高二数学学考复习(湖南专用)22解三角形学案
2022届高考数学一轮复习第三章三角函数解三角形3.3和差倍角的正弦余弦正切公式及恒等变换学案理新人
第三节 和、差、倍角的正弦、余弦、正切公式及恒等变换1.两角和与差的正弦、余弦、正切公式(1)S (α+β):sin (α+β)=sin_αcos_β+cos_αsin_β. (2)S (α-β):sin (α-β)=sin_αcos_β-cos_αsin_β. (3)C (α+β):cos (α+β)=cos_αcos_β-sin_αsin_β. (4)C (α-β):cos (α-β)=cos_αcos_β+sin_αsin_β. (5)T (α+β):tan (α+β)=tan α+tan β1-tan αtan β.(6)T (α-β):tan (α-β)=tan α-tan β1+tan αtan β.2.倍角公式(1)S 2α:sin 2α=2sin_αcos_α. (2)C 2α:cos 2α=cos 2α-sin 2α =2cos 2α-1 =1-2sin 2α.(3)T 2α:tan2α=2tan α1-tan 2α.1.和、差、倍角公式的转化2.公式的重要变形(1)降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2.(2)半角公式(不要求记忆):①sin α2=±1-cos α2. ②cos α2=±1+cos α2. ③tan α2=±1-cos α1+cos α=1-cos αsin α=sin α1+cos α⎝⎛⎭⎫根号前面的正负号由角α2所在象限确定. (3)升幂公式:1+cos 2α=2cos 2α,1-cos2α=2sin 2α. (4)公式变形:tan α±tan β=tan (α±β)(1∓tan αtan β). (5)辅助角公式:a sinx +b cosx =a 2+b 2sin(x+φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.1.(基础知识:逆用公式)化简cos 15°cos 45°-cos 75°sin 45°的值为( ) A .12B .32C .-12D .-32答案:A2.(基本方法:构造和角公式)已知sin ⎝⎛⎭⎫α-π3=1517,α∈⎝⎛⎭⎫π2,56π,则sin α的值为( )A .817B .153+834C .15-8334D .15+8334答案:D3.(基础知识:半角公式)已知cos θ=-15,5π2<θ<3π,那么sin θ2=( )A .105 B .-105 C .155D .-155答案:D4.(基本能力:正切倍角公式)若α是第二象限角,且sin(π-α)=35,则tan 2α=________.答案:-2475.(基本应用:辅助角公式)f (x )=sin (x +3π)-3cos x 的最小值为________. 答案:-10题型一 两角和、差及倍角公式的直接应用[典例剖析]类型 1 给值(角)求值 [例1] (1)化简 2+cos 2-sin 21的结果是( )A .-cos1B .cos 1C .3cos 1D .-3cos 1 解析:原式=1+cos 2+1-sin 21=2cos 21+cos 21=3cos 21=3cos1. 答案:C(2)若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫α+π4=13,sin ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2=( ) A .33 B .-33 C .63D .-69解析:因为0<α<π2,所以π4<α+π4<3π4.又cos ⎝ ⎛⎭⎪⎫α+π4=13,所以sin ⎝ ⎛⎭⎪⎫α+π4=1-cos 2⎝ ⎛⎭⎪⎫α+π4=1-19=223.因为-π2<β<0,所以π4<π4-β2<π2.又sin ⎝ ⎛⎭⎪⎫π4-β2=33,所以cos ⎝ ⎛⎭⎪⎫π4-β2=1-sin 2⎝ ⎛⎭⎪⎫π4-β2=1-13=63, 所以cos ⎝⎛⎭⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫α+π4sin ⎝ ⎛⎭⎪⎫π4-β2=13×63+223×33=63. 答案:C类型 2 给值求角[例2] (1)(2021·某某六市联考)已知cos α=17,cos (α-β)=1314.若0<β<α<π2,则β=________.解析:由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝⎛⎭⎫172=437,又0<β<α<π2,∴0<α-β<π2,∴sin (α-β)=1-cos 2(α-β)=1-⎝⎛⎭⎫13142=3314.由β=α-(α-β)得cos β=cos [α-(α-β)] =cos αcos (α-β)+sin αsin (α-β) =17×1314+437×3314=12, ∵β∈⎝ ⎛⎭⎪⎫0,π2,∴β=π3.答案:π3(2)已知α,β∈(0,π),且tan (α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan [(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∵α∈(0,π),∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0,∴0<2α<π2,∴tan(2α-β)=1. ∵tan β=-17<0,∴π2<β<π, ∴-π<2α-β<0, ∴2α-β=-3π4.答案:-3π4方法总结1.应用三角公式化简求值的策略(1)使用两角和、差及倍角公式时,首先要记住公式的结构特征和符号变化规律.例如两角和、差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值时,应注意与同角三角函数基本关系、诱导公式的综合应用.(3)使用公式求值时,应注意配方法、因式分解和整体代换思想的应用,用特殊角来表示非特殊角等.2.“给值求角”实质是转化为“给值求值”,先求角的某一函数值,再求角的X 围,最后确定角.遵照以下原则:(1)已知正切函数值,选正切函数;(2)已知正、余弦函数值,选正弦或余弦函数;若角的X 围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的X 围是(0,π),选余弦较好;若角的X 围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.[题组突破]1.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan β=1+sin αcos α,则( )A .α-3β=-π2B .α-2β=-π2C .α+3β=π2D .α+2β=π2解析:法一(化切为弦):因为tan β=sin βcos β,所以sin βcos β=1+sin αcos α,即sin βcos α=cos β+cos βsin α, 整理得sin (β-α)=cos β,即sin (β-α)=sin ⎝ ⎛⎭⎪⎫π2-β.因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,所以β-α∈⎝ ⎛⎭⎪⎫-π2,π2,π2-β∈⎝ ⎛⎭⎪⎫0,π2.因为函数y =sin x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递增,所以β-α=π2-β,整理得α-2β=-π2.法二(化弦为切):因为1+sin αcos α=1+cos ⎝ ⎛⎭⎪⎫π2-αsin ⎝ ⎛⎭⎪⎫π2-α=2cos 2⎝ ⎛⎭⎪⎫π4-α22sin ⎝ ⎛⎭⎪⎫π4-α2cos ⎝ ⎛⎭⎪⎫π4-α2=1tan ⎝ ⎛⎭⎪⎫π4-α2,所以tan β=1tan ⎝ ⎛⎭⎪⎫π4-α2=tan ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α2=tan ⎝ ⎛⎭⎪⎫π4+α2.因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,π4+α2∈⎝ ⎛⎭⎪⎫π4,π2,又函数y =tan x 在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以β=π4+α2,即α-2β=-π2.答案:B2.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B .12C .32D .-32解析:原式=sin70°sin 20°cos 225°-sin 225°=cos20°sin 20°cos 50°=12×sin 40°sin 40°=12. 答案:B3.已知sin ⎝⎛⎭⎫π4+α=25,则sin 2α=________.解析:sin 2α=-cos ⎝ ⎛⎭⎪⎫π2+2α=2sin 2⎝ ⎛⎭⎪⎫π4+α-1=2×⎝⎛⎭⎫252-1=-1725.答案:-1725题型二 两角和、差及倍角公式的逆用和变形运用[典例剖析][典例](1)3tan 10°-1sin 10°=________.(用数字作答)解析:原式=3sin 10°cos 10°-1sin 10°=3sin 10°-cos 10°sin 10°cos 10°=2sin (10°-30°)12sin 20°=-2sin 20°12sin 20°=-4.答案:-4(2)计算:tan 25°+tan 35°+3tan 25°·tan 35°=________.解析:原式=tan (25°+35°)(1-tan 25°tan 35°)+3tan 25°tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3.答案: 3(3)已知:①tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°=1,②tan 5°tan 10°+tan 10°tan 75°+tan 75°·tan 5°=1,③tan 20°tan 30°+tan 30°·tan 40°+tan 40°·tan 20°=1成立.由此得到一个由特殊到一般的推广.此推广是什么?并证明.解析:观察到:10°+20°+60°=90°,5°+10°+75°=90°,20°+30°+40°=90°,猜想此推广为:若α+β+γ=90°,且α,β,γ都不为k·180°+90°(k∈Z),则tan αtan β+tan βtan γ+tan γtan α=1.