新编各地名校试题解析分类汇编(一)理科数学:4数列2
高考数学各地名校试题解析分类汇编(一)12 选考部分 理
各地解析分类汇编:选考部分1.【云南省玉溪一中2013届高三第三次月考 理】在∆ABC 中,D 为BC 边上一点,BC=3BD ,AD=2,∠ADB=1350,若AC=2AB ,则BD= .【答案】25+【解析】作AH ⊥BC 于H,则1,1AH DH == 则1,21BH BD CH BD =+=-.又222AB BH AH -=,所以 22(1)1AB BD -+=,即,22(1)1AB BD =++, 222222221(21)AC AH AB AH AB BD -=-=-=-,所以222(21)1AB BD =-+,即222(1)2(21)1BD BD ++=-+,整理得22820BD BD --=,即2410BD BD --=,解得25BD =+或25BD =-(舍去).2.【天津市天津一中2013届高三上学期一月考 理】点P(x,y)在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,θ∈R)上,则yx的取值范围是 . 【答案】33[33-【解析】消去参数θ得曲线的标准方程为22(2)1x y ++=,圆心为(2,0)-,半径为 1.设yk x=,则直线y kx =,即0kx y -=,当直线与圆相切时,圆心到直线的距离2211kd k -==+,即221k k =+222141,3k k k =+=,所以解得3k =,由图象知k 的取值范围是3333k -≤≤,即yx的取值范围是33[33-。
3.【天津市天津一中2013届高三上学期一月考 理】如图过⊙0外一点P 分别作圆的切线和割线交圆于A,B,且PB=7,C 是圆上一点使得BC=5,∠BAC=∠APB,则AB= .35【解析】因为PA 是圆的切线,所以BAP APB ∠=∠,又CAC APB ∠=,所以BAP ∆与BCA ∆相似,所以AB PB CB AB=,所以27535AB PB CB ==⨯=g ,所以35AB = 4.【山东省潍坊市四县一区2013届高三11月联考(理)】不等式 3|1||1|≥++-x x 的解集是 .【答案】33(,][,)22-∞-+∞U 或⎭⎬⎫≥-≤2323|{x x x 或 【解析】2,1|1||1|2,112,1x x x x x x x -≤-⎧⎪-++=-<<⎨⎪≥⎩,当1x ≤-时,由3|1||1|≥++-x x 得23x -≥,得32x ≤-;当1x ≥时,由3|1||1|≥++-x x 得23x ≥,解得32x ≥,所以不等式的解集为33(,][,)22-∞-+∞U .5.【山东省实验中学2013届高三第一次诊断性测试理】不等式3≤l5 - 2xl<9的解集是 A .(一∞,-2)U(7,+co) B .[1,4]C .[-2,1】U 【4,7】D . (2,1][4,7)-U【答案】D【解析】由3|52|9x ≤-<得3259x ≤-<,或9253x -<-≤-,即47x ≤<或21x -<≤,所以不等式的解集为(2,1][4,7)-U ,选D.6.【山东省师大附中2013届高三12月第三次模拟检测理】不等式|21||1|2x x ++-<的解集为 【答案】2(,0)3-【解析】当12x ≤-时,原不等式等价为(21)(1)2x x -+--<,即232,3x x -<>-,此时2132x -<≤-。
无锡新领航教育特供:【2013备考】高考数学各地名校试题解析分类汇编(一)4 数列2 文
小升初 中高考 高二会考 艺考生文化课 一对一辅导 /wxxlhjy QQ:157171090- 1 - 无锡新领航教育特供:各地解析分类汇编:数列(2)1【天津市新华中学2012届高三上学期第二次月考文】等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为A. 297B. 144C. 99D. 66【答案】C【解析】由147=39a a a ++,得443=39=13a a ,。
由369=27a a a ++,德663=27=9a a ,。
所以194699()9()9(139)===911=99222a a a a S ++⨯+=⨯,选C. 2.【天津市新华中学2012届高三上学期第二次月考文】已知正项等比数列{}n a 满足:5672a a a +=,若存在两项n m a a ,使得14a a a n m =,则n m 41+的最小值为 A. 23 B. 35 C. 625 D. 不存在 【答案】A 【解析】因为765=2a a a +,所以2555=2a qa q a +,即220q q --=,解得2q =。
若存在两项,n m a a ,有14a =,即2116m n a a a =,2221116m n a q a +-=,即2216m n +-=,所以24,6m n m n +-=+=,即16m n +=。
所以14141413()()(5)6662m n m n m n m n n m ++=+=++≥,当且仅当4=m n n m 即224,2n m n m ==取等号,此时63m n m +==,所以2,4m n ==时取最小值,所以最小值为32,选A. 3.【山东省兖州市2013届高三9月入学诊断检测 文】等差数列{}n a 的前n 项和为n S ,若371112a a a ++=,则13S 等于( )()A 52 ()B 54 ()C 56 ()D 58【答案】在等差数列中37117312a a a a ++==,74a =,。
高考数学各地名校试题解析分类汇编(一)12 选考部分 理
各地解析分类汇编:选考部分1.【云南省玉溪一中2013届高三第三次月考 理】在∆ABC 中,D 为BC 边上一点,BC=3BD ,,若,则BD= .【答案】2+【解析】作AH ⊥BC 于H,则1,1AH DH == 则1,21BH BD CH BD =+=-.又222AB BH AH -=,所以 22(1)1AB BD -+=,即,22(1)1AB BD =++, 222222221(21)AC AH AB AH AB BD -=-=-=-,所以222(21)1AB BD =-+,即222(1)2(21)1BD BD ++=-+,整理得22820BD BD --=,即2410BD BD --=,解得25BD =或25BD =.2.【天津市天津一中2013届高三上学期一月考 理】点P(x,y)在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,θ∈R)上,则yx的取值范围是 .【答案】[ 【解析】消去参数θ得曲线的标准方程为22(2)1x y ++=,圆心为(2,0)-,半径为 1.设yk x=,则直线y k x =,即0k x y -=,当直线与圆相切时,圆心到直线的距离1d ==,即2k =,平方得222141,3k k k =+=,所以解得3k =±,由图象知k的取值范围是k ≤≤,即y x的取值范围是[。
3.【天津市天津一中2013届高三上学期一月考 理】如图过⊙0外一点P 分别作圆的切线和割- 2 -线交圆于A,B,且PB=7,C 是圆上一点使得BC=5,∠BAC=∠APB,则AB= .【解析】因为PA 是圆的切线,所以BAP APB ∠=∠,又CA C A PB ∠=,所以BAP ∆与BCA∆相似,所以AB PB CB AB=,所以27535AB PB CB ==⨯=,所以AB = 4.【山东省潍坊市四县一区2013届高三11月联考(理)】不等式 3|1||1|≥++-x x 的解集是 .【答案】33(,][,)22-∞-+∞或⎭⎬⎫≥-≤2323|{x x x 或 【解析】2,1|1||1|2,112,1x x x x x x x -≤-⎧⎪-++=-<<⎨⎪≥⎩,当1x ≤-时,由3|1||1|≥++-x x 得23x -≥,得32x ≤-;当1x ≥时,由3|1||1|≥++-x x 得23x ≥,解得32x ≥,所以不等式的解集为33(,][,)22-∞-+∞.5.【山东省实验中学2013届高三第一次诊断性测试理】不等式3≤l5 - 2xl<9的解集是 A .(一∞,-2)U(7,+co) B .[1,4]C .[-2,1】U 【4,7】D . (2,1][4,7)-【答案】D【解析】由3|52|9x ≤-<得3259x ≤-<,或9253x -<-≤-,即47x ≤<或21x -<≤,所以不等式的解集为(2,1][4,7)-,选D.6.【山东省师大附中2013届高三12月第三次模拟检测理】不等式|21||1|2x x ++-<的解集为 【答案】2(,0)3-【解析】当12x ≤-时,原不等式等价为(21)(1)2x x -+--<,即232,3x x -<>-,此时2132x -<≤-。
(2022备考)各地名校试卷解析分类汇编(一)理科数学:12选考部分2
(2022备考)各地名校试卷解析分类汇编(一)理科数学:12选考部分2已知直线的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线上的点向圆C 引切线,求切线长的最小值. 【答案】解:(I )θθρsin 2cos 2-= ,θρθρρsin 2cos 22-=∴, …………(2分) 02222=+-+∴y x y x C 的直角坐标方程为圆, …………(3分)即1)22()22(22=++-y x ,)22,22(-∴圆心直角坐标为.…………(5分) (II )方法1:直线上的点向圆C 引切线长是6224)4(4081)242222()2222(2222≥++=++=-+++-t t t t t ,…………(8分) ∴直线上的点向圆C 引的切线长的最小值是62 …………(10分) 方法2:024=+-∴y x l 的普通方程为直线, …………(8分) 圆心C 到l 直线距离是52|242222|=++, ∴直线上的点向圆C 引的切线长的最小值是621522=- …………(10分)10.【云南省玉溪一中2020届高三第三次月考 理】(本小题满分10分)选修4-5:不等式选讲已知函数f (x)=|x+1|+|x ﹣2|﹣m (I )当5=m 时,求f (x) >0的解集;(II )若关于x 的不等式f (x) ≥2的解集是R ,求m 的取值范畴. 【答案】解:(I )由题设知:5|2||1|>-++x x ,不等式的解集是以下三个不等式组解集的并集:⎩⎨⎧>-++≥5212x x x ,或⎩⎨⎧>+-+<≤52121x x x ,或⎩⎨⎧>+---<5211x x x ,解得函数)(x f 的定义域为),3()2,(+∞--∞ ; …………(5分) (II )不等式f (x) ≥2即2|2||1|+>-++m x x ,∵R ∈x 时,恒有3|)2()1(||2||1|=--+≥-++x x x x , 不等式2|2||1|+≥-++m x x 解集是R ,∴32≤+m ,m 的取值范畴是]1,(-∞. …………(10分) 11.【云南省玉溪一中2020届高三第四次月考理】(本小题满分10分)《选修4-4:坐标系与参数方程》在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系,已知曲线θθρcos 2sin :2a C =)0(>a ,已知过点)4,2(--P 的直线的参数方程为:⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 224222,直线与曲线C 分别交于N M ,两点.(Ⅰ)写出曲线C 和直线的一般方程;(Ⅱ)若|||,||,|PN MN PM 成等比数列,求a 的值. 【答案】解:(Ⅰ)22,2y ax y x ==-. ……………..5分(Ⅱ)直线的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 224222(为参数),代入22y ax =,得到2)8(4)0t a t a -+++=, ………………7分则有1212(4),8(4)t t a t t a +=+⋅=+.因为2||||||MN PM PN =⋅,因此2212121212()()4t t t t t t t t -=+-⋅=⋅. 解得 1a =.12.【云南省玉溪一中2020届高三第四次月考理】(本小题满分10分)《选修4-5:不等式选讲》已知函数()|21||23|f x x x =++-. (Ⅰ)求不等式6)(≤x f 的解集;(Ⅱ)若关于x 的不等式|1|)(-<a x f 的解集非空,求实数a 的取值范畴. 【答案】解:(Ⅰ)原不等式等价于313,,222(21)(23)6,(21)(23)6,x x x x x x ⎧⎧>-≤≤⎪⎪⎨⎨⎪⎪++-≤+--≤⎩⎩或或1,2(21)(23) 6.x x x ⎧<-⎪⎨⎪-+--≤⎩ 解之得31312,12222x x x <≤-≤≤-≤<-或,或.即不等式的解集为}21|{≤≤-x x . ………………5分 (Ⅱ)()()()432123212=--+≥-++=x x x x x f .41>-∴a ,解此不等式得53>-<a a 或. ………………10分13.【云南省玉溪一中2020届高三上学期期中考试理】(本小题满分10分)《选修4-4:坐标系与参数方程》在直角坐标系xOy 中,直线的方程为x-y+4=0,曲线C 的参数方程为x y sin ααα⎧=⎪⎨=⎪⎩(为参数).(I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴 正 半轴为极轴)中,点P 的极坐标为(4,2π),判定点P 与直线的位置关系;(II )设点Q 是曲线C 上的一个动点,求它到直线的距离的最小值. 【答案】解:(I )把极坐标系下的点(4,)2P π化为直角坐标,得P (0,4)。
