山东德州中考数学模拟试卷及答案

合集下载

2022——2023学年山东省德州市中考数学专项突破仿真模拟卷(一模二模)含答案

2022——2023学年山东省德州市中考数学专项突破仿真模拟卷(一模二模)含答案

2022-2023学年山东省德州市中考数学专项突破仿真模拟卷(一模)一、选一选(本大题共10小题,每小题3分,共30分。

)1.-2018的值是()A.2018B.2018- C.12018D.2018±2.在以下四个标志中,轴对称图形是()A.B.C. D.3.一组数据:6,3,4,5,6的中位数是()A .4B.5C.4.5D.64.下列运算正确的是()A.826x x x ÷= B.3252()x y x y = C.2(1)21a a --=-+ D.22(3)9x x +=+5.如图,若a ∥b ,∠1=58°,则∠2的度数是()A.58°B.112°C.122°D.142°6.已知点A (a ,2017)与点A′(﹣2018,b )是关于原点O 的对称点,则a+b 的值为()A.1B.5C.6D.47.没有透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同,从中任意摸出一个球,记下颜色后,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是()A.49B.59C.12D.238.如图,AB 是⊙O 的切线,A 为切点,连接OB 交⊙O 于点C .若OA =3,tan ∠AOB =43,则BC 的长为()A.2B.3C.4D.59.如图,在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,若12AD DB =,DE =3,则BC 的长度是()A.6B.8C.9D.1010.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④当x >-1时,y 的值随x 值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分)11.“激情同在”第23届于2018年2月在韩国平昌郡举行,场馆的建筑面积约是358000平方米,将358000用科学记数法表示为_____.12.分解因式:22312-=x y _________.13.113-⎛⎫- ⎪⎝⎭=________.14.没有等式组30324x x x <-≥⎧⎨+⎩的解为_____.15.如图,⊙O 的半径为6,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则弧BD的长为________.16.如图,Rt△ABC的直角边BC在x轴上,直线y=23x﹣23直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=kx图象上,则k=_______.三、解答题17.21 12sin602-⎛⎫--++ ⎪⎝⎭18.先化简,再求值:222111xx x x-⎛⎫-÷⎪++⎝⎭,其中1x=-19.如图,在△ABC中,∠ABC=80°,∠BAC=40°.(1)尺规作图作出AB的垂直平分线DE,分别与AC、AB交于点D、E.并连结BD;(保留作图痕迹,没有写作法)(2)证明:△ABC∽△BDC.20.某商店准备甲、乙两种商品共80件,已知2件甲种商品与3件乙种商品的利润相同,3件甲种商品比2件乙商品的利润多150元.(1)每件甲种商品与每件乙种商品的利润各多少元?(2)若甲、乙两种商品的总利润没有低于6600元,则至少甲种商品多少件?21.如图:007渔船在南海海面上沿正东方向匀速航行,在A点观测到渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若007渔船航向没有变,航行半小时后到达B点,观测到渔船C 在东向上.问:007渔船再按原航向航行多长时间,离渔船C的距离最近?22.某中学为推动“时刻听党话永远跟党走”校园主题教育,计划开展四项:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项进行,随机抽取了部分学生,并将结果绘制成图1,图2两幅没有完整的统计图.请图中信息解答下列问题:(1)本次共了名学生;(2)将图1的统计图补充完整;(3)已知在被的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.23.如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B 在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c点A、B、C.(1)求该抛物线的解析式;(2)根据图象直接写出没有等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=22时,求P点坐标.24.如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相交于点D,与AB交于点E,AD平分∠FAB,连接ED并延长交AC的延长线于点F.(1)求证:BC为⊙O的切线.(2)求证:AE=AF;(3)若DE=3,sin∠BDE=13,求AC的长.25.如图1,在△ABC中,∠BAC=90°,AB=AC=4,D是BC上一个动点,连接AD,以AD为边向右侧作等腰直角△ADE,其中∠ADE=90°.(1)如图2,G,H分别是边AB,BC的中点,连接DG,AH,EH.求证:△AGD∽△AHE;(2)如图3,连接BE,直接写出当BD为何值时,△ABE是等腰三角形;(3)在点D从点B向点C运动过程中,求△ABE周长的最小值.2022-2023学年山东省德州市中考数学专项突破仿真模拟卷(一模)一、选一选(本大题共10小题,每小题3分,共30分。

山东省德州市德城区2023届九年级下学期中考三模数学试卷(含答案)

山东省德州市德城区2023届九年级下学期中考三模数学试卷(含答案)

;2023九年级数学中考模拟试题一、选择题(本大题共12小题)1.计算的结果是()A.-3B.3C.-12D.122.下列运算正确的是()A.B.C.D.3.下列图形:其中轴对称图形的个数是()A.4B.3C.2D.14.2022年北京冬奥会国家速滑馆“冰丝带”屋顶上安装的光伏电站,据测算,每年可输出约44.8万度的清洁电力,将44.8万度用科学记数法可以表示为()A.度B.度C.度D.度5.如图,,点A在直线上,点B在直线上,,,,则的度数是()A.B.C.D.6.如图,是⊙的直径,,,,则⊙的半径为()A.B.C.D.7.某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是()A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.78.如图,四边形中.,,交于点E,以点E为圆心,为半径,且的圆交于点F,则阴影部分的面积为()A.B.C.D.9.抛物线上部分点的横坐标,纵坐标的对应值如表:下列结论不正确的是()046A.抛物线的开口向下B.抛物线的对称轴为直线C.抛物线与轴的一个交点坐标为D.函数的最大值为10.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.B.C.D.11.如图,平行四边形的对角线,相交于点O.点E为的中点,连接并延长交于点F,,.下列结论:①;②;③四边形是菱形;④.其中正确结论的个数是()A.4B.3C.2D.112.如图,四边形为矩形,,.点P是线段上一动点,点M为线段上一点.,则的最小值为()A.B.C.D.二、填空题(本大题共6小题,只要求填写最后结果)13.计算:__________.14.如图,四边形为平行四边形,则点B的坐标为________.15.如图,在中,,⊙过点A、C,与交于点D,与相切于点C,若,则__________16.如图,某一时刻太阳光从窗户射入房间内,与地面的夹角,已知窗户的高度,窗台的高度,窗外水平遮阳篷的宽,则的长度为______(结果精确到).17.将从1开始的连续自然数按以下规律排列:若有序数对表示第n行,从左到右第m个数,如表示6,则表示99的有序数对是_______.18.如图,四边形为正方形,点E是的中点,将正方形沿折叠,得到点B的对应点为点F,延长交线段于点P,若,则的长度为___________.三、解答题(本大题共7小题,解答应写出必要的文字说明、证明过程或推演步骤)19.(1)化简:(2)化简:20.2022年3月23日.“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:,B组:.C组:,D组:,E组:,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)本次调查一共随机抽取了名学生的成绩,频数直方图中,所抽取学生成绩的中位数落在组;(2)补全学生成绩频数直方图:(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?(4)学校将从获得满分的5名同学(其中有两名男生,三名女生)中随机抽取两名,参加周一国旗下的演讲,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.21.如图,点A在第一象限,轴,垂足为C,,,反比例函数的图像经过的中点B,与交于点D.(1)求k值;(2)求的面积.22.泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.23.如图,矩形中,点E在上,,与相交于点O.与相交于点F.(1)若平分,求证:;(2)找出图中与相似的三角形,并说明理由;(3)若,,求的长度.24.若二次函数的图象经过点,,其对称轴为直线,与x轴的另一交点为C.(1)求二次函数的表达式;(2)若点M在直线上,且在第四象限,过点M作轴于点N.①若点N在线段上,且,求点M的坐标;②以为对角线作正方形(点P在右侧),当点P在抛物线上时,求点M的坐标.25.问题探究(1)在中,,分别是与的平分线.①若,,如图,试证明;②将①中的条件“”去掉,其他条件不变,如图,问①中的结论是否成立?并说明理由.迁移运用(2)若四边形是圆的内接四边形,且,,如图,试探究线段,,之间的等量关系,并证明.答案1.B解析:==3故选:B.2.C解析:解:A、,故本选项错误,不符合题意;B、,故本选项错误,不符合题意;C、,故本选项正确,符合题意;D、,故本选项错误,不符合题意;故选:C3.B解析:从左到右依次对图形进行分析:第1个图在竖直方向有一条对称轴,是轴对称图形,符合题意;第2个图在水平方向有一条对称轴,是轴对称图形,符合题意;第3个图找不到对称轴,不是轴对称图形,不符合题意;第4个图在竖直方向有一条对称轴,是轴对称图形,符合题意;因此,第1、2、4都是轴对称图形,共3个.故选:B.4.C解析:解:44.8万度度.故选:C.5.A解析:解:∵AB=BC,∴∠BAC=∠C=25°,∵,∴∠ABD=∠1=60°,∴∠2=180°-∠C-∠BAC-∠ABD=180°-25°-25°-60°=70°,故选A.6.D解析:解:如图,连接CO并延长CO交⊙于点E,连接AE,∵OA=OC,∴∠ACE=∠CAB,∵,∴∠ACD=∠ACE,∴,∴AE=AD=2,∵CE是直径,∴∠CAE=90°,∴,∴⊙的半径为.故选:D.7.D解析:解:A、由题意可知,最高成绩是9.4环,故此选项不合题意;B、平均成绩是(环,故选项不合题意;C、9环出现了3次,出现次数最多,所以这组成绩的众数是9环,故此选项不合题意;D、这组成绩的方差是,故此选项符合题意.故选:D.8.B解析:解:过点E作EG⊥CD于点G,如图所示:∵DE⊥AD,∴∠ADE=90°,∵∠A=60°,∴∠AED=90°-∠A=30°,∵,∴,∵ED=EF,∴,∴,∵,∴,∵DE=6,,∴,,∴,∴,.故选:B.9.C解析:解:把,,分别代入得,解得,抛物线解析式为,,抛物线开口向下,所以A选项正确,不符合题意;当时,,解得,,抛物线与轴的交点坐标为,,所以C选项错误,符合题意.,抛物线的对称轴为直线,所以B选项正确,不符合题意;当时,有最大值,所以D选项正确,不符合题意;故选:C.10.A解析:解:∵这批椽的数量为x株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x−1)文,依题意得:3(x−1)x=6210,故选:A.11.A解析:解:点为的中点,,又,,,是等边三角形,,,,即,故①正确;在平行四边形中,,,,,在和中,,,,四边形是平行四边形,又,点为的中点,,平行四边形是菱形,故③正确;,在中,,,故②正确;在平行四边形中,,又点为的中点,,故④正确;综上所述:正确的结论有4个,故选:A.12.D解析:设AD的中点为O,以O点为圆心,AO为半径画圆∵四边形为矩形∴∵∴∴∴点M在O点为圆心,以AO为半径的圆上连接OB交圆O与点N∵点B为圆O外一点∴当直线BM过圆心O时,BM最短∵,∴∴∵故选:D.13.解析:解:,故答案为:.14.解析:解:四边形为平行四边形,,即将点平移到的过程与将点平移到的过程保持一致,将点平移到的过程是:(向左平移4各单位长度);(上下无平移);将点平移到的过程按照上述一致过程进行得到,即,故答案为:.15.##64度解析:如下图所示,连接OC从图中可以看出,是圆弧对应的圆周角,是圆弧对应的圆心角得.∵BC是圆O的切线∴∵∴∴∴故答案为:.16.4.4m##4.4米解析:解:根据题意得:AD∥CP,∵∠DPC=30°,∴∠ADB=30°,∵,∴,∵AF=2m,CF=1m,∴BC=AF+CF-AB=2.54m,∴,即的长度为4.4m.故答案为:4.4m.17.解析:第1行的第一个数字:第2行的第一个数字:第3行的第一个数字:第4行的第一个数字:第5行的第一个数字:…..,设第行的第一个数字为,得设第行的第一个数字为,得设第n行,从左到右第m个数为当时∴∵为整数∴∴∴故答案为:.18.2解析:解:连接AP,如图所示,∵四边形ABCD为正方形,∴AB=BC=AD=6,∠B=∠C=∠D=90°,∵点E是BC的中点,∴BE=CE=AB=3,由翻折可知:AF=AB,EF=BE=3,∠AFE=∠B=90°,∴AD=AF,∠AFP=∠D=90°,在Rt△AFP和Rt△ADP中,,∴Rt△AFP≌Rt△ADP(HL),∴PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,在Rt△PEC中,根据勾股定理得:EP2=EC2+CP2,∴(3+x)2=32+(6−x)2,解得x=2,则DP的长度为2,故答案为:2.19.(1);(2)解析:(1)解:原式(2)解:20.(1)400 名,D(2)见解析(3)1680人(4)见解析,解析:(1)解:名,所以本次调查一天随机抽取400 名学生的成绩,频数直方图中,∴第200位和201位数落在D组,即所抽取学生成绩的中位数落在D组;故答案为:400,D(2)解:E组的人数为名,补全学生成绩频数直方图如下图:(3)解:该校成绩优秀的学生有(人);(4)解:根据题意,画树状图如图,共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,恰好抽中一名男生和一名女生的概率为.21.(1)2(2)解析:(1)解:根据题意可得,在中,,,,,,,,的中点是B,,;(2)解:当时,,,,.22.A种茶每盒100元,B种茶每盒150元解析:解:设第一次购进A种茶每盒x元,B种茶每盒y元,根据题意,得解,得A种茶每盒100元,B种茶每盒150元.23.(1)证明见解析(2),与相似,理由见解析(3)解析:(1)证明:如图所示:四边形为矩形,,,,,又平分,,,又与互余,与互余,;(2)解:,与相似.理由如下:,,,又,,,,;(3)解:,,,,在矩形中对角线相互平分,图中,①,,,,在矩形中,②,由①②,得(负值舍去),.24.(1)(2)①;②解析:(1)解:二次函数的图象经过点,.又抛物线经过点,对称轴为直线,解得∶抛物线的表达式为.(2)解∶①设直线的表达式为.点A,B的坐标为,,∴,解得∶,直线的表达式为.根据题意得∶点C与点关于对称轴直线对称,.设点N的坐标为.轴,.∴.,解,得.点M的坐标;②连接与交与点E.设点M的坐标为,则点N的坐标为四边形是正方形,,,.∵MN⊥x轴,轴.E的坐标为...∴P的坐标.点P在抛物线上,.解,得,.点P在第四象限,舍去.即.点M坐标为.25.(1)①见解析;②结论成立,见解析;(2),见解析解析:(1)①,,.又、分别是、的平分线.点D、E分别是、的中点.,..②结论成立,理由如下:设与交于点F,由条件,得,.又...∴.在上截取.由∵BF=BF,∴...又∵CF=CF,∴.∴.(2),理由如下:∵四边形是圆内接四边形,∴.∵,∴,,∴.∴.作点B关于的对称点E,连结,,的延长线与的延长线交于点M,与交于点F,∴,.∴.∴∴∴∵AE、DC分别是、的角平分线由②得.。

山东省德州地区2024届中考四模数学试题含解析

山东省德州地区2024届中考四模数学试题含解析

山东省德州地区2024届中考四模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=2.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2 C.|a|>2 D.2a<03.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()A.众数B.中位数C.平均数D.方差4.下列算式的运算结果正确的是()A.m3•m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m25.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2B.3cm2C.4πcm2D.3πcm26.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m7.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n28.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是()A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)9.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A.22B.2C.3D.210.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.11.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、B C,如果∠P=∠C,⊙O 的半径为1,则劣弧弧AB的长为()A.13πB.14πC.16πD.112π12.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).15.对角线互相平分且相等的四边形是()A.菱形B.矩形C.正方形D.等腰梯形16.如图,BC=6,点A为平面上一动点,且∠BAC=60°,点O为△ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD交于点P,则OP的最小值是_____17.已知⊙O的半径为5,由直径AB的端点B作⊙O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为______,此函数的最大值是____,最小值是______.18.抛物线y=3x2﹣6x+a 与x 轴只有一个公共点,则 a 的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:2﹣1+|312+2cos30°20.(6分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?21.(6分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.22.(8分)如图,四边形ABCD ,AD ∥BC ,DC ⊥BC 于C 点,AE ⊥BD 于E ,且DB =DA .求证:AE =CD .23.(8分)如图,直线y=kx+b (k≠0)与双曲线y=m x(m≠0)交于点A (﹣12,2),B (n ,﹣1).求直线与双曲线的解析式.点P 在x 轴上,如果S △ABP =3,求点P 的坐标.24.(10分)计算:01113(π3)3tan30()2---+-.25.(10分)在“双十二”期间,,A B 两个超市开展促销活动,活动方式如下: A 超市:购物金额打9折后,若超过2000元再优惠300元;B 超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B 两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在B 商场购买的数量比在A 商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)26.(12分)如图,在△ABC 中,∠ACB =90°,∠ABC =10°,△CDE 是等边三角形,点D 在边AB 上.如图1,当点E 在边BC 上时,求证DE =EB ;如图2,当点E 在△ABC 内部时,猜想ED 和EB 数量关系,并加以证明;如图1,当点E 在△ABC 外部时,EH ⊥AB 于点H ,过点E 作GE ∥AB ,交线段AC 的延长线于点G ,AG =5CG ,BH =1.求CG 的长.27.(12分) 如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,且满足BF =EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作FG 的平行线,交DA 的延长线于点N ,连接NG .求证:BE =2CF ;试猜想四边形BFGN 是什么特殊的四边形,并对你的猜想加以证明.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C【解题分析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.2、B【解题分析】试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.故选B.考点:实数与数轴.3、B【解题分析】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.【题目详解】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.故选B.【题目点拨】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.4、B【解题分析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.【题目详解】A、m3•m2=m5,故此选项错误;B、m5÷m3=m2(m≠0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B.【题目点拨】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.5、A【解题分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【题目详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【题目点拨】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.6、D【解题分析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.7、C【解题分析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.8、A【解题分析】分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),故选A.点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.9、B【解题分析】首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可.【题目详解】AB的中点D的坐标是(4,-2),∵C (a ,-a )在一次函数y=-x 上,∴设过D 且与直线y=-x 垂直的直线的解析式是y=x+b ,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1.根据题意得:6{y x y x--==, 解得:3{3x y ==-, 则交点的坐标是(3,-3). 则这个圆的半径的最小值是:22(43)(23)-+-+=2.故选:B【题目点拨】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C (a ,-a ),一定在直线y=-x 上,是关键.10、D【解题分析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D. 考点:简单几何体的三视图.11、A 【解题分析】利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=12∠O ,加上∠P=∠C 可计算写出∠O=60°,然后根据弧长公式计算劣弧AB 的长.【题目详解】解:∵PA 切⊙O 于点A ,∴OA ⊥PA ,∴∠OAP=90°,∵∠C=12∠O ,∠P=∠C , ∴∠O=2∠P ,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的长=60?•11 1803ππ=.故选:A.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.12、A【解题分析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【题目详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【题目点拨】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2 233π-【解题分析】试题分析:连接OC,求出∠D和∠COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=23,∴阴影部分的面积是S△OCD﹣S扇形COB =12×2×23﹣2602360π⨯=23﹣23π,故答案为23﹣23π.考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.14、28%.【解题分析】用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.【题目详解】由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为28100⨯100%=28%.故答案为:28%.【题目点拨】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.15、B【解题分析】根据平行四边形的判定与矩形的判定定理,即可求得答案.【题目详解】∵对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∴对角线相等且互相平分的四边形一定是矩形.故选B.【题目点拨】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.16、33【解题分析】试题分析:如图,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE ,∴△DAC ≌△BAE (SAS ),∴∠ADC=∠ABE ,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴点P 在以BC 为直径的圆上,∵外心为O ,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=3,所以OP 的最小值是33-.故答案为33-.考点:1.三角形的外接圆与外心;2.全等三角形的判定与性质.17、15-x 2+x+20(0<x <10)854不存在. 【解题分析】先连接BP ,AB 是直径,BP ⊥BM ,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP ,那么有△PMB ∽△PAB ,于是PM :PB=PB :AB ,可求22210,10PB x PM AB -==从而有22210122055x AP PM x x x -+=+=-++(0<x <10),再根据二次函数的性质,可求函数的最大值.【题目详解】如图所示,连接PB , ∵∠PBM=∠BAP ,∠BMP=∠APB=90°,∴△PMB ∽△PAB ,∴PM :PB=PB :AB ,∴22210,10PB x PM AB -== ∴22210122055x AP PM x x x -+=+=-++(0<x <10), ∵105a =-<, ∴AP+2PM 有最大值,没有最小值,∴y 最大值=2485,44ac b a -= 故答案为21205x x -++(0<x <10),854,不存在.【题目点拨】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.18、3【解题分析】根据抛物线与x轴只有一个公共交点,则判别式等于0,据此即可求解.【题目详解】∵抛物线y=3x2﹣6x+a与x轴只有一个公共点,∴判别式Δ=36-12a=0,解得:a=3,故答案为3【题目点拨】本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果△>0,则抛物线与x轴有两个不同的交点;如果△=0,与x轴有一个交点;如果△<0,与x轴无交点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、123.【解题分析】原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.【题目详解】原式=1233+2×32=123【题目点拨】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.20、每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田13亩.【解题分析】设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解.【题目详解】解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩.可列方程组为36 4.7 53 5.5 x yx y+=⎧⎨+=⎩解得0.913 xy=⎧⎪⎨=⎪⎩答:每亩山田相当于实田0.9亩,每亩场地相当于实田13亩.21、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+83或16﹣83【解题分析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.【题目详解】(1)∵AB=AD,CB=CD,∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,∴AC垂直平分BD,故答案为AC垂直平分BD;(2)四边形FMAN是矩形.理由:如图2,连接AF,∵Rt△ABC中,点F为斜边BC的中点,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四边形AMFN是矩形;(3)BD′的平方为16+83或16﹣83.分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,如图所示:过D'作D'E⊥AB,交BA的延长线于E,由旋转可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=22=AD',∴D'E=12AD'=2,AE=6,∴BE=22+6,∴Rt△BD'E中,BD'2=D'E2+BE2=(2)2+(22+6)2=16+83②以点A为旋转中心将正方形ABCD顺时针旋转60°,如图所示:过B作BF⊥AD'于F,旋转可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=22=AD',∴BF=12AB=2,AF6,∴D'F26,∴Rt△BD'F中,BD'2=BF2+D'F2=2)2+(26)2=16﹣3综上所述,BD′平方的长度为316﹣3【题目点拨】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.22、证明见解析.【解题分析】由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.【题目详解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于点C,AE⊥BD于点E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【题目点拨】本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.23、(1)y=﹣2x+1;(2)点P的坐标为(﹣32,0)或(52,0).【解题分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出122x-=,解之即可得出结论.【题目详解】(1)∵双曲线y=mx(m≠0)经过点A(﹣12,2),∴m=﹣1.∴双曲线的表达式为y=﹣1x.∵点B(n,﹣1)在双曲线y=﹣1x上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣12,2),B(1,﹣1),∴1k b=22k b=1⎧-+⎪⎨⎪+-⎩,解得k=2b=1-⎧⎨⎩∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=12,∴点C(12,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣12,2),B(1,﹣1),∴12×3|x﹣12|=3,即|x﹣12|=2,解得:x1=﹣32,x2=52.∴点P的坐标为(﹣32,0)或(52,0).【题目点拨】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出122x-=.24、4.【解题分析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.【题目详解】解:原式1132-+=4.故答案为4.【题目点拨】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.25、(1)这种篮球的标价为每个50元;(2)见解析【解题分析】(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球42000.8x个,在A超市可买篮球42003000.9x+个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得. 【题目详解】(1)设这种篮球的标价为每个x元,依题意,得420042003005 0.80.9x x+-=,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,单独在B超市购买:100×50×0.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:20000.950⨯=4449,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【题目点拨】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.26、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.【解题分析】(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【题目详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2) ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.27、(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解题分析】(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.【题目详解】(1)证明:过F作FH⊥BE于H点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四边形,∵EF=BF,∴NB=BF,∴平行四边NBFG是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.。