证明如下:因为α+β+γ=90°,所以β=90°-(α+γ),故tan β=tan [90°-(α+γ)]=sin [90°-(α+γ)]cos [90°-(α+γ)]=cos (α+γ)sin (α+γ)=cos αcos γ-sinαsin γsin αcos γ+cos αsin γ=1-tan αtan γtan α+tan γ,所以tan αtan β+tan βtan γ=1-tan αtan γ,即tan αtan β+tan βtan γ+tan αtan γ=1.方法总结1.将tan (α+β)=tan α+tan β1-tan α·tan β整理变形为tan α+tan β=tan (α+β)-tan α·tanβ·tan (α+β).2.(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)和差角公式变形:sin αsin β+cos (α+β)=cos αcos β, cos αsin β+sin (α-β)=sin αcos β, tan α±tan β=tan (α±β)·(1∓tan α·tan β). (3)倍角公式变形:降幂公式.[拓展] 1±sin α=⎝ ⎛⎭⎪⎫sin α2± cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2.提醒 tan αtan β,tan α+tan β(或tan α-tan β),tan (α+β)(或tan (α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.[对点训练]1.已知m =(α+β+γ),tan (α-β+γ)),若sin 2(α+γ)=3sin 2β,则m =( ) A.12 B .34C .32D .2解析:设A =α+β+γ,B =α-β+γ, 则2(α+γ)=A +B ,2β=A -B , 因为sin 2(α+γ)=3sin 2β, 所以sin (A +B )=3sin (A -B ),即sin A cos B +cos A sin B =3(sin A cos B -cos A sin B ), 即2cos A ·sin B =sin A cos B , 所以tan A =2tan B ,所以m =tan Atan B =2.答案:D 2.1cos 80°-3sin 80°=________.解析:1cos 80°-3sin 80°=sin 80°-3cos 80°sin 80°cos 80°=2sin (80°-60°)12sin 160°=2sin 20°12sin 20°=4.答案:4题型三 三角恒等变换的综合应用[典例剖析][典例] 已知函数f (x )=23sin ⎝⎛⎭⎫ωx +π6cos ωx (0<ω<2),且f (x )的图象过点⎝⎛⎭⎫5π12,32.(1)求ω的值及函数f (x )的最小正周期; (2)将y =f (x )的图象向右平移π6个单位,得到函数y =g (x )的图象,已知g ⎝⎛⎭⎫α2=536,求cos ⎝⎛⎭⎫2α-π3的值.解析:(1)函数f (x )=23sin ⎝⎛⎭⎪⎫ωx +π6·cos ωx =⎝⎛⎭⎫23sin ωx ·32+23cos ωx ·12·cos ωx =32sin 2ωx +3·1+cos 2ωx 2=3sin ⎝ ⎛⎭⎪⎫2ωx +π6+32. ∵f (x )的图象过点⎝⎛⎭⎪⎫5π12,32,∴3sin ⎝ ⎛⎭⎪⎫2ω·5π12+π6+32=,∴2ω·5π12+π6=k π,k ∈Z ,解得ω=6k -15,k ∈Z .又0<ω<2,∴ω=1,∴f (x )=3sin ⎝⎛⎭⎪⎫2x +π6+32,故它的最小正周期为2π2=π.(2)将y =f (x )=3sin ⎝⎛⎭⎪⎫2x +π6+32的图象向右平移π6个单位,得到函数y =g (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+32的图象.已知g ⎝ ⎛⎭⎪⎫α2=536=3sin ⎝ ⎛⎭⎪⎫α-π6+32,∴sin ⎝ ⎛⎭⎪⎫α-π6=13,∴cos ⎝ ⎛⎭⎪⎫2α-π3=1-2sin 2⎝ ⎛⎭⎪⎫α-π6=79.方法总结三角恒等变换在研究三角函数图象和性质中的应用(1)图象变换问题:先根据和角公式、倍角公式把函数解析式变为正弦型函数y =A sin(ωx +φ)+b 或余弦型函数y =A cos (ωx +φ)+b 的形式,再进行图象变换.(2)函数性质问题:求函数周期、最值、单调区间的方法步骤:①利用三角恒等变换及辅助角公式把三角函数关系式化成y =A sin (ωx +φ)+b 或y =A cos (ωx +φ)+b 的形式;②利用公式T =2πω(ω>0)求周期;③根据自变量的X 围确定ωx +φ的X 围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为求二次函数的最值;④根据正、余弦函数的单调区间列不等式求函数y =A sin (ωx +φ)+b 或y =A cos (ωx +φ)+b 的单调区间.[对点训练]已知函数f (x )=2(sin ωx -cos ωx )cos ωx +22(ω>0)的图象的一条对称轴为x =3π8.(1)求ω的最小值; (2)当ω取最小值时,若f ⎝⎛⎭⎫α2+π4=35,-π2<α<0,求2sin ⎝⎛⎭⎫2α-π4的值.解析:(1)f (x )=2(sin ωx -cos ωx )cos ωx +22=2sin ωx cos ωx -2cos 2ωx +22=22sin2ωx -22cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx -π4. 因为函数f (x )的图象的一条对称轴为x =3π8,所以3π4ω-π4=π2+k π(k ∈Z ),所以ω=1+43k (k ∈Z ).又ω>0,所以ω的最小值为1.(2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.则f ⎝ ⎛⎭⎪⎫α2+π4=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α2+π4-π4=sin ⎝ ⎛⎭⎪⎫α+π4=35.因为-π2<α<0,所以-π4<α+π4<π4,所以cos ⎝ ⎛⎭⎪⎫α+π4>0,则cos ⎝ ⎛⎭⎪⎫α+π4=45.所以2sin ⎝ ⎛⎭⎪⎫2α-π4=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4-3π4=-sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4=-2×35×45-2×⎝⎛⎭⎫452+1=-3125.再研高考创新思维1.(2019·高考全国卷 Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( )A .15B .55C .33D .255解析:法一:由2sin 2α=cos 2α+1,得4sin α·cos α=2cos 2α.∵α∈⎝ ⎛⎭⎪⎫0,π2,∴2sin α=cos α.又∵sin 2α+cos 2α=1, ∴sin 2α=15.又α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=55.法二:设tan α=t ,t ∈(0,+∞),由已知得4t1+t 2=1-t 21+t 2+1,解得t =12.∴t =sin αcos α=12,∴sin 2α=15,∴sin α=55.答案:B2.(2018·高考全国卷Ⅲ)函数ƒ(x )=tan x1+tan 2x 的最小正周期为( )A .π4B .π2C .πD .2π解析:由万能公式可知f (x )=12sin2x ,故T =2π2=π.答案:C3.(2019·高考某某卷)已知tan αtan ⎝⎛⎭⎫α+π4=-23,则sin ⎝⎛⎭⎫2α+π4的值是________.解析:法一:由tan αtan ⎝ ⎛⎭⎪⎫α+π4=tan αtan α+11-tan α=tan α(1-tan α)tan α+1=-23,解得tan α=2或-13.sin ⎝⎛⎭⎪⎫2α+π4=22(sin 2α+cos 2α)=22(2sin αcos α+2cos 2α-1) =2(sin αcos α+cos 2α)-22=2·sin αcos α+cos 2αsin 2α+cos 2α-22=2·tan α+1tan 2α+1-22,将tan α=2和-13分别代入得sin ⎝ ⎛⎭⎪⎫2α+π4=210.法二:∵tan αtan ⎝ ⎛⎭⎪⎫α+π4=sin αcos ⎝ ⎛⎭⎪⎫α+π4cos αsin ⎝ ⎛⎭⎪⎫α+π4=-23,∴ sin αcos ⎝ ⎛⎭⎪⎫α+π4=-23cos αsin ⎝ ⎛⎭⎪⎫α+π4.①又sin π4=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-α=sin ⎝ ⎛⎭⎪⎫α+π4cos α-cos ⎝ ⎛⎭⎪⎫α+π4sin α=22,②由①②,解得sin αcos ⎝ ⎛⎭⎪⎫α+π4=-25,cos αsin ⎝ ⎛⎭⎪⎫α+π4=3210.∴ sin ⎝ ⎛⎭⎪⎫2α+π4=sin ⎣⎢⎡⎦⎥⎤α+⎝ ⎛⎭⎪⎫α+π4=sin αcos ⎝ ⎛⎭⎪⎫α+π4+cos αsin ⎝ ⎛⎭⎪⎫α+π4=210.法三:令tan α=t (t ≠±1),则t =-23·t +11-t ,得t =2或t =-13,故sin ⎝⎛⎭⎪⎫2α+π4=22(sin 2α+cos 2α)=22⎝ ⎛⎭⎪⎫2t 1+t 2+1-t 21+t 2=210. 答案:210素养升华角的灵活变换已知sin (α+2β)=34,cos β=13,α,β为锐角,则sin(α+β)的值为( )A .37-2212B .3-21412C .37+2212D .3+21412解析:因为cos β=13,β为锐角,所以sin β=1-⎝⎛⎭⎫132=223,cos 2β=2cos 2β-1=-79<0, 又β为锐角,所以π2<2β<π,因为α为锐角,所以α+2β∈⎝ ⎛⎭⎪⎫π2,3π2,又sin(α+2β)=34,所以cos (α+2β)=-1-sin 2(α+2β)=-74, 所以sin(α+β)=sin [(α+2β)-β] =sin (α+2β)cos β-cos (α+2β)sin β =34×13-⎝⎛⎭⎫-74×223 =3+21412.答案:D。