全国高考理科数学试题分类汇编4:数列 Word版含答案.pdf
2 3
an
+
1 3
,则数列{
an
}的通
项公式是 an =______. 【答案】 an = (−2)n−1 .
21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))如图,互不-相同
的点 A1, A2 K , X n ,K 和 B1, B2 K , Bn ,K 分别在角O的两条边上,所有 An Bn 相互平行,且所有
所以数列的前 n
项和
sn
=
4n
或 sn
=
3n2 − 2
n
11.(2013 年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯 WORD 版含答案))等差数
列 an的前 n 项和为 Sn ,已知 S10 = 0, S15 = 25 ,则 nSn 的最小值为________.
【答案】 −49
12.(2013 年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三
图像如图所示,在区间a,b 上可找到 n(n 2) 个不同的数 x1,x2...,xn , 使得
f (x1) = f (x2 ) = f (xn ) , 则 n 的取值范围是
x1
x2
xn
(A)3,4
(B)2,3,4 (C) 3,4,5
(D)2,3
【答案】B
5 .(2013 年普通高等学校招生统一考试福建数学(理)试题(纯 WORD 版))已知等比数列
则
学海无涯
(1) a3 = _____; (2) S1 + S2 + + S100 = ___________.
【答案】 − 1 16
;
1 3
(
2024高考数学真题分类汇编(解析)
一.复数1.(2024年新课标全国Ⅰ卷)若1i 1zz =+-,则z =()A .1i --B .1i-+C .1i -D .1i+【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.2.(2024年新课标全国Ⅱ卷)已知1i z =--,则z =()A .0B .1C D .2【详解】若1i z =--,则z ==故选:C.3.(2024年高考全国甲卷数学(理))设5i z =+,则()i z z +=()A .10iB .2iC .10D .2-【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A二.集合1.(2024年新课标全国Ⅰ卷)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-【详解】因为{{}|,3,1,0,2,3A x x B =<=--,且注意到12<<,从而A B ={}1,0-.故选:A.2.(2024年高考全国甲卷数学(理))集合{}{}1,2,3,4,5,9,A B A ==∈,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【详解】因为{}{}1,2,3,4,5,9,A B A ==∈,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D三.命题与逻辑1.(2024年新课标全国Ⅱ卷)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.2.(2024年高考全国甲卷数学(理))设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.四.向量1.(2024年新课标全国Ⅰ卷)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥- ,则x =()A .2-B .1-C .1D .2【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-= ,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.2.(2024年新课标全国Ⅱ卷)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B C D .1【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+= ,所以22144164a b b b +⋅+=+= ,从而2=b 故选:B.3.(2024年高考全国甲卷数学(理))已知向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“1x =-+”是“//a b ”的充分条件【详解】对A ,当a b ⊥时,则0a b ⋅= ,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.5.解三角形1.(2024年新课标全国Ⅰ卷)记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-(1)求B ;(2)若ABC 的面积为3c .【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin2C==,又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.(2)由(1)可得π3B=,cos2C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin124622224A⎛⎫⎛⎫==+=⨯+⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c c==⋅=,由已知ABC的面积为32338c+=c=2.(2024年新课标全国Ⅱ卷)记ABC的内角A,B,C的对边分别为a,b,c,已知sin2A A+=.(1)求A.(2)若2a=sin sin2C c B=,求ABC的周长.【详解】(1)方法一:常规方法(辅助角公式)由sin2A A=可得1sin122A A+=,即sin()1π3A+=,由于ππ4π(0,π)(,333A A∈⇒+∈,故ππ32A+=,解得π6A=方法二:常规方法(同角三角函数的基本关系)由sin2A A=,又22sin cos1A A+=,消去sin A得到:24cos30(2cos0A A A-+=⇔-=,解得cos A=又(0,π)A∈,故π6A=方法三:利用极值点求解设()sin(0π)f x x x x=<<,则π()2sin(0π)3f x x x⎛⎫=+<<⎪⎝⎭,显然π6x=时,max()2f x=,注意到π()sin22sin(3f A A A A=+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅=+=,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A ⋅=⇔=又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21tA A t ==+整理可得,222(2(20((2t t t --+-==--,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos 2B =,得到π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412bc==,解得b c ==故ABC的周长为2+3.(2024年高考全国甲卷数学(理))在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .32B C D 【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.6.概率统计1.(2024年新课标全国Ⅰ卷)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .2.(2024年新课标全国Ⅰ卷)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382k k k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.3.(2024年新课标全国Ⅱ卷)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.4.(2024年新课标全国Ⅱ卷)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;1125.(2024年高考全国甲卷数学(理))1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.6.(2024年高考全国甲卷数学(理))有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:7157.(2024年高考全国甲卷数学(理))某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.8416.63510.828【详解】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +++⨯≈,可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.8.(2024年新课标全国Ⅱ卷)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q << ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦,32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.7.立体几何1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高)A .B .C .D .【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A .12B .1C .2D .3【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知11111662222ABC A B C S S =⨯⨯⨯==⨯⨯ 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AA=DN AD AM MN x=--=,可得1DD==结合等腰梯形11BCC B可得22211622BB DD-⎛⎫=+⎪⎝⎭,即()221616433x x+=++,解得x=所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC AB C-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV V--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则116618322P ABCV d-=⨯⨯⨯⨯,解得d=,取底面ABC的中心为O,则PO⊥底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAO∠==.故选:B.3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r和2r,母线长分别为()212r r-和()213r r-,则两个圆台的体积之比=VV甲乙.