Milling_152-186_CHI
《高分子材料成型加工设备》 第三章 开炼机
(4)要求同学们自学课堂上未讲的书本内容。
3、授课内容
(1)开炼机概述(分类、用途、基本 结构、工作原理、技术特征等)。 (2)开炼机的主要性能参数(辊筒直 径和长度、辊距、速比、接触角、横压 力、传动功率、生产能力等)。 (3)开炼机的传动系统(传动型式、 电机选择等)。
若堆积胶过少,则不能形成稳定连续的操作。 可见,确定适量的堆积胶是必要的,为此就需 要引入一个称之为接触角的概念。
2018年11月1日星期四
所谓接触角,即胶料在辊筒上接触点 a 与辊筒断面圆 心连线和辊筒断面中心线的水平线的交角,以 α表示。 如图所示。
胶料能 否进入 辊隙, 取决于 胶料与 辊筒的 摩擦系 数和接 触角的 大小。 2018年11月1日星期四
2018年11月1日星期四
4、炼胶过程中为什么要进行割胶、翻胶? 在炼胶过程中,将胶料进行切割对炼 胶过程是十分重要的。根据流体力学的分 析,炼胶过程胶料的流线分布如图所示。
2018年11月1日星期四
2018年11月1日星期四
胶料流线的分布图
从图中可见靠近辊筒处胶料的流线与辊 筒转动面平行。而在楔形断面开始处,有 一个回流区域,形成两个封闭的回流线 (即 ψ-0 线)。当 v1=v2 时,这两个封闭 回流线对称分布,当v1<v2时,两个封闭回 流线的中性面移向慢速辊筒一侧。可见当 v1=v2 时,封闭回流线所受到的剪切作用 较v1<v2时要小,影响了炼胶的效果。所以, 大部分炼胶机都设计成两辊筒速度不同 (v1≠v2)。
2018年11月1日星期四
4、主要外语词汇
开炼机——mill 辊筒——mill roll 包辊(现象)——mill banding 橡胶——rubber 塑炼——milling 混炼——mixing, blending 热炼——mill warm-up 横压力——horizontal pressure 辊距——mill clearance 挡胶板——mill cheek
Altek数据表单830 TechChek 830进度说明书
DATA SHEET 830ALTEKPROCESS CALIBRATORTechChek 830Do What You Gotta DoLighten your load…take the T echChek 830 to every site. It’s like bringing a cartload of test equipment from the shop to the control room or the field. The T echChek 830 sources and reads DC like a milliamp or voltage calibrator, simulates and measures T/Cs & RTDs like a temperature calibrator,generates and counts frequency and Counts-Per-Minute like a frequency calibrator and displays pressure like a precision test gauge. Troubleshooting? It checks continuity with a beeper and measures AC line voltage like a multimeter!Calibrate Milliamp InputsCalibrate controllers, recorders and other devices in 4 to 20 or 0 to 20 mA loops. Source and read 0.00 to 24.00 mA,or Simulate a 2-Wire Transmitter.Calibrate 2-Wire TransmittersEasily calibrate a 2-Wire Transmitter by connecting the TechChek 830 to both the input and output of the transmitter.The T echChek 830 will simultaneously indicate the input and output of the transmitter on the graphical display.Voltage CalibrationCalibrate all your DC millivolt and voltage instrumentation.Source from 0.00 to 110.00 mV and 0.00 to 10.25 V. Read up to 110.00 mV, 11.00 V and 200.0 VDC.Temperature CalibrationSource and Read directly in °C and °F for T/C types J, K, T ,E, R, S & N and four Pt 100 Ohm, Ni 120 Ohm and Cu 10 Ohm RTDs. Cold junction compensation tracks temperature changes.Calibrate Pressure SystemsRead pressure with extreme accuracy using a QuikCal pressure module in a ModPak module holder. Attach the module directly to the pressure connection for the best accuracy or with optional tubing for tight spots. Accurate to 0.025% of reading in psi, pa, Kpa, Mpa, BAR, mBar, Atm, Kgf plus torr, inches and mm of mercury or water at a variety of temperatures.Each module is characterized for temperature to give you laboratory accuracy in the shop, control room or field.Frequency CalibrationGenerate zero crossing square waves from 1 to 1000 Hz,0.01 to 10.00 kHz and from 1 to 1000 CPM (Counts-Per-Minute). Built-in frequency counter measures Hz, kHz & CPM.Measure AC VoltageCheck line voltage or mains from 0.0 to 250.0 volts AC.Great for troubleshooting power problems.Check ContinuityLocate pairs of wires, open connections and shorts with the built-in beeper.AC adapter jack Simulates transmitter input while powering transmitter and reading mA outputDigital accuracy with analog simplicityAuto-Off extends battery lifeAccuracy to 0.025%of full scaleSource & Read mA, mV & VSimulate & Measure T/Cs & RTDs Generate & Count Hz & CPM Reads Pressure & AC Volts Checks Continuity Add optional pressure modules measure your process to within 0.025% of reading 20 built-in engineering unitsTYPICAL HOOKUPSSOURCE mA, mVDC, VDC, Hz or CPM The TechChek 830 sources a wide variety of process control signals. You can store any three output values and use the QUIK-CHEK switch to instantly recall them.Outputs are 4 to 20mA, 0 to 100% of 4 to 20 mA, 1 to 5 Volts, 0 to 100 mV plus square waves in Hz or CPM.READ to 250.0 VACRead VDC to 200.0V, Hz or CPM to 250 VpeakCheck AC power (mains) to your panels without a voltmeter. Also measure power supplies, loop voltages & high amplitude frequency signals.CALIBRATE 2-WIRE TEMPERATURE ORFREQUENCY TRANSMITTERSUse the TechChek 830 to simultaneously supply power to a 2-Wire transmitter, simulate the input to the transmitter and display the 4 to 20 mA output of the transmitter.The 830 supplies a nominal 25 VDC and supports loads up to 1200 Ohms.SIMULATE 2-WIRE TRANSMITTERS Simulate a 2-Wire Transmitter output from 1.00 to 24.00 mA or from -18.8 to 125.0% of 4 to 20 mA. Operates in loops with power supply voltages from 3 to 45 VDC.Substitute the 830 for any transmitter to check all the other devices in the loop. Or use to temporarily replace a faulty transmitter and keep the process going.Milliamp Receiver InputControllerTransmitterComputer LoggerI/PDCS AC Voltage SignalMainsLine Voltage+I N-REFTypical2-Wire Transmitter+I N-REF+OUT-Power Supply2 to 45 VDCReceiver(Powers external2-Wire Transmitter)ToSensorTypical2-WireTransmitter(Disconnected)(T/C / mA Shown)•Compact Multifunction CalibratorSource and Read Milliamps, Volts, Millivolts, Six RTD Types, Seven Thermocouple Types, Resistance and Frequency•Built-InTransmitter Power SupplySimulates transmitter input while simultaneously powering 2-Wire transmitters and displaying milliamp output on the dual display •Accuracy of ±(0.025% of Full Scale + 1 LSD) Typical Accurate to 0.02 mA, V, or Hz, 1°C & 0.3 Ohms•Laboratory Accuracy Pressure MeasurementQuikCal™pressure modules display in 20 engineering units. Match your process within 0.025% of Reading•Troubleshoot LoopsAC Voltmeter (True rms) and Continuity Beeper built-in •Standard “AA” Alkaline BatteriesOver 20 hours of full 20 mA output. Auto-Off saves batteries. Optional AC adaptor for full time bench use.•User Settable “QUIK-CHEKS©”Store HI, SET& LO for instant recall•Digital Accuracy with Analog SimplicitySpeed sensitive digital pot for fast output adjustmentEasy-to-Read Large Character LCD with backlighting•Deluxe Accessories Set IncludedCarrying case with neck strap for hands-free viewing plus detachable leads, alligator clips, test probes & spade lugsREAD to 110.00 mVDC, 10.25 VDC READ kHz, Hz or CPM to 10.25 VpeakEasily measure process DC signals. Flip the QUIK-CHEK switch to recall the minimum and maximum readings.Use the TechChek 830 to measure batteries and loop power supplies or across receiver inputs to measure the 1to 5 volt signal. Read flow meter signals in Hz or CPM.CHECK CONTINUITYA tone sounds when the resistance between the terminals is less than approximately 100 Ohms.Continuity is useful to find open connections, shorts or to identify wire pairs.SOURCE or READ Ohms and 2-Wire RTDsSimulate resistance to 400 Ohms or 2-Wire Platinum 100 Ohm RTDs. Read Pt 100 Ohm RTDs and resistance to 1000 Ohms.Receiver Input Ohms or 2-Wire RTDController Transmitter ComputerDC Voltage or FrequencyOutput Signal Controller Transmitter Power Supply Flowmeter Flow Sensor Variable Speed DriveREAD MILLIAMPSPut the TechChek 830 in series with the loop to measure 4 to 20 mA. Flip the QUIK-CHEK switch to recall the minimum and maximum readings.Milliamp Output SignalController TransmitterP/I DCSSIMULATE AN RTD SENSORSimulate Platinum 100 Ohm, Nickel 120 Ohm and Copper 10 Ohm RTD sensors directly in °C or °F. Three test leads and spade lugs are included with the 830 for easy hookups.Eliminates holding a bulky decade box while reading RTD vs. resistance tables.READ 3-WIRE RTDsMeasure Platinum 100 Ohm, Nickel 120 Ohm and Copper 10 Ohm RTD sensors directly in °C or °F .. Three wire hookup lets you read typical process control sensors including ones with long cable runs. Minimum and maximum temperatures let you track temperatures to find control drift.Dial in any temperature tosimulate the output of a Type J,K, T, E, N, R or S thermocouple.Store three values for each thermocouple type on theQUIK-CHEK switch toinstantly output any temperature in °C or °F.Cold junction compensationautomatically adjusts themillivolt output as the ambient temperature changes.Connect any J, K, T, E, N,R or S thermocouple and read directly in °C or °F.Flip the QUIK-CHEK switch to indicate the minimum and maximum temperatures the 830 has measured. Monitor an independent sensor to tune the deadband adjustment of controllers.Instrument with RTD Input ControllerTemperature Transmitter Temperature Indicator Temperature Trip or Alarm+-+-Instrument with Thermocouple Input ControllerTemperature Indicator Temperature Trip or AlarmTemperature Transmitter SIMULATE A THERMOCOUPLEREAD A THERMOCOUPLEREAD PRESSURESelect one of the QuikCal 90 Pressure Modules and place it into a ModPak 91 Module Holder. Connect the ModPak 91 to the TechChek 830 using the attached interface cable.Connect the QuikCal 90 Pressure Module directly to the field fitting or with tubing to any pressure source.Pressure SourcePROCESS CALIBRATORCALIBRATE 2-WIRE PRESSURE TRANSMITTERS Use the TechChek 830 to simultaneously supply power to a 2-Wire transmitter, read the input pressure to the transmitter and display the 4 to 20 mA output of the transmitter.The 830 supplies a nominal 25 VDC and supports loads up to 1200 Ohms.TechChek 830 with optional QuikCal Pressure Moduleand ModPak Module HolderQuikCal 90 PRESSURE MODULE SPECIFICATIONSOptional QuikCal Pressure Moduleand ModPak Module Holder QuikCal 90 PRESSURE MODULE RANGES & RESOLUTIONEngineering UnitsPSIpaKpaMpaBarmBarAtmKgf/cm2torrmm Hg @ 0°C/32°Fin Hg @0°C/32°Fin Hg @15°C/60°Fin H2O @ 4°C/39.2°Fin H2O @ 15°C/60°Fin H2O @ 20°C/68°Fin H2O @ 23°C/73.4°F mm H2O @ 4°C/39.2°F mm H2O @ 23°C/73.4°F cm H2O @ 4°C/39.2°F cm H2O @ 23°C/73.4°F0 to 5 PSIMax Rdg Resolution5.0000.000134474134.474.0010.0344.00010.3447.0001344.74.010.3402.00010.3515.0001258.57.01258.27.0110.180.00110.208.001138.40.01138.53.01138.64.01138.74.013515.3.13524.0.1351.53.01352.40.010 to 10 PSIMax Rdg Resolution10.000.00168948168.948.0010.0689.00010.6894.0001689.48.010.6804.00010.7030.0001517.15.01517.15.0120.360.00120.418.001276.80.01277.07.01277.30.01277.48.017030.7.17048.1.1703.07.01704.81.010 to 30 PSIMax Rdg Resolution30.000.001999991206.84.010.2068.00012.068.00012068.4.12.0414.00012.1092.0001999.99.01999.99.0161.081.00161.253.001830.40.01831.22.01831.89.01832.45.012109212114412109.2.12114.4.1Engineering Units PSIpaKpaMpaBarmBarAtmKgf/cm2torrmm Hg @ 0°C/32°Fin Hg @0°C/32°Fin Hg @15°C/60°Fin H2O @ 4°C/39.2°Fin H2O @ 15°C/60°Fin H2O @ 20°C/68°Fin H2O @ 23°C/73.4°F mm H2O @ 4°C/39.2°F mm H2O @ 23°C/73.4°F cm H2O @ 4°C/39.2°F cm H2O @ 23°C/73.4°F0 to 100 PSIMax Rdg Resolution100.00.01999991689.48.010.6894.00016.8948.00016894.8.16.8046.00017.0307.00015171.5.15171.5.1203.60.01204.18.012768.0.12770.7.12773.0.12774.8.17030717048117030.7.17048.1.10 to 300 PSIMax Rdg Resolution300.00.0199990102068.4.12.0684.000120.684.00120684120.414.00121.092.0019999.9.19999.9.1610.81.01612.53.018304.0.18312.2.18318.9.18324.5.19999919999912109212114410 to 500 PSIMax Rdg Resolution500.00.0199990103447.4.13.4474.000134.474.00134474134.023.00135.153.001258571258571999.99.01999.99.019999.9.19999.9.19999.9.19999.9.19999919999913515313524010 