对数函数---12
高中数学对数计算公式大全
高中数学对数计算公式大全在高中数学中,对数是一个非常重要的概念,同时对数计算公式也是学习和应用对数的基础。
本文将为大家总结和介绍高中数学中常见的对数计算公式。
在阅读过程中,你会学到如何应用这些公式来解决各种数学问题。
下面是一些常见的对数计算公式:1. 对数定义公式:若 a^x = b, 那么 x = log_a(b)。
其中,a>0,a≠1,b>0。
2. 换底公式:log_a(c) = log_b(c) / log_b(a),其中 a,b,c > 0,a≠1,b≠1。
3. 幂函数与对数函数互为反函数:如果 y = a^x,那么 x = log_a(y)。
4. 对数的乘法公式:log_a(b * c) = log_a(b) + log_a(c)。
5. 对数的除法公式:log_a(b / c) = log_a(b) - log_a(c)。
6. 对数的幂公式:log_a(b^c) = c * log_a(b)。
7. 对数的换底公式:log_a(b) = log_c(b) / log_c(a)。
8. 对数的指数化简公式:log_a(a^x) = x。
9. 对数的乘方计算公式:a^log_a(b) = b。
10. 自然对数的底数 e:e 是一个无理数,约等于2.71828。
11. 自然对数公式:ln(x) = log_e(x),其中 ln 表示以 e 为底的对数。
12. 自然对数的换底公式:ln(x) = log_a(x) / log_a(e)。
13. 对数函数的性质:对数函数的图像经过点 (1,0),且对称于直线 y=x。
14. 常用对数和自然对数的换算:log_10(x) ≈ 2.3026 * ln(x)。
15. 对数的负数和零的定义:对数的底数不能为负数和零。
16. 对数的定义域和值域:对数函数的定义域为正实数集,值域为实数集。
17. 对数的基本性质:- log_a(1) = 0。
- log_a(a) = 1。
对数函数的概念
【课堂思维激活】 一、综合性——强调融会贯通 1.若函数y=loga(x+a)(a>0且a≠1)的图象过点(-1,0).
(1)求a的值; (2)求函数的定义域. 解:(1)将(-1,0)代入 y=loga(x+a)(a>0,且 a≠1)中, 有 0=loga(-1+a),则-1+a=1,所以 a=2. (2)由(1)知,y=log2(x+2),由 x+2>0,解得 x>-2, 所以函数的定义域为{x|x>-2}.
[方法技巧] 实际问题中对数模型要建模准确,计算时应充分利用对数的运算性质,注意 变量的实际意义.
【对点练清】 某公司制订了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销 售利润的15%进行奖励;当销售利润超过10万元时,若超出A万元,则超出部分 按2log5(A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元). (1)写出奖金y关于销售利润x的关系式; (2)如果业务员老江获得5.5万元的奖金,那么他的销售利润是多少万元? 解:(1)由题意知 y=01..155+x,2lo0g≤5xx-≤910,,x>10. (2)由题意知 1.5+2log5(x-9)=5.5, 即 log5(x-9)=2,所以 x-9=52,解得 x=34. 所以老江的销售利润是 34 万元.
[解析] (1)∵①中自变量出现在底数上,∴①不是对数函数;∵②中底数
a∈R 不能保证 a>0,且 a≠1,∴②不是对数函数;∵⑤⑦的真数分别为(x+2),
(x+1),∴⑤⑦也不是对数函数;∵⑥中 log4x 的系数为 2,∴⑥也不是对数函 数.只有③④符合对数函数的定义.
(2)∵函数 f(x)=(a2+a-5)logax 为对数函数,
解:要使函数 f(x)有意义, 只需ax+-3a-≥x0>,0, 解得 a≤x<a+3,即 A=[a,a+3). 由14≤2x≤32,得-2≤x≤5,即 B=[-2,5]. 选择第②个条件:当 a=-3 时,A=[-3,0), ∴A∩B=[-2,0),满足条件. ∵∁UB=(-∞,-2)∪(5,+∞),∴A∩(∁UB)=[-3,-2). 选择第③个条件: 当 a=2 时,A=[2,5),∴A∩B=[2,5),满足条件. ∵∁UB=(-∞,-2)∪(5,+∞),∴A∩(∁UB)=∅.
2022版高考数学总复习文档-第六节-对数与对数函数-含答案
第六节对数与对数函数学习要求:1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.2.通过具体实例,了解对数函数的概念.能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.3.知道对数函数y=log a x与指数函数y=a x(a>0,且a≠1)互为反函数.1.对数的概念(1)对数的定义一般地,如果①a x=N(a>0,且a≠1) ,那么数x叫做以a为底N的对数,记作②x=log a N ,其中③a叫做对数的底数,④N叫做对数的真数.(2)几种常见的对数对数形式特点记法一般对数底数为a(a>0且a≠1) ⑤ log a N常用对数底数为10 ⑥ lg N自然对数底数为e ⑦ ln N2.对数的性质与运算法则(1)对数的性质(i)负数和0无对数.(ii)1的对数等于0,即log a1=0(a>0且a≠1).(iii)log a a=1(a>0且a≠1).▶提醒a log a N=⑧N ;log a a N=⑨N (a>0且a≠1). (2)换底公式及其推论换底公式:⑩ log b N =log a Nlog a b(a,b均大于0且不等于1).推论:log a b=1log b a ,lo g a m bn=nmlog a b(a>0且a≠1,b>0且b≠1,m,n∈R,且m≠0),log a b·log b c·log c d= log a d (a,b,c均大于0且不等于1,d大于0).(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么log a(MN)= log a M+log a N ,log a MN= log a M-log a N ,log a M n=n log a M (n∈R).3.对数函数的图象与性质a>1 0<a<1图象性质定义域:(0,+∞)值域:R图象恒过点(1,0),即x =1时,y =0当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数是(0,+∞)上的减函数▶提醒 当对数函数的底数a 的大小不确定时,需分a >1和0<a <1两种情况进行讨论. 4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =loga x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称.知识拓展1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.1.判断正误(正确的打“√”,错误的打“✕”).(1)log a(MN)=log a M+log a N.()(2)函数y=log a x2与函数y=2log a x相等.()(3)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数.()(4)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.()答案(1)✕(2)✕(3)✕(4)√2.(新教材人教A版必修第一册P127T3改编)log29×log34+2log510+log50.25=()A.0B.2C.4D.6答案 D3.(新教材人教A版必修第一册P133例3改编)已知a=ln 3,b=log3e,c=logπe,则下列关系正确的是()A.c<b<aB.a<b<cC.b<a<cD.b<c<a答案 A4.(新教材人教A版必修第一册P159T1改编)图中曲线是对数函数y=log a x的图象,已知a取√3,43,35,110四个值,则对应于C1,C2,C3,C4的a值依次为()A.√3,43,35,110B.√3,43,110,35C.43,√3,35,110D.43,√3,110,35答案 A5.已知函数f(x)=log a(2x-a)在区间[23,34]上恒有f(x)>0,则实数a的取值范围是.答案(12,1)对数式的化简与求值1.(多选题)设a,b,c都是正数,且4a=6b=9c,则()A.ab+bc=2acB.ab+bc=acC.2c =2a+1bD.1c=2b−1a答案AD∵a,b,c都是正数, 故可设4a=6b=9c=M,∴a=log4M,b=log6M,c=log9M,则1a =log M4,1b=log M6,1c=log M9.∵log M4+log M9=2log M6,∴1a +1c=2b,即1c=2b−1a,去分母整理得,ab+bc=2ac.故选AD.2.计算:2log 23+2log 31-3log 77+3ln 1= . 答案 0解析 原式=3+2×0-3×1+3×0=0. 3.计算:(lg 14-lg25)×10012= . 答案 -20解析 原式=(lg 2-2-lg 52)×10012=lg (122×52)×10=lg 10-2×10=-2×10=-20.4.计算:(1-log 63)2+log 62·log 618log 64= .答案 1 解析 原式 =1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.名师点评1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数,然后逆用对数的运算法则,化为同底对数真数的积、商、幂再运算.3.a b=N⇔b=log a N(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.对数函数的图象及应用典例1(1)(2020安徽亳州二模)在同一个平面直角坐标系中,函数f(x)=1a x 与g(x)=lg ax的图象可能是()(2)(2020宁夏银川模拟)已知函数f(x)=|ln x|,若0<a<b,且f(a)=f(b),则2a+b的取值范围是()A.(2√2,+∞)B.[2√2,+∞)C.(3,+∞)D.[3,+∞)答案(1)A(2)B解析(1)由题意a>0且a≠1,所以函数g(x)=lg ax单调递减,故排除B、D;对于A、C,由函数f(x)=1a x 的图象可知0<a<1,对于函数g(x)=lg ax,g(1)=lg a<0,故A正确,C错误.(2)f(x)=|ln x|的图象如下:因为0<a<b且f(a)=f(b),所以|ln a|=|ln b|且0<a<1,b>1,所以-ln a=ln b,即ab=1,易得2a+b≥2√2ab=2√2,当且仅当2a=b,即a=√22,b=√2时等号成立.故选B.名师点评1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.常把一些对数型方程、不等式问题转化为相应的函数图象问题,利用数形结合法求解.1.(2020广东惠州模拟)当a >1时,在同一坐标系中,函数g (x )=a -x 与f (x )=-log a x 的图象大致是( )答案 D 因为a >1,所以g (x )=a -x=(1a )x为R 上的减函数,且过(0,1);f (x )=-log a x 为(0,+∞)上的减函数,且过(1,0), 故只有D 选项符合.2.(2020陕西榆林三模)设x 1、x 2、x 3均为实数,且e -x 1=ln x 1,e -x 2=ln(x 2+1),e -x 3=lg x 3,则( ) A.x 1<x 2<x 3 B.x 1<x 3<x 2 C.x 2<x 3<x 1 D.x 2<x 1<x 3 答案 D 因为e -x 1=ln x1⇒(1e )x 1=ln x 1,e-x 2=ln(x 2+1)⇒(1e )x 2=ln(x 2+1),e-x 3=lg x3⇒(1e )x 3=lg x 3,所以作出函数y =(1e )x,y 1=ln x ,y 2=ln(x +1),y 3=lg x 的函数图象,如图所示:由图象可知函数y 2,y 1,y 3与y 的交点A ,B ,C 的横坐标依次为x 2,x 1,x 3,即有x 2<x 1<x 3.故选D .对数函数的性质及应用角度一 比较对数值的大小典例2 (2020课标Ⅲ理,12,5分)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A.a <b <cB.b <a <cC.b <c <aD.c <a <b 答案 A a =log 53∈(0,1),b =log 85∈(0,1),则ab =log 53log 85=log53·log58<(log 53+log 582)2=(log 5242)2<1,∴a <b.又∵134<85,∴135<13×85,两边同取以13为底的对数得log 13135<log 13(13×85),即log 138>45, ∴c >45. 又∵55<84,∴8×55<85,两边同取以8为底的对数得log 8(8×55)<log 885, 即log 85<45,∴b <45.综上所述,c >b >a ,故选A . 