【详解】由题可得两个圆台的高分别为)12h r r==-甲,)12h r r==-乙,所以((21211313S S h V h V h S S h ++-==++甲甲甲乙乙乙4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【详解】(1)(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角ACP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC⊥,设AD x =,则CD=DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故22tan4DFEx∠==x=AD=5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD中,8AB=,3CD=,AD=,90ADC︒∠=,30BAD︒∠=,点E,F满足25AE AD=,12AF AB=,将AEF△沿EF对折至PEF!,使得PC=.(1)证明:EF PD⊥;(2)求面PCD与面PBF所成的二面角的正弦值.【详解】(1)由218,,52AB AD AE AD AF AB====,得4AE AF==,又30BAD︒∠=,在AEF△中,由余弦定理得2EF,所以222AE EF AF+=,则AE EF⊥,即EF AD⊥,所以,EF PE EF DE⊥⊥,又,PE DE E PE DE=⊂、平面PDE,所以EF⊥平面PDE,又PD⊂平面PDE,故EF⊥PD;(2)连接CE,由90,3ADC ED CD︒∠===,则22236CE ED CD=+=,在PEC中,6PC PE EC===,得222EC PE PC+=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD ,所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,22(2,0,2PC PD PB PF =-===-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,令122,y x =11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin 65θ==,即平面PCD 和平面PBF所成角的正弦值为65.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【详解】(1)因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;(2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF =,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m = ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =故二面角F BM E --8.解析几何1.(2024年高考全国甲卷数学(理))已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D .2【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,()22164410PF =++=,()2226446PF =+-=,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.2.(2024年新课标全国Ⅰ卷)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O.且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+【详解】对于A :设曲线上的动点(),P x y ,则2x >-且()2224x y x a -+⨯-=,因为曲线过坐标原点,故()2202004a -+⨯-=,解得2a =-,故A 正确.对于B :又曲线方程为()22224x y x -+⨯+=,而2x >-,5.(2024年高考全国甲卷数学(理)22410++-=交于Ax y yA.2B.3C.4a b c成等差数列,所以【详解】因为,,++-=,即aax by b a20故选:C.(202427.(2024年新课标全国Ⅰ卷)已知(1)求C的离心率;(2)若过P的直线l交C于另一点⎧⎪⎪8.(2024年高考全国甲卷数学在C上,且MF x⊥轴.(1)求C的方程;由223412(4)x y y k x ⎧+=⎨=-⎩可得(34+故()(42Δ102443464k k =-+23264k由已知有22549m =-=,故当12k =时,过()15,4P 且斜率为22392x x +⎛⎫-= ⎪⎝⎭.解得3x =-或5x =,所以该直线与9.函数与导数1.(2024年新课标全国Ⅰ卷)已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A .3m -B .3m -C .3mD .3m【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.2.(2024年新课标全国Ⅰ卷)已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.3.(2024年新课标全国Ⅰ卷)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .8【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=- ⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=- ⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C4.(2024年新课标全国Ⅰ卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.5.(2024年新课标全国Ⅰ卷)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x >,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D ,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.6.(2024年新课标全国Ⅰ卷)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 27.(2024年新课标全国Ⅱ卷)设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A .1-B .12C .1D .2【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.8.(2024年新课标全国Ⅱ卷)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A .18B .14C .12D .1【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=,则()2222211112222a b a a a ⎛⎫=++=++ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.9.(2024年新课标全国Ⅱ卷)对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A .()f x 与()g x 有相同零点B .()f x 与()g x 有相同最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(204g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC10.(2024年新课标全国Ⅱ卷)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD11.(2024年新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=.【详解】法一:由题意得()tan tan tan1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+()()22sin cos 1αβαβ+++=,解得()sin 3αβ+=-.法二:因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==cos β==则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos αβ=====故答案为:3-.12.(2024年高考全国甲卷数学(理))设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .23【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.13.(2024年高考全国甲卷数学(理))函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的大致图像为()A .B .C .D .【详解】()()()()()22e e sin e e sin x x x xf x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.14.(2024年高考全国甲卷数学(理))已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A .1B .1C .2D .1【详解】因为cos cos sin ααα=-所以11tan =-α,tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭,故选:B.15.(2024年高考全国甲卷数学(理))已知1a >,8115log log 42a a -=-,则=a .【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.(2024年新课标全国Ⅰ卷)已知函数3()ln (1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【详解】(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln 21102x x b x x+-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln201t t bt t +-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311t bt b g t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.17.(2024年新课标全国Ⅱ卷)已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;。
高考数学真题汇编4 数列 理( 解析版)
高考数学真题汇编4 数列 理( 解析版)一、选择题1.【2012高考真题重庆理1】在等差数列}{n a 中,12=a ,54=a 则}{n a 的前5项和5S = A.7 B.15 C.20 D.25【答案】B【解析】因为12=a ,54=a ,所以64251=+=+a a a a ,所以数列的前5项和156252)(52)(542515=⨯=+=+=a a a a S ,选B. 2.【2012高考真题浙江理7】设n S 是公差为d (d ≠0)的无穷等差数列﹛a n ﹜的前n 项和,则下列命题错误的是A.若d <0,则数列﹛S n ﹜有最大项B.若数列﹛S n ﹜有最大项,则d <0C.若数列﹛S n ﹜是递增数列,则对任意*N n ∈,均有0>n S D. 若对任意*N n ∈,均有0>n S ,则数列﹛S n ﹜是递增数列【答案】C【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.故选C 。
3.【2012高考真题新课标理5】已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【答案】D【解析】因为}{n a 为等比数列,所以87465-==a a a a ,又274=+a a ,所以2474-==a a ,或4274=-=a a ,.若2474-==a a ,,解得18101=-=a a ,,7101-=+a a ;若4274=-=a a ,,解得18110=-=a a ,,仍有7101-=+a a ,综上选D.4.【2012高考真题上海理18】设25sin 1πn n a n =,n n a a a S +++= 21,在10021,,,S S S中,正数的个数是( )A .25B .50C .75D .100【答案】D【解析】当1≤n ≤24时,n a >0,当26≤n ≤49时,n a <0,但其绝对值要小于1≤n≤24时相应的值,当51≤n ≤74时,n a >0,当76≤n ≤99时,n a <0,但其绝对值要小于51≤n ≤74时相应的值,∴当1≤n ≤100时,均有n S >0。
