第二十章数据的分析教案.doc
人教版八年级数学下册《20章 数据的分析 选择适当的统计量描述一组数据的集中趋势》教案_10
选择适当的统计量描述一组数据的集中趋势一、情景导入以一个情景表演“阿冲找工作”导入新课,活跃气氛,引起学生的好奇心,调动学生的学习积极性。
二、展示学习目标1、了解平均数、众数、中位数在描述数据时的差异。
2、能灵活应用这三个统计量解决实际问题。
三、自主探究预习课本P119到P120的内容,帮阿冲解答疑惑。
四、探究新知1、该公司员工的月薪如下:问题1:请大家仔细观察表格中的数据,讨论该公司的月平均工资是多少?经理是否欺骗了阿冲?问题2:平均月工资能否客观地反映员工的实际收入?问题3:再仔细观察表中的数据,你们认为用哪个数据反映一般职员的实际收入比较合适?2、出类拔萃为了从张明、王龙两名学生中选拔一人参加“希望杯”数学竞赛,在相同条件下对他们的数学知识进行了5次测验,成绩如下:(单位:分)(1)张明同学成绩的众数是多少?王龙同学成绩的中位数是多少?(2)分别求出这两位同学成绩的平均分数。
(3)3)如果测验分数在95分(含95分)以上为优秀,那么他们的优秀率分别是多少?(4)你认为应选哪名同学去参加“希望杯”数学竞赛?说说你的理由。
3、我来当经理某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售目标,根据目标完成的情况对营业员进行适当的奖惩。
为了确定一个适当的目标,商场统计了30位营业员在某月的销售额,数据如下:(单位万元)17 18 16 13 24 15 28 26 18 19 2217 16 19 32 30 16 14 15 26 15 3223 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由。
(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由。
五、智慧集中营平均数、中位数和众数都是用来代表一组数据的一些特征。
初中数学 第20章数据的分析 全章教案
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。
3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。
【课堂练习】1.教材P127练习第1,2题。
2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。
4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
人教版新教案word版:第二十章 数据的分析
第二十章 数据的分析20.1 数据的集中趋势 20.1.1 平均数 第1课时 平均数 教学目标1.了解加权平均数的概念.2.能运用加权平均数公式解决实际问题. 预习反馈阅读教材P111~114,完成下列预习内容.1.一般地,如果有n 个数,如x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.“x ”读作“x 拔”.2.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+w 3+…+w n 叫做这n 个数的加权平均数.3.在求n 个数的平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+f 2+…+f k =n),那么这n 个数的平均数x =x 1f 1+x 2f 2+…+x k f kn .也叫做x 1,x 2,…,x k 这k 个数的加权平均数,其中f 1,f 2,…,f k 分别叫做x 1,x 2,…,x k 的权. 4.一组数据:7,8,10,12,13的平均数是10.5.一组数据中有a 个x 1,b 个x 2,c 个x 3,那么这组数据的平均数为ax 1+bx 2+cx 3a +b +c .6.某班10名学生为支援希望工程,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下(单位:元):10,12,13.5,21,40.8,19.5,20.8,25,16,30. 这10名同学平均捐款多少元?解:110(10+12+13.5+21+40.8+19.5+20.8+25+16+30)=20.86(元).名校讲坛例1 (教材P112例1)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制计,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示,请确定两人的名次.【解答】 选手A 的最后得分是85×50%+95×40%+95×10%50%+40%+10%=42.5+38+9.5=90.选手B 的最后得分是95×50%+85×40%+95×10%50%+40%+10%=47.5+34+9.5=91.由上可知选手B 获得第一名,选手A 获得第二名.【思考】例1中两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?从中你能体会到权的作用吗?【跟踪训练1】(《名校课堂》20.1.1第1课时习题)学校广播站要招聘1名记者,小亮和小丽报名参加了三项素质测试,成绩如下:将写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5∶3∶2计算,总分变化情况是(B) A .小丽增加多 B .小亮增加多 C .两人成绩不变化 D .变化情况无法确定例2 (教材P113例2)某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人,求这个跳水队运动员的平均年龄(结果取整数).【解答】 这个跳水队运动员的平均年龄为 x =13×8+14×16+15×24+16×28+16+24+2≈14(岁).【跟踪训练2】 某校调查了20名男生某一周参加篮球运动的次数,调查结果如下表所示,那么这20名男生该周参加篮球运动次数的平均数是(C)A.3次 B .3.5次 C .4次 D .4.5次 巩固训练1.某次考试,5名学生的平均分是82,除甲外,其余4名学生的平均分是80,那么甲的得分是(D)A .84B .86C .88D .902.已知数据a 1,a 2,a 3的平均数是a ,那么数据2a 1+1,2a 2+1,2a 3+1的平均数是(C) A .a B .2a C .2a +1 D.2a 3+13.某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,甲的面试成绩为85分,笔试成绩为90分,若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是(C)A.85+902B.85×7+90×32C.85×7+90×310D.85×0.7+90×0.3104.晨光中学规定,学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末成绩占50%.小桐的三项成绩(百分制)依次是95分,90分,85分,小桐这学期的体育成绩是多少? 解:小桐这学期的体育成绩是88.5分. 5.下表是校女子排球队队员的年龄分布:求校女子排球队队员的平均年龄(可使用计算器). 解:x =13×1+14×4+15×5+16×21+4+5+2≈14.7(岁)答:校女子排球队队员的平均年龄为14.7岁.6.一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:(1)如果这家公司想招一名口语能力比较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁? 解:(1)听、说、读、写的成绩按照3∶3∶2∶2的比确定,则甲的平均成绩为85×3+83×3+78×2+75×23+3+2+2=81,乙的平均成绩为73×3+80×3+85×2+82×23+3+2+2=79.3,显然甲的成绩比乙高,所以从成绩看,应该录取甲.(2)听、说、读、写的成绩按照2∶2∶3∶3的比确定,则甲的平均成绩为85×2+83×2+78×3+75×32+2+3+3=79.5,乙的平均成绩为73×2+80×2+85×3+82×32+2+3+3=80.7,显然乙的成绩比甲高,所以从成绩看,应该录取乙. 课堂小结1.加权平均数的公式.2.运用加权平均数的公式计算样本数据的平均数. 3.体会加权平均数的意义.第2课时 用样本平均数估计总体平均数 教学目标结合加权平均数的有关知识,理解用样本估计总体的方法,解决实际生活中的问题. 预习反馈阅读教材P114~115,完成下列预习内容.1.当要考察的对象很多,或者对考察对象带有破坏性时,统计学中常常通过用样本估计总体的方法来获得对总体的认识.例如,实际生活中经常用样本的平均数来估计总体的平均数.2.一组数据7,8,8,9,8,16,8中,数据8的频数是4.3.若12≤x<30,则这组数的组中值是21.4.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,估计这个月的最低温度的平均值大约是0℃.5.某中学环保小组对我市6个餐厅一天的快餐饭盒的使用数量作调查,结果如下:125,115,150,260,110,140.请用统计知识估计:若我市有40个餐厅,则一天共使用饭盒约6__000个.名校讲坛例1 (教材P114探究变式)为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:(1)这天5路公共汽车平均每班的载客量是多少?(2)从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?【分析】根据上面的频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权.例如在1≤x <21之间的载客量近似地看作组中值11,组中值11的权是它的频数3. 【解答】(1)这天5路公共汽车平均每班的载客量是x =11×3+31×5+51×20+71×22+91×18+111×153+5+20+22+18+15≈73(人).(2)由表格可知,81≤x <101的18个班次和101≤x <121的15个班次共有33个班次超过平均载客量,占全天总班次的百分比为3383×100%=39.8%.【跟踪训练1】为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如下表各项数据:(1)上表中,a =31,b =51; (2)计算2路公共汽车平均每班的载客量. 解:11×2+31×8+51×202+8+20=43(人).答:2路公共汽车平均每班的载客量是43人.【点拨】 数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数. 例2 (教材P115例3变式)某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:这批灯泡的平均使用寿命是多少?【思路点拨】 抽出的100只灯泡的使用寿命组成一个样本,可以利用样本的平均使用寿命来估计这批灯泡的平均使用寿命.【解答】 根据表格,可以得出各小组的组中值,于是x =800×10+1 200×19+1 600×25+2 000×34+2 400×12100=1 676(时),即样本平均数为1 676.由此可以估计这批灯泡的平均使用寿命大约是1 676小时. 【思考】 用全面调查的方法考察这批灯泡的平均使用寿命合适吗?【跟踪训练2】(《名校课堂》20.1.1第2课时习题)某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了40只灯泡,它们的使用寿命如表所示,则这批灯泡的平均使用寿命是1__500__h .巩固训练1.某学校在开展“节约每一滴水”的活动中,从七年级的200名同学中任选出十名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:节水量(单位:吨)0.5 1 1.5 2同学数(人) 2 3 4 1请你估计这200名同学的家庭一个月节约用水的总量大约是(C)A.180吨 B.200吨C.240吨 D.360吨2.某部队为测量一批新制造的炮弹的杀伤半径,从中抽查了50枚炮弹,它们的杀伤半径(米)如下表:杀伤半径20≤x<4040≤x<6060≤x<8080≤x<100数量8 12 25 5 这批炮弹的平均杀伤半径是多少米?