浙江省2018年中考数学复习函数第15课时二次函数综合题含近9年中考真题试题

合集下载

2018年浙江中考数学专题复习二次函数性质综合题

2018年浙江中考数学专题复习二次函数性质综合题

二次函数性质综合题类型一 二次项系数确定型1.已知二次函数y =x 2-2mx +m 2+m -5.(1)若该二次函数图象关于y 轴对称,写出它的图象的顶点坐标.(2)若该二次函数图象的顶点在第一象限,求m 的取值范围.解:(1)∵二次函数y =x 2-2mx +m 2+m -5的图象关于y 轴对称,∴x =22m --=0, 解得m =0, ∴二次函数为y =x 2-5,∴顶点坐标为(0,-5);(2)y =x 2-2mx +m 2+m -5=(x -m )2+m -5,∴顶点坐标为(m ,m -5),∵它的图象的顶点在第一象限,∴ m >0,且 m −5>0 , 解得m>5.2.已知抛物线G :y=x 2-2ax+a -1(a 为常数).(1)当a =3时,用配方法求抛物线G 的顶点坐标;(2)若记抛物线G 的顶点坐标为P (p ,q ),①分别用含a 的代数式表示p ,q ;②请在①的基础上继续用含p 的代数式表示q ;③由①②可得,顶点P 的位置会随着a 的取值变化而变化,则点P 总落在__________图象上.A .一次函数B .反比例函数C .二次函数(3)小明想进一步对(2)中的问题进行如下改编:将(2)中的抛物线G 改为抛物线H :y =x 2-2ax +N (a 为常数),其中N 代表含a 的代数式,从而使这个新抛物线H 满足:无论a 取何值,它的顶点总落在某个一次函数的图象上.请按照小明的改编思路,写出一个符合以上要求的新抛物线H的函数表达式:_________(用含a的代数式表示),它的顶点所在的一次函数图象的表达式y=kx+b(k,b为常数,k≠0)中,k=___________,b=___________.解:(1)当a=3时,y=x2-6x+2=(x-3)2-7,∴点G的顶点坐标为(3,-7);(2)①y=x2-2ax+a-1=(x-a)2-a2+a-1,∴p=a,q=-a2+a-1;②q=-p2+p-1;③C(3)y=x2-2ax+a2+a-1,1,-1(答案不唯一)【解法提示】y=x2-2ax+a2+a-1=(x-a)2+a-1,顶点坐标为(a,a-1),顶点所在的一次函数图象的表达式y=x-1.3.已知抛物线y=x2-2mx+2m2+2m,得出两个结论:结论一:当抛物线经过原点时,顶点在第三象限的角平分线所在的直线上;结论二:不论m取什么实数值,抛物线顶点一定不在第四象限.(1)请你求出抛物线经过原点时m的值及顶点坐标,并说明结论一是否正确?(2)结论二正确吗? 若你认为正确,请求出当实数m变化时,抛物线顶点的纵横坐标之间的函数关系式,并说明顶点不在第四象限的理由;若你认为不正确,求出抛物线顶点在第四象限时,m的取值范围.解:(1)结论一正确.抛物线经过原点时,2m2+2m=0,则m1=0,m2=-1,当m=-1时,抛物线解析式为y=x2+2x=(x+1)2-1,顶点坐标(-1,-1);当m=0时,抛物线解析式为y=x2,顶点坐标(0,0),由于顶点(-1,-1)和顶点(0,0)都在第三象限的角平分线所在的直线上,∴结论一正确;(2)结论二正确.∵抛物线的解析式y =x 2-2mx +2m 2+2m 可变为y =(x -m )2+m 2+2m ,∴抛物线的顶点坐标为(m ,m 2+2m ),若设抛物线的顶点为(x ,y ),则2,2x m y m m=⎧⎨=+⎩ ∴抛物线顶点的纵横坐标的函数关系式为y =x 2+2x ,∵抛物线y =x 2+2x 的顶点为(-1,-1),与x 轴的交点为(0,0),(-2,0),且抛物线开口向上,∴抛物线 y =x 2+2x 不可能在第四象限.即不论 m 取什么实数值,抛物线顶点一定不在第四象限.4.在平面直角坐标系xOy 中,抛物线y =x 2-2mx +m 2-m +2的顶点为D .线段ab 的两端点分别为a (-3,m ),b (1,m ).(1)求点D 的坐标(用含m 的代数式表示);(2)若该抛物线经过点b (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围. 解:(1)∵y =x 2-2mx +m 2-m +2=(x -m )2-m +2,∴D (m ,-m +2);(2)∵抛物线经过点B (1,m ),∴m =1-2m +m 2-m +2,解得m =3或m =1;(3)根据题意:∵A (-3,m ),B (1,m ),∴AB 所在直线的解析式为y =m (-3≤x ≤1),与y =x 2-2mx +m 2-m +2,联立得: x 2-2mx +m 2-2m +2=0,令y =x 2-2mx +m 2-2m +2,若抛物线y =x 2-2mx +m 2-2m +2与线段AB 只有一个公共点,即函数y 在-3≤x ≤1范围内只有一个零点,当x =-3时,y =m 2+4m +11≤0,∵b 2-4ac >0,∴此种情况不存在,当x =1时,y =m 2-4m +3≤0, 解得1≤m ≤3.5.已知抛物线的表达式为 y =2x 2-4x -1.(1)求当x 为何值时y 取最小值,并求出最小值;(2)这个抛物线交x 轴于点(x 1,0),(x 2,0),求2112x x x x +的值; (3)将二次函数的图象先向右平移2个单位长度,再向下平移 1个单位长度后,所得二次函数图象的顶点为a ,请你求出点a 的坐标.解:(1)y =2x 2-4x -1=2(x 2-2x +1)-2-1=2(x -1)2-3,当x =1时,y 取最小值,最小值为-3;(2)令y =0,得2x 2-4x -1=0,由题意得:方程的两个根为x 1,x 2,∵a =2,b =-4,c =-1,∴x 1+x 2=b a -=2,x 1x 2=c a =12-, 则22221121212121212()210;x x x x x x x x x x x x x x ++-+===- (3)二次函数的图象向右平移2个单位长度,得到解析式为y=2(x-1-2)2-3,即y=2(x-3)2-3,再向下平移1个单位长度,得y=2(x-3)2-3-1,即y=2(x-3)2-4,则平移后顶点a的坐标为(3,-4).6.已知二次函数y=-x2+2mx-4m+2(m为常数)(1)请你用m的代数式表示该函数的顶点坐标;(2)对于二次函数y=-x2+2mx-4m+2,若当x≥1时,函数值y随x的增大而减小,请你求出m的取值范围;(3)若二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,写出H与m的函数关系式,并判断该函数图象的顶点是否有最高点(或最低点)?若有,请求出这个点的坐标.解:(1)∵2224,42 22(1)4b m ac bm m ma a--=-==-+⨯-,∴顶点坐标为(m,m2-4m+2);(2)∵抛物线的对称轴为直线x=m,且a=-1<0,∴当x≥m时,函数值y随x的增大而减小,∵当x≥1时,函数值y随x的增大而减小,∴m≤1;(3)∵二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,∴H=m2-4m+2=(m-2)2-2,∵1>0,∴函数顶点有最低点,坐标为(2,-2).7.已知二次函数y=22x bx c++(b,c为常数).(1)当b=1,c=-3时,求二次函数在-2≤x≤2上的最小值;(2)当c=3时,求二次函数在0≤x≤4上的最小值;(3)当c =42b 时,若在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.解:(1)当b =1,c =-3时,二次函数解析式为2223(1)4y x x x =+-=+-,∵x =-1在-2≤x ≤2的范围内,∴当x =-1时,函数取得最小值为-4;(2)当c =3时,二次函数解析式为y =223x bx ++=22()3x b b +-+,其对称轴为直线x =-b ,①若-b <0,即b >0时,当x =0时,y 有最小值为3;②若0≤-b ≤4,即4≤b ≤0时,当x =-b 时,y 有最小值为23b -+; ③若-b >4,即b <-4时,当x =4时,y 有最小值为8b +19;(3)当c =24b 时,二次函数的解析式为y =2224x bx b ++,它是开口向上,对称轴为直线x =-b 的抛物线,①若-b <2b ,即b >0时,在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 随x 增大而增大,∴当x =2b 时,y=2(2)2b b +×222412b b b +=为最小值,∴12b 2=21,∴b =72或b =72-(舍), ∴二次函数解析式为y =277x x ++;②若2b ≤-b ≤2b +3,即-1≤b ≤0,当x =-b 时,代入y =2224x bx b ++,得y 的最小值为23b ,∴23b =21, ∴b =7(舍)或b =-7(舍),③若-b >2b +3时,即b<-1,x =2b+3时,代入二次函数解析式y =2224x bx b ++中,得y 的最小值为212189b b ++,∴212189b b ++=21,∴b =-2或b =12(舍),∴二次函数解析式为y =2416x x -+.综上所述,b =72或b =-2时,此时二次函数的解析式分别为y =277x x ++或y =2416x x -+.类型二 二次项系数不确定型1.已知实数a ,c 满足111a c +=,2a +c -ac +2>0,二次函数y =ax 2+bx +9a 经过点 B (4,n )、A (2,n ),且当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,求a 的值. 解:∵实数a ,c 满足111a c +=,∴c -ac =-a ,∵2a +c -ac +2>0,∴2a -a +2>0,∴a >-2,∵二次函数y =ax 2+bx +9a 经过点B (4,n )、A (2,n ), ∴2b a -=422+=3, ∴b =-6a , ∴y =ax 2+bx +9a =a (x 2-6x +9)=a (x -3)2,∵当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,∴|4a -a |=9, ∴a =±3,又∵a>-2, ∴a =3.2.已知抛物线的函数解析式为y =ax 2+bx -3a (b <0),若这条抛物线经过 点(0,-3),方程ax 2+bx -3a =0的两根为x 1,x 2,且|x 1-x 2|=4.(1)求抛物线的顶点坐标;(2)已知实数x >0,请证明x +1x ≥2,并说明x 为何值时才会有x +1x =2. 