高中数学解三角形复习教案
模块一:解三角形复习正弦定理教学过程: 一、复习准备:1. 讨论:在直角三角形中,边角关系有哪些(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形那么斜三角形怎么办2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系(内角和、大边对大角) 是否可以把边、角关系准确量化 →引入课题:正弦定理 二、讲授新课:1. 教学正弦定理的推导: [①特殊情况:直角三角形中的正弦定理:sin A =c a sin B =cb sin C =1 即c =sin sin sin a b cA B C==. ② 能否推广到斜三角形 (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a bA B=. 同理,sin sin a c A C =(思考如何作高),从而sin sin sin a b cA B C==. ③*其它证法:证明一:(等积法)在任意斜△ABC当中S△ABC=111sin sin sin 222ab C ac B bc A ==. 两边同除以12abc 即得:sin a A =sin b B =sin cC. 证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a aCD R A D===,同理sin b B =2R ,sin c C=2R . 证明三:(向量法)过A 作单位向量j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得….. ,④ 正弦定理的文字语言、符号语言,及基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值. 2. 教学例题:① 出示例1:在∆ABC 中,已知045A =,060B =,42a =cm ,解三角形.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两角一边② 出示例2:045,2,,ABC c A a b B C ∆==中,求和.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两边及一边对角 ③ ·④练习:060,1,,ABC b B c a A C ∆===中,求和.在∆ABC 中,已知10a =cm ,14b =cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )④ 讨论:已知两边和其中一边的对角解三角形时,如何判断解的数量3. 小结:正弦定理的探索过程;正弦定理的两类应用;已知两边及一边对角的讨论. 三、巩固练习:1.已知∆ABC 中,∠A =60°,a =,求sin sin sin a b cA B C++++.,余弦定理(一)教学要求:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.教学重点:余弦定理的发现和证明过程及其基本应用. 教学难点:向量方法证明余弦定理. 教学过程:一、复习准备: *1. 提问:正弦定理的文字语言 符号语言基本应用2. 练习:在△ABC 中,已知10c =,A =45,C =30,解此三角形. →变式3. 讨论:已知两边及夹角,如何求出此角的对边 二、讲授新课:1. 教学余弦定理的推导:① 如图在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵AC AB BC =+,∴()()AC AC AB BC AB BC •=+•+222AB AB BC BC =+•+!222||||cos(180)AB AB BC B BC =+•-+222cos c ac B a =-+.即2222cos b c a ac B =+-,→② 试证:2222cos a b c bc A =+-,2222cos c a b ab C =+-.③ 提出余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.用符号语言表示2222cos a b c bc A =+-,…等; → 基本应用:已知两边及夹角 ④ 讨论:已知三边,如何求三角→ 余弦定理的推论:222cos 2b c a A bc+-=,…等.⑤ 思考:勾股定理与余弦定理之间的关系 —2. 教学例题:① 出示例1:在∆ABC 中,已知23=a 62c 060=B ,求b 及A . 分析已知条件 → 讨论如何利用边角关系 → 示范求b→ 讨论:如何求A (两种方法) (答案:22b =060A =) → 小结:已知两边及夹角②在∆ABC 中,已知13a cm =,8b cm =,16c cm =,解三角形.ca b C;分析已知条件 → 讨论如何利用边角关系 → 分三组练习 → 小结:已知两角一边3. 练习:① 在ΔABC 中,已知a =7,b =10,c =6,求A 、B 和C .② 在ΔABC 中,已知a =2,b =3,C =82°,解这个三角形.4. 小结:余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;%余弦定理的应用范围:①已知三边求三角;②已知两边及它们的夹角,求第三边.三、巩固练习:1. 在∆ABC 中,若222a b c bc =++,求角A . (答案:A =1200)2. 三角形ABC 中,A =120°,b =3,c =5,解三角形. → 变式:求sin B sin C ;sin B +sin C .3. 作业:教材P8 练习1、2(1)题..3 正弦定理和余弦定理(练习)一、复习准备: }1. 写出正弦定理、余弦定理及推论等公式.2. 讨论各公式所求解的三角形类型. 二、讲授新课:1. 教学三角形的解的讨论:① 出示例1:在△ABC 中,已知下列条件,解三角形. (i ) A =6π,a =25,b =; (ii ) A =6π,a =,b =50; (iii ) A =6π,a=,b =; (iiii ) A =6π,a =50,b =50.分两组练习→ 讨论:解的个数情况为何会发生变化)② 用如下图示分析解的情况. (A 为锐角时)② 练习:在△ABC 中,已知下列条件,判断三角形的解的情况. (i ) A =23π,a =25,b =50; (ii ) A =23π,a =25,b =例1.根据下列条件,判断解三角形的情况(1) a =20,b =28,A =120°.无解 |(2)a =28,b =20,A =45°;一解 (3)c =54,b =39,C =115°;一解 (4) b =11,a =20,B =30°;两解2. 教学正弦定理与余弦定理的活用:① 出示例2:在△ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,求最大角的余弦. 分析:已知条件可以如何转化→ 引入参数k ,设三边后利用余弦定理求角..② 出示例3:在ΔABC 中,已知a =7,b =10,c =6,判断三角形的类型.已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA分析:由三角形的什么知识可以判别→求最大角余弦,由符号进行判断结论:活用余弦定理,得到:=+⇔⇔∆>+⇔⇔∆<+⇔⇔222222222是直角是直角三角形是钝角是钝角三角形是锐角a b c A ABCa b c A ABCa b c A∆是锐角三角形ABC③出示例4:已知△ABC中,cos cosb Cc B=,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.&三、巩固练习:1. 已知a、b为△ABC的边,A、B分别是a、b的对角,且sin2sin3AB=,求a bb+的值2. 在△ABC中,sin A:sin B:sin C=4:5:6,则cos A:cos B:cos C= .3. 作业:三角形中的几何计算一、 设疑自探正弦定理、余弦定理是两个重要的定理,在解决与三角形有关的几何计算问题中有着广泛的应用。
高考备考解三角形导学案
()()()CB AC B A CB A tan tan cos cos sin sin -=+-=+=+ 解三角形的常见题型导学案 班级: 姓名:练习3、(范围问题)、已知函数().cos 22sin 312x x x f +-=()()()()的取值范围。
求,且的对边分别为,,的角设集合;时的的最大值及取得最大值求c b A f a c b a x x f +==∆,01,,,C B A ABC 21三、易错分析、及简便算法的形状为()求中,已知在三角形ABC ,cos sin 2)sin()(sin ABC .2∆=-++A A A B A BA. 等腰三角形B.直角三角形C.等腰直角三角形D.直角或等腰三角形 四、小结(1)出现“在△ABC 中”字样,一般都是解三角形问题,必定结合正弦定理或者余弦定理解题; (2)一个等式中同时出现A 、B 、C 三个角,必用π=++C B A 来转化,形式如下: (3)一般情况下,已知条件中边多用余弦定理,角多用正弦定理; (4)三角形解的个数:可通过“大边对大角,小边对小角”来取舍; (5)三角形中的常用结论:○若sin2A =sin2B ,则三角形为等腰三角形或直角三角形; ○若sinA =sinB ,则三角形为等腰三角形; ○若sinA =cosB,则 作业:完成此卷 课后作业:1、已知锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b=sin (A+C ),cos (A ﹣C )+cosB=c .(1)求角A 的大小;(2)求b+c 的取值范围.注意:此题辨析应该用解范围为题的哪种方法? 2、(2014全国Ⅰ)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角为60=∠MAN ,C 点的仰角45=∠CAB ,以及75=∠MAC ,从C 点测得60=∠MCA 已知山高BC=100m ,则山高MN=3、.若====C ,6,3,3则πA b a4、设===∆B 6A ,tan ,,,,,,求若的对边分别为的内角πA b a c b a CB A ABC====∆A 3,3,1,,C B A .1则,若的对边为,,的内角πC c a c b a ABC 656.ππ或D 3.πC 65.πB 6.πA BB A -2A 2ππ=+=或45-ABC中,若2b c。
高考数学:解三角形(复习学案)
