一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别有5箱、3箱、2箱,三厂产品的次品率依次为1.0,2.0,3.0,从这10箱中任取 一箱,再从这箱中任取一件产品,求取得正品的概率.解:设事件321,,A A A 分别表示“产品是甲,乙,丙厂生产的”,事件B 表示“产品是正品”,显然,事件321,,A A A 构成一个完备事件组,且2.0102)(,3.0103)(,5.0105)(321======A P A P A P 7.03.01)|(,8.02.01)|(,9.01.01)|(321=-==-==-=A B P A B P A B P 由全概率公式得83.07.02.08.03.09.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P15.甲、乙、丙三门高炮同时独立地各向敌机发射一枚炮弹,它们命中敌机的概率都是2.0.飞机被击中1弹而坠毁的概率为1.0,被击中2弹而坠毁的概率为5.0,被击中3弹必定坠毁.(1)求飞机坠毁的概率;(2)已知飞机已经坠毁,试求它在坠毁前只被命中1弹的概率.解:设事件i A 表示“飞机被击中i 弹而坠毁”)3,2,1(=i ,事件B 表示“飞机坠毁”,显然,事件321,,A A A 构成一个完备事件组,由二项概率公式计算得008.0)2.0()(,096.0)8.0()2.0()(,384.0)8.0()2.0()(33331223221131======C A P C A P C A P 1)|(,5.0)|(,1.0)|(321===A B P A B P A B P(1)由全概率公式得0944.01008.05.0096.01.0384.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P(2)由贝叶斯公式得407.00944.01.0384.0)|()()|()()|(31111≈⨯==∑=i ii A B P A P A B P A P B A P 16.设甲袋中装有5个红球,4个白球;乙袋中装有4个红球,5个白球.先从甲袋中任取2个球放入乙袋中,然后从乙袋中任取一个球,求取到是白球的概率. 解:设事件i A 表示“从甲袋取出的2个球中有i 个白球”)2,1,0(=i ,事件B 表示“从乙袋中取出的一个球是白球”,显然,事件321,,A A A 构成一个完备事件组,且29254)(C C C A P i i i -=,115)|(i A B P i +=,)2,1,0(=i ,由全概率公式得 5354.09953115)|()()(202925420==+⋅==∑∑=-=i i i i i i i C C C A B P A P B P 17.已知男子有%5是色盲患者,女子有%25.0是色盲患者.现在从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:设事件A 表示“此人是男性”,事件B 表示“此人是色盲患者”,显然,事件A A ,构成一个完备事件组,且5.0)()(==A P A P ,%25.0)|(%,5)|(==A B P A B P由贝叶斯公式得9524.02120%25.05.0%55.0%55.0)|()()|()()|()()|(≈=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 18.设机器正常时生产合格品的概率为%98,当机器发生故障时生产合格品的概率为%30,而机器正常(即不发生故障)的概率为%95.某天,工人使用该机器生产的第一件产品是合格品,求机器是正常的概率.解:设事件A 表示“该机器正常”,事件B 表示“产品是合格品”,显然,事件A A ,构成一个完备事件组,且%30)|(%,98)|(%,5)(1)(%,95)(===-==A B P A B P A P A P A P由贝叶斯公式得984.0%30%5%98%95%98%95)|()()|()()|()()|(≈⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 19.三人独立地去破译一个密码,他们能够译出的概率分别是51,31,41,问能将密码译出的概率是多少?解:设事件C B A ,,分别表示“第一人,第二人,第三人破译出密码”,显然事件C B A ,,相互独立,且41)(,31)(,51)(===C P B P A P ,则所求的概率为 53)411)(311)(511(1)()()(1)(=----=-=C P B P A P C B A P 20.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是02.0,03.0,05.0和03.0.假设各道工序是互不影响的,求加工出来的零件的次品率.解:设事件i A 表示“第i 道工序加工出次品”)4,3,2,1(=i ,显然事件4321,,,A A A A 相互独立,且03.0)(,05.0)(,03.0)(,02.0)(4321====A P A P A P A P ,则所求的概率为)()()()(1)(43214321A P A P A P A P A A A A P -=124.0)03.01)(05.01)(03.01)(02.01(1=-----=21.设第一个盒子里装有3个蓝球,2个绿球,2个白球;第二个盒子里装有2个蓝球,3个绿球,4个白球.现在独立地分别从两个盒子里各取一个球.(1)求至少有一个蓝球的概率;(2)求有一个蓝球一个白球的概率;(3)已知至少有一个蓝球,求有一个蓝球一个白球的概率.解:设事件21,A A 表示“从第一个盒子里取出的球是篮球,白球”,事件21,B B 表示“从第二个盒子里取出的球是篮球,白球”,显然事件i A 与j B 相互独立)2,1;2,1(==j i ,且94)(,92)(,72)(,73)(2121====B P B P A P A P ,则所求的概率为 (1)95)921)(731(1)()(1)(1111=---=-=+B P A P B A P ; (2)631692729473)()()()()(12211221=⨯+⨯=+=+B P A P B P A P B A B A P ; (3))()])([()](|)[(11111221111221B A P B A B A B A P B A B A B A P +++=++ 3516956316)()(111221==++=B A P B A B A P 22.设一系统由三个元件联结而成(如图51-),各个元件独立地工作,且每个元件能正常工作的概率均为p (10<<p ).求系统能正常工作的概率.图51- 解:设事件i A 表示“第i 个元件正常工作”)3,2,1(=i ,事件B 表示“该系统正常工作”,显然,事件321,,A A A 相互独立,且p A P i =)(,则所求的概率为 )()()()(])[()(32132313231321A A A P A A P A A P A A A A P A A A P B P -+=== 3232132312)()()()()()()(p p A P A P A P A P A P A P A P -=-+=24.一批产品中有%20的次品,进行放回抽样检查,共取5件样品.计算:(1)这5件样品中恰有2件次品的概率;(2)这5件样品中最多有2件次品的概率.解:设事件A 表示“该样品是次品”,显然,这是一个伯努利概型,其中%80)(%,20)(,5===A P A P n ,由二项概率公式有(1)2048.0%)80(%)20()2(32255==C P(2)942.0%)80(%)20()(2055205==∑∑=-=k k k k k C k P。

概率论课后习题答案第三章

概率论课后习题答案第三章

概率论课后习题答案第三章第三章概率论课后习题答案概率论是一门研究随机现象的数学学科,它在现代科学和工程领域中有着广泛的应用。

而习题则是巩固和加深对概率论知识的理解和应用的重要手段。

在第三章的习题中,我们将探讨一些与随机变量和概率分布相关的问题,并给出相应的答案和解析。

1. 设随机变量X服从参数为λ的指数分布,即X~Exp(λ),其概率密度函数为f(x) = λe^(-λx),x≥0。

求以下概率:(a) P(X > 2)(b) P(X ≤ 1)(c) P(1 ≤ X ≤ 3)答案:(a) P(X > 2) = ∫[2,∞] λe^(-λx) dx = e^(-2λ)(b) P(X ≤ 1) = ∫[0,1] λe^(-λx) dx = 1 - e^(-λ)(c) P(1 ≤ X ≤ 3) = ∫[1,3] λe^(-λx) dx = e^(-λ) - e^(-3λ)解析:根据指数分布的性质,我们可以利用概率密度函数求解概率。

