超低相位噪声基于频梳的微波产生和性能

超低相位噪声基于频梳的微波产生和性能
超低相位噪声基于频梳的微波产生和性能

超低相位噪声基于频梳的微波产生和性能

摘要——我们通过光电检测锁定于1.5um超窄线宽超稳定激光的基于铒掺杂光纤频梳相位的脉冲串来报告12GHz超低相位噪声微波信号的产生。拥有先进的光电检测技术和自制相位噪声计量器具,我们的实验证明了微波源的产生,具有10KHz以上且低于170dBc/Hz,源自一个12 GHz 载体的1Hz且低于100dBc/Hz的全相噪声,这将极大推进目前最好的记录结果。

关键字——光纤频梳,光电微波源,超低相位噪声

前言

诸如无线通讯,雷达,深空航行系统,精密微波光谱学的许多应用都需要超稳定微波信号。这种光纤信号通过光纤频梳产生是特别有趣的,因为它允许把无法超越的超稳定连续波激光的光谱纯度转变成微波领域(同光纤和太赫兹辐射波领域),潜在的引导记录低相位噪声微波源。

光纤到微波的转变由拥有超稳定光纤参考频率的飞秒激光器的重复率同步完成。通过光纤脉冲串的快速光电探测对微波信号进行更深入的提取。然而,光电产生微波信号的光谱纯度同时受到频梳重复率性能以及光电探测过程自身的限制。光电探测进程收到了影响,特别是振幅

相位转变(APC)的影响,它转变了微波信号相位噪声中飞秒激光的强烈噪声,同时,它还受到光电探测器的约翰逊·奈奎斯特定理和冲击的影响。

我们通过增加产生在重复率相关谐波的微波功率来克服后来基本原理的限制,并运用基于光纤的梳状滤波器,该滤波器增加脉冲串的有效重复率,并与高线性高处理功率的光电探测器结合。我们也发展了一套自动测量伺服装置来降低APC的水平,这种状态下就不会对我们生产的微波信号的相位噪声产生重大的影响。

对其自身而言,超低相位噪声微波的特性达到这种水平状态是一项有趣的挑战。我们已经发明了一套基于3光纤频梳的特殊装置(给基础参考频率额外加上一个作为参考),3超稳定激光,一个高质量微波电路以及一个基于现场可编程门阵列自制的外差法振荡器,在源自具有极低的振幅噪声敏感度的12Ghz载体的傅里叶频率大于1KHz的条件下,该振荡器与达到低于-180dBc/Hzd的测量噪声水平互相关。

II 实验装置

我们的实验装置由一些光纤频梳和超稳定连续波激光器。这些超稳定连续波激光器由波长为1.5um的半导体二极管激光器组成,激光器被超高精细度(典型~6

10)的超高真空法布里-珀罗空腔的调制技术伺服。

尽管对于这项工作不是必须的,但是其中一个一直被分频梳和锁定在基本频率标准(原子喷泉)的松散频率监控,以此来产生低噪声和连续运作的固定光纤参考连续波。一个基于具有250MHz重复率的铒掺杂光纤频梳(OFC)锁相于这个参考,并且它的脉冲串通过一个特殊设计的高线性光检测器进行光检测。一个光纤梳状滤波器,伴随一个合理的负色散光纤以获得最佳再压缩脉冲,允许在光检测之前有效的重复率外部增加可达到4GHz,以便于产生接近12GHz的最大功率。APC可能将部分频梳振幅噪声转变成过相位噪声,为了减少其影响,我们添加了零级声光调制器来伺服控制降低频梳的相关强噪声至-150dBc/Hz以下(傅里叶频率<1MHz),并且在一个“奇点”运行光电二极管,在这个点,非线性饱和效应为深思熟虑的12GHz重复率谐波精确的删除振幅相位转换。一个基于FPGA系统的有效伺服系统被用来尽可能使光电二极管维持在“奇点”。振幅相位转换的结果影响是通过这种方法使其保持在-190dBc/Hz或者更好。

为了测量结果微波相位噪声,我们采用了一种交叉互相关技术,这项技术里两个额外相似系统(独立的超稳定连续波激光器和独立的OFCs)在测试条件下的系统对比同步。测试条件下的系统信号和两个辅助系统中任何一个产生的信号进行微波混合产生了两个无线电频率信号(每个接近10MHz)。这些信号取样于模拟数字转换器,数字下转换以及电脑进程产生两种依靠时间相位对比数据集。这两种相位数据集的

交叉互相关显示了我们要定义的12GHz微波信号的相位噪声的功率光谱精度,假设统计学家独立于两个额外来源。注意在这个交叉互相关技术里,源自于两个额外系统的不相关噪声是不需要的,它只会导致测试条件下系统的相位噪声功率光谱精度估计的不确定性。这个不确定性平均下来是测量时间倒数的平方根。因此,少的实验工作需要去设立(没有活跃的光电二极管,商品级港电二极管,少优化频梳脉冲梳状滤波器以及光纤功率等等的零振幅相位转换点的伺服系统)。

III 现时结果

在这样的设置下,我们能够演示在1Hz小于-100dBc/Hz以及源自12GHz载体的10KHz小于-170dBc/Hz条件下微波信号的产生。

这种史无前例的水平结合最好的微波源性能都接近和远离载体,一个合理地小型化生产系统(不包括相位噪声的特性化装置),为传送历史最低相位噪声微波信号的可紧急移动系统铺设道路。