专题09 解三角形(一) 三角形中的求值问题1.例题【例1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( )A . 3B .2C .2 2D .3【例2】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =,cos )cos 0A C C b A ++=,则角A =( )A .23π B .3π C .6π D .56π 【例3】在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,4a =,b =cos (2)cos c B a b C =-,则ABC ∆的面积为______.【例4】(2017·全国高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、, 已知△ABC 的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【例5】如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.2.巩固提升综合练习【练习1】(2019·全国高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【练习2】(2018·全国高考真题)△ABC 的内角A , B , C 的对边分别为a , b , c ,已知bsinC +csinB =4asinBsinC ,b 2+c 2−a 2=8,则△ABC 的面积为________. 【练习3】 在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【练习4】在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( ) A .1 B .2 C . 3 D .2【练习5】已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .【练习6】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c 已知c cos B =(3a -b )cos C . (1)求sin C 的值;(2)若c =26,b -a =2,求△ABC 的面积.(二)三角形中的最值或范围问题1.例题【例1】在△ABC中,已知c=2,若sin2A+sin2B-sin A sin B=sin2C,则a+b的取值范围为________.【例2】已知在锐角ABC∆中,角A,B,C的对边分别为a,b,c,若2cos cosb Cc B=,则111tan tan tanA B C++的最小值为()A B C D.【例3】已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若a sin B cos C +32c sin C=2R,则△ABC面积的最大值为( )A.25B.45C.255D.125【例4】在ABC∆中,角A,B,C的对边分别为a,b,c,且cos Ccos cos cos2ab Ac A B+=,ABC∆,则ABC∆周长的最小值为______.2.巩固提升综合练习【练习1】 设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【练习2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( ) A .2+3 B .2+2 C .3D .3+2【练习3】已知ABC ∆1,且满足431tan tan A B+=,则边AC 的最小值为_______.【练习4】在ABC ∆中,23BAC π∠=,已知BC 边上的中线3AD =,则ABC ∆面积的最大值为__________.(三)解三角形的实际应用必备知识:实际测量中的有关名称、术语南偏西60°指以正南方向为始边,转向目标方向线形成的角1.例题【例1】在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【例2】如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【例3】某人在点C测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进100米到D,测得塔顶A的仰角为30°,则塔高为____________米.2.巩固提升综合练习【练习1】甲船在A处,乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?【练习2】如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为( )A.1762海里/时B .346海里/时 C.1722海里/时D .342海里/时【练习3】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217秒.在A 地测得该仪器弹至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B =( )A .32B .233C .33D .32.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,c =23,b sin A =a cos ⎪⎭⎫⎝⎛+6πB 则b =( ) A .1 B.2 C.3D.53.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =2,c =32,tan B =2tan A ,则△ABC 的面积为( ) A .2 B .3 C .32D .423.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( ) A .223B .24C .64D .634.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( ) A .(2,2) B .(2,6) C .(2,3)D .(6,4)5.在ΔABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,a =2,B =45°,若三角形有两解,则b 的取值范围是_______.6.已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.7.设△ABC 的内角A ,B ,C 的对边a ,b ,c 成等比数列,cos(A -C )-cos B =12,延长BC至点D ,若BD =2,则△ACD 面积的最大值为________.8.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 9.若满足3ABC π∠=, AC =3, ,BC m ABC =恰有一解,则实数m 的取值范围是______.10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan A tan B =2c -bb ,则△ABC 面积的最大值为________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B . (1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积.12.已知ABC ∆中,角A B C 、、的对边分别为a b c ,,,若cos sin a b C c B =+(Ⅰ)求B ;(Ⅰ)若2b = ,求ABC ∆面积的最大值。
高二学业水平考试解三角形复习
解三角形这是一次课两个课时,供参考高考《考试大纲》的要求:①.掌握正余弦定理,并能解决一些简单的有关三角形度量问题 .②.能够运用正余弦定理等知识解决一些与测量有关的实际问题.[知识整合]1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;②已知两边和其中一边对角,求另一边的对角。
2. 正弦定理的几种常见变形。
3.余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
即余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。
4.余弦定理的几种常见变形。
5.斜三角形的面积公式。
6.正余弦定理在实际应用中的常见概念:仰角,俯角,方位角。
[典例分析]例1 已知在解:∴由得由得例2 在解:∵∴例3解:,例4已知△ABC中,三边a、b、c所对的角分别是A、B、C,且a、b、c成等差数列求证:sin A+sin C=2sin B证明:∵a、b、c成等差数列,∴a+c=2b(这是边的关系)①又②③将②、③代入①,得整理得sin A+sin C=2sin B(这是角的关系)例5在△ABC中,BC=a, AC=b, a, b是方程的两个根,且2cos(A+B)=1求(1)角C的度数(2)AB的长度(3)△ABC的面积解:(1)cosC=cos[π-(A+B)]=-cos(A+B)=-∴C=120︒(2)由题设:∴AB2=AC2+BC2 2AC•BC•osC即AB=(3)S△ABC=例6在任一△ABC中求证:证:左边===0=右边例7在△ABC中,已知2cos B sin C=sin A,试判定△ABC的形状解:在原等式两边同乘以sin A得:2cos B sin A sin C=sin2A,由定理得sin2A+sin2C-sin2Β=sin2A,∴sin2C=sin2B ∴B=C故△ABC是等腰三角形例8已知三角形的一个角为60°,面积为10cm2,周长为20cm,求此三角形的各边长分析:此题所给的题设条件除一个角外,面积、周长都不是构成三角形的基本元素,但是都与三角形的边长有关系,故可以设出边长,利用所给条件建立方程,这样由于边长为三个未知数,所以需寻求三个方程,其一可利用余弦定理由三边表示已知60°角的余弦,其二可用面积公式S△ABC=ab sin C表示面积,其三是周长条件应用解:设三角形的三边长分别为a、b、c,B=60°,则依题意得由①式得:b2=[20-(a+c)]2=400+a2+c2+2ac-40(a+c)④将②代入④得400+3ac-40(a+c)=0再将③代入得a+c=13由∴b1=7,b2=7所以,此三角形三边长分别为5cm,7cm,8cm评述: (1)在方程建立的过程中,应注意由余弦定理可以建立方程,也要注意含有正弦形式的面积公式的应用(2)由条件得到的是一个三元二次方程组,要注意要求学生体会其求解的方法和思路,以提高自己的解方程及运算能力例9如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)学生看图思考并讲述解题思路教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出AC边所对的角ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角CAB。
