知道图上距离和比例尺实际距离怎么求
3.2 用比例尺求实际距离解析
右面是北京轨道交通路线示意图。地铁1号线从苹果 园站至四惠东站在图中的长度大约是7.8 cm,从苹果 园站至四惠东站的实际长度大约是多少千米?
解:设从苹果园站至四惠东站的 实际长度是xcm。
7.8 1 = x 400000 x = 7.8×400000 x = 3120000
3120000cm=31.2km 答:从苹果园站至四惠东站 的实 际长度是31.2km。
图上距离 =比例尺 实际距离
数值比例尺
线段比例尺
说说下列比例尺的实际含义。
1:1500
0 30 60
1 8000
90
120千米
一、情境导入
1、下面是北京轨道交通路线示意图。地铁1号线从苹果 园站至四惠东站在图中的长度大约是7.8 cm,从苹果园 站至四惠东站的实际长度大约是多少千米? 图上距离 =比例尺 根据 实际距离 可以用解比例的方法求 出实际距离。
2.在一幅比例尺是1:20000000的地图上,甲乙两 地相距6厘米。一架飞机以每小时800千米的速度 飞往乙地,需要飞多少小时?
解:设甲乙两地的实际距离是X厘米。 6:X=1:20000000 X=6×20000000 X=120000000 120000000厘米=1200千米 1200÷800=1.5(小时) 答:需要飞1.5小时。
方程
算术乘
算术除
继续
二、合作探究
雏鹰少年足球队需要几小时到达青岛? 图上距离 根据 实际距离 =比例尺,可以列比例式解答。 解:设济南到青岛的实际距离为x厘米。 4
χ
1 = 8000000 = 4×8000000
χ
χ
= 32000000 32000000厘米 = 320千米 320 ÷ 100 = 3.2(小时)
第36讲 比例尺问题
第36讲 比例尺问题【探究必备】1. 一幅图的图上距离与实际距离的比叫做这幅图的比例尺。
2. 比例尺=图上距离:实际距离图上距离=实际距离×比例尺实际距离=图上距离÷比例尺【王牌例题】例1、 甲城到乙城相距60千米,在一幅地图上量得两城之间的图上距离是12厘米,求这幅地图的比例尺?分析与解答:求比例尺时,要先把实际距离和图上距离的单位名称统一,由于甲城到乙城相距60千米,也就是甲、乙两城的实际距离是60千米,即6000000厘米,在一幅地图上量得两城之间的图上距离是12厘米,根据比例尺的意义,算出图上距离和实际距离的比,就是这幅的比例尺,即这幅地图的比例尺是12:6000000=1:500000。
例2、 在一幅比例尺为1:2000000的地图上,量得京杭大运河的全长是8.55厘米。
京杭大运河实际的全长约是多少千米?分析与解答:已知图上距离和比例尺,求实际距离,可以用图上距离除以比例尺。
或者根据比例尺是1:2000000,可知实际距离是图上距离的2000000倍,用图上距离乘2000000,即求得实际距离是多少厘米,因此京杭大运河实际的全长约是8.55×2000000=17100000厘米=1710(千米)。
例3、某建筑工地挖一个长方形的地基,把它画在比例尺是1:4000的平面图上,长是5厘米,宽是3.5厘米。
这块地基的面积是多少平方米?分析与解答:解决这道题的关键是,先求出长方形的长和宽。
由于比例尺是1:4000,因此根据公式“实际距离=图上距离÷比例尺” 。
求出长方形的长和宽,即长方形的长为5÷40001=5×4000=20000(厘米)=200(米),宽为 3.5÷40001=3.5×4000=14000(厘米)=140(米),再根据长方形的面积计算公式,可算出这块地基的面积是200×140=28000(平方米)。
6下-04-2-1(用比例尺和图上距离求实际距离)
利用比例尺和图上距离求实际距离[教学内容]《义务教育教科书·数学(六年级上册)》57页。
[教学目标]1.结合具体情境,进一步理解比例尺的意义,会解决“已知图上距离和比例尺,求实际距离”的实际问题。
2.结合实际情境,经历提出问题、分析问题、解决问题的过程,初步学会数学的思维方式,培养问题意识和解决问题的能力。
3.在解决实际问题的过程中,感受数学与生活的密切联系,发展应用意识,体验成功的乐趣。
[教学重点]探索解决已知图上距离和比例尺求实际距离的方法。
[教学难点]运用已知图上距离和比例尺求实际距离的方法解决问题。
[教学准备]课件、直尺、练习本。
[教学过程]一、情境导入师:同学们,上节课我们参观了雏鹰少年足球队赛前训练的情况,他们今天就要出发去济南参加比赛了,大家想一起去吗?怎么去呢?学生回答,适时引导。
师:教练决定坐汽车去济南,我们首先来看看济南的位置?(课件先出示教材情境图:见图1)师:根据这些数学信息,你能提出什么数学问题?(根据学生的回答出示红点问题)预设1:济南到青岛的实际距离多少千米?图1 预设2:雏鹰少年足球队大约需要几小时到达青岛?……【设计意图】延续上一个信息窗的情境“雏鹰少年组球队赛前训练”,到本节课创设“出征比赛”的情境,通过发现并提出实际问题,引发学生对现实问题的思考,同时激发学生的学习兴趣和求知欲望。
二、合作探索(一)独立思考,讨论策略师:怎样解决“雏鹰少年足球队从济南到达青岛时所用的时间?”这个问题?引导学生先思考,再回答。
(根据学生的回答,课件随机出示要点)预设1:要求所需时间,应利用数量关系:路程÷速度=时间。
预设2:需要先求出从济南到青岛的实际距离。
预设3:要求出实际距离,首先要量出图上距离。
(二)小组合作,尝试解决师:看来同学们已经想出了办法,下面请大家以小组为单位合作解决。
请学生小组合作,在组内解决问题。
(三)组间交流,建立模型师:哪个小组能说一说你们是怎样解答的?学生可能会出现以下三种方法:预设1:解:设济南到青岛的实际距离为x厘米。
比例尺的应用(求实际距离)
如果地图A上的1单位长度表示实际上的100米,而地图B的比例尺为1:200,则地图A上 实际距离为100米时,在地图B上表示为50厘米。
05
比例尺的精度与误差
比例尺的精度
01
比例尺精度决定了地图上表示的距离与实际距 离之间的误差范围。
02
比例尺越小,精度越高,表示的实际距离越准 确。
03
地图制作过程中,需要考虑比例尺与地图用途 的匹配度,以确保地图的实用性。
比例尺误差的消除与减小过采用更先进的测量技术和设备,可以减小地图制作过程中
的测量误差。
选择合适的投影方式
02
根据地图用途和区域特点,选择合适的投影方式,可以减小投
影变换带来的误差。
加强地图校准和检验
03
通过加强地图校准和检验,可以及时发现并纠正地图中的误差,
提高地图的精度。
比例尺的作用
1 2
3
方便测量和估算实际距离
通过比例尺,我们可以根据图上的距离计算出实际的距离, 从而进行测量和估算。
提高地图的可读性和准确性
比例尺可以帮助我们更好地理解地图上的信息,并提高地图 的可读性和准确性。
在工程设计和建设中有广泛应用
在工程设计和建设中,比例尺可以帮助设计师和工程师更好 地理解和规划实际的空间和尺寸,提高设计的准确性和可行 性。
举例
如果地图上的1单位长度表示实际上的100米,而地图的比例尺为1:1000,则实际距离为100米时,在地 图上表示为1厘米。
不同地图之间的换算
地图换算
当需要将一个地图上的距离转换为另一个地图上的距离时,可以使用比例尺进行换算。 假设两个地图的比例尺分别为1:M和1:N,则换算公式为:新距离 = 旧距离 × (N/M)。
图上距离与实际距离
比例尺
1、如何计算比例尺?