解:由表可得出各组数据的组中值分别是30,50,70,90,根据加权平均数公式得x=30×8+50×12+70×25+90×58+12+25+5=60.8(米).答:这批炮弹的平均杀伤半径大约是60.8米.3.为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树的树干的周长情况如图所示,计算(可以使用计算器)这批法国梧桐树干的平均周长(精确到0.1 cm).解:x =45×8+55×12+65×14+75×10+85×68+12+14+10+6=63.8(cm).答:这批梧桐树干的平均周长是63.8 cm. 课堂小结1.哪些情况下,不能使用全面调查?2.在统计中,为什么要用样本的情况去估计总体的情况? 3.如何用样本估计总体? 20.1.2 中位数和众数 第1课时 中位数和众数 教学目标1.会求一组数据的中位数、众数. 2.掌握中位数、众数的作用. 3.会用中位数、众数分析实际问题. 预习反馈阅读教材P116~118,完成下列预习内容.1.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.一组数据的中位数不一定出现在这组数据中.一组数据的中位数是唯一的.2.一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映其集中趋势.3.某组数据:2,5,4,3,2的中位数是3;数据11,8,2,7,9,2,7,3,2,0,5的众数是2.4.某班7名女生的体重(单位:kg)分别是35,37,38,40,42,42,74,这组数据的众数是42.5.在数据-1,0,4,5,8中插入一个数据x ,使得这组数据的中位数是3,则x =2. 名校讲坛 知识点1 中位数例1 (教材P117例4)在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136 140 129 180 124 154 146 145 158 175 165 148(1)样本数据(12名选手的成绩)的中位数是多少? (2)一名选手的成绩是142 min ,他的成绩如何? 【解答】(1)先将样本数据按照由小到大的顺序排列:124 129 136 140 145 146 148 154 158 165 175 180这组数据的中位数为处于中间的两个数146,148的平均数,即12×(146+148)=147.因此样本数据的中位数是147.(2)根据(1)中得到的样本数据的中位数,可以估计,在这次马拉松比赛中,大约有一半选手的成绩快于147 min ,有一半选手的成绩慢于147 min ,这名选手的成绩是142 min ,快于中位数147 min ,可以推测他的成绩比一半以上选手的成绩好.【思考】 根据例1中的样本数据,你还有其他方法评价(2)中这名选手在这次比赛中的表现吗?【跟踪训练1】 求下列各组数据的中位数: ①5 6 2 3 2(3) ②2 3 4 4 4 4 5(4) ③5 6 2 4 3 5 (4.5) ④3 7 6 8 8 40(7.5)【点拨】 求中位数的步骤:①将这一组数据从大到小(或从小到大)排列;②若该组数据含有奇数个数,位于中间位置的数是中位数;若该组数据含有偶数个数,计算出位于中间位置的两个数的平均数,就是中位数.知识点2 众数例2 (教材P118例5)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:你能根据表中的数据为这家鞋店提供进货建议吗?【思路点拨】一般来讲,鞋店比较关心哪种尺码的鞋销售量最大,也就是关心卖出的鞋的尺码组成的一组数据的众数.一段时间内卖出的30双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数.进而可以估计这家鞋店销售哪种尺码的鞋最多.【解答】由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5厘米的鞋销量最大.因此可以建议鞋店多进23.5厘米的鞋.【思考】分析表中的数据,你还能为鞋店进货提出哪些建议?【跟踪训练2】求下列各组数据的众数:(1)2,5,3,5,1,5,4 (5)(2)5,2,6,7,6,3,3,4,3,7,6 (6 3)(3)2,2,3,3,4 (2 3)(4)2,2,3,3,4,4 (2 3 4)(5)1,2,3,5,7 (1 2 3 5 7)【思考】当一组数据中多个数据出现的次数一样最多时,这几个数据都是这组数据的众数吗?一组数据的众数一定出现在这组数据中吗?巩固训练1.数学老师布置10道选择题,课代表将全班同学的答题情况绘制成条形统计图,根据下图,全班每位同学答对的题数的中位数和众数分别为(D)A.8,8B.8,9C.9,9D.9,82.5个正整数从小到大排列,若这组数据的中位数是3,众数是7且唯一,则这5个正整数的和是(A)A.20 B.21 C.22 D.233.数据8,8,x,6的众数与平均数相同,那么它们的中位数是8.4.为了了解“孝敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用时间,得到一组数据,并绘制成下表,请根据下表完成各题:每周做家务的时间0 1 1.522.533.54合计(1)该班学生每周做家务的平均时间是2.44小时. (2)这组数据的中位数是2.5,众数是3.5.(《名校课堂》20.1.2第1课时习题)在一次测试中,抽取了10名学生的成绩(单位:分)为:86,92,84,92,85,85,86,94,94,83. (1)这个小组本次测试成绩的中位数是多少? (2)小聪同学此次的成绩是88分,他的成绩如何?解:(1)将这组数据按从小到大的顺序排列为83,84,85,85,86,86,92,92,94,94,则中位数是86+862=86.(2)根据(1)中得到的样本数据的中位数,可以估计,在这次测试中,大约有一半学生的成绩高于86分.小聪同学的成绩是88分,大于中位数86分,可以推测他的成绩比一半以上同学的成绩好. 课堂小结1.如何求中位数?中位数的作用是什么? 2.如何求众数?众数的作用是什么? 第2课时 平均数、中位数和众数的应用 教学目标1.进一步理解平均数、中位数和众数的概念.2.能辨清它们之间的关系,并能运用平均数、中位数、众数解决实际问题. 预习反馈阅读教材P119~120,完成下列预习内容.1.平均数、中位数和众数都可以反映一组数据的集中趋势,它们各有自己的特点,能够从不同的角度提供信息.在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.2.平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,因此在现实生活中较为常用.但它受极端值(一组数据中与其余数据差异很大的数据)的影响较大.3.当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不易受极端值的影响.中位数只需要很少的计算,它也不易受极端值的影响.思考:你知道在体操比赛评分时,为什么要去掉一个最高分和一个最低分吗?4.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄(单位:岁)如下:甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,4,5,5,6,6,54,57.(1)甲群游客的平均年龄是15岁,中位数是15岁,众数是15岁,其中能较好地反映甲群游客年龄特征的是平均年龄(众数或中位数).(2)乙群游客的平均年龄是16岁,中位数是5岁,众数是4,5,6岁.其中能较好地反映乙群游客年龄特征的是中位数.名校讲坛例(教材P119例6)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每个营业员在某月的销售额(单位:万元),数据如下:(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.【思路点拨】商场服装部统计的每个营业员在某月的销售额组成一个样本,通过分析样本数据的平均数、中位数、众数来估计总体的情况,从而解决问题.【解答】整理上面的数据得到表1和图2.表1销售额/万元13 14 15 16 17 18 19 22 23 24 26 28 30 32人数1 1 5 4 323 1 1 1 2 3 1 2图2(1)从表1和图2可以看出,样本数据的众数是15,中位数是18,利用计算器得到这组数据的平均数约是20,可以推测,这个服装部营业员的月销售额为15万元的人数最多,中间的月销售额是18万元,平均月销售额大约是20万元.(2)如果想确定一个较高的销售目标,这个目标可以定为每月20万元(平均数).因为从样本数据看,在平均数、中位数和众数中,平均数最大,可以估计,月销售额定为每月20万元是一个较高目标,大约会有13的营业员获得奖励.(3)如果想让一半左右的营业员能够达到销售目标,月销售额可以定为每月18万元(中位数).因为从样本情况看,月销售额在18万元以上(含18万元)的有16人,占总数的一半左右,可以估计,如果月销售额为18万元,将有一半左右的营业员获得奖励.【跟踪训练】某同学进行社会调查,随机抽查了某个地区20个家庭的收入情况,并绘制了如下的统计图:(1)求这20个家庭的年平均收入;(2)求这20个家庭收入的中位数和众数;(3)平均数、中位数、众数,哪个更能反映这个地区家庭的年平均收入水平?解:(1)这20个家庭的年平均收入是1.2万元.(2)这20个家庭收入的中位数和众数分别是1.2万元和1.3万元.(3)平均数和中位数更能反映这个地区家庭的年平均收入水平.巩固训练1.某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,经计算得出销售额的平均数是20万元/月,中位数是18万元/月,众数是15万元/月,如果你是该商场的管理人员,(1)你想让一半左右的营业员能够达标,这个目标可定为18万元/月;(2)你想确定一个较高的目标,这个目标可定为20万元/月.2.某公司33名职工的月工资(以元为单位)如下:(1)求该公司职工月工资的平均数、中位数、众数.(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元) (3)你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平? 解:(1)2 091,1 500,1 500. (2)3 288,1 500,1 500. (3)中位数.3.质量检测部门对甲、乙、丙三家公司销售产品的使用寿命进行了跟踪调查,统计结果如下(单位:年):甲公司:4,5,5,5,5,7,9,12,13,15; 乙公司:6,6,8,8,8,9,10,12,14,15; 丙公司:4,4,4,6,7,9,13,15,16,16. 请回答下列问题: (1)填空:(2)如果你是顾客,你将选购哪家公司销售的产品,为什么?(3)如果你是丙公司的推销员,你将如何结合上述数据及统计量,对本公司的产品进行推销?(至少说两条)解:(2)乙公司.因为从平均数、众数和中位数三项指标上看,都比其他的两个公司要好,他们的产品质量更高.(3)①丙公司的平均数和中位数都比甲公司高;②从产品寿命的最高年限考虑,购买丙公司的产品的使用寿命比较长的机会比乙公司产品大一些.课堂小结在实际问题中,会分析具体问题的情况,选择适当的量(平均数、中位数或众数)反映数据的集中趋势.20.2 数据的波动程度教学目标1.了解方差的定义和计算公式,理解方差概念的产生和形成的过程.2.会用方差计算公式来比较两组数据的波动大小,并能运用方差知识,解决实际问题.预习反馈阅读教材P124~127,完成下列预习内容.1.统计中常采用考察一组数据与它们的平均数之间的差别的方法,来反映这组数据的波动情况.2.设有n个数据x1,x2,…,x n,各数据与它们的平均数x的差的平方分别是(x1-x)2,(x2-x)2,…,(x n-x)2,我们用这些值的平均数,即用s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]来衡量这组数据波动的大小,并把它叫做这组数据的方差.3.方差越大,数据的波动越大;方差越小,数据的波动就越小.4.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差.5.