山东省德州市2024年中考数学真题试题含解析

山东省德州市2024年中考数学真题试题含解析

2024年山东省德州市中考数学试卷一、选择题(本大题共12小题,共48.0分) 1. -12的倒数是( )A. −2B. 12C. 2D. 12. 下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.3. 据国家统计局统计,我国2024年国民生产总值(GDP )为900300亿元.用科学记数法表示900300亿是( ) A. 9.003×1012 B. 90.03×1012 C. 0.9003×1014 D. 9.003×1013 4. 下列运算正确的是( )A. (−2a )2=−4a 2B. (a +a )2=a 2+a 2C. (a 5)2=a 7D. (−a +2)(−a −2)=a 2−45. 若函数y =aa 与y =ax 2+bx +c 的图象如图所示,则函数y =kx +b 的大致图象为( )A. B.C. D.6. 不等式组{5a +2>3(a −1)12a −1≤7−32a 的全部非负整数解的和是( )A. 10B. 7C. 6D. 0 7. 下列命题是真命题的是( )A. 两边及其中一边的对角分别相等的两个三角形全等B. 平分弦的直径垂直于C. 对边平行且一组对角相等的四边形是平行四边形D. 两条直线被第三条直线所截,内错角相等8. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A. {a −a =4.5a −12a =1B. {a −a =4.5a −12a =1C. {a −a =4.512a −a =1D. {a −a =4.512a −a =19. 如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是( )A. 130∘B. 140∘C. 150∘D. 160∘10. 甲、乙是两个不透亮的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个嬉戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b .若a ,b 能使关于x 的一元二次方程ax 2+bx +1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( ) A. 23B. 59C. 49D. 1311. 在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),肯定能使a 2−a 1a 2−a 1<0成立的是( )A. a =3a −1(a <0)B. a =−a 2+2a −1(a >0)C. a =−√3a(a >0)D. a =a 2−4a −1(a <0)12. 如图,正方形ABCD ,点F 在边AB 上,且AF :FB =1:2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接CM .有如下结论:①DE =AF ;②AN =√24AB ;③∠ADF =∠GMF ;④S △ANF :S 四边形CNFB =1:8.上述结论中,全部正确结论的序号是( ) A. ①② B. ①③ C. ①②③ D. ②③④二、填空题(本大题共6小题,共24.0分) 13. |x -3|=3-x ,则x 的取值范围是______. 14. 方程6(a +1)(a −1)-3a −1=1的解为______.15. 如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,假如梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得∠CDO =50°,那么AC 的长度约为______米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)16. 已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=______.17. 如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,aa ⏜=aa ⏜,CE =1,AB =6,则弦AF 的长度为______. 18. 如图,点A 1、A 3、A 5…在反比例函数y =aa (x >0)的图象上,点A 2、A 4、A 6……在反比例函数y =−aa (x >0)的图象上,∠OA 1A 2=∠A 1A 2A 3=∠A 2A 3A 4=…=∠α=60°,且OA 1=2,则A n (n 为正整数)的纵坐标为______.(用含n 的式子表示)三、计算题(本大题共1小题,共10.0分)19. 习近平总书记说:“读书可以让人保持思想活力,让人得到才智启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面对社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同. (1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳实力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.四、解答题(本大题共6小题,共68.0分) 20. 先化简,再求值:(2a -1a )÷(a 2+a 2aa-5aa )•(a 2a +2a a +2),其中√a +1+(n -3)2=0.21.《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康状况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成果进行分析.成果如下:七年级80 74 83 63 90 91 74 61 82 62 八年级74 61 83 91 60 85 46 84 74 82 (1)依据上述数据,补充完成下列表格.整理数据:优秀良好及格不及格七年级 2 3 5 0八年级 1 4 ______ 1分析数据:年级平均数众数中位数七年级76 74 77八年级______ 74 ______(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康状况更好,并说明理由.22.如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=2√3.(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;(2)依据(1)的作法,结合已有条件,请写出已知和求证,并证明;(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.23.下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30 25 0.1B50 50 0.1C100 不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为______;若选择方式B最省钱,则月通话时间x的取值范围为______;若选择方式C最省钱,则月通话时间x的取值范围为______;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.24.(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请干脆写出HD:GC:EB的结果(不必写计算过程)(2)将图1中的菱形AEGH绕点A旋转肯定角度,如图2,求HD:GC:EB;(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有改变吗?假如有改变,干脆写出改变后的结果(不必写计算过程);若无改变,请说明理由.mx-4与x轴交于A(x1,0),B(x2,25.如图,抛物线y=mx2-52.0)两点,与y轴交于点C,且x2-x1=112(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥9时,均有y1≤y2,求a的取值范围;2(3)抛物线上一点D(1,-5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.答案和解析1.【答案】A【解析】解:-的到数是-2,故选:A.依据倒数的定义求解即可.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.依据轴对称图形的概念先求出图形中轴对称图形,再依据中心对称图形的概念得出其中不是中心对称的图形.题考查了中心对称图形与轴对称图形的概念,轴对称图形:假如一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,假如把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.3.【答案】D【解析】解:将900300亿元用科学记数法表示为:9.003×1013.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.依据积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.此题考查整式的运算,驾驭各运算法则是关键,还要留意符号的处理.5.【答案】C【解析】解:依据反比例函数的图象位于二、四象限知k<0,依据二次函数的图象确知a>0,b<0,∴函数y=kx+b的大致图象经过二、三、四象限,故选:C.首先依据二次函数及反比例函数的图象确定k、b的符号,然后依据一次函数的性质确定答案即可.本题考查了函数的图象的学问,解题的关键是了解三种函数的图象的性质,难度不大.6.【答案】A【解析】解:,解不等式①得:x>-2.5,解不等式②得:x≤4,∴不等式组的解集为:-2.5<x≤4,∴不等式组的全部非负整数解是:0,1,2,3,4,∴不等式组的全部非负整数解的和是0+1+2+3+4=10,故选:A.分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.本题主要考查解一元一次不等式组的基本技能,精确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7.【答案】C【解析】解:A、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A错误,是假命题;B、平分弦(非直径)的直径垂直于弦,故B错误,是假命题;C、一组对边平行且一组对角相等的四边形是平行四边形,故C正确,是真命题;D、两条平行线被第三条直线所截,内错角相等,故D错误,是假命题;故选:C.A、依据全等三角形的判定方法,推断即可.B、依据垂径定理的推理对B进行推断;C、依据平行四边形的判定进行推断;D、依据平行线的判定进行推断.本题考查了命题与定理:推断一件事情的语句,叫做命题.很多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,有些命题的正确性是用推理证明的,这样的真命题叫做定理.8.【答案】B【解析】解:设绳长x尺,长木为y尺,依题意得,故选:B.本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此可列方程组求解.此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.9.【答案】B【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.依据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,娴熟驾驭圆内接四边形的性质是解本题的关键.10.【答案】C【解析】解:(1)画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为,故选:C.首先依据题意画出树状图,然后由树状图求得全部等可能的结果,利用一元二次方程根的判别式,即可判定各种状况下根的状况,然后利用概率公式求解即可求得乙获胜的概率本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事务;解题时要留意此题是放回试验还是不放回试验.11.【答案】D【解析】解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.依据各函数的增减性依次进行推断即可.本题主要考查了一次函数、反比例函数和二次函数的图象和性质,须要结合图象去一一分析,有点难度.12.【答案】C【解析】解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.①正确.证明△ADF≌△DCE(ASA),即可推断.②正确.利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.③正确.作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,通过计算证明MH=CH即可解决问题.④错误.设△ANF的面积为m,由AF∥CD,推出==,△AFN∽△CDN,推出△ADN的面积为3m,△DCN的面积为9m,推出△ADC的面积=△ABC的面积=12m,由此即可推断.本题考查正方形的性质,全等三角形的判定和性质,相像三角形的判定和性质等学问,解题的关键是娴熟驾驭基本学问,学会利用参数解决问题,属于中考选择题中的压轴题.13.【答案】x≤3【解析】解:3-x≥0,∴x≤3;故答案为x≤3;依据肯定值的意义,肯定值表示距离,所以3-x≥0,即可求解;本题考查肯定值的意义;理解肯定值的意义是解题的关键.14.【答案】x=-4【解析】解:-=1,=1,=1,=1,x+1=-3,x=-4,经检验x=-4是原方程的根;故答案为x=-4;依据分式方程的解法,先将式子通分化简为=1,最终验证根的状况,进而求解;本题考查分式方程的解法;娴熟驾驭分式方程的解法,勿遗漏验根环节是解题的关键.15.【答案】1.02【解析】解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64-4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.干脆利用锐角三角函数关系得出AO,CO的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出AO,CO的长是解题关键.16.【答案】0.7【解析】解;依据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7,故答案为:0.7依据题意列出代数式解答即可.此题考查解一元一次不等式,关键是依据题意列出代数式解答.17.【答案】485【解析】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r-1,OA=r,在Rt△OAE中,32+(r-1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5-OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.连接OA、OB,OB交AF于G,如图,利用垂径定理得到AE=BE=3,设⊙O的半径为r,则OE=r-1,OA=r,依据勾股定理得到32+(r-1)2=r2,解得r=5,再利用垂径定理得到OB⊥AF,AG=FG,则AG2+OG2=52,AG2+(5-OG)2=62,然后解方程组求出AG,从而得到AF的长.本题考查了圆周角、弧、弦的关系:在同圆或等圆中,假如两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.18.【答案】(-1)n+1√3(√a−√a−1)【解析】解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=-,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,-),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1-(舍),x2=1+,∴EF====2(-1)=2-2,A2D2===,即A2的纵坐标为-;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△FA3D3中,∠FA3D3=30°,∴FD3=,∵OD3=2+2-2+=x,解得:x1=(舍),x2=+;∴GF===2(-)=2-2,A3D3===(-),即A3的纵坐标为(-);…∴A n(n为正整数)的纵坐标为:(-1)n+1();故答案为:(-1)n+1();先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF是等边三角形,作高线A2D2,设A2(x,-),依据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发觉点A1、A3、A5…在x轴的上方,纵坐标为正数,点A2、A4、A6……在x轴的下方,纵坐标为负数,可以利用(-1)n+1来解决这个问题.本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形30度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.19.【答案】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x-7=0∴(2x-1)(2x+7)=0,∴x=0.5=50%或x=-3.5(舍)答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×278=432<500 答:校图书馆能接纳第四个月的进馆人次. 【解析】 (1)先分别表示出其次个月和第三个月的进馆人次,再依据第一个月的进馆人次加其次和第三个月的进馆人次等于608,列方程求解; (2)依据(1)所计算出的月平均增长率,计算出第四个月的进馆人次,再与500比较大小即可.本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.20.【答案】解:(2a -1a )÷(a 2+a 2aa -5a a )•(a 2a +2a a +2) =2a −a aa ÷a 2+a 2−5a 2aa •a 2+4a 2+4aa 2aa=2a −a aa •aa (a +2a )(a −2a )•(a +2a )22aa=-a +2a 2aa .∵√a +1+(n -3)2=0.∴m +1=0,n -3=0,∴m =-1,n =3.∴-a +2a 2aa =-−1+2×32×(−1)×3=56.∴原式的值为56.【解析】先通分,再利用因式分解,把可以分解的分解,然后统一化成乘法运算,约分化简,再将所给等式化简,得出m 和n 的值,最终代回化简后的分式即可.本题是分式化简求值题,须要娴熟驾驭通分和因式分解及分式乘除法运算.21.【答案】74 78【解析】解:(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)依据以上数据可得:七年级学生的体质健康状况更好.(1)依据平均数和中位数的概念解答即可;(2)依据样本估计总体解答即可;(3)依据数据调查信息解答即可.本题考查了众数、中位数以及平均数的运用,驾驭众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.22.【答案】解:(1)如图,(2)已知:如图,∠BPD =120°,点A 、C 分别在射线PB 、PD 上,∠PAC =30°,AC =2√3,过A 、C 分别作PB 、PD 的垂线,它们相交于O ,以OA 为半径作⊙O ,OA ⊥PB ,求证:PB 、PC 为⊙O 的切线;证明:∵∠BPD =120°,PAC =30°,∴∠PCA =30°,∴PA =PC ,连接OP ,∵OA ⊥PA ,PC ⊥OC ,∴∠PAO =∠PCO =90°,∵OP =OP ,∴Rt △PAO ≌Rt △PCO (HL )∴OA =OC ,∴PB 、PC 为⊙O 的切线;(3)∵∠OAP =∠OCP =90°-30°=60°,∴△OAC 为等边三角形, ∴OA =AC =2√3,∠AOC =60°,∵OP 平分∠APC ,∴∠APO =60°,∴AP =√33×2√3=2,∴劣弧AC 与线段PA 、PC 围成的封闭图形的面积=S 四边形APCO -S 扇形AOC =2×12×2√3×2-60⋅a ⋅(2√3)2360=4√3-2π. 【解析】(1)过A 、C 分别作PB 、PD 的垂线,它们相交于O ,然后以OA 为半径作⊙O 即可;(2)写出已知、求证,然后进行证明;连接OP ,先证明Rt △PAO ≌Rt △PCO ,然后依据切线的判定方法推断PB 、PC 为⊙O 的切线;(3)先证明△OAC 为等边三角形得到OA=AC=2,∠AOC=60°,再计算出AP=2,然后依据扇形的面积公式,利用劣弧AC 与线段PA 、PC 围成的封闭图形的面积进行计算. 本题考查了作图-困难作图:困难作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟识基本几何图形的性质,结合几何图形的基本性质把困难作图拆解成基本作图,逐步操作.也考查了圆周角定理和扇形面积公式.23.【答案】0≤x ≤853 853≤x ≤1753 x >1753【解析】解:(1)∵0.1元/min=6元/h ,∴由题意可得,y 1=, y 2=,y 3=100(x≥0);(2)作出函数图象如图:结合图象可得:若选择方式A最省钱,则月通话时间x的取值范围为:0≤x≤,若选择方式B最省钱,则月通话时间x的取值范围为:≤x≤,若选择方式C最省钱,则月通话时间x的取值范围为:x>.故答案为:0≤x≤,≤x≤,x>.(3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,∴结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=80分别代入y2=,可得6x-250=80,解得:x=55,∴小王该月的通话时间为55小时.(1)依据题意可以分别写出y1、y2、y3关于x的函数关系式,并写出相应的自变量的取值范围;(2)依据题意作出图象,结合图象即可作答;(3)结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=81代入y2关于x的函数关系式,解方程即可得出小王该月的通话时间.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题须要的条件.24.【答案】解:(1)连接AG,∵菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,∴∠GAE=∠CAB=30°,AE=AH,AB=AD,∴A,G,C共线,AB-AE=AD-AH,∴HD=EB,延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC于点O,则GMCN也为菱形,∴GC ⊥MN ,∠NGO =∠AGE =30°, ∴aa aa =cos30°=√32,∵GC =2OG ,∴aa aa =1√3,∵HGND 为平行四边形,∴HD =GN ,∴HD :GC :EB =1:√3:1.(2)如图2,连接AG ,AC ,∵△ADC 和△AHG 都是等腰三角形,∴AD :AC =AH :AG =1:√3,∠DAC =∠HAG =30°,∴∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:√3,∵∠DAB =∠HAE =60°,∴∠DAH =∠BAE ,在△DAH 和△BAE 中, {aa =aa∠aaa =∠aaaaa =aa∴△DAH ≌△BAE (SAS )∴HD =EB ,∴HD :GC :EB =1:√3:1.(3)有改变.如图3,连接AG ,AC ,∵AD :AB =AH :AE =1:2,∠ADC =∠AHG =90°,∴△ADC ∽△AHG ,∴AD :AC =AH :AG =1:√5,∵∠DAC =∠HAG ,∴∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:√5,∵∠DAB =∠HAE =90°,∴∠DAH =∠BAE ,∵DA :AB =HA :AE =1:2,∴△ADH ∽△ABE ,∴DH :BE =AD :AB =1:2,∴HD :GC :EB =1:√5:2【解析】(1)连接AG ,由菱形AEGH 的顶点E 、H 在菱形ABCD 的边上,且∠BAD=60°,易得A ,G ,C 共线,延长HG 交BC 于点M ,延长EG 交DC 于点N ,连接MN ,交GC 于点O ,则GMCN 也为菱形,利用菱形对角线相互垂直,结合三角函数可得结论;(2)连接AG ,AC ,由△ADC 和△AHG 都是等腰三角形,易证△DAH ∽△CAG 与△DAH ≌△BAE ,利用相像三角形的性质及菱形的性质可得结论;(3)连接AG ,AC ,易证△ADC ∽△AHG 和△ADH ∽△ABE ,利用相像三角形的性质可得结论.本题是菱形与相像三角形,全等三角形,三角函数等学问点的综合运用,难度较大.25.【答案】解:(1)函数的对称轴为:x =-a 2a =54=a 1+a 22,而且x 2-x 1=112, 将上述两式联立并解得:x 1=-32,x 2=4,则函数的表达式为:y =a (x +32)(x -4)=a (x 2-4x +32x -6),即:-6a =-4,解得:a =23, 故抛物线的表达式为:y =23x 2-53x -4;(2)当x 2=94时,y 2=2,①当a ≤a +2≤54时(即:a ≤-34), y 1≤y 2,则23a 2-53a -4≤2,解得:-2≤a ≤-92,而a ≤-34,故:-2≤a ≤−34;②当54≤a ≤a +2(即a ≥54)时,则23(a +2)2-53(a +2)-4≤2,同理可得:-34≤a ≤54,故a 的取值范围为:-2≤a ≤54;(3)∵当∠BDC =∠MCE ,△MDC 为等腰三角形,故取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点, 点H (12,-92), 将点C 、D 坐标代入一次函数表达式:y =mx +n 并解得:直线CD 的表达式为:y =-x -4,同理可得:直线BD 的表达式为:y =53x -203…①,直线DC ⊥MH ,则直线MH 表达式中的k 值为1,同理可得直线HM 的表达式为:y =x -5…②,联立①②并解得:x =52,故点M (52,-52).【解析】(1)函数的对称轴为:x=-==,而且x 2-x 1=,将上述两式联立并解得:x 1=-,x 2=4,即可求解;(2)分a≤a+2≤、≤a≤a+2两种状况,分别求解即可; (3)取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等,其中(2),要留意分类求解,避开遗漏.。

2022学年山东省德州市中考数学模拟试题(含答案解析)

2022学年山东省德州市中考数学模拟试题(含答案解析)

2022学年山东省德州市中考数学模拟测试卷注意事项1.考生要认真填写考场号和座位序号。

2.测试卷所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(共10小题,每小题3分,共30分)1.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸2.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.143.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.4.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A.0.5 B.1 C.3 D.π5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.32πB.43πC.4 D.2+32π6.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是()A.B.C.D.7.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C .1010123x x =+D .1010202x x=+ 8.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+B .()2213y x =-+C .()2313y x =-++D .()2313y x =--+ 9.下列计算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 6C .a 6﹣a 2=a 4D .a 5+a 5=a 10 10.已知关于x 的一元二次方程()2220x x m +--=有实数根,则m 的取值范围是( )A .1mB .1m <C .m 1≥D .1m二、填空题(本大题共6个小题,每小题3分,共18分)11.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .12.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.13.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (用n 表示)14.,A B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有____________千米.15.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是2.其中正确的是________.(把你认为正确结论的序号都填上)16.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.三、解答题(共8题,共72分)17.(8分)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=1.求⊙O的面积;若D为⊙O上一点,且△ABD 为等腰三角形,求CD的长.18.(8分)( 19﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化简,再求值:1﹣2222244x y x y x y x xy y--÷+++,其中x 、y 满足|x ﹣2|+(2x ﹣y ﹣3)2=1. 19.(8分)已知△ABC 中,D 为AB 边上任意一点,DF ∥AC 交BC 于F ,AE ∥BC ,∠CDE=∠ABC =∠ACB =α,(1)如图1所示,当α=60°时,求证:△DCE 是等边三角形;(2)如图2所示,当α=45°时,求证:CD DE =2; (3)如图3所示,当α为任意锐角时,请直接写出线段CE 与DE 的数量关系:CE DE =_____.20.(8分)如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点. 求这个二次函数的解析式;设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC∆的面积.21.(8分)在“双十二”期间,,A B 两个超市开展促销活动,活动方式如下:A 超市:购物金额打9折后,若超过2000元再优惠300元;B 超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B 两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在B 商场购买的数量比在A 商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)22.(10分)如图,在四边形ABCD 中,点E 是对角线BD 上的一点,EA ⊥AB ,EC ⊥BC ,且EA=EC .求证:AD=CD .23.(12分)如图,AB 是O 的直径,C 是圆上一点,弦CD AB ⊥于点E ,且DC AD =.过点A 作O 的切线,过点C 作DA 的平行线,两直线交于点F ,FC 的延长线交AB 的延长线于点G .(1)求证:FG 与O 相切;(2)连接EF ,求tan EFC ∠的值.24.抛物线23y ax bx a =+-经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .求此抛物线的解析式;已知点D (m,-m-1) 在第四象限的抛物线上,求点D 关于直线BC 对称的点D’的坐标;在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使PCB CBD ∠=∠,若存在,请求出P 点的坐标;若不存在,请说明理由.2022学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】分析:设⊙O 的半径为r .在Rt △ADO 中,AD=5,OD=r-1,OA=r ,则有r 2=52+(r-1)2,解方程即可.详解:设⊙O 的半径为r .在Rt △ADO 中,AD=5,OD=r-1,OA=r ,则有r 2=52+(r-1)2,解得r=13,∴⊙O 的直径为26寸,故选C.点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题2、C【答案解析】由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);∵CE∥AB,∴△ECF∽△ADF,得12 CE CFAD DF==,即DF=2CF,所以CF:CD=1:3,故选C.【答案点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.3、D【答案解析】左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.【题目详解】请在此输入详解!4、C【答案解析】连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.【题目详解】连接OC、OD,∵六边形ABCDEF是正六边形,∴∠COD=60°,又OC=OD,∴△COD是等边三角形,∴OC=CD,正六边形的周长:圆的直径=6CD:2CD=3,故选:C.【答案点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.5、B【答案解析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【题目详解】如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯.故选B.6、B【答案解析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中. 【题目详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B.【答案点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型. 7、C测试卷分析:设骑车学生的速度为xkm/h ,则汽车的速度为2xkm/h ,由题意得,1010123x x =+.故选C . 考点:由实际问题抽象出分式方程.8、D【答案解析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【题目详解】解:根据图象,设函数解析式为()2y a x h k =-+由图象可知,顶点为(1,3)∴()213y a x =-+,将点(0,0)代入得()20013a =-+解得3a =-∴()2313y x =--+故答案为:D .【答案点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.9、B【答案解析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.【题目详解】A 、a 2•a 3=a 5,错误;B 、(a 2)3=a 6,正确;C 、不是同类项,不能合并,错误;D 、a 5+a 5=2a 5,错误;故选B .【答案点睛】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.10、C解:∵关于x 的一元二次方程()2220x x m +--=有实数根, ∴△=24b ac -=2241[(2)]m -⨯⨯--,解得m≥1,故选C .【答案点睛】本题考查一元二次方程根的判别式.二、填空题(本大题共6个小题,每小题3分,共18分)11、14. 【答案解析】测试卷分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=14.故答案为14. 考点:列表法与树状图法.12、3-【答案解析】测试卷分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣1,故答案为﹣1.考点:正数和负数13、(2n ,1)【答案解析】测试卷分析:根据图形分别求出n=1、2、3时对应的点A 4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A 5(2,1),n=2时,4×2+1=9,点A 9(4,1),n=3时,4×3+1=13,点A 13(6,1),∴点A 4n+1(2n ,1).14、90【答案解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【题目详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.15、②③④【答案解析】①可用特殊值法证明,当P 为BD 的中点时,0MC =,可见MF MC ≠.②可连接PC ,交EF 于点O ,先根据SAS 证明ADP CDP ≅,得到DAP DCP ∠=∠,根据矩形的性质可得DCP CFE ∠=∠,故DAP CFE ∠=∠,又因为90DAP AMD ∠+∠=︒,故90CFE AMD ∠+∠=︒,故AH EF ⊥. ③先证明CPM HPC ,得到PC PM HP PC=,再根据ADP CDP ≅,得到AP PC =,代换可得. ④根据EF PC AP ==,可知当AP 取最小值时,EF 也取最小值,根据点到直线的距离也就是垂线段最短可得,当AP BD ⊥时,EF 取最小值,再通过计算可得.【题目详解】解:①错误.当P 为BD 的中点时,0MC =,可见MF MC ≠;②正确.如图,连接PC ,交EF 于点O ,45AD CD ADP CDP DP DP =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADP CDP SAS ≅∴DAP DCP ∠=∠,PF CD ⊥,PE BC ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴OF OC =,∴DCP CFE ∠=∠,∴DAP CFE ∠=∠,90DAP AMD ∠+∠=︒,∴90CFE AMD ∠+∠=︒,∴90FGM ∠=︒,∴AH EF ⊥.③正确.//AD BH ,∴H DAP ∠=∠,ADP CDP ≅,∴DAP DCP ∠=∠,∴H DCP ∠=∠,又CPH MPC ∠=∠,∴CPM HPC , ∴PC PM HP PC=, AP PC =,∴AP PM HP AP=, ∴2AP PM PH =.④正确.()ADP CDP SAS ≅且四边形PECF 为矩形,∴EF PC AP ==,∴当AP BD ⊥时,EF 取最小值,此时sin 452AP AB =︒==故EF .故答案为:②③④.【答案点睛】本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.16、1【答案解析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a 、b ,计算即可.【题目详解】a 2+b 2﹣8a ﹣4b+20=0,a 2﹣8a+16+b 2﹣4b+4=0,(a ﹣4)2+(b ﹣2)2=0a ﹣4=0,b ﹣2=0,a=4,b=2,则a 2﹣b 2=16﹣4=1,故答案为1.【答案点睛】本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.三、解答题(共8题,共72分)17、(1)25π;(2)CD 1=2,CD 2=72【答案解析】分析:(1)利用圆周角定理的推论得到∠C 是直角,利用勾股定理求出直径AB ,再利用圆的面积公式即可得到答案; (2)分点D 在上半圆中点与点D 在下半圆中点这两种情况进行计算即可.详解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵AB 是⊙O 的直径, ∴AC =8,BC =1,∴AB =10,∴⊙O 的面积=π×52=25π. (2)有两种情况:①如图所示,当点D 位于上半圆中点D 1时,可知△ABD 1是等腰直角三角形,且OD 1⊥AB ,作CE ⊥AB 垂足为E ,CF ⊥OD 1垂足为F ,可得矩形CEOF ,∵CE =8624105AC BC AB ⋅⨯==, ∴OF = CE =245, ∴1241555D F =-=, ∵2222246()5BE BC CE =-=-185, ∴187555OE =-=, ∴75CF OE ==, ∴22221171()()255CD CF D F =+=+=; ②如图所示,当点D 位于下半圆中点D 2时,同理可求222222749()()255CD CF FD =+=+=∴CD 12,CD 2=2点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.18、 (1)-7;(2)y x y -+ ,13-. 【答案解析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【题目详解】(1)原式=3−4×12+1−9=−7; (2)原式=1−2x y x y -+ ⋅()()()22x y x y x y ++-=1−2x y x y ++ =2x y x y x y +--+ =−y x y+; ∵|x−2|+(2x−y−3)2=1,∴2023x x y -=⎧⎨-=⎩, 解得:x=2,y=1,当x=2,y=1时,原式=−13. 故答案为(1)-7;(2)−y x y +;−13. 【答案点睛】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.19、1【答案解析】测试卷分析:(1)证明△CFD≌△DAE即可解决问题.(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出DCDE=CFAD,再证明CF=2AD即可.(3)证明EC=ED即可解决问题.测试卷解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.(2)证明:如图2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴DCDE=CFAD.∵四边形ADFG是矩形,FC=2FG,∴FG=AD,CF=2AD,∴CDDE=2.(3)解:如图3中,设AC与DE交于点O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴CO EO =OD OA ,∴CO OD =EO OA.∵∠COE =∠DOA ,∴△COE ∽△DOA ,∴∠CEO =∠DAO .∵∠CED +∠CDE +∠DCE =180°,∠BAC +∠B +∠ACB =180°.∵∠CDE =∠B =∠ACB ,∴∠EDC =∠ECD ,∴EC =ED ,∴CE DE =1. 点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.20、见解析【答案解析】(1)二次函数图象经过A (2,0)、B (0,-6)两点,两点代入y=-12x 2+bx+c ,算出b 和c ,即可得解析式; (2)先求出对称轴方程,写出C 点的坐标,计算出AC ,然后由面积公式计算值.【题目详解】(1)把()2,0A ,()0,6B -代入212y x bx c =-++得 2206b c c -++=⎧⎨=-⎩, 解得46b c =⎧⎨=-⎩. ∴这个二次函数解析式为21462y x x =-+-. (2)∵抛物线对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭, ∴C 的坐标为()4,0,∴422AC OC OA =-=-=, ∴1126622ABC S AC OB ∆=⨯=⨯⨯=. 【答案点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.21、(1)这种篮球的标价为每个50元;(2)见解析【答案解析】(1)设这种篮球的标价为每个x 元,根据题意可知在B 超市可买篮球42000.8x 个,在A 超市可买篮球42003000.9x+个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得. 【题目详解】(1)设这种篮球的标价为每个x元,依题意,得420042003005 0.80.9x x+-=,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,单独在B超市购买:100×50×0.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:20000.950⨯=4449,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【答案点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.22、证明见解析【答案解析】根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.【题目详解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB与Rt△ECB中{EA EC EB EB==,∴Rt△EAB≌Rt△ECB,∴AB=CB ,∠ABE=∠CBE ,∵BD=BD ,在△ABD 与△CBD 中{AB CBABE CBE BD BD=∠=∠=,∴△ABD ≌△CBD ,∴AD=CD .【答案点睛】本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.23、(1)见解析;(2)5 【答案解析】(1)连接OC ,AC ,易证ACD ∆为等边三角形,可得60CDA DCA DAC ∠=∠=∠=,由等腰三角形的性质及角的和差关系可得∠1=30°,由于FG DA 可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得FG 与O 相切;(2)作EH FG ⊥于点H .设CE a =,则DE a =,2AD a =.根据两组对边互相平行可证明四边形AFCD 为平行四边形,由DC AD =可证四边形AFCD 为菱形,由(1)得60DCG ∠=,从而可求出EH 、CH 的值,从而可知FH 的长度,利用锐角三角函数的定义即可求出tan EFC ∠的值.【题目详解】(1)连接OC ,AC .∵AB 是O 的直径,弦CD AB ⊥于点E ,∴CE DE =,AD AC =.∵DC AD =,∴DC AD AC ==.∴ACD ∆为等边三角形.∴60CDA DCA DAC ∠=∠=∠=,∠DAE=∠EAC=30°,∵OA=OC ,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵FG DA ,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°, ∴FG OC ⊥.∴FG 与O 相切.(2)连接EF ,作EH FG ⊥于点H . 设CE a =,则DE a =,2AD a =. ∵AF 与O 相切,∴AF AG ⊥.又∵DC AG ⊥,∴//AF DC .又∵FG DA ,∴四边形AFCD 为平行四边形. ∵DC AD =,∴四边形AFCD 为菱形.∴2AF FC AD a ===,60AFC CDA ∠=∠=. 由(1)得60DCG ∠=, ∴3sin 602EH CE a =⋅=,1cos602CH CE a =⋅=. ∴52FH CH CF a =+=. ∵在Rt EFH ∆中,90EHF ∠=, ∴332tan 552EH EFC FH a ∠===.【答案点睛】本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.24、(1)2y x 2x 3=--(2)(0,-1)(3)(1,0)(9,0)【答案解析】(1)将A (−1,0)、C (0,−3)两点坐标代入抛物线y =ax 2+bx−3a 中,列方程组求a 、b 的值即可;(2)将点D (m ,−m−1)代入(1)中的抛物线解析式,求m 的值,再根据对称性求点D 关于直线BC 对称的点D'的坐标;(3)分两种情形①过点C 作CP ∥BD ,交x 轴于P ,则∠PCB =∠CBD ,②连接BD′,过点C 作CP′∥BD′,交x 轴于P′,分别求出直线CP 和直线CP′的解析式即可解决问题.【题目详解】解:(1)将A (−1,0)、C (0,−3)代入抛物线y =ax 2+bx−3a 中, 得3033a b a a --=⎧⎨-=-⎩, 解得12a b =⎧⎨=-⎩∴y =x 2−2x−3;(2)将点D (m ,−m−1)代入y =x 2−2x−3中,得m 2−2m−3=−m−1,解得m =2或−1,∵点D (m ,−m−1)在第四象限,∴D (2,−3),∵直线BC 解析式为y =x−3,∴∠BCD =∠BCO =45°,CD′=CD =2,OD′=3−2=1,∴点D关于直线BC对称的点D'(0,−1);(3)存在.满足条件的点P有两个.①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,∵直线BD解析式为y=3x−9,∵直线CP过点C,∴直线CP的解析式为y=3x−3,∴点P坐标(1,0),②连接BD′,过点C作CP′∥BD′,交x轴于P′,∴∠P′CB=∠D′BC,根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直线BD′的解析式为113y x=-∵直线CP′过点C,∴直线CP′解析式为133y x=-,∴P′坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0).【答案点睛】本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.。