对于(a),我们计算X大于2的概率,即求解X在区间[2,∞]上的概率密度函数的积分。

对于(b),我们计算X小于等于1的概率,即求解X在区间[0,1]上的概率密度函数的积分。

对于(c),我们计算X在1到3之间的概率,即求解X在区间[1,3]上的概率密度函数的积分。

2. 设随机变量X服从参数为μ和σ^2的正态分布,即X~N(μ,σ^2),其概率密度函数为f(x) = (1/(σ√(2π))) * e^(-(x-μ)^2/(2σ^2)),-∞<x<∞。

求以下概率:(a) P(X > μ)(b) P(X ≤ μ)(c) P(μ-σ ≤ X ≤ μ+σ)答案:(a) P(X > μ) = 1 - P(X ≤μ) = 1 - 0.5 = 0.5(b) P(X ≤ μ) = 0.5(c) P(μ-σ ≤ X ≤ μ+σ) = P(X ≤ μ+σ) - P(X ≤ μ-σ) = 0.6827 - 0.3173 =0.3654解析:对于正态分布,我们可以利用概率密度函数求解概率。

概率论课后习题解答

概率论课后习题解答

一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。

概率论课后习题解答

概率论课后习题解答

一、习题详解:写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7)在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8)在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。

概率论课后习题答案第一章

概率论课后习题答案第一章

2008年4月第一章1.1 解⑴记9件合格品分别为正1正2�6�7正9记不合格品为次则Ω正1正2正1正3正1正4�6�7正1正9正1次正2正3正2正4�6�7正2正9正2次正3正4�6�7正3正9正3次�6�7 正8正9正8次正9次A正1次正2次正3次�6�7正9次⑵记2个白球分别为w1w23个黑球分别为b1b2b34个红球分别为r1r2r3r4。

则Ωw1w2b1b2b3r1r2r3r4 ⅰA w1w2。

ⅱB r1r2r3r4。

1.2 解⑴事件ABC表示该生是三年级男生但不是运动员。

⑵ABCC等价于CAB表示全系运动员都是三年级的男生。

⑶当全系运动员都是三年级学生时。

⑷当全系女生都在三年级并且三年级学生都是女生时。

1.3 解⑴1niiA⑵22221222211nCDniCDiCDCDnCDACDCD ⑶11nnijijjiAA⑷原事件即“至少有两个零件是合格品”可表为1nijijijAA。

1.4 解1—4显然5和6的证法分别类似于课文第10—12页1.5式和1.6式的证法。

1.5 解样本点总数为28A8×7。

所得分数为既约分数必须分子分母或为71113中的两个或246812中的一个和71113中的一个组合所以事件A“所得分数为既约分数”包含28A218A×15A3×22×3×52×3×6个样本点。

于是PA23698714。

1.6 解样本点总数为5310。

所取三条线段能构成一个三角形这三条线段必须是3、5、7或5、7、9。

所以事件A“所取三条线段能构成一个三角形”包含3个样本点于是PA310。

17解显然样本点总数为13事件A“恰好组成MATHEMATICIAN”包含3222个样本点。

所以3222481313PA 18解任意固定红“车”的位置黑“车”可处在9×10-189个不同位置当它处于和红“车”同行或同列的9817个位置之一时正好互相“吃掉”。

