地源热泵竖直埋管换热器数值模拟

合集下载

垂直U型地埋管换热器性能的动态仿真

垂直U型地埋管换热器性能的动态仿真

总756期第二十二期2021年8月河南科技Journal of Henan Science and Technology垂直U型地埋管换热器性能的动态仿真代兰花肖瑶瑶(常州工学院,江苏常州213032)摘要:本文基于圆柱内热源理论建立了垂直U型地埋管换热器的数学模型。

在MATLAB软件中建立了垂直U型地埋管换热器的动态仿真平台。

利用该仿真平台研究进口温度、进口流速、钻井深度、回填材料、土壤以及间歇运行时间比等因素对垂直U型地埋管换热器换热性能的影响规律。

结果表明,在一定范围内提高进口温度可以提升垂直U型地埋管换热器的换热性能;当进口流速为0.4~0.6m/s时,增大进口流速可以有效提升垂直U型地埋管换热器的换热量;钻井深度越深,钻孔总换热量增加明显,单位钻孔深度换热量略微减小;但随着运行时间的增加,回填材料导热系数对换热的影响逐渐降低;土壤的导热系数越大,垂直U型地埋管换热器的换热量越大;采用间歇运行的方式可以提升垂直U型地埋管换热器的换热性能。

关键词:垂直U型地埋管换热器;动态仿真;影响因素;换热性能中图分类号:TU831.4文献标识码:A文章编号:1003-5168(2021)22-0104-06 Dynamic Simulation on the Performance of Vertical U-Shaped Buried PipeHeat ExchangerDAI Lanhua XIAO Yaoyao(Changzhou Institute of Technology,Changzhou Jiangsu213032)Abstract:In this paper,a mathematical model of the vertical U-shaped borehole heat exchanger is established based on the theory of the heat source inside the cylinder.The dynamic simulation platform of the vertical U-shaped buried pipe heat exchanger is established in MATLAB software.The simulation platform is used to study the influence of fac⁃tors such as inlet temperature,inlet flow rate,drilling depth,backfill material,soil,and intermittent operation time ra⁃tio on the heat transfer performance of the vertical U-shaped buried heat exchanger.The results show that increasing the inlet temperature within a certain range can improve the heat transfer performance of the vertical U-shaped bore⁃hole heat exchanger;when the inlet flow velocity is0.4~0.6m/s,increasing the inlet flow velocity can effectively in⁃crease the heat transfer of the vertical U-shaped borehole heat exchanger;the deeper the drilling depth,the increase in the total heat transfer of the borehole is obvious,and the heat transfer per unit depth of the borehole slightly de⁃creases;however,as the operating time increases,the thermal conductivity of the backfill material gradually reduces its impact on heat transfer;the greater the thermal conductivity of the soil,the greater the heat transfer of the vertical U-shaped buried heat exchanger;the use of intermittent operation can improve the heat exchange performance of the vertical U-shaped borehole heat exchanger.Keywords:vertical U-shaped boried pipe heat exchange;dynamic simulation;influencing factors;heat transfer per⁃formance地源热泵技术的重点是设计出高效的地埋管换热器,地埋管换热器直接影响了整个系统的效率。

地源热泵空调竖直埋管换热器计算方法

地源热泵空调竖直埋管换热器计算方法
2.056 100 0.41 3 100 4 12 制冷时 制冷时 地层静默温度
最大工况温度(制冷) 最大工况温度(制冷)℃ 30 最小工况温度(制热) 最小工况温度(制热)℃ 3
℃ 15
2.本地区土壤检测情况(一般土壤) 2.本地区土壤检测情况(一般土壤)
一般土壤:干土壤比热为0.837KJ/kg•K 埋管管材外径 mm 32
ห้องสมุดไป่ตู้
3. 3.管材参数
埋管管材导热率 埋管管材厚度 竖直埋管换热器深度 单孔竖直埋管数量 最热月平均每日运行时间
4. 4.竖直埋管换热器设计规范
竖直埋管换热器之间间距 最冷月平均每日运行时间 M h 制热时 制热时 5 12
竖直埋管总长( 竖直埋管总长(M) 竖直埋管换热器数量( 竖直埋管换热器数量(座)
地源热泵竖直埋管换热器计算器
1. 1.地源热泵空调参数
地源热泵制冷量(KW) 地源热泵制冷量(KW) 6000 地源热泵制热量(KW) 地源热泵制热量(KW) 6000
土壤平均导热率 土壤平均含水量 W/M℃ ﹪ W/M℃ mm M 根 h
地源热泵制冷功率(KW) 地源热泵制冷功率(KW) 138 地源热泵制热功率(KW) 地源热泵制热功率(KW) 173
390019 975
462822 1157
地源热泵竖直埋管换热器计算器:1.计算器内土壤平均导热率为天津某地区 2.计算器参数埋管管材为PE100

土壤源热泵垂直埋管周围温度场数值模拟

土壤源热泵垂直埋管周围温度场数值模拟

() 1土壤 与埋管 之 间的 传热方式 为纯导热 , 土壤按 深度分层 , 土壤 的导热系数 为常 数 , 且 每层 土壤 与埋 管 接触 良好 , 忽略 接触热 阻. () 2 由于地 表 2 以下土壤 含 水 比较少 , 略土 壤 中因水分 迁移 而引起的热 迁移. m 忽 () 3 由于地 下埋 管 为垂 直 u 型 管 , 管 距离 很近 , 两 因而 会 产生相 互 影响 , 以其外 表面 与 土壤 的换 热 所
土壤 源热泵垂直埋 管周围温度场数值模拟
施 志钢 于 立 强
( 岛建筑工程学院环境 工程系 , 青 青岛 263) 603


针对典 型的垂 直 u 型埋管 土壤源热泵 , 笔者建立 丁埋管周围非穗态温度场的数理模 型
并利 用有 限单元 法进 行数 值模拟 计算值与 实测值吻合的很好.
导热微 分方 程应 为 二维 非稳态形式 , 柱坐 标系可写 为 : 在
P L
式中 , 丁—— 土 壤 的瞬态 温度 , ; ℃
— —
,、
7 L
1 ar o 、 x r] . a r o ] 、x r
j 磊L j 十
过程 进行 的时间 ,; s
r —— 对 称温度 场 的分 布半径 , m
收 穑 日期 :0 1 0 2 0 一l 一船
维普资讯
青 岛 建 筑 工 程 学 院 学 报
第 2 卷 3
- r —— 对 称轴 即管 中心线 , m;
— —
土 壤的导 热 系数 , m ・C; w/
表 1 土壤 的物性参数
P —— 土壤 的密 度 ,g m。 k/ ; c —— 土壤 的 比热 ,Jk ℃ P k/g・ 12 1 土壤 的物 性参 数 .. 为求解微 分方程 . 方程 中的物 性参 数必须 确定 . 根据钻 井 时采得 的土壤试 样 , 可将地 下 土壤 分为两 层 , 各层土壤 物性 参数日见表 1 .

地源热泵U型埋管非稳态传热数值模拟

地源热泵U型埋管非稳态传热数值模拟

2 .B e i d a i h e T r a i n i n g C e n t e r o f C h i n a P e t r o l e u m P i p e l i n e B u r e a u , H e b e i Q i n h u a n g d a o 0 6 6 1 0 0 ,C h i n a )
【 关键词 】 地源热泵 ; U型管 ; 数值模拟 ; 换 热性能 【 中图分类号 】 T U 8 3 2 . 0 2 【 文献标 识码 l B
【 文章编号 l 1 0 0 1 — 6 8 6 4 【 2 0 1 5 ) 0 9— 0 1 3 9 — 0 3
NUM ERI CAL S Ⅱ ULATI oN oN UNS TEADY HEAT TRANS F ER oF U- TUBE GRoUN D S oURCE HEAT P UM P
T h e r e s u l t s wi l l p ov r i d e b e n e i f c i l a r e f e r e n c e f o r t h e o p t i mi z a t i o n o f t h e d e s i g n a n d o p e r a t i o n o f g r o u n d
贾永 英等 : 地 源热泵 u型埋管非稳 态传 热数值模 拟
Байду номын сангаас
1 3 9
DOI : 1 0 . 1 3 9 0 5 / j . c n k i . a w j z . 2 0 1 5 . 0 9 . 0 5 2
地 源 热 泵 U型 埋 管 非 稳 态传 热 数值 模 拟
贾 永英 , 周 正 , 支 艳 , 王 志 国