解:(1)∵抛物线过点(0,-3),∴-3a =-3,,∴a =1,∴y =x 2+bx -3,∵x 2+bx -3=0的两根为x 1,x 2,∴x 1+x 2=-b ,x 1x 2=-3,∵|x 1-x 2|=4, ∴|x 1-x 2|=21212()4x x x x +-=4 , ∴212b +=4, ∴b 2=4 ,∵b <0, ∴b =-2 ,∴y =x 2-2x -3=(x -1)2-4 ,∴抛物线的顶点坐标为(1,-4);(2)∵x >0, ∴x +1x −2=( x -1x )2 ≥0 ,∴x +1x ≥2,显然当x =1时,才有x +1x =2.3.已知函数24(2)m m y m x +-=+是关于x 的二次函数,求:(1)满足条件m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点的坐标,这时x 为何值时y 随x 的增大而增大?(3)m 为何值时,抛物线有最大值?最大值是多少?这时x 为何值时,y 随x 的增大而减小?解:(1)根据题意得m +2≠0且m 2+m -4=2,解得m 1=2,m 2=-3, 所以满足条件的m 值为2或-3;(2)当m +2>0时,抛物线有最低点, 所以m =2, 抛物线解析式为y =4x 2, 所以抛物线的最低点为(0,0),当x ≥0时,y 随x 的增大而增大;(3)当m =-3时,抛物线开口向下,函数有最大值; 抛物线解析式为y =-x 2,所以二次函数的最大值是0,这时,当x ≥0时,y 随x 的增大而减小.4.我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0).(1)对于这样的抛物线:当顶点坐标为(1,1)时,求a 、b 的值;(2)当顶点坐标为(m ,2m ),m ≠0时,求a 与m 之间的关系式;(3)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =(k +1)x (k ≠-1)上,请用含k 的代数式表示b .解:(1)∵顶点坐标为(1,1),∴ 21214b a b a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得12a b =-⎧⎨=⎩; (2)当顶点坐标为(m ,2m ),m ≠0时,2224b m a b m a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得a =2m -; (3)过原点的抛物线y =ax 2+bx 的顶点坐标为(2b a -,24b a-), ∵抛物线顶点在直线y =(k +1)x (k ≠-1)上, ∴2(1)()42b b k a a-=+-, 整理得:b =2k +2.5.已知二次函数y =ax 2-(a +1)x +1(a >0).(1)当a =1时,求二次函数y =ax 2-(a +1)x +1(a >0)的顶点坐标和对称轴.(2)二次函数y =ax 2-(a +1)x +1(a >0)与x 轴的交点恒过一个定点,求出这个定点;(3)当二次函数y =ax 2-(a +1)x +1(a >0)时,x 在什么范围内,y 随着x 的增大而减小?解:(1)当a =1时,y =x 2-2x +1, 顶点坐标式为y =(x -1)2,则顶点坐标为(1,0),对称轴为直线x =1;(2)令y =ax 2-(a +1)x +1=0, a (x 2-x )+1-x =0,当x =1时,a (x 2-x )+1-x =0恒成立, 则这个定点为(1,0);(3)∵y =ax 2-(a +1)x +1(a >0),∴y =a (x −12a a +)2+1−2(1)4a a+, ∵a >0, ∴当x <12a a+时,y 随着x 的增大而减小. 6.已知函数y =(n +1)x m +mx +1-n (m ,n 为实数).(1)当m ,n 取何值时,此函数是我们学过的哪一类函数?它一定与x 轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n >-1,那么:①当x <0时,y 随x 的增大而减小,请判断这个命题的真假并说明理由; ②它一定经过哪个点?请说明理由.解:(1)①当m =1,n ≠-2时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y =0时,即(n +1)x m +mx +1-n =0,∴x =12n n -+ , ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;②当m =2,n ≠-1时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是二次函数, 当y =0时,y =(n +1)x m +mx +1-n =0,即(n +1)x 2+2x +1-n =0,△=22-4(1+n )(1-n )=4n 2≥0,∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;③当n =-1,m ≠0时,函数y =(n +1)x m +mx +1-n 是一次函数,当y =0时,x =2m-, ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;(2)①假命题,若它是一个二次函数,则m =2,函数y =(n +1)x 2+2x +1-n , ∵n >-1,∴n +1>0,抛物线开口向上, 对称轴:x =2122(1)1b a n n -=-=-++<0, ∴对称轴在y 轴左侧,当x <0时,y 有可能随x 的增大而增大,也可能随x 的增大而减小;②当x =1时,y =n +1+2+1-n =4.当x =-1时,y =0.∴它一定经过点(1,4)和(-1,0).7.在平面直角坐标系xOy 中,直线y =2x -3与y 轴交于点 A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线y =2x -3交于点 C .(1)求点C 的坐标;(2)如果抛物线y =nx 2-4nx +5n (n >0)与线段bC 有唯一公共点,求n 的取值范围. 解:(1)∵直线y =2x -3与y 轴交于点A (0,-3),∴点A 关于x 轴的对称点B (0,3),l 为直线y =3,∵直线y =2x -3与直线l 交于点C ,∴点C 坐标为(3,3);(2)∵抛物线y =nx 2-4nx +5n (n >0),∴y =nx 2-4nx +4n +n =n (x -2)2+n (n >0),∴抛物线的对称轴为直线x =2,顶点坐标为(2,n ),∵点B (0,3),点C (3,3),①当n >3时,抛物线的最小值为n >3,与线段BC 无公共点;②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;③当0<n<3时,抛物线最小值为n,与线段BC有两个公共点;如果抛物线y=n (x-2)2+n经过点b,则3=5n,解得n=35,由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),点(4,3)不在线段BC上,此时抛物线与线段BC有一个公共点B;如果抛物线y=n(x-2)2+n经过点C,则3=2n,解得n=32,由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),点(1,3)在线段BC 上,此时抛物线与线段BC有两个公共点,综上所述,当35≤n<32或n=3时,抛物线与线段bC有一个公共点.8.已知抛物线C:y1=a(x-h)2-1,直线l:y2=kx-kh-1.(1)求证:直线l恒过抛物线C的顶点;(2)当a=1,2≤x≤m时,y1≤x-3恒成立,求m的最大值;(3)当0<a≤1,k>0时,若在直线l下方的抛物线C上至少存在三个横坐标为整数的点,求k的取值范围.解:(1)抛物线C的顶点坐标为(h,-1),当x=h时,y2=kh-kh-1=-1,所以直线l 恒过抛物线C的顶点;(2)当a=1时,抛物线C解析式为y1=(x-h)2-1,不妨令y3=x-3 ,如解图①所示,抛物线C的顶点在直线y=-1上移动,第8题解图①当2≤x≤3时,y1≤x-3恒成立,则可知抛物线C的顶点为(2,-1),设抛物线C 与直线y 3=x -3 除顶点外的另一交点为M , 此时点M 的横坐标即为m 的最大值,由 2(2)13y x y x ⎧=--⎨=-⎩,解得x =2或x =3, ∴m 的最大值为3.(3)如解图②所示,由(1)可知:抛物线C 与直线l 都过点a (h ,-1).第8题解图②当0<a ≤1时,k >0,在直线l 下方的抛物线C 上至少存在三个横坐标为整数点,即当x =h +3时,y 2>y 1恒成立.∴k (h +3)-kh -1>a (h +3-h )2-1,整理得:k >3a .又∵0<a ≤1, 所以0<3a ≤3,所以k >3.9.已知二次函数232y ax bx =+-的图象与y 轴交于点B , (1) 若二次函数的图象经过点A (1,1).①二次函数的图象对称轴为直线 x =1,求此二次函数的解析式;②对于任意的正数a ,当x>n 时,y 随x 的增大而增大,请求出n 的取值范围;(2)若二次函数的图象的对称轴为直线x =-1,且直线y =2x -2与直线l 也关于直线x =-1对称,且二次函数的图象在-5<x<-4这一段位于直线l 的上方,在1<x<2这一段位于直线y =2x -2的下方,求此二次函数的解析式.解:(1)①由题意得31212a b b a⎧+-=⎪⎪⎨⎪-=⎪⎩,解得525a b ⎧=-⎪⎨⎪=⎩,∴二次函数的解析式为253522y x x =-+-; ∵二次函数的图象经过点A (1,1), ∴31,2a b +-= ∴b =52a -, ∴对称轴为55122242a b x a a a -=-=-=-+, ∵a>0,∴50,4a-< ∴122b x a =-<, ∵当x>n 时,y 随x 的增大而增大,1,221;2b n a n ∴≤-<∴<(2)由直线y =2x -2可知:直线y =2x -2与直线x =-1的交点为(-1,-4),与x 轴的交点为(1,0),∵直线y =2x -2与直线l 也关于直线x =-1对称,∴直线l 与x 轴的交点为(-3,0),设直线l 的解析式为y =kx +d ,∵直线l 过点(-1,-4),(-3,0),代入解析式得4,03k d k d-=-+⎧⎨=-+⎩解得=2,6k d -⎧⎨=-⎩ ∴直线l 的解析式为y =-2x -6. ∵二次函数232y ax bx =+-的图象的对称轴为直线x =-1,且直线y =2x -2与y =-2x -6关于直线x =-1对称,如解图,当1<x<2时,函数232y ax bx =+-的图象在直线y =2x -2的下方,第9题解图∴当-4<x<-3时,函数232y ax bx =+-的图象在直线l :y =-2x -6的下方; 又∵当-5<x<-4时,函数232y ax bx =+-的图象在直线l 的上方, ∴当x =-4时,y =-2⨯(-4)-6=2, 即(-4,2)为函数232y ax bx =+-与y =-2x -6的图象的交点, ∴316422,12a b b a⎧--=⎪⎪⎨⎪-=-⎪⎩解得716,78a b ⎧=⎪⎪⎨⎪=⎪⎩ ∴此二次函数的解析式为27731682y x x =+-.。