第二高中数学 解三角形学案 必修
城东蜊市阳光实验学校第二中学高二数学解三角形学案〔2〕基此题型:①一边两角,解三角形:先由内角和定理求第三角,再用正弦定理,有解时只有一解.②两边和其中一边的对角,解三角形:先由正弦定理求另一边的对角,再由内角和定理与正弦定理求其余的边与角.注意,在求解三角形内角时,容易丢解或者者产生增解.2.三角形面积定理:111sin sin sin 222S ab C bc A ca B ===C B A R Rabc S sin sin sin 2 42== 3.三角形内角和定理:在△ABC 中,()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+ 三角形中的根本关系:①在△ABC 中:-tanC B)+(A tan -cosC, B)+cos(A sinC,=B)+sin(A ==; ②2cos 2sin C B A =+,2sin 2cos C B A =+;C B A C B A tan tan tan tan tan tan ⋅⋅=++ ③在△ABC 中,A c C a b cos cos ⋅+⋅=,…在△ABC 中,B A B A sin sin <⇔<,…4.余弦定理:2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩变形:222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩〔1〕基此题型:①三边,解三角形:由余弦定理和内角和定理求角,在有解时只有一解.②两边及夹角,解三角形:先由余弦定理求第三边,再由正弦定理与内角和定理求角,有一解. 〔2〕余弦定理是勾股定理的推广:判断C ∠为锐角222c b a >+⇔,C ∠为直角222c b a =+⇔,C ∠为钝角222c b a <+⇔.5.三角形形状确实定:根本方法:化边为角或者者化角为边.根本思路:寻求边与边之间的数量关系,或者者求出角的大小.常用用正弦定理进展代换,找出三角形的边、角关系,然后作出判断.6.两边和其中一边对角解斜三角形有两解或者者一解〔见图示〕。
高中数学解三角形复习教案
模块一:解三角形复习2.1.1 正弦定理教学过程: 一、复习准备:1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办?2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理二、讲授新课:1. 教学正弦定理的推导:①特殊情况:直角三角形中的正弦定理:sin A =c a sin B =cb sin C =1 即c =sin sin sin a b cA B C==. ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a bA B=. 同理,sin sin a c A C =(思考如何作高?),从而sin sin sin a b cA B C==. ③*其它证法:证明一:(等积法)在任意斜△ABC当中S△ABC =111sin sin sin 222ab C ac B bc A ==. 两边同除以12abc 即得:sin a A =sin b B =sin cC. 证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a aCD R A D===同理sin b B =2R ,sin c C=2R . 证明三:(向量法)过A 作单位向量j r 垂直于AC u u u r ,由AC u u u r +CB u u u r =AB u u ur 边同乘以单位向量j r得…..④ 正弦定理的文字语言、符号语言,及基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值. 2. 教学例题:① 出示例1:在∆ABC 中,已知045A =,060B =,42a =cm ,解三角形.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两角一边② 出示例2:045,2,,ABC c A a b B C ∆==中,求和.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两边及一边对角③ 练习:060,1,,ABC b B c a A C ∆===中,求和.在∆ABC 中,已知10a =cm ,14b =cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )④ 讨论:已知两边和其中一边的对角解三角形时,如何判断解的数量?3. 小结:正弦定理的探索过程;正弦定理的两类应用;已知两边及一边对角的讨论. 三、巩固练习:1.已知∆ABC 中,∠A =60°,a =,求sin sin sin a b cA B C++++.2.1.2 余弦定理(一)教学要求:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.教学重点:余弦定理的发现和证明过程及其基本应用. 教学难点:向量方法证明余弦定理. 教学过程: 一、复习准备:1. 提问:正弦定理的文字语言? 符号语言?基本应用?2. 练习:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形. →变式3. 讨论:已知两边及夹角,如何求出此角的对边? 二、讲授新课:1. 教学余弦定理的推导:① 如图在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC AB BC =+u u u r u u u r u u u r ,∴()()AC AC AB BC AB BC •=+•+u u u r u u u r u u u r u u u r u u u r u u u r222AB AB BC BC =+•+u u u r u u u r u u u r u u u r222||||cos(180)AB AB BC B BC =+•-+ou u u r u u u r u u u r u u u r 222cos c ac B a =-+.即2222cos b c a ac B =+-,→② 试证:2222cos a b c bc A =+-,2222cos c a b ab C =+-.③ 提出余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.用符号语言表示2222cos a b c bc A =+-,…等; → 基本应用:已知两边及夹角 ④ 讨论:已知三边,如何求三角?→ 余弦定理的推论:222cos 2b c a A bc+-=,…等.⑤ 思考:勾股定理与余弦定理之间的关系? 2. 教学例题:① 出示例1:在∆ABC中,已知=ac 060=B ,求b 及A . 分析已知条件 → 讨论如何利用边角关系 → 示范求b→ 讨论:如何求A ?(两种方法)(答案:b =060A =) → 小结:已知两边及夹角②在∆ABC 中,已知13a cm =,8b cm =,16c cm =,解三角形.分析已知条件 → 讨论如何利用边角关系 → 分三组练习 → 小结:已知两角一边3. 练习:① 在ΔABC 中,已知a =7,b =10,c =6,求A 、B 和C .② 在ΔABC 中,已知a =2,b =3,C =82°,解这个三角形.4. 小结:余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;余弦定理的应用范围:①已知三边求三角;②已知两边及它们的夹角,求第三边. 三、巩固练习:1. 在∆ABC 中,若222a b c bc =++,求角A . (答案:A =1200)2. 三角形ABC 中,A =120°,b =3,c =5,解三角形. → 变式:求sin B sin C ;sin B +sin C .3. 作业:教材P8 练习1、2(1)题.2.1 .3 正弦定理和余弦定理(练习)一、复习准备:1. 写出正弦定理、余弦定理及推论等公式.2. 讨论各公式所求解的三角形类型. 二、讲授新课:1. 教学三角形的解的讨论:① 出示例1:在△ABC 中,已知下列条件,解三角形. (i ) A =6π,a =25,b =; (ii ) A =6π,a =25b =50; (iii ) A =6π,a=,b =; (iiii ) A =6π,a =50,b =.分两组练习→ 讨论:解的个数情况为何会发生变化?② 用如下图示分析解的情况. (A 为锐角时)② 练习:在△ABC 中,已知下列条件,判断三角形的解的情况. (i ) A =23π,a =25,b =50; (ii ) A =23π,a =25,b =10 例1.根据下列条件,判断解三角形的情况(1) a =20,b =28,A =120°.无解 (2)a =28,b =20,A =45°;一解 (3)c =54,b =39,C =115°;一解 (4) b =11,a =20,B =30°;两解2. 教学正弦定理与余弦定理的活用:① 出示例2:在△ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,求最大角的余弦. 分析:已知条件可以如何转化?→ 引入参数k ,设三边后利用余弦定理求角.② 出示例3:在ΔABC 中,已知a =7,b =10,c =6,判断三角形的类型. 分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA结论:活用余弦定理,得到:=+⇔⇔∆>+⇔⇔∆<+⇔⇔222222222是直角是直角三角形是钝角是钝角三角形是锐角a b c A ABCa b c A ABCa b c A∆是锐角三角形ABC③出示例4:已知△ABC中,cos cosb Cc B=,试判断△ABC的形状.分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:1. 已知a、b为△ABC的边,A、B分别是a、b的对角,且sin2sin3AB=,求a bb+的值2. 在△ABC中,sin A:sin B:sin C=4:5:6,则cos A:cos B:cos C=.3. 作业:2.2三角形中的几何计算一、 设疑自探正弦定理、余弦定理是两个重要的定理,在解决与三角形有关的几何计算问题中有着广泛的应用。