地源热泵中U型埋管传热过程的数值模拟

地源热泵中U型埋管传热过程的数值模拟
[ 3] (1) Ingersoll 等 就建议应将方程 按具有不同热 流
!" $%外的传热
钻孔 壁 温 随 运 行时 间 的 变 化是工程 及 地 源 热 泵系统模拟计算中所关心的具有代表性的温度, 因 此钻孔以外传热 分 析 的 主 要目的是 根 据 瞬 时传热 . 由 于 钻孔 以 外 的传热 空 量来确定钻孔壁温 T( b t) 间区域及其相应介质的热容量较大, 而且涉及的时 间也很长, 故在系统模拟中必须按非稳态来处理才 能获得准确解. 目前有很多的模型可用于求解钻孔 以外部分的瞬态传热 问题, 最 为 经典、 常用的 分 析 解模型要数线热源模型与圆柱源模型. 两者的主要 区别在于 FO 较小 时, 线 热 源 的解有一 定 的时 间延 ( 对于典型 的 埋 管 特性 参 数 约 为 7 而当 FO > 10 迟, h) 后两者 的解 吻 合得较 好, 其 原 因 主 要是 线源模 型假定的热流 是 施 加 在 半 径 r = 0 处, 而 圆柱 源模 型是在 r = r b 处. 从物理意义上讲, 在 r = rb 处施加
2006 -05 -08 . 收稿日期: ( 50276013 ) . 基金项目:国家自然科学基金资助项目 ( 1975 —) , ( 联系人 ) , 男, 施明恒 男, 教 作者简介:杨卫波 博士生; 博士生导师,mhshi@ seu. edu. cn. 授,
并已得到了实际应用. 在地 源 热 泵 系统的 设 计中, 建立较为准确的 埋 管 传热 模型 并进行可 靠 的系统 模拟计算是合理设计地下埋管的前提与基础. 垂直 U 型埋管因较其他埋管方式具有节地、 效率高及 性 能稳定等优点而成为当 前 地 源 热 泵 地 下 埋 管 的 主 流形式. 垂直 U 型埋管换热器 通常采用一个 钻孔 中 布

地埋管换热器地下传热数值模拟

地埋管换热器地下传热数值模拟

地埋管换热器地下传热数值模拟以长沙地区某办公楼为研究对象,利用FLUENT软件模拟了其土壤源热泵系统运行5年的土壤温度分布情况,在不考虑土壤与外界空气的传热情况下,空调季与其后过度季的土壤平均温度差别较小,但过度季土壤温度分布比空调季更均匀。

冬夏季地埋管换热量的不平衡将导致土壤温度的变化,埋管放热量大于吸热量时,土壤温度将逐年上升,反之将逐年下降,两种情况都不利于空调系统的持续运行。

空调系统第一年是从夏季制冷开始运行还是从冬季制热开始运行对土壤的温度影响较大,应该根据建筑的空调负荷及土壤热物性综合考虑确定。

土壤源热泵;地埋管换热器;计算流体力学;FLUENT引言地源热泵系统是一种利用地下浅层资源的既可以供热又可以制冷的高效节能空调系统。

其工作原理是系统通过地源热泵将地下的热能提取出来对建筑供暖,或者将建筑中热能释放到地下从而实现对建筑的制冷[1]。

夏季,可将建筑内的热能储存于地层中以备冬用,同样,冬季可以将富余的冷量储存于地层以备夏用。

这样,通过利用地层自身的热工性能实现对建筑物和环境的能量交换。

地源热泵通过输入少量的高品位能源(如电能),实现低温热能向高温转移。

理论上,地源热泵消耗1kW电能,用户可以得到4kW以上的热量或冷量[2]。

比电锅炉加热节电2/3以上;比燃料锅炉节能1/2以上。

由于地源热泵的冷、热源温度全年较为稳定,长沙地区一般为16.8℃左右[3],其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右。

因此近年来,中国政府出台一系列支持地源热泵的政策,地源热泵空调系统取得了较快发展[4]。

地源热泵分为地下水源热泵、土壤源热泵和地表水源热泵等[5]。

土壤源热泵技术能否被广泛推广应用,很大程度上取决于精确、可靠的系统设计方法和计算工具,地下埋管换热器长期运行性能研究是这个系统的核心部件。

土壤源热泵系统运行过程中对地下土壤温度产生的影响需要进一步研究。

U型垂直埋管属于土壤源热泵的一种,具有良好的节能、环保等特性,而且经济效益显著[6]适用于城乡居民住所及办公楼等的采暖、制冷需求。

竖直埋地换热器内两相流动数值模拟

竖直埋地换热器内两相流动数值模拟
程的动态模拟 , 并能对埋管周围温度场的影响进行 分析 。 直接膨胀式土壤 源热泵 地下换热 系统 内的工作过程 是 由本质上十分 复杂 的两相 流动和 沸腾/ 结 两种物 理现 象 凝 耦合在一起的流动换 热过程 , 故已建立 的 、 杂程度不 同的 复 ( 第二 环路 ) 地埋管换热器 的传热模型不能直接应用。
埋 地换热 器作 为 土壤 源热 泵 与大 地 热交 换 的唯 一设 备, 其传热 效果 的好 坏直 接 决定 着热 泵 机组 的性 能 系数。 根据 土壤 源热 泵地埋管换热系统 中是否存 在 中间传热介质
器) 的作用 , 内部 的换热存 在相 变过 程 , F U N 其 故 L E T缺省
【 摘
要】 为了给直接膨胀式土壤源热泵 U型铜管埋地换 热器的优化设 计提供理论依 据 , 分析各 因素 通过
对两相流动换热 的影 响, 建立修正的两相流混合 物模 型 , 对直接膨胀式土壤源 热泵地下换热 系统 供热工况下 的三 维流场和热交换 过程进行 了数值模拟 。结果表明该模型符合工程精度要求 , U型管与土壤的换热主要 是在进 口支
基于导热型传热机制的地埋管 与土壤传 热模型忽 略了 多孔介质 中复杂 的传热 问题 , 目前 国内外 分析 地埋 管换 是 热器传热常用的数学物理模 型。但 导热型地 埋管换热 器的 传热过程 也是 十分 复 杂 的, 换热 效果 受很 多 因素 影 响。 其
以现有 的计算技术 来说 , 建立 精确 模拟 所有 实 际情况 的模
三维瞬态远边界传热理论 。线源和 圆柱孑 模 型的建立 和求 L
解较容易 , 在工程实践中实用性较 强 ; 三维瞬态模 型考虑 了
就是弥散 的第二 相 的体积 比率应 很低 , 与本 文求 解 问题不