浙江省【针对演练】2018年中考数学复习题二二次函数性质综合题类型一二次项系数含答案

浙江省【针对演练】2018年中考数学复习题二二次函数性质综合题类型一二次项系数含答案

第二部分题型研究题型二二次函数性质综合题类型一二次项系数确定型针对演练1. 已知抛物线y=x2+px+q的顶点M为直线y=12x+12与y=-x+m-1的交点.(1)用含m的代数式来表示顶点M的坐标;(2)若m=6,当x取值为t-1≤x≤t+3时,二次函数y最小值=2,求t的取值范围;(3)将抛物线y=x2+px+q向右平移1个单位,再向下平移2个单位后,与抛物线y=(x-3)2+2重合,求p、q的值.2. 已知抛物线y=x2-2bx+c.(1)若抛物线的顶点坐标为(2,-3),求b,c的值;(2)若b+c=0,是否存在实数x,使得相应的y的值为1,请说明理由;(3)若c=b+2且抛物线在-2≤x≤2上的最小值是-3,求b的值.3. 已知抛物线y=x2-(m+1)x+12(m2+1).(1)若抛物线与x轴有交点,求m的值;(2)在(1)的条件下,先作y=x2-(m+1)x+12(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y =2x +n (n ≥m )与变化后的图象有公共点时,求n 2-4n 的最大值和最小值.4. 如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线y =x 2-2mx +m 2-2与直线x =-2交于点P .(1)当抛物线经过点C 时,求它的表达式;(2)抛物线上有两点M (x 1,y 1)、N (x 2,y 2),若-2≤x 1<x 2,y 1<y 2,求m 的取值范围;(3)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线上有两点M (x 1,y 1)、N (x 2,y 2),若x 1<x 2≤-2,比较y 1与y 2的大小;(4)当抛物线与线段AB 有公共点时,直接写出m 的取值范围.第4题图 答案1. 解:(1)由⎩⎨⎧y =12x +12y =-x +m -1, 解得⎩⎪⎨⎪⎧x =2m -33y =m 3;即顶点M 坐标为(2m -33,m3);(2)∵m =6,∴二次函数图象的顶点为(3,2), ∴抛物线为y =(x -3)2+2, ∴函数y 有最小值为2,∵当x 取值为t -1≤x ≤t +3时,二次函数y 最小值=2, ∴t -1≤3,t +3≥3, 解得0≤t ≤4;(3)平移后的抛物线为y =(x -3)2+2,其顶点坐标为(3,2),平移前的抛物线为y =x 2+px +q ,其顶点坐标为(-p 2,4q -p 24)由题意可知:将(-p 2,4q -p 24)向右平移1个单位,再向下平移2个单位后与(3,2)重合,∴⎩⎪⎨⎪⎧-p2+1=34q -p 24-2=2,解得⎩⎨⎧p =-4q =8,故p 、q 的值分别为-4,8. 2. 解:(1)∵抛物线y =x 2-2bx +c ∴a =1,∵抛物线的顶点坐标为 (2,-3),∴y=(x-2)2-3,∵y=(x-2)2-3=x2-4x+1,∴b=2,c=1;(2)由y=1得x2-2bx+c=1,∴x2-2bx+c-1=0,∵b+c=0,∴c=-b,∵Δ=4b2-4(c-1)=4b2+4b+4=(2b+1)2+3>0,∴存在两个实数,使得相应的y=1;(3)由c=b+2,则抛物线可化为y=x2-2bx+b+2,其对称轴为x=b,①当x=b≤-2时,则有抛物线在x=-2时取最小值为-3,此时-3=(-2)2-2×(-2)b+b+2,解得b=-95,不合题意;②当x=b≥2时,则有抛物线在x=2时取最小值为-3,此时-3=22-2×2b+b+2,解得b=3,符合题意.③当-2<b<2时,则4(b+2)-4b24=-3,化简得:b2-b-5=0,解得:b 1=1+212(不合题意,舍去),b2=1-212.综上:b=3或1-212.3. 解:(1)抛物线与x 轴有交点,则一元二次方程x 2-(m +1)x +12(m 2+1)=0,Δ=(m +1)2-2(m 2+1)=-m 2+2m -1=-(m -1)2,∵方程有实数根, ∴-(m -1)2≥0, ∴m =1;(2)由(1)可知y =x 2-2x +1=(x -1)2, 图象如解图所示:第3题解图平移后的解析式为y =-(x +2)2+2=-x 2-4x -2. (3)由⎩⎨⎧y =2x +n y =-x 2-4x -2消去y 得到x 2+6x +n +2=0, 由题意Δ≥0, ∴36-4n -8≥0, ∴n ≤7, ∵n ≥m ,m =1, ∴1≤n ≤7,令y ′=n 2-4n =(n -2)2-4,∴n =2时,y ′的值最小,最小值为-4,n=7时,y′的值最大,最大值为21,∴n2-4n的最大值为21,最小值为-4.4. 解: (1)∵抛物线经过点C(-1,-2),∴-2=1+2m+m2-2,∴m=-1,∴抛物线的表达式是y=x2+2x-1;(2)抛物线的对称轴为直线x=m,当x≥m时,y随x的增大而增大;点M,N均在直线x=-2的右侧,∴直线x=-2必须在直线x=m右侧或与之重合.∴m≤-2.(3)当x=-2时,y P=4+4m+m2-2=(m+2)2-2. ∴y P的最小值为-2,此时m=-2,∴当x<-2时,y随x的增大而减小,∵x1<x2≤-2,∴y1>y2;(4)∵y=(x-m)2-2,∴抛物线的顶点在直线y=-2上.当x=0时,y=m2-2.当x=2时,y=m2-4m+2.∵抛物线与线段AB有交点,∴⎩⎨⎧m 2-2≤2m 2-4m +2≥2 或⎩⎨⎧m 2-2≥2m 2-4m +2≤0或⎩⎨⎧m 2-2≥0m 2-4m +2≥20<m <2, 解得:-2≤m ≤0或2≤m ≤4.。

2018中考数学真题复习 二次函数中考真题大题系列加详解(PDF版)

2018中考数学真题复习 二次函数中考真题大题系列加详解(PDF版)

二次函数中考真题系列1.如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线y=ax2+bx+4 过点B,C 两点,且与x 轴的一个交点为D(﹣2,0),点P 是线段CB 上的动点,设CP=t(0<t<10).(1)请直接写出B、C 两点的坐标及抛物线的解析式;(2)过点P 作PE⊥BC,交抛物线于点E,连接BE,当t 为何值时,∠PBE 和Rt △OCD 中的一个角相等??(3)点Q 是x 轴上的动点,过点P 作PM∥BQ,交CQ 于点M,作PN∥CQ,交BQ 于点N,当四边形PMQN 为正方形时,求t 的值为.2.如图①,抛物线y=ax2+bx+3(a≠0)与x 轴交于点A(﹣1,0),B(3,0),与y 轴交于点C,连接BC.(1)求抛物线的表达式;(2)抛物线上是否存在点M,使得△MBC 的面积与△OBC 的面积相等,若存在,请直接写出点M 的坐标;若不存在,请说明理由;(3)点D(2,m)在第一象限的抛物线上,连接BD.在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P 的坐标;如果不存在,请说明理由.3.抛物线y=﹣x+3 与x 轴交于A、B 两点,与y 轴交于点C,连接BC.(1)如图1,求直线BC 的表达式;(2)如图1,点P 是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB 面积最大时,一动点Q 从点P 从出发,沿适当路径运动到y 轴上的某个点G 再沿适当路径运动到x 轴上的某个点H 处,最后到达线段BC 的中点F 处停止.求当△PCB 面积最大时,点P 的坐标及点Q 在整个运动过程中经过的最短路径的长;(3)如图2,在(2)的条件下,当△PCB 面积最大时,把抛物线y=﹣x+3 向右平移使它的图象经过点P,得到新抛物线y',在新抛物线y'上是否存在点E,使△ECB 的面积等于△PCB 的面积.若存在,请求出点E 的坐标;若不存在,请说明理由.4.如图,直线l:y=﹣x+1 与x 轴、y 轴分别交于点B、C,经过B、C 两点的抛物线y=x2+bx+c 与x 轴的另一个交点为A.(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD∥x 轴交l 于点D,PE∥y 轴交l 于点E,求PD+PE 的最大值;(3)设F 为直线l 上的点,以A、B、P、F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.。