山东省德州市德城区2024届中考数学模拟预测题含解析

山东省德州市德城区2024届中考数学模拟预测题含解析

山东省德州市德城区2024届中考数学模拟预测题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30°B.40°C.50°D.60°2.cos30°的值为()A.1 B.12C.33D.323.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A.0.5 B.1 C.3 D.π4.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.125.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A .1B .2C .3D .46.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是( ) 月用电量(度) 25 30 40 50 60 户数 1 2421A .极差是3B .众数是4C .中位数40D .平均数是20.57.在平面直角坐标系xOy 中,若点P (3,4)在⊙O 内,则⊙O 的半径r 的取值范围是( ) A .0<r <3B .r >4C .0<r <5D .r >58.下列算式的运算结果正确的是( ) A .m 3•m 2=m 6 B .m 5÷m 3=m 2(m≠0) C .(m ﹣2)3=m ﹣5 D .m 4﹣m 2=m 29.点A (-2,5)关于原点对称的点的坐标是 ( )A .(2,5)B .(2,-5)C .(-2,-5)D .(-5,-2) 10.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个二、填空题(共7小题,每小题3分,满分21分) 11.因式分解:2xy 2xy x ++=______.12.若关于x 的一元二次方程2210mx x --=无实数根,则一次函数y mx m =+的图象不经过第_________象限. 13.高速公路某收费站出城方向有编号为,,,,A B C D E 的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下: 收费出口编号 ,A B,B C,C D,D E,E A通过小客车数量(辆)260330300360240在,,,,A B C D E 五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.14.(题文)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是_____.15.分解因式:a 2b−8ab +16b =_____.16.如图,点A ,B ,C 在⊙O 上,∠OBC=18°,则∠A=_______________________.17.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=62,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,直角△ABC 内接于⊙O ,点D 是直角△ABC 斜边AB 上的一点,过点D 作AB 的垂线交AC 于E ,过点C 作∠ECP=∠AED ,CP 交DE 的延长线于点P ,连结PO 交⊙O 于点F .(1)求证:PC 是⊙O 的切线; (2)若PC=3,PF=1,求AB 的长.19.(5分)一辆汽车,新车购买价30万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为17.34万元,求这辆车第二、三年的年折旧率. 20.(8分)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.21.(10分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?22.(10分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项a,b,c,第二道单选题有4个选项A,B,C,D,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是b,第二道题的正确选项是D,解答下列问题:(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.23.(12分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.24.(14分)如图,在Rt ⊿ABC 中,90ACB ∠=,CD AB ⊥于D ,,AC 20BC 15== . ⑴.求AB 的长; ⑵.求CD 的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解题分析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE ,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°. 【题目详解】∵∠B =70°,∠BAC =30° ∴∠ACB =80°∵将△ABC 绕点C 顺时针旋转得△EDC . ∴AC =CE ,∠ACE =∠ACB =80° ∴∠CAE =∠AEC =50° 故选C . 【题目点拨】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键. 2、D 【解题分析】cos30°=32.故选D.3、C【解题分析】连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.【题目详解】连接OC、OD,∵六边形ABCDEF是正六边形,∴∠COD=60°,又OC=OD,∴△COD是等边三角形,∴OC=CD,正六边形的周长:圆的直径=6CD:2CD=3,故选:C.【题目点拨】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.4、C【解题分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【题目详解】∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=1.故选C.【题目点拨】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.5、C【解题分析】试题解析:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选C.考点:二次函数图象与系数的关系.【题目详解】请在此输入详解!6、C【解题分析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【题目详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;故选:C.【题目点拨】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.7、D【解题分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.【题目详解】∵点P的坐标为(3,4),∴OP==1.∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【题目点拨】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.8、B【解题分析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.【题目详解】A、m3•m2=m5,故此选项错误;B、m5÷m3=m2(m≠0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B.【题目点拨】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.9、B【解题分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).【题目详解】根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2, −5).故选:B.【题目点拨】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ). 10、C 【解题分析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断. 解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意; 图(3)有五条对称轴,是轴对称图形,符合题意; 图(3)有一条对称轴,是轴对称图形,符合题意. 故轴对称图形有4个. 故选C .考点:轴对称图形.二、填空题(共7小题,每小题3分,满分21分)11、2(1)x y【解题分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解. 【题目详解】 xy 1+1xy+x , =x (y 1+1y+1), =x (y+1)1.故答案为:x (y+1)1. 【题目点拨】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 12、一 【解题分析】根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m <-1,然后根据一次函数的性质判断一次函数y=mx+m的图象所在的象限即可.【题目详解】∵关于x的一元二次方程mx2-2x-1=0无实数根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.13、B【解题分析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【题目详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放BC与CD进行对比,可知B疏散乘客比D快;同理同时开放BC与AB进行对比,可知C疏散乘客比A快;同理同时开放DE与CD进行对比,可知E疏散乘客比C快;同理同时开放AB与AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B.【题目点拨】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.14、12【解题分析】根据题意观察图象可得BC=5,点P在AC上运动时,BP AC时,BP有最小值,观察图象可得,BP的最小值为4,即BP AC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.15、b(a﹣4)1【解题分析】先提公因式,再用完全平方公式进行因式分解.【题目详解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【题目点拨】本题考查了提公因式与公式法的综合运用,熟练运用公式法分解因式是本题的关键.16、72°.【解题分析】解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=12∠BOC=12×144°=72°.故答案为72°.【题目点拨】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.17、16 3【解题分析】【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.【题目详解】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;Rt△ABC中,∠BAC=90°,AB=3,,∴,S△ABC=12AB•AC=12BC•AF,∴3×=9AF,,∴,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴''AA BCA E AC=,∴429'62A E=,∴A'E=163,即AD+DE的最小值是163,故答案为163.【题目点拨】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)1.【解题分析】试题分析:(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可;(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.试题解析:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线;(2)延长PO交圆于G点,∵PF×PG=,PC=3,PF=1,∴PG=9,∴FG=9﹣1=1,∴AB=FG=1.考点:切线的判定;切割线定理.19、这辆车第二、三年的年折旧率为15%.设这辆车第二、三年的年折旧率为x ,则第二年这就后的价格为30(1-20%)(1-x )元,第三年折旧后的而价格为30(1-20%)(1-x )2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可. 【题目详解】设这辆车第二、三年的年折旧率为x ,依题意,得()()230120%117.34x --=整理得()210.7225x -=, 解得1 1.85x =,20.15x =.因为折旧率不可能大于1,所以1 1.85x =不合题意,舍去. 所以0.1515%x ==答:这辆车第二、三年的年折旧率为15%. 【题目点拨】本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键. 20、见解析 【解题分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可. 【题目详解】如图所示:P 点即为所求.【题目点拨】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.21、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)若全部销售完,方案一获利最大,最大利润是1800元.分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论.详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元.由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)设购进甲种纪念品a(a≥60)件,则购进乙种纪念品(80﹣a)件.由题意得:100a+50(80﹣a)≤7100解得a≤1又a≥60所以a可取60、61、1.即有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)设利润为W,则W=20a+30(80﹣a)=﹣10a+2400所以W是a的一次函数,﹣10<0,W随a的增大而减小.所以当a最小时,W最大.此时W=﹣10×60+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元.点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.22、(1)13;(2)19;(3)一.【解题分析】(1)直接利用概率公式求解;(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.【题目详解】解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=13;故答案为13;(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是19.理由如下:画树状图为:(用Z表示正确选项,C表示错误选项)共有9种等可能的结果数,其中小颖顺利通关的结果数为1,所以小敏顺利通关的概率=19;(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=18,由于18>19,所以建议小敏在答第一道题时使用“求助”.【题目点拨】本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.23、(1)50;(2)115.2°;(3).【解题分析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.解:(1)参加本次比赛的学生有:(人)(2)B等级的学生共有:(人).∴所占的百分比为:∴B等级所对应扇形的圆心角度数为:.(3)列表如下:男 女1 女2 女3 男 ﹣﹣﹣ (女,男) (女,男) (女,男) 女1 (男,女) ﹣﹣﹣ (女,女) (女,女) 女2 (男,女) (女,女) ﹣﹣﹣ (女,女) 女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种. ∴P (选中1名男生和1名女生).“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键. 24、(1)25(2)12 【解题分析】 整体分析:(1)用勾股定理求斜边AB 的长;(2)用三角形的面积等于底乘以高的一半求解. 解:(1).∵在Rt ⊿ABC 中,90ACB ∠=,20,15AC BC ==. ∴2222201525AB AC BC =++=,(2).∵S ⊿1122ABC AC BC AB CD =⋅=⋅, ∴AC BC AB CD ⋅=⋅即201525CD ⨯=, ∴20×15=25CD. ∴12CD =.。

2024年山东省德州市德城区九年级中考一模数学试卷(含答案)

2024年山东省德州市德城区九年级中考一模数学试卷(含答案)

2024年九年级第一次练兵考试数学试题一、选择题(本大题共12小题,共48分)1.下列各数中,最小的是( )A .2B .1C .D .2.某几何体的三视图如图所示,则该几何体为()A .B .C .D .3.某校准备从甲、乙、丙、丁四个科技小组中选出一组,参加区中小学科技创新竞赛,下表记录了各组平时成绩的平均数(单位:分)及方差,若要选出一个成绩好且状态稳定的小组去参加比赛,则应选择的小组是()甲乙丙丁平均数92989891方差1 1.20.90.9A .甲B .乙C.丙D .丁4.下列计算正确的是()A .B .C .D .5.光线在不同介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,,,则()A .B .C .D .1-2-()2239x x-=-27512x x x+=()22369x x x -=-+2223412x x x⋅=145∠=︒2120∠=︒34∠+∠=90︒105︒155︒165︒6.若反比例函数经过点,则一次函数的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.如图.在中,点,为边的三等分点,点,在边上,且,点为与的交点.若,则的长为()A .3B .2C.D .8.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是120元,若按进价计,其中一件盈利,另一件亏本,则两件上衣的进价之和为( )A .230元B .240元C .250元D .260元9.如图,四边形内接于,,,,为的中点,则的长为()A .2B .C .D .410.已知关于的方程的两根分别为和,若,则的值为( )A .B .C .D .11.如图,正方形中,,是边的中点,点是正方形内一动点,,连接,将线段绕点逆时针旋转得,连接,.则线段长的最小值为()A .B.C .D.ky x=()1,2-y kx k =+ABC △D E BC F G AB AC GE FD ∥∥H AD EG 10AC =GH 525320%20%ABCD O 90BAD ∠=︒105ADC ∠=︒2AD =C BDBC x 2350x x k -+=1x 2x 1260x x +=k 2-23-12-1112-ABCD 4AB =O BC E 2OE =DE DE D 90︒DF AE CF OF 2922-2-12.把抛物线沿直线个单位后,其顶点仍在原抛物线上,则的值为( )A .2B .C .D .二、填空题(本大题共6小题,共24分)13.分解因式:______.14.在课后特色服务的剪纸兴趣课上,李老师将在小鲁、小泉、小青和小德4名同学中随机抽取两名进行作品展示,则恰好抽到小鲁和小德的概率为______.15.如图,在矩形中,按以下步骤作图:①分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和,②作直线交于,若,,则该矩形的周长为______.16.实数和______.17.如图,在平面直角坐标系中,反比例函数的图象经过平行四边形的顶点,将该反比例函数图象沿轴对称,所得图象恰好经过中点,则平行四边形的面积为______.18.如图,在中,,平分交于点,过作交于点,将沿折叠得到,交于点.若,则______.()2230y ax ax a =-+>112y x =+a 151425228x -=ABCD A C 12AC M N MN CD E 3DE =5CE =a b ()40y x x=>OABC A y BC M OABC Rt ABC △90ABC ∠=︒CD ACB ∠AB D D DE BC ∥AC E DEC △DE DEF △DF AC G 73AG GE =BCAB=三、解答题(本大题共7小题,共78分)19.(8分)先化简,再求值:,其中是使不等式成立的正整数.20.(10分)某校为了解学生参加家务劳动的情况,随机抽取了部分学生在某个休息日做家务的劳动时间(单位:)作为样本,将收集的数据整理后分为A ,B ,C ,D ,E 五个组别,其中A 组的数据分别为:0.5,0.4,0.4,0.4,0.3,绘制成如下不完整的统计图表.各组劳动时间的频数分布表组别时间频数A 5B C 20D 15E8各组劳动时间的扇形统计图请根据以上信息解答下列问题.(1)A 组数据的众数是______;(2)本次调查的样本容量是______,B 组所在扇形的圆心角的大小是______;(3)若该校有1200名学生,估计该校学生劳动时间超过的人数.21.(10分)如图,某校教学楼上悬挂一块高为的标语牌.某班学生开展综合实践活动.测量标语牌的底部点距地面的高度.如图,在测点处安置测倾器(测倾器高度忽略不计),测得标语牌底部点的仰角为,在与点相距4m 的测点处安置测倾器,测得标语牌顶部点的仰角为,求标语牌底部点距地面的高度的长(图中点,,,,在同一平面内).(参考数据:,,)22.(12分)某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆种菜苗的价格比菜苗基地高出,用300元在市场上购买的种菜苗比在菜苗基地购买的少21122a a a a -⎛⎫÷+ ⎪--⎝⎭a 112a -≤t h ht 00.5t <≤0.51t <≤a1 1.5t <≤1.52t <≤2t >1h 2m CD D DH A D 37︒A B C 45︒D DH A B C D H sin 370.6︒≈cos370.8︒≈tan 370.75︒≈A 25%A3捆.(1)求菜苗基地每捆种菜苗的价格;(2)菜苗基地每捆种菜苗的价格是30元.学校决定在菜苗基地购买,两种菜苗共100捆,且种菜苗的捆数不超过种菜苗的捆数.菜苗基地为支持该校活动,对,两种菜苗均提供九折优惠.求本次购买最少花费多少钱.23.(12分)如图,已知,点是上的一个定点.(1)尺规作图:请在图中作.使得与射线,均相切,且与相切于点,与的切点记为;(2)在(1)的条件下,若,,求所作的的劣弧与,所围成图形的面积(结果保留).24.(12分)【问题初探】(1)数学课上,老师给出如下信息:如图1,,平分,且,垂足为,连接并延长,交于点.①根据以上信息,通过观察,猜想,可以得到与的数量关系为:______;(2)小亮同学从“平分”和“”这两个条件出发,想到了如下证明思路:如图2,延长交于点,构造出一对特殊位置的全等三角形,结论得以证明.请你结合图2,按照小亮的思路写出证明过程.【类比迁移】(2)如图3,在中,,,平分,与交于点,过点作于点,若,求的值.【拓展应用】(3)如图4,在中,,平分,点是的中点,过点作于点,交于点,求证:.25.(14分)以为自变量的两个函数与,令,我们把函数称为与的“相关函数”例如:A B A B A B A B APB ∠M PB O O PB PB M PA N 60APB ∠=︒3PM =0 MNPM PN πAD BC ∥BE ABC ∠AE BE ⊥E DE BC F DE EF BE ABC ∠AE BE ⊥AE BC M ABC △90ACB ∠=︒AC BC =AD BAC ∠BC E B BF AD ⊥F 6AE =BF ABC △90ACB ∠=︒CD ACB ∠E AB E EF CD ⊥F ACG BC =x y g h y g =-h y g以为自变量的函数与,则它们的“相关函数”为.因为恒成立.所以借助该“相关函数”可以证明:不论自变量取何值,恒成立.(1)已知函数与函数相交于点、.①此时,的值分别为:______,______;②求此时函数与的“相关函数”;(2)已知以为自变量的函数与,当时,对于的每一个值,函数与的“相关函数”恒成立,求的取值范围;(3)已知以为自变量的函数与(为常数且,).点,点,是它们的“相关函数”的图象上的三个点.且满足,求函数的图象截轴得到的线段长度的取值范围.2024年九年级第一次练兵考试数学答案一、选择题(本大题共12小题,共48分)题号123456789101112答案DBCCBADCBADC二、填空题(本大题共6小题,共24分)13.14.15.2416.17.1018三、解答题(本大题共7小题,共78分)19.(8分)原式x 2y x =21g x =-221h y g x x =-=-+()222110h x x x =-+=-≥x y g ≥2y x mx n =++41g x =+()1,3--()3,13m n m =n =y g h x 3y x t =+2g x =-1x >x y g 0h >t x 2y ax bx c =++2g bx c =--,,a b c 0a >0b ≠1,02A ⎛⎫⎪⎝⎭()12,B y -()21,C y h 212c y y <<h x ()()222x x +-161b+()()2112122a a a a a a +--+=÷--()()()211122a a a a a +--=÷--()()()211221a a a a a +--=⋅--解不等式得.,,.当时,原式.20.(10分)(1)0.4;(2)60,;(3)解:(人).答:该校学生劳动时间超过的大约有860人.21.(10分)由题意得,,,,设,则,,在中,,,.解得:.答:点到地面的距离的长约为.22.(12分)(1)解:设:菜苗基地每㧽种菜苗的价格为元.,11a a +=-112a -≤3a ≤1a ≠ 2a ≠3a ∴=3a =31231+==-72︒20158120086060++⨯=1h 90AHC ∠=︒45CBH ︒∠= BH CH ∴=m DN x =()2m BH CH x ==+()()426m AH x x ∴=++=+Rt DAH △tan DHDAH AH∠=tan 37DH AH ∴=⋅︒()60.75x x ∴≈+⨯18x =D DH 18m A x ()3003003125%x x-=+51530030044x⨯-=15754x =解得检验:将代入,值不为零,是原方程的解,菜苗基地每捆种菜苗的价格为20元.(2)解:设:购买种菜苗捆,则购买种菜苗捆,费用为元,由题意可知:,解得,又,.随的增大而减小,当时,花费最少,此时,本次购买最少花费2250元.23.(12分)(1)解:如图,为所作:;(2)解:和为的切线,,,,,,在中,,,的劣弧与、所围成图形的面积20x =20x =55202544x =⨯=20x ∴=∴A A m B ()100m -y 100m m ≤-50m ≤()20301000.9y m m ⎡⎤=+⨯-⨯⎣⎦ ()9270050y m m ∴=-+≤y m ∴50m =95027002250y =-⨯+=∴O PM PN O OM PB ∴⊥ON PN ⊥1302MPO NPO APB ∠=∠=∠=︒90OMP ONP ∴∠=∠=︒180120MON APB ∴︒∠=︒∠=-Rt POM △30MPO ∠=︒tan 303OM PM ∴=⋅︒==O ∴ MNPM PN PMON MONS S =-四边形扇形1232=⨯⨯.24.(12分)(1)①;②证明:平分,,,,又,,,,,,.(2)证明:如图,延长交的延长线于点,,,又,,.在和中,,平分,,,,又,,.(3)作于,交于,,,π=-DE EF =BE ABC ∠ABE MBE ∴∠=∠AE BE ⊥ 90AEB NEB ∴∠=∠=︒BE BE = ABE MBE∴△≌△AE ME ∴=AD BC ∥DAE FME ∴∠=∠D EFM ∠=∠DAE FME ∴=△△DE EF ∴=BF AC G AF BF ⊥ 90AFB ACB ∴∠=∠=︒AEC BEF ∠=∠ AEC BEF ∴△∽△EAC EBF ∴∠=∠AEC △BGC △ACE BCG EAC GBC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩AEC BGC ∴△≌△6BG AE ==AF BAC ∠BAF GAF ∴∠=∠AF BF ⊥ 90AFB AFG ︒∴∠=∠=AF AF = ABF AGF ∴△≌△132BF FG BG ∴===BM CD ⊥M AC H GF CD ⊥ 90GFC HMC ∴∠=∠=︒,,.是的中点,,,与(1),,在中,,,,又,.25.(14分)(1)①,;②函数,;(2)函数与,相关函数,当时,对于的每一个值,函数与的“相关函数”恒成立,桓成立,当时,,当时,恒成立,;(3)函数与,,GF HB ∴∥AEG ABH ∴△∽△EG AE BH AB∴=E AB 2AB AE ∴=2BH EG ∴=CBM CHM △≌△CB CH ∴=Rt BCH △90BCH ∠=︒222BH BC CH ∴=+BH ∴=2BH EG ∴=BC ∴=2m =2n =-222y x x =+-()()22224123h y g x x x x x ∴=-=+--+=-- 3y x t =+2g x =-∴22h y g x t =-=++ 1x >x y g 0h >()2201h x t x ∴=++>>1x =2124h t t =⨯++=+1x >40t +≥4t ∴≥- 2y ax bx c =++2g bx c =--232h ax bx c ∴=++11将点、、代入解析式得:,,,,,,解不等式得:且,不妨令,则且,设函数与轴交于,,是方程的两根,,,函数的图象截轴得到的线段长度为:,且,且,即且.1,02A ⎛⎫ ⎪⎝⎭()12,B y -()21,C y 132042a b c ++=1462y a b c =-+232y a b c =++1384c a b ∴=--212c y y << 232462c a b c a b c ∴<++<-+1133b a -<<0b a≠b t a =1133t -<<0t ≠h x ()1,0x ()2,0x 12,x x ∴2320ax bx c ++=123b x x a ∴+=-122c x x a ⋅=∴h x 12x x -===313a b t a+===+1133t -<< 0t ≠0132t ∴<+<131t +≠1202x x <-<121x x -≠。