to 1000 PSIMax Rdg Resolution999.99.01999001006894.8.16.8948.000168.948.00168948168.046.00170.307.0015171515171512036.0.012041.8.1276801277071277301277481999901099990107030717048110 to 2500 PSIMax Rdg Resolution2500.0.1999001009999.9.117.236.001172.36.001999991170.11.01175.76.019999919999915090.1.15104.4.169200169268169324169371199990109999010999991999991ModulesQuikCal 90-5G 0 to 5 psi QuikCal 90-10G* 0 to 10 psiQuikCal 90-30G* 0 to 30 psi QuikCal 90-100G* 0 to 100 psi QuikCal 90-300G* 0 to 300 psi QuikCal 90-500G* 0 to 500 psi QuikCal 90-1000G * 0 to 1000 psi QuikCal 90-2500G 0 to 2500 psi Module Accuracy90-5G ±(0.025% of rdg +0.0005 psi) 90-10G ±(0.025% of rdg +0.001 psi) 90-30G ±(0.025% of rdg +0.003 psi) 90-100G ±(0.025% of rdg +0.009 psi) 90-300G ±(0.025% of rdg +0.027 psi) 90-500G ±(0.025% of rdg +0.035 psi) 90-1000G ±(0.025% of rdg +0.01 psi) 90-2500G ±(0.025% of rdg +0.25 psi) *Modules Available in March 1998THERMOCOUPLE RANGES & ACCURACIEST/C TYPE JKTE°C°FRANGE ACCURACY RANGE ACCURACY100 to 1200±1.7212 to 2192±2.3-50 to 99±1.8-58 to 211±2.5-150 to -49±2.2-238 to -57±3.2-200 to -149±2.8-328 to -237±4.31100 to 1372±2.22012 to 2500±3.10 to 1099±2.032 to 2011±2.9-100 to -1±2.3-148 to 31±3.3-200 to -99±3.6-328 to -147±5.7200 to 400±1.7392 to 752±2.40 to 199±1.932 to 391±2.7-100 to -1±2.4-148 to 31±3.5-200 to -99±3.5-328 to -147±5.6250 to 1000±1.5482 to 1832±2.050 to 249±1.6122 to 481±2.1-100 to 49±1.9-148 to 121±2.6-200 to -99±2.6-328 to -147±3.9T/CTYPENRS°C°FRANGE ACCURACY RANGE ACCURACY300 to 1300±2.1572 to 2372±3.0100 to 299±2.3212 to 571±3.3-50 to 99±2.6-58 to 211±4.0-200 to -49±5.0-328 to -57±8.21750 to 1768±4.23182 to 3214±6.9950 to 1749±4.01742 to 3181±6.5650 to 949±4.41202 to 1741±7.2300 to 649±5.1572 to 1201±8.41700 to 1768±4.93092 to 3214±8.01050 to 1699±4.41922 to 3091±7.1700 to 1049±4.81292 to 1921±7.8300 to 699±5.4572 to 1291±8.9Note: Thermocouple accuracies are based on an 80.00 mV SpanT/C Accuracy for °C is ±(0.05% of 80.00 mV + 1°C)T/C Accuracy for °F is ±(0.05% of 80.00 mV + 1°F)Source resolution is 1 °C or °F. Read resolution is 0.1 °C or °F.RTD TYPE ALPHA°C RANGE ACCURACY°F RANGE ACCURACYPt 100Ω(DIN/IEC/JIS 1989) 1.3850-100 to 850±1-148 to 1562±2Pt 100Ω(Burns) 1.3902-100 to 648±1-148 to 1200±2Pt 100Ω(Old JIS 1981) 1.3916-100 to 648±1-148 to 1200±2Pt 100Ω(US Lab) 1.3926-100 to 862±1-148 to 1584±2Ni 120Ω 1.6720-80 to 273±1-112 to 524±2Cu 10Ω 1.4274-200 to 260±8-328 to 500±14RTD RANGES & ACCURACIESRTD resolution is 1 °C or °F.SPECIFICATIONS(Unless otherwise indicated, specifications are for 1 year in ±% of Span @ 23°C)GENERALTYPICAL90 DAY ACCURACY:±(0.025% of Full Scale + 1 LSD)11 YEAR ACCURACY:±(0.05% of Full Scale + 1 LSD)WARM UP TIME:10 seconds to specified accuracy, 2 minutes to maximum accuracyTEMPERATURE EFFECT:±0.01%/°C based on 23°±25°C BATTERIES:Six “AA”, (R6) batteries (Alkaline supplied and recommended)BATTERY LIFE:MILLIAMP SOURCE & 2-WIRE MODES: Nominal 12 hours at 20 mA with 250 Ohm load; OTHER FUNCTIONS: Nominal 30 hoursNote: Battery life is reduced when LCD backlighting is onLOW BATTERY INDICATION:“BAT” indication on the display at approximately 4 hours leftOVERLOAD PROTECTION:3 fuses,125 mA, Fast BlowNOISE:±1 LSD at frequencies less than 10 HzNORMAL MODE REJECTION RATIO:50 dB @ 50/60 Hz OPERATING TEMPERATURE RANGE:-5 to +130 °F (-20 to +55°C) STORAGE TEMPERATURE RANGE:-13 to +130°F (-25 to +55°C) RELATIVE HUMIDITY:10 to 90%, non-condensing for 24 hours from 0 to 35°C OVERALL SIZE:158.1 x 83.1 x 49.3 mm (6.23 x 3.27 x 1.94 inches) WEIGHT: 0.6 kg (1 lb, 5 oz)MILLIAMP SOURCERANGES:0.00 to 24.00 mA; -25.0 to 125.0 % of 4 to 20 mA; % DP Flow ACCURACY:±(0.05% of 24 mA Span + 0.01 mA) = 0.02mATYPICAL DRIVE CAPABILITY: **************** COMPLIANCE VOLTAGE: nominal 25 V @ 20 mAPOWER & MEASURE 2-WIRE TRANSMITTERS RANGES & ACCURACY:Same as for MILLIAMP SOURCEOUTPUT CURRENT: up to 24.00 mATYPICAL DRIVE CAPABILITY:**************** COMPLIANCE VOLTAGE:nominal 25 VDC @ 20 mACOMMON MODE ERROR:0.01% Full Scale/Common Mode Volt2-WIRE TRANSMITTER SIMULATOR RANGES: 1.00 to 24.00 mA; -18.8 to 125.0% of 4 to 20 mA; % DP Flow ACCURACY:Same as for MILLIAMP SOURCELOOP VOLTAGE LIMITS:Mininum, 3 V; Maximum 45 VDC OVERLOAD PROTECTION:Current limited to 25 mA nominal COMMON MODE ERROR:0.01% Full Scale/Common Mode VoltMILLIAMP READRANGES: 0.00 to 24.00 mA; -25.0 to 125.0 % of 4 to 20 mA; % DP Flow ACCURACY:Same as for MILLIAMP SOURCEOVERLOAD PROTECTION: Current limited to 25 mA nominal VOLTAGE BURDEN: 0.9V at 4 mA, 1.2V at 20 mA, 1.9V at 24 mADC VOLTAGE SOURCERANGES: 0.00 to 110.00 mV; 0.00 to 10.25VACCURACY:±(0.05% of 110 mV+ 0.01mV) = ±0.07 mV±(0.05% of 10.25 V + 0.01V) = ±0.02VSOURCE CURRENT:>20 mASINK CURRENT:>20 mAOUTPUT IMPEDANCE: <0.3 OhmsSHORT CIRCUIT DURATION: InfiniteMEASURE DC VOLTSRANGES: 0.00 to 110.00 mV; 0.00 to 10.25 V; 0.0 to 200.0 V ACCURACY:±(0.05% of 110 mV+ 0.01mV) = ±0.07 mV±(0.05% of 10.25 V + 0.01V) = ±0.02V±(2% of 200.0 V + 0.1V) = ±4.1 VINPUT RESISTANCE: >1 Meg Ohm to 10.25V, >5 Meg Ohm to 200V SOURCE RESISTANCE EFFECT: 0.01% per 100 OhmsMEASURE AC VOLTSRANGE: 0.0 to 250.0 V True RMSACCURACY: From 10 to 250 VAC ±(2% of 250.0 VAC + 0.1 VAC) = ±5.1 VAC MAXIMUM CREST FACTOR:< 3FREQUENCY RANGE:45 to 800 HzSOURCE THERMOCOUPLES THERMOCOUPLE TYPES: J, K, T, E, N, R & SRESOLUTION: 1 °C or °F.ACCURACY°C: ±(0.05% of 80.00 mV + 1°C);°F:±(0.05% of 80.00 mV + 1°F) COLD JUNCTION ACCURACY: ±1°CCOLD JUNCTION EFFECT: within 0.05°C per °C changeOUTPUT IMPEDANCE:<0.3 OhmsSOURCE CURRENT:>10 mAREAD THERMOCOUPLES THERMOCOUPLE TYPES & ACCURACIES: Same as for Source T/C RESOLUTION: 0.1 °C or °F.COLD JUNCTION ACCURACY: ±1°CCOLD JUNCTION EFFECT: within 0.05°C per °C changeINPUT IMPEDANCE:> 1 Meg OhmOPEN THERMOCOUPLE DETECTION: 450 millisecond pulse. Nominal threshold, 10 K Ohms.SOURCE RTD & OHMSRTD TYPES:Pt 100Ωfor 1.3850 (DIN/IEC 751 & New JIS), 1.3902 (Burns),1.3926 (US Lab) & 1.3916 (Old JIS 1604C-1981)Ni 120Ω& Cu 10ΩRTD RESOLUTION: 1°C or °F.RANGE OHMS: 0.0 to 400.0 OhmsACCURACY:±0.05% of Full Scale + 0.075 mV/mA Excitation Current) ACCURACY OHMS: ±(0.05% of 400.0 Ohms + 0.1 Ohm) = ±0.3 Ohms (at 1 mA Excitation Current)TEMPERATURE EFFECT:±((0.035 mV/°C)*(1/mA Excitation Current)) ALLOWABLE EXCITATION CURRENT: 0.125 to 2.0 mA continuous DCREAD RTDRTD TYPES & RESOLUTION: Same as for Source RTDRTD RANGE (IN OHMS): 0.0 to 400.0 OhmsRTD ACCURACY(IN OHMS): ±(0.05% of 400.0 Ohms + 0.1 Ohm) = ±0.3 Ohms EXCITATION CURRENT SUPPLIED:1 mA, nominalREAD OHMSRANGE OHMS:0.0 to 1000.0 OhmsACCURACY: ±(0.05% of 1000.0 Ohms + 0.1 Ohm) = ±0.6 Ohms EXCITATION CURRENT SUPPLIED:1 mA, nominalFREQUENCY SOURCERANGES: 1 to 1000 CPM (Count-Per-Minute); 1 to 1000 Hz, 0.01 to 10.00 kHz ACCURACY:±(0.05% of 1000 CPM + 1 CPM) = ±2 CPM;±(0.05% of 1000 Hz +1 Hz )= ±2 Hz;±(0.05% of 10.00 kHz + 0.01 kHz) = ±0.02 kHzOUTPUT WAVEFORM:Square Wave, Zero Crossing, -1V to +5V ±10% RISETIME:Hz <5 microseconds; CPM <100 microsecondsOUTPUT IMPEDANCE: <100 OhmsSOURCE CURRENT: >1 mA at 10 kHzSHORT CIRCUIT DURATION:InfiniteMEASURE FREQUENCYRANGES & ACCURACY:Same as FREQUENCY SOURCETRIGGER LEVEL: 1 V RMS, DC coupled to 10.25 V;7 V RMS, DC coupled to 250 VINPUT IMPEDANCE: >1Meg Ohm + 60 pFCONTINUITY CHECKINGTEST CURRENT:Nominal 1 mATHRESHOLD:100 Ohm ±20%INDICATION:Steady tone & Symbol on LCD plus Ohm ReadingOPTIONAL PRESSURE MODULEOPERA TING TEMPERA TURE:-10°C TO 50°C (13°F TO 122°F)STORAGE TEMPERA TURE:-40°C TO 85°C (-40°F TO 185°F)WEIGHT: 0.4 kg (14.5 oz)TEMPERA TURE EFFECT: None (Compensated over full range) CONNECTION: 1/8” NPT FEMALEMEDIA COMP A TIBILITY: Any liquid or gas compatible with 316 stainless steelNEW PRODUCT SPECIFICATIONSThese specifications are for a new product and are subject to change without notice1Typical 90 day accuracy can be estimated by dividing the 1 year % of full scale accuracy by 2. Additions to the specification, such as + 1 LSD, remain constant.ADDITIONAL INFORMATIONTHREE YEAR WARRANTYOur equipment is guaranteed against defective material and workmanship (excluding batteries, leads, module over pressure and module contamination with incompatible materials) for a period of three years from date of shipment. Claims under guarantee can be made by returning the equipment prepaid to our factory. The equipment will be replaced, repaired or adjusted at our option. The liability of Altek is restricted to that given under our guarantee. No responsibility is accepted for damage, loss or other expense incurred through sale or use of our equipment. Under no condition shall Altek be held liable for any special, incidental or consequential damage.OTHER PRODUCTSAltekdesigns and manufacturers fast, accurate instruments for measurement, generation and simulation of virtually every process control signal. Consult our factory directly or contact your local stocking representative to order precise, low cost Milliamp Calibrators, Voltage Sources, Thermocouple Sources, RTD Simulators, Frequency Calibrators and Pressure Pumps, Indicators & Calibrators. Altek also produces calibrators for custom ranges and unique applications. New models are frequently added to the Altek family to meet all of your critical calibration requirements. Altek products are made in the USA.ORDERING INFORMATIONAVAILABLE FROMOPTIONAL ACCESSORIESPart No.90 QuikCal Pressure Module 90-_____Choose any QuikCal Pressure Module from the following list. Please ask for information on additional module ranges.QuikCal 90-5G 0 to 5 psi QuikCal 90-10G*0 to 10 psi QuikCal 90-30G*0 to 30 psi QuikCal 90-100G*0 to 100 psi QuikCal 90-300G*0 to 300 psi QuikCal 90-500G*0 to 500 psi QuikCal 90-1000G*0 to 1000 psi QuikCal 90-2500G 0 to 2500 psi * MODULES AVAILABLE IN MARCH 1999Replacement 830 Lead Kit WIRE KIT-9Contains Pair of Red & Black leads withright angle & straight sheathed banana plugsPair of safety insulated alligator clips, uninsulated alligator clips, test probes and spade lugs Extra Black lead and spade lug for 3-Wire RTD connections.Second pair of Red & Black leads with right angle sheathed banana plugs and alligator clips for mA Read & Power Transmitter functionsORDERING INFORMATION Part No.830 TechChek830Process CalibratorIncluded with each Model 830 are:Deluxe Carrying Case with hands free shoulder strap and zippered pocket for lead kits (09-3786)Test Lead Kit (Part No. WIRE KIT-9)NIST Traceable Certificate and Three Year Warranty OPTIONAL ACCESSORIESPart No.Thermocouple Wire Kit WIRE KIT-1Contains T/C wires for types J, K, T & E 1 Meter long, terminated at one end with a minature T/C connector 91 ModPak Pressure Module Holder 91-ModPak ModPak 91 allows any QuikCal 90 PressureModule to be attached to the TechChek 830. The ModPak 91 has 1 meter (3’) of cable that plugs into the TechChek 830. A rubber strap restrains the cable or is used to hang the ModPak from a pipe or rail.RECALIBRATIONAltek recommends annual recalibration of the TechChek 830 and the QuikCal 90 Pressure Modules. To send a TechChek 830 back for recalibration, please call Altek for a Return Materials Authorization (RMA)number. Altek can also provide a field calibration procedure to any qualified calibration laboratory.The QuikCal Pressure Modules must be sent back to Altek if temperature characterized recalibration is desired. This type of recalibration is required to guarantee the specifications of the pressure module across the entire operating temperature range. Recalibration at a single temperature may be performed at any qualified calibration laboratory provided they have a Transmation QuikCal 190 Pressure Calibrator. A verification of pressure accuracy, without adjustment, may be accomplished using a deadweight tester.。
