多普勒谱线展宽
多普勒血流信号中频谱展宽效应产生的原因及其影响因素
多普勒血流信号中频谱展宽效应产生的原因及其影响因素
多普勒血流信号中频谱展宽效应是指在测量血流速度时,由于不同血管血流速度的差异,会导致信号频谱发生展宽,即频谱峰值分布在更广的频带内。产生这种效应的原因主要有以下几个方面:
1. 异速血流:流速不同的血流在多普勒效应下会呈现不同的多普勒频移,导致信号的频谱分布不集中。
2. 血浆和血细胞的速度差异:由于血浆和血细胞的密度不同,因此它们在血管中的流动速度也不同,在多普勒效应下形成的信号会受到这种速度差异的影响而展宽。
3. 血管血流动力学因素:分支、弯曲、狭窄等血管几何形状和复杂的血流动力学状态也会影响信号在多普勒效应下的频谱分布。
以上因素都会导致信号频谱的分布变得更广,影响血流速度的准确度和精确度。为了减小频谱展宽效应的影响,常用的方法包括采用高频率的超声探头、使用多普勒频谱分析技术、应用多普勒保真信号处理技术等。
多普勒致宽问题回答
多普勒致宽
多普勒致宽是指在光谱学中,由于光源和观测者之间的相对运动,导
致光谱线变宽的现象。这种现象是由奥地利物理学家克里斯蒂安·多普
勒在19世纪初首次发现的。
多普勒致宽的原理是基于多普勒效应,即当光源和观测者相对运动时,光的频率会发生变化。如果光源和观测者相向而行,那么光的频率会
增加,光波长会缩短,光谱线会向蓝色偏移;如果光源和观测者背向
而行,那么光的频率会减少,光波长会延长,光谱线会向红色偏移。
这种现象被称为多普勒效应。
在实际观测中,多普勒致宽的程度取决于光源和观测者之间的相对速
度和光谱线的自然宽度。如果光源和观测者之间的相对速度很小,那
么多普勒致宽就很小,光谱线就很尖锐;如果光源和观测者之间的相
对速度很大,那么多普勒致宽就很大,光谱线就很宽。
多普勒致宽在天文学和物理学中都有广泛的应用。在天文学中,多普
勒致宽可以用来测量星系和星际介质的速度,从而研究宇宙的演化和
结构。在物理学中,多普勒致宽可以用来研究原子和分子的结构和运动,从而深入理解物质的本质。
除了多普勒致宽,还有其他因素也会导致光谱线的宽度发生变化,比如自然宽度、压力宽度和洛伦兹致宽等。自然宽度是由于原子或分子的能级之间的跃迁导致的,是一种固有的宽度;压力宽度是由于气体分子之间的相互作用导致的,是一种外在的宽度;洛伦兹致宽是由于原子或分子与周围粒子的碰撞导致的,也是一种外在的宽度。
总之,多普勒致宽是一种重要的光谱学现象,可以用来研究天文学和物理学中的许多问题。在实际应用中,需要考虑多种因素的影响,才能准确地测量和分析光谱线的宽度。
多普勒谱线展宽
2. 多普勒谱线展宽
谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽;多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇Lippich 在1870年提出,瑞利经过多年研究得到定量公式;下面就导出多普勒谱线型函数;
假设发出激光的原子静止时其发光频率为0υ,当原子以x v 的速度沿x 轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为:
⎪⎭⎫ ⎝
⎛+≈-=
c c
x x υυυυυ1100 14 由于不同原子的x v 不同,所以“接受器”收到的是不同频率的光,使得激光谱线以0υ为中心被展宽;由麦克斯韦速度分量分布律可以得到,速度x 分量在x v —
x x dv v +的分子数比率为:
()x kT mv x x M dv e kT m dv v f x 22122-⎪⎭
⎫ ⎝⎛=π 15 令()υg 代表其辐射频率落在υ附近单位频率间隔内的发光原子数比率,则有
()()x x M dv v f d g =υυ