【重要】锁相环的相位噪声分析

锁相环路相位噪声分析 张文军 电信0802 【摘要】本文对锁相电路的相位噪声进行了论述,并对其中各组成部件的相位噪声也做了较为详细的分析。文中最后提出了改进锁相环相位噪声的办法。 【关键词】锁相环;相位噪声;分析 引言 相位噪声是一项非常重要的性能指标,它对电子设备和电子系统的影响很大,从频域看它分布的载波信号两旁按幂律谱分布。用这种信号无论做发射激励信号,还是接收机本振信号以及各种频率基准,这些信号在解调过程中都会和信号一样出现在解调终端,引起基带信噪比下降。在通信系统中使环路信噪比下将,误码率增加;在雷达系统中影响目标的分辨能力,即改善因子。接收机本振的相位噪声遇到强干扰信号时,会产生“倒混频”,使接收机有效噪声系数增加。随着电子技术的发展,对频率源的信号噪声要求越来越严格,因此低相位噪声在物理、天文、无线电通信、雷达、航空、航天以及精密计量、仪器仪表等各种领域里都受到重视。 1 相位噪声概述 相位噪声 ,就是指在系统内各种噪声作用下所表现的相位随机起伏,相位的随机 起伏起必然引起频率随机起伏,这种起伏速度较快,所以又称之为短期频率稳定度。 理想情况下,合成器的输出信号在频域中为根单一的谱线,而实际上任何信号的频谱都不可能绝对纯净,总会受到噪声的调制产生调制边带。由于相位噪声的存在,使波形发生畸变。在频域中其输出信号的谱线就不再是一条单根的谱线,而是以调制边带的形式连续地分布在载波的两边,在主谱两边出现了一些附加的频谱,从而导致频谱的扩展,相位噪声的边带是双边 的,是以0f 为中心对称的,但为了研究方便,一般只取一个边带。其定义为偏离载频1Hz 带宽内单边带相位噪声的功率与载频信号功率之比,它是偏离 载频的复氏频率m f 的函 数 ,记为 () m f ζ,单位为d B c / Hz ,即 ()010lg[/](1) m SSB f P P ζ= 式中SSB P 为偏离载频m f 处,1Hz 带宽内单边带噪声功率;0P 为载波信号功率。

相位噪声和Jitter概念

相位噪声和抖动jitter的概念及估算方法 时钟频率的不断提高使和在系统时序上占据日益重要的位置。本文介其概念及其对系统性能的影响,并在电路板级、芯片级和单元模块级分别提供了减小相位噪声和抖动的有效方法。 随着通信系统中的时钟速度迈入GHz级,相位噪声和抖动这两个在模拟设计中十分关键的因素,也开始在数字芯片和电路板的性能中占据日益重要的位置。在高速系统中,时钟或振荡器波形的时序误差会限制一个数字I/O接口的最大速率,不仅如此,它还会增大通信链路的误码率,甚至限制A/D转换器的动态范围。 在此趋势下,高速数字设备的设计师们也开始更多地关注时序因素。本文向数字设计师们介绍了相位噪声和抖动的基本概念,分析了它们对系统性能的影响,并给出了能够将相位抖动和噪声降至最低的常用电路技术。 什么是相位噪声和抖动? 相位噪声和抖动是对同一种现象的两种不同的定量方式。在理想情况下,一个频率固定的完美的脉冲信号(以1 MHz为例)的持续时间应该恰好是1微秒,每500ns有一个跳变沿。 但不幸的是,这种信号并不存在。如图1所示,信号周期的长度总会有一定变化,从而导致下一个沿的到来时间不确定。这种不确定就是相位噪声,或者说抖动。 抖动是一个时域概念 抖动是对信号时域变化的测量结果,它从本质上描述了信号周期距离其理想值偏离了多少。通常,10 MHz以下信号的周期变动并不归入抖动一类,而是归入偏移或者漂移。抖动有两种主要类型:确定性抖动和随机性抖动。确定性抖动是由可识别的干扰信号造成的,这种抖动通常幅度有限,具备特定的(而非随机的)产生原因,而且不能进行统计分析。造成确定性抖动的来源主要有4种: 1. 相邻信号走线之间的串扰:当一根导线的自感增大后,会将其相邻信号线周围的感应磁场转化为感应电流,而感应电流会使电压增大或减小,从而造成抖动。 2. 敏感信号通路上的EMI辐射:电源、AC电源线和RF信号源都属于EMI源。与串扰类似,当附近存在EMI辐射时,时序信号通路上感应到的噪声电流会调制时序信号的电压值。 3. 多层基底中电源层的噪声:这种噪声可能改变逻辑门的阈值电压,或者改变阈值电压的参考地电平,从而改变开关门电路所需的电压值。

低噪声放大器设计指南

低噪声放大器设计指南 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分 别为获得 F min 时的最佳源反射系数、 晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF -1)/G 1G +…… (4) 232其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。 所以,一般来说低噪声放大器的增益确定应与系统的整机噪声系数、接收机动态范围等结合起来考虑。

超低相位噪声基于频梳的微波产生和性能

超低相位噪声基于频梳的微波产生和性能 摘要——我们通过光电检测锁定于1.5um超窄线宽超稳定激光的基于铒掺杂光纤频梳相位的脉冲串来报告12GHz超低相位噪声微波信号的产生。拥有先进的光电检测技术和自制相位噪声计量器具,我们的实验证明了微波源的产生,具有10KHz以上且低于170dBc/Hz,源自一个12 GHz 载体的1Hz且低于100dBc/Hz的全相噪声,这将极大推进目前最好的记录结果。 关键字——光纤频梳,光电微波源,超低相位噪声 前言 诸如无线通讯,雷达,深空航行系统,精密微波光谱学的许多应用都需要超稳定微波信号。这种光纤信号通过光纤频梳产生是特别有趣的,因为它允许把无法超越的超稳定连续波激光的光谱纯度转变成微波领域(同光纤和太赫兹辐射波领域),潜在的引导记录低相位噪声微波源。 光纤到微波的转变由拥有超稳定光纤参考频率的飞秒激光器的重复率同步完成。通过光纤脉冲串的快速光电探测对微波信号进行更深入的提取。然而,光电产生微波信号的光谱纯度同时受到频梳重复率性能以及光电探测过程自身的限制。光电探测进程收到了影响,特别是振幅