2013年全国高考理科数学试题分类汇编4:数列 2
(2004年全国卷)已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+== ,(Ⅰ)设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; (Ⅱ)设数列),2,1(,2==n a c n nn ,求证:数列{}n c 是等差数列; (Ⅲ)求数列{}n a 的通项公式及前n 项和. 解:b n =3·21n -.当n ≥2时,S n =4a 1n -+2=21n -(3n-4)+22004·全国)已知数列{}n a 满足11a =,123123(1)n n a a a a n a -=++++- (2)n ≥,求{}n a 的通项公式.解:∴1(1),!(2).2n n a n n =⎧⎪=⎨≥⎪⎩(2006.福建.文.22)已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(I )证明:数列{}1n n a a +-是等比数列; (II )求数列{}n a 的通项公式;(2006,福建)已知数列{}n a 满足111,21()n n a a a n *+==+∈N .(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12111444(1)()nnb b b b n a n ---*=+∈N ,证明:{}n b 是等差数列;(2006全国I.22)设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =求首项1a 与通项n a ;(2010安徽理数) 设数列12,,,,n a a a 中的每一项都不为0。
证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有1223111111n n n na a a a a a a a +++++= 。
(全国大纲理20) 设数列{}n a 满足10a =且1111.11n na a +-=-- (Ⅰ)求{}n a 的通项公式;(Ⅱ)设1, 1.nn n k n k b b S ===<∑记S 证明:浙江理19.已知数列{}n a 满足:21=a 且()n a a n a n n n ++=+121(*∈N n )求证:数列⎭⎬⎫⎩⎨⎧-1n a n 为等比数列,并求数列{}n a 的通项公式;例题:设数列{}n a 满足333313221na a a a n n =++++- (*∈N n ) ①求数列{}n a 的通项公式n a ;②设nn a nb =,求数列{}n b 的前n 项和n S(2013年安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X 和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n∈-=(2013年辽宁数学(理))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =___________【答案】63(2013年浙江数学(理)试题)在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++(2013年广东省数学(理)卷)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值; (Ⅱ) 求数列{}n a 的通项公式;【答案】.(1) 24a ∴= (2)2*,n a n n N ∴=∈2013年山东数学(理))设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n c b =*()n N ∈.求数列{}n c 的前n 项和n R . 答案】解:(Ⅰ)21n a n =-*()n N ∈ (Ⅱ)1221221(1)()24n n n n n c b n ---===-*()n N ∈(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+=(1)求数列{a n }的通项公式a n ; (2)令221(2)n n b n a+=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T < 【答案】(1)解:2na n =.。
高考数学各地名校试题解析分类汇编(一)12 选考部分 理
各地解析分类汇编:选考部分1【云南省玉溪一中202X 届高三第三次月考 理】在∆ABC 中,D 为BC 边上一点,BC=3BD ,AD=2,∠ADB=1350,若AC=2AB ,则BD=【答案】25+【解析】作AH ⊥BC 于H,则1,1AH DH == 则1,21BH BD CH BD =+=-又222AB BH AH -=,所以 22(1)1AB BD -+=,即,22(1)1AB BD =++, 222222221(21)AC AH AB AH AB BD -=-=-=-,所以222(21)1AB BD =-+,即222(1)2(21)1BD BD ++=-+,整理得22820BD BD --=,即2410BD BD --=,解得25BD =+或25BD =-(舍去)2【天津市天津一中202X届高三上学期一月考 理】点2cos sin x y θθ=-+⎧⎨=⎩y x 33[,]33-θ22(2)1x y ++=(2,0)-yk x =y kx =0kx y -=2211k d k -==+221k k =+222141,3k k k =+=33k =±k3333k -≤≤yx33[,]33-35PA BAP APB ∠=∠CAC APB ∠=BAP∆BCA ∆AB PBCB AB=27535AB PB CB ==⨯=35AB =3|1||1|≥++-x x 33(,][,)22-∞-+∞⎭⎬⎫≥-≤2323|{x x x 或2,1|1||1|2,112,1x x x x x x x -≤-⎧⎪-++=-<<⎨⎪≥⎩1x ≤-3|1||1|≥++-x x 23x -≥32x ≤-1x ≥3|1||1|≥++-x x 23x ≥32x ≥33(,][,)22-∞-+∞[1,4](2,1][4,7)-3|52|9x ≤-<3259x ≤-<9253x -<-≤-47x ≤<21x -<≤(2,1][4,7)-|21||1|2x x ++-<2(,0)3-12x ≤-(21)(1)2x x -+--<232,3x x -<>-2132x -<≤-112x -<<(21)(1)2x x +--<0x <102x -≤<1x ≥(21)(1)2x x ++-<232,3x x <<203x -<<2(,0)3-a a x x f +-=|2|)(6)(≤x f {}32|≤≤-x x a 1a =6)(≤x f {}32|≤≤-x x 2,3-()6f x =66,46a a a a -+=++=66,46a a a a -=-+=-64a a -=+1a =AB O P ABP O C 32=PC ︒=∠30CAP O =AB 32=PC ︒=∠30CAP 2()PC PB PA PB PB BA ==+)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==)4cos(2πθρ+=θθρsin 2cos 2-= θρθρρsin 2cos 22-=∴02222=+-+∴y x y x C 的直角坐标方程为圆1)22()22(22=++-y x )22,22(-∴圆心直角坐标为6224)4(4081)242222()2222(2222≥++=++=-+++-t t t t t 024=+-∴y x l 的普通方程为直线l直线52|242222|=++621522=-(I )当时,求f >0的解集;(II )若关于的不等式f ≥2的解集是,求的取值范围.【答案】解:(I )由题设知:5|2||1|>-++x x ,不等式的解集是以下三个不等式组解集的并集:A⎩⎨⎧>-++≥5212x x x ,或⎩⎨⎧>+-+<≤52121x x x ,或⎩⎨⎧>+---<5211x x x , 解得函数的定义域为),3()2,(+∞--∞ ; …………(5分) (II )不等式f ≥2即2|2||1|+>-++m x x ,∵时,恒有3|)2()1(||2||1|=--+≥-++x x x x , 不等式2|2||1|+≥-++m x x 解集是,∴32≤+m ,的取值范围是]1,(-∞. …………(10分) 11【云南省玉溪一中202X 届高三第四次月考理】(本小题满分10分)《选修4-4:坐标系与参数方程》在直角坐标系中,以原点为极点,错误!未定义书签。
(学生版)2024年高考数学真题分类汇编04:数列
数列一、单选题1.(2024·全国)等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A .2-B .73C .1D .292.(2024·全国)等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A .2-B .73C .1D .2二、填空题3.(2024·全国)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.4.(2024·北京)已知{}|k k M k a b ==,n a ,n b 不为常数列且各项均不相同,下列正确的是.①n a ,n b 均为等差数列,则M 中最多一个元素;②n a ,n b 均为等比数列,则M 中最多三个元素;③n a 为等差数列,n b 为等比数列,则M 中最多三个元素;④n a 单调递增,n b 单调递减,则M 中最多一个元素.5.(2024·上海)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-ÎÈ,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.三、解答题6.(2024·全国)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j £<£,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ³时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.7.(2024·全国)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=.8.(2024·全国)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.9.(2024·全国)记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .10.(2024·北京)设集合(){}{}{}{}(){},,,1,2,3,4,5,6,7,8,2M i j s t i j s t i j s t =ÎÎÎÎ+++.对于给定有穷数列{}():18n A a n ££,及序列12:,,...,s w w w W ,(),,,k k k k k i j s t M w =Î,定义变换T :将数列A 的第1111,,,i j s t 项加1,得到数列()1T A ;将数列()1T A 的第2222,,,i j s t 列加1,得到数列()21T T A …;重复上述操作,得到数列()21...s T T T A ,记为()A W .(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7W ,写出()A W ;(2)是否存在序列W ,使得()A W 为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的W ;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,证明:“存在序列W ,使得()A W为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”.11.(2024·天津)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.。