浙江省2018年中考数学复习函数第15课时二次函数综合题含近9年中考真题试题

浙江省2018年中考数学复习函数第15课时二次函数综合题含近9年中考真题试题

第一部分 考点研究第三单元 函数 第15课时 二次函数综合题 浙江近9年中考真题精选(2009-2017)命题点 1 与一次函数结合(杭州必考)1.(2013杭州20题10分)已知抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A 、B (点A 、B 在原点O 两侧),与y 轴相交于点C ,且点A 、C 在一次函数y 2=43x +n 的图象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围.2.(2014杭州23题12分)复习课中,教师给出关于x 的函数y =2kx 2-(4k +1)x -k +1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图象经过(1,0)点; ②函数图象与坐标轴总有三个不同的交点;③当x >1时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数. 教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.3.(2016杭州22题12分)已知函数y 1=ax 2+bx ,y 2=ax +b (ab ≠0).在同一平面直角坐标系中.(1)若函数y 1的图象过点(-1,0),函数y 2的图象过点(1,2),求a ,b 的值; (2)若函数y 2的图象经过y 1的图象的顶点.①求证:2a +b =0;②当1<x <32时,比较y 1与y 2的大小.4.(2017杭州22题12分)在平面直角坐标系中,设二次函数y 1=(x +a )(x -a -1),其中a ≠0.(1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式;(2)若一次函数y 2=ax +b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )在函数y 1的图象上.若m <n ,求x 0的取值范围.命题点 2 与几何图形结合类型一 与线段有关的综合题(温州2012.24)5.(2012温州24题14分)如图,经过原点的抛物线y =-x 2+2mx (m >0)与x 轴的另一个交点为A .过点P (1,m )作直线PM ⊥x 轴于点M ,交抛物线于点B .记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连接CB ,CP . (1)当m =3时,求点A 的坐标及BC 的长; (2)当m >1时,连接CA ,问m 为何值时CA ⊥CP ?(3)过点P 作PE ⊥P C 且PE =PC ,问是否存在m ,使得点E 落在坐标轴上?若存在,求出所有满足要求的m 的值,并求出相对应的点E 坐标;若不存在,请说明理由.第5题图类型二 与角度有关的综合题(绍兴2考)6.(2013绍兴24题14分)抛物线y =(x -3)(x +1)与x 轴交于A ,B 两点(点A 在点B 左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标;(2)连接B D,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标;②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.类型三与面积有关的综合题(温州2考)7.(2016温州23题10分)如图,抛物线y=x2-mx-3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长;(2)当m=3时,判断点D是否落在抛物线上,并说明理由;(3)作AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连接AE,交OB于点M.若△AMF与△BGF的面积相等,则m的值是________.第7题图类型四与三角形相似有关的综合题8.(2017宁波25题12分)如图,抛物线y =14x 2+14x +c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连接AB ,点C (6,152)在抛物线上,直线AC 与y 轴交于点D .(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连接PQ 与直线AC 交于点M ,连接MO 并延长交AB 于点N ,若M 为PQ 的中点. ①求证:△APM ∽△AON ;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).第8题图答案1.解:∵点C 在一次函数y 2=43x +n 的图象上,线段OC 长为8,∴n =±8;(2分)①当n =8时一次函数为y 2=43x +8,y =0时,x =-6,求得点A 的坐标为A (-6,0),第1题解图①∵抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A ,B (点A ,B 在原点O 两侧),与y 轴相交于点C ,且线段AB 长为16, ∴这时抛物线开口向下,B (10,0),如解图①所示,抛物线的对称轴是x =2,由图象可知:当y 1随着x 的增大而减小时,自变量x 的取值范围是x≥2;(5分)②当n =-8时一次函数为y 2=43x -8,y =0时,x =6,求得点A 的坐标为A (6,0),∵抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A ,B (点A ,B 在原点O 两侧),与y 轴相交于点C ,且线段AB 长为16, ∴这时抛物线开口向上,B (-10,0),如解图②所示,抛物线的对称轴是x =-2,由图象可知:当y 1随着x 的增大而减小时,自变量x 的取值范围是x ≤-2;(8分)第1题解图②综上所述,当y 1随着x 的增大而减小时,自变量x 的取值范围是x ≥2或x ≤-2.(10分) 2.解:①是真命题;②是假命题;③是假命题;④是真命题.(2分) 理由如下:①当k =0时,原函数变形为y =-x +1,当x =1时,y =0,即存在函数y =-x +1,其图象过(1,0)点,故是真命题;②当k =0时,原函数变形为y =-x +1,图象为直线且过第一、二、四象限,与坐标轴只有两个不同的交点,与总有三个不同交点矛盾,故是假命题;(5分)③由题可知当k =1时,函数解析式为y =2x 2-5x ,又x =-b 2a =54>1时,由图象可知当x >1时,y 随x 先减小再增大,故是假命题;(8分) ④当k ≠0时,y =4ac -b 24a =-24k 2+18k,当k >0时,函数图象开口向上,y 有最小值,最小值为负数;当k <0时,函数图象开口向下,y 有最大值,最大值为正数,故是真命题.(12分)3.(1)解:由题意,得⎩⎪⎨⎪⎧a -b =0a +b =2,解得⎩⎪⎨⎪⎧a =1b =1,∴a =1,b =1;(3分)(2)①证明:∵函数y 1的图象的顶点坐标为(-b 2a ,-b24a),∴a (-b 2a )+b =-b 24a ,即b =-b22a ,∵ab ≠0,∴-b =2a , 即证2a +b =0;(7分)②解:∵b =-2a ,∴y 1=ax (x -2),y 2=a (x -2), ∴y 1-y 2=a(x -2)(x -1), ∵1<x <32,∴x -2<0,x -1>0,∴(x -2)(x -1)<0,∴当a >0时,a (x -2)(x -1)<0,即y 1<y 2, 当a <0时,a (x -2)(x -1)>0,即y 1>y 2.(12分)4.解:(1)∵函数y 1=(x +a)(x -a -1)图象经过点(1,-2),∴把x =1,y =-2代入y 1=(x +a)(x -a -1)得,-2=(1+a )(-a ),(2分) 化简得,a 2+a -2=0,解得,a 1=-2,a 2=1, ∴y 1=x 2-x -2;(4分)(2)函数y 1=(x +a )(x -a -1)图象在x 轴的交点为(-a ,0),(a +1,0), ①当函数y 2=ax +b 的图象经过点(-a ,0)时, 把x =-a ,y =0代入y 2=ax +b 中, 得a 2=b ;(6分)②当函数y 2=ax +b 的图象经过点(a +1,0)时, 把x =a +1,y =0代入y 2=ax +b 中, 得a 2+a =-b ;(8分)(3)∵抛物线y 1=(x +a )(x -a -1)的对称轴是直线x =-a +a +12=12,m <n , ∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大, ∵m <n ,∴点Q 离对称轴x =12的距离比点P 离对称轴x =12的距离大,(10分)∴|x 0-12|<1-12,∴0<x 0<1.(12分)5.解:(1)当m =3时,y =-x 2+6x , 令y =0,得-x 2+6x =0,∴x 1=0,x 2=6, ∴A (6,0). 当x =1时,y =5, ∴B (1,5).∵抛物线y =-x 2+6x 的对称轴为直线x =3, 又∵B ,C 关于对称轴对称, ∴BC =4;(3分)(2)过点C 作CH ⊥x 轴于点H (如解图①),第5题解图①由已知得∠ACP =∠BCH =90°, ∴∠ACH =∠PCB , 又∵∠AHC =∠PBC =90°, ∴△ACH ∽△PCB ,∴AH CH =PB BC.∵抛物线y =-x 2+2mx 的对称轴为直线x =m ,其中m >1, 又∵B ,C 关于对称轴对称, ∴BC =2(m -1),∵B (1,2m -1),P (1,m ), ∴BP =m -1,又∵A (2m ,0),C(2m -1,2m -1), ∴H (2m -1,0),∵AH =1,CH =2m -1, ∴12m -1=m -12(m -1), ∴m =32;(7分)(3)∵B ,C 不重合,∴m ≠1.(Ⅰ)当m >1时,BC =2(m -1),PM =m ,BP =m -1.(ⅰ)若点E 在x 轴上(如解图①), ∵∠CPE =90°,∴∠MPE +∠BPC =∠MPE +∠MEP =90°, ∴∠BPC =∠MEP .又∵∠C B P =∠PME =90°,PC =EP , ∴△BPC ≌△MEP , ∴BC =PM , ∴2(m -1)=m ,∴m =2,此时点E 的坐标是(2,0); (ⅱ)若点E 在y 轴上(如解图②),第5题解图②过点P 作PN ⊥y 轴于点N , 易证△BPC ≌△NPE , ∴BP =NP =OM =1,∴m -1=1, ∴m =2,此时点E 的坐标是(0,4);(11分)(Ⅱ)当0<m <1时,BC =2(1-m ),PM =m ,BP =1-m , (ⅰ)若点E 在x 轴上(如解图③),第5题解图③易证△BPC ≌△MEP , ∴BC =PM , ∴2(1-m )=m ,∴m =23,此时点E 的坐标是(43,0);(12分)(ⅱ)若点E 在y 轴上(如解图④),第5题解图④过点P 作PN ⊥y 轴上点N ,易证△BPC ≌△NPE ,∴BP =NP =OM =1, ∴1-m =1, ∴m =0(舍去).综上所述,当m =2时,点E 的坐标是(2,0)或(0,4), 当m =23时,点E 的坐标是(43,0).(14分)6.解:(1)∵抛物线y=(x-3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x-3)(x+1)=0,解得x=3或-1,∴点B的坐标为(3,0).∵y=(x-3)(x+1)=x2-2x-3=(x-1)2-4,∴顶点D的坐标为(1,-4);(4分)(2)①∵抛物线y=(x-3)(x+1)=x2-2x-3与y轴交于点C,∴C点坐标为(0,-3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,如解图①所示,则H点坐标为(1,-3),第6题解图①∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=2,CB=32,BD=25,∴△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴OC OQ =CD CB =13,∴OQ =3OC =9,即Q (-9,0).∴直线CQ 的解析式为y =-13x -3,直线BD 的解析式为y =2x -6,由方程组⎩⎪⎨⎪⎧y =-13x -3y =2x -6,解得⎩⎪⎨⎪⎧x =97y =-247,∴点P 的坐标为(97,-247);(9分)②(Ⅰ)当点M 在对称轴右侧时,若点N 在射线CD 上,如解图②所示,延长MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G.第6题解图②∵∠CMN =∠BDE ,∠CNM =∠BED =90°,∴△MCN ∽△DBE ,∴CN MN =BE DE =12,∵MN =2CN ,设CN =a ,则MN =2a ,∵∠CDE =∠DCF =45°,∴△CNF,△MGF 均为等腰直角三角形,∴NF =CN =a ,CF =2a ,∴MF =MN +NF =3a ,∴MG =FG =322a ,∴CG =FG -FC =22a ,∴M (322a ,-3+22a ), 代入抛物线y =(x -3)(x +1),解得a =729,∴M (73,-209),若点N 在射线DC 上,如解图③所示,MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G .第6题解图③∵∠CMN =∠BDE ,∠CN M =∠BED =90°,∴△MCN ∽△DBE ,∴CNMN =BEDE =12,∴MN =2CN ,设CN =a ,则MN =2a .∵∠CDE =45°,∴△CNF ,△MGF 均为等腰直角三角形,∴NF =CN =a ,CF =2a ,∴MF =MN -NF =a ,∴MG =FG =22a ,∴CG =FG +FC =322a ,∴M (22a ,-3+322a ),代入抛物线y =(x -3)(x +1),解得a =52,∴M (5,12);(Ⅱ)当点M 在对称轴左侧时,∵∠CMN =∠BDE <45°,∴∠MCN >45°,而抛物线左侧任意一点K ,都有∠KCN <45°,∴点M 不存在. 综上可知,点M 坐标为(73,-209)或(5,12).(14分) 7.解:(1)∵抛物线的对称轴是x =m2,∴AC =m ,∴BE =2AC =2m ;(3分)(2)当m = 3 时,点D 落在抛物线上,理由如下:∵m =3,∴AC =3,BE =23,y =x 2-3x -3,把x =23代入y =x 2-3x -3,得y =(23)2-3³23-3=3,∴OE =3=OC ,∵∠DEO =∠ACO =90°,∠DOE =∠AOC ,∴△OED ≌△OCA ,∴DE =AC =3,∴D (-3,3),∴把x =-3代入y =x 2-3x -3,得y =(-3)2-3³(-3)-3=3,∴点D 落在抛物线上;(7分)(3)①由(1)得BE =2m ,则点B 的横坐标为2m ,如解图①,当x =2m 时,y =2m 2-3,则点B 的纵坐标为2m 2-3,∴OE =2m 2-3.第7题解图①∵AG ∥y 轴,∴EG =AC =12BE , ∴FG =12OE , ∵S △DOE =S △BGF ,即12DE ²OE =12BG ²FG ,∴DE =12BG =12AC .∵∠DOE =∠AOC ,∴tan∠DOE =tan∠AOC ,∵∠DEO =∠ACO =90°,∴DE OE =AC OC ,∴OE =12OC =32,∴2m 2-3=32,∴m =±32,又∵m >0,∴m =32;(8分) ②322.(10分)【解法提示】由①知B (2m ,2m 2-3),E(0,2m 2-3),A(m ,-3), ∵G 是BE 的中点,∴GF =m 2-32,则AF =m 2+32,易得直线BO 的解析式为y =2m 2-32m x ,设直线AE 的解析式为y =k 1x +b ,则⎩⎪⎨⎪⎧k 1m +b 1=-3b 1=2m2-3,解得⎩⎪⎨⎪⎧k 1=-2mb 1=2m 2-3,∴直线AE 的解析式为y =-2mx +2m 2-3.联立得⎩⎪⎨⎪⎧y =-2mx +2m 2-3y =2m 2-32m x,解得x =(2m 2-3)²2m6m -3,∴点M 的横坐标为(2m 2-3)²2m6m 2-3.如解图②,过点M 作MN ⊥AG 于点N ,第7题解图②则MN =m -(2m 2-3)²2m6m 2-3=2m 3+3m6m 2-3,由S △BGF =S △AMF 得12MN ²AF =12GB ²GF ,即2m 3+3m 6m 2-3²(m 2+32)=m ²(m 2-32),解得m =322,或m =0(舍去),或m =-322(舍去).8.解:(1)把点C (6,152)代入y =14x 2+14x +c ,得152=9+32+c ,解得c =-3,(1分)∴y =14x 2+14x -3,当y =0时,14x 2+14x -3=0,解得x 1=-4,x 2=3,∴A (-4,0),(2分)设直线AC 的函数表达式为y =kx +b (k ≠0),把A (-4,0),C (6,152)代入,得⎩⎪⎨⎪⎧0=-4k +b 152=6k +b ,解得⎩⎪⎨⎪⎧k =34b =3,∴直线AC 的函数表达式为y =34x +3;(4分)(2)①∵在Rt △AOB 中,tan∠OAB =OB OA =34.在Rt △AOD 中,tan∠OAD =OD OA =34,∴∠OAB =∠OAD ,(6分)∵在Rt△PO Q 中,M 为PQ 中点,∴OM =MP ,∴∠MOP =∠MPO ,∵∠MOP=∠AON,∴∠APM =∠AON ,∴△APM ∽△AON ;(8分)②如解图,过点M 作ME ⊥x 轴于点E .第8题解图 又∵OM =MP ,∴OE =EP ,∵点M 横坐标为m ,∴AE =m +4,AP =2m +4,(9分) ∵tan∠OAD =34,∴cos∠EAM =cos∠OAD =45,∴AM =54AE =5(m +4)4,(10分)∵△APM ∽△AON ,∴AM AN =AP AO ,(11分)∴AN =AM²AO AP =5m +202m +4.(12分)。