相位转变(APC)的影响,它转变了微波信号相位噪声中飞秒激光的强烈噪声,同时,它还受到光电探测器的约翰逊·奈奎斯特定理和冲击的影响。 我们通过增加产生在重复率相关谐波的微波功率来克服后来基本原理的限制,并运用基于光纤的梳状滤波器,该滤波器增加脉冲串的有效重复率,并与高线性高处理功率的光电探测器结合。我们也发展了一套自动测量伺服装置来降低APC的水平,这种状态下就不会对我们生产的微波信号的相位噪声产生重大的影响。 对其自身而言,超低相位噪声微波的特性达到这种水平状态是一项有趣的挑战。我们已经发明了一套基于3光纤频梳的特殊装置(给基础参考频率额外加上一个作为参考),3超稳定激光,一个高质量微波电路以及一个基于现场可编程门阵列自制的外差法振荡器,在源自具有极低的振幅噪声敏感度的12Ghz载体的傅里叶频率大于1KHz的条件下,该振荡器与达到低于-180dBc/Hzd的测量噪声水平互相关。 II 实验装置 我们的实验装置由一些光纤频梳和超稳定连续波激光器。这些超稳定连续波激光器由波长为1.5um的半导体二极管激光器组成,激光器被超高精细度(典型~6 10)的超高真空法布里-珀罗空腔的调制技术伺服。

幅度调制与相位调制

幅度/相位调制 过去几十年随着数字信号处理技术与硬件水平的发展,数字收发器性价比已远远高于模拟收发器,如成本更低,速度更快,效率更高。更重要的是数字调制比模拟调制有更多优点,如高频谱效率,强纠错能力,抗信道失真以及更好的保密性。正是因为这些原因,目前使用的无线通信系统都是数字系统。 数字调制和解调的目的就是将信息以比特形式(0/1)通过信道从发送机传输到接收机。数字调制方式主要分为两类:1)幅度/相位调制和2)频率调制。两类调制方式分别又成为线性调制和非线性调制,在优劣势上也各有不同,因此,调制方式的选择最终还需要取决于多方面的最佳权衡。 本文就对幅度/相位调制加以讨论,全文整体思路如下: 1 信号空间分析 在路径损耗与阴影衰落中已提出发送信号与接收信号的模型以复信号的实部来表示,而在本文中为了便于分析各调制解调技术,我们必须引入信号的几何表示。 数字调制将信号比特映射为几种可能的发送信号之一,因此,接收机需要对各个可能的发送信号做比较,从而找出最接近的作为检测结果。为此我们需要一个度量来反映信号间的距离,即将信号投影到一组基函数上,将信号波形与向量一一对应,这样就可以利用向量空间中的距离概念来比较信号间的距离。 1.1 信号的几何表示 向量空间中各向量可由其基向量表示,而在无线通信中,我们也可把信号用其相应的基函数来表示。本文我们讨论的幅度/相位调制的基函数就是由正弦和余弦函数组成的: 21()()cos (2)c t g t f t φπ=(1) 22()()sin (2)c t g t f t φπ=(2) 其中g (t )是为了保证正交性,即保证 220()cos (2)1T c g t f t dt π=? (3) 20()cos(2)sin(2)0T c c g t f t f t dt ππ=? (4) 则信号可表示为 12()()cos(2)()sin(2)i i c i c s t s g t f t s g t f t ππ=+ (5) 则向量s i =[s i1,s i2]T 便构成了信号s i (t )的信号星座点,所有的星座点构成信号星座图,我们把信号s i (t )用其星座点s i 表示的方法就叫做信号的几何表示。而两个星座点s i 和s k 之间的距离就是采用向量中长度的定义,这里不再赘述。 2 幅度/相位调制 相位/幅度调制主要分为3种: 1)脉冲幅度调制(MPAM):只有幅度携带信息;

低噪声前置放大器设计方法

低噪声前置放大器设计方法 一、研究的目的与意义 随着科研和生产的发展,越来越需要测量微弱信号。这些微弱信号常常埋在噪声中,特别是各种物理量(非电量)是通过传感器变换为等效电压信号而进行量测的,这种测昆需要恢复及记录其变化,甚至在生产流程当中还要进行过程控制。因此,要求设计检测仪器必须具育高灵敏度、能抑制噪声,使信噪比改善的良好性能,以满足检测出埋在噪声中的微弱信号的需要。木文着重讨论对信号提取后如何设计前置放大器问题。随着传感器应用的日益广泛,为能检测到由传感器转换来的微弱电信号,要求放大器具有极低的噪声。低噪声放大器对提高传感器测量弱信号的能力、测量范围和灵敏度都是极其重要的,也是很有必要的。本文论述的低噪声放大器除噪声低、频带宽这些特点外,还具有较强的输出能力,特别适于声传感器,当然也适于其它需要低噪声放大器的场合。要求放大器有较强的负载能力这一特点是由声传感器本身的特点以及测量范围的要求而决定的。实际要求当频率低于2MHZ时,输出电压幅值应达到7V(18V电源),负载为500时的输出电流应大于70InA。 二、处理前置放大器的噪声 由传感器变换为等效电压信号,其中可能包括部分噪声(无用信号)。所以,在讨论前置放大器设计前,简单回顾一下放大器的噪声问题。 测量中噪声出现是一个所不希望的扰动和杂乱的随机信号,它是被测信号的自然背景和限制仪器性能的一个极其重要的因素。 由传感器测出非电量转换为电量信号是极其微弱的量。例如:核磁共振、顺磁共振的共振信号是以微伏级计的信号源等。对类似这种信号进行放大和传递过程中影响最大的是热噪声和器件内部固有噪声,这些正是要克服的对象。 所谓热噪声是由于电荷的无规则运动和导体中电子密度和热涨落而产生的一种噪声。由于传感器存在内阻,在达到热平衡情况下,其噪声电压与带宽具有正比关系。即当前置放大器的带宽增加时,所引起的噪声电压随之增加。因此,