概率论第4-6章课后习题答案

概率论第4-6章课后习题答案

习题四E(X) = (-l)x- + 0x —+ lx- + 2x —=—;【解】(1) 8 2 8 4 2 ⑵£区)=(一]% + 0弓+ % + 2.卜春£(2X+3) = 2£(X) + 3 = 2x- + 3 = 4⑶ 22.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.故£(X) = 0583x0+0340x1 + 0.070x2 + 0.007x3 + 0x4 + 0x5= 0・50hD(X) = ±[兀-E(X)]胡=(O-O・5O1)2X O・583+(1-O・5O1)2X O・34O+…+ (5-0.501)2x0= 0.432.3•设随机变量X的分布律为且已知 E (X) sE(X2)s求Pl. P2. P3・【解】因A + A + A = l…①,又E(X) = (-l)A+0・;^ + l・& = /^-A =0」②,£(X2)=(-1)2・/;+O2・&+12・&=A+^=O・9■■③由①②③联立解得人=g £ = 0丄& = 054.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X) =n,问从袋中任取1球为白 球的概率是多少 【解】记A 可从袋中任取1球为白球卜则 N PG4)全鯉公迖另P{ AIX =灯"{ X =灯 A-0 N b I N =工万P 泌 * = -DP{X*} *■0 N /V Jt.(>5・E 心需5•设随机变量X 的概率密度为 X, 0<%<1,2 - A, 1 < X < 2,(X 其他. f(X) 求 E (X), D CX). [解]E(X)=匚 (x)dx =£x -dx + [ x(2 - x}dxE( X 2)=匚 x-f(x)dx =J : x'dv + j\'(2-%)cLv = £ 故 D(X)"X)-阳 r 6•设随机变量X, Y, Z 相互独立,且E (X) =5, E (Y) =11. E ⑵=8.求下列随机变的 数学期望.(1) (2) U=2X+3Y+1; V=YZ 4X. 【解】 ⑴ ElU] = E(2X+3Y + l) = 2E(X} + 3E(Y} + \= 2x5 + 3x11 + 1=44. ⑵ EIV] = EIYZ-4X] = E[YZ]-4E(X) 因人 Z 独立E(y>E(Z)-4E(X)= 11x8-4x5 = 6 &7•设随机变量 X, Y 柑互独立,且 E (X) =E(Y) =3, D (X) =12. D (Y) =16,求 E (3X 2Y), D C2X 3Y).【解】⑴ £(3X -2r)= 3£(X)-2£(y)=3x3-2x3 = 3.⑵ D(2X-3y)= 2'D(X) + (-3)-Dr = 4x12 + 9x16=192.8.设随机变量ex. Y)的概率密度为k. 0<%< to< y < X,f(x,八仏其他试确世常数k,并求E (XY) • 阳因匸匚心曲T :时沁二EgE{XY} = J J x)/(x, y)dxdy = [xtkj^ 2ydy = 0.259•设X, Y 是相互独立的随机变量,其概率密度分别为fa 、y)=/xW*/r(y)=- 2甘7, 0<x<ty>5,0.其他,于是2儿 0. fX(X) 求 E(XY) • 【解】方法一: 0<%<1,其他;,严,y>5, fY (y)其他先求X & j Y 的均值£(X) = J x*2Adv = —,E(Y) = [ ■ 5] e"^dz + £ ze^dz = 5 + 1 =6.由X 仃Y 的独立性,得 £(xr)= E(X)・E(y)= -x6 = 4. 方法二:利用随机变量函数的均值公式•因X 与Y 独立,故联合密度为H-OO .ye->-00ye E(XY) = £ A3'*2.ve~*'■^'dxdy = £ 2x -dv*J^ ye~^= — x 6 = 4. 5 ) 0 5W.设随机变Sx, Y 的槪率密度分别为 2e-\ %>0, 0, x<0; < 4e^\ y>a fY(Y)=k 求(1) E (X+Y); (2) E (2X 3Y2) •fx(X)9P(X=O) = —= 0.750,123 2 9P{X=2) = — x — x — = 0.041,12 II 10于是,得到X的概率分布表如卜•:3 9P{X =l| = — x —= 0,204,12 II3 2 19P{X=3} = —X—X —x- = 0・005【解](X)= J1^(x)叫7兀・2产血=[7严]『匚e-^dx= e dx = —.Jo 2E(Y)=匚曲(y)dyj「.v4e^'dy =右E(尸)=匚必(y)dy =匸y-*4e-*'cly = ^ = |从而⑴ E(X + Y)-E(X) + E(y)--+才一二E(2X -3Y-) = 2E(X}-3E(Y-} = 2x--3x- = -⑵ 2 8 811•设随机变量X的概率密度为x>0,0, X V 0.f(X)求(1)系数C; (2) E (X) ; (3) D(X) •【解】⑴由匚ETX叫烽“得"2£(%) = J xf (x)d(x) = £d%=2叮宀=££(x2)=匸/・2心&& P4 一兀故12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变SX,求E <X)和D CX).【解】设随机变SX表示在取得合格品以前已取出的废品数,则X的可能取值为0, 1. 2, 3•为求英分布律,下而求取这些可能值的概率,易知・12 II 10 9由此可得 £(X) =0x0.750 + 1x0.204 + 2x0.041+3x0.005 = 0.301-£(X -) = 0'x750 + Px0.204 + 2-x0.04I + 3-x0,005 = 0413D(X) = E(X-)-[£(%)]- =0.413-(0.301)- =0.322.13•—工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为-e \ A>0, 40,为确保消费者的利益,工厂规左出售的设备若在一年内损坏可以调换•若售出一台设备,工 厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 200元P{ Y = 100} = P{ X > 1} =「扌 P{y=-2oo} = P{x <1} = 1-「"故E(Y) = 100x 「"+(-200)x0-「")= 300&"4一200 = 33.64 (元)14•设XI, X2,…,Xn 是相互独立的随机变量,且有E (Xi)=山D (Xi) =o2, i=lr 2, 记• S2=£(%) = £(丄====1/2 匕丿《 tr «ZT ftD(X) = D 二工Xj =4D (EXJXN 间相互独立二・±DXtV n j-l 丿/-I=矿 r-1x< 0. (1)b验证E(X)=n ,D(X) = n(2)丄(iz ・j 亍)验证S2J_] j(3) 验证E (S2) =o2・【证】X*-对=x(x:+亍-2无O = ZX: + "亍-2乂f Xfr-l r-l r・l r-l=f X: + "X2 -2X.«X = £X: -《戸2r・l /-I故宀占討用(3)因F(X,) = «,£>(Xj) = b[故£(X;) = D(XJ + (EXj)2 = b2+«2・同理因从而T ■* _ _ ____________ *> 疔. _ £{X) = //,D(X) = —£(X") = _ + w-«,故《E(s-) = E(XX/-H F) =_^iE(f x:)-M(r)] j-l n 一I r-1=占[£丘*2)-“E(亍)]Z 1<T" ->—+irI ««-1=b\15•对随机变量X 和Y,已知D (X) =2, D (Y) =3, Cov(X,Y)= 1, 计算:Cov (3X 2Y+1, X+4Y 3) •[解]Cov(3X-2r + tX+4y-3) = 3D(X) + 10Cov(X,y)-8D(y)= 3x2 + 10x(-l)-8x3 = -28(因常数与任一随机变量独立,故Cov(X3)=Cov{V;3)=0, Jt余类似). 16•设二维随机变量(X, Y)的概率密度为1 -> ■一,A - + V' < b7t0, 其他.f (X. y)=试脸证X和Y是不相关的,但X和Y不是相互独立的.