物理学第三版(刘克哲 张承琚)课后习题答案第第1章
大学物理学(第三版)课后习题参考答案
习题1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ[答案:B]填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V行走。
如人相对于岸静止,则1V 、2V 和3V的关系是 。
[答案: 0321=++V V V]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理学(第三版)上课后习题答案
第一章运动的描述1-1 ||与有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在径向上的分量.∵有(式中叫做单位矢),则式中就是速度径向上的分量,∴不同如题1-1图所示.题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.∵有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r=,然后根据 =,及=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=及=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。
在1-1题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。
或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢及速度的方向随间的变化率对速度、加速度的贡献。
1-3 一质点在平面上运动,运动方程为=3+5, =2+3-4.式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0 s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4 s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)(2)将,代入上式即有(3)∵∴(4)则(5)∵(6)这说明该点只有方向的加速度,且为恒量。
大学物理学(第三版)课后习题参考答案
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ[答案:B]1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V行走。
如人相对于岸静止,则1V 、2V 和3V的关系是 。
[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理学(第三版)课后习题参考答案
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr (B)dt r d(C)dt r d || (D) 22)()(dtdy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ [答案:B]1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V 的关系是 。
[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
物理学第3版习题解答_第1章流体的运动
v2
S1v1 2 10 10 4 m / s 5 10 4 m / s S2 4
l-2 有一水管,如图所示,设管中的水作稳定流动。水流过 A 管后,分 B、C 两支管流出。已知三管 的横截面积分别为 SA=100 cm2,SB=40 cm2,SC=80 cm2。A、B 两管中的流速分别为 vA=40 cm·s-1 及 vB=30 cm·s-1。则 C 管中的流速 vC 等于多少? 解:根据连续性原理,得
所以流动为层流 1-20 设某人的心脏输出的血量为 0.83×10-4 m3·s-1,体循环的总压强差为 1.2×105 Pa,求出人体循 环的总流阻是多少 N·s·m-5? 解:
p 1.2 105 Z 1.45 109 N .s.m 5 4 Q 0.83 10
1-21 橄榄油的粘度为 0.18 Pa·s,流过管长为 0.5 m,半径为 1cm 的管子时,两端的压强差为 2×104 Pa,求其流量。
1-16 如图为一水流抽气机,水管在粗处(图中 A 处)的直径为 2.5 cm,水流量为 2×10-3 m3·s-1,压强 为 2.0×105 Pa;其收缩处(图中 C 处)的直径为 1.2 cm,计算收缩处的压强。 解: 根据连续性原理:
S1v1 S 2 v2 Q
得:
v1 4.08m / s
Q S1v1 2 gH
(2) 根据伯努利方程,得
2
S p2 p0 gh gH (1 1 2 ) S2