()υg 与辐射强度()υI 成正比;将c v x 00υυυ-=和υυd c dv x 0
=代入15式,可得 ()()()υπυυυυυυd e kT m c
d g kT mc 20
2
0222--= 式中()υg 就是多普勒展宽的线型函数;
下面看一个例子;
例1:试由来自星体的光谱线或多普勒宽度确定星体的温度;
解: 静止原子由激发态回到基态发出的光波的频率0ν决定于两个态的能级差:E h ∆=0ν,h 为普朗克常数;由于原子在运动,因而发射出来的光的频率不再是0ν而是一个分布,也就是谱线增宽了;一个以速度v 运动的原子,沿x 轴发射的光的频率ν与0ν及x v 的关系为
多普勒线宽单位
多普勒线宽单位
多普勒线宽是一个用来描述光谱线的宽度的量度单位。它是根据
多普勒效应,也就是由于物体运动而引起的频率偏移,推导出来的。
在光谱中,物体运动会引起频率偏移,频率偏移越大,光谱线就越宽。多普勒线宽可以用来获得物体的速度信息,以及它们所处的环境。
多普勒线宽的单位通常会用来描述光谱红移或蓝移的速度。单位
通常为km/s,但也可以用其他单位,例如cm/s或A/s。多普勒线宽是
由光子的相对运动产生的,并且通常只用于描述气体的光谱线,因为
气体的运动速度比固体和液体高得多。
多普勒线宽的值取决于所观察的光谱线的自然宽度和观测器测量
误差。自然宽度是由一些原子和分子的基本性质决定的,例如它们的
形状和大小,以及它们与周围粒子的相互作用。测量误差是由于仪器
测量不准确所导致的,例如作用于光子的碰撞事件和光学元件的不完美。
多普勒线宽可以在天文学和物理学中被广泛应用。例如,在天文
学中,它可以用于测量星系中星体的速度,以及确定恒星的旋转速度
和温度。在物理学中,它可以用于研究材料的结构和相互作用,以及测量超声波的速度。
总之,多普勒线宽是一个重要的物理量,它可以提供许多关于物体运动和环境的信息。虽然它受到很多因素的影响,但它仍然是一个有用的工具,可以用于推断物体的性质和运动。在未来,随着技术的不断进步,我们相信多普勒线宽的应用领域将变得更加广泛。
多普勒血流信号中频谱展宽效应产生的原因及其影响因素
多普勒血流信号中频谱展宽效应产生的原因及其影响因素
多普勒血流信号是一种反映血流速度和方向的信号,其频谱展宽效应是指在血管狭窄、扭曲、分叉以及在局部血流动态变化的情况下,多普勒信号的频带变宽,而且频率分布呈现非对称的形态。这种现象主要是由以下几个原因造成的:
1. 多普勒血流信号的方向和速度的变化:受到血管的形态、流速、方向,以及受到心脏收缩和舒张的影响,使得多普勒信号的频率也会产生相应的变化。
2. 多普勒探头的角度和位置:影响到多普勒信号的探测角度和位置,使得多普勒信号的频率也会产生相应的变化,进而导致频谱展宽。
3. 信号处理算法以及探头的性能:多普勒信号的信号处理算法和探头的性能也是影响频谱展宽效应的因素。算法和探头的稳定性、灵敏度和信噪比等都会影响多普勒信号的频谱展宽效应。
频谱展宽效应的影响因素有很多,包括血管的形态、血流速度和方向的变化、多普勒探头的角度和位置、以及信号处理算法和探头的性能。另外,频谱展宽效应还有可能误诊一些疾病,如瓣膜狭窄、动脉硬化、心包积液等,因此在临床应用中需要注意其特别的影响。
吸收谱线doppler展宽对原子多步光电离的影响
吸收谱线doppler展宽对原子多步光电离的影响
近年来,随着研究原子多步光电离过程的发展,探讨Doppler展宽对其影响变得越来越重要。Doppler展宽是指光子和原子系统之间的相对运动而导致的谱线展宽,它是一种重要的光动力学概念,可以影响到原子多步光电离过程的动态行为。而吸收谱线的Doppler展宽对原子多步光电离有着特殊的影响,因此本文的目的是探讨吸收谱线Doppler展宽对原子多步光电离的影响。