中考数学复习第三单元函数第15课时二次函数的综合应用

中考数学复习第三单元函数第15课时二次函数的综合应用

的形状为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的
高度为2.4米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的
高度为
米.
图15-7
[答案] 1.95 [解析]如图,以点B为原点,建立直角坐标系. 根据题意,点A(0,1.6),点C(0.8,2.4),则设抛物线解析式为y=a(x-0.8)2+2.4. 将点A的坐标代入上式,得1.6=a(0-0.8)2+2.4,解得a=-1.25. ∴该抛物线的解析式为y=-1.25(x-0.8)2+2.4. ∵点D的横坐标为1.4, ∴y=-1.25×(1.4-0.8)2+2.4=1.95. 故灯罩顶端D距地面的高度为1.95米.
关系式是y=-x2+3x+4.请问:若不计其他因素,
水池的半径至少要
米,
才能使喷出的水流不至于落在池外.
图15-5
[答案]4 [解析]在y=-x2+3x+4中, 当y=0时,-x2+3x+4=0, ∴x1=4,x2=-1, 又∵x>0, ∴x=4, 即水池的半径至少要4米,才能使喷出的水流不至于落在池外.
2
3.[2018·绵阳]图15-4是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下
降2 m,水面宽度增加
m.
图15-4
[答案] (4 2-4)
[解析]如图所示,建立平面直角坐标系,横轴 x 通过 AB,纵轴 y 通过 AB 中点 O 且通过抛物线 顶点 C,O 为原点.则抛物线以 y 轴为对称轴,A(-2,0),B(2,0),C(0,2), 通过以上条件可设抛物线解析式为 y=ax2+2,代入 A 点坐标(-2,0),解得 a=-0.5, 所以抛物线解析式为 y=-0.5x2+2, 当水面下降 2 m 时,水面的宽度即为直线 y=-2 与抛物线相交的两点之间的距离, 把 y=-2 代入抛物线解析式得出:-2=-0.5x2+2, 解得:x=±2 2,故水面此时的宽度为 4 2 m, 比原先增加了(4 2-4)m.故答案为(4 2-4).

2018年浙江省中考《第15讲:二次函数的图象与性质》总复习讲解

2018年浙江省中考《第15讲:二次函数的图象与性质》总复习讲解

第15讲二次函数的图象与性质1.二次函数的概念、图象和性质2.二次函数的图象与字母系数的关系3.确定二次函数的解析式4.二次函数与一元二次方程以及不等式之间的关系5.二次函数图象常见的变换1.(2015·台州)设二次函数y=(x-3)2-4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(-3,0) D.(0,-4)2.(2017·金华)对于二次函数y=-(x-1)2+2的图象与性质,下列说法正确的是() A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=-1,最小值是2D.对称轴是直线x=-1,最大值是23.(2017·宁波)抛物线y=x2-2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2016·舟山)把抛物线y=x2先向右平移2个单位,再向上平移3个单位,平移后抛物线的表达式是____________________.5.(2015·甘孜州)若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x +h)2的图象,则h=____________________.【问题】如图是y=ax2+bx+c(a≠0)的图象,且点A(-1,0),B(3,0).(1)你能从图象中想到哪些二次函数性质;(2)若点C为(0,-3),你又能得到哪些结论.【归纳】通过开放式问题,归纳、疏理二次函数的图象与性质.类型一二次函数的解析式例1(1)已知抛物线的顶点坐标为(-1,-8),且过点(0,-6),则该抛物线的表达式为________;(2)已知二次函数y=ax2+bx+c的图象经过A(-1,-1)、B(0,2)、C(1,3);则二次函数的解析式为________;(3)已知抛物线过点A(2,0),B(-1,0),与y轴交于点C,且OC=2.则这条抛物线的解析式为________.【解后感悟】解题关键是选择合适的解析式:当已知抛物线上三点求二次函数的关系式时,一般采用一般式y=ax2+bx+c(a≠0);当已知抛物线顶点坐标(或对称轴及最大或最小值)求关系式时,一般采用顶点式y=a(x-h)2+k;当已知抛物线与x轴的交点坐标求二次函数的关系式时,一般采用交点式y=a(x-x1)(x-x2).1.(1)(2017·杭州模拟)如图,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是____________________.(2)(2017·长春模拟)已知二次函数的图象与x轴的两个交点A,B关于直线x=-1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为____________________.类型二二次函数的图象、性质例2(1)对于抛物线y=-(x+1)2+4,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(-1,4);④x≥1时,y随x的增大而减小;⑤当x=-1时,y有最大值是4;⑥当y≥0时,-3≤x≤1;⑦点A(-2,y1)、B(1,y2)在抛物线上,则y1>y2.其中正确结论是______________;(2)如图是二次函数y=ax2+bx+c的图象,下列结论:①-2≤x≤1,二次函数y=ax2+bx+c的最大值为4,最小值为0;②使y≤3成立的x 的取值范围是x≥0;③一元二次方程ax2+bx+c=0的两根为x1=-3,x2=1;④一元二次方程ax2+bx+c-3=0的两根为x1=-2,x2=0;⑤当二次函数的值大于一次函数y=-x +3的值时,x取值范围是-1<x<0.其中正确结论是______________.【解后感悟】解题关键是正确把握解析式的特点、图象的特点、二次函数的性质,注意数形结合.2.(1)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0;②当-1≤x≤3时,y<0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④9a+3b+c =0;⑤4a-2b+c>0.其中正确的是____________________.(2)(2015·杭州)设函数y=(x-1)[(k-1)x+(k-3)](k是常数).①当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k 取0时函数的图象;②根据图象,写出你发现的一条结论;③将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.类型三二次函数的图象变换例3已知抛物线y=2(x-4)2-1.(1)将该抛物线先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为________;(2)将该抛物线关于x轴作轴对称变换,再将所得的抛物线关于y轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为________.(3)将该抛物线绕它的顶点旋转180°,所得抛物线的解析式是________.【解后感悟】①平移的规律:左加右减,上加下减;②对称的规律:关于x轴对称的两点横坐标相同,纵坐标互为相反数;关于y轴对称的两点纵坐标相同,横坐标互为相反数;关于原点对称的两点横、纵坐标均互为相反数;③旋转的规律:旋转后的抛物线开口相反,顶点关于旋转点对称.3.(1)(2017·绍兴)矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为( )A .y =x 2+8x +14B .y =x 2-8x +14C .y =x 2+4x +3D .y =x 2-4x +3(2)(2017·盐城)如图,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′、B′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12(x -2)2-2B .y =12(x -2)2+7C .y =12(x -2)2-5D .y =12(x -2)2+4类型四 二次函数的综合问题例4 如图,抛物线y =-x 2+2x +c 与x 轴交于A ,B 两点,它们的对称轴与x 轴交于点N ,过顶点M 作ME ⊥y 轴于点E ,连结BE 交MN 于点F. 已知点A 的坐标为(-1,0).(1)求该抛物线的解析式及顶点M 的坐标; (2)求△EMF 与△BNF 的面积之比.【解后感悟】抛物线与x 轴的交点问题;二次函数的性质;待定系数法的应用;曲线上点的坐标与方程的关系;相似三角形的判定和性质.4.(1)(2016·长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=-x2+6x上一点,且在x轴上方,则△BCD面积的最大值为____________________.(2)(2015·湖州)如图,已知抛物线C1∶y=a1x2+b1x+c1和C2∶y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一个交点分别为M、N,如果点A与点B,点M与点N都关于原点O成中心对称,则抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.类型五二次函数的应用例5(2017·杭州模拟)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是________元;②月销量是________件;(直接填写结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?【解后感悟】此题是二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.5.(2017·重庆模拟)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两段抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图1所示(图2是备用图),如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如果炒菜锅里的水位高度是1dm,求此时水面的直径;(3)如果将一个底面直径为3dm,高度为3dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.【探索研究题】如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=________.【方法与对策】本题是数形规律探究能力.图形类规律探索题,通常先把图形型问题转化为数字型问题,再从数字的特点来寻找规律,解题关键从操作中前面几个点的坐标位置变化,猜想、归纳出一般变化规律.该题型是图形变换和规律的探究题,是中考命题方向.【配方漏括号】用配方法求二次函数y=512x2-53x+54图象的顶点坐标及对称轴.参考答案第15讲二次函数的图象与性质【考点概要】1.y=ax2+bx+c上下减小增大增大减小 2.上下小y左右原点 正 负 唯一 两个 没有 > < 3.y =ax 2+bx +c y =a (x -m )2+k y =a (x -x 1)(x -x 2) 4.x 横 > <【考题体验】1.B 2.B 3.A 4.y =(x -2)2+3 5.2【知识引擎】【解析】(1)对称轴是直线x =1等;(2)当x =1时,y 的最小值为-4等.【例题精析】例1 (1)y =2(x +1)2-8;(2)y =-x 2+2x +2;(3)y =x 2-x -2或y =-x 2+x +2 例2(1)①③④⑤⑥⑦;(2)①③④⑤ 例3 (1)y =2x 2+1;(2)y =-2(x +4)2+1;(3)y =-2(x -4)2-1 例4 (1)∵点A 在抛物线y =-x 2+2x +c 上,∴-(-1)2+2·(-1)+c =0,解得:c =3,∴抛物线的解析式为y =-x 2+2x +3.∵y =-x 2+2x +3=-(x -1)2+4,∴抛物线的顶点M(1,4);(2)∵A(-1,0),抛物线的对称轴为直线x =1,∴点B(3,0).∴EM =1,BN =2.∵EM ∥BN ,∴△EMF ∽△BNF.∴S △EMF S △BNF =⎝⎛⎭⎫EM NB 2=⎝⎛⎭⎫122=14. 例5 (1)①(x -60);②(-2x +400) (2)依题意可得:y =(x -60)×(-2x +400)=-2x 2+520x -24000=-2(x -130)2+9800,当x =130时,y 有最大值9800.所以售价为每件130元时,当月的利润最大为9800元.【变式拓展】1.(1)y =-x 2+2x +3 (2)y =29x 2+49x -1692.(1)①④⑤ (2)①根据题意可得函数图象为:②图象都经过点(1,0)和点(-1,4);图象总交x 轴于点(1,0);k 取0和2时的函数图象关于点(0,2)成中心对称;③平移后的函数y 3的表达式为:y 3=(x +3)2-2,∴当x =-3时,函数y 3的最小值为-2.3. (1)A (2)D4. (1)15 (2)y =-3x 2+23x y =3x 2+23x5.(1)由于抛物线C 1、C 2都过点A(-3,0)、B(3,0),可设它们的解析式为:y =a(x -3)(x +3);抛物线C 1还经过D(0,-3),则有:-3=a(0-3)(0+3),解得:a =13,即:抛物线C 1:y =13x 2-3(-3≤x ≤3);抛物线C 2还经过C(0,1),则有:1=a(0-3)(0+3),解得:a =-19,即:抛物线C 2:y =-19x 2+1(-3≤x ≤3).(2)当炒菜锅里的水位高度为1dm 时,y =-2,即13x 2-3=-2,解得:x =±3,∴此时水面的直径为23dm . (3)锅盖能正常盖上,理由如下:当x =32时,抛物线C 1:y =13×⎝⎛⎭⎫322-3=-94,抛物线C 2:y =-19×⎝⎛⎭⎫322+1=34,而34-⎝⎛⎭⎫-94=3,∴锅盖能正常盖上. 【热点题型】【分析与解】C 1:y =-x(x -3)(0≤x ≤3)C 2:y =(x -3)(x -6)(3≤x ≤6)C 3:y =-(x -6)(x -9)(6≤x ≤9)C 4:y =(x -9)(x -12)(9≤x ≤12)…C 13:y =-(x -36)(x -39)(36≤x ≤39),当x =37时,y =2,所以,m =2.【错误警示】y =512x 2-53x +54=512(x 2-4x +3)=512[(x -2)2-1]=512(x -2)2-512,∴该函数图象的顶点坐标是(2,-512),对称轴是直线x =2.。