低噪声放大器设计 论文

低噪声放大器设计 摘要:微弱信号检测就是利用近代电子学和信号处理方法从噪声中提取有用信号,其关键在于抑制噪声。恢复、增加和提取有用信号。与普通放大器相比,低噪声放大器应具有低得多的噪声系数。欲使放大器获得良好的低噪声特性,除使用好的低噪声器件外,还要有周密的设计。本文将从低噪声放大器在通讯系统中的作用,低噪声放大器的主要技术指标以及低噪声放大器的设计方法来论述低噪声放大器,以获得最佳噪声性能的低噪声放大器。重点介绍了低噪声放大器的设计方法。 关键词:低噪声,微弱信号检测,噪声系数,放大器 0.引言 随着现代科学研究和技术的发展,人们越来越需要从强噪声中检测出有用的微弱信号,于是逐渐形成了微弱信号检测这门新兴的科学技术学科,其应用范围遍及光学、电学、磁学、声学、力学、医学、材料等领域。微弱信号检测技术是利用电子学、信息论、计算机及物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有用信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比,从而提取有用信号。微弱信号检测所针对的检测对象,是用常规和传统方法不能检测到的微弱量。对它的研究是发展高新技术,探索及发现新的自然规则的重要手段,对推动相关领域的发展具有重要的应用价值。目前,微弱信号检测的原理、方法和设备已经成为很多领域中进行现代科学技术研究不可缺少的手段。显然,对微弱信号检测理论的研究,探索新的微弱信号检测方法,研制新的微弱信号检测设备是目前检测技术领域的一大热点。 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的

电子数字频率计测量方法毕业论文

电子数字频率计测量方法毕业论文 1绪论 1.1研究背景及主要研究意义 频率是电子技术领域永恒的话题,电子技术领域离不开频率,一旦离开频率,电子技术的发展是不可想象的,为了得到性能更好的电子系统,科研人员在不断的研究频率,CPU就是用频率的高低来评价性能的好坏,可见,频率在电子系统中的重要性。 频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,其最基本的工作原理为:当被测信号在特定的时间段T的周期个数N时,则被测信号的频率f=N/T.电子计数器是一种基础测量仪器,到目前为止已有三十多年的发展历史。早期,设计师们追求的目标主要是扩展测量围,再加上提高测量精度、稳定度等,这些也是人们衡量电子计算机的技术水平,决定电子技术器价格高低的主要依据。目前这些技术日臻完善,成熟。应用现代技术可以轻松地将电子计数器的频率扩展到微波频段。 1.2数字频率计的发展现状 随着科学技术的发展,用户对电子计数器也提出了新的要求。对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。而对中高档产品,则要求有较高的分辨率,高精度,高稳定度,高测量速率;除通常通用计数器所具有的功能外,还要有数据处理功能,统计分析功能等等,或者包含电压测量等其他功能。这些要求有的已经实现或者部分实现,但要真正地实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。 由于微电子技术和计算机技术的发展,频率计都在不断地进步着,灵敏度不断提高,频率围不断扩大,功能不断增加。在测试通讯、微波器件或产品时,通常都市较复杂的信号,如含有复杂频率成分、调制的含有未知频率分量的、频率固定的变化的、纯净的或叠加有干扰的等等。为了能正确的测量不同类型的信号,必须了解待测信号特性和各种频率测量仪器的性能。微波技术器一般使用类型频谱分析仪的分频或混频电路,另外还包含多个时间基准、合成器、中频放大器等。虽然所有的微波计数器都是用来完成技术任务的,但各自厂家都有各自的一套复

相位调制与解调

1.前言 1.1 序言 随着人类社会步入信息化社会,电子信息科学技术正以惊人的速度发展,开辟了社会发展的新纪元。从20世纪90年代开始至今,通信技术特别是移动通信技术取得了举世瞩目的成就。在通信技术日新月异的今天,学习通信专业知识不仅需要扎实的基础理论,同时需要学习和掌握更多的现代通信技术和网络技术。通信技术正向着数字化、网络化、智能化和宽带化的方向发展。全面、系统地论述了通信系统基本理沦、基本技术以及系统分析与设计中用到的基本工具和方法,并将重点放在数字通信系统上。通信系统又可分为数字通信与模拟通信。传统的模拟通信系统,包括模拟信号的调制与解调,以及加性噪声对幅度调制和角度调制模拟信号解调的影响。数字通信的基本原理,包括模数转换、基本AWGN信道中的数字调制方法、数字通信系统的信号同步方法、带限AWGN信道中的数字通信问题、数字信号的载波传输、数字信源编码以及信道编码与译码等,同时对多径信道中的数字通信、多载波调制、扩频、GSM与IS95数位蜂窝通信。随着数字技术的发展原来许多不得不采用的模拟技术部分已经可以由数字化来实现,但是模拟通信还是比较重要的 1.2 设计任务 本设计是基于MATLAB的模拟相位(PM)调制与解调仿真,主要设计思想是利用MATLAB这个强大的数学软件工具,其中的通信仿真模块通信工具箱以及M檔等,方便快捷灵活的功能实现仿真通信的调制解调设计。还借助MATLAB可视化交互式的操作,对调制解调处理,降低噪声干扰,提高仿真的准确度和可靠性。要求基于MATLAB的模拟调制与解调仿真,主要设计思想是利用MATLAB、simulink檔、M檔等,方便快捷的实现模拟通信的多种调制解调设计。基于simulink对数字通信系统的调制和解调建模。并编写相应的m檔,得出调试及仿真结果并进行分析。