首先,需要了解的是原子多步光电离的基本概念。原子多步光电离是指激发态原子中由一个或多个光子所引起的电子运动几秒内发
生有序而稳定的连续跃迁,从而使原子从一个激发态跃迁到低能状态的过程。根据Doppler效应,谱线的宽度随着原子的运动状态而变化,最常见的情况就是吸收谱线的Doppler展宽。
其次,要了解吸收谱线Doppler展宽对原子多步光电离的影响。Doppler展宽主要影响原子多步光电离的连续性,这是由于Doppler
展宽改变了原子的状态,使原子的能量状态变得模糊,从而影响原子多步跃迁过程的连续性。由于Doppler展宽会改变原子的实际状态,因此也会影响到原子的能量转移过程,例如由于Doppler展宽的存在,跃迁频率有可能发生变化,从而影响到原子整个跃迁过程。
最后,针对Doppler展宽对原子多步光电离的影响,可以采取一些措施来纠正它,以消除它对原子多步光电离过程的影响。首先,采用更低的能量选择性,使Doppler展宽的影响最小化。其次,采用较高的激发源光衰减,以减小谱线宽度,从而抑制Doppler展宽的影响。
多普勒谱线展宽
2. 多普勒谱线展宽
谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽。多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇(Lippich )在1870年提出,瑞利经过多年研究得到定量公式。下面就导出多普勒谱线型函数。
假设发出激光的原子静止时其发光频率为0υ,当原子以x v 的速度沿x 轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为:
⎪⎭
⎫ ⎝⎛+≈-=
c c
x x υυυυυ1100 (14) 由于不同原子的x v 不同,所以“接受器”收到的是不同频率的光,使得激光谱线以0υ为中心被展宽。由麦克斯韦速度分量分布律可以得到,速度x 分量在x v —
x x dv v +的分子数比率为:
()x kT mv x x M dv e kT m dv v f x 22122-⎪⎭
⎫ ⎝⎛=π (15) 令()υg 代表其辐射频率落在υ附近单位频率间隔内的发光原子数比率,则有
()()x x M dv v f d g =υυ
()υg 与辐射强度()υI 成正比。将c v x 00υυυ-=和υυd c dv x 0
=代入(15)式,可得 ()()()υπυυυυυυd e kT m c
d g kT mc 20
2
0222--= 式中()υg 就是多普勒展宽的线型函数。
下面看一个例子。
例1:试由来自星体的光谱线或多普勒宽度确定星体的温度。
解: 静止原子由激发态回到基态发出的光波的频率0ν决定于两个态的能级差:E h ∆=0ν,h 为普朗克常数。由于原子在运动,因而发射出来的光的频率不再是0ν而是一个分布,也就是谱线增宽了。一个以速度v 运动的原子,沿x 轴发射的光的频率ν与0ν及x v 的关系为
§4.3谱线宽度和线形—多普勒增宽和高斯线形
由此可见,多普勒宽度只与分子量 和分子所处温度有关,与分子的能级特 性无关,处于不同能级的分子有同样的 多普勒增宽。
γD
高斯线形
§4.3 谱线宽度和线形—多普勒增宽和高斯线形
Adv.At.Mol.Phy.
由能量和频率之间的关系可以得到能谱强度分布的多普勒宽度为
Γ γ D E0 = h= D
N0为单位体积中的原子数,σ为碰撞截面。 由此产生的谱线线形与自然线形一样,只是能级的平 均寿命换成平均碰撞时间。
1/ 2
I (ν ) =
(ν −ν 0 ) + (γ / 2 )
2
I 0 (γ / 2) 2
2
γ = Γc / h
§4.3 谱线宽度和线形—碰撞增宽
Adv.At.Mol.Phy.