【解】设》= {(3)1宀亡1}.fCX) = J" J (X,y)<i'dy = — JJ .vdxdy1f" fl=九J?8S&・g=0.同理E(Y)=0.而c°v(xy)=匚匚[-呦・卜-砒)]心、用与=—必勺心心=丄[J sin&COS&心d& = 0兀x-+y'<l 兀由此得Qx厂°,故X仃Y不相关.下面讨论独立性,当冈•时,办刚轻纠必时,恥)厲存V"显然()')*/(& y)・故X和Y不是相互独立的.17•设随机变量(X, Y)的分布律为3验证X和Y是不柑关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X, Y及XY的分布律,尖分布律如下表X 1 01P 3 2 38 8 8Y 1 01P 3 2 38 8 8XY 1 01P 2 4 28 8 8由期望;d^义易得E (X) =E (Y) =E (XY) =0. 从而E(XY)=E(X)・E(Y),再由相关系数性质知pXY=0.X即X 与Y 的相关系数为0,从而X 和Y 是不相关的.P{X=-1}・ P{Y = -1} = 2X -H 丄又8 8从而X 与Y 不是柑互独立的.18.设二维随机变量(X. Y )在以 匀分布,求 Cov (X. Y ), pXY.题18图2, (X, y) € D, 0,其他.E(X) = 0 易(兀刃 dxdy = £ chf 々dy = | E( X 2) = JJ x-f(x, y)d.xdy = £ 时「2x'dv = *D(X) = E(X^)-lE(X)f=--- 从而6 2丿 同/5皿)卞E(XY) = JJ A>y'(x,>)dYd>' = JJ 2x>'dxdy = £ d.v£ 々jydy =—Q/)0 0 12cov(x,r)= £(xy)-£(x)-£(y)=—--x-=-—12 3 3 3o19•设(X, Y )的概率密度为【解】如图,SD=2 ,故(X, Y ) 的概率密度为X+>'=l8 = P{X=7y = _l}(0, 0), (0, 1),(1, 0)为顶点的三角形区域上服从均 "18而 所以从而Cov(X.y)g ""(疔加)一一2—sin(x + y)> 0<x< —,0< v<—, 2 2*20, 其他.E(X) = J J 对ay)dxdy = [ dxj^ 兀・—sin(x +y)dy =中.E(X 2)= J3J7F 运 sinCv+y)dy = + + + 2.从而£>(X) = E(X2)一[E(X)F=^ + f-210 2同理Z/2 z/2 JT E(XY} = j dvj Qsin(x+ y)cUdy = —1,u2Cov (x,r )= £(xr )-£(x )>£(r )= 故I 兀_4 IQ ■ - - 7D (X ).7W S +ZS-216 2Cov(x,r) (71-4)" _ 7t" -8兀 + 16 TU' +8 兀一 32 兀2 + 8兀一 32 20.已知二维随机变量(X, Y )的协方差矩阵为Ll 4」,试求zrx 相关系数. 【解】由已知知:D (X )=l,D (Y )=4,Cov (X,Y )=l.从而 2Y 和 Z2=2X Y 的 D(Zi)= D(X-2y)= D(X) + 4D(Y) - 4Cov(X") = 1+4x4-4x1 = 13, D(Z,) = n(2X-r)= 4D(X) + P(r)-4Cov(X,y)= 4xl+4-4xl=4, Cov(ZpZ,) = Cov(X-2y,2X-y) = 2Cov{x,x)-4Cov(y,x)-cov(x,r)+2Cov(y,r) = 2D(X)-5Cov(X.Y) + 2Q(y)= 2xl-5xl + 2x4 = 5・f (X, y )=求协方差Cov (X, Y )和柑关系数pXY ・故21.对于两个随机变量V, W.若E(V2). E (W2)存在,证明: [E (VW)] 2<E (V2) E (W2). 这一不等式称为柯西许瓦兹(CouchY Schwarz)不等式.[证]令g(F) = E{[V + fWF},FeR. 显然0< g(t) = E[(y + tW)-] = ElV- + 2tVW + rW-]= £[V -] + 2M£iny]+z^£[W'],Vr€/?.可见此关于t 的二次式非负,故其判别式AG,0>A = [2£(VW)]'-4£(W')>£(V')= 4l[E(VW)f -E(V-}^EiW-)}.故[E(viy)F<E(W)・E(w2)}・22.假设一设备开机后无故障工作的时间X 服从参数2出的指数分布.设备立时开机,出现 故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作 的时间Y 的分布函数F (丫).【解】设Y 表示毎次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X~E(ME(X)二久=5. 依题意 Y=min{X,2). 对于 y<0j{y)=P{Y<y}=0. 对于 y>2,F{y)=P(X<y)=l.对于0<y<2,当x>0时,在(0,x)内无故障的概率分布为 P{X<x}=l eXx,所以F(y)=P{Y<y}=P{min(X,2)<y}=P{X<y}=l e y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装 有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望:(2) 从乙箱中任取一件产品是次品的概率.【解】(1) Z 的可能取值为0, 1. 2, 3. Z 的概率分布为P{Z 旳=芒'Q = 9 Z?) = 5 =仝 /7T从一匹百品Z 「辰矿*7 -HP因此, I 9 9 I 3£(Z ) = 0X - + !X - + 2X - + 3X - = -(2)设A 表示事件“从乙箱中任取出一件产品是次品r 根据全概率公式有 3 P (A ) = XP{Z = R}・P{AIZ = k} *■(> 1^9192131 20 20 6 20 6 20 6 4 24•假设由自动线加工的某种零件的内径X (亳米)服从正态分布N (儿1),内径小于10或 大于12为不合格品,其余为合格品•销售每件合格品获利,销售每件不合格品亏损,已知销 售利润T (单位:元)与销售零件的内径X 有如下关系 若 %<10,若 10<X<12, 若X >12. < 20,T —5,T= J 问:平均直径A 取何值时,销售一个零件的平均利润最大 [解]E (T ) = -P{X vl0} + 20P{10<X<12}-5P{X >12} = -P{X-u<10-u} + 2QP{\Q-u<X-u<\2-u}-5P{X-u>\2-u} = -e (io-M )+2O [e (i2-")-e (io-»)]-5[i-e (i2-«)]= 25e (12-w )-2ie (10-M )-5・ 兰4 = 250(12-“)乂(一1)-210(10-“)><(-1)丄 dit 0(这里卩心话严 25「3 円2 = 21「3加两边取对数有 ln25--(12_M )2=ln21_-(10_H )) 2 解得 M = ll -丄 In 艺=11 一丄]nl ・19al0・9128 2 21 2 (毫米)由此可得,当u=10.9亳米时,平均利润最大. 25•设随机变量X 的概率密度为 1 X —cos —, 0 < A < n, 2 20. 其他.对X 独立地重复观察4次,用Y 表示观察值大于只“的次数,求Y2的数学期望.(2002研考)1, x>-.3(/ = 1,2,3,4)0. X<-・ 3y = D~B(4 丿)则 j•因为jrTTjr1V1p = PiX>-, = l-P,X.-,^P{X.-, = £ -cos-dv = -^£(};) = -,D(}^) = -.£(y)= 4x - = 2,D(Y) = 4x-x- = \ = E(Y-)-(EY)-2 2从而 E (尸)=D(Y) + [E(Y)f = 1 + 2, = 5.26.两台同样的自动记录仪,每台无故障工作的时间Ti(i=l,2)flK 从参数为5的指数分布,首先 开动其中一台,当;ft 发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时 间T=T1+T2的概率密度fr(t).数学期望E (T)及方差D (T). 【解】由题意知:因"丁2 独立,所以 lT(t)=fl(t)*f2(t). 