木窗双端复合精铣加工机床主轴系统的刚柔耦合动力学建模与仿真
第39卷第5期2023年9月森㊀林㊀工㊀程FOREST ENGINEERING Vol.39No.5 Sep.,2023doi:10.3969/j.issn.1006-8023.2023.05.016木窗双端复合精铣加工机床主轴系统的刚柔耦合动力学建模与仿真任长清,王涛,丁星尘,丁禹程,杨春梅,宋文龙∗(东北林业大学机电工程学院,哈尔滨150040)摘㊀要:实现木窗的高质量加工,需要研究双端复合精铣加工机床主轴系统的动力学特性,可为其结构优化㊁减轻振动提供理论依据,使用软件Adams建立主轴系统的简化三维模型,计算铣床加工木窗时的切削力和主轴系统支承轴承刚度,并联合软件Ansys与Adams建立柔性主轴的刚柔耦合模型,对主轴系统进行刚性体模型和刚柔耦合模型的仿真,提取主轴质心㊁切削力作用点和带轮连接点处的X向㊁Y向㊁Z向的振动曲线㊂仿真结果表明,切削力作用点的X向和Z向振幅最大,且当主轴为柔性体时质心和切削力作用点的振幅要远远小于主轴为刚性时的情况㊂此研究结果表明,将主轴设为柔性体时的动力学特性更符合实际工作情况,3点的振动曲线为主轴系统的结构优化提供一定的理论依据㊂关键词:主轴系统;刚柔耦合模型;振动;动力学分析;仿真中图分类号:TS642㊀㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1006-8023(2023)05-0133-11Rigid-Flexible Coupled Dynamics Modeling and Simulation of Spindle System of Double-End Compound Finishing Milling MachineTool for Wooden WindowREN Changqing,WANG Tao,DING Xingchen,DING Yucheng,YANG Chunmei,SONG Wenlong∗(College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin150040,China) Abstract:To realize the high-quality processing of wooden windows,it is necessary to study the dynamic characteristics of the spindle system of the double-ended composite finishing milling machine tool,which can provide a theoretical basis for its structure op-timization and vibration reduction.A simplified three-dimensional model of the spindle system was established using the software Ad-ams,and the cutting force and the stiffness of the spindle system supporting bearings were calculated when the milling machine pro-cessed wooden windows,and combined the software Ansys and Adams to establish a rigid-flexible coupling model of the flexible spin-dle,and simulated the rigid body model and the rigid-flexible coupling model of the spindle system.The X,Y,and Z vibration curves at the centroid of the spindle,cutting force action point and the pulley connection point were extracted.The simulation results showed that the X and Z direction amplitudes of the cutting force action point were the largest,and the amplitude of the centroid and the cutting force action point when the spindle was a flexible body was much smaller than when the spindle was rigid.The results of this study showed that the dynamic characteristics of the spindle as a flexible body are more in line with the actual working conditions,and the vi-bration curve of the three points provides a certain theoretical basis for the structural optimization of the spindle system. Keywords:Spindle system;rigid-flexible coupling model;vibration;kinetics analysis;simulation收稿日期:2022-12-02基金项目:黑龙江省重点研发项目 智能化欧式木窗双端复合精铣成型加工机床关键技术研究 (GA21A405);中央高校基本科研业务费专项资金项目资助(2572020DR12)㊂第一作者简介:任长清,副教授,硕士生导师㊂研究方向为林业与木工机械设计及制造的研究㊂E-mail:dqrcq@∗通信作者:宋文龙,博士,教授㊂研究方向为模式识别与智能系统㊂E-mail:wlsong139@引文格式:任长清,王涛,丁星尘,等.木窗双端复合精铣加工机床主轴系统的刚柔耦合动力学建模与仿真[J].森林工程, 2023,39(5):133-143.REN C Q,WANG T,DING X C,et al.Rigid-flexible coupled dynamics modeling and simulation of spindle system of double-end compound finishing milling machine tool for wooden window[J].Forest Engineering,2023,39(5):133-143.森㊀林㊀工㊀程第39卷0㊀引言欧式木窗双端复合精铣加工机床是加工木窗的重要设备,其加工精度的高低对木窗的质量好坏具有较大的影响,而机床主轴系统的刚度和能否平稳工作是影响加工精度的重要因素㊂双端复合精铣加工机床的主轴系统是机床直接参与加工的重要部件,而在以往对主轴系统的研究中学者都将主轴部件视为刚性体,但在实际加工过程中,机床主轴系统精度极高,在受力后会有一定程度的变形和弹性振动,因此在对机床的主轴系统进行研究时,要考虑到主轴的柔性变形和振幅大小对整个系统的影响,即应将主轴部件视为柔性体㊂因此,如何对主轴系统进行有效的动力学分析,建立控制模型,提高铣削精度和工作可靠性,引起了许多学者的重视[1]㊂本研究以木窗双端复合精铣加工机床的主轴系统为研究对象,使用Solidworks建立主轴系统的多刚体模型并进行仿真分析,利用Ansys生成主轴部件的柔性体模型并联合Adams进行刚柔耦合模型的仿真分析,对比两者仿真结果,旨在获得主轴为刚性体和柔性体时2种不同的主轴系统的动力学特性,在进行比较后得出结论,为主轴系统的结构优化提供理论依据,以提高加工精度㊂1㊀多刚体虚拟样机的建立与动力学仿真1.1㊀三维模型的建立主轴系统的模型建立是其动态特性分析的重要内容[2],主轴系统主要由主轴㊁带轮㊁皮带和轴承等零件组成㊂本研究使用三维建模软件Solidworks 来进行主轴系统的三维模型建立,为方便仿真,建模时省略螺纹㊁倒角和退刀槽等对仿真影响较小的特征[3-4],主轴系统在机床中为直立固定,主轴总长533mm,主轴从上到下分为锁紧部分㊁刀具安装部分㊁上轴承安装部分㊁转子部分㊁下轴承安装部分和带轮安装部分,除锁紧部分外从上到下各轴段的直径分别为50㊁60㊁78㊁50㊁38mm;长度分别为115㊁34㊁222㊁30㊁87mm,下带轮安装部分连接一带轮,上㊁下轴承安装部分分别安装有一对角接触球轴承,安装方式为背对背组配安装㊂主轴系统各零件三维模型建立完成后,将各零件进行配合后完成主轴系统装配体的三维模型建立,如图1所示㊂图1㊀主轴系统三维模型装配图Fig.1Assembly drawing of3D model of spindle system 1.2㊀多刚体虚拟样机的建立将建立完成的主轴系统三维模型通过Adams 中的导入命令导入到Adams中,为了仿真方便,又不影响仿真结果,将模型中的轴承拆去[5],再在Ad-ams中通过Adams Machinery模块重新创建轴承,创建完成后的轴承需要设置刚度㊁阻尼和预载荷等参数,图2为Adams中默认的轴承参数㊂图2㊀Adams默认轴承参数Fig.2Adams default bearing parameters㊀㊀模型导入Adams后各零件的材料属性为默认设置,需要重新设置主轴和带轮零件材料属性,各零件材料属性见表1㊂表1㊀主轴系统零件材料属性Tab.1Material properties of spindle system part零件Component密度/(kg㊃m-3)Density弹性模量/MPaElastic modulus泊松比Poisson's ratio主轴Spindle7850 2.06ˑ1050.29带轮Pulley7150 1.45ˑ1050.26主轴与带轮之间为键连接,在Adams中使用固定副来表示此连接㊂另外,在带轮与ground(Adams431第5期任长清,等:木窗双端复合精铣加工机床主轴系统的刚柔耦合动力学建模与仿真软件中默认的作为背景或地面)之间添加一旋转副,并在带轮上添加一转速为6000r /min 的逆时针驱动㊂建立完成的多刚体虚拟样机,如图2所示,主轴的后端面中心点与坐标系原点重合,重力沿-Y 轴方向㊂图3㊀主轴系统多刚体虚拟样机Fig.3Spindle system multi -rigid body virtual prototype1.3㊀轴承刚度计算为了仿真结果准确,需要对轴承参数进行正确设置[6-7],Adams 中提供了默认的轴承刚度和阻尼等参数,其中刚度对仿真影响较大,需要进行重新设置,而阻尼对仿真的影响较小,可设为Adams 中的默认值㊂通过Solidworks 建立的主轴系统三维模型中的支承轴承为2个角接触球轴承背对背组配安装,而在Adams 中的多刚体虚拟样机创建的轴承为单个安装,虽然这2个模型不同,但只需要正确设置Adams 中的轴承参数,同样能达到轴承背对背组配安装效果,并不会影响仿真结果㊂采用式(1)来计算组配轴承组的轴向和径向刚度㊂假设其组配的轴承为同型号[8]㊂J a =32K(m 23+n 23)㊃F 13a ㊂(1)式中:J a 为组配轴承组轴向刚度,N /mm;m 为组配轴承组中轴承1的个数;n 为组配轴承组中轴承2的个数;F a 为轴向载荷,N;K 为弹性变形综合系数,对于K ,可用式(2)计算㊂K =0.00436Φ1/3Z 2/3sin 5/3α㊂(2)式中:Φ为滚动体直径,mm;Z 为滚动体数量;α为轴承的接触角,(ʎ)㊂本研究所使用的轴承参数见表2㊂表2㊀支承轴承的结构参数Tab.2Structural parameters of support bearings轴承Bearing 轴承类型Bearing type型号Model 内径(r 1)/mm Internal diameter(r 1)外径(r 2)/mm External diameter(r 2)滚动体数(Z )Number of rolling elements(Z )滚动体直径(Φ)/mm Rolling element diameter(Φ)接触角(α)/ʎContact angle(α)高度(b )/mm Height(b )上轴承Upper bearing角接触球轴承7012AC 60952011.522518下轴承Lower bearing角接触球轴承7010AC50801810.24256㊀㊀根据表2中提供的参数计算出上下轴承的弹性变形综合系数K 分别为K 1=1.10ˑ10-3,K 2=1.23ˑ10-3㊂将K 1和K 2代入式(1)中,m 和n 皆为1,轴向载荷(F a )根据主轴系统的重量给定80N,得到上轴承的轴向刚度J a 1=11751.46N /mm,下轴承的轴向刚度J a 2=10509.44N /mm㊂径向刚度(J r )使用式(3)进行计算㊂J r =J r1+J r2㊂(3)J r1=(2ε-1)㊃m 2/3㊃J r (ε)㊃F 1/3a K m ㊃J a (ε)㊃tan 2α㊂(4)J r2=(2ε-1)㊃n 2/3㊃J r (ε)㊃F 1/3aK n ㊃J a (ε)㊃tan 2α㊂(5)式中:ε为载荷分布系数;J r (ε)为径向载荷分布系数;J a (ε)为轴向载荷分布系数㊂当组配的轴承为同型号,且个数皆为m 和n 皆为1时,式(4)和式(5)可写为J r12=(2ε-1)㊃J r (ε)㊃F 1/3aK ㊃J a (ε)㊃tan 2α㊂(6)于是式(3)可改写为J r =2㊃(2ε-1)㊃J r (ε)㊃F 1/3aK ㊃J a (ε)㊃tan 2α㊂(7)在径向载荷F r ㊁轴向载荷F a 和实际接触角已知的条件下,可根据F r tan α/F a 的计算值从表3中查得ε㊁J r (ε)和J a (ε)㊂当F r tan α/F a 的计算值与531森㊀林㊀工㊀程第39卷表中所列的F r tanα/F a不同时,可采用线性内插法计算[8]㊂表3㊀ε㊁J r(ε)和J a(ε)值[8]Tab.3The value ofε,J r(ε)and J a(ε)εF r tanα/F a J r(ε)J a(ε)0.0 1.00001/Z1/Z0.20.93180.15900.17070.30.89640.18920.21100.40.86010.21170.24620.50.82250.22880.27820.60.78350.24160.30840.70.74270.25050.33740.80.69950.25590.36580.90.65290.25760.39451.00.60000.25460.39451.250.43380.22890.50441.670.30880.18710.60602.50.18500.13390.72405.00.08310.71100.8558ɖ0.00000.0000 1.0000给定径向载荷F r=40N,轴向载荷F a=80N,接触角α=25ʎ,计算得到F r tanα/F a=0.2331,介于0.3088~0.1850,为了得到此时对应的ε㊁J r(ε)和J a(ε),使用拉格朗日线性插值法进行计算,设F r tanα/F a为x㊂㊀ε=0.1850-x-0.1238㊃1.67+x-0.3088-0.1238㊃2.5㊂(8)J r(ε)=0.1850-x-0.1238㊃0.1871+x-0.3088-0.1238㊃0.1339㊂(9)J a(ε)=0.1850-x-0.1238㊃0.6060+x-0.3088-0.1238㊃0.7240㊂(10)将x=0.2331代入式(8) 式(10)中,分别得到F r tanα/F a=0.2331时对应的ε=2.18㊁J r(ε)= 0.1546㊁J a(ε)=0.6782㊂将这3个值及K1和K2代入式(7)得到上轴承径向刚度J rs=27596.02N/mm㊁下轴承径向刚度J rx=24679.37N/mm㊂将得到的上下轴承的轴向和径向刚度输入到Adams中,并设置预载荷㊂1.4㊀切削力的计算切削力是木材切削过程中的主要物理现象之一,是切削木材㊁切屑和被加工工件表面的木材在刀具作用下发生弹性变形和塑性变形的结果,正确地掌握木材切削力的大小是木工机床设计的必要依据[6]㊂切削力的大小对主轴系统造成的影响尤为关键,为正确仿真机床主轴铣削木窗时的状态,需要对切削力进行计算㊂目前实际应用的切削力和切削功率计算方法有2种,一种为基于理论分析的计算方法;另一种为经验公式计算方法㊂因为理论计算方法主要是依据断裂力学的概念和计算方法,比较繁琐,牵涉的系数较多,所以在工程计算上多用经验公式,计算切削力和切削功率[9]㊂本研究使用经验公式(11)完成对切削力的计算,表3中给出切削力的计算条件㊂所加工产品为IV68系列欧式木窗㊂表4㊀切削力计算条件Tab.4Cutting force calculation conditions参数Parameter值Value原材料Raw material松木含水率Moisture rate(10%~13%)ʃ2%主轴转速(n)/(r㊃min-1)Spindle speed(n)6000进给速度(U)/(m㊃min-1)Feed speed(U)6铣削深度(h)/mmMilling Depth(h)18刀具齿数(z)Number of teeth(z)4刀具旋转外径(D)/mmTool rotation outer diameter(D)240木材切削力的经验公式为F x=Pab10㊂(11)式中:P为单位切削力,MPa;a为切屑厚度,mm;b 为切屑宽度,mm㊂单位切削力(P)可按式(12)进行计算[10]P=9.807(a w a q q+a w a h HU z sinθ)㊂(12)式中:a w为木材含水率修正系数;q为松木切削的直线斜率;a q为q的修正系数;H为松木切削的直线截距,mm;a h为H的修正系数;U z为每齿进给量,mm;θ为运动遇角(ʎ)㊂查文献[10]得木材含水率修正系数a w=1.0,松木切削的直线斜率q=3.8,q的修正系数a q=1.1,松木切削的直线截距H=0.4,H的修正系数a h=1.45㊂631第5期任长清,等:木窗双端复合精铣加工机床主轴系统的刚柔耦合动力学建模与仿真每齿进给量(U z )的计算公式为[11]U z =1000Un ㊃z㊂(13)将各已知参数带入计算求得U z =0.25mm㊂sin θ可用式(14)进行计算㊂sin θ=㊀h D㊂(14)式中:h 和D 均为已知,将其带入后求得sin θ=0.7㊂将上述各参数带入式(12)中可求出单位切削力P =125.26MPa㊂切屑厚度a 为两相邻切削轨迹间的垂直距离,是一个变化的值,为仿真主轴振动最大的情况,这里取a 的最大值a max 进行计算㊂a max =U z sin φ0㊂(15)式中:U z 为每齿进给量;φ0为接触角(ʎ)㊂由cos φ0=1-hD得φ0=22.33ʎ㊂将已知量带入式(15)得a max =0.09㊂铣削方式为开式圆柱铣削,切屑宽度b 与铣削宽度相等,即b =68mm㊂最终可求得切削力F x 为F x =125.26ˑ0.09ˑ6810=76.66N ㊂将求得的切削力添加到主轴系统多刚体虚拟样机中,并在带轮上添加60N 皮带预紧力,得到最终模型如图4所示,切削力沿坐标系Z 轴方向,作用点位于主轴刀具安装部位,皮带预紧力沿-Z 轴方向㊂图4㊀主轴系统多刚体仿真模型Fig.4Multi -rigid body simulation model of spindle system1.5㊀主轴系统刚性体动力学仿真设置完成所有仿真条件后,进行主轴系统刚性体的动力学仿真,设定仿真持续时间0.04s,步长0.0004㊂仿真后提取主轴质心㊁切削力作用点和带轮连接点的X ㊁Y ㊁Z 向振动曲线,这3点的位置如图5所示,坐标分别为(0,259,0)㊁(0,439,0)㊁(0,41,0),所提取的振动曲线如图6 图11所示㊂图5㊀所提取的3点振动曲线位置Fig.5The position of the extracted three -point vibration curve731森㊀林㊀工㊀程第39卷振幅/m m A m p l i t u d e1.51.00.50.0-0.5-1.0-1.5-2.0-2.5时间/s Time0.00.010.020.030.04刚性主轴质心X 向振动曲线Badyl.CM_Position.X刚性主轴质心Z 向振动曲线Badyl.CM_Position.Z图6㊀刚性主轴质心X ㊁Z 向振动曲线Fig.6Vibration curve in X and Z directions of rigid spindle centroid振幅/m m A m p l i t u d e259.54259.535259.53259.525时间/s Time0.00.010.020.030.04刚性主轴质心Y 向振动曲线Body1.CM_Position.Y图7㊀刚性主轴质心Y 向振动曲线Fig.7Vibration curve in Y directions of rigid spindle centroid时间/s Time0.00.010.020.030.04振幅/m m A m p l i t u d e2.51.50.50.0-0.5-1.5-2.5-3.5-4.5刚性主轴切削力作用点X 向振动曲线MARKER_54.Translational_Displacement.X 刚性主轴切削力作用点Z 向振动曲线MARKER_54.Translational_Displacement.Z图8㊀刚性主轴切削力作用点X ㊁Z 向振动曲线Fig.8Vibration curve in X and Z directions of rigid spindle cutting force action point时间/s Time振幅/m m A m p l i t u d e刚性主轴切削力作用点Y 向振动曲线MARKER_54.Translational_Displacement.Y439.54439.535439.53439.525439.520.00.010.020.030.04图9㊀刚性主轴切削力作用点Y 向振动曲线Fig.9Vibration curve in Y directions of rigid spindle cutting force acting point831第5期任长清,等:木窗双端复合精铣加工机床主轴系统的刚柔耦合动力学建模与仿真时间/s Time刚性主轴带轮连接点X 向振动曲线MARKER_1.Translational_Displacement.X 刚性主轴带轮连接点Z 向振动曲线MARKER_1.Translational_Displacement.Z振幅/m m A m p l i t u d e0.0015.0E-040.0-5.0E-04-0.001-0.00150.00.010.020.030.04图10㊀刚性主轴带轮连接点X 、Z 向振动曲线Fig.10Vibration curve in X and Z directions of rigid spindle pulley connection point时间/s Time0.00.010.020.030.04振幅/m m A m p l i t u d e42.542.041.541.040.540.0刚性主轴带轮连接点Y 向振动曲线MARKER_1.Translational_Displacement.Y图11㊀刚性主轴带轮连接点Y 向振动曲线Fig.11Vibration curve in Y directions of rigid spindle pulley connection point1.6㊀主轴系统刚性体动力学仿真结果分析分析图6 图11中的振动曲线可以发现,主轴质心和切削力作用点皆作简谐振动,X ㊁Y ㊁Z 向振动曲线皆为余弦或正弦曲线,且周期都为0.01s㊂结合图6㊁图8和图10分析发现,3点的X 向振幅分别为1.01㊁1.93㊁6.25ˑ10-4mm;Z 向振幅分别为1.08㊁1.70㊁6.50ˑ10-4mm,3点的X 和Z 向振幅几乎一致,3点振幅切削力作用点最大,质心其次,带轮连接点的振幅最小,而且3点的X 和Z 