高中数学必修五《解三角形复习课》优秀教学设计
《解三角形复习课》教案第一课时教学目标:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题,掌握三角形面积公式的应用,并结合三角形有关知识解决与三角形面积有关的问题。
本节课体现了前面所学知识的生动运用,让学生多参与,使学生在具体的解题中灵活把握正弦定理与余弦定理的特点,能够不拘一格,尝试多种解法。
重点难点:选择适当的正弦、余弦定理、面积公式解决解三角形问题。
教学过程:一、 课程引入回顾正弦定理、余弦定理,三角形面积公式及他们的适用条件与需要注意的部分。
课堂练习:二、 应用示例变式训练:4452cos o ABC a b B A ABC B∆===∠∆(1)在中,已知,,求()在中,已知三边长AB=7,BC=5,AC=6,求2ABC a b b c ∆=+例 在中,(),求A与B满足的关系)()3,2cos sin sin ,ABC a b c a b c ab A B C ABC ∆+++-==∆ 在中,已知(且试确定的形状变式训练:tan 1cos 5292(3)ABC A B C a b c C CCA CB a b c ABC ∆=∙=+=∆在中,角、、的对边分别为,,,()求()若,且,求求外接圆半径思考题:三、课时小结72tan tan tan 2a b c c A B A B S a b ∆∆=+=∙-∆=+ABC 例 在ABC中,已知A、B、C所对的边分别是、、,边,且ABC的面积为的值10105/4/o C v v B AB o 某渔船在航行中遇险发出呼救信号,我海军舰艇在A处获悉后立即测出该渔船在方向角为北偏东45,距离海里的处,渔船沿着方位角为的方向以海里小时的速度向小岛靠拢,我海军艇舰立即以海里小时的速度前去营救。
设艇舰在处与渔船相遇,求方向的方位角的正弦值A B C。
最新高中数学重点中学 第22课时小结与复习教案 湘教版必修
向量小结与复习(1)教学目的:1了解本章知识网络结构;2进一步熟悉基本概念及运算律;3理解重要定理、公式并能熟练应用;4加强数学应用意识,提高分析问题,解决问题的能力5认识事物之间的相互转化;6培养学生的数学应用意识 教学重点:突出本章重、难点内容教学难点:通过例题分析突出向量运算与实数运算的区别 授课类型:复习课 课时安排:1课时教 具:多媒体、实物投影仪 教学方法:自学辅导法在给出本章的知识网络结构后,列出复习提纲,引导学生补充相关内容,同时加强学生对基本概念、基本运算律、重要定理、公式的熟悉程度 教学过程: 一、引入前面一段,我们一起学习了向量的知识以及解斜三角形问题,并掌握了一定的分析问题解决问题的方法这一节,我们开始对本章进行小结与复习 二本章知识1本章知识网络结构2本章重点及难点(1)本章的重点有向量的概念、运算及坐标表示,线段的定比分点,平移、正弦定理、余弦定理及其在解斜三角形中的应用;(2)本章的难点是向量的概念,向量运算法则的理解和运用,已知两边和其中一边的对角解斜三角形等;(3)对于本章内容的学习,要注意体会数形结合的数学思想方法的应用 3向量的概念(1)向量的基本要素:大小和方向(2)向量的表示:几何表示法 AB ,a ;坐标表示法),(y x yj xi a =+=(3)向量的长度:即向量的大小,记作|a|(4)特殊的向量:零向量a =0 ⇔|a|=0单位向量0a 为单位向量⇔|0a|=1(5)相等的向量:大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x(6)平行向量(共线向量):方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量4向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质5重要定理、公式:(1)平面向量基本定理21,e e是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数21,λλ,使2211e e aλλ+=(2)两个向量平行的充要条件a ∥b ⇔a=λb ⇔01221=-y x y x(3)两个向量垂直的充要条件a ⊥b ⇔a ·b=O ⇔02121=+y y xx(4)线段的定比分点公式设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP ,则=λ+111+λ+112OP (线段的定比分点的向量公式)⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式) 当λ=1时,得中点公式:OP =21(1+2OP )或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x (5)平移公式设点),(y x P 按向量),(k h a = 平移后得到点),(y x P ''',则P O '=+a或⎩⎨⎧+='+='.,k y y h x x ,曲线)(x f y =按向量),(k h a =平移后所得的曲线的函数解析式为:)(h x f k y -=-(6)正、余弦定理 正弦定理:.2sin sin sin R CcB b A a === 余弦定理:A bc c b a cos 2222-+=⇔bca cb A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=三、讲解范例:例1在四边形A B CD 中,·=·=·=·,试证明四边形A B CD 是矩形分析:要证明四边形A B CD 是矩形,可以先证四边形A B CD 为平行四边形,再证明其一组邻边互相垂直为此我们将从四边形的边的长度和位置两方面的关系来进行思考证明:设=a ,=b ,=c ,=d ,则 ∵a +b +c +d =O∴a +b =-(c +d ) 两边平方得|a |2+2a ·b +|b |2=|c |2+2c ·d +|d |2, 又a ·b =c ·d∴|a |2+|b |2=|c |2+|d |2(1)同理|a |+|d |2=|b |2+|c |2(2)由(1)(2)得|a |2=|c |2,|d |2=|b |2, ∴a =c ,d =b ,即AB =CD ,BC =DA∴四边形A B CD 是平行四边形 于是=-,即a =-c ,又a ·b =b ·c ,故a ·b =b ·(-a )∴a ·b =O ∴AB ⊥BC∴四边形A B CD 为矩形评述:向量具有二重性,一方面具有“形”的特点,另一方面又具有一套优良的运算性质,因此,对于某些几何命题的抽象的证明,自然可以转化为向量的运算问题来解决,要注意体会例2设坐标平面上有三点A 、B 、C ,i,j 分别是坐标平面上x 轴,y 轴正方向的单位向量,若向量AB =i-2j ,BC =i+mj ,那么是否存在实数m,使A 、B 、C 三点共线分析:可以假设满足条件的m存在,由A 、B 、C 三点共线⇔∥⇔存在实数λ,使=λ,从而建立方程来探索解法一:假设满足条件的m存在,由A 、B 、C 三点共线,即∥,∴存在实数λ,使AB =λBC ,i-2j =λ(i+mj ),⎩⎨⎧-==21m λλ∴m=-2∴当m=-2时,A 、B 、C 三点共线解法二:假设满足条件的m存在,根据题意可知:i=(1,O ),j =(O ,1)∴=(1,O )-2(O ,1)=(1,-2), BC=(1,O )+m(O ,1)=(1,m),由A 、B 、C 三点共线,即AB ∥BC ,故1·m-1·(-2)=O 解得m=-2 ∴当m=-2时,A 、B 、C 三点共线评述: (1)共线向量的充要条件有两种不同的表示形式,但其本质是一样的,在运用中各有特点,解题时可灵活选择(2)本题是存在探索性问题,这类问题一般有两种思考方法,即假设存在法——当存在时;假设否定法——当不存在时 四、课堂练习:1判断题(1)AB +BA =O (√)(2)O AB =O (×)(3)AB -AC =BC (×) 2选择题已知a ,b 为两个单位向量,下列四个命题中正确的是( )A .a 与b 相等B .如果a 与b 平行,那么a 与b 相等C a ·b =1D .a 2=b 2答案:D3已知A 、B 、C 是直线l上的顺次三点,指出向量、、、中,哪些是方向相同的向量答案:AB 与AC 方向相同,BA 与CB 方向相同4已知为与的和向量,且=a ,=b ,分别用a 、b 表示,解:=21(a -b ),=21(a +b )5已知ABCDEF 为正六边形,且=a ,=b ,用a ,b 表示向量、、、、FA、CD 、AC 、CE解:DE =-a ,AB =a +b ,=21(a +b ),EF =-21(a +b ),FA =21(a -b ),CD =21(b -a ),AC =23a +21b ,CE =21b -23a 6已知点A (-3,-4)、B (5,-12) (1)求AB 的坐标及|AB |;(2)若=+,=-,求及的坐标;(3)求·解:(1)=(8,-8),||=82 (2)OC =(2,-16),OD =(-8,8)(3)OA ·OB =33五、小结通过本节学习,要求大家在了解向量知识网络结构基础上,进一步熟悉基本概念及运算律,并能熟练重要定理、公式的应用,并加强数学应用意识,提高分析问题、解决问题的能力六、课后作业: 七、板书设计(略)八、课后记及备用资料: 1三点共线的证明对于三点共线的证明,可以利用向量共线的充要条件证明,也可利用定比分点知识证明因为,定比分点问题中所涉及的三个点必然共线,而三个点共线时,必然构成定比分点 例1已知A (-1,-1)、B (1,3)、C (2,5),求证A 、B 、C 三点共线 证明:设点B ′(1,y )是'=λ,则1=λλ+⋅+-121解得λ=2∴y =21521+⨯+-=3即点B ′与点B 重合∵点B ′在上,∴点B 在上, ∴A 、B 、C 三点共线2利用正、余弦定理判断三角形形状 例2根据下列条件,判断△ABC 的形状(1)a cos A =b cos B(2)sin 2Α+sin 2B =sin 2C ,且c =2a cos B解:(1)∵a cos A =b cos B ∴AB b a cos cos =∴,cos cos sin 2sin 2ABB R A R =即sin A cos A =sin B cos B∴sin2A =sin2B ∴2A =2B 或2A =π-2B ∴A =B 或A +B =2π ∴△ABC 是等腰三角形或直角三角形(2)∵sin 2A +sin 2B =sin 2C∴,)2()2()2(222RcR b R a =+∴a 2+b 2=c 2 故△ABC 是直角三角形,且C =9O °,∴cos B =ca,代入c =2a cos B 得cos B =22∴B =45°,A =45° 综上,△ABC 是等腰直角三角形评注(1)条件中有边有角,一般须化边为角或化角为边,题(1)也可以化角为边 (2)题(1)结论中用“或”,题(2)中用“且”结论也就不同,切不可混淆例3 在△ABC 中,若a 2=b (b +c ),则A 与B 有何关系?