计算一组数据:8,9,10,11,12的方差为2.名校讲坛例1 (教材P125例1)在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)如表所示.哪个芭蕾舞团女演员的身高更整齐?【解答】甲、乙两团演员的身高平均数分别是x甲=163+164×2+165×2+166×2+1678=165,x乙=163+165×2+166×2+167+168×28=166.方差分别是s2甲=(163-165)2+(164-165)2+…+(167-165)28=1.5,s2乙=(163-166)2+(165-166)2+…+(168-166)28=2.5.由s2甲<s2乙可知,甲芭蕾舞团女演员的身高更整齐.【跟踪训练1】在一次女子排球比赛中,甲、乙两队参赛选手的年龄如下:甲队26 25 28 28 24 28 26 28 27 29乙队28 27 25 28 27 26 28 27 27 26(1)两队参赛选手的平均年龄分别是多少?(2)你能说说两队参赛选手年龄波动的情况吗?解:(1)两组数据的平均数分别是:x甲=26.9,x乙=26.9,即甲、乙两队参赛选手的平均年龄相同.(2)两组数据的方差分别是:s2甲=(26-26.9)2+(25-26.9)2+…+(29-26.9)210=2.29,s2乙=(28-26.9)2+(27-26.9)2+…+(26-26.9)210=0.89,由s2甲>s2乙可知,甲队参赛选手年龄波动较大.【点拨】平均数是反映一组数据总体趋势的指标,方差是表示一组数据波动程度的指标.所以(2)用方差来判断.例2 (教材例题变式)为了从甲、乙两名学生中选择一人去参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩(单位:分)如下:(1)填写下表:(2)利用以上信息,请从不同的角度对甲、乙两名同学的成绩进行评价.【解答】 从众数看,甲成绩的众数为84分,乙成绩的众数是90分,乙的成绩比甲好;从方差看,s 2甲=14.4,s 2乙=34,甲的成绩比乙相对稳定;从甲、乙的中位数、平均数看,中位数、平均数都是84分,两人成绩一样好; 从频率看,甲85分以上的次数比乙少,乙的成绩比甲好.【跟踪训练2】 某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:(1)根据表格中的数据,计算出甲的平均成绩是9环,乙的平均成绩是9环; (2)分别计算甲、乙两名运动员8次测试成绩的方差;(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适?并说明理由. 解:(2)甲的方差为18×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2+(10-9)2+(8-9)2]=0.75,乙的方差为18×[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2+(8-9)2+(10-9)2]=1.25.(3)∵0.75<1.25,∴甲的方差小.∴甲比较稳定,故选甲参加全国比赛更合适. 巩固训练1.若数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则(1)数据x 1±b ,x 2±b ,…,x n ±b 的平均数为x ±b ,方差为s 2; (2)数据ax 1,ax 2,…,ax n 的平均数为ax ,方差为a 2s 2;(3)数据ax 1±b ,ax 2±b ,…,ax n ±b 的平均数为ax ±b ,方差为a 2s 2.2.用条形图表示下列各组数据,计算并比较它们的平均数和方差,体会方差是怎样刻画数据的波动程度的. (1)6 6 6 6 6 6 6 (2)5 5 6 6 6 7 7 (3)3 3 4 6 8 9 9 (4)3 3 3 6 9 9 9解:图略.(1)x =6,s 2=0;(2)x =6,s 2=47;(3)x =6,s 2=447;(4)x =6,s 2=547.3.甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成图1、图2的统计图.图1 图2(1)在图2中,画出折线表示乙队在集训期内这五场比赛成绩的变化情况;(2)已知甲队五场比赛成绩的平均分x甲=90分,请你计算乙队五场比赛成绩的平均分x乙;(3)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数三个方面分别进行简要分析,你认为选派哪支球队参加比赛更能取得好成绩?解:(1)如图所示.(2)x乙=90分.(3)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势;从获胜场数看,甲队胜三场,乙队胜两场,甲队成绩较好;综上所述,选派甲队参赛更能取得好成绩.课堂小结1.理解方差的定义,会计算一组数据的方差.2.方差的作用:一组数据的方差越大,数据的波动越大;方差越小,数据的波动越小.3.方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来判断它们的波动情况.20.3 课题学习体质健康测试中的数据分析教学目标1.理解调查活动中的六个基本步骤及其实施方法.2.理解数据的分析在调查活动中的重要作用.预习反馈阅读教材P131~133,完成下列预习内容.1.调查活动中的六个基本步骤是收集数据、整理数据、描述数据、分析数据、撰写调查报告、交流.2.甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?解:甲、乙两人射击成绩的平均成绩分别为:x甲=15(7×2+8×2+10×1)=8,x乙=15(7×1+8×3+9×1)=8,s2甲=15[2×(7-8)2+2×(8-8)2+(10-8)2]=1.2,s2乙=15[(7-8)2+3×(8-8)2+(9-8)2]=0.4.∵s2甲>s2乙,∴乙同学的射击成绩比较稳定.【点拨】在平均数相等时,方差越小,数据越稳定.名校讲坛例(教材补充例题)(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:。
第二十章数据的分析全章导学案
第二十章数据的分析平均数(1)主备人:初审人:终审人:【导学目标】1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.3.通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
【导学重点】会求加权平均数.【导学难点】对“权”的理解.【学法指导】类比延伸.【课前准备】查资料理解“权”.【导学流程】一、呈现目标、明确任务1.理解数据的权和加权平均数的概念掌握加权平均数的计算方法.2.描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、检查预习、自主学习一组数据88,72,86,90,75的平均数是;一组数据12,12,12,12, 4,4,4,4,4,13,的平均数是;一组数据有5个20,4个30,3个40,8个50,则这20个数的平均数为 .三、教师引导某市三个郊县的人数及人均耕地面积如下表:求这个市郊县的人均耕地面积是多少?(精确到0.01公顷)(分析:人均耕地面积=总耕地面积总人口)讨论:1.总耕地面积= .2.总人口= .3.人均耕地面积= .4.这个问题中,哪些是数据?哪些是权?四、问题导学、展示交流1.一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?讨论:将所占比例看作它们各自的权,即听占有3份,说占 份,读占 份,写占 份,合计 份。
) (2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?2.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:五、点拨升华、当堂达标1.一般说来,如果在n 个数中,1x 出现1f ,2x 出现2f 次,…,k x 出现k f 次,则kkk ff f f x f x f x x ..................212211+++++=,其中1f ,2f …k f 叫做权。
人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)
第二十章数据的分析1.进一步理解平均数、中位数和众数等统计量的统计意义.2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势.3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.1.探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,用样本估计总体,并解决生产、生活中的有关问题.2.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.1.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性.2.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.3.通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.本章属于“统计与概率”领域.对于“统计与概率”领域的内容,共有三章.这三章内容采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.统计部分的两章内容按照数据处理的基本过程来安排.我们在7年级下册学习了“第10章数据的收集、整理与描述”,本章“数据的分析”主要学习分析数据的集中趋势和离散程度的常用方法.在前一章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来.为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量.对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势;三是分析数据分布的偏态和峰度,反映数据分布的形状.这三个方面分别反映了数据分布特征的不同侧面.根据《标准》的要求,本章就从前两个方面研究数据的分布特征.【重点】平均数、众数、中位数、方差的定义及其应用.【难点】应用所学的统计知识解决实际问题.1.注意与前两个学段相关内容的衔接.本章在教学时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行整理的基础上学习新的知识.例如,对于平均数、中位数、众数,本章就是在研究数据集中趋势的大背景下,在整理学生已有的关于这三种统计量的认识的基础上,学习加权平均数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.2.准确把握教学要求.本章要求通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数、方差估计总体的平均数、方差等.因此,在本章教学时,要注意把握教学要求.3.合理使用计算器.信息技术的发展给统计学的研究带来很大变化,为统计工作的高效、准确提供了便捷的工具.对于计算器等现代信息技术对统计的作用,本章中,编写了使用计算器求一组数据的平均数和方差的内容作为必学内容,还编写了利用计算机求平均数、中位数、众数和方差等集中统计量的内容作为选学内容等.教学中要注意发挥计算器在处理数据中的作用,也要注意合理地使用计算器.20.1 数据的集中趋势20.1.1平均数(2课时) 20.1.2中位数和众数(2课时)4课时20.2 数据的波动程度1课时20.3 课题学习体质健康测试中的数据分析1课时单元概括整合1课时20.1数据的集中趋势1.进一步掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.理解中位数和众数的定义和意义,会求一组数据的中位数和众数,能结合具体问题解释中位数和众数的实际意义.3.能分清平均数、中位数、众数三者的区别,根据实际问题情境选择适当的统计量表示数据的特征.