当 tvo 时,fr(t)=o ; 当GO 时,利用卷积公式得片⑴=£ W •厶(F 一 X)dx = £ 5e 亠・5ef T J A = 25re$ 故得25宀 />0, 0,f < 0・由于 Ti 吒(5)”故知 E(Ti)= 5 ,D(Ti)= 25 {i=i^2)2因此,有 E(T)=E{T1+T2)=^.2又T1J2 独立,所以 D (T) =D (T1+T2) =25【解】令所以Z(0 =•5汽 r>0, 0, t <0.所以Q(小EXlEWr 宁一古=宁27•设两个随机变量X, Y 相互独立,且都服从均值为0.方差为3的正态分布,求随机变 量IX Y|的方差.D(X-y)= P(Z) = £(IZ|-)-l£(IZI)]-E(Z-) = D(Z) = 1、E(l Z I)=匚I z I -y=e-^''-dz=急2%弋,所以 28•某流水生产线上每个产品不合格的概率为p(0<p<l). 产品合格与否相互独立,当出现 一个不合格产品时,即停机检修•设开机后第一次停机时已生产了的产品个数为X,求E (X) 和 D(X) •【解】记q=l p ,X 的概率分布为P{X=i}=qi…,E(X) = nqip = P (工孑丫 = P -故i-l1-1\ 1X X X£(灯)=立 n = X(〜脚5+£衍5 又1-1 f-2 1-1=pq (工 dy+— = pq 角 P _ 2pq 1 _ 1 + q _ 2 - p (D , p p- p-【解】设Z 二X Y ・ 且X 和Y 相互独立, 因X ~ N 0, FI “丿丿由于故 Z~N (0, 1) • (IS P+—p题29图29.设随机变量X 和Y 的联合分布在点(0, 1). (1. 0)及(1, 1)为顶点的三角形区域上 服从均匀分布.(如图),试求随机变S U=X+Y 的方差. 【解】D(U)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y) =D{X)+D(Y)+2[E{XY) E(X)-E{Y)]. 由条件知X 和Y 的联合密度为2, (X, y) e G. 0, t <0.G = {(x,y)10<x< 1.0< y < hx + y > 1}・H 寸 /x w = P /(X y)dy = f' 2dy = 2儿 从而 J Y Ji 因此E(X) = £机(X)" = f 2A-dv = -,£(X -) = J^2x^cU =-,2 ° 2D{X) = E(X-)-lE(X)f .2 9 18同理可御EE 詁”占E( X Y) = Jj 2xydxdy = 2 J :兀时]ydy =春,G7 12Cov(X.Y} = E(XY}-E{X).E(Y} = — -- = -—,12 936于是30•设随机变量U 在区间[2,2]上服从均匀分布,1,Y=1}=P{U< 1,U>1}=P{ 0 }=0,y1OIX随机变量7 u<-t h U > —1.一1・ u<u t 若u>l ・X=试求(I) X 和Y 的联合概率分布;(2) D (X+Y). 【解】(1)为求X 和Y 的联合概率分布, (1, P{x=Y=就要讣算(X. Y)的4个可能取值ib( 1,1)41, 1)及(ij)的概率• 1,Y=1}=P{U<1,U<1}=p© 一 1}=「空=「空二'J J Y 4J-2 4 4P{X=P{X=1,Y= 1}=P{U> 1,U<1}= p(-l<£/<l) = £^ = iP{x=hy = i} = p{t/>-iQ>i} = P{c/>i}f 罟=1 故得X 与Y 的联合概率分布为(71) (1-1)(X 』)~.4⑵因D (x+y )= E[(x+y )2]-(E (x+y )F^x+Y 及如〉2的概率分布相应为"-2 0 2'"0 4' x+y~1 1 1 (x+y)--I 1_4 2 4._2 2.E(X + y)= (-2)x- + 2x- = 0, 从而 4 4 £t(X + r)-] = 0x-+4x- = 2,2 2所以 D(x+y)= E[(x+y)']-[£(x+y)r = 2・—e31•设随机变量X 的概率密度为f (x )= 2 求Cov (XJX|b 并问X 与|X|是否不相关 问X 与|X|是否相互独立,为什么£>(X)=匚(x-O)'.ie-'^d.v = = 2.⑵ Cov(XJX) = £(XelXI)-£(X)<£(IXI) = £(XJXI)=J x\x b —e""dx = 0,2所以X 与|X|互不相关.⑶ 为判断1X19 X 的独立性,需依定义构造适当事件后再作岀判断,为此,对世义域8vx<:+8中的子区间(0户g )上给出任意点xO ・则有{-Xo<X <xJ = {IXI<xJc{X <xj.8<X<+8⑴求E (X)及D (X); (2) (3)【解】E(x)=r\丄“啊1・=0・ ⑴ Jp 2所以 OvP {\X\<x,]<P{X<x,}<i. 故由P{X<x,JXI<xJ = P(IXI<xJ >P {IXI<_rJ>P{X<xJ得出X 与|X|不相互独立.32•已知随机变量X 和Y 分别服从正态分布N (1. 32)和N (0, 42).且X 与Y 的相关系数X Y-- 1—设 Z= 32求Z 的数学期望E (Z)和方差D (Z); 求X 与Z 的相关系数pXZ ; 问X 与Z 是否相互独立,为什么= _x9.-xl6^2x-x-Cov(X,npXY= (1) (2) (3)【解】E(Z) = E 养 ⑴V d L)cov( X V)=PxY = 匕严x4"6所以p(Z) = ..4-6x- = 3.( y y 1 I 1Cov(X,Z) = Cov %,- + - =-Cov(X,X)+ -Cov(X,r)L 3 2 丿 3 2 所以= £D (X) +舟x(-6) =善一3=0,丿厶」_ Cov(X,Z) 私"a(莎 e(z)"_cZ~N 亦3 ,X~N(1,9)⑶由Qxz —U,得X 与z 不相关•又因 2 )立.33•将一枚硬币重复掷n 次,以X 和Y 表示正而向上和反而向上的次数•试求X 和Y 的相关系 ,所以X 与Z 也相互独数【解】由条件知X+Y=n.则有D(X+Y) =D (n) =0.D{Z} = D 3X “ 再由 X^B(n,pKY^B(n,q)t 且 p=q= 2 ,从而有 E(X)=P(A),E(Y)=P(B), D(X)=P(A)・P(A),D(Y)=P(B)・P(B),从而有 D{X) = npq = - =D(Y}所以0 = D(X+Y) = L>(X) + D(Y) + 2p XY J D (X)・J D (Y)n r nn + 2% •孑故p,YX P所以E (XY)= Cov(KY)=E(XY) +=E(X)・E(Y)= x=0PxY =035.对于任意两事件A 和B, 0<P{A)<l. 0<P(B)<l,则称p= JP(A)P(B)P(7)P(®)为事件A 和B 的相关系数■试证: (1)事件A 和B 独立的充分必要条件是p=0; ⑵ lp|G.【证】(D 由P 的立义知,p=0当且仅当P(AB) P(A)・P(B)=0.而这恰好是两事件A 、B 独立的运义,即p=0是A 和B 独立的充分必要条件. ⑵引入随机变ilx 与Y 为_J1,若A 发生, x = k 若砂生;从而发生,0■若亍发由条件知,X 和Y 都服从01分布,即0 1l-P(A) P(A)0 1 l-P(B) P(B)34•设随机变量X 和Y 的联合概率分布为试求X 和Y 的相关系数p.【解】由已知知E(X)=,E(Y)=.而XY 的概率分布为Cov(KY)=P(AB) P(A)・P(B)所以,事件A和B的相关系数就是随机变量X和Y的相关系数.于是由二元随机变量相关系数的基本性质可得|p|<l.36.设随机变量X的概率密度为4 00<%< 2,其他.fX(x)= I令Y=X2, F (x,y)为二维随机变量(X, Y)的分布函数,求:⑴Y的概率密度fY(y):(2) Cov(X,Y):F(-亍4)⑶ 2 •解:(1) Y的分布函数为Fy(y} = PlY<y} = P{X-<y}当ySO时,当OVyCl时,Fy(y)=P{—"<x<"}=p{—77<x<o}+P{o<x<"}=扌77当l<y<4时, Fy(y) = P{-l<X<O} + P{O<X<“} = l+i“乙当朗时,F『(y) = i, /r(y)= o 故Y的概率密度为• 3—=.0<y<l,8"齐(y) = o—=J<y<4,8"a s其他⑵ fE(X)二匚必(x)dx = J :i 皿+ J :]dv 冷£(r)=£(X')=J^x -/y(A-)ch=j"-!