【中考数学】2023-2024学年山东省德州市质量检测仿真模拟卷合集2套(含解析)

【中考数学】2023-2024学年山东省德州市质量检测仿真模拟卷合集2套(含解析)

2023-2024学年山东省德州市中考数学专项提升仿真模拟卷(一模)第I 卷(选一选)请点击修正第I 卷的文字阐明评卷人得分一、单选题1.下列各数中,比-1小的数是()A .B .12-C .0D .122.下列四个图形中,既是轴对称图形又是对称图形的是()A .B .C .D .3.1965年,科学家分离出了株人的冠状.由于在电子显微镜下可观察到其外膜上有明显的棒状粒子突起,使其外形看上去像中世纪欧洲帝王的皇冠,因此命名为“冠状”.该的直径很小,经测定,它的直径约为0.m .数据“0.”用科学记数法表示为()A .70.9610-⨯B .89.610-⨯C .99610-⨯D .109.610-⨯4.下列计算正确的是()A .459a a a +=B .()2234624ab a b =C .22(3)26a a a a -+=-+D .222(2)4a b a b -=-5.如果二次函数2y ax c =+的图象如图所示,那么函数y ax c =+的图象大致是()A .B .C .D .6.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,下列条件中,不能判断这个平行四边形是菱形的是()A .AB=ADB .∠BAC=∠DAC C .∠BAC=∠ABD D .AC ⊥BD7.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道风趣的数学成绩:今有共买物,人出八,盈三;人出七,不足四人.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x 人,则表示物价的代数式()A .83-xB .83x +C .74x -D .()74x +8.如图,在△ABC 中,AB =AC ,以点C 为圆心,CB 长为半径画弧,交AB 于点B 和点D ,再分别以点B ,D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若AD =3,BD =2,则EC 的长度是()A B C .3D .29.无人机低空遥感技术已广泛运用于农作物监测.如图,某农业特征品牌示范用无人机对一块实验田进行监测作业时,在距地面高度为135m 的A 处测得实验田右侧出界N 处俯角为43︒,无人机垂直下降40m 至B 处,又测得实验田左侧边界M 处俯角为35︒,则M ,N 之间的距离为(参考数据:tan 430.9︒≈,sin 430.7︒≈,cos 350.8︒≈,tan 350.7︒≈,结果保留整数)()A .188mB .269mC .286mD .312m10.已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是()A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x =-和21y x =--D .11y x=-和21y x =-+11.如图,AB 是O 的直径,点C 为圆上一点,4AC =,ABC ∠的平分线交AC 于点D ,1CD =,则O 的直径为()A .B .C .5D .212.如图,在平行四边形ABCD 中,60B ∠=︒,4AB =,6AD =,E 是AB 边的中点,F 是线段BC 上的动点,将EBF △沿EF 所在直线折叠得到EB F '△,连接B D ',则B D '的最小值是()A .2B .6C .4D .2-第II 卷(非选一选)请点击修正第II 卷的文字阐明评卷人得分二、填空题13.分解因式a 2﹣9a 的结果是_______________14.防疫期间,学校正一切进入校园的师生进行体温检测,其中7名先生的体温(单位:℃)如下:36.5,36.3,36.8,36.5,36.3,36.7,36.3.这组数据的中位数是_____________.15.如图,在平面直角坐标系中,AOB 的边,AO AB 的中点C ,D 的横坐标分别是1,4,则点B 的横坐标是_______.16.若点()()121,,3,A y B y 在反比例函数3y x =的图象上,则1y ____2y (填“>”“<”或“=”).17.如图,圆A 与BC 相切于点C ,圆A 的半径为2,BC ,则图中暗影部分的面积为_________.18.将△OBA 按如图方式放置在平面直角坐标系xOy 中,其中90OBA ∠=︒,30A ∠=︒,顶点A的坐标为(,将△OBA 绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点A 对应点的坐标为______.评卷人得分三、解答题19.先化简,再求值:2233816164x x x x x x x --÷--+--,其中4x =20.“天宫课堂”已成为我国空间站的科普.航天员演示了四个实验:A .浮力消逝实验,B .水膜张力实验,C .水球光学实验,D .泡腾片实验.某校九年级数学兴味小组成员随机抽取了本年级的部分同窗,调查他们在这四个实验中最感兴味的一个,并绘制了两幅不残缺的统计图,如图所示:请你根据以上信息.解答下列成绩:(1)本次调查的总人数为__________人,扇形统计图中“A ”所在扇形的圆心角的度数为__________°.C 所占的百分比为__________,并补全条形统计图.(2)估计该校九年级800名先生中对“B .水膜张力实验”最感兴味的先生人数?(3)从数学兴味小组的4名同窗(其中有一名男生,三名女生)中随机抽取两名参加全市的比賽,请利用树状图或列表法求抽取同窗中恰有一名男生和一名女生的概率.21.如图,点A 在反比例函数()0k y x x =>的图像上,AB x ⊥轴,垂足为B ,1tan ,22AOB AB ∠==.(1)求k 的值:(2)点C 在这个反比例函数图像上,且135BAC ∠=︒,求OC 的长.22.如图,四边形ABCE 内接于O ,AB 是O 直径,过点C 作CD AE ⊥于点D ,连接AC(1)求证:DCE BAC∠=∠(2)若O 的半径为5,CD 是O 的切线,且7AD =,求CD 的长.23.某水果商场为了解A 、B 两种水果市场情况,购进了一批数量相等的A 、B 两种水果供客户对比品尝,其中购买A 水果用了420元,购买B 水果用了756元,已知每千克B 水果进价比每千克A 水果贵8元.(1)求每千克A 水果和B 水果进价各是多少元?(2)若该水果商城决定再次购买同种水果共40千克,再次购买的费用不超过600元,且每种水果进价保持不变.若A 水果的单价为14元,B 水果的单价为24元,则该水果商城应如何进货,使得第二批的两种水果售完后获得利润?利润是多少?24.【基础巩固】(1)如图1,在△ABC 中,D 为AB 上一点ACD B ∠=∠,求证:2AC AD AB =⋅.【尝试运用】(2)如图2,在平行四边形ABCD 中,E 为BC 上一点,F 为CD 延伸线上一点,BFE A =∠∠,若BF=5,BE=3,求AD的长.【拓展进步】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF//AC,AC=2EF,∠=∠,AE=1,DF=4,求菱形ABCD的边长(直接写出答案).BAD EDF225.在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若函数y=kx﹣2(k≠0)的图象与图象G有公共点,函数图象,求k的取值范围.答案:1.A【分析】根据实数比较大小的方法,两个负数值大的反而小判断即可.【详解】>-,解:∵1<-,∴1故选:A.本题考查了实数的比较大小,解题关键是明确两个负数比较大小,值大的反而小.2.D【分析】根据对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是对称图形,不是轴对称图形,故此选项不合题意;B、不是对称图形,是轴对称图形,故此选项不合题意;C、是对称图形,不是轴对称图形,故此选项不合题意;D、既是对称图形,也是轴对称图形,故此选项符合题意;故选:D.本题考查了对称图形以及轴对称图形的概念,对称图形是要寻觅对称,旋转180度后和原图形重合.3.B【分析】值小于1的数也可以利用科学记数法表示,普通方式为a×10-n,与较大数的科学记数法不同的是其所运用的是负整数指数幂,指数n由原数左边起个不为零的数字前面的0的个数所决定.【详解】解:0.=9.6×10-8,故选:B .此题次要考查了用科学记数法表示较小的数,普通方式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起个不为零的数字前面的0的个数所决定.4.B【分析】直接利用合并同类项法则、积的乘方、幂的乘方的性质、整式的乘法运算法则和乘法公式分别化简对各个选项进行判断即可得出答案.【详解】解:A 、4a 和5a 不是同类项,无法合并,故此选项错误,不符合题意;B 、()2222323462=2()()24a a b b a b ⋅=⋅,故此选项正确,符合题意;C 、22(3)26a a a a -+=--,故此选项错误,不符合题意;D 、2224a b a ab b --+(2)=4,故此选项错误,不符合题意;故选:B .本题考查了合并同类项法则、积的乘方、幂的乘方的性质、整式的乘法运算法则和乘法公式,牢固掌握以上知识点是解题关键.5.C【分析】根据二次函数的图像,确定a ,c 的符号,然后根据函数性质确定图像的分布即可.【详解】∵抛物线的开口向下,∴a <0;∵抛物线交于y 轴正半轴,∴c >0,∴y ax c =+的图像分布在,第二,第四象限,故选C .本题考查了二次函数的图像,函数的图像,纯熟掌握二次函数的图像与各系数之间的关系,函数中k ,b 与图像分布之间的关系是解题的关键.6.C【分析】根据菱形的判定定理分别进行分析即可.【详解】A 、由邻边相等的平行四边形是菱形,A 选项可以判断这个平行四边形是菱形B 、由AB//CD 可得∠BAC=∠DCA,及∠BAC=∠DAC 可得∠DAC=∠DCA 可得AD=CD 由邻边相等的平行四边形是菱形,B 选项可以判断这个平行四边形是菱形C 、由∠BAC=∠ABD 可得OA=OB,则AC=BD ,可得这个四边形是矩形,C 选项不可以判断这个平行四边形是菱形D 、由对角线互相垂直的平行四边形是菱形,D 选项可以判断这个平行四边形是菱形故答案选C本题考查了菱形的判定定理,纯熟掌握菱形的判定定理是解题的关键.7.A【分析】根据“每人出8钱,会多3钱”或“每人出7钱,又差4钱”列代数式即可.【详解】由题意得,物价为:83-x 或74x +故选:A .本题考查了列代数式的实践意义,精确理解题意是解题的关键.8.C【分析】根据线段垂直平分线的性质可得CE ⊥AB ,BE =DE ,利用等腰三角形的性质可求得AC 的长度,进而根据勾股定理可求EC 的长.【详解】解:由作法得CE ⊥AB ,BE =DE ,则∠AEC =90°,∵AD =3,BD =2,∴AE =4,BE =1,AC =AB =BE +AE =4+1=5,在Rt △ACE 中,CE =3,故选:C .本题考查了线段垂直平分线的性质、等腰三角形的性质以及勾股定理,纯熟运用相关性质是处理本题的关键.9.C【分析】根据题意易得OA ⊥MN ,∠N =43°,∠M =35°,OA =135m ,AB =40m ,然后根据三角函数可进行求解.【详解】解:由题意得:OA ⊥MN ,∠N =43°,∠M =35°,OA =135m ,AB =40m ,∴95m OB OA AB =-=,∴135==150m tan 0.9OA ON N =∠,95=136m tan 0.7OB OM M =≈∠,∴286m MN OM ON =+=;故选C .本题次要考查解直角三角形的运用,纯熟掌握三角函数是解题的关键.10.A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.【详解】解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,对于A 选项则有210m m +-=,由一元二次方程根的判别式可得:241450b ac -=+=>,所以存在实数m ,故符合题意;对于B 选项则有210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于C 选项则有110m m---=,化简得:210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于D 选项则有110m m --+=,化简得:210m m -+=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;故选A .本题次要考查一元二次方程根的判别式、二次函数与反比例函数的性质,纯熟掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.11.B【分析】过D 作DE ⊥AB 垂足为E ,先利用圆周角的性质和角平分线的性质得到DE =DC =1,根据勾股定理求出AE 的长,再阐明ADE ABC ∆∆∽,得到AD AE AB AC=,然后求出AB 的长即可.【详解】解:如图:过D 作DE ⊥AB ,垂足为E ,如图所示:∵AB 是直径,∴∠ACB =90°,∵∠ABC 的角平分线BD ,∴DE =DC =1,∵AC =4,CD =1,∴AD =AC -CD =3,∴AE ===,∵90DEA ACB ∠=∠=︒,A A ∠=∠,∴ADE ABC ∆∆∽,∴AD AE AB AC =,即34AB =,解得:AB =B 正确.故选:B .本题次要考查了圆周角定理、角平分线的性质、勾股定理、三角形类似的判定和性质,作出辅助线,证明ADE ABC ∆∆∽,是解题的关键.12.D【分析】B’的运动轨迹是以E 为圆心,以BE 的长为半径的圆.所以,当B’点落在DE 上时,B’D 取得最小值.根据勾股定理求出DE ,根据折叠的性质可知B’E =BE =2,DE−B’E 即为所求.【详解】解:如图,B’的运动轨迹是以E 为圆心,以BE 的长为半径的圆.所以,当B’点落在DE 上时,B’D 取得最小值.过点D 作DG ⊥BA 交BA 延伸线于G ,∴∠DGA =90°,∵四边形ABCD 是平行四边形,∠B =60°,∴AD ∥BC ,∴∠GAD =60°,∴∠ADG =30°,∴132AG AD ==∴2233DG AD AG =-=∵E 是AB 的中点,AB =4,∴AE =BE =2,∴GE =AE +AG =5∴2213DE DG EG =+=由折叠的性质可知2B E BE '==∴DB’=2132.故选D .本题次要考查了折叠的性质、矩形的性质、两点之间线段最短的综合运用,确定点B’在何地位时,B’D 的值最小,是处理成绩的关键.13.a (a -9)【分析】先提取公因式a .【详解】详解:a 2-9a =a (a -9),故答案为a (a -9).本题考查了用提公因式法分解因式,如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的方式.14.36.5℃【分析】将这组数据重新陈列,再根据中位数的概念求解可得.【详解】解:将这组数据重新陈列为36.3,36.3,36.3,36.5,36.5,36.7,36.8,所以这组数据的中位数为36.5,故36.5℃.本题次要考查中位数的含义,解题的关键是掌握求一组数据的中位数的方法:将一组数据按照从小到大(或从大到小)的顺序陈列,如果数据的个数是奇数,则处于两头地位的数就是这组数据的中位数.如果这组数据的个数是偶数,则两头两个数据的平均数就是这组数据的中位数.15.6【分析】根据中点的性质,先求出点A 的横坐标,再根据A 、D 求出B 点横坐标.【详解】设点A 的横坐标为a ,点B 的横坐标是b ;O 点的横坐标是0,C 的横坐标是1,C ,D 是,AO AB 的中点1(0)12a ∴+=得2a =1(2)42b ∴+=得6b =∴点B 的横坐标是6.故答案为6.本题考查了中点的性质,平面直角坐标系,三角形中线的性质,正确的运用中点坐标公式并正确的计算是解题的关键.16.>【分析】根据反比例函数的增减性即可得.【详解】解: 反比例函数3y x=中的30k =>,∴在0x >内,y 随x 的增大而减小,又 点()()121,,3,A y B y 在反比例函数3y x=的图象上,且310>>,12y y ∴>,故>.本题考查了反比例函数的性质,纯熟掌握反比例函数的增减性是解题关键.17.23π【分析】根据三角函数的定义求出∠B ,再求出∠A 的度数,故可求出扇形的面积,故可求解.【详解】如图,∵圆A 与BC 相切于点C ,∴∠ACB =90°,故△ABC 是直角三角形,∵BC =2AB ,∴co =2BC AB =,∴∠B =30°,∴∠A =90°-∠B =60°,∴AB =2AC =4,BC∴图中暗影部分的面积为S △ABC 扇形ACD =216022360BC AC π⋅⋅⨯-=12223π⨯-=23π-,故23π.此题次要考查不规则图形的面积求解,解题的关键是熟知解直角三角形的方法、切线的性质及扇形面积公式的运用.18.(-【分析】先确定6次一个循环,再确定第2023次旋转的地位,再构建直角三角形求解即可.【详解】解:∵(A ,∠ABO =90°,∴OB =1,AB =∵∠A =30°,∴OA =2OB =2,将△OBA 绕原点逆时针旋转,每次旋转60°,∴旋转6次回到原地位,20236=3371,¸Q g g g g g g 所以旋转2023次的地位如图示,由题意可得:tan 3,AOB Ð=60,60,AOB A OB A OH ⅱ\��靶=过A '作A H OB '⊥于H ,2211,213,2OH A O A H ⅱ\===-=∴第2023次旋转结束时,点A 对应点的坐标为(3-,故答案为(3-.本题考查图形变化-旋转,规律型:点的坐标,解直角三角形等知识,解题的关键是掌握探求规律的方法,属于中考常考题型.19.44x -,22【分析】先利用平方差公式和完全平方公式对原式进行分解因式化简,然后代入值计算即可得到答案.【详解】解:原式=23(4)(4)(4)34x x x x x x x --+⋅----=44444x x x x x +-=---当24x =时,2(24)42==+-本题次要考查了因式分解,分式的化简求解,解题的关键在于能够纯熟掌握因式分解的方法.20.(1)160;54;20%;条形图见解析(2)280人(3)13【分析】(1)由D 实验内容人数及其所占百分比可得总人数;用360°乘以A 人数所占比例即可得出“A ”所在扇形的圆心角的度数;用C 人数除以总人数即可得出C 所占的百分;根据四个实验人数和等于总人数求出B 对应人数,即可补全图形;(2)用总人数乘以样本中B 实验人数所占比例.(3)根据题意画树状图,然后根据树状图求得一切的可能的结果与抽取同窗中恰有一名男生和一名女生的情况,根据概率公式求解即可.(1)本次调查的总人数为:48÷30%=160(人);扇形统计图中“A ”所在扇形的圆心角的度数为:°°24360=54160⨯;C 所占的百分比为:32100%=20%160⨯,B 对应人数为:160-24-32-48=56(人),补全条形统计图如下:(2)56800=280160⨯(人)答:对“B .水膜张力实验”最感兴味的先生人数280人.(3)画树状图如下:由图可知,一共有12种可能,抽取同窗中恰有一名男生和一名女生有4种可能,概率为41=123本题考查条形统计图、扇形统计图、用样本估计总体,用列表或树状图求概率,解答本题的关键是明确题意,利用数形的思想解答.21.(1)8(2)【分析】(1)利用正切函数的定义可求出OB 的长度,进而根据反比例函数中k 值的几何意义可求得k 值.(2)连接OC ,过点C 作⊥CH x 轴于点H ,过点A 作AM CH ⊥于点M ,根据(1)中结论利用矩形的性质可求出OH ,CH 的长度,进而利用勾股定理可得OC 长度.(1)解:1tan ,22AB AOB AB OB ∠=== 4OB ∴=根据k 值的几何意义可知:1222OAB k S AB OA ∴==⨯⨯△8k =(2)解:如图所示,连接OC ,过点C 作⊥CH x 轴于点H ,过点A 作AM CH ⊥于点M .,,AM CH AB x CH x⊥⊥⊥ ∴四边形AMHB 是矩形∴,,90AM BH AB HM BAM ==∠=︒135BAC ∠=︒45MAC BAC BAM ∴∠=∠-∠=︒AM CM∴=设OH x =,则4CM AM BH OB OH x ===-=-,426CH CM MH x x∴=+=-+=-(6)8x x ∴-=解得:122,4x x ==(舍去)则2,4OH CH ==22222425OC OH CH ∴=+=+=本题考查了反比例函数的几何运用,涉及到勾股定理、矩形的判定与性质、以及反比例函数的性质,纯熟掌握反比例函数中的k 值的几何意义是处理本题的关键.22.(1)见解析21【分析】(1)根据AB 是O 直径,可得90BAC ABC ∠+∠=︒,再由四边形ABCE 是O 的内接四边形,可得180ABC AEC ∠+∠=︒,即可求证;(2)连接OC ,过O 作OG AE ⊥于点G ,根据切线的性质可得90OCD ∠=︒,从而得到四边形OCDG 为矩形,可得2AG =,再由勾股定理,即可求解.(1)证明:∵AB 是O 直径,∴90ACB ∠=︒,∴90BAC ABC ∠+∠=︒,∵CD AE ⊥,∴90EDC ∠=︒,∴90DCE DEC ∠+∠=︒,∵四边形ABCE 是O 的内接四边形,∴180ABC AEC ∠+∠=︒,又180DEC AEC ∠+∠=︒,∴ABC DEC ∠=∠,∴DCE BAC ∠=∠,(2)解:如图,连接OC ,过O 作OG AE ⊥于点G ,∵CD 是O 的切线,∴OC CD ⊥,即90OCD ∠=︒,∵OG AE ⊥于G 点,CD AE ⊥于D 点,∴90OGD CDG ∠=∠=︒,∴四边形OCDG 为矩形,∴OG CD =,5OC GD ==,∴752AG AD DG =-=-=,∵O 的半径为5,∴OA =5,在Rt AGO △中,OG =∴CD OG ==本题次要考查了圆内接四边形的性质,切线的性质,矩形的判定和性质等知识,纯熟掌握圆内接四边形的性质,切线的性质,矩形的判定和性质等知识是解题的关键.23.(1)每千克A 水果进价为10元,每千克B 水果进价为18元(2)该水果商城最多可再购买15千克A 水果,25千克B 水果,获得利润,利润是210元【分析】(1)设每千克A 水果为x 元,则每千克B 水果()8x +元,根据题意,得4207568x x =+,求出满足要求的x 的值,进而可得()8x +的值;(2)设再购买a 千克A 水果,购买()40a -千克B 水果,根据题意,得()101840600a a +-≤,进而可得1540a ≤≤,设总利润为w 元,根据题意,得()()()14102418402240w a a a =-+--=-+,根据函数的图象与性质求最值即可.(1)解:设每千克A 水果为x 元,则每千克B 水果()8x +元,根据题意,得4207568x x =+,解得x =10,经检验,x =10是原方程的解,∴810818x +=+=,∴每千克A 水果进价为10元,每千克B 水果进价为18元;(2)解:设再购买a 千克A 水果,购买()40a -千克B 水果,根据题意,得()101840600a a +-≤,解得15a ≥;∴1540a ≤≤,设总利润为w 元,根据题意,得()()()14102418402240w a a a =-+--=-+,∵20k =-<,∴w 随a 的增大而减小,∴当a =15时,w 有值,w 215240210=-⨯+=,∴4025a -=,∴该水果商城最多可再购买15千克A 水果,25千克B 水果,获得利润,利润是210元.本题考查了分式方程的运用,函数的运用,一元不等式的运用等知识.解题的关键在于根据题意列等式与不等式.24.(1)见解析(2)253AD =(3)菱形ABCD 的边长为1【分析】(1)利用两角对应相等的两个三角形类似,证明△ADC ∽△ACB 即可.(2)利用平行四边形的性质,证明△BEF ∽△BFC 即可.(3)延伸DC 、EF ,二线交于点G ,证明四边形AEGC 是平行四边形,且证明△DEF ∽△GED 即可.(1)证明:∵∠ACD =∠B ,∠A =∠A∴△ADC ∽△ACB∴AD AC AC AB=.∴2AC AD AB =⋅.(2)∵四边形ABCD 是平行四边形,∴AD =BC ,∠A =∠C又∵BFE A=∠∠∴BFE C∠=∠又∵FBE CBE ∠=∠.∴△BEF ∽△BFC .∴BF BE BC BF=.∴2BF BE BC=⋅∴2252533BF BC BE ===∴253AD =.(3)延伸DC 、EF ,二线交于点G ,∵四边形ABCD 是菱形,∴∠BAD =2∠DAC =2∠BAC ,DC//AB ,DC =BC =AB =AD ,∵EF//AC ,∴四边形AEGC 是平行四边形,∴AC =EG ,∠G =∠BAC ,∵2BAD EDF ∠=∠,∴∠G =∠BAC =∠EDF ,∵∠DEF =∠GED ,∴△DEF ∽△GED ,∴=DE EF DF GE DE GD=,∴2=DE EF GE ,∵AC =EG ,AC =2EF ,∴22=2DE EF ,∴DE ,∴GD =,∴DC =DG -CG =DG -AE ,∵AE =1,DF =4,∴DC =1-.本题考查了三角形类似的判定和性质,平行四边形的性质和判定,菱形的性质,纯熟掌握菱形的性质,平行四边形的判定和性质是解题的关键.25.(1)(1,0)或(5,0);(2)①y =2x 2−8x +6;②0<k ≤2.【分析】(1)把y =0代入y =−2x +6中,可得B 的坐标,已知中BC =2,即可得C 的坐标;(2)①在y =−2x +6中令x =0,则可求A 的坐标.设二次函数解析式为y =ax 2+bx +c ,分别把A 、B 代入抛物线解析式,求出C (1,0)和C (5,0)时抛物线解析式.由已知条件知x >2时,二次函数y 随x 的增大而增大,即可得抛物线表达式;②根据抛物线对称性可得D 坐标为(4,6),求出直线CD 的解析式为y =2x −2,可知E (0,-2)在直线CD 上,且直线y =kx −2过点E (0,-2),如图,直线y =k 2x −2过E 点且与二次函数图象只要一个交点F ,求出此时k 2的值,即可确定k 的取值范围.(1)解:令y =−2x +6中y =0,则x =3,∴B 点为(3,0),∵C 在x 轴上且BC =2,∴C 的坐标为(1,0)或(5,0);(2)解:①设二次函数的表达式为:y =ax 2+bx +c ,令y =−2x +6中x =0,则y =6,∴A 点为(0,6),把A 点(0,6)代入到二次函数中,得6=c ,把B (3,0)代入到二次函数中得:0=9a +3b +6,当C 为(1,0)时,代入得0=a +b +c =a +b +6,解得:a =2,b =−8,∴y =2x 2−8x +6;当C 为(5,0)时,代入得0=25a +5b +c =25a +5b +6,解得:a =25,b =−165,∴y =2216655x x -+,∵任意两点P 1(x 1,y 1)P 2(x 2,y 2),当x 1>x 2>2时,总有y 1>y 2,∴当x >2时,二次函数y 随x 的增大而增大,当二次函数解析式为y =2x 2−8x +6时,对称轴为直线x =824--=,∵a =2>0,∴抛物线开口向上,∴当x >2时,二次函数y 随x 的增大而增大,符合要求;当二次函数解析式为y =2216655x x -+时,对称轴为直线x =165445--=,∵a =25>0,∴抛物线开口向上,∴当2<x <4时,二次函数y 随x 的增大而减小,不符合要求,舍去,综上,二次函数解析式为y =2x 2−8x +6;②∵A (0,6),二次函数y =2x 2−8x +6的对称轴为x =824--=,∴D 点坐标为(4,6),设直线CD 解析式为y =ax +b ,把C (1,0)、D (4,6)代入得:046a b a b +=⎧⎨+=⎩,解得:22a b =⎧⎨=-⎩,∴直线CD 解析式为y =2x −2,∴直线CD 必过点E (0,-2),∵直线y =kx −2必过点E (0,-2),∴如图,作直线y =k 1x −2过C 、D 、E 点,则k 1=2,直线y =k 2x −2过E 点且与二次函数图象只要一个交点F ,联立222286y k x y x x =-⎧⎨=-+⎩得:222862x x k x -+=-,整理得:()222880x k x -++=,令△=(8+k 2)2−4×2×8=0,解得k 2=0,∵k 2≠0,∴当0<k ≤2时,函数y =kx ﹣2(k ≠0)的图象与图象G 有公共点.式,二次函数的性质,函数与二次函数的交点成绩等.2023-2024学年山东省德州市中考数学专项提升仿真模拟卷(二模)一、选一选(每小题3分,共30分)1.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是()A.AB.BC.CD.D2.下列二次函数中,其图象的对称轴为x =﹣2的是()A.y =2x 2﹣2B.y =﹣2x 2﹣2C.y =2(x ﹣2)2D.y =(x +2)23.小军在班会中参与知识抢答,现有5道语文题,5道数学题,10道其他科目题,他从中随机抽取1道,抽中数学题的概率是()A.120B.15 C.14D.134.如图,在⊙O 中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=ABB.∠C=12∠BODC.∠C=∠BD.∠A=∠B0D5.将抛物线223y x x =-+向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线解析式为()A.2(1)4y x =-+B.2(4)4y x =-+C.2(2)6y x =++ D.2(4)6y x =-+6.如图,在⊙O 中,弧AB=弧AC,∠ADC =25°,则∠CBO 的度数是()A.50°B.25°C.30°D.40°7.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200cm 2B.600cm 2C.100πcm 2D.200πcm 28.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,下列结论:①b <0;②c >0;③a +c <b ;④b 2-4ac >0,其中正确的个数是()A.1B.2C.3D.49.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为()A.43πB.43π﹣ C.π D.23π﹣10.如图,反比例函数k y x=的图象二次函数y=ax 2+bx 图象的顶点(–12,m )(m>0),则有()A.a=b+2kB.a=b–2kC.k<b<0D.a<k<0二、填空题(每小题3分,共24分)11.“清明时节雨纷纷”是_______.(填“必然”“没有可能”或“随机”)12.如图,若抛物线2y ax bx c =++上的(4,0)P ,Q 两点关于它的对称轴1x =对称,则Q 点的坐标为____.13.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是________.14.在二次函数y =-x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x -3-2-1123456y-14-7-22mn-7-14-23则m ,n 的大小关系为m________n(填“<”“=”或“>”).15.如图,用一个半径为30cm ,面积为300πcm 2的扇形铁皮,制作一个无底的圆锥(没有计损耗),则圆锥的底面半径r为______.16.一个没有透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述试验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球____________个.17.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为_____.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为_____.三、解答题(共66分)19.画出如图所示物体的主视图、左视图、俯视图.20.已知⊙O的直径AB的长为4㎝,C是⊙O上一点,∠BAC=30°,过点C 作⊙O 的切线交AB 的延长线于点P ,求BP 的长21.如图,抛物线y 1=-x 2+2x+3与直线y 2=4x 交于A,B 两点.(1)求A,B 两点的坐标;(2)当x 取何值时,y 1>y 2?22.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目没有能相同,且每人只能随机抽取,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.23.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E(1)求证:DE 是⊙O 的切线;(2)若DE=6cm ,AE=3cm ,求⊙O 的半径.24.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场,单价是100元时,每天的量是50件,而单价每降低1元,每天就可多售出5件,但要求单价没有得低于成本.(1)求出每天的利润y(元)与单价x(元)之间的函数关系式;(2)求出单价为多少元时,每天的利润?利润是多少?(3)如果该企业要使每天的利润没有低于4000元,那么单价应在什么范围内?25.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的解析式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE.若存在,请直接写出点F的坐标;若没有存在,请说明理由.。