1-14 飞机上量度空速的比托管,其流体压力计中装的是水银。如果两水银柱的最大高度差为 0.1 m, 问能测出空气的最大流速是多少?已知水银的密度是 13.6×103 kg·m-3,空气的密度是 1.3 kg·m-3。 解: 根据伯努利方程,得
物理学第三版_刘克哲_课后答案
[第1章习题解答]1-3如题1-3图所示,汽车从A 地出发,向北行驶60km 到达B 地,然后向东行驶60km 到达c 地,最后向东北行驶50km 到达D 地。
求汽车行驶的总路程和总位移。
解汽车行驶的总路程为S=AB 十BC 十CD =(60十60十50)km =170km ;汽车的总位移的大小为Δr=AB/Cos45°十CD =(84.9十50)km =135km ,位移的方向沿东北方向,与方向一致。
1-4现有一矢量是时阃t?为什么?解:因为前者是对矢量R 的绝对值(大小或长度)求导,表示矢量的太小随时间的变化率;而后者是对矢量的大小和方向两者同时求导,再取绝对值,表示矢量大小随时问的变化和矢量方向随时同的变化两部分的绝对值。
如果矢量方向不变,只是大小变化,那么这两个表示式是相等的。
1-5一质点沿直线L 运动,其位置与时间的关系为r =6t 2-2t 3,r 和t 的单位分别是米和秒。
求:(1)第二秒内的平均速度;(2)第三秒末和第四秒末的速度,(3)第三秒末和第四秒末的加速度。
解:取直线L 的正方向为x 轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x 轴的正方向,若为负值,表示该速度或加速度沿x 轴的反方向。
(1)第二秒内的平均速度11121220.412)26()1624(−−⋅=⋅−−−−=−−=s m s m t t x x v ;(2)第三秒末的速度因为2612t t dtdx v −==,将t=3s 代入,就求得第三秒末的速度为v 3=18m ·s -1;用同样的方法可以求得第口秒末的速度为V 4=48m s -1;(3)第三秒末的加速度因为t dtx d 1212a 22−==,将t=3s 代入,就求得第三秒末的加速度为a 3=-24m ·s -2;用同样的方法可“求得第四秒末的加速度为a 4=-36m ·s -21-6一质点作直线运动,速度和加速度的大小分别为dt d v s =和dtd v a =,试证明:(1)vdv=ads :(2)当a 为常量时,式v 2=v 02+2a(s-s 0)成立。
物理学版(刘克哲张承琚)课后习题标准答案
[物理学9章习题解答]9-3两个相同的小球质量都是m,并带有等量同号电荷q,各用长为l的丝线悬挂于同一点。
由于电荷的斥力作用,使小球处于图9-9所示的位置。
如果θ角很小,试证明两个小球的间距x可近似地表示为.解小球在三个力的共同作用下达到平衡,这三个力分别是重力m g、绳子的张力t和库仑力f。
于是可以列出下面的方程式,(1),(2)(3)因为θ角很小,所以,.利用这个近似关系可以得到,(4). (5)将式(5)代入式(4),得图9-9,由上式可以解得.得证。
9-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大?解在上题的结果中,将q解出,再将已知数据代入,可得.9-5氢原子由一个质子和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.29⨯10-11m。
质子的质量m = 1.67⨯10-27kg,电子的质量m = 9.11⨯10-31kg,它们的电量为±e =1.60⨯10-19c。
(1)求电子所受的库仑力;(2)电子所受库仑力是质子对它的万有引力的多少倍?(3)求电子绕核运动的速率。
解(1)电子与质子之间的库仑力为.(2)电子与质子之间的万有引力为.所以.(3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以,从上式解出电子绕核运动的速率,为.9-6 边长为a的立方体,每一个顶角上放一个电荷q。
(1)证明任一顶角上的电荷所受合力的大小为.(2) f的方向如何?解立方体每个顶角上放一个电荷q,由于对称性,每个电荷的受力情况均相同。
对于任一顶角上的电荷,例如b角上的qb ,它所受到的力、和大小也是相等的,即.首先让我们来计算的大小。
由图9-10可见,、和对的作用力不产生x方向的分量;对的作用力f1的大小为图9-10,f1的方向与x轴的夹角为45︒。
的大小为对的作用力f2,f2的方向与x轴的夹角为0︒。
第物理学第三版(刘克哲_张承琚)课后习题答案第一章三章[1]
[物理学3章习题解答]3-1用榔头击钉子,如果榔头的质量为500 g,击钉子时的速率为8.0 m⋅s-1,作用时间为2.0⨯10-3 s,求钉子所受的冲量和榔头对钉子的平均打击力。
解对于榔头:,式中i1是榔头所受的冲量,是榔头所受钉子的平均打击力;对于钉子:,式中i2是钉子受到的冲量,是钉子所受的平均打击力,显然= -。
题目所要求的是i2和:,i2的方向与榔头运动方向一致。
,的方向与榔头运动方向一致。