弹性碰撞 弹性散射同样会使谱线增宽,此时碰撞不会引起无辐射退 激发,但会影响原子能级。
D(R)
I
Rm
R
hυ(R)m
hυ(R)
§4.3 谱线宽度和线形—碰撞增宽
Adv.At.Mol.Phy.
最可几能量相对未发生碰撞的原子A的辐射能量hν0也可能有一 个移动:
∆hν = hν 0 − hν ( Rm ) = [ Ei ( ∞) − E k ( ∞)] − Ei ( Rm ) − E k ( Rm )
M = n(vz )dvz N 0 2 k T π B
谱线宽度展宽课件
动状态时需要考虑多普勒增宽的影响。
碰撞增宽
碰撞增宽
当原子或分子与其他粒子发生碰撞时,会产生相互作用力,导致能级发生改变,从而引起 光谱线的变化。这种由于碰撞引起的谱线展宽称为碰撞增宽。
影响因素
碰撞增宽的大小与气体或物质的压力有关,压力越大,碰撞增宽越大。此外,碰撞增宽还 与气体或物质的温度有关,温度越高,碰撞增宽越大。
压强
随着压强的增大,原子或 分子之间的碰撞频率增加 ,导致谱线宽度增大。
介质
不同介质对光谱的吸收和 散射作用不同,也会影响 谱线宽度。
02 谱线宽度展宽的物理机制
自然宽度
自然宽度
谱线在自然状态下受到原子或分子内部能量的无规则涨落 影响,导致谱线宽度发生变化。这种展宽机制不受外部因 素的影响,是谱线固有的特性。
影响因素
自吸效应的大小与物质中原子或分子的浓度和光强有关,浓度和光强越大,自吸效应越明显。此外,自吸效应还与物 质的物理和化学Βιβλιοθήκη Baidu质有关。
应用场景
自吸效应在光谱分析和气体检测中有重要应用,例如在测量气体中原子或分子的浓度和光强时需要考虑 自吸效应的影响。
03 谱线宽度展宽的应用场景
天文学
谱线宽度展宽在天文学中可用于研究恒星大气层和星系中气体的物理状态和化学 组成。通过分析谱线宽度,可以推断出恒星或星系中气体的温度、密度、运动状 态等信息,有助于深入了解恒星演化、星系形成和演化等天文学问题。
多普勒血流信号中频谱展宽效应产生的原因及其影响因素
多普勒血流信号中频谱展宽效应产生的原因及其影响因素
多普勒血流信号中频谱展宽效应是指测量血流速度时,测得的频谱宽度大于真实的血流速度宽度。其产生的主要原因及影响因素如下:
1. 血细胞分布不均匀:现实中,血细胞的分布并不完全均匀,会存在一定的不规则分布。这种不均匀性会导致多普勒频谱中出现多个速度成分,从而使频谱展宽。
2. 转角效应:多普勒血流信号在测量过程中会经过不同角度的转折,转角效应会导致信号的频谱展宽。
3. 反向流和涡流效应:在某些情况下,血流方向不仅仅是单向的,会出现反向流和涡流现象。这些反向流和涡流会导致频谱展宽。
4. 血管断面形状和尺寸:血管的形状和尺寸也会对多普勒频谱的展宽产生影响。较大的血管和复杂的血管形状会导致频谱展宽。
5. 探头角度和深度:多普勒探头的角度和深度设置也会对频谱展宽产生影响。较大的角度和深度设置会导致频谱展宽。
这些因素的影响会导致多普勒频谱展宽,使得测得的血流速度范围变宽,难以准确测量真实的血流速度。因此,在进行多普勒血流测量时,需要考虑这些因素,以获得准确的结果。
原子吸收光谱谱线宽度的影响
原子吸收光谱谱线宽度的影响
原子吸收光谱谱线宽度的影响主要体现在以下几个方面:
1. 自然展宽:能级间跃迁时,由于电子在能级之间的存在时间有限,存在能级中心的不确定性,导致谱线宽度有一个固有的自然展宽。自然展宽与能级寿命相关,寿命越短,展宽越宽。
2. 碰撞展宽:在气体中,原子与其他物质发生碰撞会影响原子能级的寿命,从而导致谱线的展宽。碰撞越频繁,展宽越宽。碰撞展宽的大小与气体的密度和温度有关。
