高二理科数学《1.6 微积分基本定理念》
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课讲授
2. 定积分的一般研究方法: n b ba (1) f ( i ) a f ( x )dx lim n n i 1 采用“分割、近似代替、求和、取极值”求曲 边梯形的面积
(2) f ( x)dx F (b) F (a)
a b
采用“找 f(x)的原函数 F(x)”, 求定积分的值。
湖南省长沙市一中卫星远程学校
课后作业
1.《习案》 作业十七
湖南省长沙市一中卫星远程学校
主讲:陈震
湖南省长沙市一中卫星远程学校
例题讲解
例 1. 计算下列定积分
2 1 (1) 1 (2 x x 2 )dx (2) 1 ( x 1)dx 3
湖南省长沙市一中卫星远程学校
例题讲解
例 1. 计算下列定积分
b
a
f ( x )dx F (b) F (a ) 吗 ?
湖南省长沙市一中卫星远程学校
探究与思考
研读教材 P53 (1)微积分基本原理是什么? (2)这一原理的作用又是什么? (3)利用这一原理的关键是什么? (4)请你归纳一下定积分的研究方法.
湖南省长沙市一中卫星远程学校
新课讲授
1. 微积分基本原理:
湖南省长沙市一中卫星远程学校
新课讲授
1. 微积分基本原理:
一般地, 如果f ( x )是区间 [a , b]上的 连续函数, 并且F' ( x ) f ( x ), 那么: f ( x )dx F (b) F (a )
a b
湖南省长沙市一中卫星远程学校
新课讲授
2. 定积分的一般研究方法:
3) S V ( t )dt y' ( t )dt y(b) y(a )
a a
b
b
你又如何理解的 ?
4)想一想 3)的作用是什么?
湖南省长沙市一中卫星远程学校
探究与思考
教材 P51 问题探究:
5)一般地, 如果f ( x )是区间 [a , b]上的连 续函数, 并且F ' ( x ) f ( x ), 那么一定有
湖南省长沙市一中卫星远程学校
复习引入
1. 定积分的概念及其几何意义; 2. 曲边梯形面积的求法;
湖南省长沙市一中卫星远程学校
复习引入
1. 定积分的概念及其几何意义; 2. 曲边梯形面积的求法;
练习:请计算
2
1
1 dx . x
湖南省长沙市一中卫星远程学校
探究与思考
教材 P51 问题探究: 1)位移 S 是从哪几个角度研究的? 2)每个角度获得的结论是什么?
2 1 (1) 1 (2 x x 2 )dx (2) 1 ( x 1)dx 3
练习:教材 P55 练习 (2)、(4)、(5)
湖南省长沙市一中卫星远程学校
例题讲解
例 2. 计算定积分
x 2x 3 (1) 0 (4 2 x )(4 x )dx (2) 1 x dx 3 1 2 (3) 2 ( x x ) dx
湖南省长沙市一中卫星远程学校
例题分析
例 1.计算下列定积分
3 1 (1) 1 x dx (2) 1 2 xdx 3 1 (3) ( ) dx ( 4 ) cos xdx 2 1 x 0 2
湖南省长沙市一中卫星远程学校
练习:教材 P55 练习第 1 题 (1)、(6)(7)、(8)
例题讲解
例 ቤተ መጻሕፍቲ ባይዱ. 计算定积分(m 为正整数)
(1) e dx ( 2) sinmxdx
2x 0
1
( 3) sin mxdx
2
湖南省长沙市一中卫星远程学校
例题讲解
例 3. 计算定积分
(1) e dx ( 2) sinmxdx
2x 0
1
( 3) sin mxdx
湖南省长沙市一中卫星远程学校
新课讲授
2. 定积分的一般研究方法: n b ba (1) f ( i ) a f ( x )dx lim n n i 1
湖南省长沙市一中卫星远程学校
新课讲授
2. 定积分的一般研究方法: n b ba (1) f ( i ) a f ( x )dx lim n n i 1 采用“分割、近似代替、求和、取极值”求曲 边梯形的面积
湖南省长沙市一中卫星远程学校
新课讲授
2. 定积分的一般研究方法: n b ba (1) f ( i ) a f ( x )dx lim n n i 1 采用“分割、近似代替、求和、取极值”求曲 边梯形的面积
(2) f ( x)dx F (b) F (a)
a b
采用“找 f(x)的原函数 F(x)”, 求定积分的值。
湖南省长沙市一中卫星远程学校
新课讲授
2. 定积分的一般研究方法: n b ba (1) f ( i ) a f ( x )dx lim n n i 1 采用“分割、近似代替、求和、取极值”求曲 边梯形的面积
(2) f ( x)dx F (b) F (a)
a b
湖南省长沙市一中卫星远程学校
课堂小结
求定积分, 利用微积分基本定理, 其关键是:
①利用定积分性质简化运算, 便于找原函数; ②利用求导公式或法则逆向寻找原函数.
湖南省长沙市一中卫星远程学校
课后作业
《习案》 作业十八,
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
例题讲解
例 2. 计算下列定积分
0
sin xdx, sin xdx, sin xdx
0
2
2
湖南省长沙市一中卫星远程学校
例题讲解
例 2. 计算下列定积分
0
sin xdx, sin xdx, sin xdx
0
2
2
由计算结果你能发现什么结论 ? 试利 用曲边梯形的面积表示所发现的结论.
2 2 2 2
湖南省长沙市一中卫星远程学校
例题讲解
例 2. 计算定积分
x 2x 3 (1) 0 (4 2 x )(4 x )dx (2) 1 x dx 3 1 2 (3) 2 ( x x ) dx
2 2 2 2
练习:教材 P55A 组第 1 题 (4)、(5)、(6)
湖南省长沙市一中卫星远程学校
2
练习:教材 P55B 组第 1 题(2)、(3) 第 2 题(2)、(4)
湖南省长沙市一中卫星远程学校
课堂小结
求定积分, 利用微积分基本定理, 其关键是:
湖南省长沙市一中卫星远程学校
课堂小结
求定积分, 利用微积分基本定理, 其关键是:
①利用定积分性质简化运算, 便于找原函数;
湖南省长沙市一中卫星远程学校