图上距离 比例尺 = 实际距离 2、比例尺有单位吗?
3、比例尺通常化成1:n的形式?
随堂练习
1.已知A、B两市的实际距离是300km, 量得两地在地图上的距离是5cm,则这 地图册的比例尺是____; 注意:单位必须化统一且比例尺跟单 位的选取无关. 2.若在此地图册上量得A、C两市的距离 是16cm,则两市的实际距离是_km.
线段的比:两条线段长度的比叫做这 两条线段的比。 讨论: (1)若线段a:b=k,那么k的取值有 限制吗?
(2)求两条线段的比时,两条线段的
比值与采用的长度单位有没有关系?
(3)线段的比有单位吗?
成比例的线段
在四条线段中,如果两条线段的比等于另两条线 段的比,那么称这四条线段成比例.
a c = 即a∶b=c∶d或 b d
回忆比例的基本性质
如果a:b=c:d 或 ,那么ad=bc 。
a c = b d
如果ad=bc ,那么a:b=c:d 或
.
类似地与比例中项有关, 如果a:b=b:c 2 那么 b =ac . 2 如果b =ac那么 a:b=b:c .
注意:b≠o,d≠0
活动:探究比例的性质
ab cd a c = (1)如果 = ,那么 成立吗? b d b d
线段的比有顺序性,四条线段成比例也有顺序
a c 性.如 = 是线段a、b、c、d成比例,而不是 b d
线段a、c、b、d成比例;若a、c、d、b成比例, a d = 应表示为 c b
试一试
1.如果a=2㎝,bd是成比例线段吗?
比例中项
特别地, 如果a:b=b:c,这时我们把b 叫做a、c的比例中项,反之亦成立。
六年级下册数学讲义-第四单元——比例:比例的应用人教版(含答案)
比例的应用【知识梳理】1.比例尺。
(1)意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺或实际距离图上距离=比例尺 (2)分类:①按表现形式分,可以分为数值比例尺和线段比例尺;② 按将实际距离缩小还是放大分,可以分为缩小比例尺和放大比例尺。
(3)已知图上距离和实际距离,求比例尺的方法。
先把图上距离和实际距离统一单位,再用图上距离比实际距离,然后把它化简成前项是1或后项是1的比,得出比例尺。
(4)已知比例尺和图上距离,求实际距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出实际距离,也可以利用“实际距离=图上距离÷比例尺”直接列式计算。
(5)已知比例尺和实际距离,求图上距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出图上距离,也可以利用“图上距离=实际距离×比例尺”直接列式计算。
(6)应用比例尺画图。
①确定比例尺;②根据比例尺求出图上距离;③画图;④ 标出所画图的名称和比例尺。
要点提示:①比例尺是一个比,表示两个同类量间的倍比关系,不能带单位名称。
②图上距离一般用厘米作单位,实际距离一般用米或千米作单位,计算比例尺时一定要先统一单位。
③为了计算方便,一般把比例尺写成前项或后项是1的形式。
2.图形的放大与缩小。
(1)特点:形状相同,大小不同。
(2)将图形放大或缩小的方法。
一看,看原图形各边占几格;二算,按已知比计算出放大图或缩小图的各边占几格;三画,按计算出的边长画出原图形的放大图或缩小图。
要点提示:把图形每条边按相同倍数放大(或缩小)后,形状不变,相对应的角的度数也不变。
3.用比例解决问题。
根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,再根据正、反比例关系列出相应的比例并求解。
要点提示:用正、反比例解决问题的关键是确定成什么比例关系。
【诊断自测】1.填空。
(1)在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米。
热点:关于比例尺及正反比例的实际应用问题-2024年小升初数学(解析版)
热点:关于比例尺及正反比例的实际应用问题1“朝辞白帝彩云间,千里江陵一日还”,这是唐朝著名诗人李白的诗。
在一幅比例尺是1∶3000000的地图上量得白帝城到江陵的距离是14cm。
王杰开车以60千米/时的速度从白帝城出发,行驶7时能否到达江陵?请计算说明。
【答案】能【分析】根据题意,结合图上距离÷比例尺=实际距离,求出实际距离,再换算成以“千米”作单位,根据速度×时间=路程,求出行驶7小时行驶的路程后与白帝城到江陵的距离比较后得出答案。
【详解】1∶3000000=1÷3000000=1300000014÷13000000=14×3000000=42000000(厘米)42000000厘米=420千米60×7=420(千米)答:行驶7时能到达江陵。
2在比例尺是1500的平面图上,量得一个正方形花圃的边长是14cm,这个花圃实际面积是多少公顷?【答案】0.49公顷【分析】比例尺是图上距离与实际距离的比值,已知正方形边长的图上距离是14cm,图上距离除以比例尺得到实际距离,再根据正方形的面积=边长×边长,求出花圃的实际面积。
【详解】14÷1500÷100=14×500÷100=7000÷100=70(米)70×70=4900(平方米)4900平方米=0.49公顷答:这个花圃实际面积是0.49公顷。
【点睛】本题考查比例尺的应用,本题注意要先求出花圃边长的实际距离后,最后求出花圃的实际面积。
3在比例尺为1∶5000000的地图上,量得杭州东站到上海虹桥站的长度是3.4厘米。
杭州东站到上海虹桥站的实际距离是多少千米?一列动车,从杭州东站到上海虹桥站,用时40分钟,那么这列动车平均每小时行多少千米?【答案】170千米;255千米/小时【分析】实际距离=图上距离÷比例尺,则用3.4÷15000000即可求出实际距离,1千米=100000厘米,将结果化成千米即可;速度=路程÷时间,代入数据计算即可。
比例尺求实际距离的三种方法
比例尺求实际距离的三种方法
嘿,朋友们!今天咱来聊聊比例尺求实际距离的三种超棒方法呀!