经历应用加权平均数对数据处理和探索中位数、众数的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数、中位数和众数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情,感受统计在生活中的应用,增强统计意识,培养统计能力.【重点】算术平均数、加权平均数的概念及计算,会求一组数据的中位数和众数,能结合实际情境理解其实际意义.【难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.20.1.1平均数1.进一步掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.经历应用加权平均数对数据处理的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.【重点】1.算术平均数、加权平均数的概念及计算.2.掌握加权平均数的实际应用.【难点】1.体会平均数在不同情境中的应用.2.应用加权平均数对数据做出合理判断.第课时1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.【重点】会求加权平均数.【难点】对“权”的正确理解.【教师准备】教学中出示的课件和例题.【学生准备】预习课本内容.导入一:刘木头开了一家小工厂,生产儿童玩具.工厂的管理人员由刘木头、他的弟弟及其他6个亲戚组成.工作人员由5个领工和10个工人组成.现在需要一个新工人,刘木头正在与一个叫小王的青年人谈招聘问题.刘木头说:“我们这里报酬不错,平均每个人的薪金是每周300元,但在学徒期间每周是75元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每周100元.每人平均工资怎么可能是一周300元呢?”刘木头皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”刘木头拿出一张表,说道:“这是我每周付出的薪金.我得2400元,我弟弟得1000元,我的6个亲戚每人得250元,5个领工每人得200元,10个工人每人得100元.总共是每周6900元,付给23个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每周300元.可你还是骗了我.”小王生气地说.刘木头拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”同学们,你能当个小法官来判一下谁说的对吗?[设计意图]让学生明确数学问题来源于生活实践,同时数学又指导生活实践,从而达到激发学生思考问题、探究新知的强烈欲望及引入新课的目的.导入二:农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到各试验田每公顷的产量(见下表),根据这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?品各试验田每公顷产量种(单位:吨)甲7.657.57.627.597.65 7.647.57.47.417.41乙7.557.567.537.447.49 7.527.587.467.537.49提问:如何考察一种玉米的产量和产量的稳定性?学生随意说出自己的一些想法后,教师说明本章学习的知识内容:(1)平均数、中位数、众数和方差等概念;(2)用样本的平均数和方差估计总体的平均数和方差;(3)课题学习,解决实际问题.[设计意图]问题的提出,学生难以用已学到的平均数的公式解决这个问题,需要研究新的方法,学习新的知识,让学生了解本章研究的基本知识内容,培养学生用样本估计总体的基本思想.[过渡语]前面我们学过算术平均数的计算,我们一起来探究加权平均数.1.加权平均数思路一问题:某市三个郊县的人数及人均耕地面积如下表:郊县人数/万人均耕地面积/公顷A15 0.15 B7 0.21 C10 0.18这个市郊县的人均耕地面积是多少?(精确到0.01公顷)问题1小明求得这个市郊县的人均耕地面积为:= =0.18(公顷).你认为小明的做法有道理吗?为什么?组织学生讨论,教师参与,并适时指导:(1)对“平均数”和“人均耕地面积”的准确理解;(2)三个郊县人数的多少对人均耕地面积有无影响,分析小明同学的计算错误.问题2这个市郊县的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少吗?引导学生列出正确算式,即这个市郊县的人均耕地面积为:≈0.17(公顷).问题3三个郊县的人数(单位:万)15,7,10在计算人均耕地面积时有何作用?教师指出:上面的平均数0.17称为三个数0.15,0.21,0.18的加权平均数.三个郊县的人数(单位:万)15,7,10分别为三个数据的权.追问:你能正确理解数据的权和三个数的加权平均数吗?在活动中教师应重点关注学生对数据的权及加权平均数的理解.问题4若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则这n个数的加权平均数是多少?教师引导学生从三个数据的加权平均数的计算方法中,归纳得出n 个数的加权平均数的计算公式.学生思考、总结归纳:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.[设计意图]通过讨论、分析、思考认识到用已学过的平均数的计算方法来计算这个市郊县的人均耕地面积是根本行不通的,使学生意识到需要学习新知识、新方法,激发学生去探究.通过大胆猜想,培养学生的探究意识,通过教师的有效引导,让学生体会数学的归纳思想方法,理解n个数的加权平均数的计算公式及其结构特征,认识数据的权的作用.思路二问题1一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试听说读写者甲85 83 78 75乙73 80 85 82提问:如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?录用依据是什么?学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.追问:这家公司在招聘英文翻译的过程中,对甲、乙两名应试者进行了哪几个方面的英语水平测试?成绩分别为多少?学生同桌讨论,计算后提出自己的意见.问题2如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?引导学生讨论:招聘口语能力或笔译能力较强的翻译时,听、说、读、写四项成绩的重要程度是否相同,公司侧重哪两个方面的成绩?从给出的比值是否体现这两方面更加“重要”?根据算术平均数的计算公式,让学生依据题目要求,分别计算出甲、乙两名应试者的成绩,教师引导写出解答过程.问题3在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,x n的权分别为w1,w2,…,w n,这n个数据的平均数该如何计算?教师引导学生思考归纳得出n个数的加权平均数的计算公式:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.问题4如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2相比较,你能体会到权的作用吗?学生独立完成计算过程,体会权的改变对加权平均数的影响.追问:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生分析加权平均数公式,发现问题1中各数可看作是权相同的,教师指出两种平均数之间的联系.[设计意图]回顾学过的平均数的意义,为引入加权平均数作铺垫.通过讨论,让学生充分发表自己的见解,同时接纳和吸引别人的正确意见,相互交流、相互探讨,培养学生的合作意识.通过改变同一个问题背景中数据的权,得到不同的结果,从而进一步体会权的意义与作用.[知识拓展](1)当所给的数据在一常数a上下波动时,一般选用='+a.一组数据x1,x2,…,x n的各个数据比较大的时候,我们可以把各个数据同时减去一个适当的常数a,得x'1=x1-a,x'2=x2-a,…,x'n=x n-a.于是x1=x'1+a,x2=x'2+a,…,x n=x'n+a.因此=(x1+x2+…+x n)=(x1'+x2'+…+x n')+·na='+a;(2)平均数的大小与每个数据都有关系,它反映一组数据的集中趋势,是一组数据的“重心”,也是度量一组数据波动大小的基准;(3)加权平均数是算术平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权相等时,就变成了算术平均数.2.例题讲解一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(单位:分)选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请确定两人的名次.教师出示例题并指导学生阅读分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.学生在阅读过程中明确下列问题:(1)演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度用什么数据说明?(2)要想决出两人的名次,必须求两人的总成绩,实质上是求这两名选手三项成绩的加权平均数.学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师进一步引导写出解答过程.解:选手A的最后得分是=90,选手B的最后得分是=91.由上可知选手B获得第一名,选手A获得第二名.[设计意图]让学生掌握自学的方法,提高学生独立分析问题、解决问题的能力.通过问题的解决,让学生进一步体会数据的权的作用,体验参与数学活动的乐趣.(1)加权平均数的意义:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.(2)数据的权的意义:数据的权能够反映数据的相对“重要程度”.(3)加权平均数公式:=.1.晨光中学规定学生的学期体育成绩满分为100分,其中平时体育活动评估成绩占20%,期中成绩占30%,期末成绩占50%.则平时体育活动评估成绩、期中成绩、期末成绩的权分别为、和.解析:根据权的概念解决即可.答案:20%30%50%2.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学成绩是90分,那么他的学期数学总成绩是()A.85分B.87.5分C.88分D.90分解析:根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.故选C.3.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩的20%,面试占30%,实习成绩占50%,各项成绩如下表所示:(单位:分)应聘笔试面试实习者甲85 83 9080 85 92试判断谁会被公司录用,为什么?解:甲的平均成绩为=86.9,乙的平均成绩为=87.5.因此,乙会被公司录用.4.某单位欲招聘一名技术部门负责人,对甲、乙、丙三位候选人进行了三项能力测试,且各项测试成绩满分均为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:(单位:分)测试项目测试成绩甲乙丙沟通能力85 73 73 科研能70 71 65组织能64 72 84力(1)如果根据三项测试的平均成绩,谁将被录用?说明理由.(2)根据实际需要,该单位将沟通能力、科研能力和组织能力三项测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.解:(1)甲的平均成绩为(85+70+64)÷3=73,乙的平均成绩为(73+71+72)÷3=72,丙的平均成绩为(73+65+84)÷3=74,因此,丙的平均成绩最高,丙将被录用.(2)甲的成绩为=76.3,乙的成绩为=72.2,丙的成绩为=72.8.因此,甲的成绩最高,甲将被录用.第1课时1.加权平均数2.例题讲解例题一、教材作业【必做题】教材第113页练习第1,2题;教材第121页习题20.1第1题.【选做题】教材第122页习题20.1第5题.二、课后作业【基础巩固】1.在中国好声音选秀节目中,四位参赛选手的各项得分如下表,如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高的进入下一轮比赛,则进入下一轮比赛的是()(每项按10分制)测试内测试成绩容小赵小王小李小黄专业素6 7 8 8质形象表8 7 6 9现人气指8 10 9 6数A.