地源热泵垂直换热器的热响应测试与数值模拟

地源热泵垂直换热器的热响应测试与数值模拟
第3 5卷 第 5期 2 0 1 3年 1 0月 5 8 7- 5 9 0页
世科技研究与发展
WO R L DS C I T E C HR &D
V o l . 3 5 N o . 5 O c t . 2 0 1 3 p p . 5 8 7- 5 9 0
地源热泵垂直换热器的热响应测试与数值模拟
曹业玲 杨志昆 潘赞帅
( 南京航空航天大学航空宇航学院, 南京 2 1 0 0 1 6 )
摘 要: 分析了进出口温度、 速度和埋管深度等地源热泵垂直换热器换热性能的影响因素。在青奥村进行实地岩土热响应测试基 础上, 采用了 G A M B I T建立双 U形管换热器与周围土壤换热的物理模型, 并用 F L U E N T进行了数值计算。结果表明, 在科学的建 0 %之内, 可以认为模拟结果是有效的, 同时应该根据实际需要确 立数学与物理模型基础上, 得到的模拟结果与试验结果误差在 1 定埋管深度, 而不是盲目的增大埋管深度来增加换热量。 关键词: 地源热泵; 数值模拟; 进口温度; 进口速度; 埋管深度; 出口温度 中图分类号: T U 8 3 1 . 4 文献标识码: A d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 6- 6 0 5 5 . 2 0 1 3 . 0 5 . 0 0 6
1 引言
地源热泵作为一种新型的节能空调系统, 在我国的研究 发展推广已经成为一种必然。地下埋管换热器的性能是影 响地埋管地源热泵系统初投资的一个最重要因素, 因此, 尽 量提高地下埋管换热器的换热性能, 减小钻孔内热阻, 最终
C A OY e l i n g Y A N GZ h i k u n P A NZ a n s h u a i
( C o l l e g e o f A e r o n a u t i c s E n g i n e e r i n g , N a n j i n gU n i v e r s i t yo f A e r o n a u t i c s &A s t r o n a u t i c s , N a n j i n g 2 1 0 0 1 6 ) A b s t r a c t : T h eh e a t e x c h a n g e r p e r f o r m a n c e e f f e c t s o f g r o u n d s o u r c e h e a t p u m p v e r t i c a l h e a t e x c h a n g e r w e r e d e t e r m i n e d , s u c ha s i n l e t a n d o u t , s p e e da n dd e p t ho f b u r i e dp i p e . T h e r m a l r e s p o n s et e s t w a s c o n d u c t e da t Q I N G A Ov i l l a g e . Ap h y s i c a l m o d e l o f h e a t e x c h a n l e t t e m p e r a t u r e g i n g b e t w e e nd o u b l e t u b e h e a t e x c h a n g e r a n dt h e a m b i e n t s o i l w a s s e t u pi nG A M B I T . C o m p u t a t i o nm e s hf o r t h en u m e r i c a l s i m u l a t i o nw a s g e n e r a t e di nF L U E N T . T h er e s u l t s s h o wt h a t , c o m p a r e dt ot h ee x p e r i m e n t a l r e s u l t s , t h ee r r o r o f t h es i m u l a t i o nr e s u l t s w a s w i t h i n1 0 %. T h i s d e m o n s t r a t e dt h a t t h e s i m u l a t i o n w a s e f f e c t i v e . T h e p i p e d e p t h s h o u l d b e d e t e r m i n e da c c o r d i n g t o a c t u a l n e e d s , r a t h e r t h a ni n c r e a s i n g t h e h e a t e x c h a n g e i na w a yo f b l i n d l y i n c r e a s i n g t h e p i p ed e p t h . K e yw o r d s : g r o u n ds o u r c eh e a t p u m p ; n u m e r i c a l s i m u l a t i o n ; i n l e t t e m p e r a t u r e ; i n l e t v e l o c i t y ; p i p e d e p t h ; o u t l e t t e m p e r a t u r e

2010竖直地埋管换热器优化设计与模拟软件

2010竖直地埋管换热器优化设计与模拟软件

收稿日期:2010-1-8作者简介:崔萍(1976~),女,博士,讲师;山东建筑大学热能学院(250101);0531-863637626;E-mail:sdcuiping@ 基金项目:国家自然科学基金项目(No.50946039)竖直地埋管换热器优化设计与模拟软件崔萍1刁乃仁1杨洪兴2方肇洪11山东建筑大学地源热泵研究所2香港理工大学屋宇设备系摘要:本文首先讨论了地源热泵系统竖直埋管地热换热器的理论传热模型及其解析解,然后详细介绍了根据这一模型开发并完善的地热换热器设计和模拟计算软件“地热之星GeoStar V3.0”。

该软件除了根据负荷设计计算地埋管的总长度以外,还可计算系统的热泵能耗、地埋管换热器的换热量、孔壁的温度变化以及其他性能参数。

GeoStar V3.0还增加了设计太阳能辅助地源热泵系统的功能,可对热负荷占优的建筑进行太阳能集热器与地埋管换热器联合运行的优化设计。

本文最后针对某一地源热泵示范工程进行了设计计算。

使用结果表明,软件中采用的理论传热模型和设计计算方法可以较精确地用于指导工程实践与相关的科研项目。

关键词:地源热泵地热换热器设计计算传热Simulation Modeling and Design Optimization of Vertical Ground HeatExchangerCUI Ping 1,DIAO Nai-ren 1,YANG Hong-xing 2,FANG Zhao-hong 11Ground Source Heat Pump Research Center,Shandong Jianzhu University 2Department of Building Services Engineering,The Hong Kong Polytechnic UniversityAbst r act :The paper primarily discusses the analytical heat transfer models for the vertical GHEs and introduces the attendant program named “GeoStar ”developed for use in design and simulation of vertical GHEs.The GeoStar can calculate the required borehole length and predict time-varying heat pump energy consumption,heat transfer rates of GHEs,and other variables of interest during a long-time period of over 20years.Meanwhile,the simulation model for the solar-ground source heat pump systems is developed and incorporated into the program,which can design the solar collector area required for heating-dominated buildings.Finally,the program is used to design an existing GSHP project and to simulate the system performance.The results demonstrate the usefulness of the simulation model and attendant program as a tool for designing the GSHP systems.Keywor ds:ground source heat pump,ground heat exchanger,design,heat transfer0引言竖直埋管地源热泵技术利用可再生的浅层地热能通过热泵机组对建筑物实现供暖,空调及提供生活用热水。

基于CFD的竖直U型地埋管换热器传热性能仿真分析

基于CFD的竖直U型地埋管换热器传热性能仿真分析

密度为常数 。为得到较好 的换热能力,一般 要使其处于紊流 状态 。因此在进行 C F D 模 拟时,选用 了 一占双方程模型来
解 得 水 管 中 水 的 流 动 和传 热 的控 制 方 程 , 并将 能量 方 程 与 回
【 文章编号 】 1 0 0 8 — 1 1 5 1 ( 2 0 1 3 ) 0 5 — 0 0 1 5 — 0 3
Num e r i c a l s i mu l a io t n o f c ha r a c t e r i s ic t s o f bu ie r d p i pe h e a t e x c ha n g e r ba s e d o n CFD
仿 真 分析
刘 渊 李尚平 何永玲 陈晓林
( 1 . 钦 州学院物理学院 ,广西 钦 州 5 3 5 0 0 0 ;2 . 江西冶金 职业技术 学院,江西 新余 3 3 8 0 1 5 )
【 摘 要】 利用 C F D 软件 F l u e n t 的前处理软件 G a m b i t 建 立与 实际系统相同的单 u竖直地埋管换热器的三 维非稳 态传热模
u n s t e a d y h e a t t r a n s f e r mo d e l wh i c h s i mi l a r i t y wi t h t h e a c t u l a s y s t e m o f s i n g l e U b u r i e d v e mc l a p i p e o f t h e h e a t e x c h a n g e r . a n d c o mp a r e d wi t h t h e e x p e i r me n t a l r e s u l t s t h r o u g h t h e g r a p h i c a l o f we l l a n d U p i p e t O a n a l y s i s t h e t r e n d o f t e mp e r a t u r e . Th e r e s u l t s a re g e we l wi t h t h e v l a u e s me a s u r e d e x p e i r me n t a l l y a n d t h e s i mu l a t i o n .T h i s i s i n f a v o r o f g r a s p i n g we l l t h e t e mp e r a t u r e o f we l l u n d e r t h e c o n d i t i o n o f n o t h e r mo c o u p l e s .

224 合肥地区垂直U型埋管换热器实验分析及模拟

224 合肥地区垂直U型埋管换热器实验分析及模拟

合肥地区垂直U型埋管换热器实验分析及模拟安徽建筑工业学院胡宁王晏平李雪飞汪志远摘要本文选取60m深垂直U型埋管进行了理论分析,建立了垂直U型地埋管换热器以及周围土壤温度场的数学模型,并实验研究了合肥地区夏季典型气候条件下不同运行模式下地埋管换热器的换热性能以及换热器周围温度场的变化情况。

最后利用有限元分析软件ANSYS 软件对合肥地区地埋管换热器长期运行工况进行了模拟,给地源热泵的施工提供了一定的参考价值。

关键词地源热泵系统,垂直U型地埋管换热器,模拟,ANSYSExperimental and Simulant Study on Vertical U-TubeUnderground Heat Exchanger in Ground SourceHeat Pump System in HefeiAnhui University of Architecture Hu Ning Wang Yanping Li Xuefei Wang zhiyuan Abstracts A sixty meters Vertical U-tube heat exchanger was theoretically analysed in this paper,and a mathematic model of Vertical U-tube heat exchanger and the surround temperature field was established.It experimentally studies heat transfer performance of the Ground heat exchange(GHE) and the surround temperature distribution under different operation modes in the typical climate of Hefei. Last, the finite element analysis software ANSYS was used to simulate the long-time operation mode of the GHE, which affords reference to the construction of the GSHP system.Key words ground-source heat pump system; vertical U-tube underground heat exchangers;simulation; ANSYS1 前言地源热泵是以地表能为热源(或热汇),通过输入少量的高品位能源(如电能),实现低品位热能向高品位热能转移的热泵空调系统,是真正的“绿色能源”[1]。