-x'dx + J^i.v'dv = -)® 12 0 4 6 E (XY )二 E (尸)二 办(X 他=f ;丄&■ +『丄才&. = 7/2£(xy)-£(x)-£(y)=- Cov(X,Y) = 3F(—,4) = P{X<-一,y<4) = P{X <-一.X- <4) 2 2 =P{X <-夕-2<X<2} = P{-2<X<-j}37. 习题五1•一颗骰子连续掷4次,点数总和记为X •估计P{10<X<18}.I 斛设g 每次痂点数’贝广沪E(Xi) = 1X — 2x — 3 X — 4 X —5 x — 6 x —=—,6 6 6 6 6 62£(Xf) = Pxi + 2'xl + 3'xi + 4'x -!- + 5'xi + 6'xi= — f 6 6 6 66 6 64 4 7£(X) = E(》Xd£(XJ = 4x - = 14. 从而心 i 2」」35 35D(X) = D(XX,) = XD(X,) = 4x- = yP{10<X <I8} = P{IX-14I<4)>I-^^=«O.271, 4'\2从而又X1,X2,X3,X4独立冋分布D(XJ = E(X :) - [E(Xj)F=y-(右^35所以2. 假设一条生产线生产的产品合格率是•要使一批产品的合格率达到在76%与84%Z 间的概 率不小于90%,问这批产品至少要生产多少件1,若第i 个产品是合格品,(X 其他悄形•II ZXjP {0.76 < 上^— < 0.84} > 0.9. nHP 響“-0& <铤 < 讐一°&} >0.9V/ix0.8x0.2 /?x0・8x0・2 J" x 0.8 x 0.2由中心极限定理得整理得 n>z 故取 n=269.3.某车间有同型号机床200部,毎部机床开动的概率为,假左徉机床开动与否互不影响, 开动时毎部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因 供电不足而影响生产.【解】要确定最低的供应的电能量,应先确此车间同时开动的机床数目最大值m,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单 位电能就可满足要求•令X 表同时开动机床数目,则X~B (200,),£(X)= I4O,D(X) = 42,0.95 = P{0<X <m} = P{X <m)=① 川 一140— =1-64,所以供电能151x15=2265 (单位).4. 一加法器同时收到20个噪声电压Vk (k=r 2•“ 20).设它们是相互独立的随机变量,20【解】令而至少要生产n 件,则i=l,2,...,n,且XI, X2 .... Xn 独立同分布,P=P{Xi=l}=.现要求n,使得£Xj -0&/-) 0.84” 一0・8" 70.16/1-e '0・76n-0・8n 、 >09 10/H -140査表知且都在区间(0, 10)上服从均匀分布•记V=*-« ,求P{V>105}的近似值・100 >75} = l-P{X<75}al-e 75-100x0.8<5/100x0.8x0.2100【解】易知:E{Vk)=5,D(Vk)= 12由中心极限定理知,随机变量20工% 120x5 V _20X 5近傾的Y 12I!卩有 P{V>105>5.有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少【解】设W0根中有X 根短于3e 则X-B (100.)从而= l-e(2・5) = l-O ・9938 = O ・OO62・6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为•医院检验员任 意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝 这一断言.(1)(2) 100 X令 心(1) X~B(100 八于是 P{V>105} = P 彳 V-20x5 105-20x5=P<Z-①(0・387) = 0・34&P{X>3O} = l-P{X<3O}Ql-e 30-100x0・2 、J100x0.2x0.8j 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少:膽治愈-2…期0,其他.【解】= l-e(-l ・25) = e(l ・25) = 0・8944・(2) X~B(100 八IOOP{》Xj >75} = l-P{X<75}al-e =1-<1>(旦)=1一6(1・09) = 0」379・7. 用Laplace 中心极限定理近似计算从一批废品率为的产品中,任取1000件,苴中有20件 废品的槪率.【解】令1000件中废品数X,则P 弓 n=10COX~B(1000八E(X)=50r D(X)=.故严X=2°} =而亍S 備苗厂6:895^ &895丿8. 设有30个电子器件•它们的使用寿命T1•…,T30服从参数入二[单位:(小时〉・1]的指数分 布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间, 求T 超过350小时的概率.E(TJ = — = — = 10, 【解】 几0・19. 上题中的电子器件若每件为a 元,那么在年il 划中一年至少需多少元才能以95%的概率 保证够用(假注一年有306个工作日,毎个工作日为8小时).【解】设至少需n 件才够用.则E(Ti)=10, D(Ti)=100,E(T)=10n» Dfr)=100n.P{^7; >306x8) = 0.95, 0.05①①从而心即 故 75-100x0.7<f 20-50 <P 6.895 16.895 込 | = 4・5X 10*D(7;) = ^ = 100,£(7) = 10x30 = 300, D(T) = 3000.P{T>350}al-e・913) = 0・1814・ ‘306x8-10" < 10亦I On-24480.95 = e10亦 .所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变S,设一个学生无家长、1 名家长、2划家长来参加会议的概率分别为".若学校共有400名学生,设^$学生参加会议的 家长数相打独立,且服从同一分布.(1)(2)【解】而 j,由中心极限定理得11. 设男孩出生率为,求在10000个新生婴儿中女孩不少于男孩的概率【解】用X 表10000个婴儿中男孩的个数,则X-B (10000.)要求女孩个数不少于男孩个 数的概率,即求P{X<5000}-由中心极限世理有12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为•以95%概率估计,在一 次行动中:(1) 至少有多少个人能够进入(2) 至多有多少人能够进入【解】用Xi 表第i 个人能够按时进入掩蔽体(i=t2”1000).令 Sn=Xl+X2+ (X1000)(1)设至少有m 人能够进入掩蔽体,要求P{m<Sn<1000}>•事件400ZOOxi.W%" 7400x0-19 5/4X T9P{X >450} = 1 -P{X<450}Ql-eF 是 450-400x1」= l-e (l ・ 147) = 0.1357.⑵以Y 记有一名家长来参加会议的学生数•则¥-6(400,由拉普拉斯中心极限圧理得P "<3402340-400 X 0.8 ,7400x0-8x0.2 > = e (2・5)= 0.993& P{X <5000}沁 5000-10000x0.515 Z0000x0.515x0.485 丿= e (-3) = l-e (3) = 0・00135・ 求参加会议的家长数X 超过450的概率求有1名家长来参加会议的学生数不多于340的槪率.易知 E (Xi=) ,D (Xi )=J=1.2,...4OO-{加<»}=加-1000X 0.9 V » -900171000x0.9x0.1由中心极限定理知:所以mHN884人 (2)设至多有M 人能进入掩蔽体,要求P{O<Sn<M}>. M-900査表知帧 sM=900+=^916人.13.在一定保险公司里有10000人参加保险,每人毎年付12元保险费,在一年内一个人死 亡的概率为,死亡者其家属可向保险公司领得1000元赔偿费■求:(1)保险公司没有利润的概率为多大; (2) 保险公司一年的利润不少于60000元的概率为多大 【解】设X 为在一年中参加保险者的死亡人数,则X~B(10000,) •⑴公司没有利润当且仅当"1000X=10000X 12"HP"X=120". 