第一种,那就是直接用图上距离除以比例尺啦!就比如啊,你有张地图,图上两地之间是 5 厘米,比例尺是 1:10000,那实际距离不就是
5÷(1/10000)=50000 厘米,也就是 500 米嘛!
第二种呢,用比例关系来解决!就好像你做个数学题,知道图上距离和比例尺的比例,那实际距离不也就水到渠成能算出来啦!打个比方,地图上量得是 3 厘米,比例尺是 1:5000,那不就是设实际距离为 x 厘米,
3:x=1:5000,x 不就等于 15000 厘米,即 150 米嘛!
第三种,嘿嘿,那就是利用等量代换的思想哦!这就好比你玩拼图,换到对的位置就恍然大悟啦!好比有个图形,通过一些已知条件推出图上距离和比例尺的关系,那实际距离不就能轻松找到啦!比如说,已知一些相关信息推出图上距离是 4 厘米,比例尺是 1:8000,那实际距离自然就是
4÷(1/8000)=32000 厘米,也就是 320 米呀!
哇塞,这三种方法是不是超赞的呀!大家可一定要学会哦,这样以后遇到比例尺求实际距离就再也不怕啦!。
人教版六年级数学下册第三单元第八课时_比例尺的应用(例2、例3)
答 : 它的长是4.75cm
图上距离 比例尺 实际距离
1 3.4 17000000 (cm ) 5000000
17000000 cm 170 km
答 : 上海到杭州的实际距离 是170km.
学问勤中得
可不可以用算术方法来解决这个问题?
图上距离 根据“ 比例尺”可以得出: 实际距离
图上距离 比例尺 实际距离 实际距离 比例尺 图上距离
答:地铁1号线的实际长度大约是50km。
1 10 500000 10 500000 500000计算比例尺、计算实际
解:设地铁1号线的实际长度大约是x厘米。
图上距离 根据“ 比例尺”可以列出方程 : 实际距离
10 1 x 500000 x 10 500000
x 5000000
5000000 cm 50 km
答:地铁1号线的实际长度大约是50km。
2
下面是北京市地铁规划图。地铁1号线在图中的 长度大约是10cm,它的实际长度大约是多少?
杏花村
荷花村
=2.5 :1000000
=1 :400000
答:这幅图的比例尺为1:400000。
复习:
3、解比例:
5 1 x 4
解: x 5 4
x 20 x : 60 1 : 20
解: 20x 1 60
x 60 20 x3
2
下面是北京市地铁规划图。地铁1号线在图中的 长度大约是10cm,它的实际长度大约是多少?
3.6cm 22.5cm 9000km
图上距离 根据“ 比例尺”可以得出: 实际距离
图上距离 比例尺 实际距离 实际距离 比例尺 图上距离
利用比例尺和实际距离求图上距离邵波教案
利用比例尺和实际距离求图上距离一、教学目标1. 让学生理解比例尺的概念,知道比例尺的应用。
2. 让学生掌握利用比例尺和实际距离求图上距离的方法。
3. 培养学生的实际应用能力和解决问题的能力。
二、教学重点与难点1. 教学重点:比例尺的概念,利用比例尺和实际距离求图上距离的方法。
2. 教学难点:比例尺的应用,求图上距离的计算方法。
三、教学准备1. 教具准备:比例尺图例,实际距离与图上距离的对照图。
2. 学具准备:学生尺子,计算器。
四、教学过程1. 导入新课1.1 教师出示比例尺图例,引导学生观察并说出比例尺的含义。
1.2 学生分享观察到的比例尺信息,教师总结并讲解比例尺的概念。
2. 探究新知2.1 教师出示实际距离与图上距离的对照图,引导学生发现实际距离与图上距离的关系。
2.2 学生通过观察对照图,发现实际距离与图上距离的比例关系。
2.3 教师引导学生总结利用比例尺和实际距离求图上距离的方法。
3. 课堂练习3.1 教师出示练习题,学生独立完成,检验自己对利用比例尺和实际距离求图上距离方法的掌握。
3.2 教师选取部分学生的作业进行讲解和评价,指出作业中的优点和不足。
4. 拓展延伸4.1 教师出示一个实际问题,引导学生利用比例尺和实际距离求解图上距离。
4.2 学生分组讨论,共同解决问题,教师巡回指导。
5. 总结与反思5.1 教师引导学生总结本节课所学的知识点,巩固比例尺的概念和利用比例尺求图上距离的方法。
5.2 学生分享自己的学习收获,教师给予评价和鼓励。
五、课后作业1. 请学生运用比例尺和实际距离,求解家到学校的图上距离,并绘制出家到学校的路线图。
2. 学生家长协助检查作业完成情况,家长在作业本上签字确认。
教学反思:六、教学评价1. 评价目标:通过课后作业和课堂练习,评价学生对比例尺概念的理解和利用比例尺求图上距离的掌握程度。
2. 评价方法:教师对课后作业进行批改,观察学生的作业完成情况,对课堂练习的回答情况进行记录和评价。
已知比例尺求图上距离和实际距离..
1、图上距离与实际距离的比是1:500000
图上距离:实际距离=1:500000
解:设地铁1号线的实际长度是x厘米
10 1 = x 500000
x = 10 × 500000 x = 5000000 5000000厘米 = 50千米
1 2、图上距离是实际距离的 500000 1 10 ÷ 5000 x=8
答:长画8cm,宽应画6cm。
1 2、表示图上距离是实际距离的 1000
可写成那条 关系式?
80m = 8000cm 1 8000 × 1000 = 8(cm)
60m = 6000cm 1 6000 × 1000 = 6(cm)
1 80 × 1000 = 0.08(m)
或
0.08m = 8(cm)
1 60 × 1000 = 0.06(m)
0.06m = 6(cm)
答:长画8cm,宽应画6cm。
做一做
1、一块长方形草地长20米,宽15米。把它画在比例 1 尺是 500 的图纸上,长和宽各应画多少厘米?
2、一张地图的经例尺是1:20000,从甲地到乙地 的距离是60千米,求图上距离是多少厘米。
3、表示实际距离是图上距离的1000倍。
4、表示图上1厘米相当于实际距离10米。
1、表示图上距离与实际距离的比是1:1000 图上距离:实际距离=1:1000 解:设长应画xcm,宽应画ycm。 80m = 8000cm x:8000=1:1000 1000x=8000×1 x=8000÷1000 60m = 6000cm x:6000=1:1000 1000x=6000×1
例3 把一个长80m、宽60m的长方形操场画在比 例尺是1:1000的图纸上。长和宽各应画多少cm?