土壤源热泵垂直埋管周围温度场数值模拟

土壤源热泵垂直埋管周围温度场数值模拟
的理论指导 。 2 埋 管 周 围 土 壤 非 稳 态 温 度 场 物 理 模 型 与 数 学 模
型 的 建 立
Pa { (0 +x ) CT  ̄Z = T (T a )
式中 卜 土 壤 的 瞬 态温 度 , ; ℃
2 1 物 理 模 型 . 垂 直 埋 管 周 围 的 实 际 土 壤 温 度 场 比较 复 杂 , 它 与土 壤 的类 型 、 壤 含 水 量 、 管 形 式 及 布 置 方 式 、 土 埋
卜_一过 程 进 行 的 时 间 ,; S

对 称 温 度 场 的 分 布半 径 , m; 对称轴 即管中心线 , m;
热 泵 运 行 时 间 、 热 负 荷 等 因 素 有 关 。 为 使 求 解 方 冷 便 , 过 分 析 , 略 影 响 较 小 的 次 要 因 素 , 立 模 型 经 忽 建 时作 以 下 假 设 : ( )土 壤 与 埋 管 之 间 的 传 热 方 式 为 纯 导 热 , 1 且 土 壤 按 深 度 分 层 , 层 土 壤 的导 热 系数 为 常 数 , 壤 每 土
维普资讯
建 筑 热 能 通 风 空调
・ ・ 9
土 壤 活 泵 垂 盎 俚 周 围 湿 度 数 值 拟
施 志 钢 ☆ 于 立 强
( 岛建筑 工程 学 院 ) 青
[ 要 ] 针 对典 型的垂直 u型埋 管 土壤 源热泵 , 立埋 管 周 围非 稳 态 温度 场模 型 , 摘 建 并利 用有
根 据 钻 井 时 采 得 的 土 壤 试 样 , 将 地 下 土 壤 分 为 两 可
作 者简历 : ☆ 志钢 , ,9 5 施 男 17 年生 , 士 , 教 , 岛建筑 工 程学 院环工 系 , 6 3 硕 助 青 2 03 6

土壤源热泵地埋管换热器计算模型

土壤源热泵地埋管换热器计算模型

土壤源热泵地埋管换热器计算模型日期:汇报人:•引言•地埋管换热器工作原理•地埋管换热器计算模型•计算模型验证与优化•地埋管换热器工程应用实例目•结论与展望录CHAPTER引言01背景意义研究背景与意义研究内容方法研究内容与方法CHAPTER地埋管换热器工作原理02地埋管换热器结构地下换热器与热泵机组连接,吸收地下热量,通过热泵机组将热量传递给制冷剂,制冷剂再将热量排放到大气中,实现供冷。

冬季供暖地下换热器与热泵机组连接,将地下热量传递给制冷剂,制冷剂再将热量排放到室内,实现供暖。

传热介质热传递方式CHAPTER 地埋管换热器计算模型03传热模型建立传热模型基于土壤传热过程建立数学模型,包括土壤的导热系数、比热容等参数。

几何模型根据地埋管换热器的形状和尺寸,建立相应的几何模型。

边界条件考虑土壤温度、地埋管换热器的进出口温度等边界条件。

土壤热特性参数确定导热系数土壤的导热系数是反映其传热能力的重要参数,需要通过实验测定。

比热容土壤的比热容也是影响其传热的重要参数,需要根据土壤类型和含水率等因素进行估算。

热扩散率反映土壤对热量扩散能力的参数,与土壤的颗粒大小、孔隙率等因素有关。

010302换热器传热计算方法数值模拟简化模型实验验证CHAPTER计算模型验证与优化041模型验证方法23将模型的预测结果与理论推导结果进行对比,验证模型的准确性。

理论推导通过在地埋管换热器现场进行实验,测量实际的土壤温度和换热器性能,与模型预测结果进行对比,以验证模型的准确性。

实验测试选用多个不同的地埋管换热器计算模型,对同一个工程进行计算,并将结果进行对比分析,以验证所选模型的准确性。

对比分析模型优化方法改进算法考虑动态因素增加参数模型应用范围与局限性分析应用范围该模型适用于计算土壤源热泵地埋管换热器的性能,并预测其在不同工况下的运行效果。

局限性该模型假设土壤温度沿地下深度均匀分布,忽略了土壤导热的不均匀性,同时也没有考虑地下水的影响,这可能会对模型的预测精度产生影响。

土壤源热泵垂直埋管温度场的数值模拟

土壤源热泵垂直埋管温度场的数值模拟
1 边 界条件 的确 定 . 5
等 效管 外壁 为第 二类 边 界条 件 。 当热 泵运 行 时


一 --


式 中 q为单 位钻 孔 散 热量 ,W/ m。
当热 泵停 止 时
图 2 等 效 管 示 意 图
Байду номын сангаас
由于采用 垂直 u 型 管 ,两管 间距 很近 ,相邻
两管 壁会 产 生相互 影 响 , 因而 其外 表 面与 土壤 的换
’ 罗静丽 ,女, 18 年 7月 出生 ,助理工程师 91
维普资讯
l 8
‘ 制 冷 与 空 调
20 0 7年 第 2期
等效 管示 意 图如 图 2所 示 。
t —

时 间 ,S 。
1 初 始条 件 . 4
将 原始 大 地看 成 是等 温 体 , 取 大地 的年 平均 并 值 作 为土壤 的原始温 度 。
[ y r s Gru dsuc et u p Kewod ] o n re ap m ;V rc - b ;U s aytm ea r ed o h e i U t e nt d p rt e l t a l u e e u f i
0 引言
掌握 和 了解 地 下 换 热 埋 管 周 围 的土 壤温 度 场 的分 布 是 进 行 土壤 源 热 泵 系统 优 化 设 计 和 经 济运 行 的关 键和 前提 。 着土 壤源 热泵 的启停 及运 行 时 随 间的变化 , 下埋 管 周 围的土 壤温 度 分布 呈非 稳态 地 特性 。 对地 下垂 直 换热 埋 管周 围非 稳态 温度 场 进行 数值 模拟 ,有 利 于合 理 设计 地下 换热 埋 管 的埋深 、 数量 及 间距 ,对 提 高 热 泵 系统 的 性 能系 数 和 经 济 性 ,降低 热泵 系统 初 投 资具 有十 分重 要 的意义 。本 文建 立 了垂 直 U 型 埋 管式 土壤 源热 泵地 下埋 管 周 围 非 稳 态 温 度 场 的 物 理 和 数 学 模 型 , 并 利 用 MA L 软件 中提 供 的解 偏 微分 方程 的功 能进行 T 了数值模 拟 , 析 了影 响温 度 场分 布 和垂直 埋 管传 分 热 性能 的因 素 ,为 U 型 垂直埋 管式土 壤源 热泵 的 设计 提供 了参 考依 据 。 J

地源热泵埋管换热器数值模拟研究

地源热泵埋管换热器数值模拟研究
图 1 土壤温度场水 平面网格
F g 1 Ho i o t l a eo n e g o n e p r t r ed i. r z n a n f d r r u d t m e a u ef l pl u i
变化 。由该 图可 以看 出 ,系统运行 的前 4 变 化 0 h(
( . l g f er lu a d Nau a s g n e i g L a n n h h a Un v r i , a n n u h n 1 0 , Ch n : 1 Co l eo t e m n t r l e P o Ga En i e rn , i o i g S i u ie st Lio i g F s u 1 0 y 3 1 i a 2 S n p cP p l eS o a ea dT a s o t t n Br n h,J a g u Xu h u 2 0 , C i a . i o e i e i t r g n r n p rai a c n o in s s o 2 0 1 0 hn )
2 系统 运 行 时 间 的影 响
模 拟 了系统运 行 2 0h内换热 器周 围土壤 温度 4 场 。从 图 2可 以看 出 ,随着 系统运 行 时 间的增 加 , 土壤 温度 升 高 ,但 各 点 的温度 变化 规律 不 尽相 同 。
0( ) 8
O0 .6
、 l
0. ) ( 4
L o
网格划 分 : i节 点单元 埘 u 管周 ll 用 韦旧填 L
及 土壤进行 单元 划分 。 由于地下换 热 器传热 过程 . 温度 沿径 向方 向变化 较大 ,因此在 水平 方 向 l  ̄U -t . X
对热量传递的影响。
控制 方程 :