小赵B.小王C.小李D.小黄2.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:采访写计算机创意设作计小70分60分86分明小90分75分51分亮小60分84分72分丽现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3∶5∶2变成5∶3∶2,成绩变化情况是() A.小明增加最多 B.小亮增加最多C.小丽增加最多D.三人的成绩都增加3.希望中学一个学期的数学总平均分是按下图进行计算的.该校李飞同学这个学期的数学成绩如下:(单位:分)李飞平时作业期中考试期末考试90 8588则李飞这个学期数学总平均分为.4.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为.【能力提升】5.学生的学科期末成绩由期考分数、作业分数、课堂参与分数三部分组成,按各占30%,30%,40%的比例确定.已知晓明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为分.6.小丽家上个月吃饭费用为500元,教育费用为200元,其他费用为500元.本月小丽家这三项费用分别增长了10%,30%和5%.小丽家本月的总费用比上个月增长的百分数是多少?7.小李同学七年级第二学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩88 92 94 90 92 89如果学期的总评成绩是根据如图所示的权重计算,那么小李同学该学期的总评成绩为多少分?(四舍五入精确到1分)8.老师在计算学期总平均分的时候按如下标准:作业占10%,测验占20%,期中考试占35%,期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80 75 71 88 小76 80 68 90分别算出小关和小兵的总平均分.【拓展探究】9.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(单位:分)测试项甲乙丙目笔试75 80 90面试93 7068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?【答案与解析】1.D(解析:将四个人的测试成绩按比例求出最终成绩,找出成绩最高的即可.)2.B(解析:根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比是3∶5∶2各自的成绩,再求出这三项的权重比是5∶3∶2各自的成绩,进行比较.)3.87.5(解析:先从统计图得到相应数据的权重,再利用加权平均数的计算方法求解.)4.11.5元/千克(解析:将三种糖果的总价算出,再除以60即可.)5.85(解析:根据加权平均数的计算公式计算即可.)6.解:500×10%+200×30%+500×5%=135(元),135÷(500+200+500)×100% =11.25%.7.解:平时平均成绩为=91(分),总评成绩为=90.1≈90(分).8.解:小关的学期总平均分为=80×10%+75×20%+71×35%+88×35%=78.65(分),小兵的学期总平均分为'=76×10%+80×20%+68×35%+90×35%=78.9(分).9.解:(1)甲、乙、丙三人的民主评议得分分别为:200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的平均成绩为≈72.67(分),乙的平均成绩为≈76.67(分),丙的平均成绩为=76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分);乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.平均数是统计中的一个重要概念,新教材注重了学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念.基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值,努力做到由传统的数学课堂向实验课堂转变.在教学过程中,高估了学生理解加权平均数的能力,主要困难在于一些学生不能对权的含义理解透彻.适当增加学生熟知的一些实例,通过计算平均数,深刻理解权的含义及对平均数的影响.练习(教材第113页)1.解:(1)甲:=88(分),乙:=87.5(分),故甲将被录取.(2)甲:=87.6(分),乙:=88.4(分),故乙将被录取.2.解:=88.5(分).故小桐这学期的体育成绩是88.5分.学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平。
《数据的分析》参考教案
教师关注:学生的描述情况.(引导学生表达,提高对数据的代表和波动的认识)
教学反思:
2.众数是当一组数据中时,人们往往关心的一个量,众数极端值的影响,这是它的一个优势;
3.中位数仅与有关,某些数据的移动对中位数没有影响,中位数可能出现中所给数据中,也可能不在所给的数据中,当一组数据中的时,可以用中位数描述其趋势.
总之,平均数、中位数、众数都是描述数据的的的统计量.
4.当两组数据的个数相等、平均数相等或接近时,用方差可以比较其离散程度及稳定性.一般来说,一组数据的方差越大,这组数据离散程度就越,这组数据就越.
综Байду номын сангаас
合
应
用
【例1】个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资:王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.
(1)计算工作人员的平均工资;
(2)计算出的平均工资能否反映出工作人员这个月收入的一般水平?
(3)去掉王某的工资后,再计算平均工资;
第20章数据的分析
【教学任务分析】
教
学
目
标
知识
技能
理解平均数、中位数、众数、极差、方差的概念及作用,能准确地求出一组数据的平均数、中位数和众数,以及方差,能灵活运用它们来处理数据.
过程
方法
使学生经历对问题的处理,体会分析数据的策略和方法,提高用样本解决问题的能力,发展学生的统计思想及创新实践能力.
情感
(4)后一个平均工资能代表一般工作人员的收入吗?
(5)根据以上计算,从统计的观点看,你对(3)、(4)的结果有什么看法?
第二十章数据的分析复习学案
第二十章数据的分析复习学案学习目标:1、进一步理解平均数、中位数和众数等统计量的统计意义。
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。
一、知识点回顾1、平均数:在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
已知该班平均成绩为80分,问该班有多少人?2、中位数和众数○1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是. ○2.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24、25B.23、24C.25、25D.23、25○3.3、极差和方差○1.一组数据X1、X2…Xn的极差是8,则另一组数据2X1+1、2X2+1…,2Xn+1的极差是()A. 8B.16C.9D.17○2.如果样本方差[]242322212)2()2()2()2(41-+-+-+-=xxxxS,那么这个样本的平均数为.样本容量为.二、专题练习1、方程思想:例:某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是_____________.点拨:本题可以用统计学知识和方程组相结合来解决。
同类题连接:某班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,设原来参加春游的学生x人。
可列方程:2、分类讨论法:例:汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。
已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;点拨:做题过程中要注意满足的条件。
【人教版初中数学八年级下册第20章 数据的分析教案】 加权平均数
加权平均数一、教与学目标:1、让学生会求加权平均数,并体会权的差异对结果的影响.2、能应用加权平均数解释现实生活中的一些简单现象,并能用它解决一些实际问题。
3、让学生进一步理解算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.二、教与学重点难点:重点:能用加权平均数解决一些实际问题。
难点:体会权的差异对结果的影响,认识到权的重要性.三、教与学方法:探究与自学教学法四、教与学过程:(一)、情境导入:下表是小红和小明参加一次演讲比赛的得分情况:计算得出:85+70+80+85=32090+75+75+80=320两人的总分相等,似乎不相上下?作为演讲比赛的选手,你认为小明和小红谁更优秀?你用什么方法说明谁更优秀?(通过这一情景引导学生结合现实生活,给出对四项得分适当划分比例,突出各项成绩在总分中所起的作用,促进学生进一步理解加权平均数的概念。
)(二)、探究新知:1、问题导读:(1)仿做教材(2)例2中的4:4:2表示应聘者期末各科平均成绩、作文比赛成绩和口头表达能力等项目在评聘中的重要程度。
我们分别把它们叫做____________。
(3)一般地,如果n个n个数据1x,2x,……,n x的重要程度用连比1f :2f :…:k f 表示,其中1f ,2f ,…,k f 也叫做数据1x ,2x ,……,n x 的_______,那么这n 个数据的平均数为x =_______________________________(4)仿做教材 2、合作交流:小颖在做例2时,用的是以下算式,判断小颖做得是否合理? 解:∵4+4+2=10.20102.40104==∴小颖、小亮、大刚的个人总分分别是:92.60.2950.496.4088=⨯+⨯+⨯91.40.2950.490.4091=⨯+⨯+⨯ 84.20.2930.482.4082=⨯+⨯+⨯ (把自己的想法与同伴交流一下,并与例3做对比) 3、精讲点拨:例题:某单位欲从内部招聘管理员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3•的比例确定个人的成绩,那么谁将被录用?(教师可以启发学生思考:权数的作用很大,那么权数有何意义?) (在计算加权平均数时,常用权数来反映对应的数据的重要程度,权数越大的数据越重要.)(三)、学以致用: 1、巩固新知:(1)、求21、32、43、54的加权平均数.测试项目[来 测试成绩 甲 乙 丙 笔试 75 80 90 面试 93 70 68民主评议50 80 70①、以14 、14 、14 、14 为权数.②、以0.4、0.3、0.2、0.1为权数.(2)、一组数据由2、3、4、5、6构成,其中2的权数为0.2,3的权数为0.4,4的权数为0.1,5的权数为0.2,求这组数据的平均数.(3)、下表是小红和小明参加一次演讲比赛的得分情况: ①、计算两人的总分,比比谁的得分高?②、如果在评分时服装占5%、普通话占15%、主题占40%、技巧占40%,你能说明是谁最优秀吗?请说明理由.2、能力提升:(1)、一组数据中有5个4、3个5、2个6、2个7,试用两种方法求这组数据的平均数.四、达标测评: 1、选择题:(1)、某蔬菜市场某天批发1000千克青菜,上午按每千克0.8元的价格批发500千克,中午按0.6元价格批发200千克,下午以0.4元的价格将余下的青菜批发完,这批青菜的平均批发价格为( )。
第二十章 数据的分析教案全章(精品)
八年级(下)数学教案《数据的分析》马娟单元教案(一)学习目标1.进一步理解平均数、中位数和众数等统计量的统计意义;2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。
(二)重、难点分析统计中常用的平均数有算数平均数(简单算数平均数和加权算数平均数)、调和平均数、几何平均数等。
根据《标准》的要求,本章着重研究了加权平均数。
(三)内容分析本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