图实际距离等于什么
图实际距离等于什么
图上距离=实际距离×比例尺。
实际距离=图上距离÷比例尺。
比例尺=图上距离÷实际距离.(在比例尺排序中要特别注意单位间的`折算)。
(1公里=1千米=1×米=1×厘米)。
单位折算:图上以厘米,实地用千米,厘米换千米,回去五个零;千米换厘米,在千的基础上再提两个零。
比例地图
国家测绘部门将1∶、1∶1万、1∶2.5万、1∶5万、1∶10万、1∶25万、1∶50万和1∶万八种比例尺地形图规定为国家基本比例尺地形图,缩写基本地形图,亦称国家基本图,以确保满足用户各部门的基本须要。
其中:
大比例尺地形图:1∶至1∶10万的地形图;
中比例尺地形图:1∶25万和1∶50万地形图;
小比例尺地形图:1∶万地形图。
生活中的比例尺
如:地图,绘图、测量、田地、航空、公路、航海,建筑。
图上距离和实际距离的比
地图制作者需要根据实际需求选 择合适的比例尺,以满足不同用 户对地图精度和详细程度的需求。
导航系统
导航系统是现代生活中不可或缺的一 部分,它可以帮助我们找到目的地并 规划最佳路线。
通过使用图上距离和实际距离的比,导航系 统可以提供准确的路线规划和行驶距离估算 ,帮助用户快速、准确地到达目的地。
01
02
03
04
军事
比例尺在军事上有着广泛的应 用,如作战计划、地形分析等
。
地理研究
地理学家使用比例尺来研究地 形、地貌和地球表面的其他特
征。
城市规划
城市规划师使用比例尺来规划 城市和地区的发展。
地图制作
地图制作者使用比例尺来制作 各种类型的地图,如交通图、
旅游图等。
计算图上距离和实际距离的比的步骤
在地理学、地图学、测量和军事等领域中,比例尺都是不可或缺的概念,对于空间 数据的表示、分析和应用具有重要意义。
02 图上距离和实际距离的定 义
图上距离的定义
图上距离
在地图或图纸上,两点之间的直线距 离。
测量方法
使用测量工具,如直尺、量角器等, 直接测量两点间的直线长度。
实际距离的定义
实际距离
在实际环境中,两点之间经过地形、地貌、建筑物等障碍物的实际行走或行驶 距离。
使用激光测距仪
激光测距仪具有高精度和高速度的优点,能够快速准确地测量实际距离。
选用高分辨率的GPS设备
高分辨率的GPS设备能够提供更精确的位置信息,从而减小测量误差。
优化地图制作流程
采集更多数据点
在地图制作过程中,增加更多的数据 点可以提高地图的精度,进而提高图 上距离和实际距离的比的精度。
比例尺
图上距离 = 比例尺 实际距离
比例尺 1:100000000
1:100000000是数值比例尺,有时写成
1 100000000
比例尺
0
50
100km
这是线段比例尺,表示地图上1cm的距离相当于地面 上50km的实际距离.
在生产中,有时由于机器零件比较小,需要把实际距 离扩大一定的倍数以后,再画在图纸上.
1 100
答:图上距离和实际距离的比是1︰100。
在比例尺是1∶6000000的地图上,量得南京到 北京的距离是15厘米.南京到北京的实际距离大 约是多少千米?
图上距离 1 = 实际距离 6000000
解:设南京到北京的实际距离为x厘米。 15∶x=1∶6000000 x=90000000 90000000厘米=900千米
答:南京到北京的实际距离大约是900千米。
学校到小明家的实际距离为900米.你有办法找到小明 家在图上的位置吗?(小明家在学校的正西方.)
北
小明家 学校
0
300
600米
上海
杭州
在比例尺是1︰5000000的中国地图上,量 得上海到杭州的距离是3.4厘米。计算一下, 上海到杭州的实际距离大约是多少千米?
答:地铁1号线的实际长度是50km。
设计一座厂房,在平面图上用10厘米的距离表示地面 上10米的距离。求图上距离和实际距离的比。
10厘米︰10米
先统一单位,再化简。
10米=1000厘米 10︰1000=1︰100 (或)
1 100
答:图上距离和实际距离的比是1︰100。
在比例尺是1∶6000000的地图上,量得南京到 北京的距离是15厘米.南京到北京的实际距离大 约是多少千米?
六年级数学上册知识讲义-根据比例尺和图上距离求实际距离-冀教版
小学数学根据比例尺和圆上距离求实际距离知识梳理:量出下图中学校到汽车站、少年宫、电影院的图上距离,并标在图上,再根据线段比例尺算出它们的实际距离。
(1)学校到汽车站的实际距离为:。
(2)学校到少年宫的实际距离为:。
(3)学校到电影院的实际距离为:。
测量结果如下图:因为图上距离1厘米表示实际距离500米,转化为数值比例尺为1︰50000.(1)方法一:3.5×500=1750(米)方法二:解:设学校到汽车站的实际距离为x厘米。
3.5︰x=1︰50000x=⨯3.550000x=175000175000厘米=1750米答:学校到汽车站的实际距离为1750米。
(2)方法一:2.5×500=1250(米)方法二:解:设学校到少年宫的实际距离为m厘米。
2.5︰m=1︰50000m=⨯2.550000125000m =125000厘米=1250米答:学校到少年宫的实际距离为1250米。
(3)方法一:2×500=1000(米)方法二:解:设学校到电影院的实际距离为n 厘米。
2︰n =1︰50000250000n =⨯100000n =100000厘米=1000米答:学校到电影院的实际距离为1000米。
故答案为:1750米,1250米,1000米。
1. 数值比例尺和线段比例尺用数字形式表示的比例尺是数值比例尺。
如1︰1000就是数值比例尺。
在图上附有一条注有数量的线段来表示和实际相对应的实际距离,这样的比例尺叫作线段比例尺,如就是线段比例尺,表示图上1厘米的距离相当于实际距离50米。
改写成数值比例尺为1厘米︰50米=1厘米︰5000厘米=1︰5000.2. 已知比例尺和图上距离,求实际距离,有两种解法:(1)利用图上距离和实际距离的关系,直接用乘法求出实际距离。
(2)利用“=图上距离比例尺实际距离”列出比例求实际距离。
注意:用解比例的方法求实际距离时,所设的未知量(实际距离)的单位名称要与已知量(图上距离)的单位名称一致。
已知图上距离和比例尺,求实际距离
1、1千米=(100000 )厘米
1米=(100 )厘米
Байду номын сангаас
2、比例尺1:2000000可以表示哪些意义?
图上距离与实际距离的比是1:2000000 图上距离是实际距离的 1
2000000
实际距离是图上距离的2000000倍。
图上1厘米表示实际距离20千米。
练习讲解
方法一:公式法: 图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺
14、在比例尺是1:4000000的中国地图上,量得北京到广 州的距离是50厘米,北京到广州的实际距离是多少千米?
15、在比例尺是6:1的图纸上理得一种精密零件长是3厘 米,这个零件的实际长是多少毫米?
方法二:解比例 图上距离:实际距离=图上距离:实际距离
12、在一张图纸上量得一个零件的长度是6厘米,已知这张 图纸的比例尺子是1/100,求这个零件的实际长度是多少米?