2019年全国高考理科数学试题分类汇编4:数列
一、选择题1 .(2019年高考上海卷(理))在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==L L )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28(C)48(D)63【答案】A.2 .(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于(A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2019年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n =L ,若11111,2b c b c a >+=,111,,22n n nnn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=•••∈则以下结论一定正确的是( ) A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mqC.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm q【答案】C6 .(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91(D)91-【答案】C7 .(2019年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )【答案】C8 .(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d>的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2019年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于【答案】A二、填空题10.(2019年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n ns -=11.(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2019年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a ΛΛ2121>+++的最大正整数n 的值为_____________.【答案】1214.(2019年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n N *=--∈则 (1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32- 15.(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:11111222222011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+16.(2019年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2019年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n - 18.(2019年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____ 【答案】2019.(2019年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()(Λ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(Λ 20.(2019年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X K K和12,,,n B B B K K 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n∈-= 22.(2019年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +- 23.(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈K ,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<.【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f n x y x nn n ++++++-=∴=>ΛΘ是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x Λ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322Λ时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕)(Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n pn n Λ0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n ΛΛ上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n n p n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ΛΛΛ)()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnn p n np n np n np n p n n +++++++++=+++++++++ΛΛ nx x n p n n p n n 1-111<⇒<+-=+. 法二:25.(2019年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a L 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a L L 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=,3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意; 若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+L 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444n a L :,-,-,-,-,-,-,,-1-1-1-1k k k k k 644474448L 个(),,(),即当1122k k k k n -+<≤()()()k N +∈时,11k n a k -=(-),记12n n S a a a =++L ()n N +∈,对于l N +∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且 (1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a ∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S •=,440a S •=,551a S •=,662a S •=,11111a S •-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+•-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+•-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m)32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i Λ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i Λ的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i Λ所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i Λ的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)(Λ 于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)(故集合2000P 中元素的个数为100847312=+27.(2019年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++Λ【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==g g g g g g②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=g g g g g g g g g g g g g g g所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩g g g ;28.(2019年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =. (I)求数列{}n a 的通项公式;(II)是否存在正整数m ,使得121111ma a a +++≥L ?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105m a a a +++=-L 或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦L ,不存在这样的正整数m .29.(2019年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}nc 的前n 项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d = 因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n n T λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===- *()n N ∈所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯两式相减得1231311111()()()()(1)()444444n nn R n -=+++⋅⋅⋅+--⨯ 11()144(1)()1414n nn -=---整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c 为实数. (1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈) (2)若}{n b 是等差数列,证明:0=c .【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和 ∴d n n na S n 2)1(-+= (1)∵0=c ∴d n a n S b n n 21-+== ∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-d ad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+= ∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222=∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b n n +=2得: 11)1(d n b -+cn nS n +=2 ∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d 由①式得:d d 211= ∵ 0≠d ∴ 01≠d 由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(a d n b n +-=. 