土壤源热泵垂直埋管换热器的换热性能研究

土壤源热泵垂直埋管换热器的换热性能研究

土壤源热泵垂直埋管换热器的换热性能研究目录第一章绪论 (1)1.1 课题研究背景及其意义 (1)1.1.1 能源环境危机日益严峻 (1)1.1.2 地热能开发利用势在必行 (2)1.1.3 土壤源热泵技术的研究意义 (2)1.2 土壤源热泵简介 (3)1.2.1 土壤源热泵的工作原理 (3)1.2.2 土壤源热泵的优缺点 (4)1.3 国内外土壤源热泵的研究现状 (5)1.3.1 地埋管换热器的传热模型研究 (5)1.3.2 地下水渗流的强化传热 (6)1.3.3 土壤分层对换热器换热的影响 (7)1.3.4 运行控制参数的强化传热 (7)1.4 课题的提出及其主要研究内容 (8)1.4.1 课题的提出 (8)1.4.2 课题主要研究内容 (8)1.5 本章小结 (9)第二章土壤源热泵传热过程相关理论分析 (10)2.1 土壤的结构组成与传热机理 (10)2.1.1 土壤的结构组成 (10)2.1.2 土壤的传热机理 (10)2.2 多孔介质的相关理论 (11)2.2.1 多孔介质的基本参数 (12)2.2.2 多孔介质的传热与流动控制方程 (15)2.2.3 非饱和多孔介质热湿迁移机理 (18)2.2.4 毛细管内液膜传热与液面蒸发理论分析 (21) 2.3 多孔介质模型在Fluent软件中的处理 (22)2.3.1 多孔介质模型在Fluent软件中的限制与假设 (22) 2.3.2 多孔介质各方程在Fluent软件中的处理方式 (23) 2.4 本章小结 (24)第三章垂直地埋管换热器物理模型的建立 (25)3.1 模型建立时的假定条件 (25)3.2 几何模型的建立 (25)v3.3 模型网格的划分 (26)3.4 边界条件的设置 (28)3.5 本章小结 (29)第四章垂直地埋管换热器三维数值模拟过程 (30)4.1 模型中相关参数的设定 (30)4.1.1 土壤初始温度 (30)4.1.2 土壤表面的对流换热系数 (32)4.1.3 其他参数 (32)4.2 模型求解的步骤 (33)4.3 稳态与非稳态工况分析 (36)4.3.1 夏季工况 (36)4.3.2 冬季工况 (38)4.4 本章小结 (41)第五章数值模拟结果的分析与研究 (42)5.1 地下水渗流对换热器换热性能的影响 (43)5.1.1 渗流速度 (43)5.1.2 土壤孔隙率 (46)5.2 入口流速对换热器换热性能的影响 (48)5.2.1 无渗流工况 (48)5.2.2 渗流工况 (50)5.3 土壤导热系数对换热器换热性能的影响 (51)5.3.1 无渗流工况 (51)5.3.2 渗流工况 (53)5.4 土壤比热容对换热器换热性能的影响 (54)5.4.1 无渗流工况 (54)5.4.2 渗流工况 (55)5.5 土壤分层对换热器换热性能的影响 (57)5.5.1 土壤导热系数分层 (57)5.5.2 土壤比热容分层 (59)5.6 系统运行工况分析 (60)5.6.1 连续与间歇运行方式对比 (61)5.6.2 不同间歇运行方式分析 (61)5.7 本章小结 (63)结论与展望 (64)vi结论 (64)展望 (65)参考文献 (67)攻读硕士期间参与的科研项目及取得的研究成果 (71)致谢 (72)vii第一章绪论第一章绪论1.1 课题研究背景及其意义1.1.1 能源环境危机日益严峻随着全球经济的飞速发展和人口的不断扩大,环境与能源问题已经成为当前国际中最为引人注目的问题之一。

地源热泵u型管地下换热器数值模拟与与分析

地源热泵u型管地下换热器数值模拟与与分析

中田教业人学坝I‘学位论文绪论1.1.1地源热泵系统的分类根据地源熟泵耦合换热系统的换热方式,可以把地源热泵系统分为闭式循环系统和开式镢环系统。

闭式循环系统采用埋在地F的盘管作为热交换器,管路中充满介质,通常是水或防冻水溶液,当然也可以是其他的介质。

闭式循环系统由于环路是封闭的,所以热交换器中的介质与人地(土壤或地下水)不直接接触,不受矿物质影响。

初装费用较高,但适用范围广。

闭式循环系统又可分为垂直式、水平式、螺旋式、淹没式四种,见图I.2。

图I五闭式话环的地强热藁系统开式系统利用地下水或者地表水直接作为换热介质。

这种系统也称为“地下水源热泵”(GroundWaterHeatPump)a开式系统主要由抽水井、回灌井或表面水系组成。

有双井系统,单井系统和开放式系统,图I-3显示三种常见的开式系统。

圈卜3开式铺环的地薄热象系豌1.1.2地源热泵系统的优缺点由于地表相当于一个巨大的太阳能吸收器,通过不断吸收太阳辐射形成浅层的地热资源。

浅层地温(地表5m以下)在未受干扰的情况下常年保持恒定,而且夏季比环境空气温度要低,冬季又比环境空气温度要高,分别提供了较高的冷凝温度和较低的蒸发温度,是热泵很好的冷/热源,从而使得地源热泵比空气源热泵效率高。

此外,在冬夏负荷基本一致的地方。

大地分别在冬季作为热泵供暖的热源,同时蓄存冷量,以备夏用;而在夏季作为冷源,同时蓄存热量,以备冬用。

这样大地就起到了蓄能器的作用,进一步提高了空调系统全年的能源利用效率,是2中国农业人学颀}‘学位论文绪论目前效率最高的供暖制冷系统之一。

它的供暖效率比其他供暖系统高50%-一70%,而制冷效率比其他空调系统高20%qO%吲。

除此以外,它还有占用空间小,维护费用低的优点。

在经济性方面,通过地源热泵与燃煤、燃气锅炉的比较,由于它可以一机多刚,初始投资比实现同样多功能的锅炉还要低;运行费用与燃煤锅炉比较接近,同时由r环保的要求.燃煤锅炉在很多地方已经不能使用,因此,对既需要供暖又需要空调的场合,通过综合的经济性分析比较,认为地源热泵在目前能源价格下有很强的经济竞争性¨I。

地源热泵垂直埋管换热器性能的数值模拟研究

地源热泵垂直埋管换热器性能的数值模拟研究

地源热泵垂直埋管换热器性能的数值模拟研究
赵红军;欧健;余斌
【期刊名称】《河南城建学院学报》
【年(卷),期】2010(019)006
【摘要】以地源热泵垂直埋管换热器为研究对象,建立地源热泵垂直埋管换热器的三维数值模型,通过实验对数值模型进行验证.利用已建的数值模型分析了埋管内水流流速,水温以及钻孔内不同埋管和回填材料对地埋管换热器性能的影响.研究结果表明:地埋管换热器的单位延米换热量随着回填材料导热系数,管内流速,进口水温,埋管的导热系数的增加而增大;埋管管壁的平均温度随着管内流速,进口水温,埋管的导热系数的增加而增大,但随着回填材料导热系数的增加而减小.
【总页数】4页(P36-39)
【作者】赵红军;欧健;余斌
【作者单位】绵阳职业技术学院,四川,绵阳,621000;绵阳职业技术学院,四川,绵阳,621000;陕西冶金设计研究院,陕西,西安,710048
【正文语种】中文
【中图分类】TK523
【相关文献】
1.地源热泵垂直埋管换热器换热性能的实验研究 [J], 张鑫;王沣浩;王新轲;冯琛琛;姜宇光
2.地源热泵垂直埋管换热器实验研究 [J], 周波;刘成刚;孙志高
3.地源热泵垂直埋管换热器地下热阻及管长的分析 [J], 余红海
4.地源热泵埋管换热器数值模拟研究 [J], 李小玲;马贵阳;赵鹏
5.地源热泵垂直埋管换热器换热效率下降因素分析 [J], 范惠文
因版权原因,仅展示原文概要,查看原文内容请购买。