13、在一张地图上量得A地到B地的距离是5厘米,这幅地 图的比例尺是1/3000000,A地到B地的实际距离是多少千米 ?
知道图上距离和比例尺实际距离怎么求
比例尺分放大比例尺和缩小比例尺,放大比例尺就是把一些很小的东西数据放大画在图纸上(因为把那么小的东西画在图纸上,很难观察清楚),一般用于一些特别小的零件上,比如一个手表里的一个零件长3毫米,放大10倍画在图纸上的话,那么,写成放大比例尺就是10:1;而缩小比例尺就是把一个很大的东西画在图纸上(比如房子、汽车、飞机,这么大的东西,图纸怎么够画呢,当然要缩小画在图纸上啦),比如一栋房子长10米,宽10米,高50米(我是举例),要缩小100倍画在图纸上,写成比例尺就是10:100。
比例尺公式:图上距离=实际距离*比例尺
实际距离=图上距离/比例尺比例尺=图上距离/实际距离
已知比例1:10000
地图距离a厘米
实际距离a×10000厘米
记住1:10000表示的就是地图上1厘米代表实际10000厘米。
优胜教育小学数学讲义比例尺应用题参考答案
比例尺应用题参考答案典题探究一.基本知识点:二.解题方法:例1.在比例尺是1:500的图纸上,量得一个正方形草坪的边长是4厘米.这个草坪的实际面积是400平方米.考点:比例尺应用题.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出这个正方形草地的边长,进而利用正方形的面积S=a2,就能求出这个草坪的实际面积.解答:解:4÷=2000(厘米)=20(米),20×20=400(平方米);答:这个草坪的实际面积是400平方米.故答案为:400平方米.点评:此题主要考查正方形的面积的计算方法依据图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.例2.培正小学的操场长80米,宽50米,如果用的比例尺画出操场的平面图,图上面积是160平方厘米.考点:比例尺应用题.分析:实际距离和比例尺已知,依据“图上距离=实际距离×比例尺”即可分别求出操场长和宽的图上距离,进而利用长方形的面积公式就可以求出操场的图上面积.解答:解:80米=8000厘米,50米=5000厘米,8000×=16(厘米),5000×=10(厘米),16×10=160(平方厘米);答:这个操场的图上面积是160平方厘米.故答案为:160平方厘米.点评:此题主要考查图上距离、实际距离和比例尺的关系在实际中的应用,以及长方形的面积的计算方法.例3.地图上1.5厘米的距离表示实际距离120千米,这幅地图的比例尺是1:8000000.如果该地图上,甲乙两地之间的图上距离是2厘米,那么实际距离是160千米.考点:比例尺应用题.专题:比和比例应用题.分析:(1)根据比例尺的意义作答,即图上距离与实际距离的比就是比例尺;(2)先求出1厘米的线段表示实际距离的千米数,由此求出2厘米所表示的实际距离的千米数.解答:解:(1)1.5厘米:120千米,=1.5厘米:12000000厘米,=15:120000000,=1:8000000;(2)120÷1.5×2,=80×2,=160(千米),故答案为:1:8000000;160.点评:本题主要灵活利用:比例尺=图上距离:实际距离这一关系解决问题.例4.在比例尺是1:4000000的地图上,量得甲、乙两港的距离是9厘米,一艘货轮于上午6时以每小时24千米的速度从甲港开往乙港,到达乙港的时间是晚上9或21时.考点:比例尺应用题;简单的行程问题.专题:比和比例应用题;行程问题.分析:先依据“实际距离=图上距离÷比例尺”求出两地的实际距离,再据“路程÷速度=时间”求出货轮从甲港到乙港需要的时间,进而可以求出到达乙港的时刻.解答:解:9÷=36000000(厘米)=360(千米),360÷24=15(小时),6+15=21(时);答:货轮到达乙港的时间是晚上9时或21时.故答案为:晚上9或21.点评:此题主要考查图上距离、实际距离和比例尺的关系以及基本的数量关系“路程÷速度=时间”.演练方阵A档(巩固专练)1.一张图纸长30厘米、宽20厘米,把长50米、宽38米的一块长方形菜的画在这张图纸上,选用适当的比例尺是()A.1:200 B.1:400 C.1:100 D.200:1考点:比例尺应用题.专题:比和比例应用题.分析:本题的实际长度是长50米、宽38米.而图上距离是:长30厘米、宽20厘米,要想画在这样的图纸上,必须是缩小的,所以D答案不能选,既能画下来,还能画的合适,这就是比例尺的问题了,应根据:图上距离:实际距离=比例尺来计算.解答:解:因为:50米=5000厘米38米=3800厘米,而图纸长30厘米、宽20厘米,比例尺为;30:5000≈1:167,20:3800=1:190,综合长和宽的比例尺选1:200比较合适.故选:A.点评:此题主要考查比例尺、图上距离、实际距离三者之间的数量关系:比例尺=图上距离÷实际距离,灵活变形列式解决问题.2.一个三角形中,三个内角的度数比是1:1:3,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形考点:比例尺应用题;三角形的分类;三角形的内角和.专题:比和比例应用题;平面图形的认识与计算.分析:因为三角形的内角度数和是180°,它的最大角占内角度数和的,根据一个数乘分数的意义,求出最大角,进而判断即可.解答:解:1+1+3=5,最大角度数:180°×=108°,所以,这个三角形是钝角三角形.故选:A.点评:解决此题关键是掌握三角形的内角度数和是180°,运用按比例分配的方法解决问题.3.在比例尺是1:8的图纸上,甲、乙两个圆的直径比是2:3,那么甲、乙两个圆的实际的直径比是()A.1:8 B.4:9 C.2:3 D.8:1考点:比例尺应用题.分析:根据比例尺的意义,令甲乙两圆的图上直径为2d,3d,根据比例尺可得实际圆的直径分别是16d,24d,由此利用比例尺进行计算,即可选择正确答案.解答:解:令甲乙两圆的图上直径为2d,3d,根据比例尺可得实际甲乙两圆的直径分别是16d,24d,16d:24d=2:3.故选:C.点评:此题考查了利用比例尺解决实际问题的方法.4.学校实验园地是一个长60m,宽40m的长方形,用比例尺1﹕1000画平面图,长应画()A.4cm B.6cm C.6dm D.6m考点:比例尺应用题.专题:压轴题;比和比例应用题.分析:图上距离=实际距离×比例尺,实际距离是60米,比例尺是1:1000.代入数据进行解答.解答:解:60米=6000厘米,6000×=6(厘米).答:长应画6厘米.故选:B.点评:本题主要考查了学生对图上距离=实际距离×比例尺,这一数量关系的掌握情况.5.北京到上海的实际距离大约是300千米,画在一幅比例尺是的地图上,应该画()厘米.A.3B.2C.6考点:比例尺应用题.专题:比和比例应用题.分析:因为图上距离1厘米表示实际距离50千米,依据除法的意义,即可求出图上距离.解答:解:300÷50=6(厘米);答:应该画6厘米.故选:C.点评:此题主要考查线段比例尺的意义.6.