向的振动曲线并非严格对称于0刻度线,即主轴的回转中心不与Y 轴重合,而是向-X 和+Z 方向偏转一定角度,如图12所示㊂由图7㊁图9和图11可知,切削力作用点的Y 向振幅最大,为0.01mm,其次是质心,振幅为0.006mm,而带轮连接点在Y 向上没有振动㊂2㊀刚柔耦合模型的建立与仿真2.1㊀刚柔耦合模型的建立把模型当作刚性系统来处理,没考虑构件的变YZX图12㊀偏移的主轴回转中心Fig.12Offset spindle center of rotation形,在精度要求较高时,可能出现仿真与实践不符的情况[6]㊂主轴系统对精度要求较高,为能准确研究主轴系统的动力学特性,不能忽略在实际工作过程中的微小振动与变形,将主轴设为柔性体能使仿真结果更加接近实际情况㊂Adams 中柔性体的载体是包含构建模态信息的模态中性文件(Modal Neutral File,MNF),因此柔性931森㊀林㊀工㊀程第39卷体的创建必须借助功能强大的有限元软件来完成[12]㊂借助有限元软件Ansys可以完成对柔性主轴的创建㊂基本步骤[13-18]:1)将主轴三维模型导入Ansys㊂2)设置单元类型为Solid(Brick8node185),设置材料属性㊂3)分别在上下轴承支承部位及带轮连接部位中心创建连接点㊂4)划分单元,划分单元后主轴如图13所示㊂图13㊀划分单元后的主轴Fig.13Main axis after dividing the unit将上下轴承支承部位及带轮连接部位设置为刚性区域,如图14所示㊂使用Adams接口输出模态中性文件㊂将主轴模态中性文件导入Adams的模型中替换原有刚性主轴㊂替换完成后得到的主轴系统的刚柔耦合模型如图15所示,其中主轴为柔性体,带轮为刚性体㊂图14㊀主轴模型刚性区域Fig.14Spindle model rigidarea图15㊀主轴系统刚柔耦合模型Fig.15Rigid-flexible coupling model of spindle system2.2㊀主轴系统刚柔耦合模型仿真设置仿真条件与进行刚性体仿真时一致㊂进行仿真后得到图16 图21所示结果㊂由于带轮连接点的X㊁Z向振动曲线的起点坐标差较大,为方便分析将2条振动曲线的起点与坐标原点重合㊂时间/sTime0.00.010.020.030.04振幅/mmAmplitude柔性主轴质心X向振动曲线Body1_flex.CM_Position.X0.0150.010.0050.0-0.005-0.01柔性主轴质心Z向振动曲线Body1_flex.CM_Position.Z图16㊀柔性主轴质心X、Z向振动曲线Fig.16Vibration curve in X and Z directions of of flexible spindle centroid041第5期任长清,等:木窗双端复合精铣加工机床主轴系统的刚柔耦合动力学建模与仿真时间/s Time0.00.010.020.030.04柔性主轴质心Y 向振动曲线Body1_flex.CM_Position.Y振幅/m m A m p l i t u d e258.776 7258.776 5258.776 5258.776 3258.776 3258.776 1258.776258.775 9258.775 8258.772 8图17㊀柔性主轴质心Y 向振动曲线Fig.17Vibration curve in Y directions of the flexible spindle centroid时间/s Time0.00.010.020.030.04振幅/m m A m p l i t u d e0.050.0-0.05-0.1柔性主轴切削力作用点X 向振动曲线MARKER_65.Translational_Displacement.X 柔性主轴切削力作用点Z 向振动曲线MARKER_65.Translational_Displacement.Z图18㊀柔性主轴切削力作用点X ㊁Z 向振动曲线Fig.18Vibration curve in X and Z directions of flexible spindle cutting force action point时间/s Time0.00.010.020.030.04振幅/m m A m p l i t u d e柔性主轴切削力作用点Y 向振动曲线MARKER_65.Translational_Displacement.Y436.902 9436.902 8436.902 7436.902 6436.902 5436.902 4图19㊀柔性主轴切削力作用点Y 向振动曲线Fig.19Vibration curve in Y directions of flexible spindle cutting force action point时间/s Time0.00.010.020.030.04振幅/m m A m p l i t u d e柔性主轴带轮连接点X 向振动曲线MARKER_64.Translational_Displacement.X 柔性主轴带轮连接点Z 向振动曲线MARKER_64.Translational_Displacement.Z0.0015.0E-040.0-5.0E-04-0.001-0.0015图20㊀柔性主轴带轮连接点X ㊁Z 向振动曲线Fig.20Vibration curve in X and Z directions of flexible spindle pulley connection point141森㊀林㊀工㊀程第39卷时间/s Time0.00.010.020.030.04振幅/m m A m p l i t u d e柔性主轴带轮连接点Y 向振动曲线MARKER_64.Translational_Displacement.Y41.228 541.228 541.228 441.228 441.228 3图21㊀柔性主轴带轮连接点Y 向振动曲线Fig.21Vibration curve in Y directions of flexible spindle pulley connection point2.3㊀主轴系统刚柔耦合模型仿真结果分析由图16 图21可以看出,柔性主轴质心㊁切削力作用点和带轮连接点的X 向和Z 向振动曲线与主轴为刚性时的情况存在较大差异,虽然振动曲线周期同样为0.01s 的正弦或余弦曲线,但是各点的三向振幅发生了较大的变化㊂主轴质心㊁切削力作用点和带轮连接点的X 向振幅分别为:2.9ˑ10-3㊁0.01㊁6.5ˑ10-4mm;3点的Z 向振幅与X 向振幅一致,分别为:2.9ˑ10-3㊁0.01㊁6.5ˑ10-4mm㊂而且可以看到3点的振动起点较主轴为刚性时发生了变动,但并不影响对3点振幅的分析㊂分析图17㊁图19和图21,3点Y 向振动曲线周期同样为0.01s,振幅分别为4.5ˑ10-4㊁2.0ˑ10-4㊁5ˑ10-5mm㊂3㊀仿真结果比较比较主轴为刚性和柔性2种情况时的振动曲线,发现这2种情况下3点的振动曲线周期皆为0.01s㊂表5中列出了主轴为刚性和柔性时,主轴质心㊁切削力作用点和带轮连接点的X ㊁Y ㊁Z 向振幅㊂表5㊀刚、柔主轴3点振幅Tab.5Three -point amplitude of rigid and flexible spindlesmm位置Position 刚性主轴Rigid spindleX Y Z 柔性主轴Flexible spindleX Y Z 质心Centroid1.016.0ˑ10-31.082.9ˑ10-34.5ˑ10-4 2.9ˑ10-3切削力作用点Cutting force point1.930.01 1.700.012.0ˑ10-40.01带轮连接点Pulleyattachme -nt point6.25ˑ10-46.5ˑ10-46.5ˑ10-45ˑ10-56.5ˑ10-4㊀㊀由表5可以发现,当主轴为柔性体时质心和切削力作用点的振幅远远小于主轴为刚性时,从主轴0.01mm 的检验标准来看,刚性主轴的仿真结果是不准确的,而柔性主轴的仿真结果更加符合实际情况㊂无论是刚性主轴还是柔性主轴,切削力作用点的X ㊁Z 向振幅由于受到切削力的作用,所产生的振幅是3点中最大的,其次是质心,带轮连接点的振幅最小㊂而在3点的三向振动中,Y 向振幅是最小的,若以柔性主轴的Y 向振幅为准,则这个振幅很微小,对木窗的加工精度几乎没有影响,因此在主轴结构改进时可不做考虑㊂切削力作用点即铣刀装配位置的振动对木窗加工质量影响最大,应从如何减小切削力作用点的振幅入手来进行主轴结构的优化㊂4㊀结论1)提取了主轴为刚性体和柔性体时的主轴质心㊁切削力作用点和带轮连接点的X ㊁Y ㊁Z 向振幅㊂2)对比主轴为刚性体和柔性体2种情况时的仿真结果,发现主轴为柔性体时振动规律更加符合实际情况㊂3)以刚柔耦合模型的仿真结果为准,切削力作用点㊁质心和带轮连接点的X ㊁Z 向振幅依次从大到小,而Y 向振幅很微小可忽略不计,如何减少切削力作用点的振幅是主轴改进的重点,本研究中的刚柔耦合模型动力学仿真结果为主轴系统结构的改241第5期任长清,等:木窗双端复合精铣加工机床主轴系统的刚柔耦合动力学建模与仿真善提供了参考依据㊂ʌ参㊀考㊀文㊀献ɔ[1]李荣丽,贺利乐.煤炭采样机械臂的刚柔耦合动力学建模与仿真分析[J].机械设计,2013,30(8):33-36.LI R L,HE L L.Dynamic modeling and simulation analysis for rigid-flexible coupling model of coal sample manipulator [J].Journal of Machine Design,2013,30(8):33-36.[2]闻志,沈金淼,孔辉,等.基于ANSYS的H型刚柔耦合机械臂动力学建模与动态特性机理研究[J].丽水学院学报,2022,44(5):18-26.WEN Z,SHEN J M,KONG H,et al.Dynamic modeling and dynamic characteristic mechanism of H-type rigid flex-ible coupling manipulator based on ANSYS[J].Journal of Lishui University,2022,44(5):18-26.[3]刘泽新,王希贵,林文树.基于Adams的森林防火机器人履带平台设计与动力学仿真[J].森林工程,2021,37(5):65-74. LIU Z X,WANG X G,LIN W S.Design and dynamic simulation of crawler platform for forest fire fighting robot based on Adams[J].Forest Engineering,2021,37(5): 65-74.[4]贾磊,朱彦齐.基于SolidWorks与ADAMS的工业机器人动力学仿真[J].包装工程,2020,41(3):207-210. JIA L,ZHU Y Q.Dynamic simulation of industrial robot based on SolidWorks and ADAMS[J].Packaging Engi-neering,2020,41(3):207-210.[5]葛正浩,王英杰,王少华,等.基于ADAMS的烟包裹包凸轮连杆机构动力学分析[J].制造业自动化,2022,44 (8):34-38.GE Z H,WANG Y J,WANG S H,et al.Dynamic analysis of cigarette wrapping CAM linkage mechanism based on AD-AMS[J].Manufacturing Automation,2022,44(8):34-38.[6]李黎.木材切削原理与刀具[M].2版.北京:中国林业出版社,2012.LI L.Wood cutting theory and tools[M].2nd Ed.Bei-jing:China Forestry Publishing House,2012. [7]陈润霖,赵少东,张梦豪,等.角接触球轴承的时变刚度模型与承载特性分析[J].机械设计与研究,2022,38 (2):114-119.CHEN R L,ZHAO S D,ZHANG M H,et al.Time-var-ying stiffness model and load-bearing characteristics analy-sis of angular contact ball bearings[J].Machine Design& Research,2022,38(2):114-119.[8]张中元,王丽红,原起富.多联组配角接触球轴承的刚度计算[J].制造技术与机床,2004(2):102-104. ZHANG Z Y,WANG L H,YUAN Q F.Rigidity calculation for combined angular contact ball bearings[J].Manufacturing Technology&Machine Tool,2004(2):102-104. [9]钱士才,高宏力,李文涛.基于ADAMS的机床主轴刚柔耦合系统建立及性能分析[J].四川兵工学报,2012,33 (6):69-70.QIAN S C,GAO H L,LI W T.Establishment and per-formance analysis of rigid-flexible coupling system of ma-chine tool spindle based on ADAMS[J].Journal of Si-chuan Ordnance,2012,33(6):69-70. [10]肖正福.木材切削刀具学[M].哈尔滨:东北林业大学出版社,1992.XIAO Z F.Wood cutting tool science[M].Harbin:Northeast Forestry University,1992.[11]杨春梅,杨存亮,詹东,等.纵剖优选锯主轴调整系统结构的设计与仿真分析[J].林产工业,2019,46(3):9-13.YANG C M,YANG C L,ZHAN D,et al.Design andsimulation analysis of optimization system for longitudinalspindle optimization of saw spindle[J].China ForestProducts Industry,2019,46(3):9-13. [12]魏大栋.采煤机截割部刚柔耦合动力学及扭矩轴模态分析[J].机械管理开发,2022,37(7):75-76,79.WEI D D.Analysis of rigid-flexible coupling dynamicsand torque axis modalities of coal miner cutoff section[J].Mechanical Management and Development,2022,37(7):75-76,79.[13]赵浩东,郭培全,曹艳科.平行分度凸轮机构刚柔耦合动力学仿真[J].机械设计,2012,29(1):53-56.ZHAO H D,GUO P Q,CAO Y K.Rigid-flexible couplingdynamic simulation on parallel indexing cam mechanism[J].Journal of Machine Design,2012,29(1):53-56. [14]杨家武,刘梦龙.数控车床附加主轴设计及有限元分析[J].森林工程,2015,31(3):63-66.YANG J W,LIU M C lathe additional spindle de-sign and finite element analysis[J].Forest Engineering,2015,31(3):63-66.[15]连亚东,王洪申,李柏林.基于ANSYS的电主轴静动态特性仿真分析[J].机械制造与自动化,2021,50(4):74-76,100.LIAN Y D,WANG H S,LI B L.Simulation analysis ofstatic and dynamic characteristics of machine tool electricspindle[J].Machine Building&Automation,2021,50(4):74-76,100.[16]刘立君,张金婷,刘大宇,等.ANSYS数值模拟激光熔覆Ni/SiC工艺参数优化[J].哈尔滨理工大学学报,2022,27(4):81-91.LIU L J,ZHANG J T,LIU D Y,et al.ANSYS numeri-cal simulation of laser cladding Ni/SiC process parameteroptimization[J].Journal of Harbin University of Scienceand Technology,2022,27(4):81-91. [17]张学城,彭玉兴.摩擦式提升机主轴装置刚柔耦合分析[J].机电工程,2019,36(10):1045-1049.ZHANG X C,PENG Y X.Rigid-flexible coupling analysisof friction hoist spindle device[J].Journal of Mechanical&Electrical Engineering,2019,36(10):1045-1049. [18]邱海飞,韩斌斌.正弦泵叶轮组件转子动力学计算与仿真分析[J].包装工程,2020,41(9):186-192.QIU H F,HAN B B.Rotor dynamics calculation andsimulation analysis of impeller assembly on sine pump[J].Packaging Engineering,2020,41(9):186-192.341。
NI ELVIS II系列产品规格说明说明书
Arbitrary Waveform Generator/Analog Output
Number of channels.........................2
DAC resolution................................16 bits
DNL.................................................±1 LSB
Maximum working voltage for analog inputs (signal + common mode) ................ ±11 V of AIGND
CMRR (DC to 60 Hz) ..................... 90 dB
Source..............................................AI<0..15>, ScopeCH0, ScopeCH1
Small signal bandwidth (–3 dB)......1.2 MHz
Input FIFO size................................4095 samples
Scanlist memory ..............................4095 entries
Data B signal stream, programmed I/O
imc集团简介
IMC's World of Metal CuttingIMC companies are organized by industry and by application. Specialists for each major industry work together in their respective divisions.This enables each group to concentrate on its own area of expertise to resolve the unique machining problems of each industrial segment.整合营销传播的世界金属切削 IMC 公司组织按行业和应用程序。
为每个主要行业的专家一起工作,在其各自的部门。
这样每个组可以专注于自己的专业知识,以解决每个工业部门的独特加工问题的区域IMC's Global Policy Regarding REACHCTMSCTMS is a business unit of the IMC Group, dedicated to delivering tool management services and systems to help customers reduce their production costs. The CTMS team comprises tool management professionals in the key areas of logistics, engineering and IT, all critical to cost reduction in the supply chain and manufacturing processes affected by cutting tools.一个业务单位 IMC 集团致力于提供工具管理服务和系统,以帮助客户降低生产成本的异议人大量存在异议人大量存在。
德国米铱线激光轮廓扫描传感器样册
检测焊接缝质量
9 安装在机械手上进行边沿检测
V型槽检查
车身间隙检测
刹车盘轮廓检测
焊缝轮廓检查
带状材料边沿位置检测(橡胶、金属)
缝隙间距检测
10 技术信息
2600 / 2650 / 2610
极致紧凑设计
scanCONTROL 26x0系列专注于更小尺寸,更轻重量。不同量程的轮廓 仪拥有统一外形尺寸。这使得切换量程变得前所未有的简便。整个电路 集成于探头内部,以减少电缆布线难度,而且方便将轮廓仪集成在机械 手上的应用。
高频型 智能型 页码
量程 10 mm
scanCONTROL 2800-10 scanCONTROL 2810-10 32 - 33
scanCONTROL 28x0 外接控制器,适合于高精度测量
高频型 智能型 页码
量程 25 mm
scanCONTROL 2800-25 scanCONTROL 2810-25 34 - 35
多功能接口
多功能接口可以被用作供电电源、数据输出、参数切换、触发输入或者 支持多支scanCONTROL轮廓仪同步。多功能接口令轮廓仪使用更加灵 活。
scanCONTROL 2600
无论是静态还是动态测量任务,scanCONTROL2600系列轮廓仪都是最 佳选择,轮廓仪扫描频率达到200Hz和128,000个测量点/秒。.
高频型 智能型 页码
量程 100 mm
scanCONTROL 2800-100 scanCONTROL 2810-100 36 - 37
标准型 高频型 智能型 页码
25 mm
scanCONTROL 2900-25 scanCONTROL 2950-25 scanCONTROL 2910-25 42 - 43
Milling
专利名称:Milling发明人:シュラインコーファー、ウヴェ,ドゥヴェ、ユルゲン,コッホ、ヴォルフガング,ル ボルニュ、ディディエ申请号:JP2003554369申请日:20021213公开号:JP2005512825A公开日:20050512专利内容由知识产权出版社提供专利附图:摘要:A milling tool has a cutting edge geometry with a main cutting edge, a cutting corner, optionally with a bordering planar cutting edge segment, and a secondary cuttingedge. The tool is used for milling to achieve the smoothest level surface possible parallel to the rotational axis of the milling tool. Each main cutting edge is formed to result in a generatrix of the envelope curve described by the rotation of the milling tool that has a first outwardly curving segment and a second inwardly curving segment. The first segment increases in its distance from the rotational axis from the beginning of the segment to the end of the segment. The distance of the second segment decreases from its beginning towards its end. The tangents at each point of the second segment encompass an angle alpha2 of more than 0° and up to 3° with a parallel to the rotational axis.申请人:セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング,エアバス フランス ソシエテ パル アクションス シンプリフィ地址:オーストリア国 アー-6600 ロイッテ,フランス国 エフ‐31060 トゥールース国籍:AT,FR代理人:山口 巖更多信息请下载全文后查看。