解:由正弦定理得sin 2A =sinB (sin B +sinC )∴sin 2A -sin 2B =sin B ·sinC ,(sin A +sin B )(sin A -sin B )=sin B sin C ,sin (A +B )sin (A -B )=sin B ·sin C∵sin (A +B )=sin C ,∴sin (A -B )=sin B ,∴A -B =B ,A =2B ,或A -B =π-B (舍去)故A 与B 的关系是A =2B3利用正、余弦定理证明三角恒等式例4 在△ABC 中,求证.tan tan 222222CBc b a c b a =+--+ 证明:由余弦定理,知a 2+b 2-c 2=2ab cos C ,a 2-b 2+c 2=2ca cos B ,∴.tan tan cos sin cos sin cos cos cos 2cos 2222222C BB C C B B c C b B ca C ab cb ac b a ====+--+ 评注:对于含有a 2、b 2、c 2的形式,常用余弦定理化边为角例5 在△ABC 中,已知2sin 2A =3sin 2B +3sin 2C ①cos2A +3cos A +3cos (B -C )=1②求:a ∶b ∶c解:由①得2a 2=3b 2+3c 2③ ∵cos A =-cos (B +C )由②得3cos (B -C )-3cos (B +C )=1-cos2A =2sin 2A =3sin 2B +3sin 2C∴cos (B -C )-cos (B +C )=sin 2B +sin 2C ,2sin B sin C =sin 2B +sin 2C即(sin B -sin C )2=O ,∴sin B =sin C ,∴2R sin B =2R sin C ,∴b =c 代入③得a =3b∴a ∶b ∶c =3b ∶b ∶b =3∶1∶1。
高中数学学考复习22解三角形学案(无答案)新人教A版(2021年整理)
湖南省茶陵县高中数学学考复习22 解三角形学案(无答案)新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省茶陵县高中数学学考复习22 解三角形学案(无答案)新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省茶陵县高中数学学考复习22 解三角形学案(无答案)新人教A版的全部内容。
考点22:解三角形一. 走进学考:1、(2011年)在ABC∆中,已知0120=A,1=b,2=c,则a等于(A B D2、(2015年)在ABC∆中,角A,B,C所对边为a,b,c且c=2a,2sin=A,则=Csin_______。
3、(2012年)如图,A,B两点在河的两岸,为了测量A、B之间的距离,测量者在A的同侧选定一点C,测出A、C之间的距离是100米,105BAC∠=,45ACB∠=,则A、B两点之间的距离为米。
二. 知识点梳理1、正弦和余弦定理:在△ABC中若角A,B,C所对的边分别是a,b,c,则:2(1)S= (h表示边a上的高);(2)S===三、典型例题例题1。
求解三角形:(1)2,45,30=︒=︒=aBA;(2)6,5,4===cba;(3)︒===45,5,3CbaA例题2.在△ABC中,角A,B,C对应的边分别是a,b,c已知cos2A-3cos(B+C)=1(1)求角A的大小;(2)若△ABC的面积S=53,b=5,求sin B sin C的值。
例题3。
航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的高度为海拔10000m,速度为180km/h飞机先看到山顶的俯角为150,经过420s后又看到山顶的俯角为450,求山顶的海拔高度(取2.四。
高二数学上学期《第22课时解三角形应用举例》学案
《第22课时 解三角形应用举例》学案【基础训练】1.在ABC ∆中,C B A cos sin 2sin =,且cba cbc b a 3=-+++,则ABC ∆的形状为 . 2.已知三角形两边的长分别为1,3,第三边上的中线为1,则三角形的第三边长为 . 3.△ABC 的两边分分别为2,3,其夹角的余弦值为31,则其外接圆的半径为 . 4.在半径为30m 的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆锥形,且其轴截面顶角为1200,若要光源恰好照亮整个广场,则其高度应为 .5.在高出地面30m 的小山顶上建造一座电视塔CD (如图),今在距离B 点60m 的地面上取一点A ,若测得CD 的张角为450,则该电视塔的高度是 .【重点讲解】解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。
把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.解三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解. (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.【典题拓展】例1为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得60oADC ∠=,30BDC ∠=o,60o ACD ∠=,105o BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离.变式训练:如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得,,,BCD BDC CD s αβ∠=∠==并在点C 测得塔顶A 的仰角为θ,求塔高AB.例2 某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速.变式训练:如图,一人在C 地看到建筑物A 在正北方向,另一建筑物B 在北偏西45方向,此人向北偏西75km 到达D ,看到A 在他的北偏东45方向,B 在其的北偏东75方向,试求这两座建筑物之间的距离.例3某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间.变式训练:位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西︒30、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求θcos 的值。
高二 数学 人教版 解三角形复习【精编版】
解三角形【考点概述】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2、能运用正弦、余弦定理等知识和方法解决一些与几何计算和测量有关的实际问题.【重点难点】三角形中的边角互化、一解两解问题以及动态最值问题.【知识要点】: 1、 正弦定理:CcB b A a sin sin sin ===2R 正弦定理的变形:sin :sin :sin ::A B C a b c =利用正弦定理,可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和一角.(2)已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角. 2、余弦定理:=2a A bc cb cos 222-+; cosA =bca cb 2222-+ =2b B ac c a cos 222-+; cosB =acb c a 2222-+ =2c C ab b a cos 222-+; cosC =abc b a 2222-+ 利用余弦定理,可以解决以下三类有关三角形的问题: (1)已知三边,求三个角.(2)已知两边和它们的夹角,求第三边和其他两个角. (3)已知两边和其中一边对角,求第三边和其他两个角. 3、三角形的面积公式:C ab S ABC sin 21=∆=A bc B ac sin 21sin 21=.【基础训练】1、在中,已知,,,求= .2、在中,若sinA ︰sinB ︰sinC =5︰7︰8,则B = . 4、在ABC ∆中,已知a ,b ,c 分别是角A 、B 、C 的对边,若,cos cos AB b a =则ABC ∆的形状是 .ABC △2AC =3BC =4cos 5A =-sin B ABC ∆【典例分析】:例1、(1)在A B C ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =3,b =32,A =30°,则B = . 变式1:在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =32,A =30°,则边c = .变式2:在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,已知a =33,b =32,A =30°,则B 有几解?例2:在中,分别是角的对边,且. (Ⅰ)求角的大小;(Ⅱ)当a =6时,求其面积的最大值,并判断此时的形状.例3:如图:在中,若4,7b c ==,BC 的中点为D ,且72AD =,求cos A .【巩固练习】1、在△ABC 中,若b = 1,c,则a= . 2、某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人根据上述条件,下列说法正确的是( ).(1)不能作出这样的三角形 (2)可作出一个锐角三角形 (3)可作出一个直角三角形 (4)可作出一个钝角三角形ABC ∆c b a ,,C B A ,,2sin 2)2cos(12CB A +=++πA ABC ∆ABC ∆23C π∠=3、一质点受到平面上的三个力(单位:牛顿)的作用而处于平衡状态.