微波脉冲对低噪声放大器的效应研究

目录 摘要 (i) Abstract (iii) 第一章绪论 (1) 1.1 研究背景和意义 (1) 1.2 研究现状 (3) 1.2.1 理论研究 (3) 1.2.2 实验研究 (6) 1.2.3 仿真分析 (9) 1.3 研究思路和论文结构 (10) 1.3.1 研究思路 (10) 1.3.2 论文结构 (11) 第二章低噪声放大器的工作原理及半导体器件仿真的物理模型 (12) 2.1 低噪声放大器的工作原理 (12) 2.1.1 BJT的工作原理 (13) 2.1.2 PHEMT的工作原理 (14) 2.2 半导体器件仿真的物理模型 (16) 2.2.1 BJT仿真的物理模型 (16) 2.2.2 PHEMT仿真的物理模型 (20) 2.3 本章小结 (21) 第三章微波脉冲作用低噪声放大器效应机理的仿真研究 (22) 3.1 频率对半导体器件热效应影响的理论分析 (22) 3.1.1 理论模型 (22) 3.1.2 数值计算 (24) 3.2 微波脉冲作用BJT的物理机制 (27) 3.2.1 BJT的器件结构 (27) 3.2.2 BJT非线性效应的物理机制 (29) 3.2.3 BJT损伤效应的物理机制 (30) 3.3 微波脉冲作用PHEMT的物理机制 (35) 3.3.1 PHEMT的器件结构 (35) 3.3.2 PHEMT非线性效应的物理机制 (37)

3.3.3 PHEMT损伤效应的物理机制 (39) 3.4 本章小结 (44) 第四章微波脉冲作用低噪声放大器效应规律的实验研究 (46) 4.1 实验系统 (46) 4.1.1 实验对象 (46) 4.1.2 实验平台 (51) 4.1.3 实验规范 (53) 4.2 低噪声放大器非线性效应测试 (54) 4.2.1 BJT型低噪声放大器的非线性效应 (54) 4.2.2 PHEMT型低噪声放大器的非线性效应 (57) 4.3 低噪声放大器损伤效应及其规律 (60) 4.3.1 脉宽对低噪声放大器损伤功率的影响规律 (60) 4.3.2 器件偏压对低噪声放大器损伤功率的影响 (62) 4.3.3 频率对低噪声放大器损伤功率的影响规律 (63) 4.3.4 脉冲个数对低噪声放大器损伤功率的影响规律 (64) 4.3.5 典型波形分析 (65) 4.4 本章小结 (67) 第五章半导体器件失效分析 (69) 5.1 电特性分析 (69) 5.1.1 BJT的电特性分析 (69) 5.1.2 PHEMT的电特性分析 (72) 5.2 微观损伤形貌分析 (74) 5.2.1 BJT的微观损伤形貌分析 (75) 5.2.2 PHEMT的微观损伤形貌分析 (78) 5.3 GaAs PHEMT MMIC的微观损伤形貌分析 (80) 5.3.1 HMC516的微观损伤形貌分析 (80) 5.3.2 AMMC5618的微观损伤形貌分析 (86) 5.4 本章小结 (87) 第六章结论与展望 (89) 6.1 主要工作与结论 (89) 6.2 主要创新点 (91) 6.3 今后工作展望 (92) 致谢 (94)

相位噪声基础及测试原理和方法

相位噪声基础及测试原理和方法 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义

微波低噪声放大器的主要技术指标、作用及方案设计

微波低噪声放大器的主要技术指标、作用及方案设计 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高。功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,而这也同时对系统的接收灵敏度提出了更高的要求。 1微波低噪声放大器的作用 一般情况下,一个接收系统的接收灵敏度可由以下计算公式来表示: 由上式可见,在各种特定(带宽BW、解调S/N已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机噪声系数的关键部件则是处于接收机 前端的低噪声放大器。 图1所示是接收机射频前端的原理框图。由图1可见,低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以,低噪声放大器的设计对整个接收机来说是至关重要的。

2微波低噪声放大器的主要技术指标 2.1噪声系数 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: 对单级放大器而言,其噪声系数的计算为: 其中Fmin为晶体管 噪声系数,是由放大器的管子本身决定的,Γopt、Rn和Γs分别为获得Fmin时的 源反射系数、晶体管等效噪声电阻以及晶体管输入端的源反射系数。 对多级放大器。其噪声系数的计算应为: 其中NFn为第n级放大器的噪声系数,Gn为第n级放大器的增益。 对噪声系数要求较高的系统,由于噪声系数很小,用噪声系数表示很不方便,故常用噪声温度来表示,噪声温度与噪声系数的换算关系为: 其中Te为放大器的噪声温度,T0=2900K,NF为放大器的噪声系数。 2.2放大器增益 放大器的增益定义为放大器输出功率与输入功率之比: G=Pout/Pin(7)