铣削加工对表面粗糙度的影响研究
收稿日期:2019-08-17铣削加工对表面粗糙度的影响研究刘军库,刘璨,燕波,陈思宇(广东海洋大学机械与动力工程学院,广东湛江524088)摘要:采用单因素试验和正交试验对铣削加工参数的设定进行表面粗糙度研究,分析了单一铣削参数对表面粗糙度的影响规律,结果表明:在一定铣削参数范围内,铣削深度越小表面粗糙度值越大,表面粗糙度随着铣削深度的增加而降低。
通过正交实验的极差分析得出影响表面粗糙度的主次影响顺序:铣削深度影响最为显著、主轴转速次之、每齿进给量较次之和径向切宽影响最小。
通过minitab 统计学软件,分析了两参数因素之间的交互作用对表面粗糙度的影响,其中主轴转速和铣削深度的相互作用对表面粗糙度的影响较大。
在低速铣削范围内,得出高转速、大的切深和小的每齿进给量对提高表面粗糙度非常有利。
关键词:铣削参数;铣削深度;表面粗糙度;交互作用中图分类号:TH161+.1文献标志码:A文章编号:1009-9492(2019)10-0065-04开放科学(资源服务)标识码(OSID ):Study on the Influence of Milling on Surface RoughnessLIU Junku ,LIU Can ,YAN Bo ,CHEN Siyu(School of Mechanical and Power Engineering ,Guangdong Ocean University ,Zhanjiang 524088,China )Abstract:The surface roughness of milling parameters was studied by single factor experiment and orthogonal experiment.The influence of singlemilling parameters on surface roughness was analyzed.The results showed that within a certain range of milling parameters ,the smaller the milling depth ,the larger the surface roughness value ,and the surface roughness increases with the milling depth.Add and decrease.Through range analysis of orthogonal experiments ,the order of primary and secondary effects on surface roughness is obtained:milling depth has the most significant effect ,spindle speed takes the second place ,feed per tooth takes the second place and radial width cutting has the least effect.The effect of interaction between two parameters on surface roughness was analyzed by Minitab statistical software.The interaction between spindle speed and milling depth has a greater impact on surface roughness.Within the range of low speed milling ,it is concluded that high speed ,large cutting depth and small feed per tooth are very helpful to improve surface roughness.Key words:milling parameters ;milling depth ;surface roughness ;interactionDOI:10.3969/j.issn.1009-9492.2019.10.022第48卷第10期Vol.48No.10机电工程技术MECHANICAL &ELECTRICAL ENGINEERING TECHNOLOGY刘军库,刘璨,燕波,等.铣削加工对表面粗糙度的影响研究[J ].2019,48(10):65-68.0引言随着机械加工技术的不断发展,铣削加工作为精加工工序已在机械制造行业中得到广泛应用,已成为现代数控加工技术的重要发展方向。
TANDEM ROLLING MILL
专利名称:TANDEM ROLLING MILL发明人:KAWANAMI KATSUSUKE,HAMAZAKIYOSHIHARU,KODERAYOSHIKAZU,KAWASAKI MUNEO,YOSHIDAFUMIO申请号:JP10469578申请日:19780828公开号:JPS5533808A公开日:19800310专利内容由知识产权出版社提供摘要:PURPOSE:To obtain sufficient sheet gauge precision, without disposing expensive high response screw-down devices in all stands, by disposing a screw-down device of high response speed in the downstream part of stand group. CONSTITUTION:In the case of automatic gauge control (AGC) by disposing high response screw-down devices in all stands, the final sheet gauge precision shows DELTAHn1 as shown in curve 1. On the other hand, in the case of AGC without disposing high response screw-down devices in all stands, the final sheet gauge precision shown an inferior value DELTAHn2 as compared with curve 1. However, when a high response screw-down device is disposed only in the final stand, the final sheet gauge precision is closer to the sheet gauge deviation in curve 1, indicating DELTAHn3 as shown in curve 3. Further, when high response screw-down devices are disposed in the final two stands, the final sheet gauge precision is identical with that shown in curve 1. As a result, since rolling can be performed under low reduction in the downstream side stands by disposing stands for rolling high reduction in the upstream stands, the response of the screw-down device may beincreased.申请人:MITSUBISHI HEAVY IND LTD,MITSUBISHI ELECTRIC CORP 更多信息请下载全文后查看。
UltiMAX bulk bag unloading station 产品说明书
UltiMAX Bulk Bag Unloading Station Product SpecificationErie Technical Systems Inc.Material Handling Equipment4690 Iroquois AvenueErie, PA 16511P: 814-899-2103F: 814-899-2146UltiMAX Bulk Bag Unloading StationTable of ContentsA.UltiMAX™ System Overview:3B.UltiMAX™ Bulk Unloading System Options4a.Bag Untie Box 4b.Bag Spout Pinch Ring 5c.Bag V-Form Close Off Valve 5d.Bag Close Off Iris Valve (Manual) 6e.Paddle Flexors 6f.Electric Hoist and Trolley 7g.De-weigh Scale 7h.Flexible Screw Auger Conveyor 8i.Advanced Controls and Integration 8A.UltiMAX™ System Overview:The UltiMAX™ Bulk Bag Unloading Systems from Erie Technical are designed to allow our customers to safely remove bulk materials transported in bulk bags. The standard units can handle up to 44” x 44” x 75” (111 cm x 111 cm x 190 cm) bulk bags and up to 4,000# (1,814 kg).The UltiMAX™ bulk bag unloaders are designed and built using the same philosophies we use on all our equipment. First and foremost, they are built to last. All of our units aremanufactured with heavy walled structural tubing and other structural members. Secondly, we ensure they are user friendly and easy to maintain. Finally, they are made as a modular machine so additional features and options can be added as increased throughput orautomation is required in the future. The UltiMAX™ construction is broken into threemodular sections:1.The BBU Base Section which housesmany of the options and is the heartof the system.2.The BBU Intermediate Section whichis built to accommodate the height ofthe tallest bag being unloaded andwill also house the bulk bagconditioners if the option ispurchased, and receivers for the bulkbag support frame if loading with aforklift.3.The BBU Top Section is the hoistframe and can be added in the futureif requiredSupport frames are industrial urethane painted carbon steel (ETSI Blue) as standard.Stainless steel construction is available.B.UltiMAX™ Bulk Unloading System OptionsIn addition to the three basic frames, the Bulk Bag Unloaders are available with a variety of standard options including: Bag Untie Box, Bag Spout Pinch Ring, Bag Close Off Iris Valve, Paddle Flexors, and Flexible Screw Auger Conveyor. Custom modifications are also available in addition to these standard, proven features.a.Bag Untie BoxThe Bag Untie Box when added, allows for the operator tohandle the bag spout in an enclosed area to reduce dustgeneration when preparing the bulk bag for the unloadingprocess. The Untie box includes a hinged, sealed door that isclosed during discharge to capture any additional dustproduced while emptying the bulk bag.Features:•Dust Tight door seal•Lockable latch on door•Tapered inside to insure product flow out of box•Heavy Gauge steel construction•Carbon steel constructionb.Bag Spout Pinch RingThe Bag Spout Pinch Ring option incorporates a pinchring assembly, which comes in either manual orpneumatically operated versions. Once the operatorhas placed the bag into position, the bulk bag outletspout is stretched over the product flow tube. Thering is driven down and pinches the bag spoutbetween the ring and the top of the product flowtube.Features:•Manual or Pneumatic operation•Soft durometer rubber seal to prevent bag damage•Simple designc.Bag V-Form Close Off ValveThis option provides a means to seal the bag off andre-tie or to simply stop flow of material to theprocess. The valve is actuated with two pneumaticcylinders that move the v-formed plates toward eachother. This bunches and pinches the bag off at thebag outlet spout. The pinch plates are made fromstainless steel. This valve is operated automatically ormanually as necessary for the specific application.Features:•Pneumatic operation•Can close off most materials with or without product flow •Dual 3” diameter pneumatic cylindersd.Bag Close Off Iris Valve (Manual)This option provides a means to seal the bag off and re-tie or tosimply stop flow of material to the process. The manuallyoperated valve bunches and pinches the bag off at the bag outletspout.Features:•Manual operation•Can close off most materials with product flow•Compatible with Bag Spout Pincher option•Note: not compatible with Bag Untie box option. Use Bag V-Form Close Off Valvee.Paddle FlexorsPaddle flexors are a useful option if the bulk material being unloaded tends to set up during shipment. This option provides ameans to condition the bag to enhance the flowout of the bag into the process. The two ribbedflexing paddles can move from a flat position toa combined angle of 85 degrees (nearly vertical).It is designed with bag conditioning ribs whichengage the bag and breaks up lumps oragglomerations of material in the bulk bag.Features:•Pneumatically operated•Heavy duty construction with varying profiles•Powerful pneumatic cylinders•304 SS constructionf.Electric Hoist and TrolleyThe hoist and trolley are included as a means to lift the bulk bag into position from the floor without the use of a forklift. Thecapacities vary based on the application and the unitscome with a manual or electrically controlled trolley.Features:• 1 Ton single speed electric hoist•230/460 volt input power•Control pendant•15’ vertical lift•Electric trolley•Hoist used bulk bag lifting frame•Carbon Steel Constructiong.De-weigh ScaleThe de-weigh option allows the operator to monitor the amount of product being dispensed.Features:•(4) individual load cells connected to a summing box•5,000 LB capacity•+/-.1% accuracy•Repeatability of +/-5 lbs.•Rice Lake Scale•NEMA 4 Control panelh.Flexible Screw Auger ConveyorThe UltiMAX™ Bulk Bag Unloaders are often paired with Erie Technical’sFlexMAX™ flexible screw conveyors. The bulk bags are unloaded directly into the receiving hopper of the flexible screw conveyor. The conveyor is then used to transport the product up and into a downstream process.Features:•Several 304SS auger sizes and styles•UHMW or 304SS outer casing•High efficiency inverter duty motor (5:1 speed range)•Inline ratio multiplier gear box•304 SS Couplings• 3 hopper sizes with 10” diameter inlet and cover•Hoppers feature our FastFLO rounded corners topromote good material flow•304 SS quick removal clamps to hold down thelid•Hopper vibrator mounting channel (vibrator notincluded)•Optional mobile base constructed with 304SS orCarbon Steeli.Advanced Controls and IntegrationAt Erie Technical Systems Inc., we can provide complete turn-key packages for your bulk material handling needs. We design and build complete systemsmechanically and electrically specific to our customers’ applications.。
Agilent PeelASeal Foil IST-1 04 产品说明书