当421b b b ,,成等比数列,4122b b b =, 即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=. 由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=.故:k nk S n S 2=(*,N n k ∈). (2)cn ad n n c n nS b n n ++-=+=22222)1(, cn a d n c a d n c a d n n ++--+-++-=2222)1(22)1(22)1( c n a d n c a d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型.观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c . 经检验,当0=c 时}{n b 是等差数列.31.(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2019年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. 【答案】33.(2019年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+= (1)求数列{a n }的通项公式a n ;(2)令221(2)n n b n a +=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T < 【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0nn S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+. 于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=.综上,数列{}n a 的通项2n a n =.(2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦… 222211111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦. 是等比数列.。
高考数学各地名校试题解析分类汇编(一)4 数列1 理-推荐下载
q
31 1 n 得( )
32 2
1 2
a1
(舍去)或 2 .所以
的等比数列,所以
1 ,解得 n 5 ,选 B. 32
,若
S15
C. S9
a9
【答案】D
【解析】由
0, S16
S15
0, 则
15(a1 2
S1 a1
D. S8
a8
, S2 a2
a15 )
,, S15 a15
=15a8
C.(1)94 3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
(2022备考)各地名校试卷解析分类汇编(一)理科数学:12选考部分1
(2022备考)各地名校试卷解析分类汇编(一)理科数学:12选考部分11.【云南省玉溪一中2020届高三第三次月考 理】在∆ABC 中,D 为BC 边上一点,BC=3BD ,AD=2,∠ADB=1350,若AC=2AB ,则BD= .【答案】25+【解析】作AH ⊥BC 于H,则1,1AH DH == 则1,21BH BD CH BD =+=-. 又222AB BH AH -=,因此 22(1)1AB BD -+=,即, 22(1)1AB BD =++, 222222221(21)AC AH AB AH AB BD -=-=-=-,因此222(21)1AB BD =-+, 即222(1)2(21)1BD BD ++=-+,整理得22820BD BD --=,即2410BD BD --=,解得25BD =+或25BD =-(舍去). 2.【天津市天津一中2020届高三上学期一月考 理】点P(x,y)在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,θ∈R)上,则y x的取值范畴是 .【答案】33[33【解析】消去参数θ得曲线的标准方程为22(2)1x y ++=,圆心为(2,0)-,半径为 1.设y k x=,则直线y kx =,即0kx y -=,当直线与圆相切时,圆心到直线的距离2211kd k -+,即221k k =+222141,3k k k =+=,因此解得33k =±,由图象知k 的取值范畴是3333k -≤≤,即y x 的取值范畴是33[,]33-。
3.【天津市天津一中2020届高三上学期一月考 理】如图过⊙0外一点P 分别作圆的切线和割线交圆于A,B,且PB=7,C 是圆上一点使得BC=5,∠BAC=∠APB,则AB= .35【解析】因为PA 是圆的切线,因此BAP APB ∠=∠,又CAC APB ∠=,因此BAP ∆与BCA ∆相似,因此AB PB CB AB=,因此27535AB PB CB ==⨯=,因此35AB = 4.【山东省潍坊市四县一区2020届高三11月联考(理)】不等式 3|1||1|≥++-x x 的解集是 .【答案】33(,][,)22-∞-+∞或⎭⎬⎫≥-≤2323|{x x x 或 【解析】2,1|1||1|2,112,1x x x x x x x -≤-⎧⎪-++=-<<⎨⎪≥⎩,当1x ≤-时,由3|1||1|≥++-x x 得23x -≥,得32x ≤-;当1x ≥时,由3|1||1|≥++-x x 得23x ≥,解得32x ≥,因此不等式的解集为33(,][,)22-∞-+∞. 5.【山东省实验中学2020届高三第一次诊断性测试理】不等式3≤l5 - 2xl<9的解集是A .(一∞,-2)U(7,+co)B .[1,4]C .[-2,1】U 【4,7】D . (2,1][4,7)- 【答案】D【解析】由3|52|9x ≤-<得3259x ≤-<,或9253x -<-≤-,即47x ≤<或21x -<≤,因此不等式的解集为(2,1][4,7)-,选D.6.【山东省师大附中2020届高三12月第三次模拟检测理】不等式|21||1|2x x ++-<的解集为 【答案】2(,0)3- 【解析】当12x ≤-时,原不等式等价为(21)(1)2x x -+--<,即232,3x x -<>-,现在2132x -<≤-。
(2019备考)各地名校试题解析分类汇编(一)理科数学:4数列2.doc
(2019备考)各地名校试题解析分类汇编(一)理科数学:4数列21.【云南师大附中2018届高三高考适应性月考卷〔三〕理科】〔本小题总分值12分〕 数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥〔I 〕求数列a n 的通项公式;〔Ⅱ〕假设b n =n ·a n ,求数列{b n }的前n 项和T n 。
【答案】解:〔Ⅰ〕113354(2)n n n n S S a a n ---=-≥,1122n n n n a a a a --∴==,,………………〔3分〕又12a =,{}22n a ∴是以为首项,为公比的等比数列,……………………………〔4分〕1222n n n a -∴=⋅=.……………………………………………………………………〔5分〕 〔Ⅱ〕2n nb n =⋅, 1231222322n n T n =⋅+⋅+⋅++⋅,23121222(1)22n n n T n n +=⋅+⋅++-⋅+⋅.……………………………………………〔8分〕两式相减得:1212222n n nT n +-=+++-⋅,12(12)212n n n T n +-∴-=-⋅-1(1)22n n +=-⋅-,………………………………………〔11分〕 12(1)2n n T n +∴=+-⋅.…………………………………………………………………〔12分〕 2.【云南省玉溪一中2018届高三第四次月考理】〔此题12分〕在等差数列{}na中,31=a ,其前n 项和为nS ,等比数列{}n b 的各项均为正数,11=b ,公比为q ,且1222=+S b ,22b S q =.〔1〕求n a 与n b ;〔2〕设数列{}n c 满足1n nc S =,求{}nc 的前n 项和nT .【答案】解:〔1〕设{}na的公差为d .因为⎪⎩⎪⎨⎧==+,,122222b S q S b 所以⎪⎩⎪⎨⎧+==++.,q d q d q 6126解得3=q 或4-=q 〔舍〕,3=d . 故()3313n a n n=+-=,13-=n n b .〔2〕由〔1〕可知,()332n n n S +=,所以()122113331n n c S n n n n ⎛⎫===- ⎪++⎝⎭.故()21111121211322313131n nT n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦…3.【山东省实验中学2018届高三第三次诊断性测试理】〔本小题总分值12分〕单调递增的等比数列}{n a 满足:28432=++a a a ,且23+a 是42,a a 的等差中项。
备考各地试题解析分类汇编(二)理科数:4数列1
各地解析分类汇编(二)系列:数 列 11.【云南省玉溪一中2013届高三第五次月考理】已知数列{n a }满足11a =,12()1()n n n a n a a n +⎧=⎨+⎩为正奇数为正偶数,则其前6项之和是( ) A.16 B.20 C.33 D.120 【答案】C【解析】2122a a ==,32431326a a a a =+===,,546517214a a a a =+===,,所以6123671433S =+++++=,选C.2.【云南省昆明一中2013届高三第二次高中新课程双基检测理】已知公差不为零的等差数列81049{},,n n S a n S a S a =的前项和为若则等于 A .4 B .5C .8D .10【答案】A【解析】由104a S =得1114394462a d a d a d ⨯+=+=+,即10a d =≠。
所以811878828362S a d a d d ⨯=+=+=,所以8913636489S d da a d d===+,选A. 3.【天津市新华中学2013届高三第三次月考理】设n S 是等差数列{a n }的前n 项和,5283()S a a =+,则53a a 的值为( ) A. 16B. 13C. 35D. 56【答案】D【解析】由5283()S a a =+得,1555()322a a a +=⨯,即3556a a =,所以5356a a =,选D. 4.【山东省枣庄三中2013届高三上学期1月阶段测试理】在圆x y x 522=+内,过点(25,23)有n 条弦的长度成等差数列,最小弦长为数列的首项1a ,最大弦长为n a ,若公差为d∈[61,31],那么n 的取值集合为A. {4,5,6,7}B. {4,5,6}C. {3,4,5,6}D. { 3.4.5,6,7}【答案】A【解析】圆的标准方程为22525()24x y -+=,所以圆心为5(,0)2,半径52r =,则最大的弦为直径,即5n a =,当圆心到弦的距离为32时,即点(25,23)为垂足时,弦长最小为4,即14a =,所以由1(1)n a a n d =+-得,1541111n a a d n n n --===---,因为1163d ≤≤,所以111613n ≤≤-,即316n ≤-≤,所以47n ≤≤,即4,5,6,7n =,选A. 5.【北大附中河南分校2013届高三第四次月考数学(理)】已知各项为正的等比数列{}n a 中,4a 与14a的等比中项为7112a a +的最小值为( )A .16B .8C.D .4【答案】B【解析】因为24148a a ==,即241498a a a ==,所以9a =。
(2022备考)各地名校试卷解析分类汇编(一)理科数学:1集合2