2022年山东省德州市重点中考数学模拟试卷(含解析)

2022年山东省德州市重点中考数学模拟试卷(含解析)

2022年山东省德州市重点中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若一个数的相反数是3-,则这个数是( ) A .13B .13-C .3-D .3+2.人的大脑每天能记录大约8600万条信息,8600万用科学计数法表示为( ) A .38.610⨯B .80.8610⨯C .68610⨯D .78.610⨯3.如图摆放的几何体的左视图是( )A .B .C .D .4.如果(2)(2)x m x n --的展开式中不含x 的一次项,则m 、n 满足( ) A .m n =B .0m =C .m n =-D .0n =5.某校九年级学生共有600名,要了解这些学生每天上网的时间,现采用抽样调查的方式,下列抽取样本数量既可靠又省时、省力的是( ) A .选取10名学生作样本 B .选取50名学生作样本 C .选取300名学生作样本D .选取500名学生作样本6.若不等式组()7314x x x m ⎧-≤+⎨-≤⎩有解,则m 的取值范围是( )A .9m ≥-B .9m >-C .m 1≥D .1m >7.下列说法不正确的是( )A .等腰三角形的两边长为2和5,则其周长为12B .直角三角形三条高的交点在三角形的内部C .从十边形的一个顶点出发有七条对角线D .()1n +边形的内角和比n 边形的内角和大180︒8.已知一次函数y =mnx 与y =mx +n (m ,n 为常数,且mn ≠0),则它们在同一平面直角坐标系内的图象可能为( )A .B .C .D .9.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,现在平均每天生产__________台机器.设现在每天生产x 台,则方程可为( ). A .45060050x x =+ B .45060050x x=+ C .45060050x x =- D .45060050x x=- 10.某个水库大坝的横断面为梯形,迎水坡的坡度是1∶1,那么两个坡的坡角和为( ). A .90°B .75°C .60°D .105°11.矩形ABCD 中,点E ,F 分别在AD 、CD 上,且BE FE ⊥,则图中的三角形∶,∶,∶,∶一定相似的是( )A .∶ 和∶B .∶和∶C .∶和∶D .∶∶和∶12.如图,点A 的坐标是()2,0,ABO ∆是等边三角形,点B 在第一象限.若反比例函数ky x=的图象经过点B ,则k 的值是( )A .1B .2CD .二、填空题13x 的取值范围是______. 14.若关于x 的方程220x x a --=有一个根为1-,则方程的另一根为______. 15.如图,正方形ABCD 与正方形CEFG 的面积之差是6,那么S 阴=_____________.16.点(1,2)在反比例函数1ky x-=的图象上,则k 的值是______ . 17.已知等式:2222233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a 1010b b+=⨯(a ,b 均为正整数),则 a b +=___.18.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.三、解答题19.已知)11a b a b+=≠,求()()a b b a b a a b ---的值.20朝上洗匀后;小丽先从中抽取一张,然后小明从余下的卡片中再抽取一张.(1(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.21.小明根据学习函数的经验,对函数111yx=+-的图象与性质进行了探究.下面是小明的探究过程,请补充完整;(1)函数111yx=+-的自变量x的取值范围是_____;(2)如表列出了y与x的几组对应值,请写出m,n的值:m=_______,n=________;(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象(注:图中小正方形网格的边长为1);(4)结合函数的图象,解决问题:当函数值13112x+>-时,x的取值范围是:____.22.如图,抛物线y=ax2+bx+1与x轴交于两点A(﹣1,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)过点B作BD∶CA抛物线交于点D,求四边形ACBD的面积;(3)在x轴下方的抛物线上是否存在点M,过M作MN∶x轴于点N,使以A、M、N 为顶点的三角形与∶BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.23.某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?24.已知:如图∶,将∶D=60°的菱形ABCD沿对角线AC剪开,将∶ADC沿射线DC 方向平移,得到∶BCE,点M为边BC上一点(点M不与点B、点C重合),将射线AM 绕点A逆时针旋转60°,与EB的延长线交于点N,连接MN.(1)∶求证:∶ANB=∶AMC;∶探究∶AMN的形状;(2)如图∶,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45°,原题其他条件不变,(1)中的∶、∶两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.25.如图,已知抛物线2C.y x mx n=-++的顶点是(1,4)(1)求抛物线的解析式;(2)点A 是抛物线上在第一象限的动点,过A 作AQ x ⊥轴,Q 为垂足,求AQ OQ +的最大值;(3)设点B 的坐标为(1,4)-,问在抛物线的对称轴上是否存在点M ,使线段MB 绕点M 逆时针旋转90︒得到线段MB ',且点B '恰好落在抛物线上?若存在,求出点M 的坐标;不存在,说明理由.参考答案:1.D【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数,即可求解. 【详解】解:3+的相反数是3-,∴这个数是3+,故选:D .【点睛】本题考查的是相反数的定义,熟记相关定义是解题的关键. 2.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【详解】解:8600万=7860000008.610=⨯, 故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.A【分析】根据左视图是从左面看到的视图判定则可. 【详解】解:从左边看,是左右边各一个长方形,大小不同, 故选A .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图. 4.C【分析】先根据多项式乘以多项式的法则展开式子,再合并,根据不含x 的一次项,则含x 的一次项的系数为0,即可求解. 【详解】解:(2)(2)x m x n -- 2224x nx mx mn =--+ 22()4x m n x mn =-++,展开式中不含x 的一次项, 2()0m n ∴-+=,0m n ∴+=,即m n =-,故选:C .【点睛】本题考查了多项式乘以多项式,不含某一项则这项的系数为0,属于基础题. 5.B【分析】根据抽样调查的样本容量要适当,可得答案. 【详解】解:A 样本容量太小,不具代表性,故A 不可取; B 样本容量适中,省时省力又具代表性,故B 可取; C 样本容量太大,费时费力,故C 不可取; D 样本容量太大,费时费力,故D 不可取; 故选:B .【点睛】本意考查了抽样调查的可靠性,注意样本容量太小不具代表性,样本容量太大费时费力. 6.A【分析】分别求出每一个不等式的解集,再根据口诀“同大取大,同小取小,大小小大中间找,大大小小无解”进行解答即可.【详解】解:73(1)4x x x m -≤+⎧⎨-≤⎩①②,解∶得5x ≥-, 解∶得4x m ≤+, 不等式组有解,45m ∴+≥-,解得 9m ≥-, 故选:A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集,再根据“同大取大,同小取小,大小小大中间找,大大小小无解”的原则是解答此题的关键. 7.B【分析】根据多边形的内角与外角、等腰三角形的性质、多边形的对角线等有关定理、定义逐一判断即可.【详解】A 、等腰三角形的两边长为2和5,其周长是12,故说法正确,不符合题意; B 、直角三角形三条高的交点在三角形的直角顶点处,故说法错误,符合题意; C 、从十边形的一个顶点出发有七条对角线,故说法正确,不符合题意;D 、()1n +边形的内角和比n 边形的内角和大180︒,说法正确,不符合题意, 故选:B .【点睛】本题考查了多边形的内角与外角、等腰三角形的性质、多边形的对角线等,熟记有关定理、定义是解题的关键. 8.D【分析】根据一次函数的图象与系数的关系,由一次函数y mx n =+图象分析可得m 、n 的符号,进而可得mn 的符号,从而判断y mnx =的图象是否正确,进而比较可得答案. 【详解】A 、由一次函数y mx n =+图象可知0m >,0n <,即0mn <,与正比例函数y mnx =的图象可知0mn >,矛盾,故此选项错误;B 、由一次函数y mx n =+图象可知0m <,0n >,即0mn <,与正比例函数y mnx =的图象可知0mn >,矛盾,故此选项错误;C 、由一次函数y mx n =+图象可知0m >,0n >,即0mn >;正比例函数y mnx =的图象可知0mn <,矛盾,故此选项错误;D 、由一次函数y mx n =+图象可知0m <,0n >,即0mn <,与正比例函数y mnx =的图象可知0mn <,故此选项正确; 故选:D .【点睛】此题主要考查了一次函数图象,注意:一次函数y =kx +b 的图象有四种情况:∶当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;∶当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;∶当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;∶当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限. 9.D【详解】若设现在每天生产x 台,则原计划每天生产(50)x -台,由现在生产600台机器和原计划生产450台机器所需时间相同,可列方程: 45060050x x=-. 故选D. 10.B【分析】利用坡度的特殊值得到坡角的度数,把它们相加即可. 【详解】解:如图所示.由题意知:∶α=30°; tanβ=11=1,∶β=45°. ∶∶α+∶β=75°. 故选B .【点睛】本题考查坡度的定义,熟记特殊角的三角函数值是解题关键. 11.B【分析】根据矩形性质得到90A D ∠=∠=︒,再根据角的互余关系得到AEB DFE ∠=∠,根据相似三角形的判定即可确定答案.【详解】解:在矩形ABCD 中,90A D ∠=∠=︒,BE FE ⊥,90AEB DEF ∴∠+∠=︒,90DEF DFE ∠+∠=︒, ∴AEB DFE ∠=∠,ABE DEF ∴∽△△,即∶和∶相似,故选:B .【点睛】本题考查了矩形的性质、相似三角形的判定方法,熟练掌握矩形的性质,根据有两角对应相等的两个三角形相似是解决问题的关键. 12.C【分析】首先过点B 作BC 垂直OA 于C ,根据AO=2,△ABO 是等边三角形,得出B 点坐标,进而求出反比例函数解析式. 【详解】过点B 作BC 垂直OA 于C ,∶点A 的坐标是(2,0), ∶AO=2,∶∶ABO 是等边三角形,∶OC=1,=∶点B 的坐标是(1,把(1k y x=, 得故选:C .【点睛】此题主要考查了反比例函数的综合应用、等边三角形的性质以及图象上点的坐标特点等知识,根据已知表示出B 点坐标是解题关键.13.0x ≥##0x ≤【分析】根据二次根式有意义的条件可得0x ≥,根据分式有意义的条件可得20x +≠,再解不等式即可.∶020x x ≥⎧⎨+≠⎩,解得0x ≥. 故答案为:0x ≥.【点睛】本题主要考查了二次根式有意义的条件、分式有意义的条件以及解不等式组,牢记分式、二次根式有意义的条件是解题的关键.14.3【分析】设方程的另一根为x ,由根与系数的关系可得两根之和等于2,即可求解.【详解】解:设方程的另一根为x ,(1)2x ∴+-=,3x ∴=,故答案为:3.【点睛】本题考查了根与系数的关系,解题的关键是熟记根与系数之间的关系. 15.3【分析】设大正方形边长为x ,小正方形边长为y ,则DE =x −y ,然后表示出阴影部分面积,再计算整式的乘法和加减,进而可得答案.【详解】解:设大正方形边长为x ,小正方形边长为y ,则==CE CG x ,==AD CD y , ∶=-=-DE CE CD x y ,∶S 阴=+ADE GDE S S1122=⋅⋅+⋅⋅DE CD DE CG 11()()22=-+-y x y x x y 1()()2=+-x y x y 221()2=-x y , ∶正方形ABCD 与正方形CEFG 的面积之差是6,即226x y -=, ∶2211()6322-=⨯=x y , 故答案为:3.【点睛】此题主要考查了列代数式和整式的混合运算,关键是正确运用算式表示出阴影部分面积.16.1-【分析】根据反比例函数中=k xy 的特点求解出k 的值即可. 【详解】解:点(1,2)在反比例函数1k y x-=的图象上, 112k ∴-=⨯,1k ∴=-,故答案为:1-.【点睛】本题考查的是反比例函数图象上的点的坐标特征,熟知反比例函数中=k xy 的特点是解答此题的关键.17.109 【分析】先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可. 【详解】解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10∶a+b=10+99=109.故答案为109.【点睛】本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.18.20 【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm ,即AE=2,则DE=AD -AE=6-2=4cm向左平移1cm ,即CF=1,则DF=DC -CF=6-1=5cm则S 矩形DEB'F =DE•DF=4×5=20cm 2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.19【详解】分式的化简求值.由11+a b a+b ab对()()a b b a b a a b ---通分(最简公分母为()ab a b -),分子因式分解,约分,化简得出a+b ab,代入求出即可. 20.(1)13(2)这个游戏不公平,对小明有利【分析】(1)应用概率公式求解即可,一共有3概率是13; (2)此题采用树状图法可得:一共有6种情况,其中积是有理数的有2种、不是有理数的有4种,所以不公平.【详解】解:(113. (2)画树状图:.∶共有6种等可能结果,其中积是有理数的有2种、,不是有理数的有4种∶P(小丽获胜)=2163=, P(小明获胜)=4263=, ∶这个游戏不公平,对小明有利.【点睛】本题考查的是概率公式与游戏公平性的判断.判断游戏公平性就要计算每个人取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)1x ≠ (2)12;3 (3)作图见解析(4)13x <<【分析】(1)根据分母不为0即可求出自变量x 的取值范围.(2)将x =-1和32x =分别代入函数解析式即可求出m 和n 的值. (3)将点的坐标标记在平面直角坐标系中,再用平滑曲线连接即可.(4)使用数形结合思想观察函数图象并结合表格中的数据即可求解.【详解】(1)解:∶分母不为0,∶10x -≠.∶1x ≠.故答案为:1x ≠.(2)解:将x =-1代入函数解析式得111112y =+=--. ∶12m =.将32x =代入函数解析式得113312y =+=-. ∶n =3. 故答案为:12;3.(3)解:描点作图如下.(4)解:使用数形结合思想观察函数图象并结合表格中的数据可知当函数值13112x +>-时,x 的取值范围是:1<x <3.【点睛】本题考查自变量的取值范围,求函数值,用描点法画函数图象,数形结合解不等式,综合应用这些知识点是解题关键. 22.(1)y =﹣x 2+1;(2)4;(3)M (43,﹣79)或(4,﹣15)或(﹣2,﹣3). 【分析】(1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数的值;(2)先求出直线AC 的解析式,由于BD ∥AC ,那么直线BD 的斜率与直线AC 的相同,可据此求出直线BD 的解析式,联立抛物线的解析式即可求出D 点的坐标;由图知四边形ACBD 的面积是△ABC 和△ABD 的面积和,由此可求得其面积;(3)易知OA =OB =OC =1,那么△ACB 是等腰直角三角形,由于AC ∥BD ,则∠CBD =90°;根据B 、C 的坐标可求出BC 、BD 的长,进而可求出它们的比例关系;若以A 、M 、N 为顶点的三角形与△BCD 相似,那么两个直角三角形的对应直角边应该成立,可据此求出△AMN 两条直角边的比例关系,连接抛物线的解析式即可求出M 点的坐标.【详解】解:(1)依题意,得:1010a b a b -+=⎧⎨++=⎩,解得10a b =-⎧⎨=⎩; ∶抛物线的解析式为:y =﹣x 2+1;(2)易知A (﹣1,0),C (0,1),则直线AC 的解析式为:y =x +1;由于AC ∶BD ,可设直线BD 的解析式为y =x +h ,则有:1+h =0,h =﹣1;∶直线BD 的解析式为y =x ﹣1;联立抛物线的解析式得:211y x y x ⎧=-+⎨=-⎩,解得10x y =⎧⎨=⎩,23x y =-⎧⎨=-⎩; ∶D (﹣2,﹣3);∶S 四边形ACBD =S △ABC +S △ABD =12×2×1+12×2×3=4; (3)∶OA =OB =OC =1,∶∶ABC 是等腰Rt∶;∶AC ∶BD ,∶∶CBD =90°;易求得BC BD =;∶BC :BD =1:3;由于∶CBD =∶MNA =90°,若以A 、M 、N 为顶点的三角形与∶BCD 相似,则有: ∶MNA ∶∶CBD 或∶MNA ∶∶DBC ,得:13MN BC AN BD ==或3MN BD AN BC ==; 即MN =13AN 或MN =3AN ; 设M 点的坐标为(x ,﹣x 2+1),∶当x >1时,AN =x ﹣(﹣1)=x +1,MN =x 2﹣1;∶x 2﹣1=13(x +1)或x 2﹣1=3(x +1), 解得x =43,x =﹣1(舍去)或x =4,x =﹣1(舍去); ∶M 点的坐标为:M (43,﹣79)或(4,﹣15); ∶当x <﹣1时,AN =﹣1﹣x ,MN =x 2﹣1;∶x2﹣1=13(﹣x﹣1)或x2﹣1=3(﹣x﹣1),解得x=23,x=﹣1(两个都不合题意,舍去)或x=﹣2,x=﹣1(舍去);∶M(﹣2,﹣3);故存在符合条件的M点,且坐标为:M(43,﹣79)或(4,﹣15)或(﹣2,﹣3).【点睛】此题主要考查了二次函数解析式的确定、图形面积的求法以及相似三角形的判定和性质等重要知识点,同时还考查了分类讨论的数学思想.23.甲种奖品买了12件,乙种奖品买了18件.【分析】设甲种奖品买了x件,乙种奖品买了y件.根据两种奖品共30件以及共花了396元,即可得出关于x、y的二元一次方程组,解方程组即可得出结论.【详解】解:设甲种奖品买了x件,乙种奖品买了y件.根据题意得:30 1512396 x yx y+=⎧⎨+=⎩解得:1218 xy=⎧⎨=⎩.答:甲种奖品买了12件,乙种奖品买了18件.故答案为甲种奖品买了12件,乙种奖品买了18件.【点睛】本题考查二元一次方程组的应用,解题的关键是找准等量关系,列出二元一次方程组.24.(1)∶证明见解析;∶∶AMN是等边三角形,理由见解析;(2)见解析.【分析】(1)∶先由菱形可知四边相等,再由∶D=60°得等边△ADC和等边△ABC,则对角线AC 与四边都相等,利用ASA证明△ANB∶∶AMC,得结论;∶根据有一个角是60°的等腰三角形是等边三角形得出:△AMN是等边三角形(2)∶成立,根据正方形得45°角和射线AM绕点A逆时针旋转45°,证明△ANB∶△AMC,得∶ANB=∶AMC;∶不成立,△AMN是等腰直角三角形,利用∶中的△ANB∶△AMC,得比例式进行变形后,再证明△NAM∶△BAD,则△AMN是等腰直角三角形【详解】(1)如图1,∶∶四边形ABCD是菱形,∶AB=BC=CD=AD,∶∶D=60°,∶∶ADC和△ABC是等边三角形,∶AB=AC,∶BAC=60°,∶∶NAM=60°,∶∶NAB=∶CAM,由△ADC沿射线DC方向平移得到△BCE,可知∶CBE=60°,∶∶ABC=60°,∶∶ABN=60°,∶∶ABN=∶ACB=60°,∶∶ANB∶∶AMC,∶∶ANB=∶AMC;∶如图1,△AMN是等边三角形,理由是:由∶∶ANB∶∶AMC,∶AM=AN,∶∶NAM=60°,∶∶AMN是等边三角形;(2)∶如图2,∶ANB=∶AMC成立,理由是:在正方形ABCD中,∶∶BAC=∶DAC=∶BCA=45°,∶∶NAM=45°,∶∶NAB=∶MAC,由平移得:∶EBC=∶CAD=45°,∶∶ABC=90°,∶∶ABN=180°﹣90°﹣45°=45°,∶∶ABN=∶ACM=45°,∶∶ANB∶∶AMC,∶∶ANB=∶AMC;∶如图2,不成立,△AMN是等腰直角三角形,理由是:∶∶ANB∶∶AMC,∶AN AB AM AC = , ∶AN AM AB AC= , ∶∶NAM =∶BAC =45°,∶∶NAM ∶∶BAC ,∶∶ANM =∶ABC =90°,∶∶AMN 是等腰直角三角形.【点睛】此题考查四边形综合题,运用了菱形的性质,三角形全等,三角形相似,解题关键在于合理运用各种性质进行证明和计算25.(1)223y x x =-++ (2)214(3)存在,(1,2)或(1,5)【分析】(1)利用顶点坐标公式求解即可;(2)设2(,23)A t t t -++,则(,0)Q t ,则2321()24AQ OQ t +=--+,由此可求解; (3)过点M 作PQ y ⊥轴,过点B 作BP PQ ⊥交于P 点,过点B '作B Q PQ '⊥交于Q 点,可得PMB ∆≅∶()QB M AAS ',设(1,)M m ,由PM QB '=,PB MQ =,可求(3,2)B m m '--,再将B '代入抛物线解析式即可求(1,2)M 或(1,5)M .【详解】(1)2y x mx n =-++的顶点是(1,4)C , ∴12m =,2444n m --=-, 2m ∴=,3n =,223y x x ∴=-++;(2)设2(,23)A t t t -++,则(,0)Q t ,2223212333()24AQ OQ t t t t t t ∴+=-+++=-++=--+, ∴当32t =时,AQ OQ +有最大值214; (3)存在点M ,理由如下;过点M 作PQ y ⊥轴,过点B 作BP PQ ⊥交于P 点,过点B '作B Q PQ '⊥交于Q 点, 90PMB PBM ∠+∠=︒,90PMB QMB '∠+∠=︒,B QMB ∴∠=∠',BM B M '=,PMB ∴∆≅∶()QB M AAS ',PM QB '∴=,PB MQ =,设(1,)M m ,2PM ∴=,4PB m =-,(3,2)B m m '∴--,22(3)2(3)3m m m ∴-=--+-+,2m ∴=或5m =,(1,2)M ∴或(1,5)M ;综上所述:M 点的坐标为(1,2)或(1,5).【点睛】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,三角形全等的判定与性质是解题的关键.答案第15页,共15页。