角度二 解简单的对数不等式典例3 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.(0,12)C.(12,1)D.(0,1)∪(1,+∞)答案 C 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,所以0<a <1,且2a >1,∴a >12.故a 的取值范围是(12,1).角度三 与对数函数有关的复合函数问题典例4 已知函数f (x )=log a (ax 2-x ).(1)若a =12,求f (x )的单调区间; (2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围.解析 (1)当a =12时,f (x )=lo g 12(12x 2-x),由12x 2-x >0,得x 2-2x >0,解得x <0或x >2,所以函数f (x )的定义域为(-∞,0)∪(2,+∞),利用复合函数单调性可得函数f (x )的增区间为(-∞,0),减区间为(2,+∞).(2)令g (x )=ax 2-x ,则函数g (x )的图象开口向上,对称轴为x =12a 的抛物线,①当0<a<1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递减,且g(x)min=ax2-x>0,即{12a≥4,g(4)=116a-14>0,此不等式组无解.②当a>1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递增,且g(x)min=ax2-x>0,即{12a≤2,g(2)=4a-2>0,解得a>12,又a>1,∴a>1.综上实数a的取值范围为(1,+∞).名师点评(1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,并且真数必须为正.1.(2020课标Ⅲ文,10,5分)设a=log32,b=log53,c=23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b答案 A 因为a =log 32=log 3√83<log3√93=23=c , b =log 53=log 5√273>log5√253=23=c ,所以a <c <b.故选A .2.若a >b >0,0<c <1,则 ( ) A.log a c <log b c B.log c a <log c bC.a c <b cD.c a >c b答案 B ∵0<c <1,∴当a >b >1时,log a c >log b c ,故A 项错误;∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0,∴log c a <log c b ,故B 项正确;∵0<c <1,∴y =x c 在(0,+∞)上单调递增,又∵a >b >0,∴a c >b c ,故C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减,又∵a >b >0,∴c a <c b ,故D 项错误.故选B .3.若函数f (x )=log a (x 2+32x)(a >0,a ≠1)在区间(12,+∞)上恒有f (x )>0,则f (x )的单调递增区间为 .答案 (0,+∞)解析 令M =x 2+32x ,当x ∈12,+∞时,M ∈(1,+∞),因为f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =(x +34)2−916,因此M 的单调递增区间为(-34,+∞).又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).A组基础达标1.(2020课标Ⅰ文,8,5分)设a log34=2,则4-a= ()A.116B.19C.18D.16答案 B2.(多选题)设a=log0.20.3,b=log20.3,则()A.1a <1bB.ab<0C.a+b<0D.ab<a+b 答案BCD3.已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b答案 D4.(多选题)已知函数f(x)=lg(x2+ax-a-1),则下列论述中正确的是()A.当a=0时, f(x)的定义域为(-∞,-1)∪(1,+∞)B.当a=0时,f(x)一定有最小值C.当a=0时, f(x)的值域为RD.若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是[-4,+∞)答案AC对于A,当a=0时,解x2-1>0,有x∈(-∞,-1)∪(1,+∞),故A正确;对于B,当a=0时,f(x)=lg(x2-1),x2-1∈(0,+∞),此时f(x)=lg(x2-1)的值域为R,故B错误,C正确;对于D,若f(x)在区间[2,+∞)上单调递增,此时y=x2+ax-a-1的图象的对称轴的方程为直线x=-a 2,则-a2≤2,解得a≥-4.但当a=-4时,f(x)=lg(x2-4x+3)在x=2处无意义,故D错误.故选AC.5.(2020陕西西安高三二模)函数y=log5(x2+2x-3)的单调递增区间是.答案(1,+∞)解析由题意可知x2+2x-3>0,解得x<-3或x>1,即函数y=log5(x2+2x-3)的定义域为(-∞,-3)∪(1,+∞).令g(x)=x2+2x-3,则函数g(x)在(-∞,-3)上单调递减,在(1,+∞)上单调递增,根据复合函数的单调性,可得函数y=log5(x2+2x-3)的单调递增区间为(1,+∞).6.函数f(x)=e x-e-x+ln1+x1-x+1,若f(a)+f(1+a)>2,则a的取值范围是.答案(-12,0)解析由题意得, f(x)的定义域为(-1,1),关于原点对称设g(x)=f(x)-1=e x-e-x+ln1+x1-x,则g(-x)=e-x-e x+ln1-x1+x,则g(-x)+g(x)=0,所以g(x)是(-1,1)上的奇函数,因为f(a)+f(1+a)>2,所以f(1+a)-1>-f(a)+1,所以f(1+a)-1>-[f(a)-1],即g(1+a)>-g(a)=g(-a),因为y=e x-e-x单调递增,y=ln1+x1-x单调递增,所以g(x)单调递增,则{-1<a<1,-1<1+a<1,1+a>-a,即−12<a<0.故a的取值范围是(-12,0).7.已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[-3,1]上是减函数,求a的取值范围.解析(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(-x),所以ln(2x2+ax+3)=ln(2x2-ax+3),故a=0,所以f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t≥3,所以ln t≥ln 3,故f(x)的值域为[ln 3,+∞).(2)设u(x)=2x2+ax+3,f(u)=ln u.因为f(x)在[-3,1]上是减函数,所以u(x)=2x2+ax+3在[-3,1]上是减函数,且u(x)>0在[-3,1]上恒成立,故{-a4≥1,u(x)min=u(1)=5+a>0,解得-5<a≤-4,即a的取值范围是(-5,-4].B组能力拔高8.(2020山西大同三模)在同一平面直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()答案A由题意知,函数f(x)=2-ax(a>0,且a≠1)为减函数,当0<a<1时,函数f(x)=2-ax的零点为x=2a>2,且函数g(x)=log a(x+2)在(-2,+∞)上为减函数,故C,D均不正确;当a>1时,函数f(x)=2-ax的零点为x=2a <2,且x=2a>0,且g(x)=log a(x+2)在(-2,+∞)上是增函数,故B不正确,故选A.9.(多选题)(2020山东济南模拟)已知函数f(x)=lg(1|x-2|+1),则下列说法正确的是()A.f(x+2)是偶函数B.f(x+2)是奇函数C.f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f(x)没有最小值答案AD因为f(x)=lg(1|x-2|+1),所以f (x +2)=lg (1|x |+1),定义域为{x |x ≠0},关于原点对称,又f (-x +2)=lg (1|-x |+1)=lg (1|x |+1)=f (x +2),所以f (x +2)为偶函数,故A 说法正确,B 说法错误; f (x )=lg (1|x -2|+1)={lg (1x -2+1),x >2,lg (12-x +1),x <2.因为当x ∈(2,+∞)时,y =1x -2为减函数,所以y =1x -2+1为减函数,所以y =lg (1x -2+1)在区间(2,+∞)上为减函数,故C 说法错误;因为当x ∈(2,+∞)时,y =lg (1x -2+1)为减函数,且当x →+∞时,y →0,所以f (x )没有最小值,故D 说法正确.10.(2020辽宁高三三模)设f (x )为定义在R 上的奇函数,当x ≥0时, f (x )=log 3(x +1)+ax 2-a +1(a 为常数),则不等式f (3x +4)>-5的解集为 ( )A.(-∞,-1)B.(-1,+∞)C.(-∞,-2)D.(-2,+∞)答案 D 因为f (x )是定义在R 上的奇函数,所以f (0)=0,解得a =1,所以当x ≥0时,f (x )=log 3(x +1)+x 2.因为函数y =log 3(x +1)和y =x 2在x ∈[0,+∞)上都是增函数,所以f (x )在[0,+∞)上单调递增.由奇函数的性质可知,y =f (x )在R 上单调递增,因为f (2)=5,f (-2)=-5,所以f (3x +4)>-5⇒f (3x +4)>f (-2),即3x+4>-2,解得x>-2.11.(2020课标Ⅰ理,12,5分)若2a+log2a=4b+2log4b,则()A.a>2bB.a<2bC.a>b2D.a<b2答案B2a+log2a=22b+log2b<22b+log2(2b),令f(x)=2x+log2x,则f(a)<f(2b),又易知f(x)在(0,+∞)上单调递增,所以a<2b,故选B.12.(2020河北邢台模拟)若当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,则实数a的取值范围为.答案(1,2]解析因为当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,所以{a>1,log a2≥1,解得1<a≤2,故实数a的取值范围是(1,2].13.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4],不等式f(x2)·f(√x)>k·g(x)恒成立,求实数k的取值范围.解析(1)易知h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2.因为x∈[1,4],所以log2x∈[0,2],故函数h(x)的值域为[0,2].(2)由f (x 2)·f (√x )>k ·g (x )可得(3-4log 2x )(3-log 2x )>k ·log 2x.令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2],即(3-4t )(3-t )>k ·t 对任意t ∈[0,2]恒成立.当t =0时,k ∈R;当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立, 即k <4t +9t -15恒成立.因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t -15的最小值为-3,即k <-3.综上,k 的取值范围是(-∞,-3).C 组 思维拓展14.(2020吉林长春高三模拟)若函数f (x )={log 12(3-x )m ,x <1,x 2-6x +m ,x ≥1的值域为R,则m 的取值范围为( )A.(0,8]B.(0,92]C.[92,8] D.(-∞,-1]∪(0,92]答案B①若m>0,则当x<1时, f(x)=lo g12(3-x)m单调递增,当x≥1时, f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,若函数f(x)的值域为R,则需f(3)=m-9≤m lo g12(3-1)=-m,解得0<m≤92;②若m≤0,则当x<1时,f(x)=lo g12(3-x)m单调递减或为常数函数,当x≥1时,f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,不满足函数f(x)的值域为R,舍去.综上,m的取值范围为(0,92],故选B.15.(2020山西运城高三模拟)已知函数f(x)=ln2+x2-x,g(x)=m(x-√4-x)+2,若∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1),则实数m的取值范围是()A.[14ln3-12,1-12ln3]B.(14ln3-12,1-12ln3)C.(-12,1)D.[-12,1]答案C∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1)等价于f(x)min<g(x)min.函数f(x)=ln2+x2-x=ln(2+x)-ln(2-x),-2<x<2.因为y=ln(2+x)与y=-ln(2-x)在[0,1]上为增函数,所以函数f(x)在[0,1]上为增函数,所以f(x)min=f(0)=0.易知函数y=x-√4-x在[0,4]上为增函数,则-2≤x-√4-x≤4.故当m>0时,-2m+2≤g(x)≤4m+2,因为f(x)min<g(x)min,所以0<-2m+2,解得0<m<1;当m=0时,g(x)min=2>0,满足f(x)min<g(x)min;<m<0.当m<0时,4m+2≤g(x)≤-2m+2,因为f(x)min<g(x)min,所以0<4m+2,解得-12 <m<1.综上可知,-12。