下面是本章知识展开的结构框图。
本章知识的展开顺序如下图:(四)课时分配全章教学约需15课时(不包括选学内容的课时数),具体内容和课时分配如下:18.1 数据的代表约6课时18.2 数据的波动约5课时18.3 课题学习约2课时数学活动小结约2课时18.1数据的代表18.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点分析: 1、重点:会求加权平均数 2、难点:对“权”的理解 三、课程类型:新授课 方法手段:启发式教学法 四、课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
人教版第二十章(全章教案)
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法: 1、重点:会求加权平均数 2、难点:对“权”的理解 3、难点的突破方法:首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。
复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。
在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。
讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。
在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A 、B 、C 三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么? 通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。
要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。
比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。
能否由26210026199+<+得出第二小组平均成绩这样的结论?为什么?这个例子简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。
在讨论栏目过后,引出加权平均数。
最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。
第二十章数据的分析(教案)-2022-2023学年八年级下册数学(人教版)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平均数、中位数、众数、方差和标准差的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对数据分析的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向要了解平均数、中位数、众数等基本概念。平均数是数据总和除以数据个数的结果,它能够描述数据的集中趋势。中位数是将数据从小到大排序后位于中间的数,它对极端值的影响较小。众数是数据中出现次数最多的数,它在某些情况下能更好地反映数据的特征。这些统计量在描述数据分布时非常重要。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数据分析在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“在什么情况下使用平均数最合适?”
1.教学重点
-平均数:强调平均数的计算方法和应用场景,理解平均数在描述数据集中趋势中的作用。
-举例:计算班级学生某次数学测试的平均成绩,解释平均成绩对了解班级整体水平的作用。
-中位数:掌握中位数的定义和计算步骤,理解其在数据排序和描述中心趋势中的应用。
-举例:在一组数据中找到中位数,解释为何中位数在某些情况下更能反映数据的中心位置。
第二十章数据的分析(教案)-2022-2023学年八年级下册数学(人教版)
一、教学内容
第二十章数据的分析-2022-2023学年八年级下册数学(人教版)
人教版八年级下册第二十章:数据的分析全章复习优秀教学案例
(一)知识与技能
1.学生能够理解数据的收集、整理、描述和分析的基本方法,掌握频数、频率、众数、中位数、平均数等统计量的计算和应用。
2.学生能够运用图表和统计量对数据进行合理的展示和分析,从而解决实际问题,提高数据处理和分析能力。
3.学生能够熟练运用列表、图表、统计量等工具,对数据的分布特征、集中趋势和离散程度进行描述,提升数据解读和分析能力。
在八年级下册第二十章的教学中,学生需要掌握数据的收集、整理、描述和分析等基本方法,并能运用这些方法解决实际问题。基于此,我将以课程标准为导向,充分考虑学生的认知水平和生活经验,设计富有挑战性和趣味性的教学活动,激发学生的学习兴趣,提高他们的主动参与度。
为了确保教学案例的实用性和有效性,我将结合教材内容,突出重点和难点,注重知识点的相互联系和实际应用。同时,通过合理的教学安排和课堂管理,确保学生能够在复习过程中充分巩固所学知识,提高数据分析能力。
人教版八年级下册第二十章:数据的分析全章复习优秀教学案例
一、案例背景
本教学案例以人教版八年级下册第二十章“数据的分析”全章复习为主题,旨在通过具有针对性的教学方法和策略,帮助学生巩固和提升对数据分析知识的理解和应用能力。在案例中,我将结合学科特点和课程内容,设计一系列实用性强的教学活动,以适应学生的知识深度和兴趣需求。
2.学生能够在解决问题的过程中,体验到合作、交流、分享的乐趣,培养团队协作和沟通能力。
3.学生能够理解到学习数据分析不仅能够提高自己的思维能力,还能够为将来的生活和工作中解决问题提供有力的支持,培养学习的自信心。
4.学生能够在学习过程中,遵循规则、尊重事实,培养诚实守信、勇于担当的品质。
三、教学策略
(一)情景创设
1.教师可以通过引入真实的生活情境,如商场打折、考试分数统计等,激发学生的学习兴趣,引导学生主动参与到数据分析的学习中。
课题学习体质健康测试中的数据分析教案(集体备课)
第二十章数据的分析20.3 课题学习体质健康测试中的数据分析教学目标【知识与技能】1.会用样本平均数估计总体平均数,体会用样本估计总体的思想.2.感受样本代表性的意义.【过程与方法】经历整理、描述、分析数据的过程,发展数据分析观念.【情感态度与价值观】以积极情感态度投入到探究问题的过程中去,学会从不同的角度看问题和处理问题。
教学重点体会用样本估计总体的思想,感受样本代表性的意义.教学难点数据的收集和整理.教具准备情景导入生成问题旧知回顾:据报载:截止2010年,全国18岁以上的居民超重率达到32.1%,肥胖率达到9.9%,肥胖已经成为困扰当今医学界的四大医学问题之一,如果不加以重视,对人民的身体健康危害较大.那么怎样衡量是否肥胖呢?本节课将为你解答这个问题.教学过程【自主探究】阅读教材,完成下列问题:什么是体重指数?如何衡量自己的体重状况?答:研究表明:体重在正常范围内,患各种疾病的危险性大小与消瘦、超重和肥胖有联系,那么你知道什么是正常范围内的体重吗?目前国际上有多种标准来衡量体重是否在正常范围内,这里介绍一种常用标准.归纳:对于平均值的求解,关键是要注意数据计算的准确性,对于较大的数据,可以采用新数据法求其平均值.利用新数据法时应注意确定关键数,关键数不同,简便的程度也就不同.学习笔记:行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.学习笔记:m的值称检测可当堂完成.假设某人的体重为m kg,身高为h m,我们把2h为体重指数(BMI),下表给出了体重状况对应的体重指数范围:范例:某人身高1.7 m,体重59 kg,他的体重指数约为20.4.仿例:甲、乙二人身高,体重如下表:(1)填表;(2)根据上表,你对二人有何建议?解:甲应增加营养,乙应加强锻炼.1.将阅读教材时“生成的新问题”和通过“自主探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.习题20.3。
第二十章数据的分析(教案)
-数据的趋势分析
5.案例分析
-实际问题中的数据分析
-数据分析的应用与拓展
二、核心素养目标
1.培养学生的数据分析观念,使其能够从实际情境中收集、整理数据,运用统计量进行描述与分析,增强数据解读能力。
2.培养学生运用数学语言表达数据特征,通过绘制频数分布表、直方图等图表,提高数据可视化能力。
在总结回顾环节,我发现学生们对本节课的知识点掌握得还不错,但仍有一些疑问。这说明我在教学过程中可能还有一些地方需要改进,比如在难点讲解上可以更加细致,确保学生能够真正消化吸收。
在实践活动环节,学生们的参与度很高,小组讨论和实验操作都进行得很顺利。但我发现,有些小组在讨论时,个别成员的参与度不高,这可能影响了整个小组的讨论效果。因此,我计划在下次活动中,加强对小组讨论的引导,确保每个成员都能积极参与。
学生小组讨论的环节让我感到欣慰,大部分学生能够提出有见地的观点,并将所学知识运用到实际问题中。但在讨论过程中,我也发现了一些学生对数据分析在实际生活中的应用还不够了解。为了提高学生的应用能力,我打算在今后的教学中,增加一些与实际生活紧密相关的案例分析,让学生更好地理解数据分析的价值。
3.培养学生运用数据分析方法解决实际问题,培养问题解决能力和创新意识,激发对数据科学的兴趣。
4.培养学生团队合作精神,学会在小组讨论中倾听他人意见,提高沟通与协作能力。
5.培养学生严谨的科学态度,通过数据分析的过程,养成细心、认真、客观的评价习惯。
三、教学难点与重点
1.教学重点
-数据收集与整理:重点在于让学生掌握数据收集的方法和整理的技巧,如设计调查问卷、记录数据、制作表格等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数据分析相关的实际问题。
人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计
(2)已知某班级学生的平均身高为1.6米,若增加一名身高为1.8米的学生,求新的平均身高。
(3)已知一组数据的平均数为20,求这组数据总和的2倍。
2.提高拓展题
为了提高学生的数据分析能力和解决实际问题的能力,布置以下提高拓展题:
(4)某商店进行促销活动,活动期间,顾客平均每人消费金额为100元。若一名顾客消费了150元,求此时顾客的平均消费金额。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平均数的定义及其求解方法,平均数在实际问题中的应用。
2.难点:理解平均数的含义,掌握平均数与其他统计量的关系,以及如何根据数据特点选择合适的平均数作为数据代表值。
(二)教学设想
1.创设情境,导入新课
结合生活实际,设计一个与学生生活密切相关的问题,如班级同学身高、体重等数据的分析,引导学生通过求解平均数来描述数据集中趋势,激发学生学习的兴趣。
让学生分组讨论,尝试用自己的语言描述平均数的含义,并举例说明。在此过程中,教师巡回指导,了解学生的思考情况。
3.教师引导
在学生讨论的基础上,教师进行引导总结,给出平均数的定义,并强调平均数在描述数据集中趋势方面的重要作用。
(二)讲授新知
1.平均数的定义与性质
教师详细讲解平均数的定义,即总数除以个数,强调平均数反映了数据集的总体特征。同时,介绍平均数的性质,如受极端值影响较大等。
本章节教学设计以人教版八年级数学下册第二十章数据的分析20.1.1平均数为依据,结合学科特点和课程内容,注重培养学生的知识技能、过程与方法以及情感态度与价值观。在教学过程中,教师应关注学生的个体差异,因材施教,使他们在原有基础上得到提高。同时,注重理论与实践相结合,让学生在实际问题中感受数学的魅力,提高他们运用数学知识解决实际问题的能力。
人教版八年级数学下册教案第20章 数据的分析 章目标总览
第二十章数据的分析
教材简析
本章的主要内容包括:算术平均数、加权平均数、中位数、众数、极差、方差、标准差的概念与计算;用样本估计总体;从统计图分析数据的其中趋势以及离散程度.用样本估计总体是统计的基本思想,在生产生活中,为了了解总体的情况,我们经常从总体中抽出样本,通过对样本数据的处理,获得结论,在利用结论对总体进行估计.在生产生活中有时对数据的分析,我们需要利用平均数、中位数、众数去刻画数据的几种趋势;利用方差去刻画数据的波动程度,从而为我们做出更有利的判断.