初中数学山东省德州市中考模拟数学考试题(含答案).docx

初中数学山东省德州市中考模拟数学考试题(含答案).docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:3的相反数是()A.3 B. C.-3 D.试题2:下列图形中,既是轴对称又是中心对称图形的是()试题3:一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1,496亿.用科学记数法表示1,496亿是A. B. C. D.试题4:下列运算正确的是评卷人得分A.B. C.D.试题5:.已知一组数据;6,2,8.,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4试题6:如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A.图①B.图②C.图③D.图④试题7:如图,函数和(是常数,且)在同一平面直角坐标系的象可能是试题8:分式方程的解为()A. B. C. D.无解试题9:如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.试题10:.给出下列函数:①;②;③;④.上述函数中符合条件“当时,函数值随自变量增大而增大”的是()A.①③ B.③④ C.②④ D.②③试题11:我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”。

根据“杨辉三角”请计算的展开式中从左起第四项的系数为A.84 B.56 C.35 D.28试题12:如图,等边三角形的边长为4,点是△的中心,.绕点旋转,分别交线段于两点,连接,给出下列四个结论:①;②;③四边形的面积始终等于;④△周长的最小值为6,上述结论中正确的个数是( )A.1 B.2 C. 3 D.4第Ⅱ卷(共90分)试题13:计算:= .试题14:若是一元二次方程的两个实数根,则= .试题15:如图,为的平分线.,..则点到射线的距离为.试题16:如图。

2024届山东省德州市德城区重点中学中考数学模试卷含解析

2024届山东省德州市德城区重点中学中考数学模试卷含解析

2024届山东省德州市德城区重点中学中考数学模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体2.下列二次根式中,是最简二次根式的是( ) A .48B .22x y +C .15D .0.33.下列调查中,最适合采用全面调查(普查)方式的是( ) A .对重庆市初中学生每天阅读时间的调查 B .对端午节期间市场上粽子质量情况的调查 C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查 4.下列图形中,是正方体表面展开图的是( )A .B .C .D .5.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( ) A .31DE BC = B .DE 1BC 4= C .31AE AC = D .AE 1AC 4= 6.如图,已知AE 垂直于ABC ∠的平分线于点D ,交BC 于点E , 13CE BC =,若ABC ∆的面积为1,则CDE ∆的面积是( )A .14B .16C .18D .1107.已知一组数据2、x 、8、1、1、2的众数是2,那么这组数据的中位数是( ) A .3.1; B .4; C .2; D .6.1.8.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④9.已知a m =2,a n =3,则a 3m+2n 的值是( ) A .24B .36C .72D .610.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是( ) A .3.4×10-9mB .0.34×10-9mC .3.4×10-10mD .3.4×10-11m二、填空题(共7小题,每小题3分,满分21分) 11.已知反比例函数21k y x+=的图像经过点(2,1)-,那么k 的值是__. 12.如图放置的正方形ABCD ,正方形11DCC D ,正方形1122D C C D ,…都是边长为3的正方形,点A 在y 轴上,点12,,,B C C C ,…,都在直线33y x =上,则D 的坐标是__________,n D 的坐标是______.13.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.14.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=kx(k≠0)的图象恰好经过A′,B,则k的值为_____.15.如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为________.16.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P是切点,AB123OP6=,=则劣弧AB 的长为.(结果保留 )17.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.三、解答题(共7小题,满分69分)18.(10分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.19.(5分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.20.(8分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.21.(10分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.22.(10分)先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根. 23.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m ,平行于墙的边的费用为200元/m ,垂直于墙的边的费用为150元/m ,设平行于墙的边长为x m 设垂直于墙的一边长为y m ,直接写出y 与x 之间的函数关系式;若菜园面积为384m 2,求x 的值;求菜园的最大面积.24.(14分)有这样一个问题:探究函数y =316x ﹣2x 的图象与性质. 小东根据学习函数的经验,对函数y =316x ﹣2x 的图象与性质进行了探究. 下面是小东的探究过程,请补充完整: (1)函数y =316x ﹣2x 的自变量x 的取值范围是_______; (2)如表是y 与x 的几组对应值 x …﹣4﹣3.5 ﹣3﹣2﹣11233.54…y …﹣83﹣74832 831160 ﹣116 ﹣83 m74883…则m 的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; (4)观察图象,写出该函数的两条性质________.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】根据三视图的形状可判断几何体的形状.【题目详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.2、B【解题分析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.【题目详解】AB是最简二次根式,符合题意;C,不符合题意;D故选B.【题目点拨】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3、D【解题分析】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.4、C【解题分析】利用正方体及其表面展开图的特点解题.【题目详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【题目点拨】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.5、D【解题分析】如图,∵AD=1,BD=3,∴AD1 AB4=,当AE1AC4=时,AD AEAB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.6、B【解题分析】先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积. 【题目详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵1CE BC3,ΔABC的面积为1,∴S△AEC=13S△ABC=13,又∵AD=ED,∴S△CDE=12S△AEC=16,故选B.【题目点拨】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.7、A【解题分析】∵数据组2、x、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.8、C【解题分析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.41.9,故选C考点:实数与数轴的关系9、C【解题分析】试题解析:∵a m =2,a n =3, ∴a 3m+2n =a 3m •a 2n =(a m )3•(a n )2 =23×32 =8×9 =1. 故选C. 10、C 【解题分析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将1.11111111134用科学记数法表示103.410-⨯,故选C . 考点:科学记数法二、填空题(共7小题,每小题3分,满分21分) 11、32k =-【解题分析】将点的坐标代入,可以得到-1=212k +,然后解方程,便可以得到k 的值. 【题目详解】 ∵反比例函数y =21k x+的图象经过点(2,-1), ∴-1=212k + ∴k =− 32;故答案为k =−3 2. 【题目点拨】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答12、322⎛⎫+ ⎪ ⎪⎝⎭33222n ⎛⎫++ ⎪ ⎪⎝⎭【解题分析】先求出OA 的长度,然后利用含30°的直角三角形的性质得到点D 的坐标,探索规律,从而得到n D 的坐标即可.【题目详解】 分别过点12,,D D D 作y 轴的垂线交y 轴于点12,,E E E ,∵点B 在3y x =上 设3()B m tan 33AOB m∴∠== ∴60AOB ∠=︒3AB = 32sin 6032ABOA ∴===︒90AOB OAB ∠+∠=︒30OAB ∴∠=︒90,90EAD OAB EAD EDA ∠+∠=︒∠+∠=︒ 30EDA OAB ∴∠=∠=︒同理,1122,n n AD E AD E AD E 都是含30°的直角三角形∵332ED AD ==,132AE AD ==322OE OA AE ∴=+=+∴33(,2)22D + 同理,点n D 的横坐标为333(1)3(1)222n n n x E D AD n n ===+=+ 纵坐标为11322(1)32(1)222n n AO AE AD n n +=+=++=++ 故点n D 的坐标为3333,22222n n ⎛⎫+++ ⎪ ⎪⎝⎭故答案为:33,222⎛⎫+ ⎪ ⎪⎝⎭;3333,22222n n ⎛⎫+++ ⎪ ⎪⎝⎭.【题目点拨】本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.13、513【解题分析】如图,有5种不同取法;故概率为 5 13. 1443【解题分析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,3,∴A′(12m,32m),∵反比例函数kyx(k≠0)的图象恰好经过点A′,B,∴12m•32m=m,∴m=433,∴k=433故答案为43 315、-1【解题分析】试题分析:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=1.设B点坐标为(t,1),则E点坐标(t-2,2),∵点B、E在反比例函数y=的图象上,∴k=1t=2(t-2),解得t=-1,k=-1.考点:反比例函数系数k的几何意义.16、8π.【解题分析】试题分析:因为AB为切线,P为切点,22,636,12,260,60OP AB AP BP OP OB OP PB OP AB OB OP POB POA ︒︒∴⊥∴===∴=+=⊥=∴∠=∠= 劣弧AB 所对圆心角考点: 勾股定理;垂径定理;弧长公式.17、y=x+12【解题分析】已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.【题目详解】∵直线 y=x 沿y 轴向上平移1个单位长度,∴所得直线的函数关系式为:y=x+1.∴A (0,1),B (1,0),∴AB=12,过点 O 作 OF ⊥AB 于点 F ,则12AB•OF=12OA•OB , ∴OF=222OA OB AB ⋅== 2故答案为y=x+1,2【题目点拨】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k 不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.三、解答题(共7小题,满分69分)+;(2)102.18、(1)5652【解题分析】试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=3x,DH=x.531.∵CH―DH=CD3―x=10,∴x=)∵∠ADH=45°,∴AD2=5652.(2)如图,过B作BM⊥AD于M.∵∠1=75°,∠ADB=45°,∴∠DAB=30°.设MB=m,∴AB=2m,AM3,DM=m.∵AD=AM+DM,∴56523+m.∴m=52AB=2m=102.19、(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.【解题分析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.考点:一次函数的应用.20、(1)125°;(2)125°;(3)∠BOC=90°+12 n°.【解题分析】如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+12∠A,然后根据此结论分别解决(1)、(2)、(3).【题目详解】如图,∵BO、CO是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+12∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+12×70°=125°;(2)∠BOC=90°+12∠A=125°;(3)∠BOC=90°+12 n°.【题目点拨】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.21、解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=.【解题分析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.22、原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 【解题分析】试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可. 试题解析:原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 考点:分式的化简求值;一元二次方程的解.23、(1)见详解;(2)x=18;(3) 416 m 2.【解题分析】(1)根据“垂直于墙的长度=2-÷总费用平行于墙的总费用垂直于可得函数解析式; (2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x 的函数解析式,配方成顶点式后利用二次函数的性质求解可得.【题目详解】(1)根据题意知,y =100002002150x -⨯=-23x +1003; (2)根据题意,得(-23x +1003)x =384, 解得x =18或x =32.∵墙的长度为24 m ,∴x =18.(3)设菜园的面积是S ,则S =(-23x +1003)x =-23x 2+1003x =-23 (x -25)2+12503. ∵-23<0,∴当x <25时,S 随x 的增大而增大. ∵x≤24,∴当x =24时,S 取得最大值,最大值为416.答:菜园的最大面积为416 m 2.【题目点拨】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.24、(1)任意实数;(2)32 ;(3)见解析;(4)①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【解题分析】(1)没有限定要求,所以x 为任意实数,(2)把x =3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【题目详解】解:(1)函数y =316x ﹣2x 的自变量x 的取值范围是任意实数; 故答案为任意实数; (2)把x =3代入y =316x ﹣2x 得,y =﹣32; 故答案为﹣32; (3)如图所示;(4)根据图象得,①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.故答案为①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【题目点拨】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.。

山东省德州市陵城区2024届中考数学适应性模拟试题含解析

山东省德州市陵城区2024届中考数学适应性模拟试题含解析

山东省德州市陵城区2024年中考数学适应性模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+92.如图,已知△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2-2B.32C.3-1D.13.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定4.在实数﹣3.5、、0、﹣4中,最小的数是()A.﹣3.5 B.C.0 D.﹣4 5.下列二次根式中,是最简二次根式的是()A48B22x yC 15D0.36.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱7.如图,矩形ABCD中,AB=3,AD=3,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()A.12B.1 C.22D.328.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A.B.C. D.9.对于非零的两个实数a、b,规定11a bb a⊗=-,若1(1)1x⊗+=,则x的值为()A.32B.13C.12D.12-10.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A .两车同时到达乙地B .轿车在行驶过程中进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等二、填空题(共7小题,每小题3分,满分21分) 11.分解因式:mx 2﹣6mx+9m=_____. 12.方程1125x x ++-=的根为_____.13.在平面直角坐标系中,点A 1,A 2,A 3和B 1,B 2,B 3分别在直线y=1455x +和x 轴上,△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3都是等腰直角三角形.则A 3的坐标为_______..14.如图,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则DEBC的值为_________.15.若方程x 2+2(1+a )x+3a 2+4ab+4b 2+2=0有实根,则ba=_____. 16.定义一种新运算:x*y=x y y +,如2*1=211=3,则(4*2)*(﹣1)=_____. 17.如图,圆锥底面圆心为O ,半径OA =1,顶点为P ,将圆锥置于平面上,若保持顶点P 位置不变,将圆锥顺时针滚动三周后点A 恰好回到原处,则圆锥的高OP =_____.三、解答题(共7小题,满分69分)18.(10分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.(I)根据题意,填写下表:月用水量(吨/户) 4 10 16 ……应收水费(元/户)40 ……(II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?19.(5分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.20.(8分)(1)解方程:11322xx x--=---.(2)解不等式组:312215(1) xxx x-⎧<-⎪⎨⎪+≥-⎩21.(10分)当x取哪些整数值时,不等式21222xx-≤-+与4﹣7x<﹣3都成立?22.(10分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.租车公司:按日收取固定租金80元,另外再按租车时间计费.共享汽车:无固定租金,直接以租车时间(时)计费.如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案.23.(12分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?24.(1418(2166÷313参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.2、C【解题分析】延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【题目详解】解:延长BC′交AB′于D,连接BB',如图,在Rt△AC′B′中,2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴BD=323∴BC′=BD-3.故本题选择C.【题目点拨】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.3、D【解题分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【题目详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【题目点拨】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.4、D【解题分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【题目详解】在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D.【题目点拨】掌握实数比较大小的法则5、B【解题分析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.【题目详解】A483B22x y+C 155,不符合题意;D0.330,不符合题意;故选B.【题目点拨】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6、A【解题分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【题目详解】解:观察图形可知,这个几何体是三棱柱.故选A.【题目点拨】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..7、D【解题分析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=3,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.【题目详解】如图,连接AC交BE于点O,∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,∴AB=BE,∵四边形AEHB为菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等边三角形,∵AB=3,AD=3,∴tan∠CAB=33 BCAB,∴∠BAC=30°,∴AC⊥BE,∴C在对角线AH上,∴A,C,H共线,∴AO=OH=32AB=332,∵O C=123∵∠COB=∠OBG=∠G=90°,∴四边形OBGM是矩形,∴3∴HM=OH﹣3故选D.【题目点拨】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键. 8、C 【解题分析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2bx a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数cy x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象. 9、D 【解题分析】试题分析:因为规定11a b b a ⊗=-,所以11(1)111x x ⊗+=-=+,所以x=12-,经检验x=12-是分式方程的解,故选D.考点:1.新运算;2.分式方程. 10、B 【解题分析】①根据函数的图象即可直接得出结论;②求得直线OA 和DC 的解析式,求得交点坐标即可;③由图象无法求得B 的横坐标;④分别进行运算即可得出结论. 【题目详解】 由题意和图可得,轿车先到达乙地,故选项A 错误,轿车在行驶过程中进行了提速,故选项B 正确,货车的速度是:300÷5=60千米/时,轿车在BC 段对应的速度是:()80080 2.5 1.213÷-=千米/时,故选项D 错误, 设货车对应的函数解析式为y =kx ,5k =300,得k =60,即货车对应的函数解析式为y =60x , 设CD 段轿车对应的函数解析式为y =ax +b ,2.5804.5300a b a b +=⎧⎨+=⎩,得110195a b =⎧⎨=-⎩, 即CD 段轿车对应的函数解析式为y =110x -195, 令60x =110x -195,得x =3.9,即货车出发3.9小时后,轿车追上货车,故选项C 错误, 故选:B . 【题目点拨】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式二、填空题(共7小题,每小题3分,满分21分) 11、m (x ﹣3)1. 【解题分析】先把提出来,然后对括号里面的多项式用公式法分解即可。