IST-104 Heat Sealing FilmSealing Temp + Dwell Times:Temperature and Dwell Time: 175°C, 2 seconds.Plate Types:Polypropylene (PP), welds to Polyethylene (PE) and certain CycloOlefin Copolymer (COC)Recommended Sealing Equipment:*Manual heat sealers** Automated roll-fed heat sealers *** Agilent VII Plateloc, REMP (LHS/SHS)PeelASeal Foil ™Product DescriptionA peelable, foil laminate heatseal film which is suited for Polypropylene plates. The film has a good liquid barrier and moderate resistance to solvents. It is peelable (from -80°C freezer) and is non-pierceable.Physical PropertiesFlexible, not easily creased. Temperature Range: -80°C to +110°CVisualDescriptionMetallic with upper surface gloss white. Seal surface metallic burnished foil.ApplicationPCR, low temperature, short term compound storage, midterm room temperature compound storage.Test proceduresMass LossConfirming the materials ability to resist high temperaturesDetails: Mass loss of solution evaluated after 30 cycles of 3 step PCR Programme. Equipment: ABI Thermocycler, Precision Balance.PeelMeasuring the materials permanence of adhesion & its ability to be removed, via extension measuring equipmentDetails: Cohesive Failure, Adhesive Transfer, Material tear & Successful Peel are measured & recorded after a 180° peel test. Equipment: Instron 3343 Tensometer.Low Temp. Seal TestConfirming the materials ability to resist low temperaturesDetails: Microplates are sealed at specified low temperatures & subjected to a series of tests to substantiate seal integrity. Equipment: Laboratory Cold storage unit.Recommended Storage Conditions:Store in a cool place. Avoid direct exposure to sunlight.It is recommended to use the seals within three years from the date of purchase.Three years when stored at 21°C (70°F), 50% relative humidity, out of direct sunlight, in original packagingOrdering:Part Number Format PresentationIST-104-078LR** LabRoll™ 1 Roll 610M x 78 mm IST-104-078SR** Sterile LabRoll™ 1 Roll 610M x 78 mm IST-104-115SR***Sterile LabRoll™ 1 Roll 500M x 115 mm IST-104-115LR*** VII LabRoll™ 1 Roll 500M x 115 mm IST-104-078LS* LabSheet™ 100 Sheets 125 mm × 78 mm IST-104-078SS* LabSheet™ 100 Sheets 125 mm × 78 mm IST-104-078TR* Trial LabRoll™ 1 Roll 5M × 78 mm IST-104-115TR Trial LabRoll™ 1 Roll 5M × 115 mm IST-104-078TSTrial LabSheet™5 Sheets125 mm × 78 mm +44 (0)1252 235758Confidential information © Scientific iST Ltd.。
浅谈丰满水电站座环打磨加工
水利水电技术(中英文)第52卷2021年第S 1期贾羽,肖俊,王长营,等.浅谈丰满水电站座环打磨加工[J ].水利水电技术(中英文),2021,52(S1):47-51.JIA Yu ,XIAO Jun ,WANG Changying ,et al.On grinding of stay ring of Fengman Hydropower Station [J ].Water Resources and Hydropower Engineering ,2021,52(S1):47-51.浅谈丰满水电站座环打磨加工贾羽1,肖俊1,王长营2,左建2(1.中国水利水电第六工程局有限公司,辽宁沈阳110179; 2.松花江水力发电有限公司丰满大坝重建工程建设局,吉林吉林130012)收稿日期:2021-02-03作者简介:贾羽(1990—),男,工程师,学士,主要从事水电站机电设备安装研究。
E-mail :550571578@ 摘要:水电站传统的座环打磨技术与现在智能水电站所要求的工艺不相适应,针对这一问题,丰满水电站座环打磨工艺技术通过与传统的座环打磨方式以及现有的打磨设备进行对比,从人工智能、提高效率的角度对座环打磨工具进行重新设计及改造,将现有的手推式旋转砂轮打磨改造成可变速自动旋转铣刀打磨。
对改造后的打磨工具进行安装调试,通过反复控制打磨梁及动力铣刀头的水平度,实时监测打磨后法兰水平及粗糙度等加工要点,提高了丰满水电站座环打磨加工精度。
与传统打磨方式相比,该工艺具有明显优势,为打造“国优工程”奠定了坚实的基础,可对其他水电站的座环打磨提供参考。
关键词:座环;座环上法兰;座环下法兰;动力铣刀头;打磨工具;丰满水电站doi :10.13928/ki.wrahe.2021.S1.009中图分类号:TV213.4文献标志码:A文章编号:1000-0860(2021)S1-0047-05On grinding of stay ring of Fengman Hydropower StationJIA Yu 1,XIAO Jun 1,WANG Changying 2,ZUO Jian 2(1.Sinohydro Bureau 6Co.,Ltd ,Shenyang110179,Liaoning ,China ; 2.Fengman Dam ReconstructionProject Construction Burean ,Songhuajiang Hydraopower Co.,Ltd.,Jilin130012,Jilin ,China )Abstract :The traditional seat ring grinding technology of hydropower station is not suitable for the current intelligent hydropower station.To solve this problem ,the seat ring grinding technology of Fengman Hydropower Station is compared with the traditional seat ring grinding method and existing grinding equipment ,and the seat ring grinding tool is redesigned and reformed from the angle of artificial intelligence and efficiency improvement ,and the existing hand-push rotary grinding wheel grinding is trans-formed into variable speed automatic rotary milling cutter grinding.The modified grinding tool was installed and debugged ,and the grinding precision of seat ring of Fengman Hydropower Station was improved by repeatedly controlling the levelness of grinding beam and power milling head ,and monitoring the processing points such as flange levelness and roughness after grinding in real time.Compared with the original grinding method ,it has obvious advantages.It lays a solid foundation for building a national excellent project and has certain reference value for polishing the seat ring of other power stations.Keywords :stay ring ;flange on stay ring ;lower flange of stay ring ;power milling head ;grinding tools ;Fengman Hydropower Station0引言丰满水电站全面治理(重建)工程水轮机座环分为四瓣,螺栓把合;座环外径 9830mm ,内径 7020mm ,高3644mm ,重171000kg 。
Mixer Mills 说明书
Size reduction and homogenization with Mixer MillsMIXER MILLSMixer MillsThe RETSCH Mixer Mills grind and homogenize small samplevolumes quickly and efficiently by impact and friction.They are suitable for dry, wet and cryogenic grinding aswell as for cell disruption for DNA/RNA recovery.2P r o d u c t v i d e o s a tw w w .r e t s c h.c o m/v id e o sand many more...CryoMill General remarks Grinding jar Grinding balls Feed size Sample amount Pre- cooling Grinding time Intermediate cooling Fre-quency Finalfineness BonesPre-cutting with Cutting Mill SM 200050 ml Stainless steel 1 x 25 mm Stainless steel 3 - 8 mm6 g10 min5 x 2 min1 min25 Hz10 µmCheese Pre-cutting witha knife 50 ml Stainless steel 1 x 25 mm Stainless steel 1 - 8 mm 5 g 8 min 2 min –25 Hz 200 µmRubber Pre-cutting with Cutting Mill SM 30050 ml Stainless steel1 x 25 mm Stainless steel 0 - 5 mm 6 g 10 min 4 x2 min 1 min 25 Hz 400 µmMixer Mill MM 400/MM 200General remarks Grinding jar Grinding balls Feed size Sample amount Grinding time Frequency Final fineness Brake linings Pre-cutting with a wire cutter25 ml WC 1 x 15 mmWC 5 mm 7 g 1.5 min 30 Hz 63 µm Cardboard 35 ml Stainless steel1 x 20 mm Stainless steel 5 x 8 mm 1 g2 min 25 Hz 120 µm Catalysts 35 ml ZrO 28 x 10 mm ZrO 2 1 mm 10 ml 5 min 30 Hz 50 µm Cotton fabric 35 ml ZrO 28 x 10 mm ZrO 210 x 10 mm 2 g 2 min 30 Hz 250 µm Hair50 ml Stainless steel 14 x 10 mm Stainless steel 50 mm length 0.5 g 5 min 25 Hz 100 µmMyxomyceten (powder of spores)Adapter for 5 reaction vials max. 2 ml1 x 3 mm WC for each reaction vial < 1 mm 1 ml2 min 30 Hz -Silica sand Addition of3 drops ethanol25 ml ZrO 2 1 x 20 mm ZrO 2500 µm 5 g 2 min 30 Hz 45 µm Silicon carbide 25 ml WC 4 x 12 mmWC 3 mm 10 g 4 min 28 Hz 50 µm Wood chips35 ml ZrO 21 x 20 mm ZrO 25 mm1.3 g2 min30 Hz150 µmThis chart serves only for orientation puposes. ZrO 2: Zirconium oxide – WC: Tungsten carbidethe REtSCH application database contains more than 1,000 application reports. Please visit /applicationdatabase.MIXER MILLS4A p p l i c a t i o n e x a m p l e s5CryoMillThermally-sensitive and elastic substances can be successfully processed by cooling with liquid nitrogen.The CryoMill is an impact ball mill specifical-ly designed for cryogenic grinding. It fea-tures an integrated cooling system which continually cools the grinding jar with liquid nitrogen before and during the grinding pro-cess. thus the sample is embrittled and volatile components are preserved .Safe and efficient grinding at -196 °CCryoMillBenefits at a glance■ Fast, efficient cryogenic grinding■ Ideal for plastics, temperature-sensitive materials and samples with volatile components■ Particularly safe due to autofill system for liquid nitrogen ■ Highly reproducible grinding results■ Programmable cooling and grinding cycles■ Also suitable for dry and wet grinding■ 2-year warranty,CE-conformThe liquid nitrogen flows through the system and is continually supplied from an autofill system in the exact amount which is required to keep the temperature at –196 °C. The auto-matic cooling system guarantees that the grinding process is not started be-fore the sample is thoroughly cooled. This results in reduced consumption and guarantees reproducible grinding results.With a vibrational frequency of 25 Hz the CryoMill grinds most mate-rials very effectively in a few minutes. The combination of impact and fric-tion leads to substantially finer grind sizes compared to other cryogenic mills.The CryoMill is very easy to oper-ate . Parameters such as oscillationfrequency, pre-cooling or grinding time can be digitally set via a clearly structured keypad. LEDs in the display indicate the current state of operation, e.g. cooling or grinding.Usually, grinding in the CryoMill only takes a few minutes so that the sam-ple does not get warm during the pro-cess. If, however , longer grinding times are required, it is also possible to pre-select periods of intermedi-ate cooling and the number of cryo-genic cycles.All instrument parameters are re-tained during standby operation for subsequent processes. The mill can also be operated without cooling which makes it suitable for a vast range of applications.CryoMillCRyoMILLGrinding jars and accessoriesGrinding jars Ln2 containerFor safe and comfortable opera-tion of the CryoMill, RETSCH pro-vides an autofill system for liquidnitrogen which can be obtained witheither a 10 liter (for up to 5 samples)or 50 liter (for up to 20-30 samples)container.It is also possible to connect existingcryo tanks to the mill. For. For suchapplications, a connection tubewith safety valve is available.The screw-top grinding jars ofhardened steel and stainless steelhave been specially designed for usein the CryoMill. The fact that no liquidnitrogen can escape makes themparticularly safe. They are availablewith volumes of 5 ml, 25 ml,35 ml and 50 ml. For applicationswhere steel jars cannot be used dueto possible sample contamination,RETSCH offers a 25 ml grinding jar ofPTFE and matching grinding balls.Various adapters make the CryoMilla versatile instrument. If only verysmall sample amounts need to beprocessed, an adapter for 2 resp. 4grinding jars of 5 ml is recommend-able. It is also possible to use 2 mlreaction vials with the CryoMillthanks to a special adapter which canhold up to 4 tubes.The grinding result is greatly influ-enced by the grinding tools. Thechoice of jar volume, ball charge andmaterial depends on the type andamount of sample. In order not tofalsify the subsequent analytical de-termination, a neutral-to-analysismaterial should be selected. The pul-verization energy is determined bythe density and weight of the ballmaterial. The higher the ball weightand density, the higher the pulveriza-tion energy. The jar and balls shouldalways be made of the same material.The table on page 11 provides infor-mation about the recommendedgrinding jar filling levels as well asthe composition of the grinding jarmaterials.7order dataThe compact CryoMill together withthe 10 l liquid nitrogen supply has a small footprint and can be placed on any laboratory benchtop. With this setup, up to 5 samples can be ground.MIXER MILLSMixer Mills MM 200 and MM 400RETSCH Mixer Mills MM 200 and MM 400 are laboratory“all-rounders”. They have been developed specially forgrinding, homogenizing and mixing of small sampleamounts quickly and efficiently. They are also perfectlysuitable for the disruption of biological cells as well asfor DNA/RNA extraction. The MM 400 can also be used forwet and cryogenic grinding.Grinding, mixing, disrupting small amounts of sampleHigh-performance Mixer MillsThe Mixer Mills can pulverize twosamples from 0.2 to 20 ml at thesame time. For cell disruption it ispossible to process 20 samples simul-taneously. The Mixer Mills MM 200and MM 400 operate so effectivelythat the sample is hardly warmed atall due to the very short grindingtime. thus most materials can bepulverized and mixed at ambienttemperature, without any cooling.With their ability to process smallsample amounts to analytical finenessquickly and reproducibly, RETSCHMixer Mills