(完整版)对数函数总结
二、新授内容:定义:一般地,如果 的b 次幂等于N, 就是 ,那么数 b 叫做 ()1,0≠>a a a N a b=以a 为底 N 的对数,记作 ,a 叫做对数的底数,N 叫做真数b N a =log 例如:; 1642=⇔216log 4=100102=⇔2100log 10= ; 2421=⇔212log 4=01.0102=-⇔201.0log 10-=探究:⑴负数与零没有对数(∵在指数式中 N > 0 )⑵,01log =a 1log =a a ∵对任意 且 , 都有 ∴0>a 1≠a 10=a 01log =a 同样易知: 1log =a a ⑶对数恒等式如果把 中的 b 写成 , 则有 N a b=N a log NaNa =log ⑷常用对数:我们通常将以10为底的对数叫做常用对数为了简便,N 的常用对数简记作lgNN 10log 例如:简记作lg5 ; 简记作lg3.5.5log 105.3log 10⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数简记作lnN N e log 例如:简记作ln3 ; 简记作ln103log e 10log e (6)底数的取值范围;真数的取值范围),1()1,0(+∞ ,0(+∞三、讲解范例:咯log例1将下列指数式写成对数式:(课本第87页)(1)=625 (2)=(3)=27 (4) =5.734562-641a3m )(31例2 将下列对数式写成指数式:(1); (2)128=7;416log 21-=2log (3)lg0.01=-2; (4)ln10=2.303例3计算: ⑴,⑵,⑶,⑷27log 981log 43()()32log 32-+625log 345二、新授内容:积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0有:)()()(3R)M(n nlog M log 2N log M log NM log 1N log M log (MN)log a n a a a a a a a ∈=-=+=三、讲授范例:例1 计算(1)25, (2)1, (3)(×), (4)lg 5log 4.0log 2log 74525100例2 用,,表示下列各式:x a log y a log z a log log )2(;(1)log zxyaa 例3计算:(1)lg14-2lg+lg7-lg18 (2) (3)379lg 243lg 2.1lg 10lg 38lg 27lg -+四、课堂练习:1.求下列各式的值:(1)6-3 (2)lg 5+lg 22log 2log (3)3+ (4)5-155log 5log 313log 3log 2. 用lg x,lg y,lg z表示下列各式:(1) lg (xyz ); (2)lg ; (3); (4)z xy 2zxy 3lg z y x2lg 二、新授内容:1.对数换底公式:( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0)aNN m m a log log log =证明:设 N = x , 则 = Na log xa 两边取以m 为底的对数:N a x N a m m m xm log log log log =⇒= 从而得: ∴ a N x m m log log =N a log =2.两个常用的推论:①,1log log =⋅a b b a 1log log log =⋅⋅a c b c b a② ( a, b > 0且均不为1)b mnb a na m log log =三、讲解范例:例1 已知 3 = a , 7 = b, 用 a, b 表示 562log 3log 42log 例2计算:① ②3log 12.05-2194log 2log 3log -⋅例3设 且 ),0(,,+∞∈z y x zy x 643==1︒ 求证; 2︒ 比较的大小zy x 1211=+z y x 6,4,3 例4已知x=c+b ,求xa log a log 四、课堂练习:①已知 9 = a , = 5 , 用 a, b 表示4518log b1836log ②若 3 = p , 5 = q , 求 lg 58log 3log 1.证明:bxxa ab a log 1log log += 2.已知λ====n a a a b b b n log log log 2121 求证:λ=)(log 2121n a a a b b b n 二、新授内容:1.对数函数的定义:函数叫做对数函数;它是指数函数 的反x y a log =)10(≠>a a 且xa y =)10(≠>a a 且函数对数函数 的定义域为,值域为x y a log =)10(≠>a a 且),0(+∞),(+∞-∞2.对数函数的图象由于对数函数与指数函数互为反函数,所以的图象与x y a log =xa y =x y a log =的图象关于直线对称因此,我们只要画出和的图象关于对称的x a y =x y =x a y =x y =曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质x y a log =A3.对数函数的性质三、讲解范例:例1(课本第94页)求下列函数的定义域:(1); (2); (3)2log x y a =)4(log x y a -=)9(log 2x y a -=例2求下列函数的反函数① ② 121-⎪⎭⎫⎝⎛=xy 3)21(12+=+x y )0(<x 四、练习:1.画出函数y=x 及y=的图象,并且说明这两个函数3log x 31log 的相同性质和不同性质.2.求下列函数的定义域:(1)y=(1-x) (2)y=3log x2log 1(3)y= x311log 7-x y 3log )4(=二、新授内容:例1比较下列各组数中两个值的大小:⑴; ⑵;5.8log ,4.3log 227.2log ,8.1log 3.03.0⑶)1,0(9.5log ,1.5log ≠>a a a a 例3比较下列各组中两个值的大小:⑴; ⑵6log ,7log 76.0log ,log 23π例4 求下列函数的定义域、值域:⑴ ⑵41212-=--xy )52(log 22++=x x y ⑶ ⑷)54(log 231++-=x x y )(log 2x x y a --=10(<<a 1.比较0.7与0.82log 31log 2.已知下列不等式,比较正数m 、n 的大小:(1)m <n (2) m >n 3log 3log 3.0log 3.0log (3) m <n(0<a <1) (4) m >n(a >1) a log a log a log a log 二、新授内容:例1 ⑴证明函数在上是增函数)1(log )(22+=x x f ),0(+∞⑵函数在上是减函数还是增函数?)1(log )(22+=x x f )0,(-∞例2 求函数的单调区间,并用单调定义给予证明)32(log 221--=x x y 三、练习:1.求y=(-2x)的单调递减区间3.0log 2x 2.求函数y=(-4x)的单调递增区间2log 2x 3.已知y=(2-)在[0,1]上是x 的减函数,求a 的取值范围.a log xa 练习(1)证明函数y= (+1)在(0,+∞)上是减函数;21log 2x (2)判断函数y=(+1)在(-∞,0)上是增减性.21log 2x 概念是数学理论的基础、概念性强是中学数学中函数理论的一个显著特征,集合,函数三要素(对应法则、定义域、值域);反函数;函数的单调性,最大(小)值等是函数有关概念的重要内容.本章学习的内容中数学概念较多,正确地理解数学概念在于准确把握概念的本质特征.1.映射的定义,就明确如下几点(1)映射f:A→B说的是两个集合A与B间的一种对应,两个集合是有序.(2)映射必须是“多对一”或“一对一”的对应,即允许集合A中不同元素在集合B中有相同的象,但不要求B中的元素在A中都有原象,有原象也不要求惟一,象集可以是B的真子集.(3)映射所涉及两个集合A、B(均非空),可以是数集,也可以是点集或其他类元素构成的集合.2.函数的概念在映射的基础上理解函数概念,应明确:(1)函数是一种特殊的对应,它要求是两个集合必须是非空数集;函数y=f(x)是“y是x的函数”这句话的数学表示,其中x是自变量,y是自变量x的函数,f是表示对应法则,它可以是一个解析式,也可以是表格或图象,也有的只能用文字语言叙述.(2)函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.(3)确定函数定义域是函数这部分所涉及的重要问题之一,应会求各种函数的定义域,若为实际问题还应注意实际问题有意义.3.函数的单调性函数的单调性是函数重要概念之一,应明确:(1)它是一个区间概念,即函数的单调性是针对定义域内的区间而言的,谈到函数的1单调性必须指明区间(可以是定义域,也可以是定义域内某个区间),例如函数y=在(-x1∞,0)上是减函数,在(0,+∞)上也是减函数,但决不能讲函数y=是减函数.x(2)用函数单调性定义来确定函数在某区间是增函数还是减函数的一般方法步骤是:取值作差化积定号.(3)由函数单调性的定义知,当自变量由小到大,函数值也由小到大,则为增函数,反之,为减函数;由函数图象的走向十分直观反映函数变化趋势,当函数的图象(曲线)从左到右是逐渐上升的,它是增函数,反之为减函数.4.反函数反函数是函数部分重要概念之一,应明确:(1)对于任意一个函数y=f(x)不一定有反函数,如果有反函数,那么原函数y=f(x)与它的反函数是互为反函数.(2)原函数的定义域是反函数的值域,原函数的值域是反函数的定义域,在求反函数时,应先确定原函数的值域.(3)求反函数的步骤是“一解”“二换”.所谓一解,即是首先由给出原函数的解析式1-1-y=f(x),反解出用y表示x的式子x=f(y);二换,即是将x=f(y)中的x,y两个字母1-互换,解到y=f(x)即为所求的反函数(即先解后换).当然,在同一直角坐标系中,函1-1-数y=f(x)与x=f(y)是表示同一图象,y=f(x)与y=f(x)的图象关于直线y=x对称.(4)一般的偶函数不存在反函数,奇函数不一定存在反函数.(5)原函数与其反函数在其对称区间上的单调性是一致的.5.方法总结⑴.相同函数的判定方法:定义域相同且对应法则相同.⑵.函数表达式的求法:①定义法;②换元法;③待定系数法.⑶.反函数的求法:递解x,互换x、y,注明反函数的定义域(即原函数的值域).⑷.函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等.⑸.函数值域的求法:①配方法(二次或四次);②判别式法;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.⑹.单调性的判定法:①设x ,x 是所研究区间内任两个自变量,且x <x ;②判定1212f(x )与f(x )的大小;③作差比较或作商比较.12⑺.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)/f(x)=1是偶;f(x)÷f(-x)=-1为奇函数.⑻.图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用反函数的图象与对称性描绘函数图象.⑼.函数的应用举例(实际问题的解法).解决应用问题的一般程序是:①审题:弄清题意、分清条件和结论、理顺数量关系;②建模:将文字语言转化成数学语言,利用相应的数学知识模型.③求模:求解数学模型,得到数学结论.④还原:将用数学方法得到的结论,还原为实际问题的意义.四、二次函数的基础知识及运用:二次函数虽然是初中内容,但由于应用广泛性,且是解决许多数学问题的基础,在高考中属于重点考查的内容.在高考试题中常有直接考查二次函数的题目,而且还有一定的难度.题型有选择题、填空题,也有解答题,近几年解答题常围绕二次函数并结合二次方程、二次不等式(简称:“三个二”)来设置,而且往往是压轴题,因此,作为重点知识,有必要再次研究二次函数,以掌握并加深对这一部分知识理解,对于二次函数的定义、图象和性质及二次函数的最值,在理解的基础上,并加强记忆和运用.高考对二次函数的考查主要从以下几方面:1.二次函数解析式的三种表示方法:(1)y=ax +bx+c(a≠0)叫做标准式;2(2)y=a(x+)+,叫做顶点式;ab 22a b ac 442-(3)y=a(x-x )(x-x ),叫做二根式;(这里指的是:当Δ>0时,即抛物线与x 轴有12两个交点(x ,0)和(x ,0)时的解析式形式).12注意:以上三种形式突出了解析式的特点,运用时要有选择性.2.