地源热泵竖直地埋管换热器的设计计算

地源热泵竖直地埋管换热器的设计计算

地源热泵系统工程技术规范·附录B竖直地埋管换热器的设计计算竖直地埋管换热器的热阻计算宜符合下列要求:1传热介质与u形管内壁的对流换热热阻可按下式计算:`R_f=1/(πd_iK)`(B·0·l-1)式中R f——传热介质与u形管内壁的对流换热热阻(m·K/W);d j——U形管的内径(m);K——传热介质与U形管内壁的对流换热系数[w/(m2·K)]。

2U形管的管壁热阻可按下列公式计算:`R_(pe)=1/(2πλ_p)1n(d_e/(d_e-(d_o-d_i)))`(B.0.1-2)`d_e=sqrtnd_o`(B.O.1-3)式中R pe——U形管的管壁热阻(m·K/W);λp——U形管导热系数[w/(m·K)];d o——U形管的外径(m);d e——U形管的当量直径(m);对单u形管,n=2;对双U形管,n=4。

3钻孔灌浆回填材料的热阻可按下式计算:`R_b=1/(2πλ_b)1n(d_b/d_e)`(B.0.1-4)式中R b——钻孔灌浆回填材料的热阻(m·K/w);λb——灌浆材料导热系数[w/(m·K)];d b——钻孔的直径(m)。