在一幅比例尺是1:30000000的地图上,量的甲乙两地的距离是5厘米,那么甲地到乙地的实际距离是()千米.A.150 B.6000 C.1500考点:比例尺应用题.专题:压轴题;比和比例应用题.分析:图上距离与比例尺已知,求实际距离,用图上距离除以比例尺即可.解答:解:5÷=150000000(厘米),150000000厘米=1500千米;答:甲地到乙地的实际距离是1500千米.故选:C.点评:本题主要是灵活利用比例尺的意义解决问题,注意单位的换算.7.一个直角三角形的两条直角边分别是3厘米、2厘米,按4:1的比例放大后,面积是()平方厘米.A.6B.24 C.48 D.96考点:比例尺应用题.专题:压轴题.分析:先按4:1的比例尺分别求出放大后的两条直角边的长度,再依据三角形的面积公式即可求出放大后的面积.解答:解:放大后的直角边分别是:3×4=12(厘米),2×4=8(厘米);放大后的面积:12×8÷2=48(平方厘米);答:放大后的面积是48平方厘米.故选:C.点评:此题主要考查放大比例尺的应用及三角形的面积计算.8.在比例尺是1:500000的地图上,量得A、B两地间的距离是11厘米,A、B两地间的实际距离是()千米.A.55 B.5500000 C.5500考点:比例尺应用题.专题:比和比例应用题.分析:求实际距离,根据公式“图上距离÷比例尺=实际距离进行解答即可.解答:解:11÷=5500000(厘米),5500000厘米=55千米,答:A、B两地之间的实际距离是55千米;故选:A.点评:此类题做题的关键是弄清题意,根据图上距离、实际距离和比例尺三者之间的关系进行列式解答.9.长江是中国第一大河,全长6300千米,在比例尺是1:100000000的地图上的长度为.()A.6.3cm B.63dm C.63cm考点:比例尺应用题.专题:比和比例应用题.分析:根据比例尺=图上距离:实际距离,知道图上距离=比例尺×实际距离,代入数据解答即可.解答:解:6300千米=630000000厘米,630000000×=6.3(厘米),答:在比例尺是1:100000000的地图上的长度为6.3厘米.故选:A.点评:此题主要考查比例尺的意义及已知比例尺和实际距离求图上距离.注意单位的换算.10.一种精密零件长5毫米,把它画在图纸上,图上零件长6厘米,这张图纸的比例尺是()A.1:12 B.5:6 C.6:5 D.12:1考点:比例尺应用题.专题:比和比例应用题.分析:根据比例尺=图上距离:实际距离,把实际长度5毫米,图上长度6厘米代入求出这张图纸的比例尺.解答:解:6厘米:5毫米,=60毫米:5毫米,=60:5,=(60÷5):(5÷5),=12:1,答:这张图纸的比例尺是12:1.故选:D.点评:此题主要考查学生对比例尺这一知识点的理解和掌握,像这种求比例尺的题目单位一般不相同,因此首先要注意单位的统一.B档(提升精练)1.在比例尺是1:100000的地图上,量得甲、乙两地的距离是3厘米,甲、乙两地的实际距离是()A.300千米B.3千米C.30千米D.0.3千米考点:比例尺应用题.专题:比和比例应用题.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出甲、乙两地的实际距离.解答:解:3÷=300000(厘米)=3(千米);故选:B.点评:此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.2.学校操场扩建后的平面图如图,扩建后面积比原来增加25%,操场原来的面积是()平方米.A.480 B.4800 C.6000 D.7500考点:比例尺应用题;应用比例尺画图.专题:压轴题;比和比例应用题.分析:先依据“图上距离÷比例尺=实际距离”求出扩建后的操场的长和宽的实际长度,再利用长方形的面积公式求出扩建后的面积,把原来的面积看作单位“1”,再据已知一个数的几分之几是多少,求这个数的方法,即可求解.解答:解:6=6000(厘米)=60(米),10÷=10000(厘米)=100(米),100×60÷(1+25%),=6000÷1.25,=4800(平方米);答:操场原来的面积是4800平方米.故选:B.点评:此题主要考查图上距离、实际距离和比例尺的关系,以及长方形的面积的计算方法在实际生活中的应用.3.新光小学的操场是一个长方形,画在比例尺是1:4 000的平面图上,长3厘米,宽2厘米.操场的实际面积是()A.240平方米B.96平方米C.2.4平方米D.9 600平方米考点:比例尺应用题.专题:比和比例应用题.分析:要求操场的实际面积,根据“图上距离÷比例尺=实际距离”,代入数值,分别计算出操场实际的长和宽,然后根据“长方形的面积=长×宽”,代入数值,计算即可.解答:解:3÷=12000(厘米)=120(米),2÷=8000(厘米)=80(米),面积:120×80=9600(平方米),答:操场的实际面积是9600平方米,故选:D.点评:解答此题用到的知识点:(1)图上距离、实际距离和比例尺三者之间的关系;(2)长方形的面积计算方法.4.在比例尺是1:20的图纸上画出一种机械配件平面图的角是40度.这个角实际是()度.A.2B.40 C.800考点:比例尺应用题.分析:比例尺=图上距离÷实际距离,是指长度尺寸按比例放大或缩小.解答:解:根据比例尺是1:20的图纸,知道图上距离是1厘米,实际距离是20厘米,是长度尺寸是按比例缩小,角的大小与边的长度无关,只与两边叉开的程度有关,所以角度是不会变的;故选:B.点评:此题主要考查了比例尺的意义以及角的意义.5.在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()A.15点B.17点C.21点考点:比例尺应用题.分析:先依据“实际距离=图上距离÷比例尺”求出两地的实际距离,再据“路程÷速度=时间”求出货轮从A地到B地需要的时间,进而可以求出到达B地的时刻.解答:解:9÷=36000000(厘米)=360(千米),360÷24=15(小时),6+15=21(时);答:货轮到达B港的时间是21时.故选:C.点评:此题主要考查图上距离、实际距离和比例尺的关系以及基本的数量关系“路程÷速度=时间”.6.比例尺表示.A.图上距离是实际距离的B.实际距离是图上距离的800000倍C.实际距离与图上距离的比为1:800000考点:比例尺应用题.分析:在图上附有一条注有数目的线段,用它来表示和地面上相对应的实际距离,这就叫做线段比例尺.图中比例尺1厘米表示实际距离8千米,用比表示为1:800000.解答:解:8千米=800000厘米,所以此线段比例尺表示为:1:800000,它可以表示图上距离是实际距离的,也可以表示实际距离是图上距离的800000倍,也表示图上距离与实际距离的比是1:800000.所以在ABC答案中,只有B答案正确.故选:B.点评:此题考查了线段比例尺的意义.7.在比例尺是1:3000000的地图上,量得A、B两港距离为12cm,一艘货轮于上午7时出发,以每小时24km的速度从A港开向B港,到达B港的时间是()A.22时B.23时C.21时考点:比例尺应用题.