(2022备考)各地名校试卷解析分类汇编(一)理科数学:1集合2A .1或-1或0B .-1C .1或-1D .0 【答案】A29【山东省聊都市东阿一中2020届高三上学期期初考试 】“3πθ≠”是“21cos ≠θ”的( )A .充分不必要条件 B.必要不充分条件 C .充要条件D. 既不充分也不必要条件【答案】B 【解析】因为“3πθ≠”是“21cos ≠θ”的逆否命题是“1cos 2θ=”是“3πθ=”的必要不充分条件,选B30【山东省临沂市2020届高三上学期期中考试理】已知命题:,30x p x ∀∈>R ,则 A .0:,30x p x ⌝∃∈≤R B .:,30x p x ⌝∀∈≤RC .0:,30x p x ⌝∃∈<RD .:,30x p x ⌝∀∈<R【答案】A【解析】全称命题的否定式特称命题,因此0:,30x p x ⌝∃∈≤R ,选A.31【山东省临沂市2020届高三上学期期中考试理】设2{|1,},{|2,}x P y y x x Q y y x ==-+∈==∈R R ,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆ D .R Q C P ⊆【答案】C【解析】2{|1,}{|1}P y y x x y y ==-+∈=≤R ,{|2,}{0}x Q y y x y y ==∈=>R ,因此{1}R C P y y =>,因此RC P Q ⊆,选C.32【山东省青岛市2020届高三上学期期中考试理】已知全集R U =,集合{}{}237,7100A x x B x x x =≤<=-+<,则()UA B ⋂=A.()()+∞⋃∞-,53,B.(]()+∞⋃∞-,53,C.(][)+∞⋃∞-,53,D.()[)+∞⋃∞-,53, 【答案】D 【解析】{}{}2710025B x x x x x =-+<=<<,因此{35}A B x x ⋂=≤<,因此(){53}U A B x x x ⋂=≥<或,选D.33【山东省青岛市2020届高三上学期期中考试理】在ABC ∆中,“A B >”是“tan tan A B >”的A 充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】D【解析】因为函数tan y x =在R 上不是单调函数,因此“A B >”是“tan tan A B >”的 既不充分也不必要条件,选D.34【山东省青岛市2020届高三上学期期中考试理】给出下列三个结论:(1)若命题p 为真命题,命题q ⌝为真命题,则命题“p q ∧”为真命题;(2)命题“若0xy =,则0x =或0y =”的否命题为“若0xy ≠,则0x ≠或0y ≠”;(3)命题“,20x x ∀∈>R ”的否定是“ ,20x x ∃∈≤R ”.则以上结论正确的个数为 A .3个 B .2个 C .个 D .0个 【答案】C【解析】q ⌝为真,则q 为假,因此p q ∧为假命题,因此(1)错误.“若0xy =,则0x =或0y =”的否命题为“若0x ≠且0y ≠,则0xy ≠”,因此(2)错误.(3)正确.选C. 35【山东省济南外国语学校2020届高三上学期期中考试 理科】设集合U={1,2,3,4,5},A={1,3,5},B={2,5},则A ∩(C U B)等于( )A.{2}B.{2,3}C.{3}D.{1,3} 【答案】D 【解析】{134}UB =,,,因此{134}{1,3,5}={1,3}U A B =(),,,选D.36【山东省济南外国语学校2020届高三上学期期中考试 理科】 "1""||1"x x >>是的( ) A .充分不必要条件 B.必要不充分条件C .充分必要条件 D .既不充分又不必要条件 【答案】A【解析】11x x >⇒>或1x <-,因此"1""||1"x x >>是充分不必要条件,选A.37【山东省德州市乐陵一中2020届高三10月月考数学理】已知全集R U =,集合11{20},{2}4x A x x B x -=-≤<=<,则)()(=⋂B A C RA.),1[)2,(+∞-⋃--∞B.),1(]2,(+∞-⋃--∞C.),(+∞-∞D. ),2(+∞- 【答案】A 【解析】集合11{2}{1}4x B x x x -=<=<-,因此{21}A B x x =-≤<-,(){21}RA B x x x =<-≥-或,选A.38【山东省德州市乐陵一中2020届高三10月月考数学理】下列有关命题的说法正确的是 A .命题“若0xy =,则0x =”的否命题为:“若0xy =,则0x ≠” B .“若0=+y x ,则x ,y 互为相反数”的逆命题为真命题C .命题“R ∈∃x ,使得2210x -<”的否定是:“R ∈∀x ,均有2210x -<”D .命题“若cos cos x y =,则x y =”的逆否命题为真命题 【答案】B【解析】“若0xy =,则0x =”的否命题为:“若0xy ≠,则0x ≠”,因此A 错误.若0x y +=,则x , y 互为相反数”的逆命题为若x , y 互为相反数,则0x y +=”,正确.“R ∈∃x ,使得2210x -<”的否定是:“R ∈∀x ,均有2210x -≥”,因此C 错误.“若cos cos x y =,则2x y k π=+或2x y k π=-+”,因此D 错误,综上选B. 39【北京市东城区一般校2020届高三12月联考数学(理)】 若集合{}0A x x =≥,且A B B =,则集合B 可能是A .{}1,2B .{}1x x ≤C .{}1,0,1-D .R【答案】A 【解析】因为AB B =,因此B A ⊆,因为{}1,2A ⊆,因此答案选A.40【 北京四中2020届高三上学期期中测验数学(理)】 已知集合,,则( ) A . B .C .D .【答案】B【解析】{(3)0}{03}P x x x x x =-<=<<,={2}{22}Q x x x x <=-<<,因此{02}(0,2)P Q x x =<<=, 选B.41【 北京四中2020届高三上学期期中测验数学(理)】下列命题中是假命题的是( ) A .都不是偶函数B .有零点C .D .上递减【答案】A 【解析】当=2πϕ时,()=sin(2)=cos 22f x x x π+为偶函数,因此A 错误,选A.42【天津市耀华中学2020届高三第一次月考理科】设集合是A={32|()=83+6a f x x ax x -是(0,+∞)上的增函数},5={|=,[-1,3]}+2B y y x x ∈,则()R A B = ; 【答案】(,1)(4,)-∞+∞【解析】2()=2466f 'x x ax -+,要使函数在(0,)+∞上是增函数,则2()=24660f 'x x ax -+>恒成立,即14a x x <+,因为114244x x x x +≥⨯=,因此4a ≤,即集合{4}A a a =≤.集合5={|=,[-1,3]}+2B y y x x ∈{15}y x =≤≤,因此{14}A B x x ⋂=≤≤,因此()=R A B (,1)(4,)-∞+∞.43【天津市新华中学2020届高三上学期第一次月考数学(理)】(本小题满分10分) 已知(+1)(2-)0x x ≥的解为条件p ,关于x 的不等式222+-2-3-1<0(>-)3x mx m m m 的解为条件q .(1)若p 是q 的充分不必要条件时,求实数m 的取值范畴. (2)若p ⌝是q ⌝的充分不必要条件时,求实数m 的取值范畴.【答案】解:(1)设条件p 的解集为集合A,则2}x -1|{x ≤≤=A 设条件q 的解集为集合B,则1}m x 1--2m |{x +<<=B 若p 是q 的充分不必要条件,则A 是B 的真子集13211221>⇒⎪⎪⎩⎪⎪⎨⎧->-<-->+m m m m(2)若p ⌝是q ⌝的充分不必要条件, 则B 是A 的真子集323211221≤<-⇒⎪⎪⎩⎪⎪⎨⎧->-≥--≤+m m m m44【天津市新华中学2020届高三上学期第一次月考数学(理)】(本小题满分10分) 已知={()|1},B={()|3,0x 3}2A x,y y =-x +mx -x,y x+y =≤≤,若A B ⋂是单元素集,求实数m 的取值范畴. 【答案】A B ⋂是单元素集[]3,0,3y x x ∴=-∈与21y mx x =-+-有一个交点即方程2(1)40m x x-++=在[]0,3有一个根,0(1)1032m ∆=⎧⎪⎨+≤≤⎪⎩ 解得3m =(2)(0)(3)0f f ⋅< 解得103m > (3)若0x =,方程不成立(4)若3x =,则103m =,现在方程213403x x -+=根为3x =或43x = 在[]0,3上有两个根 ,不符合题意 综上103m >或3m = 45【天津市天津一中2020届高三上学期一月考 理】设命题p:函数f(x)=lg(ax 2-4x+a)的定义域为R;命题q:不等式2x 2+x>2+ax,对∀x ∈(-∞,-1)上恒成立,假如命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,求实数a 的取值范畴. 【答案】解:p:∆<0且a>0,故a>2;q:a>2x-2/x+1,对∀x ∈(-∞,-1),上恒成立,增函数(2x-2/x+1)<1现在x=-1,故a ≥1 “p ∨q ”为真命题,命题“p ∧q ”为假命题,等价于p,q 一真一假.故1≤a ≤2 46【山东省潍坊市四县一区2020届高三11月联考(理)】(本小题满分12分)已知集合}032|{)},(0)1(|{2≤--=∈<--=x x x N R a a x x x M ,若N N M =⋃,求实数a 的取值范畴.【答案】解:由已知得{}31|≤≤-=x x N , ………………2分N M N N M ⊆∴=⋃,. ………………3分又{})(0)1(|R a a x x x M ∈<--=①当01<+a 即1-<a 时,集合{}01|<<+=x a x M .要使N M ⊆成立,只需011<+≤-a ,解得12-<≤-a ………………6分 ②当01=+a 即1-=a 时,φ=M ,明显有N M ⊆,因此1-=a 符合……9分 ③当01>+a 即1->a 时,集合{}10|+<<=a x x M .要使N M ⊆成立,只需310≤+<a ,解得21≤<-a ……………………12分 综上所述,因此a 的取值范畴是[-2,2].…………13分47【山东省德州市乐陵一中2020届高三10月月考数学理】(本小题满分12分) 设命题p :实数x 满足03422<+-a ax x ,其中0<a ;命题q :实数x 满足2280,x x +->且p q ⌝⌝是的必要不充分条件,求实数a 的取值范畴.【答案】解:设{}{}22430(0)3(0)A x x ax a a x a x a a =-+<<=<<<{}{}240822>-<=>-+=x x x x x x B 或. …………… 5分p ⌝ 是q ⌝的必要不充分条件,∴p q 是必要不充分条件,BA ≠⊂∴, ……………………8分因此423-≤≥a a 或,又0<a ,因此实数a 的取值范畴是4-≤a . …………………12分 48【山东省泰安市2020届高三上学期期中考试数学理】(本小题满分12分) 已知集合A 为函数()()()lg 1lg 1f x x x =+--的定义域,集合{}22120B x a ax x =---≥.(I )若112A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭,求a 的值;(II )求证2a ≥是A B φ⋂=的充分不必要条件. 【答案】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各地解析分类汇编:数列21.【云南师大附中高三高考适应性月考卷(三)理科】(本小题满分12分) 已知数列{a n }的前n项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥ (I)求数列a n 的通项公式;(Ⅱ)若b n =n·a n ,求数列{b n }的前n 项和T n 。
【答案】解:(Ⅰ)113354(2)n n n n S S a a n ---=-≥,1122n n n n aa a a --∴==,,………………(3分)又12a =,{}22n a ∴是以为首项,为公比的等比数列,……………………………(4分) 1222n n n a -∴=⋅=. ……………………………………………………………………(5分) (Ⅱ)2n n b n =⋅,1231222322n n T n =⋅+⋅+⋅++⋅,23121222(1)22n n n T n n +=⋅+⋅++-⋅+⋅.……………………………………………(8分)两式相减得:1212222n n n T n +-=+++-⋅,12(12)212n n n T n +-∴-=-⋅-1(1)22n n +=-⋅-,………………………………………(11分)12(1)2n n T n +∴=+-⋅.…………………………………………………………………(12分)2.【云南省玉溪一中高三第四次月考理】(本题12分)在等差数列{}n a 中,31=a ,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11=b ,公比为q ,且1222=+S b ,22b S q =. (1)求n a 与n b ;(2)设数列{}n c 满足1n nc S =,求{}n c 的前n 项和n T . 【答案】解:(1)设{}n a 的公差为d .因为⎪⎩⎪⎨⎧==+,,122222b S q S b 所以⎪⎩⎪⎨⎧+==++.,q d q d q 6126 解得 3=q 或4-=q (舍),3=d .故()3313n a n n =+-= ,13-=n n b . (2)由(1)可知,()332n n n S +=,所以()122113331n n c S n n n n ⎛⎫===- ⎪++⎝⎭. 故()21111121211322313131n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦… 3.【山东省实验中学高三第三次诊断性测试理】(本小题满分12分)已知单调递增的等比数列}{n a 满足:28432=++a a a ,且23+a 是42,a a 的等差中项。