本章是中考查的重点内容,主要考查平均数、中位数、众数、极差、方差、标准差的求法及合理选用,利用它们的意义对现实生活中的问题进行评判是近几年中考的热点,命题形式灵活多样.
教学指导
【本章重点】
平均数、中位数、众数、极差、方差、标准差的计算.
【本章难点】
正确选用平均数、中位数、众数和方差进行数据的描述和分析.
【本章思想方法】
1.掌握数形结合思想,如:从统计图中获取有用的信息,就是利用了数形结合思想.2.掌握方程思想,如:本章中常利用平均数、中位数、众数的意义,根据题意列出方程(组),通过解方程(组)解答问题.
课时计划
20.1数据的集中趋势3课时
20.2数据的波动程度2课时
20.3课题学习体质健康测试中的数据分析1课时。
人教版八年级下数学精品教案:第二十章 数据的分析
教学设计2、一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.问题1的权相等,也就是重要程度同等主要。
今后我们学习要怎样学才能取得好成绩?问题2的权不同。
分析问题1、2中的加权平均数:问题1、2中的计算都可以看作是求加权平均数。
加权平均数:一般说来,如果在n 个数n x x x ,...,,21的权分别是nωωωω,...,,,321( ) 则nn n x x x x ωωωωωω++++++= (212211)相应练习:某市的7月下旬最高气温统计如下:气温 35度 34度 33度 32度 28度 天数23221(1)在这十个数据中,34的权是_____,32的权是______.(2)该市7月中旬最高气温的平均数是_____,这个平均数是_________平均数.(三 )例题讲授,探索新知例1、一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:(1)如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?(2)如果公司想招一名笔译能力强的翻译,听、说、读、写成绩按2:2:3:3 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?培养学生养成自学的好习惯,并能根据情况解决简单的问题,为下面的学习做好铺垫通过讨论交流结合自己的预习情况学习,学能力和合作学习都有很大的帮助。
教师在教学中的作用是进行适当的引导,知识的重点,必不可少的。
n n =+++ωωω 21年龄(岁)26 28 29 30 31 相应队员数13142(1)在这五个数据中,28的权是_____,31的权是______.(2) 中国篮球队队队员的平均年龄是_____,这个平均数是_________平均数.3、某市三个郊县的人数与人均耕地面积如下表:求这个市三个郊县的人均耕地面积 (精确到0.01公顷).小明的作法:18.0318.021.015.0=++=x (公顷)你认为小明的这种做法有道理吗?为什么?在上面的问题中,三个数据0.15、0.21、0.18的权分别是15、7、10,说明三个数据在计算这个市郊县人均耕地面积时的相对重要程度不同.(五)课堂小结 反思升华1、什么情况下用加权平均数来求平均数答:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际. 2、数据的权的意义是什么?答:数据的权能够反映数据的相对“重要程度”.3、加权平均数公式:4、权的几种表现形式? (1)直接以数据形式给出; (2)比例形式给出;例的形式又有变化,形式出现,意义的理解。
人教版八年级数学下册《20章 数据的分析 选择适当的统计量描述一组数据的集中趋势》教案_18
20.1.2 平均数、中位数和众数的应用一、教材分析:1.内容解析:本节课是在学习加权平均数、中位数和众数的基础上,结合具体实例进一步比较这三种统计量在描述数据集中趋势的优势与不足,学习根据实际问题情境选择适当的统计量描述数据的集中趋势。
2.教学目标:(1)在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的统计量;(2)能结合具体情境体会平均数、中位数、众数三者的特点与差异,根据具体问题选择这些统计量来分析数据;(3)经历整理、描述、分析数据的过程,发展数据分析观念。
3.教学重难点:重点:运用平均数、中位数、众数相关知识解决问题;难点:在具体问题中,选择适当量描述数据的集中趋势。
二、教学方法:教法分析:在学生已经学习了平均数、中位数和众数的概念后,可以从学生的生活经验和已有的知识背景出发,提供他们研究数学活动的机会,激发学生的积极性,帮助他们更好地理解数学知识和思考方法.学法分析:数学概念一般比较抽象,学生大多喜欢做活动、完任务,所以在课堂上要让学生们在活动中表现自我、发现自我,最终理解数学内容。
在这里,我会采用自主探究、合作交流的方式让学生参与到课堂中来。
三、教学过程:1.知识回顾:什么是平均数、中位数和众数?它们代表的数据意义是什么?【设计意图】:学生作答,回顾一下这三个统计量的概念和意义,为后面的对比做好铺垫。
2.探究新知:例:某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场统计了每位营业员在某月的销售额,数据如下(单位:万元)17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由.【设计意图】:让学生自主思考,探究问题,某些不好理解的点上面老师可以帮忙引导一下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十章 数据的分析20. 1 数据的集中趋势20. 1.1 平均数 第 1课时 平均数 (1)1.使学生理解并掌握数据的权和加权平均数的概念. 2.使学生掌握加权平均数的计算方法. 重点会求加权平均数. 难点对 “ 权” 的理解.一、复习导入某校八年级共有 4 个班,在一次数学考试中参考人数和成绩如下:班级 1 班 2 班 3 班 4 班参考人数 40 42 45 32平均成绩 80 81 82 79 求该校八年级学生在这次数学考试中的平均成绩.下述计算方法是否合理?为什么?1 x = 4×(79 + 80+ 81+ 82) = 80.5 平均数的概念及计算公式:x1+ x2+ x3+ + xn一般地,如果有 n 个数x 1 ,x 2, x 3, , x n ,则有x =n,其中 x 叫做这n 个数的平均数,读作 “x 拔”.二、讲授新课 问题:一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩 ( 百分制 ) 如表所示 .应试者听 说 读 写甲 85 78 85 73 乙 73 80 82 83(1) 如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩 ( 百分制 ) .从他们的成绩看,应该录取谁?(2) 如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照 2∶1∶3∶4 的比确定计算两名应试者的平均成绩 ( 百分制 ) .从他们的成绩看,应该录取谁?对于问题 (1) ,根据平均数公式,甲的平均成绩为:85+ 78+ 85+ 734= 80.25 ,乙的平均成绩为 73+ 80+ 82+ 834 = 79.5.因为甲的平均成绩比乙高,所以应该录取甲.对于问题 (2) ,听、说、读、写成绩按照 2∶1∶3∶4 的比确定,这说明各项成绩的 “重要程度 ”有所不同,读、写的成绩比听、说的成绩更加 “ 重要 ”.因此,甲的平均成绩为85 × 2+78 × 1+85 × 3+73 × 42+ 1+ 3+4= 79.5 ,乙的平均成绩为73 × 2+80 × 1+82 × 3+83 × 42+ 1+3+ 4 = 80.4.因为乙的平均成绩比甲高,所以应该录取乙.上述问题 (1) 是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2) 是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2, 1, 3, 4 分别称为听、说、读、写四项成绩的权,相应的平均数79.5 , 80.4 分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若 n 个数 x1, x2,, x n的权分别是 w1, w2,, w n,则x1w1+x2w2++ xnwnw1+ w2++ wn叫做这 n 个数的加权平均数.三、例题讲解【例 1】教材第112 页例 1【例 2】为了鉴定某种灯泡的质量,对其中100 只灯泡的使用寿命进行了测量,结果如下表:( 单位:小时 )寿命450 550 600650700只数20 10 301525求这些灯泡的平均使用寿命.解:这些灯泡的平均使用寿命为:450 × 20+550 × 10+ 600 × 30+ 650 × 15+ 700 × 25x=20+ 10+30+ 15+25 = 597.5( 小时 )四、巩固练习1.在一个样本中, 2 出现了 x1次, 3 出现了 x2次, 4 出现了 x3次, 5 出现了 x4次,则这个样本的平均数为 ________.2x1+3x2 + 4x3+ 5x4【答案】x1+x2+ x3+ x42.某人打靶,有 a 次打中 x 环, b 次打中 y 环,则这个人平均每次中靶________环.ax+ bya+ b【答案】五、课堂小结师:这节课你学到了什么新知识?生 1:数据的权和加权平均数的概念.生 2:掌握加权平均数的计算方法.平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数 5 指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系?设计意图 (1) 主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例 2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁 8人,14岁 16人,15 岁 24 人, 16 岁 2 人.求这个跳水队运动员的平均年龄( 结果取整数 ) .解:这个跳水队运动员的平均年龄为13 × 8+14 × 16+15 × 24+16 × 2x=8+ 16+ 24+ 2 ≈14(岁 ) .【例 3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50 只灯泡.它们的使用寿命如下表所示,这批灯泡的平均使用寿命是多少?