4地层热阻,即从孔壁到无穷远处的热阻可按下列公式计算:对于单个钻孔:`R_s=1/(2πλ_s)I(r_b/(2sqrt(aτ)))`(B.0.1-5)`I(u)=1/2∫_u^∞e^(-s)/sds`(B.0.1-6)对于多个钻孔:`R_s=1/(2πλ_s)(I(r_b/(2sqrt(aτ)))+sum_(i=2)^NI(x_i/(2sqrt(aτ))))`(B.O.1-7)式中R s——地层热阻(m·K/W);I——指数积分公式,可按公式(B.0.1—6)计算;λs——岩土体的平均导热系数[w/(m·K)];a——岩土体的热扩散率(m2/s);r b——钻孔的半径(m);τ——运行时问(s);x i——第i个钻孔与所计算钻孔之间的距离(m)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Numbers of Abstract/Session (given by NOC)-1-NUMERICAL SIMULATION OF VERTICAL GROUND HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMPSJalaluddin, 1) Graduate student, Graduate School of Science and Engineering, Saga University, Saga, Japan; 2) Associate professor, Department of Mechanical Engineering, Hasanuddin University, Makassar, Indonesia A. MIYARA, Professor, Department of Mechanical Engineering, Saga University, Saga, Japan K. TSUBAKI, Assistant Professor, Department of Mechanical Engineering, Saga University, Saga, Japan K. YOSHIDA, Graduate student, Graduate School of Science and Engineering, Saga University, Saga, JapanAbstract: This paper presents the numerical simulation of several types of vertical ground heat exchangers. The ground heat exchangers (GHEs) such as U-tube, double-tube and multi-tube were simulated using the commercial CFD software FLUENT. Water flows through the heat exchangers and exchanges the heat to the ground. The inlet and outlet water temperatures, flow rate, and heat exchange rate are presented. The heat exchange rates in discontinuous short-time period of operation namely 2 h operation-time and 2 h off-time and continuous operation are investigated and compared with that of the experimental results. Comparing numerical results with experimental results shows that the numerical models are capable to determine the GHE performances. The heat exchange rate in discontinuous operation increased compared with that of in continuous operation. As an example, the heat exchange rate of the discontinuous operation at 22 h increases of 17.1 % for U-tube, 22.5 % for double-tube, and 16.5 % for multi-tube compare with that of the continuous operation at the same time. In addition, heat exchange process in the off-time increases the heat exchange rate of GHEs. Key Words: vertical ground heat exchanger, numerical simulation, discontinuous and continuous operation, heat exchange rate 1 INTRODUCTIONGround source heat pump (GSHP) system is used for space heating and cooling in residential and commercial building. Recently, the vertical type of ground heat exchanger (GHE) has widely used in the GSHP system. The GHE is used in this system to exchange heat with the ground. The relatively high initial cost to build this system due to the installation obstruct to the spread of the system in applications particularly in residential building. The research and developments of GSHP technology with the various models and design/simulation techniques was described in a detailed review of models and systems of vertical GSHPs (Yang et al. 2010). Numerical methods are widely used to consider the complex problem due to simplification of these methods. A numerical model for vertical Utube GHEs based on a transient two-dimensional finite volume method (Yavuzturk et al. 1999), three-dimensional unstructured finite volume numerical model of vertical U-tube GHE (Li and Zheng 2009) were developed. Also, numerical simulation using commercial10thIEA Heat Pump 10th Conference IEA Heat Pump 2011, Conference 16 - 19 May 2011 2011, Tokyo, JapanNumbers of Abstract/Session (given by NOC)-2-computational fluid dynamics (CFD) software FLUENT was used in the ground source energy system (Sharqawy et al. 2009, Li et al. 2009 and Gustafsson et al. 2010).The heat transfer behaviour in alternative operation modes (heating and cooling modes) was investigated in short-time scale and the temperature distribution of borehole field was analyzed using finite element method (Cui et al. 2008). Cooling/heating alternative operation modes in short-time scales improve the performance of the GSHP system. The thermal performance of three types of GHEs with different flow rate in 24 h continuous operation was experimentally investigated (Jalaluddin et al. 2011). The performance of the GHEs descends gradually due to the heat buildup in the surrounding ground with operating time in continuous operation. Operation of GHE such as discontinuous and continuous modes brings the different characteristic of their performance. The present research investigated numerically the thermal performance of three types of GHEs in discontinuous short-time period of operation and continuous operation. Threedimensional unsteady-state models for the three types of GHEs were built and simulated in the CFD software FLUENT. The thermal performances in discontinuous short-time period of operation and continuous operation are investigated and compared with that of the experimental results. The experimental results were presented in our published paper (Jalaluddin et al. 2010) with recorded data in April 9th 2010 for continuous operation and in April 11th 2010 for discontinuous operation (experimental condition for three types of GHEs were 4 l/min of flow rate and 27 οC of inlet water temperature). Heat exchange behaviour in the discontinuous short-time operation is also presented. 2 2.1 SIMULATION MODEL Three Dimension ModelThree-dimensional unsteady-state models were built and simulated to investigate heat exchange from GHEs to the ground around the borehole. The CFD-software FLUENT uses a finite volume method to convert the governing equations to numerically solvable algebraic equations [FUG 2006]. The schematic diagram of the three types of GHE models are shown in Figure 1. The GHE models consist of three types of GHEs namely U-tube, double-tube and multi-tube inserted to the boreholes. The ground around the GHEs is modelled of 5 m in radius and 22.5 m in depth. The models were simulated in the cooling mode for discontinuous short-time period of operation (2 hours operation-time and 2 hours off-time) and for continuous 24 h operation. The flow rate and inlet temperature were set to 4 l/min and 27 οC (300 K), respectively.Water Outlet Water Inlet Ground level Silica sand Steel pipe pile (SS400) Water Outlet Ground level Polyvinyl-chloride pipe Stainless pipe pile (SUS304) Water Inlet Water Inlet or Outlet Ground level Silica sand Insulation Material Steel pipe pile (SS400) U-tube Support plate ×6 Multi-tube Water Outlet Water Inlet or OutletScrewScrewScrew(a) U-tube(b) Double-tube(c) Multi-tubeFigure 1: The schematic diagram of the three types of GHEs10thIEA Heat Pump 10th Conference IEA Heat Pump 2011, Conference 16 - 19 May 2011 2011, Tokyo, JapanNumbers of Abstract/Session (given by NOC)-3-(a) U-tube(b) Double-tube(c) Multi-tubeFigure 2: The schematic diagram of horizontal cross-section of the three types of GHE models Table 1: Related parameters and properties (Bejan 2003) of the U-tube model Parameters Inlet and outlet pipes (material: Polyethylene) Outer diameter, do Inner diameter, di Thermal conductivity, kPE Specific heat, CP Density, ρ Leg spacing, x Pile foundation (material: Steel) Outer diameter, do Inner diameter, di Thermal conductivity, kSteel Specific heat, CP Density, ρ Grout (material: Silica sand) Thermal conductivity, kgrout Specific heat, CP Density, ρ Value 0.033 0.026 0.35 2300 920 0.02 0.1398 0.1298 54 465 7833 1.4 750 2210 Unit m m W/(m K) J/kg K kg/m3 m m m W/(m K) J/kg K kg/m3 W/(m K) J/kg K kg/m3Table 2: Related parameters and properties (Bejan 2003) of the double-tube model Parameters Inlet pipe / pile foundation (material: Stainless Steel) Outer diameter, do Inner diameter, di Thermal conductivity, kStainless Specific heat, CP Density, ρ Outlet pipe (material: Polyvinyl chloride) Outer diameter, do Inner diameter, di Thermal conductivity, kpipe Specific heat, CP Density, ρ Value 0.1398 0.1298 13.8 460 7817 0.048 0.04 0.15 960 1380 Unit m m W/(m K) J/kg K kg/m3 m m W/(m K) J/kg K kg/m3Steel pipes buried in the ground in 20 m depth. The steel pipes were used as pile foundation of the GHEs. U-tube and multi-tube were inserted in a steel pile respectively, and the gaps between the steel pile and tubes were backfilled with silica-sand. U-tube is made of10thIEA Heat Pump 10th Conference IEA Heat Pump 2011, Conference 16 - 19 May 2011 2011, Tokyo, JapanNumbers of Abstract/Session (given by NOC)-4-polyethylene pipe. Multi-tube consists of a polyvinyl chloride pipe as central pipe and 4 polyvinyl chloride pipes around the central pipe. The central pipe is outlet tube and 4 pipes around the central pipe are inlet tubes. The outlet tube was insulated to protect heat exchange process from the inlet tubes. In the case of double-tube, the stainless steel pipe was used as an inlet tube of GHE and a small diameter polyvinyl chloride pipe was installed inside the stainless steel pipe as an outlet tube. Figure 2 shows the horizontal crosssectional of the three types of GHE models. The models of simulation are taken of the symmetry of the heat transfer with a vertical plane of borehole as shown in this figure. The related parameters and properties of GHEs are presented in Tables 1 – 3. Ground profile up to 15 m in depth is Clay and below 15 m is Sandy-clay. The properties of ground are presented in Table 4.Table 3: Related parameters and properties (Bejan 2003) of the multi-tube model Parameters Inlet pipe (material: Polyvinyl chloride) Outer diameter, do Inner diameter, di Thermal conductivity, kpipe Specific heat, CP Density, ρ Outlet pipe (material: Polyvinyl chloride) Outer diameter, do Inner diameter, di Thermal conductivity, kpipe Specific heat, CP Density, ρ Adjacent pipe distance, l1 Opposite pipe distance, l2 Pile foundation (material: Steel) Outer diameter, do Inner diameter, di Thermal conductivity, kSteel Specific heat, CP Density, ρ Grout (material: Silica sand) Thermal conductivity, kgrout Specific heat, CP Density, ρ Value 0.025 0.02 0.15 960 1380 0.02 0.016 0.15 960 1380 0.05 0.07 0.1398 0.1298 54 465 7833 1.4 750 2210 Unit m m W/(m K) J/kg K kg/m3 m m W/(m K) J/kg K kg/m3 m m m m W/(m K) J/kg K kg/m3 W/(m K) J/kg K kg/m3Table 4: The Properties of Ground (JSME Data book 2009) Parameters Value Clay (temperature: 293 K: water content: 27.7%) 1700 Density, ρ Specific heat, CP 1800 Thermal conductivity, kClay 1.2 Sandy-Clay (temperature: 293 K: water content: 21.6%) 1960 Density, ρ Specific heat, CP 1200 Thermal conductivity, kSandy-Clay 2.1 Unit kg/m3 J/kg K W/m K kg/m3 J/kg K W/m K10thIEA Heat Pump 10th Conference IEA Heat Pump 2011, Conference 16 - 19 May 2011 2011, Tokyo, JapanNumbers of Abstract/Session (given by NOC) 2.2 Boundary Condition-5-Constant temperature was applied to the top and bottom surfaces of the model. The initial ground temperature around the three types of GHEs are set to be constant and similar with the initial ground temperature of experimental data as shown in Figure 3. The temperature in the experimental data was recorded before starting the operation. Ground temperatures up to 5 m in depth were strongly influenced by ambient climate. In the simulation model, the ground temperatures below 5 m in depth are assumed to be constant as initial condition.0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28Initial ground temperature of GHEsDepth (m)Experimental: double tube U-tube multi tube Numerical: three types of GHEs288 290 292 Ground Temperature (K)294Figure 3: Initial ground temperature profile around the three types of GHEs3 3.1RESULTS AND DISCUSSION Inlet and Outlet Water Temperature DistributionsIn the simulation model, inlet water temperatures for the three types of GHEs were set to be constant of 27 οC (300 K). The inlet and outlet water temperature distributions in discontinuous and continuous operation are shown in Figure 4 (a) for U-tube, Figure 4 (b) for double-tube, and Figure 4 (c) for multi-tube, respectively. The profiles of