3. 多普勒展宽:原子运动引起的多普勒效应也会对谱线产生展宽。根据多普勒效应,原子速度
越大,对光频率的偏移越大,从而导致谱线展宽。多普勒展宽的大小与原子速度的分布和温度
有关。
4. 仪器展宽:测量过程中的仪器响应和分辨率也会对谱线宽度产生影响。仪器的分辨率越低,
则谱线展宽越大。
总的来说,原子吸收光谱谱线宽度的影响因素非常复杂,包括自然展宽、碰撞展宽、多普勒展
宽和仪器展宽等多个方面的影响。
多普勒加宽公式
多普勒加宽公式
一、引言
多普勒加宽公式是多普勒效应在光谱学中的一个重要应用,它描述了由于分子或原子相对于观测者的运动速度而引起的光谱线加宽的现象。多普勒加宽是由于光波在传播过程中受到分子或原子的散射作用,而散射作用的频移取决于光源与散射物质之间的相对运动。因此,多普勒加宽公式的理解与运用对于光谱分析和物理现象的深入探讨具有重要意义。
二、多普勒加宽公式的原理
多普勒加宽公式的理论基础是多普勒效应。当光源相对于观测者运动时,观测者接收到的光的频率会发生变化。当光源向观测者运动时,观测者接收到的光的频率会增大;而当光源远离观测者运动时,观测者接收到的光的频率会减小。这种由于光源与观测者之间的相对运动而引起的光谱线位移的现象称为多普勒效应。
在多普勒加宽公式中,光谱线的宽度与散射物质的热运动速度有关。由于分子或原子的无规则热运动,光波在传播过程中会不断地与散射物质发生相互作用,从而引起光谱线的加宽。这种加宽现象称为多普勒加宽。
三、多普勒加宽公式的数学表达
多普勒加宽公式的数学表达为:ΔvD = 1/λ,其中ΔvD是多普勒加宽引起的频移量,λ是光源的波长。这个公式表明,多普勒加宽与光源波长的倒数成正比。因此,对于较长的波长,多普勒加宽的影响更大。这也是为什么在红外光谱和微波谱中,多普勒加宽是一个需要考虑的重要因素。
四、多普勒加宽的应用
多普勒加宽在许多领域都有广泛的应用,尤其在气体检测、激光光谱学和遥感等领域中具有重要的作用。在气体检测中,由于不同气体的多普勒加宽不同,通过对光谱线的宽度进行分析,可以实现对气体的定性和定量分析。在激光光谱学中,由于激光具有较高的频率和波长,多普勒加宽对激光光谱的影响较大,通过对多普勒加宽的研究,可以提高光谱分析的精度和准确性。此外,在遥感领域中,通过研究地球大气中气体分子的多普勒加宽,可以实现对地球大气的遥感监测。
多普勒血流信号中频谱展宽效应产生的原因及其影响因素
多普勒血流信号中频谱展宽效应产生的原因及其影响因素
多普勒血流信号中频谱展宽效应产生的原因是因为,来自不同速度的红细胞在多普勒
探头中反射回来的声波信号,都会有一定的多普勒频移。而在接收端接收到的信号中,这些不同频率的信号叠加在一起,会产生频谱展宽的效应。
影响多普勒血流信号频谱展宽效应的因素有很多,主要包括以下几个方面:
1. 测量角度:在多普勒血流测量中,角度的大小对频谱展宽影响很大。当探头与流速
方向相邻时,频谱展宽效应会明显降低。
2. 红细胞浓度:红细胞浓度越高,频谱展宽效应就越大。
3. 流速:流速越快,频谱展宽效应就越大。
4. 探头中心频率和带宽:探头中心频率和带宽的大小会影响到多普勒信号的分辨率和
灵敏度,从而对频谱展宽效应产生影响。
5. 血管大小:血管大小也会影响到频谱展宽效应的大小。较小的血管中红细胞运动的
速度较快,频谱展宽效应也较明显。
综上所述,影响多普勒血流信号频谱展宽效应的因素很多,需要在实际测量中综合考虑。
多普勒变宽
多普勒变宽
原理:由于原子的热运动而引起的变宽