二次函数的定义、二次函数y=ax +bx+c(a≠0)的图象与性质:2(1)顶点是(-,),对称轴是x=-.a b 2a b ac 442-ab2(2)当a >0时图象开口方向向上,分别在单调区间(-∞,-上是减函数;在[-ab 2],+∞上是增函数,其最小值为ymin=.ab 2)a b ac 442-当a <0时,图象开口方向向下,分别在单调区间(-∞,-上是增函数;在[-ab 2],+∞)上是减函数,其最大值为ymax=.ab 2a b ac 442-(3)抛物线与x 轴的关系:(即ax +bx+c=0(a≠0)的解).2ⅰ.当Δ>0时,抛物线与x 轴有两个交点(x ,0)和(x ,0)其中横坐标为12x 、 =;12aacb b 242-±-ⅱ.当Δ=0时,抛物线与x 轴切于一点,坐标为(-,0);ab2ⅲ.当Δ<0时,抛物线与x 轴没有交点.(4)函数值的正负号当Δ<0时,x∈R 时,y 与a 同号.当Δ=0时,x∈R 且x≠-时,y 与a 同号.ab2当Δ>0时,设x <x ,则(ⅰ)当x <x 或x >x 时,y 与a 同号;1212(ⅱ)当x <x <x 时,y 与a 异号.12以上涉及的是二次函数的定义、图象和性质等基础知识,特别是对函数值的符号,奇偶性,在指定区间上的最值等进行了引伸,应结合图象理解和运用.3.二次函数在指定区间上的最值;4.运用二次函数的知识解决某些数学问题与实际问题.五、指数函数与对数函数的图像和性质:指数函数的图象和性质)10(≠>=a a a y x且对数函数的性质:)10(log ≠>=a a x y a 且六、把握数形结合的特征和方法本章函数中,重点讨论的指数函数、对数函数,都是以定义、性质、图象作为主要的内容,性质和图象相互联系、相互转化,有关函数性质的很多结论是在观察图象的基础上,通过概括,归纳得出的,并借助于函数图象所具有的直观性强的优点形成记忆,在分析和解决与函数有关的问题中,也常常是函数图象的几何特征与函数性质的数量特征紧密结合,相互为用.函数图象可直观、生动地反映函数的某些性质,因此在研究函数性质时,应密切结合函数图象的特征,对应研究函数的性质.七、认识函数思想的实质,强化应用意识函数是用以描述客观世界中量的存在关系的数学概念,函数思想的实质是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系、解决各种问题.纵观近几年的高考试题,考查函数的思想方法已放在一个突出的位置上,特别是近三年加大了应用题的考查力度,选用的题目都要应用函数的思想、知识、方法才能解答的,因此在函数的学习中,一定要认识函数思想的实质,一定要强化应用意识.八、讲解范例:例1已知函数的定义域是[0,1],则函数的定义域是________.)(x f )(2x f 例2已知函数= (-1≤x≤0),则=________.)(x f 21x -)5.0(1-f九、课堂练习:1.已知映射f:M→N,使集合N 中的元素y=x 与集合M 中的元素x 对应,要使映射2f:M→N 是一一映射,那么M ,N 可以是( )A.M=R ,N=RB.M=R,N={y|y≥0}C.M={x|x≥0},N=RD.M={x|x≥0},N={y|y≥0}2.求下列函数的定义域:(1)y=; (2)y=;34+x 21++x x (3)y=; (4)y=431++-++x x x 2561x x --3.设f(x)=,求证(1)f(-x)=f(x);(2)f()=-f(x).2211x x -+x 11.指出下列函数的单调区间,并说明在单调区间上函数是增函数还是减函数:(1)f(x)=-x +x-6; (2)f(x)=-;2x (3)f(x)=; (4)f(x)=-x +122x -3二、例题分析:例1若函数f(x)=x +bx+c 对任意实数x 都有f(2+x)=f(2-x),那么( )2A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)(1)若对任意实数x,都有f(a+x)=f(a-x)成立,则x=a 是函数f(x)的对称轴(2)若对任意实数x,都有f(a+x)=f(b-x)成立,则x=是f(x)的对称轴.2ba +例2求f(x)=x -2ax+2在[2,4]上的最大值和最小值.2例3已知f(x)=|lgx|,且0<a <b <c,若 f(b)<f(a)<f(c),则下列一定成立的是()A.a <1,b <1,且c >1B.0<a <1,b >1且c >1C.b >1,c >1D. c >1且<a <1,a <b < c 1a1例4函数f(x)=x -bx+c ,满足对于任何x∈R 都有f(1+x)=f(1-x),且f(0)=3,则f(b )与2xf(c )的大小关系是( )xA.f(b )≤f(c )B.f(b )≥f(c )x x x xC.f(b )<f(c )D.f(b )>f(c )x x x x三、课堂练习:已知f(x)=x -4x-4,x∈[t,t+1](t∈R),求f(x)的最小值φ(t )的解析式.2。
对数函数的图像和性质 课件-高一上学期数学人教A版必修第一册
a<1.
x-4<x-2
解集为(4,+∞)
3.对数型函数的奇偶性和单调性
例 4.函数 f(x)=log1 (x2-3x-10)的单调递增区间为( )
2
A.(-∞,-2)
B.(-∞,32)
C.(-2,3) 2
D.(5,+∞)
[解析] 由题意,得x2-3x-10>0,∴(x-5)(x+2)>0,∴x<-2或x>5.
∴函数f(x)为奇函数
若函数y=loga(2-ax)在x∈[0,1]上是减函数,则a的取值范围是( B )
A.(0,1)
B.(1,2)
C.(0,2)
D.(1,+∞)
令u=2-ax,由于a>0且a≠1,所以u=2-ax为减函数, 又根据对数函数定义域要求u=2-ax在[0,1] 上恒大于零,当x∈[0,1]时,umin=2-a>0,解得a<2.
1
o1
x
最后把y=lg(x-1)的图象在x轴下方的部分 对称翻折到x轴上方
类型2 对数函数的性质
1.比较大小 例2.比较下列各组中两个值的大小:
(1) log25.3 , log24.7 y=log2x在( 0,+∞) 是增 函数.log25.3 > log24.7
(2) log0.27 , logo.29 y=log0.2x在( 0,+∞) 是减 函数.log0.27 > logo.29
②当 0<a<1 时,有12<a,从而12< a<1.
∴a 的取值范围是( 1
2
,1).
a<(14. ).解不等式:loga(x-4)>loga(x-2).
①当 a①>当1 时a>,1有时xx--a,<有4212>>,00a<此12时,无此解时无解 x-4>x-2
对数公式及对数函数的总结
对数公式及对数函数的总结对数是数学中的一个重要概念。
如果一个数N可以表示为a的x次方(a>0且a≠1),那么x就是以a为底N的对数,记作x=logaN。
其中a称为底数,N称为真数。
负数和零没有对数。
对数式与指数式可以互相转化:x=logaN等价于ax=N (a>0,a≠1,N>0)。
常用的对数有lgN(即以10为底N的对数)和lnN(即以自然常数e为底N的对数)。
自然常数e≈2..对数函数是指函数y=logax(a>1或0<a<1)的图像。
它的定义域为正实数集,值域为实数集。
对数函数的图像经过点(1,0),在(0,+∞)上是增函数,在(0,1)上是减函数。
当x=1时,y=0.对数函数既非奇函数也非偶函数。
对数公式在数学中有广泛的应用。
例如,可以用对数公式计算各种对数值,如log26-log23=2,log212+log25=log=3,等等。
还可以用对数公式来解对数的值,如lg14-2lg7+lg7/lg18-2lg2-(-1)=log0.5,以及2(lg2+lg5)+log3(4/27)的值等。
在第一象限内,a越大图像越靠下,在第四象限内,a越大图像越靠上。
总之,对数及其函数在数学中有着广泛的应用,是不可或缺的数学工具。
4、已知a>b>c,那么a>b>c。
3、设a=log3π,b=log23,c=log32,则a>b>c。
2、如果a>b>logc1,那么B选项___c。
5、如果a>1,且a-x-logaxy。
1、已知函数f(x)=logx,如果f(ab)=1,则f(a)+f(b)=2.6、设函数f(x)={x-1,x<2;2logx-1,x≥2},那么f(f(2))=2log2-1.7、设函数f(x)满足:当x≥4时,f(x)=1/x;当x<4时,f(x)=f(x+1),那么f(2+log23)=1/7.参数问题部分无需改写。
对数函数图像讲解
科学家利用碳-14的放射性同位素进行年代鉴
在已知出土定文的物道或理古是遗什址么的?残科留物学中家碳根1据4的什么数学模型来进行
含量P时,如何估算出土文物或古遗址的年
代? 计算呢?
t log 研P究资料显示,经过5568年,碳-14含量减少一 5730 1 半。2 呈指数衰减的物质,减少到一半所经历的时间叫
函数 y log1 x 的图像自左至右呈 下 趋势.
2
*运用知识 强化练习 【例1】求下列函数的定义域
(1) y log2 (x 4) ; (2) y ln x .
解 (1) 由 x + 4 >0 ,得 x > -4,
故函数定义域为( -4,+∞).
(2)由 ln x ≥ 0且x > 0,得 x ≥1且x >0 ,
根据问题的实际意义,对于每一个碳14的含
量P,通过对应关系
,都
有唯一确定的年代t与它对应,所以t是以P
为自变量的函数。
整体建构 理论升华
观察函数图像发现:
1.函数 y log2 x和y log1 x 的图像都在 y 轴 右侧;
2
2.函数图像都经过点 (1,0); 3.函数 y log2 x 的图像自左至右呈 上 趋势.
故函数定义域为 [1,+∞)
分析:
求解对数函数定义域问题的关键是要求真
数大于零,当真数为某一代数式时,可将 其看作一个整体单独提出来,求其相应的不 等式的解集,即该函数的定义域.
*运用知识 强化练习
画出下列函数 y log3 x, y log1 x 的图象, 并且说明这两 个函数图像的相同点和不同点。 3
*探究知识 引入新课
问题 某种物质的细胞分裂,由1个分裂成2个,2个分裂 成4个,4个分裂成8个,······,那么,知道分 裂得到的细胞个数如何求得分裂次数吗?
高中数学:2.2.1对数与对数运算 (12)
1.将对数式 log5b=2 化为指数式是( )
A.5b=2
B.b5=2
C.52=b
D.b2=5
解析:选 C 由对数的概念可知 log5b=2⇔52=b,故选 C.
2.在 b=log(a-2)(5-a)中,实数 a 的取值范围是( )
A.a>5 或 a<2
B.2<a<3 或 3<a<5
C.2<a<5
D.3<a<4
解析:选 B 要使式子 log(a-2)(5-a)有意义,则 aa- -22>≠01,,即 2<a<3 或 3<a<5,故选 B. 5-a>0,
3.已知 logx16=2,则 x 等于( )
A.4Βιβλιοθήκη B.±4C.256
D.2
解析:选 A 改写为指数式 x2=16,但 x 作为对数的底数,
45分钟课时作业与单元测试 数学 必修 1A
第二章 基本初等函数(Ⅰ)
2.2 对数函数 2.2.1 对数与对数运算
第19课时 对 数
掌握几个要点
题点知识巩固
提能达标过关
掌握几个要点
1.掌握 1 组互化关系——指数式与对数式的互化 (1)指数式化为对数式: 将指数式的幂作为真数,指数作为对数,底数不变,写出对 数式. (2)对数式化为指数式: 将对数式的真数作为幂,对数作为指数,底数不变,写出指 数式.
5.下列结论正确的是( )
①lg(lg 10)=0;②lg(ln e)=0;③若 10=lg x,则 x=10;④
若 e=ln x,则 x=e2.
A.①③
B.②④
C.①②
D.③④
解析:选 C ∵lg 10=1,∴lg(lg 10)=0,∴①正确; ∵ln e=1,∴lg(ln e)=0,∴②正确; ∵10=lg x,∴x=1010,∴③不正确; ∵e=ln x,∴x=ee, ∴④不正确,故选 C.
2024届高考一轮复习数学课件(新教材新高考新人教A版) 对数与对数函数
所以a+2b>3, 所以a+2b的取值范围为(3,+∞).
思维升华
对数函数图象的识别及应用方法 (1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的 特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项. (2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利 用数形结合法求解.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若M=N,则logaM=logaN.( × )
(2)函数y=loga2x(a>0,且a≠1)是对数函数.( × )
(3)对数函数y=logax(a>0,且a≠1)在(0,+∞)上是增函数.( × )
(4)函数y=log2x与y=log 1
C.(0,1)
B.(1,3) D.(1,+∞)
令t(x)=6-ax,因为a>0,所以t(x)=6-ax为减函数. 又由函数f(x)=loga(6-ax)在(0,2)上单调递减, 可得函数t(x)=6-ax>0在(0,2)上恒成立,且a>1, 故有a6>-12,a≥0, 解得 1<a≤3.