专题:压轴题;比和比例应用题.分析:先根据图上距离÷比例尺=实际距离,再根据路程÷速度=时间,进而解出答案.解答:解:12÷=36000000(厘米)=360(千米),360÷24=15(小时),上午7时过15小时是晚上的22时,故选:A.点评:此题主要考查图上距离、实际距离和比例尺的关系,以及行程问题中的基本数量关系“路程÷速度=时间”.8.在比例尺是1:30,000,000的地图上量得甲、乙两地相距5.5厘米,一辆汽车按3:2分两天行完全程,那么第二天行的路程是()A.6.6千米B.66千米C.660千米D.6600千米考点:比例尺应用题.分析:先根据比例尺求出实际的全程,再把全程按照3:2的比例分配即可.解答:解:30000000×5.5=165000000(厘米);165000000厘米=1650(千米);3+2=5,1650÷5×2=660(千米);故答案选:C.点评:本题先利用比例尺求出实际的全程,再把全程按比列分配;注意1千米=100000厘米.9.在比例尺是1:3000000的地图上,量得A、B两港距离为12厘米,一艘货轮于上午7时以每小时24千米的速度从A港开向B港,到达B港的时间是()A.16点B.18点C.20点D.22点考点:比例尺应用题.分析:先根据图上距离÷比例尺=实际距离,再根据路程÷速度=时间,进而解出答案.解答:解:12÷=36000000(厘米)=360(千米),360÷24=15(小时),上午7时过15小时是晚上的22时,故选:D.点评:解答此题用了比例尺和行程方面的知识解答.10.一个正方形的面积是100平方厘米,把它按10:1的比放大.放大后图形的面积是多少平方厘米?()A.1000平方厘米B.2000平方厘米C.10000平方厘米考点:比例尺应用题.分析:一个正方形的面积是100平方厘米,它的边长是10厘米,把它按10:1的比放大,就是把这个正方形的边长扩大到原来的10倍,据此可求出放大后图形的面积.解答:解:10×10=100(厘米),100×100=10000(平方厘米);故选:C.点评:本题是考查图形的放大与缩小,图形放大与缩小的倍数是指图形边长放大与缩小的倍数.C档(跨越导练)1.在比例尺是1:1000的图纸上,量得一块正方形地的边长是5厘米,则这块地的实际面积是()A.250000平方厘米B.2500平方厘米C.2500平方米D.250平方米考点:比例尺应用题;长方形、正方形的面积.专题:平面图形的认识与计算.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出正方形的边长的实际长度,进而利用正方形的面积公式即可求解.解答:解:5÷=5000(厘米)=50(米),50×50=2500(平方米);答:这块地的实际面积是2500平方米.故选:C.点评:此题主要考查依据图上距离、实际距离和比例尺之间的关系解决实际问题,解答时要注意单位的换算.2.在比例尺是1:6000000的地图上,量得广州到北京的距离是30厘米,广州到北京的实际距离约是()千米.A.1600 B.2000 C.1800考点:比例尺应用题.专题:比和比例应用题.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出广州到北京的实际距离.解答:解:30÷=180000000(厘米)=1800(千米);答:广州到北京的实际距离是1800千米.故选:C.点评:此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.3.地图上的线段比例尺如图,表示这副地图的数值比例尺是()A.B.C.D.考点:比例尺应用题;长度的单位换算.分析:依据比例尺的意义,即“图上距离与实际距离的比即为比例尺”即可将线段比例尺化成数字比例尺.解答:解:由题意可知:图上1厘米代表实际60千米,又因60千米=6000000厘米,所以1厘米:6000000厘米=1:6000000;故选:C.点评:此题主要考查比例尺的意义,解答时要注意单位的换算.4.在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5厘米,一辆汽车按3:2的比例分两天行完全程,两天行的路程差是()A.300km B.600km C.900km D.1500km考点:比例尺应用题;按比例分配应用题.专题:比和比例应用题.分析:要求两天行的路程差是多少千米,先根据“图上距离÷比例尺=实际距离”,求出甲地到乙地的路程,然后根据两天行的路程比,得出第一天行了全程的第二天行了全程的,第一天比第二天多行全程的﹣,解答即可得出结论.解答:解:5÷×(﹣),=150000000×,=30000000(厘米);30000000厘米=300千米;故选:A.点评:此题应根据图上距离、比例尺和实际距离的关系,先求出全程,进而运用按比例知识进行解答即可.5.在比例尺是1:2000000的地图上,量得两地距离是28厘米,这两地的实际距离是560千米,若一辆货车以70千米每小时的速度由贵阳往晴隆行驶,则需要8小时.考点:比例尺应用题;简单的行程问题.专题:比和比例应用题;行程问题.分析:已知比例尺和图上距离求实际距离,求出实际距离,再根据路程÷速度=时间,列式解答.解答:解:(1)28=56000000(厘米),56000000厘米=560千米,(2)560÷70=8(小时),答:这两地的实际距离是560千米,需要8小时.故答案为:560,8.点评:此题主要考查比例尺的意义及已知比例尺和图上距离求实际距离.注意单位的换算.6.在比例尺是1:10000000的地图上,量得甲地到乙地的距离是10.2厘米,一辆汽车按3:2的比例分两天跑完全程,两天跑的路程的差是204千米.考点:比例尺应用题.专题:比和比例应用题.分析:首先实际距离=图上距离÷比例尺,求出甲、乙两地之间的路程,已知一辆汽车按3:2的比例分两天跑完全程,第一天跑的路程占全程的,第二天跑的路程占全程的,然后根据一个数乘分数的意义,用乘法解答.解答:解:10.2,=10.2×10000000,=102000000(厘米),102000000厘米=1020千米,1020×(),=1020×,=204(千米),答:两天跑的路程的差是204千米.故答案为:204.点评:此题解答关键是根据图上距离和比例尺求出实际距离,再把比转化成分数,根据一个数乘分数的意义解答即可.7.树人小学新建一幢教学楼,地基是长50米、宽28米的长方形.画在图纸上,长是2.5厘米,宽是1.4厘米,这幅图的比例尺是1:2000.考点:比例尺应用题;长度的单位换算.分析:这道题是已知实际距离、图上距离,求比例尺的问题,运用图上距离:实际距离=比例尺,即可解决问题.解答:解:50米=5000厘米,2.5:5000=1:2000;答:这幅图的比例尺是1:2000.故答案为:1:2000.点评:此题主要考查比例尺、图上距离、实际距离三者之间的数量关系:比例尺=图上距离÷实际距离,灵活变形列式解决问题.8.