(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若n n n n n b b b S a a b +⋯++==2121,log ,求5021>⋅++n n n S 成立的正整数n 的最小值。
【答案】解:(Ⅰ)设等比数列{}n a 的首项为1a ,公比为q ,依题意,有423)22a a a +=+(, 代入,28432=++a a a 得20,8423=+∴=a a a …………………………2分⎪⎩⎪⎨⎧===+∴820213311q a a q a q a 解之得⎪⎩⎪⎨⎧==⎩⎨⎧==3221211a q a q 或 …………………………4分 又{}n a 单调递增,nn a a q 2,2,21=∴=∴=∴ ………………………………6分(Ⅱ)n n n n n b 22log 221⋅-=⋅=,………………………………7分n n n s 223222132⨯+⋯+⨯+⨯+⨯=-∴ ①143222)1(2322212++⨯-+⋯+⨯+⨯+⨯=-∴n n n n n s ②∴①-②得222221)21(222222111132-⋅-=⋅---=⋅-+⋯+++=++++n n n n n nn n n n s 10分5021>⋅+∴+n n n s ,522,502211>∴>-∴++n n又523222451<=≤≤+n n 时,当, …………………………11分当5≥n 时,52642261>=≥+n .故使5021>⋅++n n n s ,成立的正整数n 的最小值为5. …4.【山东省泰安市高三上学期期中考试数学理】已知等比数列{}n a 的前n 项和为n S ,若1,S 22,S 33S 成等差数列,且44027S =求数列{}n a 的通项公式. 【答案】5.【山东省潍坊市四县一区高三11月联考(理)】(本小题满分12分)已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T . 【答案】解(1)由题意知0,212>+=n n n a S a ………………1分 当1=n 时,21212111=∴+=a a a 当2≥n 时,212,21211-=-=--n n n n a S a S两式相减得1122---=-=n n n n n a a S S a ………………3分 整理得:21=-n na a ……………………4分 ∴数列{}n a 是以21为首项,2为公比的等比数列. 211122212---=⨯=⋅=n n n n a a ……………………5分(2)42222--==n b n na∴n b n 24-=,……………………6分n n n n n n n a b C 28162242-=-==- nn n nn T 28162824282028132-+-⋯+-++=- ① 13228162824202821+-+-+⋯++=n n n n n T ②①-②得1322816)212121(8421+--+⋯++-=n n n nT ………………9分 111122816)211442816211)2112184+-+-----=----⋅-=n n n n nn (( n n24=.………………………………………………………11分.28n n nT =∴…………………………………………………………………12分6.【山东省师大附中高三12月第三次模拟检测理】(本题满分12分)数列{}n a 的前n 项的和为n S ,对于任意的自然数0n a >,()241n n S a =+(Ⅰ)求证:数列{}n a 是等差数列,并求通项公式 (Ⅱ)设3nn n a b =,求和12n nT b b b =+++【答案】解 :(1)令------------------1分(2)-(1)--------------------------3分是等差数列 ------------------------5分----------------------------6分(2)---①---------------------8分---②①-②----------10分所以-------------------------------12分7.【山东省师大附中高三12月第三次模拟检测理】(本小题满分12分)已知{}n a 是等比数列,公比1q >,前n 项和为3427,,4,2n S S a a ==且211{}:,log n n n b b n a +=+数列满足(Ⅰ)求数列{},{}n n a b 的通项公式; (Ⅱ)设数列1{}n n b b +的前n 项和为n T ,求证11(*).32n T n N ≤<∈ 【答案】解 :----------------4分-----------------------------------------5分-----------------------6分(2)设------8分= ----------------------------10分因为,所以----------12分8.【山东省青岛市高三上学期期中考试理】(本小题满分12分)设{}n a 是公差大于零的等差数列,已知12a =,23210a a =-.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设{}n b 是以函数214sin ()12y x π=+-的最小正周期为首项,以3为公比的等比数列,求数列{}n n a b -的前n 项和n S .【答案】9.【山东省青岛市高三上学期期中考试理】(本小题满分13分)已知函数()ln f x x =的图象是曲线C ,点*(,())(N )n n n A a f a n ∈是曲线C 上的一系列点,曲线C 在点(,())n n n A a f a 处的切线与y 轴交于点(0,)n n B b . 若数列{}n b 是公差为2的等差数列,且1()3f a =.(Ⅰ)分别求出数列{}n a 与数列{}n b 的通项公式;(Ⅱ)设O 为坐标原点,n S 表示n n OA B ∆的面积,求数列{}n n a S 的前n 项和n T . 【答案】解:(Ⅰ)()1f x x'=, ∴曲线C 在点()(),n n n A a f a 处的切线方程:()1ln n n ny a x a a -=- 令0ln 1n x y a =⇒=-,该切线与y 轴交于点()0,n n B b ,ln 1n n b a ∴=-………………………………………3分10.【山东省烟台市莱州一中20l3届高三第二次质量检测 (理)】(本小题满分12分) 已知{}n a 是公差为2的等差数列,且317111a a a +++是与的等比中项. (1)求数列{}n a 的通项公式; (2)令()12n n na b n N *-=∈,求数列{}n b 的前n 项和Tn. 【答案】11.【天津市新华中学高三上学期第二次月考理】设数列{a n }的前n 项和为S n ,且满足S n =2-a n ,n=1,2,3,…(1)求数列{a n }的通项公式;(4分)(2)若数列{b n }满足b 1=1,且b 1+n =b n +a n ,求数列{b n }的通项公式;(6分) (3)设C n =n (3- b n ),求数列{ C n }的前n 项和T n 。
(6分) 【答案】(1)a 1=S 1=1n ≥2时,S n =2-a nS 1-n =2-a 1-na n =a n +a 1-n 2a n = a 1-n ∵a 1=1 1-n n a a =21 ∴a n =(21)1-n(2)b 1-n -b n =(21)1-n1分⎪⎪⎪⎭⎪⎪⎪⎬⎫=-=-=---21123012)21()21()21(n n n b b b b b b∴b n -b 1=(21)+……+(21)2-n =2112111---n =2-221-n∴b n =3-221-n∵b 1=1 成立∴b n =3-(21)2-n (3)C n =n (21)2-n 1分 T n =1×(21)1-+2(21)0+……+n (21)2-n21 T n =1×(21)0+……+(n-1) (21)2-n +n (21)1-n =2+2112111---n -n (21)1-n =2+2-(21)2-n -n (21)1-n∴T n =8-321-n -22-n n =8-222-+n n 12.【北京市东城区普通校高三12月联考数学(理)】(本小题满分13分)已知:数列{}n a 的前n 项和为n S ,且满足n a S n n -=2,)(*N n ∈.(Ⅰ)求:1a ,2a 的值; (Ⅱ)求:数列{}n a 的通项公式;(Ⅲ)若数列{}n b 的前n 项和为n T ,且满足n n na b =)(*N n ∈,求数列{}n b 的前n 项和n T . 【答案】解:(Ⅰ)na S n n -=2令1=n ,解得11=a ;令2=n ,解得32=a ……………2分 (Ⅱ)na S n n -=2所以)1(211--=--n a S n n ,(*,2N n n ∈≥)两式相减得121+=-n n a a ……………4分所以)1(211+=+-n n a a ,(*,2N n n ∈≥) ……………5分又因为211=+a所以数列{}1+n a 是首项为2,公比为2的等比数列 ……………6分所以n n a 21=+,即通项公式12-=nn a (*N n ∈) ……………7分(Ⅲ)n n na b =,所以n n n b nn n -⋅=-=2)12(所以)2()323()222()121(321n n T nn -⋅++-⋅+-⋅+-⋅=)321()2232221(321n n T nn ++++-⋅++⋅+⋅+⋅= ……9分 令nn n S 2232221321⋅++⋅+⋅+⋅= ① 13222)1(22212+⋅+⋅-++⋅+⋅=n n n n n S ②①-②得132122222+⋅-++++=-n n n n S1221)21(2+⋅---=-n n n n S ……………11分 112)1(22)21(2++⋅-+=⋅+-=n n n n n n S ……………12分 所以2)1(2)1(21+-⋅-+=+n n n T n n ……13分 13.【 北京四中高三上学期期中测验数学(理)】(本小题满分13分) 设等差数列的首项及公差d 都为整数,前n 项和为S n . (1)若,求数列的通项公式;(2)若求所有可能的数列的通项公式.【答案】 (Ⅰ)由又 故解得因此,的通项公式是1,2,3,…,(Ⅱ)由 得即由①+②得-7d <11,即由①+③得, 即,于是又,故.将4代入①②得 又,故所以,所有可能的数列的通项公式是1,2,3,….14.【北京四中高三上学期期中测验数学(理)】(本小题满分14分)已知函数(为自然对数的底数).(1)求的最小值;(2)设不等式的解集为,若,且,求实数的取值范围(3)已知,且,是否存在等差数列和首项为公比大于0的等比数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.【答案】(1)由当;当(2),有解由即上有解令,上减,在[1,2]上增又,且(3)设存在公差为的等差数列和公比首项为的等比数列,使……10分又时,故②-①×2得,解得(舍)故,此时满足存在满足条件的数列……14分15.【北京四中高三上学期期中测验数学(理)】(本小题满分14分)已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M在直线上,且.(1)求+的值及+的值(2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.【答案】 (Ⅰ)∵点M 在直线x=上,设M .又=,即,,∴+=1.① 当=时,=,+=;② 当时,,+=+===综合①②得,+. (Ⅱ)由(Ⅰ)知,当+=1时, +∴,k=.n ≥2时,+++ , ①, ②①+②得,2=-2(n-1),则=1-n.当n =1时,=0满足=1-n. ∴=1-n.(Ⅲ)==,=1++=..=2-,=-2+=2-,∴,、m 为正整数,∴c=1,当c=1时,,∴1<<3, ∴m=1.16.【 山东省滨州市滨城区一中高三11月质检数学理】(本题满分12分)已知数列{}n a 满足31=a ,1211-=∙--n n n a a a(1)求2a ,3a , 4a ;(2)求证:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求出{}n a 的通项公式。