(2)(2022·惠州模拟)若函数f(x)=logax2-ax+12 (a>0,且a≠1)有最小值, 则实数a的取值范围是_(_1_,___2_)_.
命题点3 对数函数的性质及应用 例5 (2023·郑州模拟)设函数f(x)=ln|x+3|+ln|x-3|,则f(x)
√A.是偶函数,且在(-∞,-3)上单调递减
B.是奇函数,且在(-3,3)上单调递减 C.是奇函数,且在(3,+∞)上单调递增 D.是偶函数,且在(-3,3)上单调递增
函数f(x)的定义域为{x|x≠±3}, f(x)=ln|x+3|+ln|x-3|=ln|x2-9|, 令g(x)=|x2-9|, 则f(x)=ln g(x), 函数g(x)的单调区间由图象(图略)可知, 当x∈(-∞,-3),x∈(0,3)时,g(x)单调递减, 当x∈(-3,0),x∈(3,+∞)时,g(x)单调递增, 由复合函数单调性同增异减得单调区间. 由f(-x)=ln|(-x)2-9|=ln|x2-9|=f(x)得f(x)为偶函数.
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.若,,则().A.B.0C.1D.2【答案】A【解析】令,即;所以.【考点】复合函数求值.2.函数的定义域是().A.[2,+∞)B.(2,+∞)C.(﹣∞,2]D.(﹣∞,2)【答案】D【解析】要使有意义,则,即,所以定义域为.【考点】函数的定义域.3.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.4.求的值是 .【答案】【解析】【考点】对数运算公式5.已知函数为常数).(Ⅰ)求函数的定义域;(Ⅱ)若,,求函数的值域;(Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.【答案】(Ⅰ);(Ⅱ);(Ⅲ)且【解析】(1)对数中真数大于0(2)思路:要先求真数的范围再求对数的范围。
求真数范围时用配方法,求对数范围时用点调性(3)要使函数的图像恒在直线的上方,则有在上恒成立。
把看成整体,令即在上恒成立,转化成单调性求最值问题试题解析:(Ⅰ)所以定义域为(Ⅱ)时令则因为所以,所以即所以函数的值域为(Ⅲ)要使函数的图像恒在直线的上方则有在上恒成立。
令则即在上恒成立的图像的对称轴为且所以在上单调递增,要想恒成立,只需即因为且所以且【考点】(1)对数的定义域(2)对数的单调性(3)恒成立问题6.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算7.已知,函数,若实数、满足,则、的大小关系为 .【答案】【解析】因为所以函数在R上是单调减函数,因为,所以根据减函数的定义可得:.故答案为:.【考点】对数函数的单调性与特殊点;不等关系与不等式.8.已知函数,则实数t的取值范围是____.【答案】【解析】令,值域为由题意函数的值域为则是函数值域的子集所以即【考点】对数函数图象与性质的综合应用.9.计算:=.【答案】【解析】根据题意,由于可以变形为,故可知结论为【考点】指数式的运用点评:主要是考查了指数式的运算法则的运用,属于基础题。
对数 函数
对数函数对数函数是一种非常有用的函数,尤其在数学、物理和工程等领域中,经常出现在各种公式和问题中。
本文主要介绍对数函数的基本定义、性质和应用。
一、基本定义对数函数的定义如下:若a是正实数并且不等于1,那么以a为底的对数函数f(x)=loga(x),其中x>0。
其中,a称为底数,x称为真数,f(x)称为以a为底、以x为真数的对数,简称为log。
由于底数a是一个常数,我们通常省略不写,因此对数函数也可以简写为f(x)=log(x)。
对数函数的定义基于指数函数的性质:a^f(x)=x,即以a为底、以x为幂的指数函数。
对于任意正实数a和x,这个指数函数总是唯一存在的,因此对数函数也是唯一存在的。
同时,对于a>1时,f(x)在(0,+∞)上单调递增,且具有良好的连续性和可导性。
二、性质与公式对数函数有许多重要的性质和公式,常用的包括:1. 基本公式log(a×b)=log(a)+log(b)log(a/b)=log(a)-log(b)log(a^k)=k×log(a)这些公式的证明和应用可以用指数函数和对数函数的基本定义和性质进行推导。
2. 运算规律log(x)和e^x是互为反函数的,即log(e^x)=x,e^(log(x))=x。
log(x)与log(y)的和差等于log(xy)和log(x/y),即log(x)+log(y)=log(xy),log(x)-log(y)=log(x/y)。
这些运算规律可以在解决一些复杂问题时大大简化运算。
3. 对数函数的图像对数函数在底数a和真数x的不同取值情况下,图像呈现出不同的特性。
例如,以2为底的对数函数log2(x)在x=1时取得最小值0,在x=2时取得最大值1,同时在x>0时单调递增。
此外,对于任意的底数a>1,loga(x)都具有与log2(x)类似的性质。
4. 对数函数的应用对数函数在实际问题中有着广泛的应用,例如:(1)计算复利和现值:在金融领域中,复利的计算和现值的估算都需要用到对数函数。
对数函数及其性质课件
解得65<x<3,所以原不等式的解集为65,3.
1 (2)∵logx12>1⇔lloogg222x>1⇔1+lo1g2x<0⇔lolgo2gx2+x 1<0⇔-1<log2x<0
⇔2-1<x<20 x>0
⇔12<x<1,
∴原不等式的解集为12,1.
题型三 对数函数性质的综合应用 【例 3】 (12 分)已知函数 f(x)=logaxx-+11(a>0 且 a≠1), (1)求 f(x)的定义域; (2)判断函数 f(x)的奇偶性和单调性. 审题指导 本题考查对数函数的性质及其应用.
题型一 对数函数单调性的应用
【例 1】 比较下列各组对数值的大小:
(1) 1.6,
2.9;
(2)log21.7,log23.5; (3)log78,log0.34; (4)loga5,loga6.(a>0,且 a≠1) [思路探索] 利用对数函数的单调性性质进行对数值的大小比较.
解 (1)∵y=
对数函数及其性质的应用
自学导引 1.对数函数 y=logax(a>0,且 a≠1)与 y=ax 互为反函数,它们 的图象关于直线 y=x 对称.对数函数 y=logax 的定义域是指 数函数 y=ax 的值域 ,而 y=logax 的值域是 y=ax 的定义域. 2.y=logax(a>0,且 a≠1)的图象一定在 y 轴的右侧,图象过 定点(1,0);y=loga|x|(a>0,a≠1)的图象关于 y 轴对称.
2.利用对数函数的性质可以比较两个对数值的大小 (1)比较同底的两个对数值的大小,常利用对数函数的单调性. (2)比较同真数的两个对数值的大小,常有两种方法:①利用对数 换底公式化为同底的对数,再利用对数函数的单调性和倒数关系 比较大小;②利用对数函数图象的相互位置关系比较大小. (3)若底数与真数都不同,则通过一个恰当的中间量来比较大小.
《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)
解下列不等式:
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1).
栏目 导引
【解】
(1)由题意可得4x->x0>,0, x<4-x,
解得 0<x<2.
所以原不等式的解集为(0,2).
(2)当 x>1 时,logx12>1=logxx,
解得 x<12,此时不等式无解.
栏目 导引
第四章 指数函数与对数函数
2.已知 a=30.5,b=log312,c=log32,则(
)
A.a>c>b
B.a>b>c
C.c>a>b
D.b>a>cog312<0,0<c=log32<1,所以
a>c>b.
栏目 导引
解对数不等式
第四章 指数函数与对数函数
栏目 导引
第四章 指数函数与对数函数
与对数函数有关的值域与最值问题 已知函数 f(x)=loga(1+x)+loga(3-x)(a>0,且 a≠1). (1)求函数 f(x)的定义域; (2)若函数 f(x)的最小值为-2,求实数 a 的值.
栏目 导引
【解】
第四章 指数函数与对数函数
(1)由题意得31-+xx>>00,,解得-1<x<3.
栏目 导引
第四章 指数函数与对数函数
(3)因为 0>log0.23>log0.24, 所以 1 < 1 ,
log0.23 log0.24 即 log30.2<log40.2. (4)因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33=1, 同理,1=logππ>logπ3,即 log3π>logπ3.