中考数学二次函数综合题(含答案)

中考数学二次函数综合题(含答案)

热点专题8 二次函数综合题型《课程标准》对二次函数这一知识点的学习要求比较高,它最能体现初中代数的综合性和能力性,因此,二次函数在近几年中考试卷中已形成必不可少的题型,2019年中考中对二次函数的考查角度有所调整,将二次函数的性质和特征作为试题主体来考查,促使我们在复习中把二次函数作为最核心的内容之一来学习,预计仍会以二次函数的性质和特征作为试题主体来考查,在此过程中会以周长、面积、相似、等腰三角形,特殊四边形以及新定义问题为载体进行命题.考向1 二次函数之周长与最值问题1.(2019·常德中考改编)如图11,已知二次函数图象的顶点坐标为A (1,4),与坐标轴交于B 、C 、D 三点,且B 点的坐标为(-1,0). (1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值.解(1)设抛物线的解析式为y=()214a x -+,把B (-1,0)代入解析式得:4a +4=0,解得a =-1,xx yy备用图图11CADB B H N G DAMCOO∴y=-()214x -+=-223x x ++;(2)∵四边形MNHG 为矩形,∴MN ∥x 轴,设MG=NH=n ,把y=n 代入y=-223x x ++,即n =-223x x ++, ∴223x x n -+-=0,由根与系数关系得M N x x +=2,M N x x •=n -3, ∵()2M N x x -=()2+M N x x -4M N x x •, ∴()2M N x x -=4-4(n -3)=16-4n ,∴设矩形MNHG 周长为C ,则C=2(MN +MG )=2(n )2n ,令t ,则n =4-2t ,∴C=-22t +4t +8=-2()2110t -+, ∵-2<0,∴t=1时,周长有最大值,最大值为10.考向2二次函数之面积问题2.(2019·衡阳)如图,二次函数y=x 2+bx +c 的图象与x 轴交于点A (-1,0)和点B (3,0),与y 轴交于点N ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接CP ,过点P 作CP 的垂线与y 轴交于点E .(1)求该抛物线的函数关系表达式;(2)当点P 在线段OB (点P 不与O 、B 重合)上运动至何处时,线段OE 的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M ,连接MN 、MB ,请问:△MBN 的面积是否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明理由.解:(1)把A (-1,0),B (3,0)代入y=x 2+bx +c ,得01,093,b c b c =-+⎧⎨=++⎩解得2,3.b c =-⎧⎨=-⎩∴该抛物线的函数表达式为y=x 2-2 x -3; (2)∵CP ⊥EB ,∴∠OPE +∠BCP=90°,∵∠OPE +∠OEP=90°,∴∠OEP=∠BPC , ∴tan ∠OEP=tan ∠BPC .∴OP OE =BCPB. 设OE=y ,OP=x ,∴y x =43x-. 整理,得y=-14x 2+x=-14(x -32)2+916. ∴当OP=32时,OE 有最大值,最大值为916,此时点P 在(32,0)处.(3)过点M 作MF ⊥x 轴交BN 于点F ,∵N (0,-3),B (3,0), ∴直线的解析式为y=-3 m.设M (m, m 2-2 m -3),则MF=m 2-3m ,∴△MBN 的面积=12OB·MF=32( m 2-3m) =32( m -32) 2 -278.点M 的坐标为(32,-278)时,△MBN 的面积存在最大值.考向3 二次函数之等腰三角形问题3.(2019·兰州)二次函数22y ax bx =++的图象交x 轴于点(-1,0),B (4,0)两点,交y 轴于点C ,动点M 从点A 出发,以每秒2个单位长度的速度沿AB 方向运动,过点M 作MN ⊥x 轴交直线BC 于点N ,交抛物线于点D ,连接AC ,设运动的时间为t 秒.(1)求二次函数22y ax bx =++的表达式;(2)连接BD ,当t=32时,求△DNB 的面积;(3)在直线MN 上存在一点P ,当△PBC 是以∠BPC 为直角的等腰直角三角形时,求此时点D 的坐标; (4)当t=54时,在直线MN 上存在一点Q ,使得∠AQC+∠OAC=90°,求点Q 的坐标.解:(1)将点A (-1,0),B (4,0)代入y=ax 2+bx+2,∴a=12-,b=32,∴213222y x x =-++;(2)设直线BC 的解析式为:y=kx+b ,将点B (4,0),C (0,2)代入解析式,得:402k bb+=⎧⎨=⎩,解得:122kb⎧=-⎪⎨⎪=⎩,∴BC的直线解析式为122y x=-+,当t=32时,AM=3,∵AB=5,∴MB=2,∴M(2,0),N(2,1),D(2,3),∴S△DNB =S△DMB -S△MNB =12×MB×DM-12×MB×MN=12×2×2=2;(3)∵BM=5-2t,∴M(2t-1,0),设P(2t-1,m),∵PC2=(2t-1)2+(m-2)2,PB2=(2t-5)2+m2,∵PB=PC,∴(2t-1)2+(m-2)2=(2t-5)2+m2,∴m=4t-5,∴P(2t-1,4t-5),∵PC⊥PB,∴47451 2125t tt t--•=---,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2);(4)当t=54时,M(32,0),∴点Q在抛物线对称性x=32上,如图,过点A作AC的垂线,以M为圆心AB为直径构造圆,圆与x=32的交点分别为Q1与Q2,∵AB=5,∴AM=52,∵∠AQ1C+∠OAC=90°,∠OAC+∠MAG=90°,∴∠AQ1C=∠MAG,又∵∠AQ1C=∠CGA=∠MAG,∴Q1(32,52-),∵Q1与Q2关于x轴对称,∴Q2(32,52),∴Q点坐标分别为(32,52-),(32,52).考向4 二次函数之相似三角形问题4.(2019·娄底)如图(14),抛物线2y ax bx c =++与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,且过点D (2,-3).点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当△OBE 与△ABC 相似时,求点Q 的坐标.解:(1)∵抛物线2y ax bx c =++与x 轴交于点A (-1,0),点B (3,0),∴设抛物线的解析式为()()13y a x x =+-. 又∵抛物线过点 D (2,-3), ∴()()21233a +-=-,∴1a =, ∴()()211323y x x x x =⨯+-=--.(2)如图,设PD 与y 轴相交于点F ,OD 与抛物线相交于点G ,设P 坐标为(2,23m m m --), 则直线PD 的解析式为23y mx m =--,它与y 轴的交点坐标为F (0,-2m -3),则OF=2m+3.∴()()()21112323222ODP S OF D P m m m m ∆=⨯-=+-=-++点的横坐标点的横坐标 由于点P 在直线OD 下方,所以322m -<<. ∴当()1122214b m a =-=-=⨯-时,△POD 面积的最大值2211114933242416ODPS m m ∆⎛⎫=-++=-+⨯+= ⎪⎝⎭;(3)①由223y x x =--得抛物线与y 轴的交点C (0,-3),结合A (-1,0)得直线AC 的解析式为33y x =--, ∴当OE ∥AC 时,△OBE 与△ABC 相似; 此时直线OE 的解析式为3y x =-.又∵2233y x x y x ⎧=--⎨=-⎩的解为111232x y ⎧-+=⎪⎪⎨-⎪=⎪⎩,221232x y ⎧-=⎪⎪⎨+⎪=⎪⎩;∴Q的坐标为⎝⎭和⎝⎭. ②如图,作EN ⊥y 轴于N ,由A (-1,0),B (3,0),C (0,-3) 得AB=3-(-1)=4,BO=3,=当BE OB BA BC=即4BE=时 ,△OBE 与△ABC 相似; 此时BE=又∵△OBC ∽△ONE ,∴NB=NE=2,此时E 点坐标为(1,-2),直线OE 的方程为2y x =-.又∵2232y x x y x ⎧=--⎨=-⎩的解为11x y ⎧=⎪⎨=-⎪⎩,22x y ⎧=⎪⎨=⎪⎩;∴Q的坐标为-和(.综上所述,Q 的坐标为13,22⎛-+- ⎝⎭,13,22⎛--+ ⎝⎭,-,(.考向5 二次函数之特殊四边形问题5.(2019•广安)如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线:l y kx n =+与y 轴交于点C ,与抛物线2y x bx c =-++的另一个交点为D ,已知(1,0)A -,(5,6)D -,P 点为抛物线2y x bx c =-++上一动点(不与A 、D 重合). (1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作//PE x 轴交直线l 于点E ,作//PF y 轴交直线l 于点F ,求PE PF +的最大值;(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N 、C ,M 、P 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)将点A 、D 的坐标代入直线表达式得:056k n k n -+=⎧⎨+=-⎩,解得:11k n =-⎧⎨=-⎩,故直线l 的表达式为:1y x =--,将点A 、D 的坐标代入抛物线表达式, 同理可得抛物线的表达式为:234y x x =-++;(2)直线l 的表达式为:1y x =--,则直线l 与x 轴的夹角为45︒, 即:则PE PE =,设点P 坐标为2(,34)x x x -++、则点(,1)F x x --,2222(341)2(2)18PE PF PF x x x x +==-++++=--+, 20-<,故PE PF +有最大值,当2x =时,其最大值为18;(3)5NC =,①当NC 是平行四边形的一条边时,设点P 坐标为2(,34)x x x -++、则点(,1)M x x --, 由题意得:||5M P y y -=,即:2|341|5x x x -++++=,解得:2x =±0或4(舍去0),则点P 坐标为(23--或(2-,3-或(4,5)-;②当NC 是平行四边形的对角线时,则NC 的中点坐标为1(2-,2),设点P 坐标为2(,34)m m m -++、则点(,1)M n n --,N 、C ,M 、P 为顶点的四边形为平行四边形,则NC 的中点即为PM 中点,即:122m n+-=,234122m m n -++--=,解得:0m =或4-(舍去0), 故点(4,3)P -;故点P 的坐标为:(2+3--或(2,3-+或(4,5)-或(4,3)-.考向6 二次函数之角度存在性问题6. (2019·泰安) 若二次函数y=ax 2+bx+c 的图象与x 轴、y 轴分别交于点A(3,0)、B(0,-2),且过点C(2,-2).(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且S △PBA =4,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M,使∠ABO=∠ABM ?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.解:(1)∵抛物线y=ax 2+bx+c 过点(0,-2),∴c=-2,又∵抛物线过点(3,0)(2,-2)∴9320 4222a b a b +-=⎧⎨+-=-⎩,解得2343a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的表达式为224233y x x =--; (2)连接PO,设点P(224,233m m m --);则S △PAB =S △POA +S △AOB -S △POB =2124113(2)32223322m m m ⨯⋅--+⨯⨯-⨯=23m m -,由题意得:m 2-3m=4,∴m=4,或m=-1(舍去),∴224233m m --=103, ∴点P 的坐标为(4,103).(3)设直线AB 的表达式为y=kx+n,∵直线AB 过点A(3,0),B(0,-2),∴3k+n=0,n=-2,解之,得:k=23,n=-2, ∴直线AB 的表达式为:y=23x -2, 设存在点M 满足题意,点M 的坐标为(t,224233t t --). 过点M 作ME ⊥y 轴,垂足为E,作MD ⊥x 轴交于AB 于点D,则D 的坐标为(t,23t -2), MD=2223t t -+,BE=|224+33t t -|. 又MD ∥y 轴,∴∠ABO=∠MDB,又∵∠ABO=∠ABM,∴∠MDB=∠ABM,∴MD=MB,∴MB=2223t t -+. 在Rt △BEM 中,2224+33t t ⎛⎫- ⎪⎝⎭+t 2=22223t t ⎛⎫-+ ⎪⎝⎭,解之,得:t=118, ∴点M 到y 轴的距离为118.考向7 二次函数之新定义问题7.(2019江西省)特例感知:(1)如图1,对于抛物线121+--=x x y ,1222+--=x x y ,1323+--=x x y 下列结论正确的序号是 ;①抛物线1y ,2y ,3y 都经过点C(0,1);②抛物线2y ,3y 的对称轴由抛物线1y的对称轴依次向左平移21个单位得到;③抛物线1y ,2y ,3y 与直线y=1的交点中,相邻两点之间的距离相等.形成概念:(2)把满足12+--=nx x y n (n 为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为-k -1,-k -2,-k -3,…,-k -n(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由;③在②中,直线y=1分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n A C ,11--n n A C ,判断n n A C ,11--n n A C 是否平行?并说明理由.解:(1)对于抛物线121+--=x x y ,1222+--=x x y ,1323+--=x x y 来说,∵抛物线1y ,2y ,3y 都经过点C(0,1),∴①正确;∵抛物线1y ,2y ,3y 的对称轴分别为:21)1(211-=-⨯--=x ,1)1(222-=-⨯--=x ,23)1(233-=-⨯--=x , ∴抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移21个单位得到,∴②正确;∵抛物线1y ,2y ,3y 与直线y=1的另一个交点的横坐标分别为:-1、-2、-3, ∴抛物线1y ,2y ,3y 与直线y=1的交点中,相邻两点之间的距离相等.∴③正确.答案:①②③;(2)①由12+--=nx x y n 可知,顶点坐标为n P (2n -,442+n ), ∴该顶点纵坐标y 与横坐标x 之间的关系式为144)2(44222+=+-=+=x x n y ; ②当横坐标分别为-k -1,-k -2,-k -3,…,-k -n(k 为正整数),对应的纵坐标为:12+--k k ,122+--k k ,132+--k k ,…,12+--nk k ,∴1C 2C 2222)]12()1[()]2()1[(+---+--+-----=k k k k k k 2222)121()21(-+++--+++--=k k k k k k 21k +=,2C 3C 2222)]13()12[()]3()2[(+---+--+-----=k k k k k k 2222)1312()32(-+++--+++--=k k k k k k 21k +=,…, 1-n C n C 2222)}1(]1)1({[)}()]1({[+---+---+------=nk k k n k n k n k 2222]11)1([)1(-+++---++++--=nk k k n k n k n k 21k +=, ∴相邻两点的距离相等,且距离为:21k +.③将y=1代入12+--=nx x y n 可得112=+--nx x ,∴x=-n (0舍去), ∴点1A (-1,1),2A (-2,1),3A (-3,1),…,n A (-n ,1).∵当横坐标分别为-k -1,-k -2,-k -3,…,-k -n(k 为正整数),对应的纵坐标为:12+--k k ,122+--k k ,132+--k k ,…,12+--nk k ,∴点1C (-k -1,12+--k k ),2C (-k -2,122+--k k ),3C (-k -3,132+--k k ),…,n C (-k -n ,12+--nk k ).设n n A C ,11--n n A C 的解析式分别为:y=px+q ,y=mx+n ,则⎩⎨⎧+--=+--=+-1)(12nk k q p n k q np ,⎩⎨⎧+---=+---=+--1)1()]1([1)1(2k n k n m n k n m n , 解得p=k+n ,m=k+n -1,∴p≠m ,∴n n A C ,11--n n A C 不平行.。