在一副比例尺为1:4000000的地图上,量得平阳至杭州的公路长时10.5cm,两地实际相距420千米,如果一辆汽车每小时100千米的速度与上午10时40分从平阳开出,那么将在下午2时52分到达杭州.考点:比例尺应用题;简单的行程问题.专题:压轴题;比和比例应用题;行程问题.分析:(1)图上距离和实际距离已知,依据“实际距离=图上距离÷比例尺”即可求出平阳至杭州的公路的实际长度;(2)依据“路程÷速度=时间”即可求出这辆汽车需要的时间,进而求出到达的时刻.解答:解:(1)10.5÷=42000000(厘米)=420(千米);答:两地实际相距420千米.(2)420÷100=4.2(小时)=4小时12分钟,所以10时40分+4小时12分=14时52分;答:这辆汽车将在下午2时52分到达杭州.故答案为:420、2、52.点评:此题主要考查图上距离、实际距离和比例尺的关系,以及行程问题中的基本数量关系“路程÷速度=时间”.9.在比例尺是1:60000000的地图上,量得甲乙两地的航线距离是2.5厘米,上午8时30分有一架飞机从甲地飞往乙地,上午11时到达.这架飞机平均每小时飞行600千米.考点:比例尺应用题.分析:已知比例尺和图上距离求实际距离,用图上距离÷比例尺=实际距离;上午8时30分有一架飞机从甲地飞往乙地,上午11时到达,飞行时间是2.5小时,再根据路程÷时间=速度,列式解答.解答:解:2.5÷=2.5×60000000=150000000(厘米);150000000厘米=1500千米;1500÷2.5=600(千米/时);答:这架飞机平均每小时飞行600千米.故答案为:600.点评:此题主要考查已知比例尺和图上距离求实际距离的方法,再根据路程、速度、时间三者之间的关系解答即可.10.在比例尺是1:60000000的地图上,量得甲乙两地的距2.5厘米,上午8点30分有一架飞机从甲地飞往乙地,上午9点45分到达,这架飞机每小时行1200千米.考点:比例尺应用题.分析:这道题是已知比例尺、图上距离,求实际距离,根据图上距离÷比例尺=实际距离列式求得实际距离,再进一步求出飞机速度,即可解答.解答:解:2.5÷=2.5×60000000=150000000(厘米),150000000厘米=1500千米,从上午8点30分到上午9点45分的时间为1.25小时,1500÷1.25=1200(千米);答:这架飞机每小时行1200千米.故答案为:1200.点评:此题主要考查比例尺、图上距离、实际距离三者之间的数量关系:比例尺=图上距离÷实际距离,灵活变形列式解决问题.。
比例尺怎么算
比例尺怎么算一1比例尺计算1.图上距离÷实际距离=比例尺2.图上距离÷比例尺=实际距离3.比例尺×实际距离=图上距离2比例尺三种形式1.数字式:用数字的比例式或分数式表示比例尺的大小。
例如地图上1厘米代表实地距离500千米,可写成1∶50000000或写成:五千万分之一。
2.线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
3.文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如图上1厘米相当于地面距离10千米。
3地图比例尺表示图上距离比实际距离缩小(或放大)的程度,因此也叫缩尺。
如1∶10万,即图上1厘米长度相当于实地1000米。
严格讲,只有在表示小范围的大比例尺地图上,由于不考虑地球的曲率,全图比例尺才是一致的。
通常绘注在地图上的比例尺称为主比例尺。
在地图上,只有某些线或点符合主比例尺。
比例尺与地图内容的详细程度和精度有关。
二比例尺=图上距离/实际距离。
比例尺的概念:比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比。
按照比例尺概念,比例尺的算式为:比例尺=图上距离/实际距离。
比例尺的特点:比例尺实际上是一个“比”;比例尺是图上距离与实际距离的“比”;图上距离和实际距离的单位是统一的(即换算成相同单位再比),所以比例尺没有单位(单位统一被约分了);比例尺的前项一般为1。
比例尺的换算方法:(1)长度单位换算公式:1公里=1千米。
1000米=1千米。
1米=10分米=100厘米=1000毫米。
1分米=10厘米=100毫米。
1厘米=10毫米。
(2)比例尺的换算:举例说明:“图上一厘米代表实际1公里,比例尺是多少?”解析:长度单位换算公式是孩子原来就掌握的知识,因为比例尺必须统一单位,只需要按长度单位换算公式,将图上距离和实际距离的单位换算成相同单位,然后统一代入比例尺算式,比例尺=1厘米/1公里=1厘米/100000厘米=1/100000。
比例尺的计算四注意
航
在计算比例尺时,要注意以下四个问题。
一、比例尺不是用来度量长度的“米尺”,它是一个比,是图上距离与实
际距离的比,这个比用来表示图上距离和实际距离的倍数关系。
所以,比例尺不能有单位名称,如一幅地图的比例尺是19000000,不能写成19000000千米。
二、求比例尺时,图上距离和实际距离的长度单位一定要统一后,再计算
比例尺。
如甲乙两地相距50千米,在一幅图上量得两地间的长度是10厘米,求这幅地图的比例尺。
在求这幅地图的比例尺时,先把实际距离50千米改写成用厘米作单位,即50千米=5000000厘米,然后算出这幅地图的比例尺,1500000或1∶500000。
三、因为比例尺是一个比,图上距离∶实际距离=比例尺,这个比例尺必须写成比的形式。
如一幅地图的比例尺是1500000或1∶500000,把比例尺
1500000或1∶500000写成小数0.000002是错误的。
四、比例尺的前项一般化简成“1”,如果把比例尺写成分数形式,它的分
子也应简化成为“1”,需要把实际距离扩大一定的倍数,再画在图纸上时,也要把比例尺的后项确定为“1”。
如在一幅地图上,用6厘米的线段表示实际距离180千米,求这幅地图的比例尺。
6厘米∶180千米=6厘米∶18000000厘米=13000000
◎郑丽琴 Copyright©博看网 . All Rights Reserved.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例尺分放大比例尺和缩小比例尺,放大比例尺就是把一些很小的东西数据放大画在图纸上(因为把那么小的东西画在图纸上,很难观察清楚),一般用于一些特别小的零件上,比如一个手表里的一个零件长3毫米,放大10倍画在图纸上的话,那么,写成放大比例尺就是10:1;而缩小比例尺就是把一个很大的东西画在图纸上(比如房子、汽车、飞机,这么大的东西,图纸怎么够画呢,当然要缩小画在图纸上啦),比如一栋房子长10米,宽10米,高50米(我是举例),要缩小100倍画在图纸上,写成比例尺就是10:100。
比例尺公式:图上距离=实际距离*比例尺
实际距离=图上距离/比例尺比例尺=图上距离/实际距离
已知比例1:10000
地图距离a厘米
实际距离a×10000厘米
记住1:10000表示的就是地图上1厘米代表实际10000厘米。