相位噪声性能测试

LMK04000 系列产品的相位噪声性能测试 30082862 加权函数H(f)是低通闭环传递函数,其中包含了诸如电 荷泵增益、环路滤波器响应、VCO增益和反馈通路( 数器等参数。该式表示了图1所示的每一级PLL AN-1910 30082801 图1 具有抖动清除能力的双PLL时钟合成器的架构 https://www.360docs.net/doc/0f15213163.html, ? 2009 National Semiconductor Corporation 300828

https://www.360docs.net/doc/0f15213163.html, 2 A N -1910 2.0 LMK04000系列产品介绍 图2示出了LMK04000精密时钟去抖产品系列的详细的框图。其PLL1的冗余的参考时钟输入(CLKin0,CLKin1),可以支持高达400 MHz 的频率。参考时钟信号可以是单端或者差分式的信号,为了实现操作中稳定性,还可以启用其中的自动开关模式。驱动OSCin 端口的VCXO 的最大容许频率为250 MHz 。OSCin 端口的信号被反馈到PLL2相位比较器上,而且也作为相位和频率基准注入到PLL2中。虽然在图中并未示出,其内部还是可以支持分立形式的、采用外接晶振的VCXO 。PLL2的相位比较器的基准信号输入端还提供了一 个可选用的频率倍增器,这可以使得相位比较的频率得以增加一倍,从而降低了PLL2的带内噪声。PLL2集成了一个内置的VCO ,以及可选的内置环路滤波器部件,这一部分可以提供PLL2环路滤波器的3阶和4阶极点。VCO 的输出带有缓冲,最终由Fout 引脚向外提供信号,该信号也可以经过一个VCO 分频器路由到内部的时钟分发总线上。时钟分发部分则对时钟信号进行缓冲,并将其分配给各个可以独立配置的通道。每个通道具有一个分频器、延迟模块和输出缓冲器。在时钟输出端,各信号格式的组合关系可以根据具体的器件编号来确定。 30082802 图2 LMK04000系列时钟电路的框图 下面的表格示出了LMK04000系列中目前已发布的器件。正如表1所示的那样,其中包含了2个VCO 频带以及 两种可配置的时钟输出格式。本报告中所测量的器件是LMK04031。 表1 LMK04000系列产品的器件编号、输出格式和VCO 频段 NSID 工艺2VPECL/LVPECL 输出 LVDS 输出 LVCMOS 输出 VCO 频率范围LMK04011BISQ BiCMOS 51430~1570 MHz LMK04031BISQ BiCMOS 22 2 1430~1570 MHz LMK04033BISQ BiCMOS 2 2 2 1840~2160 MHz

相位噪声基础及测试原理和方法

摘要: 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义 以载波的幅度为参考,在偏移一定的频率下的单边带相对噪声功率。这个数值是指在1Hz的带宽下的相对噪声电平,其单位为dBc/Hz。该定义最早是基于频谱仪法测试相位噪声,不区分调幅噪声和调相噪声。 单边带相位噪声L(f)定义为随机相位波动单边带功率谱密度Sφ(f)的一半,其单位为dBc/Hz。其中Sφ(f)为随机相位波动φ(t)的单边带功率谱密度,其物理量纲是rad2/Hz。

传感器的灵敏度,低频噪声特性和动态响应范围

传感器的灵敏度,低频噪声特性和动态响应范围 工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2(m/s2),或重力加速度(g)。 描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。 电荷输出型加速度计不适合用于低频测量 由于低频振动的加速度信号都很微小,而高阻抗的小电荷信号非常容易受干扰;当测量对象的体积越大,其测量频率越低,则信号的信噪比的问题更为突出。因此在目前带内置电路加速度传感器日趋普遍的情况下应尽量选用电噪声比较小,低频特性优良的低阻抗电压输出型压电加速度传感器。 传感器的低频截止频率 与传感器的高频截止频率类同,低频截止频率是指在所规定的传感器频率响应幅值误差(±5%,±10%或±3dB)内传感器所能测量的最低频率信号。误差值越大其低频截止频率也相对越低。所以不同传感器的低频截止频率指标必须在相同的误差条件下进行比较。低阻抗电压输出型传感器的低频特性是由传感器敏感芯体和内置电路的综合电参数所决定的。其频率响应特性可以用模拟电路的一阶高通滤波器特性来描述,所以传感器的低频响应和截止频率完全可以用一阶系统的时间常数来确定。从实用角度来看,由于传感器的甚低频频率响应的标定比较困难,而通过传感器对时间域内阶跃信号的响应可测得传感器的时间常数;因此利用传感器的低频响应与一阶高通滤波器的特性几乎一致的特点,通过计算可方便地获得传感器的低频响应和与其对应的低频截至频率。 传感器的灵敏度,低频噪声特性和动态响应范围

正确选择低噪声放大器(LNA)

正确选择低噪声放大器(LNA) 该应用笔记检验了影响放大器噪声的关键参数,说明不同放大器设计(双极型、JFET输入或CMOS输入设计)对噪声的影响。本文还阐述了如何选择一款适合低频模拟应用(如数据转换器缓冲、应变仪信号放大和麦克风前置放大器)的低噪声放大器。基于CMOS输入放大器,MAX4475,举例说明多数低频模拟应用中这种新型CMOS放大器的设计优势。 目前,有关低噪声放大器的讨论常常关注于RF/无线应用,但实际应用中,噪声对于低频模拟产品(如数据转换器缓冲、应变仪信号放大和麦克风前置放大器)也有很大影响,是一项重要的考虑因素。为了选择一款合适的放大器,设计工程师必须首先了解放大器是否拥有低噪声特性和相关的噪声参数。另外,还要了解不同类型放大器(双极型、JFET输入或CMOS输入)的噪声参数差异。 噪声参数 尽管影响放大器噪声性能的参数有很多,但最重要的两个参数是:电压噪声和电流噪声。电压噪声是指在没有它噪声干扰的情况下,放大器输入短路时出现在输入端的电压波动。电流噪声是指在没有其它噪声干扰的情况下,放大器输入开路时出现在输入端的电流波动。 描述放大器噪声的典型指标是噪声密度,也称作点噪声。电压噪声密度单位为nV/√Hz,电流噪声密度通常表示为pA/√Hz。在低噪声放大器数据资料中可以找到这些参数,而且,一般给出两种频率下的数值:

一个是低于200Hz的闪烁噪声;另一个是在1kHz通带内的噪声。简单起见,这些测量值以放大器输入端为参考,不需要考虑放大器增益。图1所示为电压噪声密度与频率的对应关系曲线。噪声曲线与两个主要的噪声成份有关:闪烁噪声和散粒噪声。闪烁噪声是所有线性器件固有的随机噪声,也称作1/f 噪声,因为噪声振幅与频率成反比。闪烁噪声通常是频率低于200Hz时的主要噪声源,如图1所示。1/f角频率是指噪声大小基本相同、不受频率变化影响的起始频率。散粒噪声是流过正向偏置pn结的电流波动所造成的白噪声,也出现在该频段。值得注意的是:电压噪声的1/f角频率与电流噪声的1/f角频率可能会不同。 图1. 电压噪声密度与频率的关系曲线,主要受两种噪声源的影响:闪烁噪声和散粒噪声。闪烁噪声或1/f噪声与频率成反比,是频率低于200Hz时的主要噪声源。放大器电路的总噪声取决于放大器本身、外部电路阻抗、增益、电路带宽和环境温度等参数。电路的外部电阻

低噪声放大器--产品规格

低噪声放大器 一种位于放大链路输入端,针对给定的增益要求,引入尽可能小的内部噪声,并在输出端获得最大可能的信噪比而设计的放大器。 低噪声放大器,噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。 低噪声放大器low noise amplifier噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放 低噪声放大器 大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数F=1(0分贝),其物理意义是输出信噪比等于输入信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低 低噪声放大器 噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te 可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于 2 分贝。放大器的噪声系数还与晶体管的工作状态以及信源内阻有关。在工作频率和信源内阻均给定的情况下,噪声系数也和晶体管直流工作点有关。为了兼顾低噪声和高增益的要求,常采用共发射极一共基极级联的低噪声放大电路。 应用 噪声放大器(LNA)主要面向移动通信基础设施基站应用,例如收发器无线通信卡、塔顶放大器(TMA)、组合器、中继器以及远端/数字无线宽带头端设备等应用设计,并为低噪声指数(NF, Noise Figure)立下了新标竿。目前无线通信基础设施产业正面临必须在拥挤的频谱内提供最佳信号质量和覆盖度的挑战,接收器灵敏度是基站接收路径设计中最关键的要求之一,合适的LNA选择, 低噪声放大器 特别是第一级LNA可以大幅度改善基站接收器的灵敏度表现,低噪声指数也是关键的设计目标,Avago提供了1900MHz下0.48dB同级产品最佳的噪声指数。另一个关键设计为线性度,它影响了接收器分辨紧密接近信号和假信号分别的能力,三阶截点OIP3可以用来定义线性度,在1900MHz和5V/51mA的典型工作条件下,Avago特有的GaAs

系统相位噪声的指标

系统相位噪声的指标 举个例子说明800MHz CDMA手机接收(参看IS-98标准) 你可以这样想, 所有的接收机的参数要求, 不管是GAIN, NF, 还是IP3 等等, 都是为了一个目的---实现一定的信噪比SNR从而能够对信号进行解调. 不论是灵敏度, 动态范围还是在有干扰信号条件下, 解调是接收机要达到的目的. 对CDMA手机接收机来说, 解调需要的SNR = -1.5 dB (大约值) IS-98里面有一个单音(Single tone)测试, 是测试CDMA接收机在一个单音强干扰情况下的性能. CDMA接收机灵敏度最低要求-104 dBm(带宽1.25 MHz). 也就是说在最差NF条件下, 热噪声功率 = -104 - SNR = -102.5 dBm/1.25MHz 单音测试条件如下 CDMA信号功率 = -101 dBm/1.25MHz 单音频偏 = 900 KHz 单音功率 = -30 dBm 如图所示, 不管是有中频还是零中频结构, 信号和LO混频后落在有用带宽内, 单音和LO 混频后还是会落在900 KHz处(会被中频或基带滤波器滤除), 单音和LO的相位噪声混频后(称为reciprocal mxing, 有人翻译为倒易混频, 即把单音当作一个本振信号, 把LO的相位噪声当作一个宽带信号进行混频, "倒易"意指单音和LO角色互换)的产物会落在有用带宽内, 这种噪声迭加在热噪声之上, 引起系统SNR下降. 接收机系统相位噪声的指标可以由此得出. 因为单音测试主要由双工器隔离度, LNA IP3和相位噪声决定, 因此计算相位噪声的指标要留裕量给其它指标(这里用 6 dB). 根据上面的计算, 我们可以对相位噪声提一个指标: 在900 KHz频偏处要求-139 dBc/Hz.