2022-2023学年山东省德州市中考数学专项突破仿真模拟卷(三模四模)含解析

2022-2023学年山东省德州市中考数学专项突破仿真模拟卷(三模四模)含解析

2022-2023学年山东省德州市中考数学专项突破仿真模拟卷(三模)一、选一选(共10小题,每小题4分,满分40分)1. 的值是( )2-A. 2B. -2C. 0D. 122. 在﹣1,0,2.A. 2B. 0C.﹣13. 下列计算正确的是( )A. a 2+a 2=a 4B. a 6÷a 2=a 4C. (a 2)3=a 5D. (a b )2=a 2 b 24. 把没有等式组的解集表示在数轴上,正确的是( )10240x x+>⎧⎨-≤⎩A.B.C. D.5. 在Rt △ABC 中,∠C=90°,sinA=,则co 的值为( )35A. B. C. D. 544553356.在奔驰、宝马、丰田、三菱等汽车标志图形中,为对称图形的是( )A. B. C. D.7. 上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )12345成绩(m )8.28.08.27.57.8A. 8.2,8.2B. 8.0,8.2C. 8.2,7.8D. 8.2,8.08. 下列尺规作图,能判断AD 是△ABC 边上的高是( )A. B. C. D.9. 掷一枚质地均匀的硬币10次,下列说确的是( )A. 可能有5次正面朝上B. 必有5次正面朝上C. 掷2次必有1次正面朝上D. 没有可能10次正面朝上10. 如图,中,,且,设直线截此三角形所得阴影部Rt AOB AB OB ⊥3AB OB ==x t =分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的 ()A. B. C. D.二、填 空 题(共6小题,每小题4分,满分24分)11. 今年我市普通高中计划招生人数约为28500人,该数据用科学记数法表示为_____.12. 如图,若,∠1=60°,则∠2的度数为__________度.13. 已知一组数据:13,1,0,﹣5,7,﹣4,5,这组数据的极差是_____.14. 一个矩形的面积为,若一边长为,则另一边长为___________.15. 如图,点A ,B 是双曲线上的点,分别过点A ,B 作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为____________.16. 如图,正方形ABCO 的顶点C ,A 分别在轴,轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D 的坐标是____________.三、解 答 题(共9小题,满分86分)17.计算:(3 π)0+( )﹣1.1218. 已知,求代数式的值.023a b =≠()225224a b a b a b -⋅--19. 如图,BD 是▱ABCD 的对角线,过点A 作AE ⊥BD ,垂足为E ,过点C 作CF ⊥BD ,垂足为F .(1)补全图形,并标上相应的字母;(2)求证:AE=CF .20. 国家规定,中小学生每天在校体育时间没有低于1小时.为了解这项政策的落实情况,有关部门就“你某天在校体育时间是多少”的问题,在某校随机抽查了部分学生,再根据时间(小时)进行分组(A 组:,B 组:,C 组:,D 组:),绘制成如下两幅统计图,请根据图中信息回答问题:(1)此次抽查的学生数为________人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育时间低于1小时的概率是__________;(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育时间的学生有__________人.21. 如图,港口A 在观测站O 的正东方向,OA=40海里,某船从港口A 出发,沿北偏东15°方向航行半小时后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向.求该船航行的速度.22. 如图,已知直线y=x 与双曲线y=交于A 、B 两点,点B 的坐标为(﹣4, 2),C 为象12kx限内双曲线y =上一点,且点C 在直线y=x 的上方.kx 1212(1)求双曲线的函数解析式;(2)若△AOC 的面积为6,求点C 的坐标.23. 如图,AB 为⊙O 的直径,点E 在⊙O ,C 为弧BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC(1)试判断直线CD 与⊙O 的位置关系,并说明理由(2)若AD=2,AC,求⊙O 的半径.24. 如图,抛物线y=x 2+bx+c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)若点M 是抛物线在x 轴下方上的动点,过点M 作MN ∥y 轴交直线BC 于点N ,求线段MN 的值;(3)在(2)的条件下,当MN 取得值时,在抛物线的对称轴l 上是否存在点P ,使△PBN 是等腰三角形?若存在,请直接写出所有点P 的坐标;若没有存在,请说明理由.25. 现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是 ;(2)如图2,若点O在正方形的(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(没有必说明)2022-2023学年山东省德州市中考数学专项突破仿真模拟卷(三模)一、选一选(共10小题,每小题4分,满分40分)1. 的值是( )2A. 2B. -2C. 0D. 1 2【正确答案】A【分析】直接利用数轴上某个数与原点的距离叫做这个数的值,进而得出答案.【详解】-2的值是:2,故选:A.此题主要考查了值,正确把握值的定义是解题关键.2. 在﹣1,0,2.A. 2B. 0C. ﹣1【正确答案】A【分析】根据实数比大小的方法进行比较.【详解】﹣1<0故选:A.本题考查实数比大小,负数<0<正数,此题关键是比较22再比较大小.3. 下列计算正确的是( )A. a 2+a 2=a 4B. a 6÷a 2=a 4C. (a 2)3=a 5D. (a b )2=a 2 b 2【正确答案】B【详解】解:A. a 2+a 2=2a 2,故A 选项错误;B. a 6÷a 2=a 4,故B 正确;C. (a 2)3=a 6,故C 选项错误;D. (a −b)2=a 2+b 2−2ab ,故D 选项错误.故选B .4. 把没有等式组的解集表示在数轴上,正确的是( )10240x x +>⎧⎨-≤⎩A.B.C.D.【正确答案】B【详解】试题分析:解没有等式x+1>0得:x >﹣1,解没有等式2x﹣4≤0得:x≤2,则没有等式的解集为:﹣1<x≤2,在数轴上表示为:.故选B .考点:解一元没有等式组;在数轴上表示没有等式的解集.5. 在Rt △ABC 中,∠C=90°,sinA=,则co 的值为( )35A. B. C. D. 54455335【正确答案】D【详解】解:利用同角、互为余角的三角函数关系式.由A、B互为余角,可知co=sin(90°﹣B)=sinA=3 5故选D.本题考查锐角三角函数的定义;互余两角三角函数的关系.6. 在奔驰、宝马、丰田、三菱等汽车标志图形中,为对称图形的是( )A. B. C. D.【正确答案】B【详解】根据对称图形的概念,A、C、D都没有是对称图形,是对称图形的只有B.故选B.7. 上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )12345成绩(m)8.28.08.27.57.8A. 8.2,8.2B. 8.0,8.2C. 8.2,7.8D. 8.2,8.0【正确答案】D【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.0,8.2,8.2.其中8.2出现2次,出现次数至多,8.0排在第三,∴这组数据的众数与中位数分别是:8.2,8.0.故选D.本题考查众数;中位数.8. 下列尺规作图,能判断AD是△ABC边上的高是( )A. B. C. D.【正确答案】B【详解】过点A 作BC 的垂线,垂足为D ,故选B .考点:作图—基本作图.9. 掷一枚质地均匀的硬币10次,下列说确的是( )A. 可能有5次正面朝上B. 必有5次正面朝上C. 掷2次必有1次正面朝上D. 没有可能10次正面朝上【正确答案】A【分析】根据随机是指在一定条件下,可能发生也可能没有发生的,可得答案.【详解】A 、可能有5次正面朝上,是随机,故A 正确;B 、没有一定有5次正面朝上,没有是必然,故B 错误;C 、掷2次没有一定有1次正面朝上,可能两次都反面朝上,没有是必然,故C 错误;D 、可能10次正面朝上,是随机,故D 错误;故选:A .本题考查了随机,解决本题需要正确理解必然、没有可能、随机的概念.必然指在一定条件下一定发生的.没有可能是指在一定条件下,一定没有发生的.没有确定即随机是指在一定条件下,可能发生也可能没有发生的.10. 如图,中,,且,设直线截此三角形所得阴影部Rt AOB AB OB ⊥3AB OB ==x t =分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的 ()A. B. C. D.【正确答案】D【分析】Rt △AOB 中,AB ⊥OB ,且AB =OB =3,所以很容易求得∠AOB =∠A =45°;再由平行线的性质得出∠OCD =∠A ,即∠AOD =∠OCD =45°,进而证明OD =CD =t ;根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt △AOB 中,AB ⊥OB ,且AB =OB =3,∴∠AOB =∠A =45°,如图,记交点分别为C ,D ,∵CD ⊥OB ,∴,CD AB ∥∴∠OCD =∠A ,∴∠AOD =∠OCD =45°,∴OD =CD =t ,∴S △OCD =×OD ×CD =t 2(0≤t ≤3),即S =t 2(0≤t ≤3).121212故S 与t 之间的函数关系的图象应为开口向上的二次函数图象;故选D .本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.二、填 空 题(共6小题,每小题4分,满分24分)11. 今年我市普通高中计划招生人数约为28500人,该数据用科学记数法表示为_____.【正确答案】2.85×104.【详解】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动的位数相同.当原数值>1时,n 是正数;当原数的值<1时,n 是负数.【详解】28500的小数点向左移动4位得到2.85,因此28500用科学记数法表示为2.85×104,故答案为2.85×104.本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12. 如图,若,∠1=60°,则∠2的度数为__________度.【正确答案】120°.【详解】解:如图,∵∠1=60°,∴∠3=∠1=60°,又∵a ∥b ,∴∠2+∠3=180°,∴∠2=120°,故答案为120.本题考查平行线的性质.13. 已知一组数据:13,1,0,﹣5,7,﹣4,5,这组数据的极差是_____.【正确答案】18【详解】试题分析:根据极差的定义用一组数据中的值减去最小值,可得这组数据的极差是:13﹣(﹣5)=18;考点:极差14. 一个矩形的面积为,若一边长为,则另一边长为___________.【正确答案】.2a 【分析】试题分析:∵(a 2+2a )÷a=a+2,∴另一边长为a+2,故答案为a+2.考点:整式的除法.【详解】请在此输入详解!15. 如图,点A ,B 是双曲线上的点,分别过点A ,B 作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为____________.【正确答案】8.【详解】试题分析:∵点A 、B 是双曲线上的点,∴S 矩形ACOG =S 矩形BEOF =6,∵S 阴影DGOF =2,∴S 矩形ACDF +S 矩形BDGE =6+6﹣2﹣2=8,故答案为8.考点:反比例函数系数k 的几何意义.16. 如图,正方形ABCO 的顶点C ,A 分别在轴,轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D 的坐标是____________.【正确答案】(,1)2+【详解】解:过点D 作DG ⊥BC 于点G ,∵四边形BDCE 是菱形,∴BD =CD .∵BC =2,∠D =60°,∴△BCD 是等边三角形,∴BD =BC =CD =2,∴CG =1,GD =CD∴D (,1).2故(,1).2三、解 答 题(共9小题,满分86分)17. 计算:(3 π)0+( )﹣1.12.【详解】试题分析:原式项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用角的三角函数值计算,一项利用值的代数意义化简,计算即可得到结果.试题解析:(3-π)0+(﹣)﹣112.考点:1、实数的运算;2、零指数幂;3、负整数指数幂;4、角的三角函数值18. 已知,求代数式的值.23a b=≠()225224a ba ba b-⋅--【正确答案】,522a ba b-+12【详解】试题分析:将所求式子个因式的分母利用平方差公式分解因式,约分后得到最简结果,然后由已知的等式用b表示出a,将表示出的a代入化简后的式子中计算,即可得到所求式子的值.试题解析:2252(2)4a ba ba b-⋅--=•(a﹣2b)52(2)(2)a ba b a b-+-=,522a ba b-+∵≠0,∴a=b,23a b=23∴原式==.1023223b bb b-+1061262b bb b-=+考点:分式的化简求值19. 如图,BD是▱ABCD的对角线,过点A作AE⊥BD,垂足为E,过点C作CF⊥BD,垂足为F.(1)补全图形,并标上相应的字母;(2)求证:AE=CF.【正确答案】(1)作图见解析;(2)证明见解析.【分析】(1)根据题意画出图形即可;(2)由平行四边形的性质得出△ABD 的面积=△BCD 的面积,得出BD•AE=BD•CF ,即可1212得出结论.【详解】解:(1)如图所示:(2)∵四边形ABCD 是平行四边形,∴△ABD 的面积=△BCD 的面积,∴BD•AE=BD•CF ,∴AE=CF .1212平行四边形的性质.20. 国家规定,中小学生每天在校体育时间没有低于1小时.为了解这项政策的落实情况,有关部门就“你某天在校体育时间是多少”的问题,在某校随机抽查了部分学生,再根据时间(小时)进行分组(A 组:,B 组:,C 组:,D 组:),绘制成如下两幅统计图,请根据图中信息回答问题:(1)此次抽查的学生数为________人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育时间低于1小时的概率是__________;(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育时间的学生有__________人.【正确答案】(1)300;(2)答案见解析;(3)40%;(4)720.【分析】(1)用D 组人数÷20%求得总人数;(2)求出C 组的人数,A 组的人数补全条形统计图即可;(3)根据概率公式即可得到结论;(4)用总人数乘以达到国家规定体育时间的百分比即可得到结论.【详解】解:(1)60÷20%=300(人)答:此次抽查的学生数为300人,故300;(2)C 组的人数=300×40%=120人,A 组的人数=300 100 120 60=20人,补全条形统计图如图所示;(3)该生当天在校体育时间低于1小时的概率是=40%;100+20300故40%;(4)当天达到国家规定体育时间的学生有1200×=720人.120+60300故720.本题考查概率公式、条形统计图、扇形统计图,用样本估计总体,解题的关键是明确题意,找出所求问需要的条件.21. 如图,港口A 在观测站O 的正东方向,OA=40海里,某船从港口A 出发,沿北偏东15°方向航行半小时后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向.求该船航行的速度.【正确答案】该船航行的速度为海里/小时.【详解】试题分析:过点A 作AD ⊥OB 于D ,先解Rt △AOD ,得出AD=OA=2海里,再由△12ABD 是等腰直角三角形,得出BD=AD=2海里,则AD=海里,航行时间来求航行速度.试题解析:过点A 作AD ⊥OB 于点D .在Rt △AOD 中,∵∠ADO=90°,∠AOD=30°,OA=40,∴AD=OA=20.在Rt △ABD 中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°∴∠BAD =180°﹣∠ADB﹣∠B =45°=∠B ,∴BD=AD=20,∴.∴该船航行的速度为海里/小时,答:该船航行的速度为海里/小时.考点:1、等腰直角三角形,2、勾股定理22. 如图,已知直线y=x 与双曲线y=交于A 、B 两点,点B 的坐标为(﹣4, 2),C 为象12k x 限内双曲线y =上一点,且点C 在直线y=x 的上方.k x 1212(1)求双曲线的函数解析式;(2)若△AOC 的面积为6,求点C 的坐标.【正确答案】(1)双曲线的函数解析式为y=.(2)点C 的坐标为(2,4).8x 【详解】试题分析:(1)利用待定系数法即可解决.(2)过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,根据=6,列出方程即可解决.AOC COF AOE ACFE S S S S =+ 梯形﹣试题解析:(1)∵点B (﹣4,﹣2)在双曲线y=上,kx ∴=﹣2,4k-∴k=8,∴双曲线的函数解析式为y=.8x (2)过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,∵正比例函数与反比例函数的交点A 、B 关于原点对称,∴A (4,2),∴OE=4,AE=2,设点C 的坐标为(a ,),则OF=a ,CF=,8a 8a则,AOC COF AOEACFE S S S S =+ 梯形﹣=×+(2+)(4﹣a )﹣×4×2128a a ⨯128a 12=,216a a -∵△AOC 的面积为6,∴=6,216a a -整理得a 2+6a﹣16=0,解得a=2或﹣8(舍弃),∴点C 的坐标为(2,4).考点:反比例函数与函数的交点问题23. 如图,AB 为⊙O 的直径,点E 在⊙O ,C 为弧BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC(1)试判断直线CD与⊙O的位置关系,并说明理由(2)若AD=2,AC ,求⊙O 的半径.【正确答案】(1)直线CD 与⊙O 相切;(2)⊙O 的半径为1.5.【详解】(1)相切,连接OC ,∵C 为的中点,BE∵OA =OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD =2,AC ,∠ADC =90°,∴CD ,∵CD 是⊙O 的切线,∴=AD •DE ,2CD ∴DE =1,∴CE ∵C 为的中点,BE∴BC =CE ∵AB 为⊙O 的直径,∴∠ACB =90°,∴AB .∴半径为1.524. 如图,抛物线y=x 2+bx+c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)若点M 是抛物线在x 轴下方上的动点,过点M 作MN ∥y 轴交直线BC 于点N ,求线段(3)在(2)的条件下,当MN 取得值时,在抛物线的对称轴l 上是否存在点P ,使△PBN 是等腰三角形?若存在,请直接写出所有点P的坐标;若没有存在,请说明理由.【正确答案】(1)抛物线的解析式为y=x 2﹣4x+3.(2)当m=时,线段MN 取值,值32为.(3)点P 的坐标为(2,)、(2,)、(2)、(22).9412【分析】(1)把点B 、C 的坐标代入列出方程组,解方程组求得的值即可得2y x bx c =++,b c 到二次函数的解析式;(2)由点B 、C 的坐标可求出直线BC 的解析式,设点M 的横坐标为m ,由此可用含m 的代数式表示出点M 、N 的纵坐标,从而可用含m 的式子表达出MN 的长度,由点M 在轴下方可x 求得m 的取值范围为:,由此即可求出线段MN 的值;14m <<(3)由题意(2)可得点N 的坐标,由点P 在抛物线对称轴上,可设其坐标为(2,n),点B 和点N 的坐标即可表达出PB 、PN 、BN 的长度,再分PB=PN 、PB=BN 、PN=BN 三种情况讨论计算即可求得符合题意的点P 的坐标.【详解】解:(1)将点B (3,0)、C (0,3)代入抛物线y=x 2+bx+c 中,得,得,9303b c c ++=⎧⎨=⎩43b c =-⎧⎨=⎩∴抛物线的解析式为y=x 2-4x+3.(2)由题意可设点M 的坐标为(m ,m 2-4m+3),设直线BC 的解析式为y=kx+3,把点(3,0)代入y=kx+3,中,得:0=3k+3,解得:k=-1,∴直线BC 的解析式为y=-x+3.∵MN ∥y 轴,∴点N 的坐标为(m ,-m+3),∴MN==-m+3-(m 2-4m+3)=-(m-)2+.3294∴当m=时,MN=.3294(3)由(2)可得:当m=时,点N 的坐标为,323232∵点P 在抛物线的对称轴上,∴可设点P 坐标为(2,n ),∴PB,PN=,若为等腰三角形,则存在以下三种情况:PBN ①当 ,此时点的坐标为(2,PB PN =12n =P );12②当 ,解得:,PB BN =n =此时点的坐标为(2,)或(2);P ③当,PN BN=n =此时点的坐标为或.P 综上可知:在抛物线的对称轴上存在点,使是等腰三角形,点P的坐标为(2,),l P PBN 12(2,),(2,).点睛:解本题第2小题时,当利用设出的点P 的坐标和已知的点B 、N 的坐标表达出线段PB 、PN 和BN 的长度时,需注意题目中没有指明△PBN 为等腰三角形时的底和腰,因此要分:(1)PB=PN ;(2)PB=BN ;(3)PN=BN 三种情况分别讨论计算,没有要忽略了其中任何一种情况,避免丢解.25. 现有正方形ABCD 和一个以O 为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC 、CD 交于点M 、N .(1)如图1,若点O 与点A 重合,则OM 与ON 的数量关系是 ;(2)如图2,若点O 在正方形的(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O 在正方形的内部(含边界),当OM =ON 时,请探究点O 在移动过程中可形成什么图形?(4)如图4,是点O 在正方形外部的一种情况.当OM =ON 时,请你就“点O 的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(没有必说明)【正确答案】(1)OM =ON ;(2)成立.(3)O 在移动过程中可形成线段AC ;(4)O 在移动过程中可形成线段AC【分析】(1)根据△OBM 与△ODN 全等,可以得出OM 与ON 相等的数量关系;(2)连接AC 、BD ,则通过判定△BOM ≌△CON ,可以得到OM =ON ;(3)过点O 作OE ⊥BC ,作OF ⊥CD ,可以通过判定△MOE ≌△NOF ,得出OE =OF ,进而发现点O在∠C的平分线上;(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.【详解】解:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;(2)仍成立.证明:如图2,连接AC、BD.由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;(4)O在移动过程中可形成直线AC.如图4,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°又∵∠C=90°∴∠EOF=90°=∠MON∴∠MOE =∠NOF 在△MOE 和△NOF 中,,OEM OFN MOE NOF OM ON ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△MOE ≌△NOF (AAS )∴OE =OF又∵OE ⊥BC ,OF ⊥CD ∴点O 在∠C 的平分线上,∵点O 在正方形外部,∴O 在移动过程中可形成直线AC 中除去线段AC的部分.此题是四边形综合题,主要考查了正方形的性质全等三角形的判定和性质,解决问题的关键是作辅助线构造全等三角形.解题时需要运用全等三角形的判定与性质,以及角平分线的判定定理.2022-2023学年山东省德州市中考数学专项突破仿真模拟卷(四模)一、选一选(本大题共10小题,每小题3分,共30分.)1. 下列四种运算中,结果的是( )A. 1+(﹣2)B. 1﹣(﹣2)C. 1×(﹣2)D. 1÷(﹣2)2. 如图,直线l1 ∥ l2 ,CD⊥AB于点D ,∠1=50°,则∠BCD的度数为()A. 40°B. 45°C. 50°D. 30°3. 为筹备班级联欢会,班干部对全班同学吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是( )A. 平均数B. 中位数C. 众数D. 方差4. 没有等式6﹣4x≥3x﹣8的非负整数解为( )A. 2个B. 3个C. 4个D. 5个5. 下列运算正确的是()A. 3a+4b=12aB. (ab3)2=ab6C. (5a2﹣ab)﹣(4a2+2ab)=a2﹣3abD. x 12÷x 6=x 26. 如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 没有重合),则∠BPC的度数为( )A. 30°B. 45°C. 60°D. 90°7. 化简的结果是( )221121a a a a a --÷++A. B. C. D. 121a a +1a a+12a a ++8. 我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( )A. 5.5×106千米B. 5.5×107千米C. 55×106千米D. 0.55×108千米9. 用尺规作图法作已知角的平分线的步骤如下:①以点O 为圆心,任意长为半径作弧,AOB ∠交OB 于点D ,交OA 于点E ;②分别以点D ,E 为圆心,以大于的长为半径作弧,两弧在12DE的内部相交于点C ;③作射线OC . 则射线OC 为的平分线,由上述作法可得AOB ∠AOB ∠的依据是( )OCD OCE ∆≅∆A. SAS B. AAS C. ASA D. SSS10. 我国的国球是乒乓球,世界上乒乓球板的拍形大体上可以归为三类:圆形、方形和异形,绝大多数的横板与的直板都是圆型的.如图,李明同学自制一块乒乓球拍,正面是半径为8 cm的⊙O,弧AB的长为4πcm,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为( )A. (32+48π)cm2B. (16π﹣32)cm2C. 64πcm2D.(48π﹣32)cm2二、填空题(本大题共5小题,每小题3分,共15分)11.=_____.12. 如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为_____.13. 如图,在数学课外实践中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为________ m(结果保留根号).14. 如图,线段AB=CD,AB与CD相交于点O,且∠AOC=60°,CE是由AB平移所得,AC与BD没有平行,则AC+BD与AB的大小关系是:AC+BD_____AB.(填“>”“<”或“=”)15. 如图,四边形ABCD 中,∠ABC=∠ADC=90°,BD 平分∠ABC ,∠DCB=60°,AB +BC=8,则AC 的长是_____.三、解 答 题(本大题共8小题,共75分。

初中数学山东省德州市中考模拟数学考试卷考试题及答案word解析版.docx

初中数学山东省德州市中考模拟数学考试卷考试题及答案word解析版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列运算正确的是()(A)(B)=(C)(D)试题2:不一定在三角形内部的线段是()(A)三角形的角平分线(B)三角形的中线(C)三角形的高(D)三角形的中位线试题3:如果两圆的半径分别为6和4,圆心距为10,那么这两圆的位置关系是()(A)内含(B)内切(C)相交(D)外切试题4:由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是()试题5:已知则等于( )(A)3 (B)(C)2 (D)1试题6:下图给定的是纸盒的外表面,下面能由它折叠而成的是()试题7:为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如下图形,其中,,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()(A)1组(B)2组(C)3组(D)4组F试题8:如图,两个反比例函数和的图象分别是和.设点P在上,PC⊥x轴,垂足为C,交于点A,PD⊥y 轴,垂足为D,交于点B,则三角形PAB的面积为()(A)3 (B)4 (C)(D)5试题9:-1, 0, 0.2,, 3 中正数一共有个.试题10:化简:= .试题11:.(填“”、“”或“=”)试题12:如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成. 已知正三角形的边长为1,则凸轮的周长等于_________.试题13:在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是.(只要填写一种情况)试题14:在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如下不完整的统计图.其中捐100元的人数占全班总人数的,则本次捐款的中位数是_______元.试题15:若关于x的方程有实数解,那么实数a的取值范围是_____________.试题16:如图,在一单位为1的方格纸上,△,△,△,……,都是斜边在x轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△的顶点坐标分别为 (2,0), (1,-1), (0,0),则依图中所示规律,的坐标为.试题17:已知:,,求的值.试题18:解方程:.试题19:有公路同侧、异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇,的距离必须相等,到两条公路,的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)试题20:若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.试题21:如图,点A,E是半圆周上的三等分点,直径BC=2,,垂足为D,连接BE交AD于F,过A作∥BE交BC于G.(1)判断直线AG与⊙O的位置关系,并说明理由.(2)求线段AF的长.试题22:现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜吨,请完成下表:运往甲地(单位:吨) 运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与的函数关系式.(3)怎样调运蔬菜才能使运费最少?试题23:如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.试题1答案:A试题2答案:C试题3答案:D试题4答案:B试题5答案:A试题6答案:B试题7答案:C试题8答案:C试题9答案:3;试题10答案:;试题11答案:;试题12答案:试题13答案:不唯一,可以是:AB//CD或AD=BC,∠B+∠C=180º,∠A+∠D=180º等;试题14答案:20;试题15答案:;试题16答案:(2,1006).试题17答案:解:原式 ==.当,时,原式=.试题18答案:解:方程两边同乘x2-1整理得解得经检验:是原方程的根.所以原方程的根是试题19答案:解:根据题意知道,点C应满足两个条件,一是在线段的垂直平分线上;二是在两条公路夹角的平分线上,所以点C 应是它们的交点.⑴作两条公路夹角的平分线或;⑵作线段AB的垂直平分线FG;则射线OD,OE 与直线FG 的交点,就是所求的位置.注:本题学生能正确得出一个点的位置得6分,得出两个点的位置得8分.20答案:试题所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432.(2)这个游戏不公平.理由如下:组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,所以,甲胜的概率为,而乙胜的概率为,这个游戏不公平.试题21答案:解:(1)AG与⊙O相切.证明:连接OA,∵点A,E是半圆周上的三等分点,∴==∴点A是的中点,∴OA⊥BE.又∵AG∥BE,∴OA⊥AG.∴AG与⊙O相切.(2)∵点A,E是半圆周上的三等分点,∴∠AOB=∠AOE=∠EOC=60°.又O A=OB,∴△ABO为正三角形.又AD⊥OB,OB=1,∴BD=OD=, AD=.又∠EBC==30,在Rt△FBD中,FD=BD tan∠EBC= BD tan30°=,∴AF=AD DF=-=.试题22答案:运往甲地(单位:吨)运往乙地(单位:吨)AxB解:(1)(2)由题意,得整理得,.(3)∵A,B到两地运送的蔬菜为非负数,∴解不等式组,得在中,随增大而增大,∴当x最小为1时,有最小值 1280元.试题23答案:解:(1)∵PE=BE,∴EBP=EPB.又∵EPH=EBC=90°,∴EPH-EPB=EBC-EBP.即PBC=BPH.又∵AD∥BC,∴APB=PBC.∴APB=BPH.(2)△PHD的周长不变,为定值 8.证明:过B作BQ⊥PH,垂足为Q.由(1)知APB=BPH,又∵A=BQP=90°,BP=BP,∴△ABP≌△QBP.∴AP=QP, AB=BQ.又∵ AB=BC,∴BC = BQ.又∵C=BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.(3)过F作FM⊥AB,垂足为M,则.又EF为折痕,∴EF⊥BP.∴,∴.又∵A=EMF=90°,∴△EFM≌△BPA.∴=x.∴在Rt△APE中,.解得,.∴.又四边形PEFG与四边形BEFC全等,∴.即:.配方得,,∴当x=2时,S有最小值6.。

山东省德州市数学中考模拟试卷

山东省德州市数学中考模拟试卷

山东省德州市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)下列说法中,正确的是()A . 在数轴上表示的点一定在原点的左边B . 有理数的倒数是C . 一个数的相反数一定小于或等于这个数D . 如果一个数的绝对值等于这个数的相反数,那么这个数是负数或零2. (2分) (2015七下·泗阳期中) 下列计算正确的是()A . x+x=x2B . x2•x3=x6C . x3÷x=x2D . (x2)3=x53. (2分)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A . a>b>-b>-aB . a>-a>b>-bC . b>a>-b>-aD . -a>b>-b>a4. (2分)化简的结果是().A . m+3B . m﹣3C .D .5. (2分) (2017八上·大石桥期中) 点M(3,﹣2)关于y轴对称的点的坐标为()A . (﹣3,2)B . (﹣3,﹣2)C . (3,﹣2)D . (2,﹣3)6. (2分)(2019·台州模拟) 某班体育课上老师记录了7位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A . 35,38B . 38,38C . 38,35D . 35,357. (2分)如图,一次函数y1=mx+n(m≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于两点A(-1,5)、B(9,3),请你根据图象写出使y1≥y2成立的x的取值范围()A . -1≤x≤9B . -1≤x<9C . -1<x≤9D . x≤-1或x≥98. (2分)(2018·高邮模拟) 吸烟有害健康.据中央电视台2016年5月30日报道,全世界每年因吸烟引起的疾病致死的人数大约为600万,数据600万用科学记数法表示为()A . 6×106B . 60×105C . 6×105D . 0.6×1079. (2分)刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的()A . 众数B . 方差C . 平均数D . 频数10. (2分)如图,在平面直角坐标系中,▱ABCO的顶点A在x轴上,顶点B的坐标为(4,6).若直线y=kx+3k 将▱ABCO分割成面积相等的两部分,则k的值是()A .B .C . -D . -11. (2分) (2016九上·广饶期中) 如图,四边形ABCD是⊙O的内接四边形,若∠DAB=60°,则∠BCD的度数是()A . 60°B . 90°C . 100°D . 120°二、填空题 (共4题;共5分)12. (1分)(1)在下列横线上用含有a,b的代数式表示相应图形的面积.①________;②________;③________;④________.(2)通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表示:________ ;(3)利用(2)的结论计算992+2×99×1+1的值________ .13. (2分)(2017·盐城模拟) 已知扇形AOB的半径为4cm,圆心角的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________ cm.14. (1分)(2017·黑龙江模拟) 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长________.15. (1分)(2017·微山模拟) 如图,将边长分别为6,2 的矩形硬纸片ABCD折叠,使AB,CB均落在对角线BD上,点A与点H重合,点C与点G重合,折痕分别为BE,BF.下面三个结论:①∠EBF=45°;②FG是BD 的垂直平分线;③DF=5.其中正确的结论是________(只填序号)三、解答题 (共9题;共67分)16. (10分)已知x<-1,化简:.17. (5分) (2017八上·平邑期末) 计算题(1)计算:(x+3y)2+(2x+y)(x-y);(2)计算:(3)分解因式:x3-2x2y+xy2.(4)解方程:18. (11分) (2017八下·合浦期中) 在Rt△ABC中,BD平分∠ABC,DE⊥AB于E,则:(1)哪条线段与DE相等?为什么?(2)若BC=8,AC=6,求BE,AE的长和△AED的周长.19. (10分)(2018·德州) 如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E.点C是弧BF的中点.(1)求证:AD⊥CD;(2)若∠CAD=30°.⊙O的半径为3,一只蚂蚁从点B出发,沿着BE--EC--弧CB爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数.)20. (2分)(2017·苏州模拟) 九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是________.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.21. (2分) (2017九上·深圳期中) 如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)求△COD的面积;(3)直接写出 k1x+b−≥0 时自变量x的取值范围.(4)动点P(0,m)在y轴上运动,当 |PC−PD| 的值最大时,求点P的坐标.22. (10分)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100110120130…月销量(件)200180160140…已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是(________ )元;②月销量是(________ )件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?23. (2分)(2019·舟山) 小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.请帮助小波解决“温故”、“推理”、“拓展”中的问题.(1)温故:如图1,在△ 中,⊥ 于点,正方形的边在上,顶点,分别在,上,若BC=a,AD=h,求正方形的边长(a,h表示).(2)操作:如何能画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作,先在AB上任取一点,画正方形,使,在边上,在△ 内,然后连结并延长交于点N,画⊥ 于点,⊥ 交于点,⊥ 于点,得到四边形P .推理:证明图2中的四边形是正方形.(3)拓展:小波把图2中的线段BN称为“波利亚线”,在该线截取,连结, (如图3).当∠ =90°时,求“波利亚线”BN的长(用a、h表示).24. (15分)(2018·吴中模拟) 如图①已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(A 在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点为E.(1)抛物线的对称轴与x轴的交点E坐标为________,点A的坐标为________;(2)若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将△C MN沿CN翻折,M的对应点为M′.在图②中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共11题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共4题;共5分)12-1、13-1、14-1、15-1、三、解答题 (共9题;共67分)16-1、17-1、17-2、17-3、17-4、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。

山东省德州市中考模拟数学考试试卷(一)

山东省德州市中考模拟数学考试试卷(一)