(完整版)2018中考二次函数真题

(完整版)2018中考二次函数真题

二次函数参考答案与试题解析一.选择题(共22小题)1.(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3【分析】直接整理原方程,进而解方程得出x的值.【解答】解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选:D.2.(2018•杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).【解答】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.3.(2018•潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或6【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.【解答】解:当h<2时,有﹣(2﹣h)2=﹣1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;当h>5时,有﹣(5﹣h)2=﹣1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.4.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.5.(2018•滨州)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.6.(2018•连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.【解答】解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.7.(2018•成都)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3【分析】根据题目中的函数解析式可以判断各个选项中的结论是否在成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.8.(2018•凉州区)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x 取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.9.(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5) D.(2,﹣5)【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.10.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P 的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.11.(2018•达州)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个 B.2个 C.3个 D.4个【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:①由开口可知:a<0,∴对称轴x=>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①错误;②∵抛物线与x轴交于点A(﹣1,0),对称轴为x=2,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<2,且(,y2)关于直线x=2的对称点的坐标为(,y2),∵,∴y1<y2,故③正确,④∵=2,∴b=﹣4a,∵x=﹣1,y=0,∴a﹣b+c=0,∴c=﹣5a,∵2<c<3,∴2<﹣5a<3,∴﹣<a<﹣,故④正确故选:C.12.(2018•青岛)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数图象一次函数图象经过的象限,即可得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.13.(2018•天津)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.3【分析】①由抛物线过点(﹣1,0),对称轴在y轴右侧,即可得出当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,由该直线与抛物线有两个交点,可得出方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③由当x=1时y>0,可得出a+b>﹣c,由抛物线与y轴交于点(0,3)可得出c=3,进而即可得出a+b>﹣3,由抛物线过点(﹣1,0)可得出a+b=2a+c,结合a<0、c=3可得出a+b<3,综上可得出﹣3<a+b<3,结论③正确.此题得解.【解答】解:①∵抛物线过点(﹣1,0),对称轴在y轴右侧,∴当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,如图所示.∵该直线与抛物线有两个交点,∴方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③∵当x=1时y=a+b+c>0,∴a+b>﹣c.∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,3),∴c=3,∴a+b>﹣3.∵当a=﹣1时,y=0,即a﹣b+c=0,∴b=a+c,∴a+b=2a+c.∵抛物线开口向下,∴a<0,∴a+b<c=3,∴﹣3<a+b<3,结论③正确.故选:C.14.(2018•德州)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B. C.D.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.故选:B.15.(2018•威海)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>0【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.16.(2018•衡阳)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个 B.2个 C.3个 D.4个【分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=﹣2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=﹣3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n﹣1有两个交点可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a<0,所以①正确;∵2≤c≤3,而c=﹣3a,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n﹣1有两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:D.17.(2018•枣庄)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a >0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.18.(2018•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个 B.3个 C.2个 D.1个【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c=c >0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.19.(2018•襄阳)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>2【分析】根据已知抛物线与x轴有交点得出不等式,求出不等式的解集即可.【解答】解:∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,∴△=(﹣1)2﹣4×1×(m﹣1)≥0,解得:m≤5,故选:A.20.(2018•台湾)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a 的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.24【分析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.21.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.22.(2018•安顺)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个 B.2个 C.3个 D.4个【分析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;②由抛物线与x轴有两个交点判断即可;③分别比较当x=﹣2时、x=1时,y的取值,然后解不等式组可得6a+3c<0,即2a+c<0;又因为a<0,所以3a+c<0.故错误;④将x=1代入抛物线解析式得到a+b+c<0,再将x=﹣1代入抛物线解析式得到a﹣b+c>0,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到(a+c)2<b2,【解答】解:①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;③当x=﹣2时,y<0,即4a﹣2b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×2得:6a+3c<0,即2a+c<0又∵a<0,∴a+(2a+c)=3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选:B.。