对数与对数函数
12 对数与对数函数知识梳理1.对数2.对数函数的图象与性质3.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 要点整合1.化简对数式可用下列两个基本公式(1)倒数公式:log a b ·log b a =1(a >0,b >0,a ≠1,b ≠1). (2)换底公式:log a N =log b Nlog b a(a >0,b >0,N >0,且a ≠1,b ≠1).2.利用指数函数与对数函数单调性比较大小或解不等式与求最值问题时,注重“同底法”.题型一. 对数式的化简与求值例1.(1)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12(2)化简12lg 3249-43lg 8+lg 245=__________.解析: (1)因为-2<1,所以f (-2)=1+log 2(2+2)=1+log 24=1+2=3.因为log 212>1,所以f (log 212)=2log 212-1=122=6.所以f (-2)+f (log 212)=3+6=9.故选C. (2)12lg 3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg(2×5)=12. [答案] (1)C (2)12(1)在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底数的形式.(2)对数式的求值与化简常用的结论(a >0且a ≠1) ①log a 1=0.②log a a =1.③a log a N =N (N >0). ④log a b ·log b a =1(b >0且b ≠1).变式1.若2a =5b =m ,且1a +1b =12,则m 的值为( )A .10B .10C .1010D .100解析:选D.由题意得a =log 2m ,b =log 5m .∴1log 2m +1log 5m =12.即log m 2+log m 5=12. ∴log m 10=12.∴m 12=10,即m =100,故选D.变式2.若x log 23=1,则3x +3-x =( )A .53B .52C .32D .23解析:选B.∵x log 23=1, ∴log 23x =1,∴3x =2,3-x =12,∴3x +3-x =2+12=52.故选B.变式3.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=2+f ⎝⎛⎭⎫12log 2x ,则f (-2)=__________.解析:由f ⎝⎛⎭⎫12=2+f ⎝⎛⎭⎫12×log 212=2-f ⎝⎛⎭⎫12,得f ⎝⎛⎭⎫12=1,所以当x >0时,f (x )=2+log 2x ,所以f (2)=2+log 22=3,又f (x )是奇函数, 所以f (-2)=-f (2)=-3. 答案:-3题型二. 对数函数的图象及应用例2. (1)在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是( )(2)已知函数f (x )=|log 2x |,0<m <n ,且f (m )=f (n ),若函数f (x )在区间[m 2,n ]上的最大值为2,则m 2=__________.解析: (1)两图象均不可能过点(0,1),A 错;B 选项中,f (x )=x a 中a 满足a >1,而g (x )=log a x 中a 满足0<a <1,矛盾,B 错;类似B 选项的判断方法知C 错;D 正确.故选D.(2)作出函数f (x )=|log 2x |的图象如图.由题意可得0<m <1<n ,∴0<m 2<m ,结合图象可知函数f (x )在[m 2,n ]上的最大值为f (m 2),则有-log 2m 2=2,m 2=2-2=14.[答案] (1)D (2)141.判断基本函数图象的方法(1)理清函数名称和其基本图象的对应. (2)利用特殊点或单调性进行取舍. 2.翻折图象(图形)的两个主要变换 (1)y =f (x )―――――――――――→将x 轴下方图象翻折到x 轴上方保留原x 轴上方的图象y =|f (x )|;(2)y =f (x )――――――――――→保留y 轴右侧的图象并作其关于y 轴对称的图象y =f (|x |).变式1.若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )解析:选B.由题意y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.选项A 中,y =3-x=⎝⎛⎭⎫13x,显然图象错误;选项B 中,y =x 3,由幂函数图象可知正确;选项C 中,y =(-x )3=-x 3,显然与所画图象不符;选项D 中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符.故选B.变式2.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]解析:选B.如图所示,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上的截距.由图可知,当a >1时,直线y =-x +a 与曲线y =f (x )只有一个交点,即函数h (x )只有一个零点.题型三. 对数函数的性质及应用例3. (1)若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c <b cD .c a >c b(2)已知函数f (x )=log a 3+x3-x(a >0,且a ≠1).①判断f (x )的奇偶性,并说明理由;②当0<a <1时,求函数f (x )的单调区间. [解] (1)选B.法一:(通性通法)因为0<c <1,所以y =log c x 在(0,+∞)单调递减,又0<b <a ,所以log c a <log c b ,故选B.法二:(特值法)取a =4,b =2,c =12,则log 412=-12>log 212,排除A ;412=2>212,排除C ;⎝⎛⎭⎫124<⎝⎛⎭⎫122,排除D.故选B.(2)f (x )=log a 3+x3-x(a >0,a ≠1,-3<x <3).①因为f (-x )+f (x )=log a 3-x 3+x +log a 3+x3-x=log a 1=0,所以f (-x )=-f (x ),又定义域(-3,3)关于原点对称.所以f (x )是奇函数.②令t =3+x 3-x =-1-6x -3,则该函数在(-3,3)上是增函数,当0<a <1时,函数y =log a t 是减函数,所以f (x )=log a3+x3-x(0<a <1)在(-3,3)上是减函数, 即函数f (x )的单调递减区间是(-3,3). 例4. 设a =log 36,b =log 510,c =log 714,则( )A .c>b>aB .b>c>aC .a>c>bD .a>b>c 答案 D变式. 若log a (a 2+1)<log a 2a<0,则a 的取值范围是( ) A .(0,1)B .(0,12)C .(12,1) D .(0,1)∪(1,+∞)答案 C解析 由题意得a>0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a<0,所以0<a<1, 同时2a>1,∴a>12.综上,a ∈(12,1).例5. 已知函数f(x)=log a (3-ax).(1)当x ∈[0,2]时,函数f(x)恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解 (1)∵a>0且a ≠1,设t(x)=3-ax , 则t(x)=3-ax 为减函数,x ∈[0,2]时,t(x)的最小值为3-2a , 当x ∈[0,2]时,f(x)恒有意义, 即x ∈[0,2]时,3-ax>0恒成立. ∴3-2a>0.∴a<32.又a>0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32.【感悟提升】在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件.变式1.(1)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>aC.c>b>a D.c>a>b(2)若f(x)=lg(x2-2ax+1+a)在区间(-∞,1]上递减,则a的取值范围为()A.[1,2) B.[1,2]C.[1,+∞) D.[2,+∞)(3)设函数212log,0()log(),0,x xf x x x>⎧⎪=⎨-<⎪⎩若f(a)>f(-a),则实数a的取值范围是()A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)答案(1)D(2)A(3)C解析(1)∵3<2<3,1<2<5,3>2,∴log33<log32<log33,log51<log52<log55,log23>log22,∴12<a<1,0<b<12,c>1,∴c>a>b.1.比较大小问题是高考的常考题型,应熟练掌握比较大小的基本方法:(1)作差(商)法;(2)函数单调性法;(3)中间值法(特别是以0和1为中间值).利用对数函数单调性比较大小的基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.2.利用对数函数的性质,求与对数函数有关的函数的值域和单调性问题时,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是函数的构成形式,即它是由哪些基本初等函数通过初等运算构成或复合而成的.A.a>b>c B.b>c>aC.c>b>a D.b>a>c变式2.已知函数f (x )=log a 1-mxx -1是奇函数(a >0,a ≠1).(1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性. 解:(1)∵f (x )是奇函数,∴f (-x )=-f (x )在其定义域内恒成立,即log a 1+mx -x -1=-log a 1-mx x -1,∴1-m 2x 2=1-x 2恒成立,∴m =-1或m =1(舍去),即m =-1.(2)由(1)得f (x )=log a x +1x -1(a >0,a ≠1),令u (x )=x +1x -1=1+2x -1,则u (x )在(1,+∞)上为减函数.∴当a >1时,f (x )在(1,+∞)上是减函数; 当0<a <1时,f (x )在(1,+∞)上是增函数.。
对数函数知识点总结
对数函数(一)对数1.对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ;○2 x N N a a x=⇔=log ;○3 注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ; ○2 =N Ma log M a log -N a log ; ○3 na M log n =M a log )(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式推导下面的结论(1)b mnb a n a m log log =;(2)a b b a log 1log =. (二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:x y 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:0(>a ,且)1≠a . 2对数函数·例题解析例1.求下列函数的定义域:(1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=.解:(1)由2x >0得0≠x ,∴函数2log x y a =的定义域是{}0x x ≠;(2)由04>-x 得4<x ,∴函数)4(log x y a -=的定义域是{}4x x <;(3)由9-02>-x 得-33<<x ,∴函数)9(log 2x y a -=的定义域是{}33x x -<<.例2.求函数251-⎪⎭⎫ ⎝⎛=xy 和函数22112+⎪⎭⎫ ⎝⎛=+x y )0(<x 的反函数。
高考对数函数知识点
高考对数函数知识点一、引言高考是对学生多年来知识积累和学习成果的一次综合考验,其中数学是高考必考科目之一。
在数学中,对数函数是一个重要的知识点。
本文将从对数函数的定义、性质以及常见的应用等方面,深入探讨高考中的对数函数知识点。
二、基本概念1. 对数函数的定义对数函数是指一个以底数为a的指数函数。
由以下公式可表示:y = loga(x),其中a称为底数,x称为真数,y称为对数。
2. 对数函数的性质(1)基本性质:loga1 = 0;logaa = 1(2)换底公式:loga(x) = logb(x) / logb(a)(3)对数的运算法则:loga(xy) = logax + logay三、常见公式与应用1. 指数与对数的关系指数和对数是互为逆运算的关系。
例如,对数函数和指数函数的关系表达为:a^loga(x) = x,loga(a^x) = x。
这个关系在高考中常用于简化计算。
2. 对数函数的图像与性质(1)底数大于1时,对数函数呈现递增趋势;底数小于1时,对数函数呈现递减趋势。
(2)对数函数必须有定义,即真数必须大于0。
(3)对数函数的图像始终通过点(1,0),并且当x趋近于正无穷时,对数函数的值也趋近于正无穷。
(4)对数函数的图像在x轴左侧与y轴始终相切于第四象限,并且在x=0处有一个垂直渐近线。
3. 对数方程与不等式(1)对数方程是指含有对数的方程。
解对数方程的关键是转化为指数方程或利用对数的性质简化方程。
(2)对数不等式是指含有对数的不等式。
解对数不等式的关键是利用对数函数的单调性进行推导。
四、典型题目解析高考中常出现关于对数函数的典型题目,如以下题目可进行解析:题目1:若2^x + 2^(x+1) = 12,则x = ?解析:将2^(x+1)表示为2*2^x,然后将方程化简为2^x(1+2) = 12,即3*2^x = 12。
进一步得到2^x = 4,从而 x = 2。
题目2:已知对数函数y = log2x,则当y=3时,x=?解析:将y = 3代入对数函数中,得到3 = log2x。
对数函数的图像和性质课件
(1)求 a 的值;
(2)试说明 f(x)在区间(1,+∞)内单调递增;
(3)若对于区间[3,4]上的每一个 x 值,不等式
f(x)>(12)x+m 恒成立,求实数 m 的取值范围.
又∵对任意x∈[3,4]时,gx>m, 即log12xx+-11-12x>m恒成立, ∴m<-98,即所求m的取 值范围是(-∞,-98).12 分
3分类讨论当a>1时,函数y=logax在定义域 上是增函数,则有logaπ>loga3.141; 当0<a<1时,函数y=logax在定义域上是减
函数,则有logaπ<loga3.141.
综上所得,当a>1时,logaπ>loga3.141; 当0<a<1时,logaπ<loga3.141.
题型二 对数函数的图像
5.3 对数函数的图像和性质
学习目标
学习导航
重点难点
重点:对数函数y=logax的图像性质.
难点:对数函数图像的变化及应用,指数函 数与对数函数之间的关系.
新 知 初 探 ·思 维 启 动
对数函数的图像和性质
研究对数函数y=logaxa>0且a≠1的图像
和性质,底数要分为_________和______a_>__1两种
变式训练 1.比较下列各组中两个值的大小; 1log31.9,log32; 2log23,log0.32; 3logaπ,loga3.141.
解:1单调性法因为y=log3x在0,+∞上是增
函数,所以log31.9<log32.
2中间量法因为log23>log21=0,log0.32<0, 所以log23>log0.32.
3.求下列函数的单调区间.
1y=log0.3x2-2x-8; 2y=log0.4x2-2log0.4x+2. 解:1令t=x2-2x-8,则y=log0.3t在0,+∞
对数函数的图象及性质--优质获奖精品课件 (12)
即0<x<3, y>1.
因为lg(lgy)=lg3x+lg(3-x),
所以lg(lgy)=lg[3x·(3-x)],即lgy=3x·(3-x), 所以f(x)=103x(3-x)=10-3x2+9x,其中0<x<3,
即定义域为(0,3).
(2)令u=-3x2+9x=-3x-322+247,0<x<3. 因为0<-3x2+9x≤247, 所以1<y≤10247, 所以f(x)的值域为(1,10247].
把本例(1)变成“y= log122-x”求定义域.
【解】 由题意可知
log122-x≥0, 2-x>0,
∴log122-x≥log121, 2-x>0,
∴22--xx≤>01,, 即1≤x<2.
故函数y= log122-x的定义域为{x|1≤x<2}.
因忽略对数函数的定义域致误 设函数y=f(x),且lg(lgy)=lg3x+lg(3-x). (1)求f(x)的表达式及定义域; (2)求f(x)的值域.
D.[0,1]
【解析】 因为y= xln(1-x),所以x1≥-0x,>0 , 解得0≤x<1.
【答案】 B
3.函数y=loga(x-1)+1(a>0且a≠1)恒过定点________. 【解析】 当x=2时,y=1,故恒过定点(2,1). 【答案】 (2,1)
4.求下列函数的定义域: (1)f(x)=lg(x-2)+x-1 3; (2)f(x)=log(x+1)(16-4x).