are the ideal devices tomix powdered sample and binder, us-ing disposable polysterene vessels,prior to pelletizing for XRF analysis. Benefits at a glance■Quick, efficient pulverizationand homogenization■High sample throughput due toshort grinding times and twogrinding stations■Reproducible results by digitalpreselection of grinding timeand vibrational frequency■Large range of grinding jars■Up to 9 parametercombinations can be stored■2-year warranty,CE-conformMM 200Both mills are particularly easy to use. The vibrational intensity can be set accurately from 3 to 25/30 hertz. An electronic speed control keeps this value constant during the entire grinding process. The grinding time can be preset digitally in the rangefrom 10 seconds to 99 minutes. All instrument parameters are retained during standby operation for subse-quent processes. Up to 9 parameter combinations can be stored. This en-sures the highest degree of reproduc-ibility for the following sample prepa-ration processes.Wet grindingThe screw-top grinding jars provide the ideal preconditions for wet grind-ing with Mixer Mills. A PTFE gasket prevents the escape of liquids and particles even at maximum vibration-al frequency.With a vibrational frequency of 30 Hzthe MM 400 grinds most materialsvery effectively in a few minutes. Itusually achieves a higher finenessin less time compared to the MM 200.In addition, large grinding jars with acapacity of 35 ml and 50 ml are avail-able for the MM 400. In these jars, upto 20 ml of sample material with afeed size of up to 8 mm can beground. Clamping and removing thegrinding jars is easy and safe. Thespecial self-centering of the grind-ing jars ensures that they are alwayslocated in exactly the same position,which optimizes the reproducibility ofthe grinding process. The self-lock-ing clamping device fixes the grind-ing jars with maximum security.Advantages MM 400the Mixer Mill MM 400 is a realmulti-talent with nearly unlimit-ed applications:■Reproducible dry grinding,e.g. for sample preparation forXRF analyses■Loss-free wet grinding due toscrew-top, leak-proof grindingjars■Convenient cryogenic grind-ing of thermally-sensitive prod-ucts without long precoolingtimes and with a minimum con-sumption of liquid nitrogen■Efficient disruption of plant oranimal tissues or cell suspen-sions in adapter racks for 5 or10 reaction vialsMM 400 – the Mixer Mill with unsurpassed performance, safety and comfortMaximumreproducibilityMM 400of insulated containers, tongs and safety glasses is usedvents atmospheric humidity from condensing on the coldsample as water vapor which could penetrate the sampleThe CryoKit consists of:2 insulated containers (1 and 4 liter),Selection guide for Mixer MillsThe MM 200 is mainly used for the size reduction of small amounts of sample.The MM 400, with higher energy, canpulverize samples finer and faster,with optimum reproducibility. Its con-venient self-locking clamp allows theuse of large jars up to 50 ml.The CryoMill is designed for grindingsamples with liquid nitrogen whichcannot be processed at room tem-perature.MIXER MILLS*Yttrium-part-stabilizedThe grinding result is greatly influ-enced by the grinding tools. Thechoice of jar volume, ball charge and material depends on the type and amount of sample. In order not to falsify the subsequent analytical de-termination, a neutral-to-analysis material should be selected.The pulverization energy is deter-mined by the density and weight of the ball material. The higher the ball weight and density, the higher the pulverization energy. The jar and balls should always be made of the same material. The table shown be-low is intended to help you to select suitable grinding tools.In addition to the standard grinding jars with push-fit lids for the MM 200, superior screw-top grinding jars for the MM 400 are available.Grinding jars and grinding balls for versatile use■ Exceptionally simple and safehandling■ Dust-proof and air-tight (no lossof material, no escape of e.g. inert atmosphere)■ Suitable for wet and cryogenicgrinding■ Ultimate reproducibility byautomatic centering and uniform jar designAdvantages of the screw-top grinding jars■ Ergonomic gripping flanges on jarand lid■ Stainless steel protective jacket(for agate, zirconium oxide and tungsten carbide jars)The screw-top grinding jars havebeen specially designed for the Mixer Mill MM 400.Screw-top grinding jars for MM 400Grinding jars with push-fit lids for MM 20011Retsch GmbHRheinische Straße 3642781 Haan, GermanyTelephone +49 2129/5561-0Telefax +49 2129/8702E-Mail ***************InternetP r i n t e d i n G e r m a n y S u b j e c t t o t e c h n i c a l m o d i f i c a t i o n a n d e r r o r s 99.745.0001/E -12-2009RETSCH – Your specialist for sample preparation offers you a compre h en-sive range of equipment. Please re-quest information on our crushers, mills, sieve shakers, sample dividers, feeders as well as cleaning and drying machines.MIXER MILLS12Mixer Mills order dataAccessories for cell and tissue disruption with MM 200 and MM 400Item no.Adapter racks, PTFE, for reaction vials for MM 200 and MM 400Adapter rack for 10 reaction vials, 1.5 and 2.0 ml (for MM 400 only)22.008.0008Adapter rack for 5 reaction vials, 1.5 und 2.0 ml 22.008.0005Adapter rack for 10 reaction vials, 0.2 ml22.008.0006Safe-Lock reaction vials0.2 ml 1.5 ml 2.0 ml Safe-Lock reaction vials, 1000 pcs.22.749.0004 22.749.0002 22.749.0001Grinding balls for reaction vials and wet/ultra fine grinding2 mm Ø3 mm Ø4 mm Ø5 mm ØStainless steel 500 g22.455.0010 22.455.0011 ––Stainless steelapprox. 200 pcs.– 22.455.0002 22.455.0001 22.455.0003Tungsten carbide approx. 200 pcs. –22.455.0006 22.455.0005 22.455.0004Zirconium oxide 500 g05.368.0089 05.368.0090 – –Zirconium oxide approx. 200 pcs.–22.455.0007 –22.455.0009Glass beads for reaction vials 0.10-0.25 mm Ø 0.25-0.50 mm Ø 0.50-0.75 mm Ø 0.75-1.00 mm Ø 1.00-1.50 mm ØGlass500 g22.222.000122.222.000222.222.000322.222.000422.222.0005Mixer Mill MM 200Item no.MM 200 (please order grinding jars and grinding balls separately)MM 200for 100-240 V , 50/60 Hz20.746.0001Grinding jars with lids for MM 200 1.5 ml 5 ml 10 ml 25 ml Hardened steel –––02.462.0052Stainless steel 02.462.0057 02.462.0059 02.462.0061 02.462.0119Tungsten carbide – 01.462.0115 01.462.0009 –Agate– 01.462.0113 01.462.0008 –Zirconium oxide – – 01.462.0194 01.462.0195PTFE– – 02.462.0184 02.462.0051Mixing beakers of polystyrene, 28 ml, 100 pcs.22.041.0003Mixing beakers of polystyrene, 56 ml, 100 pcs.22.041.0004Grinding balls for MM 200 and MM 400Item no.Grinding balls 5 mm Ø 7 mm Ø 9 mm Ø10 mm Ø 12 mm Ø 15 mm Ø 20 mm Ø 25 mm ØHardened steel 05.368.0029 05.368.0030 05.368.0031 05.368.0059 05.368.0032 05.368.0108 ––Stainless steel 05.368.0034 05.368.0035 05.368.0036 05.368.0063 05.368.0037 05.368.0109 05.368.0062 05.368.0105Tungsten carbide 05.368.0038 05.368.0039 05.368.0040 05.368.0071 05.368.0041 05.368.0110 – – Agate05.368.0024 05.368.0025 05.368.0026 05.368.0067 05.368.0027 ––– Zirconium oxide –– – –05.368.0096 05.368.0113 05.368.0093 – PTFE with steel core –––05.368.0045 05.368.0046 05.368.0114 05.368.0047 – Polyamide*05.368.004205.368.004305.368.0044–05.368.0003–––*for mixing beakers of polystyreneMixer Mill MM 400Item no.MM 400 with quick-clamping device (please order grinding jars and grinding balls separately)MM 400 for 100-240 V , 50/60 Hz20.745.0001Grinding jars with screw-top lid 1.5 ml 5 ml 10 ml 25 ml 35 ml 50 ml Hardened steel –––01.462.0237 ––Stainless steel 01.462.0230 01.462.0231 01.462.0236 02.462.0213 01.462.0214 01.462.0216Tungsten carbide – –01.462.0235 01.462.0217 – –Agate– 01.462.0232 01.462.0233 –––Zirconium oxide – – 01.462.0234 01.462.0201 01.462.0215 –PTFE–––01.462.0238 01.462.0244 –AccessoriesJar wrench for screw-top jars, 25 ml tungsten carbide and all grinding jars 35 ml, 50 ml 02.486.0001CryoKit for cooling grinding jars with liquid nitrogen22.354.0001。
Sherline Jr. CNC Mill系列商品说明书
Z-axis stepper motor Y-axis stepper motor X-axis stepper motorA-axis plugDriver power supply on/off switchLinux/EMC Installation CD and SherlineInstructions/UtilitiesCD (includes severalfree programs)Sherline CNC package Quickstart InstructionsSherline vertical milling machine or lathe with standard accessories. (2000 mill shown)Computer with Linux O/S and EMC CNC program pre-installed, 4 drivers and second power supply installed inside case. Keyboard, mouse, and connecting cables are included.Additional USB portsKeyboard connector (Purple)Mouse connector (Green)25-pin parallel port (connectparallel cable from driver box here)Power cord to wall outlet Connect your monitor here (blue 15 pin connector)Connections on the rear panel of the computer are similar to the above photo.SHERLINE PRODUCTS INC. • 3235 Executive Ridge • Vista • CA 92081-8527 • USA • Internet: Phone orders, USA and Canada: 1-800-541-0735 • Local/International: 1-760-727-5857 • Fax: 1-760-727-5857 • E-mail:*********************4/11/13Output cables to stepper motors1-5/8” handwheel for manual operation Stepper motor mountHex adjustment keys115/230 voltage switch (Red)Inside the computer case on the side of the stepper motor power supply is a second 115/230 voltage switch. By default it is set to the same voltage setting as the voltage switch on the back of the computer.Assembling your systemMill or Lathe: Unpack and assemble your machine according to the instructions included in the Sherline Assembly and Instruction Guide packed with the mill or lathe.CAUTION!Before plugging in your Sherline computer, make sure the 115/230 voltage switch on the computer is set to the proper position for your local voltage. If it must be changed, a second switch on the driver power supply inside the computer must also be changed. See photo at right for location of two switches.Computer: Unpack the computer and enclosed components. Connect the black X, Y , and Z stepper motor cables leading from the back of the computer to each of the stepper motor connectors. A fourth black cable is unused unless you have purchased an optional CNC rotary table which can be connected here as a 4th (A) axis. Plug the keyboard and mouse cables into their receptacles at the back of the computer (mouse may be PS/2 or USB). Plug your monitor into the blue video receptacle. Plug the 25-pin parallel cable that exits the driver box into the 25-pin parallel port on the back of the computer. Insert the female end of the power cord into its receptacle in the computer and plug the male end into a properly grounded wall socket or surge protected power strip. Turn the computer and monitor ON but leave the power switch to the stepper motors in the “OFF” position for now.Opening the instructions file on the computerIf you are not familiar with Linux, you will find the desktop that opens when your computer starts up to be very similar to the Windows® or Mac® desktop. Insert the “Instructions and Utilities” CD that came with your computer into the DVD drive. After inserting CD, double click on DVD drive icon that will appear on the desktop. Click on the folder labeled “Sherline EMC Instructions.” Inside the folder are two .pdf versions of theinstructions. One is complete and the other labeled “CNCprint” is the shorter workbook version. There are also several manuals on EMC, a glossary of terms and a guide to G-codes. The instructions can also be found on Sherline’s website at /CNCinstructions.htm in PDF, HTML, and DOC formats (Word DOC format on CD only).CAUTION—Protect your motors, cables and driver board!