多普勒效应:一个运动着的原子所发射出的光,若运动方向朝向观察者(检测器),则观测到光的频率较静止原子所发出光的频率来得高(波长来得短);反之,若运动方向背向观察者,则观测到光的频率较静止原子所发出光的频率来得低(波长来得长)。由于原子的热运动是无规则的,但在朝向、背向检测器的方向上总有一定的分量,所以检测器受到光的频率(波长)总会有一定的范围,因此谱线变宽。
多普勒变宽与温度的平方根成正比,与原子量的平方根成反比。
ΔνD=7.126×10^-7ν0√T/M
ΔνD为多普勒变宽,T为绝对温度K,M为外来气体分子量。在2000到3000K范围内这种变宽约为0.001至0.005nm数量级。
多普勒变宽:又称热变宽,是由原子不规则的热运动引起的.在原子蒸汽中,原子处于杂乱无章的热运动状态,当趋向光源方向运动时,原子将吸收频率较高的光波,当背离光源方向运
动时,原子将吸收频率较低的光波,相对极大吸收频率而言,既有紫移(向高频率方向移动),又
有红移(向低频率方向移动),这种现象叫多普勒变宽或热变宽.
多普勒宽度
多普勒宽度是描述光谱红移或蓝移的速度的单位,通常为km/s,但也可以用其他单位,例如cm/s或A/s。多普勒宽度是由光子的相对运动产生的,并且通常只用于描述气体的光谱线,因为气体的运动速度比固体和液体高得多。
多普勒宽度与元素的原子量、温度和谱线频率有关。随温度升高和原子量减小,多普勒宽度增加。此外,碰撞变宽也会影响多普勒宽度。当原子吸收区的原子浓度足够高时,碰撞变宽是不可忽略的。因为基态原子是稳定的,其寿命可视为无限长,因此对原子吸收测定所常用的共振吸收线而言,谱线宽度仅与激发态原子的平均寿命有关,平均寿命越长,则谱线宽度越窄。原子之间相互碰撞导致激发态原子平均寿命缩短,引起谱线变宽。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询天文学家。
光谱线的多普勒加宽
光谱线的多普勒加宽
多普勒加宽是由于做热运动的发光原子(分子) 所发出的辐射的多普勒频移引起的。设一发光原子(光源)的中心频率为ν0 ,当原子相对于接收器静止时, 接收器测得光波频率也为ν0 ;但当原子相对于接收器以速度vz 运动时,接收器测得的光波频率ν不等于静止时的光频率ν0。
光频率与接收器和光源之间相对运动的有关的这种效应称为多普勒效应。当vz/ cn 1 时,
(3 .2 .17)
当原子朝着接收器运动(或沿光传播方向运动) 时, vz > 0; 当原子离开接收器时, vz < 0。多普勒频移公式也可从量子力学得到。考虑一个二能级原子, 上下能级能量分别用E2 及E1 表示。若原子处在上能级时的运动速度为v2 z ,当其发射一个光子能量返回下能级时的速度变为v1 z ,显然一般有v2 z ≈v1 z 。根据动量守恒及能量守恒,有
(3 .2 .18)
式中, m 为原子质量;ω0 为静止时原子频率,ω′0 为运动时的原子频率; k 为波数。将第一式及第三式代入第二式,即可得
(3 .2 .19)
其中使用了近似公式。这个结果也可以表述为当原子运动时, 其中心频率发生了变化,即
(3 .2 .20)
ν′0 称为表观中心频率。
考虑包含大量原子(分子) 的气体工作物质中原子数按表观中心频率分布; 由于气体原子的无规热运动,各个原子具有不同方向、不同大小的热运动速度。设单位体积工作物质内的原子数为n, 根据分子运动论,它们的热运动速度服从麦克斯韦统计分布规律; 在温度为T 的热平衡状态下,单位体积内具有z 方向速度分量vz ~( vz + d vz )的原子数为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多普勒谱线展宽