山东省德州市中考模拟数学考试试卷(一)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七上·南宁期中) -的相反数的倒数是()A . 1B . -1C . 2017D . -20172. (2分)如图是一个正方体被截去一个正三棱锥得到的几何体,该几何体的俯视图为()A .B .C .D .3. (2分) (2017七下·宁波期中) 下列计算正确的是()A .B .C .D .4. (2分) (2008七下·上饶竞赛) 如图,AB∥ED,∠B+∠C+∠D=()A . 180°B . 360°C . 540°D . 270°5. (2分)在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A .B .C .D .6. (2分)(2019·龙湖模拟) 某篮球运动员在连续7场比赛中的得分(单位:分)依次为21,16,17,23,20,20,23,则这组数据的平均数与中位数分别是()A . 20分,17分B . 20分,22分C . 20分,19分D . 20分,20分7. (2分)(2018·枣阳模拟) 如图,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED 的是()A . ∠AED=∠BB . ∠ADE=∠CC .D .8. (2分) (2019九上·玉田期中) 如图,在中,,则的值是()A .B .C .D .10. (2分) (2016九上·济宁期中) 对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A . 开口向下B . 对称轴是x=﹣1C . 顶点坐标是(1,2)D . 与x轴有两个交点二、填空题 (共4题;共4分)11. (1分)(2018·东莞模拟) 因式分解:9x2﹣4=________.12. (1分)(2018·荆州) 荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为________米(≈1.73,结果精确到0.1).13. (1分) (2017八下·宾县期末) 若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是________.14. (1分)如图,点A(m,2),B(5,n)在函数(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为________.三、解答题 (共11题;共87分)15. (5分)(2017·南山模拟) 计算:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|.16. (5分)(2016·青海) 先化简,后求值:(x﹣)÷ ,其中x=2+ .17. (10分)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.18. (10分)(2017·蜀山模拟) 每年11月的最后一个星期四是感恩节,小龙调查了初三年级部分同学在感恩节当天将以何种方式表达感谢帮助过自己的人.他将调查结果分为如下四类:A类﹣﹣当面致谢;B类﹣﹣打电话;C类﹣﹣发短信息或微信;D类﹣﹣写书信.他将调查结果绘制成如图不完整的扇形统计图和条形统计图:请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有3人来自同一班级,其中有1人学过主持.现准备从他们3人中随机抽出两位同学主持感恩节主题班会课,请你用树状图或表格求出抽出的两人都没有学过主持的概率.19. (5分) (2020八上·阳泉期末) 在数学活动课上,李老师让同学们试着用角尺平分∠AOB(如图所示),有两组同学设计了如下方案:方案①将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度位于OA,OB上,且交点分别为M,N,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线。

2024年山东德州中考数学一模模拟试题

2024年山东德州中考数学一模模拟试题

2024年山东德州中考数学一模模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.3--的运算结果等于( ) A .3B .3-C .13D .13-2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是( )A .B .C .D .3.2023年1月17日,国家航天局公布了我国嫦娥五号月球样品的科研成果.科学家们通过对月球样品的研究,精确测定了月球的年龄是20.3亿年,数据20.3亿年用科学记数法表示为( )A .82.0310⨯年B .92.0310⨯年C .102.0310⨯年D .920.310⨯年4.下列各式运算正确的是( ) A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x yx y =5.如图所示的几何体的俯视图可能是( )A .B .C .D .6.如图,AB 是O e 的直径,D ,C 是O e 上的点,115ADC ∠=︒,则BAC ∠的度数是( )A .25︒B .30︒C .35︒D .40︒7.如图,在ABC V 中,AB AC =,36BAC ∠=︒,以点C 为圆心,以BC 为半径作弧交AC于点D ,再分别以B ,D 为圆心,以大于12BD 的长为半径作弧,两弧相交于点P ,作射线CP 交AB 于点E ,连接DE .以下结论不正确...的是( )A .36BCE ∠=︒B .BC AE = C.BE AC =D.AEC BEC S S =△△8.如图,A ,B ,C ,D 是O e 上的点,AB AD =,AC 与BD 交于点E ,3AE =,5EC =,BD =O e 的半径为( )A .6 BC .5 D.9.若关于x 的方程32122x m x x -=--解为正数,则m 的取值范围是( ) A .23m >-B .43<m C .23m >-且0m ≠ D .43<m 且23m ≠10.如图,抛物线()20y ax bx c a =++≠与x 轴交于点A ,B ,与y 轴交于点C ,对称轴为直线 1.x =-若点A 的坐标为()4,0-,则下列结论正确的是( )A .20a b +=B .420a b c --+>C .2x =是关于x 的一元一次方程()200ax bx c a ++=≠的一个根D .点()11,x y ,()22,x y 在抛物线上,当121x x >>-时,120y y <<11.如图,在平面直角坐标系中,菱形OABC的边长为B 在x 轴的正半轴上,且60AOC ∠=︒,将菱形OABC 绕原点O 逆时针方向旋转60︒,得到四边形OA B C '''(点A '与点C 重合),则点B '的坐标是()A .(B .(C .(D .(12.数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++L 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++=L .人们借助于这样的方法,得到(1)12342n n n ++++++=L (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =L L ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a =L ,以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-二、填空题13x 的值. 14.已知实数m 满足210m m --=,则32239m m m --+=.15.如图,正八边形ABCDEFGH 的边长为4,以顶点A 为圆心,AB 的长为半径画圆,则阴影部分的面积为(结果保留π).16.某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A ,在点A 和建筑物之间选择一点B ,测得30m AB =.用高()1m 1m AC =的测角仪在A处测得建筑物顶部E 的仰角为30︒,在B 处测得仰角为60︒,则该建筑物的高是m .17.如图,在平面直角坐标系中,点,A B 在反比例函数(0)ky x x=>的图象上.点A 的坐标为()m,2.连接,,OA OB AB .若,90OA AB OAB =∠=︒,则k 的值为.18.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,1l 和2l 分别表示两人到小亮家的距离()km s 和时间()h t 的关系,则出发h 后两人相遇.三、解答题 19. (1)化简 2211()323294mnm n m n m n -÷-+-;(2)解不等式组:31052(5)315x x x x x +>--⎧⎪+⎨>-⎪⎩.20.举世瞩目的中国共产党第二十次全国代表大会于2022年10月在北京成功召开.为弘扬党的二十大精神,某学校举办了“学习二十大,奋进新征程”的知识竞赛活动.赛后随机抽取了部分学生的成绩(满分:100分),分为A ,B ,C ,D 四组,绘制了如下不完整的统计图表:学生成绩频数分布直方图学生成绩扇形统计图根据以上信息,解答以下问题:(1)直接写出统计表中的m =________,n =________;(2)学生成绩数据的中位数落在________内;在学生成绩扇形统计图中,B 组对应的扇形圆心角α是________度;(3)将上面的学生成绩频数分布直方图补充完整;(4)若全校有1500名学生参加了这次竞赛,请估计成绩高于90分的学生人数. 21.如图,正比例函数112y x =和反比例函数2(0)ky x x =>的图像交于点(),2A m .(1)求反比例函数的解析式;(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)ky x x=>的图像交于点C ,连接AB AC ,,求ABC V 的面积.22.如图,在ABC V 中,AB AC =,以AB 为直径的O e 交BC 于点D ,DE AC ⊥,垂足为E .(1)求证:DE 是O e 的切线;(2)若30C ∠=︒,CD =»BD的长.23.为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知A 型充电桩比B 型充电桩的单价少0.3万元,且用15万元购买A 型充电桩与用20万元购买B 型充电桩的数量相等.(1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A ,B 型充电桩,购买总费用不超过26万元,且B 型充电桩的购买数量不少于A 型充电桩购买数量的12.问:共有哪几种购买方案?哪种方案所需购买总费用最少?24.(1)如图1,AC 为四边形ABCD 的对角线,120BAC ∠=︒,30ACD ∠=︒,E ,F ,G 分别为AD ,BC ,AC 的中点,连接EF ,FG ,.EG 判断EFG V 的形状,并说明理由;(2)如图2,在四边形ABCD 中,3AB =,CD =E ,F 分别在AD ,BC 上,且11,33AE AD BF BC ==,求EF 的取值范围;(3)如图3,在四边形ABCD 中,AB =CD =225A D ∠+∠=︒,点E ,F 分别在AD ,BC 上,且14AE AD =,14BF BC =,求EF 的值.25.如图,一条抛物线2y ax bx =+经过OAB V 的三个顶点,其中O 为坐标原点,点()3,3A -,点B 在第一象限内,对称轴是直线94x =,且OAB V的面积为18.(1)求该抛物线对应的函数表达式; (2)求点B 的坐标;(3)设C 为线段AB 的中点,P 为直线OB 上的一个动点,连接AP ,CP ,将A C P △沿CP 翻折,点A 的对应点为1A ,问是否存在点P ,使得以1A ,P ,C ,B 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.。

2024年山东省德州市中考数学押题预测试题

2024年山东省德州市中考数学押题预测试题

2024年山东省德州市中考数学押题预测试题一、单选题1.下列各数中,是无理数的是( )A .13B .2πC .2-D .1.52.经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过9800万党员的世界第一大政党.9800万用科学记数法表示为( ) A .69.810⨯ B .69810⨯ C .79.810⨯ D .80.9810⨯ 3.下列计算正确的是( )A .3243a a a -=B .532x x x ÷=C .()222a b a b -=-D .()3239628a b a b -= 4.如图,OA OB ⊥,70COD ∠=︒,30BOC ∠=︒,则AOD ∠的大小为( )A .110︒B .120︒C .130︒D .140︒5.如图是一个几何体的三视图,则该几何体的侧面积是( )A .12πB .15πC .20πD .24π6.如图,在Rt ABC △中,90C ∠=︒,3AC =,4BC =,以点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D ,再用尺规作图作出DE AB ⊥于点E ,则BD 的长为( )A .3B .2.5C .2D .1.57.如图,四边形ABCD 接于O e ,点I 是ABC V 的内心,129AIC ∠=︒,点E 在AD 的延长线上,则CDE ∠的度数为( )A .56︒B .62︒C .68︒D .78︒8.《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程( )A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+ 9.如图,四边形ABCD 是菱形,按以下步骤作图:①以顶点B 为圆心,BD 长为半径作弧,交AD 于点E ;②分别以D 、E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ,作射线BF 交AD 于点G ,连接CG ,若30BCG ∠=︒,菱形ABCD 的面积为则AE =( )A B .4C .3D .210.定义(),,a b c 为方程()200ax bx c a ++=≠的特征数.若特征数为()21,22,k k k --的方程的两实数根的平方和为12,则k 的值为( )A .1-或4B .4C .1-D .4-或111.如图,在平面直角坐标系中,O 为原点,OA OB ==点C 为平面内一动点,32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .C .612,55⎛⎫ ⎪⎝⎭D . 12.如图,在矩形ABCD 中,6cm AD =,3cm AB =,E 为矩形ABCD 的边AD 上一点,4cm AE =,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是0.5cm/s ,现P ,Q 两点同时出发,设运动时间为x (s ),BPQ V 的面积为2cm y ,则y 关于x 的函数图象为( )A .B .C .D .二、填空题13.函数11=-y x x 的取值范围是.141的整数部分为a ,小数部分为b ,则)()1a b +的值是. 15.A ,B 两地相距60km ,甲、乙两人骑车分别从A ,B 两地同时出发,相向而行,匀速行驶,乙在途中休息了0.5h 后按原速度继续前进.两人到A 地的距离()km s 和时间()h t 的关系如图所示,则出发h 后,两人相遇.16.如图Rt AOB V 中,90BAO ∠=︒,=60B ∠︒,AOB V 的面积为12,AO 与x 轴负半轴的夹角为30︒,若点A 在双曲线()0k y k x=≠上,则k 的值为17.如图,将矩形纸片ABCD 折叠,折痕为BE ,折叠后,点D 的对应点落在BA 延长线上的点F 处,点C 的对应点为点G ,延长DA 交BG 于点H .若1tan 2ABE ∠=,5EF =,则四边形AFGH 的面积为.18.如图,30MON ∠=︒,在OM上截取1OA =1A 作11A B OM ⊥,交ON 于点1B ,以点1B 为圆心,1B O 为半径画弧,交OM 于点2A ;过点2A 作22A B OM ⊥,交ON 于点2B ,以点2B 为圆心,2B O 为半径画弧,交OM 于点3A ;…按此规律,所得线段20242024A B 的长等于.三、解答题19.化简求值:2212112x x x x x x +⎛⎫-÷ ⎪--+⎝⎭,其中x 是不等式组()2731423133x x x x ⎧-<-⎪⎨+≤-⎪⎩①②的整数解. 20.高尔基说:“书,是人类进步的阶梯.”阅读可以启智增慧,拓展视野.为了解学生寒假阅读情况,开学初学校进行了问卷调查,并对部分学生假期(28天)的阅读总时间作了随机抽样分析,设被抽样的每位同学寒假阅读的总时间为t (小时),阅读总时间分为四个类别:()012A t <<,()1224B t ≤<,()2436C t ≤<,()36D t ≥,将分类结果制成两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)请补全条形统计图;(2)扇形统计图中a 的值为______,圆心角β的度数为______;(3)若该校有2000名学生,估计寒假阅读的总时间少于24小时的学生有多少名?(4)政教处决定从本次调查阅读时长前四名学生甲、乙、丙、丁中,随机抽取2名同学参加该校“阅读之星”竞选,请用树状图或列表法求恰好选中甲和乙的概率.21.如图,三角形花园ABC 紧邻湖泊,四边形ABDE 是沿湖泊修建的人行步道.经测量,点C 在点A 的正东方向,200AC =米.点E 在点A 的正北方向.点B ,D 在点C 的正北方向,100BD =米.点B 在点A 的北偏东30︒,点D 在点E 的北偏东45︒.(1)求步道DE 的长度(精确到个位);(2)点D 处有直饮水,小红从A 出发沿人行步道去取水,可以经过点B 到达点D ,也可以经过点E 到达点D 1.414≈ 1.732)22.如图,AB 为O e 的直径,C 是圆上一点,D 是BC n的中点.(1)尺规作图:过点D 作AB 的垂线,交半圆AB 于点E ,交线段直径AB 于点F (保留作图痕迹,不写做法);(2)点P 是弧AE 上一点,连接,,6,2BP CP AC BF ==.①求tan BPC ∠的值;②若CP 为ACB ∠的角平分线,求CP 的长.23.如图①,公园草坪的地面O 处有一根直立水管,喷水口可上下移动,喷出的抛物线形水线也随之上下平移,图②是其示意图,开始喷水后,若喷水口在O 处,水线落地点为A ,4m OA =,若喷水口上升到P 处,水线落地点为B ,记OP 长度为h ,如图②,以OP 所在直h=,线为y轴,OB所在直线为x轴,O为原点,建立平面直角坐标系,若喷水口在P处, 1.5m OB=.6m(1)求过点P的抛物线形水线最高点与点B之间的水平距离及水线所在抛物线的函数表达式;(2)身高1.5m的小红要从该水线下某点经过,为了不被水喷到,该点与点O的水平距离应满足什么条件?请说明理由.24.综合与实践【阅读经典】2002年国际数学家大会在北京召开,如图①,大会的会徽是我国古代数学家赵爽画的“弦图”,体现了数学研究中的继承和发展.“弦图”在三国时期被赵爽发明,是证明______的几何方法(填序号).①勾股定理②完全平方公式③平方差公式【动手操作】如图②,某数学兴趣小组发现,用四个大小、形状完全相同的直角三角形就可以拼接得到一个“赵爽弦图”.组员小明自制了四个大小形状一样,且两直角边的边长分别为5和12的三角板拼成了一个“赵爽弦图”,则中间四边形ABCD的面积为______;【问题探究】兴趣小组组员小红发现,通过旋转某个三角形得到一些美妙的结论:如图③,E 为正方形ABCD 内一点,BCE V 满足222BE CE BC +=,将B C E V 绕点C 顺时针旋转90︒,得到DCE 'V . (1)连接BD ,若点E 为BD 的中点,则四边形DECE '为______(填形状);【问题解决】(2)若,BE E D'的延长线交于点M ,连接AC ,点,O F 分别为,AC CD 的中点,请仅就图④的情形解决下列问题:①请判断OM 和FE '的数量关系,并说明理由;②若1,5DM AB ==,求BE 的长.25.综合与探究如图,在平面直角坐标系中,抛物线213442y x x =--交x 轴于点A 和点B (点A 在点B 的左侧),交y 轴于点C .(1)求点A ,B ,C 的坐标;(2)如图1,连接BC ,点D 在线段BC 上运动,过点D 作DF x ⊥轴于点F ,交抛物线于点E ,连接CE OD ,,当OCD V 的面积是CDE V 的面积的43时,求点D 的坐标; (3)如图2,点G 的坐标是()4,3-,作直线OG ,点H 在y 轴的负半轴上运动,连接BH 交直线OG 于点M ,点N 在该平面内运动,当以点O ,H ,M ,N 为顶点的四边形是菱形时,请直接写出点H 的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

375教育资源网 中小学试卷、教案、课件等免费下载!山东省德州市二○一一年初中学业考试第Ⅰ卷(选择题 共24分)一、选择题: 1.下列计算正确的是(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 2.一个几何体的主视图、左视图、俯视图完全相同,它一定是 (A)圆柱(B )圆锥(C )球体 (D )长方体3.温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是(A )3.6×107 (B)3.6×106 (C )36×106 (D ) 0.36×108 4.如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于 (A )55° (B ) 60° (C )65° (D ) 70°5.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是 (A )甲运动员得分的极差大于乙运动员得分的极差 (B )甲运动员得分的的中位数大于乙运动员得分的的中位数 (C )甲运动员的得分平均数大于乙运动员的得分平均数 (D )甲运动员的成绩比乙运动员的成绩稳定6.已知函数))((b x a x y --=(其中a b >)的图象如图所示,则函数b ax y +=的图象可能正确的是7.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为1a ,2a ,3a ,4a ,则下列关系中正确的是l 1l 2123第6题图(A )4a >2a >1a (B )4a >3a >2a (C )1a >2a >3a (D )2a >3a >4a8.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n(B )4n(C )12n + (D )22n +第Ⅱ卷(非选择题 共96分)二、填空题:本大题共8小题,共32分,.9.点P (1,2)关于原点的对称点P ′的坐标为___________.10.如图,D ,E ,F 分别为△ABC 三边的中点,则图中平行四边形的个数为___________. 11.母线长为2,底面圆的半径为1的圆锥的侧面积为___________.12.当x =2211x x x---=_____________. 13.下列命题中,其逆.命题成立的是_____.(填序号) ①同旁内角互补,两直线平行; ②如果两个角是直角,那么它们相等; ③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形. 14.若1x ,2x 是方程210x x +-=的两个根,则2212x x +=__________.15.在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是_____________. 16.长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n =3时,a 的值为_____________.图1图2图3……第一次操作第二次操作 A BCDEF第10题图三、解答题:本大题共7小题,共64分.17. (本题满分6分) 解不等式组,并把解集在数轴上表示出来 3(2)412 1.3-x x x x -≤-⎧⎪+⎨>-⎪⎩,18. (本题满分8分)2011年5月9日至14日,德州市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A 、B 、C 、D 表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题: (1) m = ,n = ,x = ,y = ; (2)在扇形图中,C 等级所对应的圆心角是 度;(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?19.(本题满分8分)如图 AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1)求证AD =AE ;(2) 连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.20. (本题满分10分)某兴趣小组用高为1.2米的仪器测量建筑物CD 的高度.如示意图,由距CD 一定距离的A 处用仪器观察建筑物顶部D 的仰角为β,在A 和C 之间选一点B ,由B 处用仪器观察建筑物顶部D 的仰角为α.测得A ,B 之间的距离为4米,tan 1.6α=,tan 1.2β=,试求建筑物CD 的高度.21. (本题满分10分) 为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.22. (本题满分10分) ●观察计算当5a =,3b =时, 2a b+__________. 当4a =,4b =时, 2a b+__________.●探究证明如图所示,ABC ∆为圆O 的内接三角形,AB 为直径,过C 作CD AB ⊥于D ,设A D a =,BD =b . (1)分别用,a b 表示线段OC ,CD ;(2)探求OC 与CD 表达式之间存在的关系(用含a ,b 的式子表示). ●归纳结论根据上面的观察计算、探究证明,你能得出2a b+____________. ●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.23. (本题满分12分) 在直角坐标系xoy 中,已知点P 是反比例函数)>0(32x xy =图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由. (2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时: ①求出点A ,B ,C 的坐标.②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.若存在,试求出所有满足条件的M 点的坐标,若不存在,试说明理由.ACDBEF β αG AB数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分. 一、9.(-1,-2); 10.3;11.2π;12;13.① ④;14.3; 15.12 ; 16.35或34.三、解答题:(本大题共7小题, 共64分) 17.(本小题满分7分)解:3(2)412 1.3-x x x x -≤-⎧⎪+⎨>-⎪⎩,解不等式①,得 x ≥1 ----------2分解不等式②,得 x <4. 所以,不等式组的解集为:1≤x <4 ---------------------------4分在数轴上表示为:--------------------------6分 18.(本题满分8分) 解:(1)20, 8, 0.4, 0.16 -----------------------------4分 (2)57.6----------------------------6分 (3)由上表可知达到优秀和良好的共有19+20=39人,39500=39050⨯人. -----------------------------8分 19.(本题满分8分)(1)证明:在△ACD 与△ABE 中,AP2y =K O图1A① ②∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC , ∴ △ACD ≌△ABE .…………………… 3分 ∴ AD=AE . ……………………4分 (2) 互相垂直 ……………………5分 在Rt △ADO 与△AEO 中, ∵OA=OA ,AD=AE , ∴ △ADO ≌△AEO . ……………………………………6分 ∴ ∠DAO =∠EAO . 即OA 是∠BAC 的平分线. ………………………………………7分 又∵AB =AC , ∴ OA ⊥BC . ………………………………………8分 20.(本题满分10分)解:设建筑物CD 与EF 的延长线交于点G ,DG =x 米. …………1分 在Rt △DGF 中,tan DG GF α=,即tan xGF α=. …………2分 在Rt △DGE 中,tan DG GE β=,即tan xGEβ=. …………3分 ∴tan x GF α=,tan xGE β=. ∴tan xEF β=tan x α- . ………5分 ∴4 1.2 1.6x x =-. ………6分 解方程得:x =19.2. ………8分 ∴ 19.2 1.220.4CD DG GC =+=+=.答:建筑物高为20.4米. ………10分 21.(本题满分10分) 解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需(x +25)天.………………………………1分 根据题意得:3030125x x +=+. ………………………………3分 方程两边同乘以x (x +25),得 30(x +25)+30x = x (x +25),即 x 2-35x -750=0. 解之,得x 1=50,x 2=-15. ………………………………5分 经检验,x 1=50,x 2=-15都是原方程的解.但x 2=-15不符合题意,应舍去. ………………………………6分 ∴ 当x =50时,x +25=75.答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天.…7分 (2)此问题只要设计出符合条件的一种方案即可. 方案一:由甲工程队单独完成.………………………………8分 所需费用为:2500×50=125000(元).………………………………10分 方案二:甲乙两队合作完成. 所需费用为:(2500+2000)×30=135000(元).……………………10分ACDBEF β α G其它方案略. 22.(本题满分10分)●观察计算:2a b +2a b +…………………2分●探究证明:(1)2AB AD BD OC =+= , ∴2a bOC +=…………………3分 AB 为⊙O 直径,∴90ACB ∠=︒.90A ACD ∠+∠=︒ ,90ACD BCD ∠+∠=︒,∴∠A =∠BCD .∴△ACD ∽△CBD . …………………4分∴AD CDCD BD =. 即2CD AD BD ab =⋅=,∴CD =…………………5分(2)当a b =时,OC CD =, 2a b+a b ≠时,OC CD >, 2a b+6分●结论归纳: 2a b+≥ ………………7分 ●实践应用设长方形一边长为x 米,则另一边长为1x米,设镜框周长为l 米,则 12()l x x =+≥4= . ……………9分当1x x=,即1x =(米)时,镜框周长最小.此时四边形为正方形时,周长最小为4 米.……………10 23.(本题满分12分)解:(1)∵⊙P 分别与两坐标轴相切, ∴ P A ⊥OA ,PK ⊥OK .∴∠P AO =∠OKP =90°. 又∵∠AOK =90°, ∴ ∠P AO =∠OKP =∠AOK =90°. ∴四边形OKP A 是矩形. 又∵OA =OK ,∴四边形OKP A 是正方形.……………………2分 (2)①连接PB ,设点P 的横坐标为x ,则其纵坐标为x32. 过点P 作PG ⊥BC 于G . ∵四边形ABCP 为菱形, ∴BC =P A =PB =PC .∴△PBC 为等边三角形.在Rt △PBG 中,∠PBG =60°,PB =P A =x ,A Py =K O ABPG =x32. sin ∠PBG =PB PGx x=. 解之得:x =±2(负值舍去).∴ PGP A =B C=2.……………………4分易知四边形OGP A 是矩形,P A =OG =2,BG =CG =1, ∴OB =OG -BG =1,OC =OG +GC =3.∴ A (0,B (1,0) C (3,0).……………………6分 设二次函数解析式为:y =ax 2+bx +c .据题意得:0930a b c a b c c ⎧++=⎪++=⎨⎪=⎩ 解之得:a, b= c∴二次函数关系式为:2y x x =9分②解法一:设直线BP 的解析式为:y =ux +v ,据题意得:2u v u v +=⎧⎪⎨+=⎪⎩ 解之得:uv=-∴直线BP的解析式为:y =-.过点A 作直线AM ∥PB ,则可得直线AM的解析式为:y =解方程组:233y y x x ⎧=⎪⎨=-+⎪⎩得:110x y =⎧⎪⎨=⎪⎩;227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+.∴0=t .∴t =- ∴直线CM的解析式为:y =-.解方程组:233y y x x ⎧=-⎪⎨=-+⎪⎩得:1130x y =⎧⎨=⎩ ;224x y =⎧⎪⎨=⎪⎩. 综上可知,满足条件的M 的坐标有四个,分别为:(0,(3,0),(4,(7,.…………………12分 解法二:∵12PAB PBC PABC S S S ∆∆==, ∴A (0,C (3,0)显然满足条件.延长AP 交抛物线于点M ,由抛物线与圆的轴对称性可知,PM =P A .又∵AM ∥BC , ∴12PBM PBA PABC S S S ∆∆== . ∴点M又点M 的横坐标为AM =P A +PM =2+2=4. ∴点M (4点(7,综上可知,满足条件的M 的坐标有四个,分别为:(0,(3,0),(4,(7,.…………………12分解法三:延长AP 交抛物线于点M ,由抛物线与圆的轴对称性可知,PM =P A . 又∵AM ∥BC ,∴12PBM PBA PABC S S S ∆∆== .∴点M即233x x -.解得:10x =(舍),24x =.∴点M 的坐标为(4.点(7,综上可知,满足条件的M 的坐标有四个:(0,(3,0),(4,(7,.。

相关文档
最新文档