3-2 质量为10 g的子弹以500 m⋅s-1 的速度沿与板面垂直的方向射向木板,穿过木板,速度降为400 m⋅s-1 。
如果子弹穿过木板所需时间为1.00⨯10-5 s,试分别利用动能定理和动量定理求木板对子弹的平均阻力。
解(1)用动能定理求解:, (1)其中是木板对子弹的平均阻力,d为穿过木板的厚度,它可用下面的关系求得:, (2). (3)由式(2)和式(3)联立所求得的木板厚度为&nb .根据式(1),木板对子弹的平均阻力为.(2)用动量定理求解:,.与上面的结果一致。
由求解过程可见,利用动量定理求解要简便得多。
3-4 质量为m 的小球与桌面相碰撞,碰撞前、后小球的速率都是v ,入射方向和出射方向与桌面法线的夹角都是α,如图3-3所示。
若小球与桌面作用的时间为δt ,求小球对桌面的平均冲力。
解 设桌面对小球的平均冲力为f ,并建立如图所示的坐标系,根据动量定理,对于小球可列出,.由第一个方程式可以求得,由第二个方程式可以求得.根据牛顿第三定律,小球对桌面的平均冲力为,负号表示小球对桌面的平均冲力沿y 轴的负方向。
3-5 如图3-4所示,一个质量为m 的刚性小球在光滑的水平桌面上以速度v 1 运动,v 1 与x 轴的负方向成α角。
当小球运动到o 点时,受到一个沿y 方向的冲力作用,使小球运动速度的大小和方向都发生了变化。
已知变化后速度的方向与x 轴成β角。
如果冲力与小球作用的时间为δt ,求小球所受的平均冲力和运动速率。
大学物理学(第三版)课后习题参考答案
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ[答案:B]1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V行走。
如人相对于岸静止,则1V 、2V 和3V的关系是 。
[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理学(第三版)课后习题参考答案
习题 11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为(A)dtdr (B)dtr d (C)dtr d ||(D)22)()(dtdy dt dx [答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2,瞬时加速度2/2s m a ,则一秒钟后质点的速度(A)等于零(B)等于-2m/s (C)等于2m/s(D)不能确定。
[答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)tR t R 2,2(B) t R2,0(C) 0,0(D) 0,2tR[答案:B]1.2填空题(1) 一质点,以1s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
[答案:10m ;5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
[答案:23m ·s -1](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V 和3V 的关系是。
[答案:0321V V V ]1.3一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
物理学第三版课后习题答案
物理学第三版课后习题答案
《物理学第三版课后习题答案:探索自然规律的奥秘》
物理学作为自然科学的一门重要学科,旨在研究自然界中各种物质和能量之间的相互作用规律,以及这些规律所蕴含的普遍规律和定律。
《物理学第三版课后习题答案》作为一本重要的学习辅助资料,为学生提供了丰富的习题和答案,帮助他们更好地理解和掌握物理学的知识。
在这本书中,我们可以看到许多经典的物理学习题,涉及到力学、热学、电磁学等多个领域。
通过解答这些习题,我们可以深入理解物理学中的各种定律和规律,探索自然界中隐藏的奥秘。
例如,在力学领域,我们可以通过习题来理解牛顿定律、动量守恒定律等基本原理,探讨物体在运动中的行为规律。
在热学领域,我们可以通过习题来理解热力学定律、热传导规律等,了解热量在物体中的传播方式。
在电磁学领域,我们可以通过习题来理解库仑定律、安培定律等,探讨电荷和电流之间的相互作用规律。
通过解答这些习题,我们可以不断地提高自己的物理学知识水平,培养自己的物理思维能力,同时也可以感受到物理学所蕴含的深刻奥秘。
物理学是一门富有魅力的学科,它让我们能够更加深入地理解自然界的运行规律,探索自然界中的奥秘。
在学习物理学的过程中,我们也要不断地思考和探索,不断地提出问题和寻找答案。
《物理学第三版课后习题答案》为我们提供了一个很好的学习工具,让我们能够更好地理解和掌握物理学的知识。
希望大家能够充分利用这本书,不断地提高自己的物理学水平,同时也能够在学习中感受到物理学的魅力和奥秘。
数学物理方程第三版第一章答案(全)