使用寿命 /x/ h 600≤x< 1000 1000≤x< 1400 1400≤x< 1800 1800≤x< 2200 2200≤x< 2600灯泡只数 5 1012 17 6分析:抽出的50 只灯泡的使用寿命组成一个样本,可以利用样本的平均使用寿命来估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是800 × 5+1200 × 10+ 1600 × 12+2000 × 17+ 2400 × 6x=50 = 1672,即样本平均数为 1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h.三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班50 名学生某一天做数学课外作业所用时间的情况统计表.所用时间 t( 分钟 ) 人数0<t ≤10 410<t ≤20 620<t ≤30 1430<t ≤40 1340<t ≤50 950<t ≤60 4求: (1) 第二组数据的组中值是多少?(2)该班学生平均每天做数学作业所用的时间.【答案】解: (1)15(2)该班学生平均每天做数学作业所用时间为5 × 4+15 × 6+25 × 14+35 × 13+45 × 9+55 × 4x=4+ 6+ 14+ 13+ 9+4=30.8(分钟)四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2中位数和众数第 1 课时中位数和众数( 1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课下表是某公司员工月收入的资料.月收入/ 元45000 18000 10000 5500 5000 3400 3000 1000人数 1 1 1 3 6 1 11 1(1)计算这个公司员工月收入的平均数;(2)若用 (1) 算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+ 18000+10000+5500 × 3+ 5000 × 6+ 3400+ 3000 × 11+10001+ 1+ 1+3+ 6+ 1+ 11+ 1 = 6276.师:很好!那么用第(1) 问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25 名员工中,仅有 3 名员工的收入在6276 元以上,而另外22 名员工的收入都在 6276 元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大 ( 或由大到小 ) 的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25 名员工月收入数据由小到大排列,得到的中位数为3400 ,这说明除去月收入为3400 元的员工,一半员工收入高于3400 元,另一半员工收入低于3400 元.【例 1】教材第117 页例 4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例 2】一家鞋店在一段时间内销售了某种女鞋 30 双,各种尺码鞋的销售量如表所示.你能根据表中的数据为这家鞋店提供进货建议吗?尺码 / cm 22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1 分析:一般来讲,鞋店比较关心哪种尺码的鞋的销售量最大,也就是关心卖出的鞋的尺码组成的一组数据的众数.一段时间内卖出的 300 双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中, 23.5 是这组数据的众数,即 23.5 cm的鞋销售量最大,因此可以建议鞋店多进 23.5 cm的鞋.三、巩固练习1.数据 8, 9,9, 8, 10, 8, 9,9, 8, 10, 7, 9,9, 8 的中位数是 ________,众数是 ________.【答案】 992.一组各不相同的数据23, 27,20, 18,x, 12,它的中位数是21,则x 的值是________.【答案】 223.数据 92, 96, 98, 100, x 的众数是96,则其中位数和平均数分别是( )A.97,96B.96,96.4C.96,97 D.98,97【答案】 B4.如果在一组数据中,23, 25, 28, 22 出现的次数依次为3, 5, 3,1,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24,25B.23,24C.25,25D.23,25【答案】 C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第 2 课时中位数和众数( 2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例 1】在一次环保知识竞赛中,某班50 名学生成绩如下表所示:得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1 分别求出这些学生成绩的众数、中位数和平均数.解:众数 90 分中位数85 分平均数84.6 分【例 2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:( 单位:岁 )甲群: 13, 13,14, 15, 15, 15,16, 17,17.乙群: 3, 4, 5, 5, 6,6, 36, 55.(1)甲群游客的平均年龄是 ________岁,中位数是 ________岁,众数是 ________岁,其中能较好地反映甲群游客年龄特征的是 ________;(2)乙群游客的平均年龄是 ________岁,中位数是 ________岁,众数是 ________岁,其中能较好地反映乙群游客年龄特征的是 ________.解: (1)15 15 15 众数(2)15 5.5 5, 6 中位数【例 3】教材第119 页例 6三、巩固练习某公司的33 名职工的月工资 ( 以元为单位 ) 如下:职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(1)求该公司职工月工资的平均数、中位数、众数;(2) 假设副董事长的工资从5000 元提升到 20000 元,董事长的工资从5500 元提升到30000 元,那么新的平均数、中位数、众数又是多少?( 精确到元 )(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】 (1)20911500 1500 (2)32881500 1500 (3) 中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题: ( 幻灯片出示 )农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用 10 块自然条件相同的试验田进行试验,得到各试验田每公顷的产量 ( 单位: t ) 如下表所示 .甲7.657.507.627.597.657.647.50 7.40 7.41 7.41乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 根据这些数据估计,农科院应该选择哪种甜玉米种子呢? 上面两组数据的平均数分别是 x 甲≈7.54 , x 乙 ≈7.52 ,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图 2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容 —— 方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小 ( 即偏离平均数的大小 ) .2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是1s 2= n[(x 1 -x) 2+ (x 2- x) 2+ + (x n - x) 2]来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是( 7.65 - 7.54 ) 2+( 7.50 - 7.54 ) 2+ +( 7.41 - 7.54 )2s 甲 2= 10≈0.01 , ( 7.55 - 7.52 ) 2+( 7.56 - 7.52 ) 2+ +( 7.49 - 7.52 )2 s 乙 2= 显然 s 甲 2 >s 10 乙 2,即甲种甜玉米的波动较大,这与我们从图1 和图 ≈0.002.2 看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例 1】教材第 125 页例 1【例 2】教材第 127 页例 2s 2 ,那么我们用【例 3】( 幻灯片出示 ) 已知两组数据: 甲: 9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙: 10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算. 解:根据公式可得1 x 甲= 10+ 8( - 0.1 +0.3 - 0.2 + 0.1 + 0.4 + 0- 0.2 - 0.3)1= 10+ 8×0=101 x 乙= 10+ 8(0.2 + 0-0.5 + 0.3 + 0.5 -0.4 - 0.2 +0.1) 1= 10+ 8×0=101s 甲 2= 8[(9.9 - 10) 2+ (10.3 - 10) 2+ + (9.7 - 10) 2]1= 8(0.01 + 0.09 + + 0.09) 1= 8×0.44 =0.0551s 乙 2= 8[(10.2 - 10) 2 +(10 - 10) 2 + + (10.1 - 10) 2]1= 8(0.04 + 0+ + 0.01) 1 = 8×0.84 =0.105从 s 甲 2< s 乙 2 知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为 2,0,- 1,3,- 4,则这组数据的方差为 ________.【答案】62.甲、乙两名学生在相同的条件下各射靶 10 次,命中的环数如下:甲: 7, 8, 6,8, 6, 5, 9, 10, 7, 4乙: 9, 5, 7,8, 7, 6, 8, 6, 7, 72________s 乙 2,所以确定 ________去参加比赛. 经过计算,两人射击环数的平均数相同,但s 甲 【答案】> 乙 四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现 “不同的人,在数学上得到不同的发展”.。