于是所求概率为Rv =i?m 〜 =化,VI 0000x0.006x0.994 &10000x0・006x0.994 丿_ 妙64 卑1759.64 ) ~ ^^'759.64= 0.0517xe 皿⑻】"⑵ 因为“公司利润260000”当且仅当“0»统0”于是所求概率为14. 设随机变量X 和Y 的数学期望都是2.方差分别为1和4.而相关系数为试根据契比雪 夫不等式给出P{|X-Y|n6}的估计*(2001研考〉 【解】令Z=X-Y>有£(Z) = 0,P(Z) = P(X -y)= £>(X) + £)(r)-2pj^.p7^W<7^00 =3. P{/«<5J = I -P{5…</«}^1-<D 心 000x0.9」“"WIOOOxO.QxOJ“7-900 从而 < 0.05, I 帧Jp{Sc<M}ae如_900、 = 0.95.120-10000x0.006 60P {0<X<60}g 60-10000x0.006 I J10000X 0.006 X 0.994 厂① 0-10000 x 0.006 I 710000x0.006x0.994 J 60 a 0.5.所以D ( Y _ y\ 3 1P{IZ-E (Z ) 1>6) = P {IX-Yln6}< —, 6' 36 1215. 某保险公司多年统计资料表明,在索赔户中.被盗索赔户占20%.以X 表示在随机抽查 的100个索赔户中,因被盗向保险公司索赔的户数.(1) 写出X 的概率分布:(2) 利用中心极限左理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(I ) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗 户出现的槪率是.因此,X-B (100,,故X 的概率分布是 P{X=R}=C :OO OTO ・8)叫二 £ = 12 (100)(2)被盗索赔户不少于14户且不多于30户的概率即为事件{14<X<30}的概率・由中心极限;4^ 理,得= e (2・5)-e (-l ・5) = 0.994-[-9.33] = 0・927・16•—生产线生产的产品成箱包装,每箱的重量是随机的•假设每箱平均重50千克,标准差 为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限;4^理说明每辆车最多可以装 多少箱,才能保障不超载的概率大于•【解】设Xi (i=Un )是装运i 箱的重量(单位:千克人n 为所求的箱数.由条件知,可 把Xi, X2, Xn 视为独立同分布的随机变量,而n 箱的总重Tn=Xl+X2+...+Xn 是独立同 分布随机变量之和,由条件知:E (XJ = 50,£(7;,) = 50/1,T -50/1近似地” r - N ((U )依中心极限定理,当n 较大时,5" ,故箱数n 取决于条件P{7; <5000} = pj 三二^即最多可装98箱.习题六P {14<X<30}ae 30-100x0.2 14-100x0.2 < J100x0・2x0& 1-7100x0.2x0.8 > 1000-10/7 > 0.977 = e (2)・因此可从 麻1000-叫2解出n<.1•设总体X-N (60. 152),从总体X中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率.【解】n=60,o2=152,n=100upP (IX-60l> 3) = P (IZI> 30/15) = l-P(IZk 2)=2[l-e( 2)] = 2(1-0.9772) = 0・0456・2•从正态总体N G 52)中抽取容量为n的样本,若要求苴样本均值位于区间(,)内的概率不小于,则样本容Sn至少取多大【解】X-4P(2.2 < X < 6.2) < Z 竺竺皿= 2e(0・4孙一l = 0・95.则初=,故HP n>,所以n至少应取253.设某厂生产的灯泡的使用寿命X~N (1000. 02)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差•但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为52=1002 >试求P (X >1062).【解】n=1000,n=9, S2=1002S/yfn 100/3— 1062-1000P(X > 1062) = P{t > ------- ) = P(Z > 1.86) = 0.05100/34•从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.z=— -mi) _【解】 b/心,由p(|X・m>4)=得P|Z|>4(a/n)s迟 2.33,<75•设总体X~N (P ,16), Xlr X2 .... XIO 是来自总体X 的一个容量为10的简单随机样本, S2为其样本方差,且P (S2>a ) =r 求aZ 值.f Q/I A⑼,p(5^>«)= plr>—1=0.1.査表得6•设总体X 服从标准正态分布,XI, X2Xn 是来自总体X 的一个简单随机样本,试问统 计量YX,Y= I 服从何种分布*=》X ;~r(5)、*=》X ; - X\n-5)【解】-2 2 且力「与力;相互独立•所以7•求总体冶N (20. 3)的容量分别为10, 15的两个独立随机样本平均值差的绝对值大于的 概率.令X 的容量为10的样本均值,V 为容量为15的样本均值•则X~N (20,310),3_y~N(20,15),且X yy 相互独立.‘4皿 <T =0.02 ①,即 ‘4皿 b = 0.99.査表得 所以"迟5.43.2.33 .95' y-=——【解】 16 所以 丄 4.684x16=26 込9【解】X 一r ~N [O ,2+3 |=N (0・0・5). 则 I 10 15丿y_yZ=-^~N(0J),那么 g5所以—- f 0 3P(\X-Y\>0.3) = P IZI> = 2(1-0-6628) = 0.6744.7X ; + X/ + ・・・+X…;8.设总体炉N (0. a2) ,Xl,.・.,Xi0,.・.,Xi5为总体的一个样本.则Y= 2(X H +X/ +…+X]5 ) 服从 分布,参数为X.【解】b1=1,2,...,15. 2 2 且龙I 与"相互独立,所以所以Y~F 分布,参数为(10,5) •V X9•设总体X~N (也02儿总体Y~N (n222),XbX2" 如和Yl, Y2,分别来自总体X 和Y 的简单随机样本,则工(X 厂乂 )2 + £0_P)2J-l ;-l n| _ n> _X(x 厂 x)2 =(耳一1)S ;E (力-亍)2 =(吗—1)S ;,/-I J-l=2(1-0(0.424)]届) 10 zr = Z 那么 i15 / Y 、2 1-11V b /-r(5)•+【解】令 I_ 1 恥 _肾=百尹可斗芦pF*) (M[—l)Sr J- ( 7 (,?,—1)S; 7. ( zr = ' / ' - /■(«i -az2 = / ~ -z'(«2-ix 又- i 那么 _ «3 _ 乞(Xj-Xy + X(Yj-YF /-I ;-| rt, + —2 齐匚护&好+b 宠) = b [E(z ;)+ E(/)] "l + 川2 一 2 2 =—-—[(«|-1) + (心 _ 1)] = b , + ”2 _ 2 ・ — 1 力 % = — 10•设总体X~N(H ,a2), XI, X2 ... X2n (n>2)是总体X 的一个样本, 加i ,令 £(E + X"厂 2壬)2 ,求 E(Y)・ 【解】令Zi 二Xi+Xn+i,匸12・・・小・则ZrN(2n ,2a2){l<i<nb 且 Zl.Z2,...,Zn 相互独立. =Z ・ Z s2=Y(Zj — Z)2/H 7 /-I " r-l IZi « 故 那么 Z = 2X I-) 所以 E(Y) = (« - 1)E5- = 2(” 一 1)<T\-2X)-=^(Z.-Z)-=(/i-l)S\ r.)11. 本, 解: —e 设总体X 的概率密度为f(x)= 2 (•8vx<+8),xi, X2,…,Xn 为总体X 的简单随机样 其样本方差为S2,求E(S2). 由题意,得—ej x<0.2丄em l2£(5') = D(X) = £(X')-£-(X) E(X)=匚 yf(x)dx = ij2 xeTMtU = 0 E(X2)=匚 x'/(x)ctv = ij^ x&Wldx =匚 A-e-"dv =2, 2 0 于是所以E(S-) =。