数学物理方程第三版答案第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(tu x ∂∂ρ=))((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力x ux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为x u∂∂|lx ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[第1章习题解答]1-3 如题1-3图所示,汽车从A 地出发,向北行驶60 km 到达B 地,然后向东行驶60 km 到达c 地,最后向东北行驶50km 到达D 地。
求汽车行驶的总路程和总位移。
解 汽车行驶的总路程为S=AB 十BC 十CD =(60十60十50)km =170 km ; 汽车的总位移的大小为Δr=AB/Cos45°十CD =(84.9十50)km =135km , 位移的方向沿东北方向,与CD 方向一致。
1-4 现有一矢量R 是时阃t 的函数,问dtR d dt R d 与在一般情况下是否相等?为什么?解:dtR d dt R d 与在一般情况下是不相等的。
因为前者是对矢量R 的绝对值(大小或长度)求导,表示矢量R 的太小随时间的变化率;而后者是对矢量R 的大小和方向两者同时求导,再取绝对值,表示矢量R 大小随时问的变化和矢量R 方向随时同的变化两部分的绝对值。
如果矢量R 方向不变,只是大小变化,那么这两个表示式是相等的。
1-5 一质点沿直线L 运动,其位置与时间的关系为r =6t 2-2t 3,r 和t 的单位分别是米和秒。
求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度,(3)第三秒末和第四秒末的加速度。
解:取直线L 的正方向为x 轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x 轴的正方向,若为负值,表示该速度或加速度沿x 轴的反方向。
(1)第二秒内的平均速度 11121220.412)26()1624(--⋅=⋅----=--=s m s m t t x x v ; (2)第三秒末的速度 因为2612t t dtdxv -==,将t=3 s 代入,就求得第三秒末的速度为v 3=18m ·s -1;用同样的方法可以求得第口秒末的速度为 V 4=48m s -1; (3)第三秒末的加速度因为t dtxd 1212a 22-==,将t=3 s 代入,就求得第三秒末的加速度为a 3= -24m ·s -2;用同样的方法可“求得第四秒末的加速度为 a 4= -36m ·s -21-6 一质点作直线运动,速度和加速度的大小分别为dt d v s =和dtd v a =,试证明: (1)vdv=ads :(2)当a 为常量时,式v 2=v 02+2a(s-s 0)成立。
解(1) ads ds dtdv dv dtds vdv ===;(2)对上式积分,等号左边为: )(21)(21202200v v v d vdv vvvv -==⎰⎰ 等号右边为: )(00s s a ads ss -=⎰于是得:v 2-v 02=2a(s-s 0) 即:v 2=v 02+2a(s-s 0)1-7 质点沿直线运动,在时间t 后它离该直线上某定点0的距离s 满足关系式:s=(t -1)2(t- 2),s 和t 的单位分别是米和秒。
求 (1)当质点经过O 点时的速度和加速度; (2)当质点的速度为零时它离开O 点的距离; (3)当质点的加速度为零时它离开O 点的距离; (4)当质点的速度为12ms -1时它的加速度。
解:取质点沿x 轴运动,取坐标原点为定点O 。
(1)质点经过O 点时.即s=0,由式 (t -1)2(t- 2)=0,可以解得 t=1.0 s .t=2.0 s 当t=1 s 时.v=ds/dt=2(t-1)(t-2)+(t-1)2=0 ms -1 a=dv/dt=4(t-1)+2(t-2)=-2. 0 ms -2 当t=2 s 时, v=1.0 ms -1, a=4.0 ms -2。
(2)质点的速度为零,即V=ds/dt=2(t-1)(t-2)+(t-1)2=0 上式可化为 (t -1)(3t- 5)=0, 解得: t=1.0 s ,t=1.7 s当t=1s 时,质点正好处于O 点,即离开O 点的距离为0 m ,当t=5/3 s 时,质点离开O 点的距离为-0.15m 。
(3)质点的加速度为零,即 a=dv/dt=4(t-1)+2(t-2)= 0 上式可化为:(3t-4)=0, t=1.3s 这时离开O 点的距离为-0.074m 。
4)质点的速度为12 ms -1,即2(t-1)(t-2)+(t-1)2=12 由此解得:t=3.4 s ,t=-0.69 s将t 值代入加速度的表示式a=dv/dt=4(t-1)+2(t-2) 求得的加速度分别为: a=12.4 ms -2,a=-12.2 m s -21-8 一质点沿某直线作减速运动,其加速度为a=-cv 2,c 是常量。