2.函数图象的平移变换规律:
3.函数图象的对称变换规律:
函数y= fx的图象
―y并―轴“―左复―侧制―图―”象―一去―份掉―翻,―到―右y―侧轴―保左―留侧→
对数函数运算法则
1对数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.由定义知:①负数和零没有对数;②a>0且a≠1,N>0;③loga1=0,logaa=1,alogaN=N,logaab=b.特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.2对数式与指数式的互化式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)3对数的运算性质如果a>0,a≠1,M>0,N>0,那么(1)loga(MN)=logaM+logaN.(2)logaMN=logaM-logaN.(3)logaMn=nlogaM (n∈R).问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?②logaan=? (n∈R)③对数式与指数式的比较.(学生填表)式子ab=NlogaN=b名称a—幂的底数b—N—a—对数的底数b—N—运算性质am·an=am+nam÷an=(am)n=(a>0且a≠1,n∈R)logaMN=logaM+logaNlogaMN=logaMn=(n∈R)(a>0,a≠1,M>0,N>0)难点疑点突破对数定义中,为什么要规定a>0,,且a≠1?理由如下:①若a<0,则N的某些值不存在,例如log-28?②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数?③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数?为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?解题方法技巧1(1)将下列指数式写成对数式:①54=625;②2-6=164;③3x=27;④13m=5?73.(2)将下列对数式写成指数式:①log1216=-4;②log2128=7;③log327=x;④lg0.01=-2;⑤ln10=2.303;⑥lgπ=k.解析由对数定义:ab=N?logaN=b.解答(1)①log5625=4.②log2164=-6.③log327=x.④log135.73=m.解题方法指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N?logaN=b.(2)①12-4=16.②27=128.③3x=27.④10-2=0.01.⑤e2.303=10.⑥10k=π.2根据下列条件分别求x的值:(1)log8x=-23;(2)log2(log5x)=0;(3)logx27=31+log32;(4)logx(2+3)=-1.解析(1)对数式化指数式,得:x=8-23=?(2)log5x=20=1. x=?(3)31+log32=3×3log32=?27=x?(4)2+3=x-1=1x. x=?解答(1)x=8-23=(23)-23=2-2=14.(2)log5x=20=1,x=51=5.(3)logx27=3×3log32=3×2=6,∴x6=27=33=(3)6,故x=3.(4)2+3=x-1=1x,∴x=12+3=2-3.解题技巧①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值.解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值; 思路二,对指数式的两边取同底的对数,再利用对数式的运算求值?解答解法一∵logax=4,logay=5,∴x=a4,y=a5,∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.解法二对所求指数式两边取以a为底的对数得logaA=loga(x512y-13)=512logax-13logay=512×4-13×5=0,∴A=1.解题技巧有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围.解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?解答∵x>0,y>0,x·y1+lgx=1,两边取对数得:lgx+(1+lgx)lgy=0.即lgy=-lgx1+lgx(x≠110,lgx≠-1).令lgx=t, 则lgy=-t1+t(t≠-1).∴lg(xy)=lgx+lgy=t-t1+t=t21+t.解题规律对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解.∴Δ=S2+4S≥0,解得S≤-4或S≥0,故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).5求值:(1)lg25+lg2·lg50+(lg2)2;(2)2log32-log3329+log38-52log53;(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;(4)求7lg20·12lg0.7的值.解析(1)25=52,50=5×10.都化成lg2与lg5的关系式.(2)转化为log32的关系式.(3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢?(4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数,设x=7lg20·12lg0.7能否先求出lgx,再求x?解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2=2lg5+lg2·(1+lg5)+(lg2)2=lg5·(2+lg2)+lg2+(lg2)2=lg102·(2+lg2)+lg2+(lg2)2=(1-lg2)(2+lg2)+lg2+(lg2)2=2-lg2-(lg2)2+lg2+(lg2)2=2.(2)原式=2log32-(log325-log332)+log323-5log59=2log32-5log32+2+3log32-9=-7.(3)由已知lgab=lg(a-2b)2 (a-2b>0),∴ab=(a-2b)2, 即a2-5ab+4b2=0.∴ab=1或ab=4,这里a>0,b>0.若ab=1,则a-2b<0, ∴ab=1( 舍去).∴ab=4,∴log2a-log2b=log2ab=log24=2.(4)设x=7lg20·12lg0.7,则lgx=lg20×lg7+lg0.7×lg12=(1+lg2)·lg7+(lg7-1)·(-lg2)=lg7+lg2=14,∴x=14, 故原式=14.解题规律①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3).②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0);(2)logab·logbc=logac;(3)logab=1logba(b>0,b≠1);(4)loganbm=mnlogab.解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证.(2)中logbc能否也换成以a为底的对数.(3)应用(1)将logab换成以b为底的对数.(4)应用(1)将loganbm换成以a为底的对数.解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN,∴b=logcNlogca.∴logaN=logcNlogca.(2)由(1)logbc=logaclogab.所以 logab·logbc=logab·logaclogab=logac.(3)由(1)logab=logbblogba=1logba.解题规律(1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用. 对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab.7已知log67=a,3b=4,求log127.解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢?解答已知log67=a,log34=b,∴log127=log67log612=a1+log62.又log62=log32log36=log321+log32,由log34=b,得2log32=b.∴log32=b2,∴log62=b21+b2=b2+b.∴log127=a1+b2+b=a(2+b)2+2b.解题技巧利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧?8已知x,y,z∈R+,且3x=4y=6z.(1)求满足2x=py的p值;(2)求与p最接近的整数值;(3)求证:12y=1z-1x.解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答?解答(1)解法一3x=4y?log33x=log34y?x=ylog34?2x=2ylog34=ylog316,∴p=log316.解法二设3x=4y=m,取对数得:x·lg3=lgm,ylg4=lgm,∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4.由2y=py, 得 2lgmlg3=plgmlg4,∴p=2lg4lg3=lg42lg3=log316.(2)∵2=log39 ∴2 又3-p=log327-log316=log32716,p-2=log316-log39=log3169,而2716<169,∴log327163-p.∴与p最接近的整数是3.解题思想①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢?②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈R+,∴k>1,则 x=lgmlg3,y=lgmlg4,z=lgmlg6,所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm,故12y=1z-1x.解法二3x=4y=6z=m,则有3=m1x①,4=m1y②,6=m1z③,③÷①,得m1z-1x=63=2=m12y.∴1z-1x=12y.9已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1).解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab?解答logma+b3=logm(a+b3)212=解题技巧①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一.②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9.∵a2+b2=7ab,∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb),即logma+b3=12(logma+logmb).思维拓展发散1数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a×10n.其中N>0,1≤a<10,n∈Z.这就是用科学记数法表示真数N.其科学性体现在哪里?我们只要研究数N的常用对数,就能揭示其中的奥秘.解析由已知,对N=a×10n取常用对数得,lgN=n+lga.真数与对数有何联系?解答lgN=lg(a×10n)=n+lga.n∈Z,1≤a<10,∴lga∈〔0,1).我们把整数n叫做N的常用对数的首数,把lga叫做N的常用对数的尾数,它是正的纯小数或0.小结:①lgN的首数就是N中10n的指数,尾数就是lga,0≤lga<1;②有效数字相同的不同正数它们的常用对数的尾数相同,只是首数不同;③当N≥1时,lgN的首数n比它的整数位数少1,当N∈(0,1)时,lgN的首数n是负整数,|n|-1与N的小数点后第一个不是0的有效数字前的零的个数相同.师生互动什么叫做科学记数法?N>0,lgN的首数和尾数与a×10n有什么联系?有效数字相同的不同正数其常用对数的什么相同?什么不同?2若lgx的首数比lg1x的首数大9,lgx的尾数比lg1x的尾数小0?380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x 的值.解析①lg0.203 4=1?308 3,即lg0.203 4=1+0.308 3,1是对数的首数,0.308 3是对数的尾数,是正的纯小数;②若设lgx=n+lga,则lg1x也可表出.解答设lgx=n+lga,依题意lg1x=(n-9)+(lga+0.380 4).又lg1x=-lgx=-(n+lga),∴(n-9)+(lga+0?380 4)=-n-lga,其中n-9是首数,lga+0?380 4是尾数,-n-lga=-(n+1)+(1-lga),-(n+1)是首数1-lga是尾数,所以:n-9=-(n+1)lga+0.380 4=1-lga?n=4,lga=0.308 3.∴lgx=4+0.308 3=4.308 3,∵lg0.203 4=1.308 3,∴x=2.034×104.∴lg1x=-(4+0.308 3)=5.691 7.解题规律把lgx的首数和尾数,lg1x的首数和尾数都看成未知数,根据题目的等量关系列方程.再由同一对数的首数等于首数,尾数等于尾数,求出未知数的值,是解决这类问题的常用方法.3计算:(1)log2-3(2+3)+log6(2+3+2-3);(2)2lg(lga100)2+lg(lga).解析(1)中.2+3与2-3有何关系?2+3+2-3双重根号,如何化简?(2)中分母已无法化简,分子能化简吗?解题方法认真审题、理解题意、抓住特点、找出明确的解题思路和方法,不要被表面的繁、难所吓倒.解答(1)原式=log2-3(2-3)-1+12log6(2+3+2-3)2=-1+12log6(4+22+3·2-3)=-1+12log66=-12.(2)原式=2lg(100lga)2+lg(lga)=2〔lg100+lg(lga)〕2+lg(lga)=2〔2+lg(lga)〕2+lg(lga)=2.4已知log2x=log3y=log5z<0,比较x,3y,5z的大小.