概率论课后习题答案

概率论课后习题答案

概率论课后习题答案概率论与数理统计习题及答案习题⼀4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.66.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C ⾄少有⼀事件发⽣的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=3413. ⼀个袋内装有⼤⼩相同的7个球,其中4个是⽩球,3个是⿊球,从中⼀次抽取3个,计算⾄少有两个是⽩球的概率. 【解】设A i ={恰有i 个⽩球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-33. 三⼈独⽴地破译⼀个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】设A i ={第i ⼈能破译}(i =1,2,3),则310.6534=-= 34. 甲、⼄、丙三⼈独⽴地向同⼀飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有⼀⼈击中,则飞机被击落的概率为0.2;若有两⼈击中,则飞机被击落的概率为0.6;若三⼈都击中,则飞机⼀定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i ⼈击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458习题⼆1.⼀袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表⽰取出的3只球中的最⼤号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ========== 故所求分布律为4.(1)设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2)设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1)由分布律的性质知1()e !ka λ-=(2) 由分布律的性质知111()N Nk k aP X k a N======∑∑即 1a =.8.已知在五重贝努⾥试验中成功的次数X 满⾜P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 21.设X ~N (3,22),(1)求P {222X P X P ---??<≤=<≤11(1)(1)1220.841310.69150.5328ΦΦΦΦ=--=-+ ? ?=-+=433103(410)222X P X P ----??(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----=>+< ? ?=--+-=+- ? ? ? ?????????=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器⽣产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求⼀螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06X P X P ?-?->=>1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-==??得11A B =??=-?(2) 2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-?≥'==?44.若随机变量X 在(1,6)上服从均匀分布,则⽅程y 2+Xy +1=0有实根的概率是多少?0,x f x ?<24(40)(2)(2)(2)5P X P X P X P X -≥=≥+≤-=≥=习题三(1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独⽴?【解】(1)X 和Y 的边缘分布如下表(2) 因{2}{0.4}0.20.8P X P Y ===? 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独⽴.习题四1.设随机变量X 的分布律为求【解】(1) 11111()(1)012;82842E X =-?+?+?+?= (2) 2222211115()(1)012;82844E X =-?+?+?+?=(3) 1(23)2()32342E X E X +=+=?+=5.设随机变量X 的概率密度为f (x )=??≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞=332011 1.33x x x ??=+-=?122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=故 221()()[()].6D XE X E X =-=7.设随机变量X ,Y 相互独⽴,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=?-?=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=?+?=习题七2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ?-<X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022()()d ,233x x E X x x x θθθθθθθ??=-=-=令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极⼤似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-?≥?(2) f (x ,θ)=1,01,0,.x x θθ-?<【解】(1)似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑i i g L n x θθθ===-=∑知 1 nii nxθ==∑所以θ的极⼤似然估计量为1 Xθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11?ln ln nniii i n nxx θ===-=-∑∏ii nxθ==-∑10.设某种砖头的抗压强度X ~N (µ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求µ的置信概率为0.95的置信区间. (2)求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) µ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n-== ? ?????(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-??--??=??= ?--其中θ(0<θ<2)是未知参数,利⽤总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极⼤似然估计值. 【解】8i x E X E X x x x θθ=-=-====∑令得⼜所以θ的矩估计值31 .44x θ-== (2)似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==----解2628240θθ-+=得 1,2θ=.由于71,122+>所以θ的极⼤似然估计值为 7?2θ=。

《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节

《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节

第二章 随机变量 2.12.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。

故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314k k lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--= 2.6解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=X 2 3 4 5 6 7 8 9 10 11 12P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.7 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e - (2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.8解:设应配备m 名设备维修人员。

概率论课后习题

概率论课后习题

第一章 概率论的基本概念(一)1、多选题:⑴ 以下命题正确的是( )。

A B A AB a =)()(.Y ; A AB B A b =⊂则若,.;A B B A c ⊂⊂则若,.; B B A B A d =⊂Y 则若,..⑵ 某学生做了三道题,i A 表示第i 题做对了的事件)3,2,1(=i ,则至少做对了两道题的事件可表示为( ). ;.;.133221321321321A A A A A A b A A A A A A A A A a Y Y Y Y ..;.321321321321133221A A A A A A A A A A A A d A A A A A A c Y Y Y Y Y2、A 、B 、C 为三个事件,说明下述运算关系的含义:.)6(.)5(.)4(.)3(.)2(.1ABC C B A C B A C B A C B A Y Y )(3、个工人生产了三个零件,i A 与i A )3,2,1(=i 分别表示他生产的第i 个零件为正、次品的事件。

试用i A 与i A )3,2,1(=i 表示以下事件:⑴ 全是正品;⑵ 至少有一个零件是次品;⑶ 恰有一个零件是次品;⑷ 至少有两个零件是次品。

4、下列命题中哪些成立,哪些不成立: ⑴B B A B A Y Y =;⑵ B A B A Y =;⑶ C B A C B A =Y ;⑷ ()∅=)(B A AB ;⑸ AB A B A =⊂则若;⑹ A B B A ⊂⊂则若。

(二)1、选择题:⑴ 若事件A 与B 相容,则有( ))()()(.B P A P B A P a +=Y ; )()()()(.AB P B P A P B A P b -+=Y ; )()(1)(.B P A P B A P c --=Y ; )()(1)(.B P A P B A P d -=Y⑵ 事件A 与B 互相对立的充要条件是( ),1)(0)(.),()()(.===B A P AB P b B P A P AB P a Y 且∅=Ω=∅=AB d B A AB c .,..Y 且2、袋中有12个球,其中红球5个,白球4个,黑球3个。

概率论第二版习题答案

概率论第二版习题答案

概率论第二版习题答案概率论是一门研究随机现象的数学分支,它在统计学、金融学、工程学等多个领域都有广泛的应用。

第二版的概率论教材通常会在第一版的基础上进行修订和补充,以反映最新的研究成果和教学方法。

以下是一些概率论习题的答案示例,这些答案仅供参考,具体习题的答案可能会根据教材的不同而有所变化。

第一章:概率空间1. 习题1:描述一个概率空间的基本元素。

- 答案:一个概率空间由三个基本元素组成:样本空间(Ω),事件集合(F),以及概率测度(P)。

样本空间包含了所有可能的结果,事件集合是样本空间的子集,概率测度为每个事件分配一个介于0和1之间的实数,表示事件发生的可能性。

2. 习题2:证明如果事件A和事件B互斥,那么P(A∪B) = P(A) +P(B)。

- 答案:由于A和B互斥,即A∩B = ∅,根据概率测度的性质,P(A∪B) = P(A) + P(B) - P(A∩B)。

由于A和B互斥,P(A∩B) = 0,因此P(A∪B) = P(A) + P(B)。

第二章:随机变量及其分布1. 习题1:定义离散型随机变量和连续型随机变量。

- 答案:离散型随机变量是其取值可以列举的随机变量,其概率分布可以用概率质量函数来描述。

连续型随机变量是其取值无法一一列举的随机变量,其概率分布可以用概率密度函数来描述。

2. 习题2:如果X是一个随机变量,求E(X)和Var(X)。

- 答案:期望E(X)是随机变量X的平均值,定义为E(X) = ∑x *P(X = x)(对于离散型随机变量)或E(X) = ∫x * f(x) d x(对于连续型随机变量)。

方差Var(X)是随机变量X的离散程度的度量,定义为Var(X) = E[(X - E(X))^2]。

第三章:多维随机变量及其分布1. 习题1:描述联合分布函数和边缘分布函数的关系。

- 答案:联合分布函数给出了两个或多个随机变量同时取特定值的概率,而边缘分布函数是通过对联合分布函数进行积分或求和得到的,它给出了单个随机变量的分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档