inlet and outlet water temperatures of the GHEs tend to be similar with experimental data.302 300 298Inlet and outlet water temperature profile of U-tube in discontinuous operation302 300 298 Temperature (K) 296 294 292 290 288 286Inlet and outlet water temperature profile of U-tube in continuous operationTemperature (K)296 294 292 290 288 286 0 2 4 6 8Experimental: Numerical: inlet inlet outlet outletExperimental: Numerical:inlet inletoutlet outlet10 12 14 16 18 20 22 2402468 10 12 14 16 18 20 22 24 time (h)time (h)(a) U-tube10thIEA Heat Pump 10th Conference IEA Heat Pump 2011, Conference 16 - 19 May 2011 2011, Tokyo, JapanNumbers of Abstract/Session (given by NOC)-6-302 300 Temperature (K) 298 296 294 292 290Inlet and outlet water temperature profile of double-tube in discontinuous operationExperimental: Numerical: inlet inlet outlet outlet302 300 Temperature (K) 298 296 294 292 290Inlet and outlet water temperature profile of double-tube in continuous operationExperimental: Numerical:inlet inletoutlet outlet02468 10 12 14 16 18 20 22 24 time (h)02468 10 12 14 16 18 20 22 24 time (h)(b) Double-tubeInlet and outlet water temperature profile of multi-tube in discontinuous operationInlet and outlet water temperature profile of multi-tube in continuous operation302 300 298 Temperature (K) 296 294 292 290 288 286302 300 298 Temperature (K) 296 294 292 290 288 286Experimental: Numerical:inlet inletoutlet outletExperimental: Numerical:inlet inletoutlet outlet02468 10 12 14 16 18 20 22 24 time (h)02468 10 12 14 16 18 20 22 24 time (h)(c) Multi-tube Figure 4: Inlet and outlet water temperature profiles in discontinuous and continuous operationFlow rate of GHEs in discontinuous operationFlow rate of GHEs in continuous operation4.5Experimental: Numerical: U-tube multi tube Three types of GHEs double tube4.5Experimental: Numerical:U-tube multi tube Three types of GHEsdouble tubeFlow rate (l/min)4.0Flow rate (l/min)4.03.53.53.03.0 0 2 4 6 8 10 12 14 16 18 20 22 24 time (h)02468 10 12 14 16 18 20 22 24 time (h)Figure 5: Flow rate variation of ground heat exchangersIn discontinuous operation, inlet water temperature of experimental is higher than 300 K after 2 h operation-time for U-tube and after 16 h operation-time for double-tube. The inlet water10thIEA Heat Pump 10th Conference IEA Heat Pump 2011, Conference 16 - 19 May 2011 2011, Tokyo, JapanNumbers of Abstract/Session (given by NOC)-7-temperature is close to 300 K in the multi-tube. The water temperature in off-time were recorded at inlet and outlet points without water flowing. The lowest temperature exist in 12 h operation (it is equal to 03:00 am) as shown in Figure 4 (a), (b), and (c). Those temperatures are influenced by the ground temperature near the surface. In continuous operation, the fluctuation of inlet water temperature in experimental was appeared after 18 h operation. Flow rates were set to 4 l/min in simulation model as shown in Figure 5. In the off-time of discontinuous operation, flow rate was set to 0 l/min (water flowing was stopped in experimental). Also, the variations of flow rate in experimental for both discontinuous and continuous operation are shown in this figure. In the case of multi-tube type, the flow rate is the total flow rate of four inlet pipes.3.2Heat Exchange RatesTo investigate the thermal performances of the GHEs, the heat exchange rate is calculated based on the flow rate and the temperature difference between inlet and outlet of circulated water. The heat exchange rate, Q, is calculated by the following equation;& c p ΔT Q=m(1)& is flow rate, cp is specific heat, and ΔT is the temperature difference between inlet where m and outlet of circulated water. For simplicity, the heat exchange rate per meter of borehole depth, Q , is defined,Q = Q/L(2)where L is depth of each GHEs. The heat exchange rate of the three types GHEs in discontinuous short-time period of operation and continuous operation are shown in Figure 6 (a), (b), and (c). The off-time period in discontinuous short-time period of operation contributes in increasing the heat exchange rate compared with that of in continuous operation. In continuous operation, the heat exchange rates are high in the beginning of operation and then, decline slightly. The performance of the GHEs descends gradually due to the heat buildup in the surrounding ground with operating time. Comparing numerical results with experimental results shows that the numerical models are capable to determine the performances of the GHEs. The heat exchange rates in discontinuous and continuous operation at 2, 6, 10, 14, 18, and 22 hours are presented in Table 5. In discontinuous operation, it is the minimum value of the heat exchange rate. The heat exchange rates in discontinuous operation are higher than that of in continuous operation. The off-time gives the time to the ground to stabilize its temperature. Using the GHEs in short-time period of operation in discontinuous operation increases the heat exchange rate. As an example, the minimum heat exchange rate of the discontinuous short-time period of operation at 22 h operation time increases of 17.1 % for U-tube, 22.5 % for double-tube, and 16.5 % for multi-tube compared with that of in continuous operation at the same time of operation. This fact indicated that operating the GHEs in the short-time period with discontinuous operation improve their thermal performances. Alternative operation modes (cooling, heating, and hot water heating) over a short-time period of operation for GSHP system can be alternative solution to increase the performance.10thIEA Heat Pump 10th Conference IEA Heat Pump 2011, Conference 16 - 19 May 2011 2011, Tokyo, JapanNumbers of Abstract/Session (given by NOC)Heat exchange rate of double-tube-8-Heat exchange rate of U-tube130 120 110 100 90 80 70 60 50 40 30 20 10 0Heat exchange rate (W/m)Heat exchange rate (W/m)Discontinuous operation: experimental numerical Continuous operation: experimantal numerical02468 10 12 14 16 18 20 22 24 Time (hour)130 120 110 100 90 80 70 60 50 40 30 20 10 0Discontinuous operation: experimental numerical Continuous operation: experimental numerical02468 10 12 14 16 18 20 22 24 Time (hour)(a) U-tubeHeat exchange rate of multi-tube(b) Double-tube130 120 110 100 90 80 70 60 50 40 30 20 10 0Heat exchange rate (W/m)Discontinuous operation: experimental numerical Continuous operation: experimental numerical02468 10 12 14 16 18 20 22 24 Time (hour)(c) Multi-tube Figure 6: Heat exchange rate of the three types GHEs Table 5: Heat exchange rates Heat exchange rate (W/m) 2h 6h 10 h 14 h 18 h Minimum heat exchange rate in discontinuous 2h operation U-tube 35.6 32.7 31.0 30.0 29.3 Double-tube 67.9 57.6 53.1 50.5 48.6 Multi-tube 34.0 31.2 29.8 28.8 28.2 Heat exchange rate continuous operation at the same time U-tube 35.6 29.9 27.6 26.2 25.3 Double-tube 67.9 50.3 44.9 42.0 40.0 Multi-tube 34.0 28.7 26.6 25.3 24.4 22 h 28.7 47.3 27.6 24.5 38.6 23.73.3Heat Exchange Process in the Off-timeHeat exchange process to the ground exists in the off-time as shown in the Figure 7 (a), (b), and (c). This process increased the heat exchange rate of GHEs in the operation-time. Another factor in increasing the heat exchange rate is stabilizing the ground temperature in the off-time. This heat exchange rate is determined based on the rejected heat through the surface wall of GHE. A small amount of heat was rejected to the ground in the U-tube and multi-tube types in the off-time. In the double-tube type, the rejected heat is high due to the large quantity of water storage. Heat was rejected to the ground about 31.3 % in average in10thIEA Heat Pump 10th Conference IEA Heat Pump 2011, Conference 16 - 19 May 2011 2011, Tokyo, JapanNumbers of Abstract/Session (given by NOC)-9-the off-time. This fact shows that the heat exchange process in the off-time increased the heat exchange rate in the double-tube type significantly.130 120 110 100 90 80 70 60 50 40 30 20 10 0Heat exchange rate (W/m)Heat exchange rate (W/m)Discontinuous operation: based on water flowing based on wall surface Continuous operation: based on water flowing02468 10 12 14 16 18 20 22 24 Time (hour)130 120 110 100 90 80 70 60 50 40 30 20 10 0Discontinuous operation: based on water flowing based on wall surface Continuous operation: based on water flowing67.4%69.0%68.9%69.5%024631.1%8 10 12 14 16 18 20 22 24 Time (hour)(a) U-tube130 120 110 100 90 80 70 60 50 40 30 20 10 0(b) Double-tubeHeat exchange rate (W/m)Discontinuous operation: based on water flowing based on wall surface Continuous operation: based on water flowing02468 10 12 14 16 18 20 22 24 Time (hour)(c) Multi-tube Figure 7: Heat exchange rate in the off-time of discontinuous operation4CONCLUSIONSThe thermal performances of the three types of GHEs are investigated numerically using the commercial CFD software FLUENT. Comparing numerical results with experimental results, the numerical models are capable to determine the performances of the GHEs. The heat exchange rate in discontinuous short-time period of operation increased compared with that of in continuous operation. As an example, the minimum heat exchange rate of the discontinuous short-time period of operation at 22 h operation time increases of 17.1 % for U-tube, 22.5 % for double-tube, and 16.5 % for multi-tube compared with that of in continuous operation at the same time of operation. The heat exchange process in the off-time increased the heat exchange rate significantly in the double-tube due to the large quantity of water storage. Heat exchanges to the ground about 31.3 % in average in the off-time. Finally, operating the GHEs in the short-time period in discontinuous short-time period of operation improves their thermal performances.10thIEA Heat Pump 10th Conference IEA Heat Pump 2011, Conference 16 - 19 May 2011 2011, Tokyo, Japan30.5%32.6%31.0%31.5%68.5%Numbers of Abstract/Session (given by NOC)--10 105REFERENCESBejan A., Kraus A.D. 2003. Heat transfer handbook, John Wiley & Sons, Inc., New Jersey. Cui P., H. Yang, Z. Fang, 2008. “Numerical Analysis and Experimental Validation of Heat Transfer in Ground Heat Exchangers in Alternative Operation Modes,” Energy and Buildings, vol. 40 pp. 1060–1066. Fluent User’s Guide 2006, vol. 1-5, Fluent Inc. Gustafsson A. M., L. Westerlund, G. Hellstrom, 2010. “CFD-modelling of natural convection in a groundwater-filled borehole heat exchanger,” Applied Thermal Engineering vol. 30 pp. 683–691. JSME Data book 2009. Heat Transfer, 5th Edition, The Japan Society of Mechanical Engineers (in Japanese). Jalaluddin, A. Miyara, K. Tsubaki, S. Inoue, and K. Yoshida, 2011. “Experimental study of several types of ground heat exchanger using a steel pile foundation,” Renewable Energy Vol. 36 pp. 764-771. Jalaluddin, A. Miyara, K. Tsubaki, and K. Yoshida, 2010. “Thermal Performances of Three Types of Ground Heat Exchangers in Short-Time Period of Operation,” International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, Indiana, USA Li Z., M. Zheng, 2009. “Development of a numerical model for the simulation of vertical Utube ground heat exchangers,” Applied Thermal Engineering vol. 29 pp. 920–924. Li S., W. Yang, X. Zhang, 2009. “Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system,” Applied Thermal Engineering vol. 29 pp. 3679-3686. Sharqawy M. H., E. M. Mokheimer, H. M. Badr. 2009. “Effective pipe-to-borehole thermal resistance for vertical ground heat exchangers,” Geothermics vol. 38 pp. 271–277. Yavusturk, C., J. D. Splitter, S. J. Simon. 1999. “A Transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers,” ASHRAE Transactions, vol. 105 (2) pp. 465-474. Yang H., P. Cui, Z. Fang. 2010. “Vertical-borehole ground-coupled heat pumps: A review of models and systems,” Applied Energy, vol. 87, pp. 16–27.10thIEA Heat Pump 10th Conference IEA Heat Pump 2011, Conference 16 - 19 May 2011 2011, Tokyo, Japan。

相关文档
最新文档