• Do not unplug stepper motors using the rectangular white plug that goes into the motor. Disconnect only at the cable plug.• Do not pull on cable wires to disconnect plug —grip at connector.• Turn handwheels slowly (1 rev/sec) with driver power OFF when manually positioning. For longer travels use Jog Mode.USB Flash Drive25-pin parallel cable (to computer)NOTE: Depending upon availability, actual computer supplied with your system may look slightly different than the one shown.Shown here is what comes with a CNC mill package. A lathe package will be similar except that it will have two stepper motors instead of three. The machine and stepper motors are packed in one box, and the computer, keyboard and mouse are in puter ON/OFF Power switch (Small silver button below is RESET)Sherline CNC System SetupPlease read all of the instructions before attempting to use the EMC2 program. Machining with CNC is a complicated process, and you will be directed at the appropriate times to run the various features of the program once you have gained the knowledge you need to do so.Booting upBefore turning on your computer, make sure the 115/230 voltage switch on the computer is set to the proper voltage. If it must be changed, a second switch inside the computer must also be changed. Also make sure the ON/OFF switch for the stepper motor power supply is in the “OFF” (down) position. Once the EMC2 program is running, power to the stepper motors may be turned on.Opening the EMC Program–Login and Password When starting up, the computer will boot up without asking you to log in. If you log out of the desktop and log back in and get a login screen, enter sherline for the login (in lowercase letters) and sherline for the password. After completing the login, double click the [Go] button with your mouse, and the desktop will appear. To open EMC2, click on the lathe or mill, inch or metric icon for your machine on the desktop. If the icons don’t appear there, go to the top menu bar and navigate to Applications>CNC>EMC2. From that menu tree, choose either the inch or metric version for your machine and double click on it. This will open the “Axis GUI” version of EMC. Although this is slightly different version than the “Mini GUI” opened from the desktop icons you can still use it. Differences are explained in the EMC2 manual at Applications>CNC .Instruction filesThe instructions for use of your CNC system are pre-loaded on the Instructions and Utilities CD that came with your system. They are in .DOC (MS Word), PDF (Acrobat Viewer), and HTML formats. DOC files can be viewed on Windows® machines using MS Word or Wordpad. It will also open in OpenOffice on your Linux machine. HTML and PDF documents can be viewed on Windows, Mac® or Linux operating systems.Shutting down the computer when doneTo properly shut down your computer you should first exit all running programs. Then go to the menu bar at the top of the screen and navigate to System>Quit . After clicking on Quit , you have the choice to Log Off and leave the computer running or Turn off Computer which will log you off and shut down the computer. There is also a red power button icon in the upper right corner of the screen that will offer you several shut-down options. Finally, press and hold the power button on the front of the computer to turn off power to the computer.Emergency stopsIf you see a physical “crash” is about to occur, the fastest way to stop the stepper motors is to turn the driver board power switch on the side of the computer to OFF . The machine will have to be re-homed and the program restarted, but turning off power to the stepper motors while they are running will not cause damage. Running a slide until it hits a hard stop should not cause any physicalVersion 6.00 or higher (Ubuntu Linux)damage. Stop the motor as soon as possible by halting the program or by turning the stepper motor power supply switch to OFF to prevent possible overheating of the stalled motor.Transferring G-code files from another computer 1. Save your g-code text file to an appropriate media (DVD, CD, USB drive, etc.) in Plain Text (TXT) file format. Program files created in EMC will automatically be saved with the NGC extension. Either can be read by EMC. In other programs, limit your file name to eight characters or less in order to be able to transfer it to EMC.2. Insert the media containing your file into the appropriate drive or port on your Sherline Linux computer.3. On the desktop, click on the icon where your source file is located (DVD, USB, etc.) to open a window showing the contents of that media.4. On the desktop, double click the folder named G-Code .5. Drag the file from the selected media window and drop it into the G-Code folder window.Opening the file in EMC1. Open EMC2. Click the [AUTO] button along upper menu bar3. Click the [OPEN] button on lower menu bar4. Highlight the file by single clicking on it5. Click the [OPEN] buttonGetting answers to your questionsPlease read the instructions all the way through before calling Sherline with questions. Answers to questions relating to Linux or EMC can be found at . (Follow the links to the mailing list.) Using a Google search to ask a specific question often yields good results as well. Refer to the Sherline Assembly and Instruction Guide booklet that came with your machine for instructions on assembly, setup, adjustment and maintenance of your machine. If you have questions about assembly, missing or broken parts or other items relating to the machine, please call Sherline during business hours (M-F 8-5, Pacific) at 1-800-541-0735(USA)*****************************.From outside the USA call 1-760-727-5857.Minimum computer specifications for installation Successful installation of Linux/EMC2 v6.xx on your own computer requires at least the following:· Pentium III class processor or equivalent (800 MHz or faster)· 512 MB RAM (Sherline uses 1 Gb)· 20 GB hard drive or larger· CD/DVD drive (verify “Boot from DVD” is enabled before “Boot from HD” in the BIOS setting)· 25-pin parallel port to connect external driver boxNOTE: Sherline does not guarantee that the Linux operating system provided on the DVD enclosed with your CNC system or with the 8760 driver box will install on a non-Sherline computer. Sherline does not provide technical support for installation of Linux or EMC, but help is available on-line through the Linux group at or get subscription information on joining ****************************************************.For installations on another computer see /cgi-bin/wiki.pl?Hardware_Requirements for the latest requirements as specified by . Laptop computers are not recommended for CNC use.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
C
D
04.1
GC1610
E
进给量推荐值
GC1620 GC1630 H10F
公制
n= 1000 × vc or ve (转数/分) π × Dc or Dc2
Dc
Dc2 ae De ap
ae
fz mm/齿 0.002 0.004 0.006 0.006 0.008 0.010 0.011 0.014 0.015 0.020 0.025 0.027 0.036 0.039 0.054 0.055 0.073 0.078 0.11
B
倒角立铣刀
硬度<63HRc
P M K N S H
螺旋角: 公差: 0 Dc — h10 dmm — h6
C1
C
用于30° 和 45°倒角。
D
用于0,5-6 mm圆角。
倒圆角立铣刀
硬度<63HRc
C2
螺旋角: 公差: 0 dmm — h6
E
P M K N S H
F
用于30° 和 45°倒角。 用于0,5-6 mm圆角。
F
G
0.015 0.035 0.050 0.055 0.080 0.088 0.090 0.100 0.103 0.115 0.123 0.125 0.140 0.144 – 0.160
H
HSM加工中的高安全性要求
必须安全地监控用于HSM加工的机床,因为已损坏刀具的碎片 或小零件可能导致严重的事故。必须确保高速设备的安全性, 例如安全自锁装置。
A
ISO
ae < 0.1 × Dc ap < 0.5 × Dc
ae < 0.05 × Dc ap < 1 × Dc ve m/分 200 180 300 255 170 155 110 90 80 65
CMC
HB 400 450
HRC
ve m/分 170 150 265 220
P
B
03.22
K H
08.1 09.2
ae
ap
fz mm/齿
0.023 0.056 0.07 0.072 0.08 0.078 0.078 0.099 0.102 0.114 0.124 0.127 0.139 0.143 0.160 0.161 0.175 0.18 —
ae / ap
F
Dc或Dc2
mm
vf = n × fz × zn (毫米/分)
铣削
球头立铣刀
硬度 �43HRc �63
P H
螺旋角: 公差:
~30° Dc2 — h9 dmm — h6 (Dc2≤8~h5)
B5
A
用于硬度�43 HRc的热作钢的仿形切削应用。 用于硬度�52 HRc的冷作钢的仿形切削应用。 总是使用刀具伸出量最短的刀具。 首选是G-槽形。如果工件材料是切屑很短的材料,使用H-槽形可获得更 高的生产效率(B3)。在半精加工/精加工应用中,使用4切削刃球头立铣 刀,以获得更高的效率。在沿陡壁铣削时,球形球头立铣刀有更短的接 触长度(B4)。 为了获得更高的稳定性,请使用刀具伸出量更短的刀具。
ap
பைடு நூலகம்
ae / ap
ae ≤ 0.05 × Dc或Dc2 ap ≤ 0.05 × Dc或Dc2 ve m/分 690 630 470 450 410 335 300 300 270 200 610 440 385 1300 1300 1070
A
ISO
CMC
01.1 01.2 01.4 02.2 02.2 03.22 03.22 05.11 05.21 05.51 07.1 09.2 08.1 30.22 20.22 23.22
干铣削延长了刀具寿命
现在推出的CoroMill Plura 立铣刀可经受住恒定的高切削速度以 及高温的考验。在大多数情况下,它们的刀具寿命和稳定性更 适合于干加工环境。在干铣削条件下,刀具寿命可提高40%。
D 154
铣削
CoroMill Plura(金钢铣)切削参数
切削速度推荐值
GC1620 GC1630 H10F
ap
fz mm/齿
0.002 0.003 0.007 0.008 0.014 0.019 0.021 0.03 0.031 0.033 0.050 0.055 0.071 0.074 0.089 0.09 0.105 0.11 0.11
ae
ap
fz mm/齿
Plura指南 0.013 0.032 0.039 0.040 0.045 0.046 0.046 0.055 0.056 0.063 0.069 0.071 0.077 0.079 0.089 0.089 0.097 0.1 0.11
A18
A
B
高性能 ISO N立铣刀
粗加工
Kordell设计
N
材料: 螺旋角: 公差: 铝和铜 ~40° Dc — h14 dmm — h6
铝和铜粗加工的首选 Kordel槽形可减少切削力并提高排屑性能。 总是使用刀具伸出量最短的刀具。 如果使用Kordel槽形进行的粗精加工不可接受,请使用直切削刃(A20)。 对于硅含量高的铝,使用涂层Kordel立铣刀的生产效率会更高(A3)。
(转数/分)
Dc或Dc2 (mm)
F
G
1 2 3 3.175 (毫米/分) vf = n × fz × zn 4 4.76 De = 2 × ap × (Dc2 - ap) (mm) 5 6 6.35 8 9.525 10 12 12.7 15.875 16 19.05
√
H
HSM加工中的高安全性要求 必须安全地监控进行HSM加工的机床,因为已损坏刀具的碎 片或小零件可能导致严重的事故。高速机械设备必须是“防 弹的”。 干铣削延长了刀具寿命 现在推出的CoroMill Plura 立铣刀可经受住恒定的高切削速度 以及高温的考验。在大多数情况下,它们的刀具寿命和稳定 性更适合于干加工环境。在干铣削条件下,刀具寿命可提高 40%。
200 250
48 52 55 58 60 62
C
04.1
130 120 105 75 65 60
进给量推荐值
D
GC1610
Dc Dc2 ae De ap
ae < 0.1 × Dc2或De ap < 0.1 × Dc2或De fz mm/齿 – – 0.040 0.041 0.045 0.037 0.035 0.030 0.034 0.055 0.066 0.070 0.075 0.078 0.090 0.090 0.098 fz mm/齿 0.015 0.035 0.050 0.055 0.080 0.088 0.090 0.100 0.103 0.115 0.123 0.125 0.140 0.144 – 0.160 –
ae
ap × ae > Dc
ap
ae
ap × ae < Dc ve m/分 200 185 140 130 120 95 85 90 75 55 180 130 110 1100 300 255 80 55 40
ap
ae
ae ≤ 0.05 × Dc ve m/分 375 340 255 245 220 180 160 165 145 110 330 240 210 1250 510 420
ISO
CMC 03.22
HB 400 450
HRC
ve m/min 320 280
ve m/min 815 715 680 600 425 370 320 265
B
P H
P H
04.1
50 55
107 98
171 156
04.1
C 进给量推荐值 D GC1610 GC1620
公制
n= ve × 1000 π-× De (转数/分)
A17
H
/1 = 编程长度
D 152
铣削
用于车-铣工序的立铣刀
硬度<48HRc
P M K N S H
螺旋角: 公差: ~30° Dc — h10 dmm — h6 一种专用的CoroMill Plura(金刚铣)立铣刀,它们具有专为车-铣工序而设计的切 削槽形。四个切削刃中的两个切削刃在径向和轴向进行切削,而其余两个主要在径 向方向切削。 为了获得最佳性能,立铣刀的旋转轴不应准确对准工件的中心轴。相反,立铣刀应 偏置,并且在工件旋转过程中进一步偏离。
HB 125 150 200 250 300 400 450 200 200 230 150 200 180 90 350 350 50 55 60
HRC
ve m/分 155 135 120 100 90 75 65 60 60 45 135 100 85 1000 265 220 55 -
P M K N S H
ae ≤ 0.1 x Dc2 ap ≤ 0.1 x Dc2
ae ≤ 0.01 x Dc2 ap ≤ 0.01 x Dc2
ae ≤ 0.1 x Dc2 ap ≤ 0.1 x Dc2
ae ≤ 0.01 x Dc2 ap ≤ 0.01 x Dc2
ve m/min 202 162 140
ve m/min 315 260 225
ae < 0.01 × Dc2或De ap < 0.01 × Dc2或De fz mm/齿 0.040 0.055 0.070 0.072 0.080 0.088 0.090 0.100 0.103 0.115 0.123 0.125 0.140 0.144 – 0.160 –
E
公制 n= ve × 1000 π × De
fz
mm/齿
mm/齿 Plura指南 0.040 0.055 0.070 0.072 0.080 0.088 0.090 0.100 0.103 0.115 0.123 0.125 0.140 0.144 – 0.160