相位噪声

相位噪声和抖动的概念及其估算方法 时钟频率的不断提高使相位噪声和抖动在系统时序上占据日益重要的位置。本文介其概念及其对系统性能的影响,并在电路板级、芯片级和单元模块级分 别提供了减小相位噪声和抖动的有效方法。 随着通信系统中的时钟速度迈入GHz级,相位噪声和抖动这两个在模拟设 计中十分关键的因素,也开始在数字芯片和电路板的性能中占据日益重要的位置。在高速系统中,时钟或振荡器波形的时序误差会限制一个数字I/O接口的最大速率,不仅如此,它还会增大通信链路的误码率,甚至限制A/D转换器的动态范围。 在此趋势下,高速数字设备的设计师们也开始更多地关注时序因素。本文向数字设计师们介绍了相位噪声和抖动的基本概念,分析了它们对系统性能的影响,并给出了能够将相位抖动和噪声降至 最低的常用电路技术。 什么是相位噪声和抖动? 相位噪声和抖动是对同一种现象的 两种不同的定量方式。在理想情况 下,一个频率固定的完美的脉冲信 号(以1 MHz为例)的持续时间应该恰好是1微秒,每500ns有一个跳变沿。 但不幸的是,这种信号并不存在。如图1所示,信号周期的长度总会有一定变化,从而导致下一个沿的到来时间不确定。这种不确定就是相位噪声,或者说抖动。 抖动是一个时域概念 抖动是对信号时域变化的测量结果,它从本质上描述了信号周期距离其理想值偏离了多少。通常,10 MHz以下信号的周期变动并不归入抖动一类,而是归入偏移或者漂移。抖动有两种主要类型:确定性抖动和随机性抖动。确定性抖动是由可识别的干扰信号造成的,这种抖动通常幅度有限,具备特定的(而非随机的)产生原因,而且不能进行统计分析。造成确定性抖动的来源主要有4种: 1. 相邻信号走线之间的串扰:当一根导线的自感增大后,会将其相邻信 号线周围的感应磁场转化为感应电流,而感应电流会使电压增大或减小, 从而造成抖动。 2. 敏感信号通路上的EMI辐射:电源、AC电源线和RF信号源都属于EMI源。与串扰类似,当附近存在EMI辐射时,时序信号通路上感应到的噪声电流会调制时序信号的电压值。 3. 多层基底中电源层的噪声:这种噪声可能改变逻辑门的阈值电压,或者改变阈值电压的参考地电平,从而改变开关门电路所需的电压值。

无线通信系统中的调制解调基础(二):相位调制

无线通信系统中的调制解调基础(二):相位调制 作者:Ian Poole Adrio Communications Ltd 第二部分解释了相移键控(PSK)的多种形式,包括双相相移键控(BPSK),四相相移键控(QPSK),高斯滤波最小相移键控(GMSK),和目前流行的正交幅度调制(QAM)。 第一部分解释了调幅(AM)和调频(FM)技术,并介绍了其优点和缺点。第三部分将会介绍直接序列扩频(DSSS)技术和正交频分复用(OFDM)调制技术。 调相 相位调制是另一种广泛采用的调制技术,特别是在数据传输的应用中。因为相位和频率是相辅相成的(频变是相变的一种形式),两种调制方法可以用角度调制(angle modulation)来概括。 为了解释调相如何工作,我们首先要对相位做出解释。一个无线信号包涵了一个正弦信号的载波,幅度从正到负程波浪形变化,一个周期后回到零点,这个同样可以由一个围绕一个零点旋转的一个点来表示,如图3-13所示,相位就是终点到起点的角度。 调相改变了信号的相位,换句话来说,图中绕着原点旋转的点的位置会改变,要实现这个效果既是要在短时间内改变信号的频率。所以,当进行相位调制的时候会产生频率的

改变,反之亦然。相位和频率是密不可分的,因为相位就是频率的积分,频率调制可以通过简单的CR网络转变成相位调制。因此,相位调制与频率调制信号的边带、带宽具有异曲同工的效果,我们必须留意这个关系。 相移键控 相位调制可以用来传输数据,而相移键控是很常用的。PSK在带宽利用率上有很多优势,在许多移动电话无线通信的应用中广为采用。 最基本的PSK方法被称作双相相移键控(BPSK),有时也称作反向相位键控(PRK)。一个数字信号在1和0之间改变(或表述为1和-1),这样形成了相位反转,就是180°的相移,如图3-14。 双相相移键控(BPSK) PSK的一个问题是接收机不能精确的识别传输的信号,来判定是mark(1)还是space (0),即使发射机和接收机的时钟同步也很难实现,因为传输路径会决定接受信号的精确相位。为了克服这个问题,PSK系统采用差分模式对载波上的数据进行编码。比如说,信号为1的时候改变相位,信号为0时不改变相位,在这个基础架构上可以做更多的改进,一些其它的PSK方法也被开发了出来。一个方法是信号为1时做90°的相移,在信号为0时做-90°相移,这样保留了0和1之间180度的相差。在简单的系统中如果不采用该方式进行传输,在传一个长序列的0的时候有可能会失去同步,这是因为产生突发模式时相位没有改变。 基于基本的PSK会有很多改变,各个方案都有各自的优缺点,让设计人员针对具体的应用采用不同的解决方法。比如说四相相移键控(QPSK),采用了四个相位,每个相差90°,8-PSK,采用8个相位等等。 为了方便表述一个PSK信号,我们采用相位矢量或者星座图,如图3-15。采用这个图可以很好的体现相位信息和幅度信息。在这个图里面,信号的相位用角度表示,幅度用具离圆心的距离表示。这样这个信号中的同相分量用sine信号表示,而正交分量用cosine 信号表示。大部分PSK系统采用不变的幅度,因此圆心周围的点与圆心距离相等并只改

相关文档
最新文档