解析已知是对数等式,要比较大小的是根式,根式能转化成指数幂,所以,对数等式应设法转化为指数式. 解答设log2x=log3y=log5z=m<0.则x=2m,y=3m,z=5m.x=(2)m,3y=(33)m,5z=(55)m.下面只需比较2与33,55的大小:(2)6=23=8,(33)6=32=9,所以2<33.又(2)10=25=32,(55)10=52=25,∴2>55.∴55<2<33. 又m<0,图2-7-1考查指数函数y=(2)x,y=(33)x,y=(55)x在第二象限的图像,如图2-7-1?解题规律①转化的思想是一个重要的数学思想,对数与指数有着密切的关系,在解决有关问题时要充分注意这种关系及对数式与指数式的相互转化.②比较指数相同,底不同的指数幂(底大于0)的大小,要应用多个指数函数在同一坐标系中第一象限(指数大于0)或第二象限(指数小于0)的性质进行比较?①是y=(55)x,②是y=(2)x,③是y=(33)x.指数m<0时,图像在第二象限从下到上,底从大到小.所以(33)m<(2)m<(55)m,故3y潜能挑战测试1(1)将下列指数式化为对数式:①73=343;②14-2=16;③e-5=m.(2)将下列对数式化为指数式:①log128=-3;②lg10000=4;③ln3.5=p.2计算:(1)24+log23;(2)2723-log32;(3)2513log527+2log52.3(1)已知lg2=0.301 0,lg3=0.477 1,求lg45;(2)若lg3.127=a,求lg0.031 27.4已知a≠0,则下列各式中与log2a2总相等的是()A若logx+1(x+1)=1 ,则x的取值范围是()A已知ab=M(a>0,b>0,M≠1),且logMb=x,则logMa的值为()A若log63=0.673 1,log6x=-0.326 9, 则x为()A若log5〔log3(log2x)〕=0,则x=.98log87·log76·log65=.10如果方程lg2x+(lg2+lg3)lgx+lg2·lg3=0的两根为x1、x2,那么x1·x2的值为.11生态学指出:生物系统中,每输入一个营养级的能量,大约只有10%的能量流到下一个营养级.H1→H2→H3→H4→H5→H6这条生物链中 (Hn表示第n个营养级,n=1,2,3,4,5,6).已知对H1输入了106千焦的能量,问第几个营养级能获得100千焦的能量?12已知x,y,z∈R+且3x=4y=6z,比较3x,4y,6z的大小.13已知a,b均为不等于1的正数,且axby=aybx=1,求证x2=y2.14已知2a·5b=2c·5d=10,证明(a-1)(d-1)=(b-1)(c-1).15设集合M={x|lg〔ax2-2(a+1)x-1〕>0},若M≠?,M?{x|x<0},求实数a的取值范围.16在张江高科技园区的上海超级计算中心内,被称为“神威Ⅰ”的计算机运算速度为每秒钟384 000 000 000次.用科学记数法表示这个数为N=,若已知lg3.840=0.584 3,则lgN=.17某工厂引进新的生产设备,预计产品的生产成本比上一年降低10%,试问经过几年,生产成本降低为原来的40%?(lg2=0.3, lg3=0.48)18某厂为适应改革开放,完善管理机制,满足市场需求,某种产品每季度平均比上一季度增长10.4%,那么经过y季度增长到原来的x倍,则函数y=f(x)的解析式f(x)=.名师助你成长1.(1)①log7343=3.②log1416=-2.③lnm=-5.(2)①12-3=8.②104=10 000.③ep=3.5.2.(1)48点拨:先应用积的乘方,再用对数恒等式.(2)98点拨:应用商的乘方和对数恒等式.(3)144点拨:应用对数运算性质和积的乘方.3.(1)0.826 6点拨:lg45=12lg45=12lg902=12(lg32+lg10-lg2).(2)lg0.031 27=lg(3.127×10-2)=-2+lg3.127=-2+a4.C点拨:a≠0,a可能是负数,应用对数运算性质要注意对数都有意义.5.B点拨:底x+1>0且x+1≠1;真数x+1>0.6.A点拨:对ab=M取以M为底的对数.7.C点拨:注意0.673 1+0.326 9=1,log61x=0.326 9,所以log63+log61x=log63x=1.∴3x=6, x=12.8.x=8点拨:由外向内.log3(log2x)=1, log2x=3, x=23.9.5点拨:log87·log76·log65=log85, 8log85=5.10.16点拨:关于lgx的一元二次方程的两根是lgx1,lgx2.由lgx1=-lg2,lgx2=-lg3,得x1=12,x2=13.11.设第n个营养级能获得100千焦的能量,依题意:106·10100n-1=100,化简得:107-n=102,利用同底幂相等,得7-n=2,或者两边取常用对数也得7-n=2.∴n=5,即第5个营养级能获能量100千焦.12?设3x=4y=6z=k,因为x,y,z∈R+,所以k>1.取以k为底的对数,得:x=1logk3,y=1logk4,z=1logk6.∴3x=3logk3=113logk3=1logk33,同理得:4y=1logk44,6z=1logk66.而33=1281,44=1264,66=1236,∴logk33>logk44>logk66.又k>1,33>44>66>1,∴logk33>logk44>logk66>0,∴3x<4y<6z.13.∵axby=aybx=1,∴lg(axby)=lg(aybx)=0,即xlga+ylgb=ylga+xlgb=0.(※)两式相加,得x(lga+lgb)+y(lga+lgb)=0.即(lga+lgb)(x+y)=0.∴lga+lgb=0 或x+y=0.当lga+lgb=0时,代入xlga+ylgb=0,得:(x-y)lga=0, a是不为1的正数lga≠0,∴x-y=0.∴x+y=0或x-y=0,∴x2=y2.14.∵2a5b=10,∴2a-1=51-b.两边取以2为底的对数,得:a-1=(1-b)log25. ∴log25=a-11-b(b≠1). 同理得log25=c-11-d(d≠1).即b≠1,d≠1时,a-11-b=c-11-d.∴(a-1)(1-d)=(c-1)(1-b),∴(a-1)(d-1)=(b-1)(c-1).当b=1,c=1时显然成立.15.设lg〔ax2-2(a+1)x-1〕=t (t>0),则ax2-2(a+1)x-1=10t(t>0).∴10t>1 ,ax2-2(a+1)x-1>1,∴ax2-2(a+1)x-2>0.①当a=0时,解集{x|x<-1}?{x|x<0};当a≠0时,M≠?且M?{x|x<0}.∴方程ax2-2(a+1)x-2=0 必有两不等实根,设为x1,x2且x1 ②当a>0时,M={x|xx2},显然不是{x|x<0}的子集;③当a<0时,M={x|x1 a<0,Δ=4(a+1)2+8a>0,x1+x2=2(a+1)a<0,x1·x2=-2a>0.解得3-2 16.N=3.840×1011, lgN=11.584 3.17.设经过x年,成本降为原来的40%.则(1-10%)x=40%,两边取常用对数,得:x·lg(1-10%)=lg40% ,即x=lg0.4lg0.9=lg4-1lg9-1=2lg2-12lg3-1=10.所以经过10年成本降低为原来的40%.18.f(x)=log1.104x〔或f(x)=lgxlg1.104〕.点拨:设原来一个季度产品为a,则a(1+10.4%)y=xa,∴y=log1.104x.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据这个关系可以将指数式化成对数式,也可以将对数式化成指数式.
(2)指数式、对数式中各个字母的名称变化如下表:
式子
名称
a
x
N
指数式
ax=N
底数
指数
幂
对数式
x=logaN
底数
对数
真数
[例1]将下列指数式化为对数式,对数式化为指数式:
12.方程log2(1-2x)=1的解x=________.
13.log6[log4(log381)]=________.
14.若logx=m,logy=m+2,求的值.
15.设loga2=m,loga3=n,求a2m+n的值.
[活学活用]
将下列指数式与对数式互化:
(1)log216=4;(2)log27=-3;
(3)logx=6;(4)43=64;
(5)3-2=;(6)-2=16.
解:(1)24=16.
(2)-3=27.
(3)()6=x.
(4)log464=3.
(5)log3=-2.
(6)log16=-2.
[例2]求下列各式中x的值.
(2)常用对数与自然对数:
通常将以10为底的对数叫做常用对数,并把log10N记作lg_N;以无理数e=2.718 28…为底数的对数称为自然对数,并且把logeN记为ln_N.
[化解疑难]
对数的概念中规定“a>0,且a≠1”的原因
(1)若a<0,则当N为某些值时,x的值不存在.如x=log-28不存在.
(2)若a=0,
①当N≠0时,x的值不存在.如log03(可理解为0的多少次幂是3)不存在.
②当N=0时,x可以是任意实数,是不唯一的,即log00有无数个值.
(3)若a=1,
①当N≠1时,x的值不存在.如log13不存在.
②当N=1时,x可以为任意数,是不唯一的,即log11有无数个值.
因此规定a>0,且a≠1.
二、对数的性质
1.对数与指数的关系
当a>0,且a≠1时,ax=N⇔x=logaN.前者叫指数式,后者叫对数式.
2.对数的性质
性质1
负数和零没有对数
性质2
1的对数是0,即loga1=0(a>0,且a≠1)
性质3
底数的对数是1,即logaa=1(a>0,且a≠1)
[化解疑难]
剖析指数式ax=N和对数式x=logaN的关系
(4)∵-ln e3=x,∴ln e3=-x,
∴e3=e-x,∴x=-3.
[典例]对数式loga-2(5-a)=b中,实数a的取值范围是()
A.(-∞,5)B.(2,5)
C.(2,+∞)D.(2,3)∪(3,5)
[解析]由题意,得∴2<a<3或3<a<5.
[答案]D
[易错防范]
1.本题极易只注意真数大于0,即5-a>0而忽视底数a-2也大于0,从而得出a<5的错误结论,从而误选A.
①lg(lg 10)=0;②lg(ln e)=0;③若10=lgx,x=10;④若log25x=,得x=±5.
A.1个B.2个
C.3个D.4个
9.已知x2+y2-4x-2y+5=0,则logx(yx)的值是()
A.1B.0
C.xD.y
10.若a>0,a=,则loga等于()
A.2B.3
C.4D.5
11.lg 10 000=________;lg 0.001=________.
(1)2-7=;(2)3a=27;(3)10-1=0.1;
(4)log32=-5;(5)lg 0.001=-3.
[解](1)log2=-7;(2)log327=a;(3)lg 0.1=-1;(4)-5=32;(5)10-3=0.001.
[类题通法]
指数式与对数式互化的方法
将指数式化为对数式,只需要将幂作为真数,指数当成对数值,而底数不变即可;而将对数式化为指数式,则反其道而行之.指数式与对数式的互化是一个重要内容,应熟练掌握.
(1)log5(log3x)=0;
(2)log3(lgx)=1;
(3)ln[log2(lgx)]=0.
[解](1)设t=log3x,则log5t=0,∴t=1,
即log3x=1,∴x=3.
(2)∵logn[log2(lgx)]=0,∴log2(lgx)=1,
[活学活用]
求下列各式中的x值:
(1)logx8=6;(2)x=log84;
(3)log64x=-;(4)-ln e3=x.
解:(1)∵logx8=6,∴x6=8,又∵x>0,
∴x=8=(23)=2=.
(2)∵x=log84,∴8x=4,即23x=22,
∴3x=2,∴x=.
(3)∵log64x=-,∴x=64-=(43)-=4-2=.
2.在求解对数形式表达式中参数的取值范围时,应根据对数中的底数和真数满足的要求列出不等式组,进而求解即可.
[活学活用]
若对数log(x-1)(4x-5)有意义,则x的取值范围是()
A.≤x<2B.<x<2
C.<x<2或x>2D.2≤x≤3
解析:选Cx应满足∴x>,且x≠2.
[随堂即时演练]
1.已知logx16=2,则x等于()
∴x===.
(3)由x=log27,可得27x=,
∴33x=3-2,∴x=-.
(4)由x=log16,可得x=16.
∴2-x=24,∴x=-4.
[类题通法]
指数与对数互化的本质
指数式ab=N(a>0,且a≠1)与对数式b=logaN(a>0,a≠1,N>0)之间是一种等价关系.已知对数式可以转化成指数式,指数式同样可以转化成对数式.
学科教师辅导讲义
教学主任签字:
学员编号:年级:高一课时数:2课时
学员姓名:张浩翔辅导科目:数学学科教师:
授课日期及时段
教学目标
1.复习分数指数幂的性质和有理数幂的运算。
2.会进行分数指数幂的计算和化简计算
重点难点
简单的分数指数幂的化简及其计算
一、对数的概念
(1)定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN.其中,a叫做对数的底数,N叫做真数.
∴log3(log4x)=1,∴log4x=3.∴x=43=64.
同理求得y=16.∴x+y=80.
[例3]求下列各式中的x值.
(1)logx27=;(2)log2x=-;
(3)x=log27;(4)x=log16.
[解](1)由logx27=,可得x=27,
∴x=27==32=9.
(2)由log2x=-,可得x=2-.
∴lgx=2,∴x=102=100.
[类题通法]
对数性质的运用技巧
logaa=1及loga1=0是对数计算的两个常用量,可以实现数1,0与对数logaa及loga1的互化.
[活学活用]
已知log2(log3(log4x))=log3(log4(log2y))=0,求x+y的值.
解:∵log2(log3(log4x))=0,
A.4B.±4
C.256D.2
2.若logx=z,则x,y,z之间满足()
A.y7=xzB.y=x7z
C.y=7xzD.y=z7x
3.已知log2x=3,则x-=________.
4.若log7[log3(logx)]=0,则x=________.
5.将下列指数式化为对数式,对数式化为指数式.
(1)53=125;
(2)4-2=;
(3)log8=-3;
(4)log3=-3.
6.已知loga2b=c,则有()
A.a2b=cB.a2c=b
C.bc=2aD.c2a=b
7.下列指数式与对数式互化不正确的一组是()
A.e0=1与ln 1=0
B.8-=与log8=-
C.log39=2与9=3
D.log77=1与71=7
8.下列各式中正确的个数是()