The Standardization Office was revised on the afternoon of December 13, 2020
2. 多普勒谱线展宽
谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽。多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇(Lippich )在1870年提出,瑞利经过多年研究得到定量公式。下面就导出多普勒谱线型函数。
假设发出激光的原子静止时其发光频率为0υ,当原子以x v 的速度沿x 轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为:
⎪⎭⎫ ⎝
⎛+≈-=
c c
x x υυυυυ1100 (14)
由于不同原子的x v 不同,所以“接受器”收到的是不同频率的光,使得激光谱线以0υ为中心被展宽。由麦克斯韦速度分量分布律可以得到,速度x 分量在x v —
x x dv v +的分子数比率为:
()x kT mv x x M dv e kT m dv v f x 2212
2-⎪⎭
⎫ ⎝⎛=π (15)
令()υg 代表其辐射频率落在υ附近单位频率间隔内的发光原子数比率,则有
()()x x M dv v f d g =υυ ()υg 与辐射强度()υI 成正比。将c v x 00υυυ-=和υυd c dv x 0
=代入(15)式,可得
()()()υπυυυυυυd e kT m c
d g kT mc 20
20222--= 式中()υg 就是多普勒展宽的线型函数。
下面看一个例子。
例1:试由来自星体的光谱线或多普勒宽度确定星体的温度。
解: 静止原子由激发态回到基态发出的光波的频率0ν决定于两个态的能级差:E h ∆=0ν,h 为普朗克常数。由于原子在运动,因而发射出来的光的频率
不再是0ν而是一个分布,也就是谱线增宽了。一个以速度v 运动的原子,沿x 轴发射的光的频率ν与0ν及x v 的关系为 )1(0c v x -=νν, x v c =-)(00ννν 式中c 为光速。横向产生的多普勒效应比纵向小得多而可以忽略。由于在νννd +→之间的光强ννd I 与速度分量在x x x dv v v +→之间的原子数目X dN 成正比,即
x v CdN dv I =
由麦氏分布律
x kT mv dv e kT
m d x 2/2/12)2(-⋅=πN N 因而
dv e I dv I kT mc v 2002)(20ννν--=
上式表示原子发光的强度,由于多普勒效应引起的谱线强度按频率的分布,分布函数随频率变化的曲线如图1所示,
图1 原子光谱中0υ谱线的多普勒加宽
它是对0v 的一个对称分布曲线。物理上定义与谱线极大值I 0的一半相对应的两
个频率2v 与1v 之差v ∆称为谱线的宽度这里也称为多普勒线宽。由
2
1)(20002==--νννkT mc v e I I 解得
2/1202ln 21⎥⎦
⎤⎢⎣⎡±=mc kT νν
所以 2/12012)2ln 2(2kT mc
νννν=-=∆ 由上式可知,多普勒宽度ν∆与原子的质量m 及原子所处系统的温度T 有关。若由实验测得了来自星体原子光谱的多普勒宽度ν∆及原子的质量m 就可知道星体的温度T : k n mc 2022281)(νν⋅∆=T