若t=0时质点的速度为v 0,并处于s 0的位置上,求任意时刻t 质点的速度和位置。
解:以t=0时刻质点的位置为坐标原点O ,取水平线为x 轴,质点就沿x 轴运动。
困为是直线运动,矢量可以用带有正负号的标量来表示。
dt vd a =于是有2cvdv a dv dt -==两边分别积分,得:)11(10200v v c cv dv t t vv-=-=-⎰ 固为t 0=0,所以上式变为:1)11(1000+=-=t cv v v v vc t 即 上式就是任意时刻质点的速度表达式。
因为 vdt xd dtxd v =''=, 将式(1)代入上式.得:100+='t cv dtv x d 对式(2)两边分别积分,得:)1ln(110000+=+='⎰t cv ct cv dt v x t于是,任意时刻质点的位置表达式为 000)1ln(1s t cv cs x x ++=+'=1-9 质点作直线运动,初速度为零.初始加速度为a 0,质点出发后每经过τ时间,加速度均匀增加b 。
求经过时间t 后质点的速度和加速度。
解:可以把质点运动所沿的直线定为直线L ,并设初始时刻质点处于固定点O 上。
根据题意,质点运动的加建度应该表示为:t b a τ+=0a由速度公式:adt v t⎰+=00v可以求得经过f 时间质点的速度: 2002v t b t a adt tτ+==⎰ 另外,根据位移公式可以求得经过时间t 质点的位移为:320062l t b t a vdt tτ+==⎰1-10 质点沿直线y=2x 十1运动,某时刻位于x 1=1.51 m 处,经过1.20 s 到达x 2=3. 15 m 处。
求质点在此过程中的平均速度。
解:根据定义,平均速度应表示为:tr v ∆∆=其中j y i x r ∆+∆=∆由已知条件找出△x 和△y ,就可以求得平均速度v 。
△x = x 2-x 1= 3.15m-l.5lm = l.64m根据直线方程y=2x+l ,可求得y 1=2x 1+l=4.02m ,y 2=2x 2+l=7.31m , 所以△y= y 2-y 1= 7.31m-4.02m = 3.28m 平均速度为: 1)74.237.1(-⋅+=∆∆+∆∆=∆∆=s m j i j ty i t x t r v 也可以用下面的方式表示12206.3)()(-⋅=∆∆+∆∆=s m ty t x v 与z 轴的夹角为626300.2arctan arctan '==∆∆= xy θ1-11 质点运动的位置与时间的关系为x=5+t 2,y=3+5t -t 2,z=l+2 t 2,求第二秒末质点的速度和加速度,其中长度和时间的单位分别是米和秒。
解:已知质点运动轨道的参量方程为⎪⎩⎪⎨⎧+=-+=+=2222t 1z t 5t 3y t 5x 质点任意时刻的速度和加速度分别为⎪⎩⎪⎨⎧=-==tt 5tzy x 422v v v 和 ⎪⎩⎪⎨⎧=-==422z y x a a a质点在第二秒末的速度和加速度就是由以上两式求得的。
将t=2 s 代人上式,就得到质点在第二秒末的速度和加速度,分别为⎪⎩⎪⎨⎧⋅=⋅=⋅=---1110.80.10.4s m v s m v s m v z y x 和 ⎪⎩⎪⎨⎧⋅=⋅-=⋅=---2220.40.20.2s m a s m a s m a zy x1-12 设质点的位置与时间的关系为x=x(t),y=y(t),在计算质点的速度和加速度时,如果先求出22y x r +=,然后根据22a dtr d dt dr v ==和求得结果。
还可以用另一种方法计算:先算出速度和加速度分量,再合成.得到的结果为22222222)()(a )()(dty d dt x d dt dy dt dx v +=+=和,你认为那一组结果正确?为什么?解:第二组结果是正确的。
而在一般情况下第一组结果不正确,这是因为在一般情况下2222,dtrd dt r d a dt dr dt r d v ≠=≠= 速度和加速度中的r 是质点的位置矢量,不仅有大小而且有方向.微分时,既要对大小微分也要对方向微分。
第一组结果的错误就在于,只对位置矢量的大小微分,而没有对位置矢量的方向微分。
1-13 火车以匀加速运动驶离站台。
当火车刚开动时,站在第一节车厢前端相对应的站台位置上的静止观察者发现.第一节车厢从其身边驶过的时间是5.0s 。
问第九节车厢驶过此观察者身边需要多少时间? 解:设火车的加速度为a ,每节车厢的长度为l ,第一节车厢从观察者身边通过所需时间为t1,t1满足 2121at l = (1)前八节车厢通过观察者身边所需时间为t 2,前九节车厢通过观察者身边所需时问为t 3,并可列出下面两个方程式:22218at l = (2) 23219at l = (3) 由(1)得:252221i t la == 将上式代入式(2)和式(3),分别得到s lla l t s l l a l t 00.152251818,14.14225161632=⨯===⨯==第九节车厢通过观察者身边所需时间为: Δt=t 3-t 2=15.00s-14.41s=0.86s21 / 21。