已知,成角,且,的大小分别为2和4,则的大小为 .4、已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,bA +C =2B ,则sinC =5、在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2,若△ADC的面积为3, 则∠BAC =______ .6.[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B.7.[2014·全国新课标卷Ⅰ] 如图13,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN=60°,C 点的仰角∠CAB =45°,以及∠MAC=75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图138.[2014·新课标全国卷Ⅰ] 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b)·(sin A -sin B)=(c -b)sin C ,则△ABC 面积的最大值为________.9. [2015·新课标全国卷Ⅰ]在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是123,,F F F 1F 2F 0601F 2F 3F10.[2015·新课标全国卷Ⅰ](本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B =,且a =求ABC ∆的面积.11.根据下列条件,判断三角形的形状. (1)CcB b A a cos cos sin == (2)cos cos b A a B ⋅=⋅ (3)cos cos a A b B ⋅=⋅12. 在ABC ∆中,sin sin sin a b Ba B A+=-,且cos()cos 1cos 2A B C C -+=-,试判断ABC ∆的形状13.已知在ABC ∆中,()sin sin cos sin 0A B B C +-=,sin cos20B C +=,求角A B C 、、的大小.14.在ABC ∆中,c =b a >,C=4π,且有tan tan 6A B ⋅=,试求a b 、及此三角形的面积.作业(共40分,限时25分钟)1、(5分)在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +=则角A 的大小为2、(5分)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 .3、(5分)满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值是4、(5分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -=, sinC =,则A = .5. (5分)ABC ∆中,A B 、的对边分别是 a b 、,且A =60 ,a b ==那么满足条件的ABC∆为( )A.有一个解B.有两个解C.无解D.不能确定 6. (5分)某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人( ) A.不能作出这样的三角形 B.能作出一个锐角三角形 C.能作出一个直角三角形 D.能作出一个钝角三角形7. (5分)在ABC ∆中,内角A B C 、、的对边分别是a b c 、、,若22a b -=,sin C B =,则A =( )A.30B.60C.120D.1508. (5分)在ABC ∆中,满足22(cos cos )()cos a b B c C b c A -=-,则三角形的形状是 .老师相信你可以做得很好的! 教师评语。
2022年高二人教A版必修5系列教案:1.解三角形复习课
解三角形复习课(一)●教学目标学问与技能:能够运用正弦定理、余弦定理等学问和方法进一步解决有关三角形的问题。
过程与方法:接受启发与尝试的方法,让同学在温故知新中学会正确识图、画图、想图,挂念同学逐步构建学问框架,并通过练习、训练来巩固深化解三角形实际问题的一般方法。
教学形式要坚持引导——争辩——归纳,目的不在于让同学记住结论,更多的要养成良好的争辩、探究习惯,让同学在具体的实践中结合图形机敏把握正弦定理和余弦定理的特点,有利地进一步突破难点。
情感态度与价值观:让同学进一步巩固所学的学问,加深对所学定理的理解,提高创新力量;进一步培育同学争辩和发觉力量,让同学在探究中体验愉悦的成功体验 ●教学重点1. 三角形的外形的确定(大边对大角,“两边和其中一边的对角”的争辩);2. 应用正、余弦定理进行边角关系的相互转化问题(内角和的机敏运用)。
●教学难点让同学转变观念,由记忆到理解,由解题公式的使用到结合图形去解题和校验。
●教学过程【复习导入】近年广东高考中,解三角形的题目已填空、选择为主,难度要求每年有所不同,结合大题16题出题也不鲜见;关键是借三角形对于我们结合图形分析做题,以及熬炼严谨慎密的规律思维大有裨益。
1. 正弦定理:R C cB b A a 2sin sin sin === (2R 可留待同学练习中补充) B ac A bcC ab S sin 21sin 21sin 21===∆.余弦定理 :A bc c b a cos 2222-+= B ac c a b cos 2222-+=C ab b a c cos 2222-+=求角公式:bc a c b A 2cos 222-+= acb c a B 2cos 222-+= ab c b a C 2cos 222-+=点评:文字语言有助于记忆, 符号语言便利应用。
2.思考:各公式所能求解的三角形题型?正弦定理: 已知两角和一边或两边和其中一边的对角球其他边角,或两边夹角求面积。
高中数学二轮总复习 专题2第6讲 三角变换与解三角形课件 理 新课标(湖南专用)
【例 4】在△ABC 中,角 A、B、C 的对边分别为 a, b,c.角 A,B,C 成等差数列. (1)求 cosB 的值; (2)边 a,b,c 成等比数列,求 sinAsinC 的值.
解析:(1)由已知 2B=A+C,A+B+C=π,所以 B=π3,cosB=12. (2)解法 1:b2=ac,由正弦定理得 sinAsinC=sin2B=34. 解法 2:b2=ac,12=cosB=a2+2ca2c-b2=a2+2ca2c-ac, 由此得 a2+c2-ac=ac 得 a=c, 所以 A=B=C=π3,sinAsinC=34.
sin A sin B
得 sin B b sin A 1 .
a2
而 A , a b, 则 A B, 所 以 B ,
3
6
从 而 C , 则 由 c 2 a 2 b 2, 得 c 2.
2
故 选 B.
2 由 余 弦 定 理 及 已 知 ,
有 7 2 b 2 5 2 2 5 b c o s1 2 0 ,
解 析 :1由 cos 1 ,0 ,
7
2
得 sin 1 cos2 1 1 2 4 3 ,
7
7
所 以 tan sin 4 3 7 4 3, cos 7 1
于 是 tan2
2tan 1 tan2
24 1 4
3 3 2
8 3. 47
2 由 0 , 得 0 a .
即 b 2 5b 24 0, 解 得 b 3,
所
以
S ABC
1 2
b c sin A
15 4
3
.
因 为 2R a 14 ,
sin A 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点22: 解三角形
一. 走进学考:
1、(2011年)在ABC ∆中,已知0
120=A ,1=b ,2=c ,则a 等于( ) A
B
D
2、(2015年)在ABC ∆中,角A,B,C 所对边为a,b,c 且c=2a ,
21
sin =
A ,则=C sin _______。
3、(2012年)如图,A,B 两点在河的两岸,为了测量A 、B 之间的距离,测量者在A 的同侧选定一点C,测出A 、C 之间的距离是100米,105BAC ∠=,45ACB ∠=,则A 、B 两点之间的距离为 米。
二. 知识点梳理
1、正弦和余弦定理:在△ABC 中若角A ,B ,C 所对的边分别是a ,b ,c ,则:
2(1)S =
(h 表示边a 上的高);(2)S = = =
三、典型例题
例题 1.求解三角形:(1)2,45,30=︒=︒=a B A ;(2)6,5,4===c b a ;(3)
︒===45,5,3C b a
例题2.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c 已知cos2A -3cos(B +C )=1 (1)求角A 的大小; (2)若△ABC 的面积S =53,b =5,求sin B sin C 的值。
A
例题3.航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的高度为海拔10000m,速度为180km/h飞机先看到山顶的俯角为150,经过420s后
又看到山顶的俯角为450,求山顶的海拔高度(取2=
=1.7).
四.巩固练习
1.已知△ABC的周长为9,且4:2:3
sin
:
sin
:
sin=
C
B
A,则cosC的值为()
A.
4
1
-B.
4
1
C.
3
2
-D.
3
2
2.设m、m+1、m+2是钝角三角形的三边长,则实数m的取值范围是( )
A.0<m<3
B.1<m<3
C.3<m<4
D.4<m<6
3.符合下列条件的三角形有且只有一个的是()
A.a=1,b=2 ,c=3 B.a=1, b=2,∠A=30°
C.a=1,b=2,∠A=100°D.b=c=1,∠B=45°
4.在ABC
∆中,已知C
B
A sin
cos
sin
2=,那么ABC
∆一定是()
A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形
5.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为()
A.
3
400
米 B.
3
3
400
米 C. 2003米 D. 200米
9、a,b,c分别为角A,B,C的边,2a sin A=(2b-c)sin B+(2c-b)sin C
(1)求角A的大小;
(2)若sin B+sin C=3,试判断△ABC的形状。