浙江省2018年中考数学复习 第一部分 考点研究 第三单元 函数 第15课时 二次函数综合题试题

浙江省2018年中考数学复习 第一部分 考点研究 第三单元 函数 第15课时 二次函数综合题试题

第三单元 函 数第15课时 二次函数综合题(建议答题时间:50分钟)命题点1 与一次函数结合1. 当k 分别取-1,2,2时,函数y =2xk 2-2-(k +1)x ,在x ≥2时,y 都随x 的增大而增大吗?请写出你的判断,并说明理由.2. 已知函数y =k (x -2k )(x +2)(k ≠0).(1)|k |=2,请画出符合条件的函数图象;(2)k 的值分别取k 1,k 2时,得到两个函数y 1=k 1(x -2k 1)(x +2),y2=(x -2k 2)(x +2),其中k 1<k 2且k 1+k 2=0,y 2的图象是由y 1的图象经过怎样的变换得到的;(3)在(2)的条件下,请求出当y 1<y 2时,x 的取值范围.3.已知抛物线y =3ax 2+2bx +c ,(1)若a =3k ,b =5k ,c =k +1,试说明此类函数图象具有的性质;(2)若a =13,c =2+b 且抛物线在-2≤x ≤2区间上的最小值是-3,求b 的值;(3)若a +b +c =1,是否存在实数x ,使得相应的y 的值为1,请说明理由. 4. 关于x 的二次函数y 1=kx 2+(2k -1)x -2(k 为常数)和一次函数y 2=x +2. (1)若k =2,求函数y 1的顶点坐标;(2)若函数y 1的图象不经过第一象限,求k 的取值范围; (3)已知函数y 1的图象与x 轴的两个交点间的距离等于3, ①试求此时k 的值;②若y1>y2,试求x的取值范围.命题点2 与几何图形结合5.(2017天津)已知抛物线y=x2+bx-3(b是常数)经过点A(-1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当点P′落在第二象限内,P′A2取得最小值时,求m的值.6. 如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴交于点C,点D(-2,-3)在二次函数的图象上.(1)求二次函数的解析式;(2)二次函数图象的对称轴上有一动点P,求出PA+PD的最小值;第6题图(3)若二次函数图象上有一动点P,使△ABP的面积为6,求P点坐标.7.(2017贵港)如图,抛物线y=a(x-1)(x-3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD 是直角三角形时,求对应抛物线的解析式.第7题图8. 在平面直角坐标系中,抛物线y =ax 2-2ax +a +4(a <0)经过点 A (-1,0),且与x 轴正半轴交于点B ,与y 轴交于点C ,点D 是顶点.(1)填空:a =________;顶点D 的坐标为______;直线BC 的函数表达式为________; (2)直线x =t 与x 轴相交于一点.①当t =3时得到直线BN (如图①),点M 是直线BC 上方抛物线上的一点.若∠COM =∠DBN ,求出此时点M 的坐标;②当1<t <3时(如图②),直线x =t 与抛物线、BD 、BC 及x 轴分别相交于点P 、E 、F 、G ,试证明线段PE 、EF 、FG 总能组成等腰三角形;如果此等腰三角形底角的余弦值为35,求此时t 的值.第8题图9. 如图,已知抛物线y=-12x2+bx+c图象经过A(-1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m-1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②试探究:在点D运动过程中,DE、DF、CF的长度之和是否发生变化?若不变,求出它的值,若变化,试说明变化情况.第9题图10. 如图,已知抛物线y=x2+bx+c与直线y=-x+3相交于坐标轴上的A,B两点,顶点为C.(1)填空:b=________,c=________;(2)将直线AB向下平移h个单位长度,得直线EF.当h为何值时,直线EF与抛物线y =x2+bx+c没有交点?(3)直线x=m与△ABC的边AB,AC分别交于点M,N.当直线x=m把△ABC的面积分为1∶2两部分时,求m的值.第10题图11. (2017凉山州)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OB =8,OC =6.(1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN 存在时,求运动多少秒使△MBN 的面积最大,最大面积是多少?(3)在(2)的条件下,△MBN 面积最大时,在BC 上方的抛物线上是否存在点P ,使△BPC 的面积是△MBN 的面积的9倍?若存在,求点P 的坐标;若不存在,请说明理由.第11题图 答案1.解:k 取-1时,y 随x 的增大而减小;k 取2时,y 随x 的增大而增大;k 取2时,y 随x 的增大而减小.理由如下:把k =-1代入y =2xk 2-2-(k +1)x , 得y =2x -1,即y =2x ,y 是x 的反比例函数,所以在x ≥2时,y 随x 的增大而减小; 把k =2代入y =2xk 2-2-(k +1)x ,得y =2x 2-3x ,y 是x 的二次函数,且开口向上, ∵y =2x 2-3x =2(x -34)2-98,∴对称轴为直线x =34,∴在x ≥2时,y 随x 的增大而增大; 把k =2代入y =2xk 2-2-(k +1)x , 得y =2-(2+1)x ,y 是x 的一次函数, ∵k <0,∴y 随x 的增大而减小. 2.解:(1)∵|k |=2, ∴k =2或-2,∴y =2(x -1)(x +2)=2x 2+2x -4或y =-2(x +1)(x +2)=-2x 2-6x -4, 图象如解图:第2题解图(2)∵k 1<k 2且k 1+k 2=0,k 1≠0,k 2≠0, ∴k 2=-k 1, ∴k 2>0,k 1<0,∴y 2=k 2(x -2k 2)(x +2)=-k 1(x +2k 1)(x +2),顶点坐标为:(-1k 1-1,k 1-2+1k 1),与x 轴交点为:(-2k 1,0),(-2,0),由y 1=k 1(x -2k 1)(x +2)知,顶点坐标为:(1k 1-1,-1k 1-2-k 1),与x 轴交点为:(2k 1,0),(-2,0),∵|k 1|=|k 2|,∴y 2的图象可由y 1的图象变换得到,即y 1向右平移-2k 1(因为k 1<0,-2k 1>0)个单位,再向上平移4个单位后,再沿x 轴翻折(关于x 轴对称)可得y 2图象;(3)当x =0时,y 1=-4,y 2=-4,∵y 1与y 2的交点分别为(-2,0)和(0,-4), ∴当y 1<y 2时,x <-2或x>0.3.解:(1)∵a =3k ,b =5k ,c =k +1,∴抛物线y =3ax 2+2bc +c 可化为y =9kx 2+10kx +k +1=(9x 2+10x +1)k +1, ∴令9x 2+10x +1=0, 解得x 1=-1,x 2=-19,∴图象必过(-1,1),(-19,1),∴对称轴为直线x =10k -2×9k =-59;(2)∵a =13,c =2+b ,∴抛物线y =3ax 2+2bx +c 可化为y =x 2+2bx +2+b ∴对称轴为直线x =-b , 当-b >2时,即b <-2,x =2时y 取到最小值为-3.∴4+4b +2+b =-3,解得b =-95(不符合),当-b <2时,即b >-2,x =2时y 取到最小值为-3.∴4+4b +2+b =-3,解得b =3;当-2<-b <2时即-2<b <2,4ac -b 24a =4(2+b )-4b24=-3,解得b 1=1+212(不符合),b 2=1-212,∴b =3或1-212;(3)∵a +b +c =1, ∴c -1=-a -b ,令y =1,则3ax 2+3bx +c =1. Δ=4b 2-4(3a )(c -1),∴Δ=4b 2+4(3a )(a +b )=9a 2+12ab +4b 2+3a 2=(3a +2b )2+3a 2, ∵a ≠0,∴(3a +2b )2+3a 2>0, ∴Δ>0,∴必存在实数x ,使得相应的y 的值为1.4.解:(1)当k =2时,y 1=2x 2+3x -2=2(x +34)2-258,∴顶点坐标为(-34,-258);(2)∵y 1=k (x +2)(x -1k),∴该抛物线与x 轴的交点为(-2,0)、(1k ,0),与y 轴的交点为(0,-2),而函数y 1的图象不经过第一象限, ∴点(1k,0)必不在x 轴的正半轴上,∴1k<0,即k <0; (3)①∵y 1的图象与x 轴的两个交点间的距离等于3, ∴1k+2=±3, 解得:k 1=1,k 2=-15;②当k =1时,y 1=(x +2)(x -1),y 2=x +2, ∵y 1>y 2,∴(x +2)(x -1)>x +2,即(x +2)(x -2)>0, 解得:x <-2或x >2; 当k =-15时,∵y 1>y 2,∴-15(x +2)(x +5)>x +2,即(x +2)(x +10)<0,解得:-10<x <-2.总上所述,当k =1时,x <-2或x >2,当k =-15时,-10<x <-2.5.解:(1)∵抛物线y =x 2+bx -3经过点A (-1,0), ∴0=1-b -3,解得b =-2, ∴抛物线解析为y =x 2-2x -3, ∵y =x 2-2x -3=(x -1)2-4, ∴抛物线顶点坐标为(1,-4);(2)①由P (m ,t )在抛物线上可得t =m 2-2m -3, ∵点P ′与P 关于原点对称, ∴P ′(-m ,-t ), ∵P ′落在抛物线上,∴-t =(-m )2-2(-m )-3,即t =-m 2-2m +3, ∴m 2-2m +3=-m 2-2m +3,解得m =3或m =-3; ②由题意可知P ′(-m ,-t )在第二象限, ∴-m <0,-t >0,即m >0,t <0, ∵抛物线的顶点坐标为(1,-4), ∴-4≤t <0, ∵P 在抛物线上, ∴t =m 2-2m -3, ∴m 2-2m =t +3,∵A(-1,0),P ′(-m ,-t ),∴P ′A 2=(-m +1)2+(-t )2=m 2-2m +1+t 2=t 2+t +4=(t +12)2+154;∴当t =-12时,P ′A 2有最小值,∴-12=m 2-2m -3,解得m =2-142或m =2+142,∵m >0,∴m =2-142不合题意,舍去,∴m 的值为2+142.6.解:(1)∵二次函数y =x 2+bx +c 的图象经过A (-3,0),D (-2,-3),∴⎩⎪⎨⎪⎧9-3b +c =04-2b +c =-3,解得⎩⎪⎨⎪⎧b =2c =-3, ∴二次函数解析式为y =x 2+2x -3.(2)∵二次函数图象的对称轴为x =-1,D (-2,-3),C (0,-3),∴C 、D 关于直线x =-1对称,如解图,连接AC ,设AC 与对称轴的交点为P , 此时PA +PD =PA +PC =AC =OA 2+OC 2=32+32=3 2. (3)设点P 坐标(m ,m 2+2m -3), 令y =0,即x 2+2x -3=0, 解得x =-3或1, ∴点B 坐标(1,0), ∴AB =4, ∵S △PAB =6,∴12·4·|m 2+2m -3|=6, ∴m 2+2m -6=0或m 2+2m =0, ∴m =-1+7或-1-7或0或-2,∴点P 坐标为(0,-3)或(-2,-3)或(-1+7,3)或(-1-7,3).第6题解图7.解:(1)y =a (x -1)(x -3),令x =0可得y =3a , ∴C (0,3a ),∵y =a (x -1)(x -3)=a (x 2-4x +3)=a (x -2)2-a , ∴D (2,-a );(2)在y =a (x -1)(x -3)中,令y =0可解得x =1或x =3, ∴A (1,0),B (3,0), ∴AB =3-1=2, ∴S △ABD =12×2×a =a ,如解图,设直线CD 交x 轴于点E ,设直线CD 解析式为y =kx +b ,第7题解图把C 、D 的坐标代入可⎩⎪⎨⎪⎧b =3a 2k +b =-a ,解得⎩⎪⎨⎪⎧k =-2ab =3a ,∴直线CD 解析式为y =-2ax +3a ,令y =0可解得x =32,∴E (32,0),∴BE =3-32=32,∴S △BCD =S △BEC +S △BED =12×32×(3a +a )=3a ,∴S △BCD ∶S △ABD =(3a )∶a =3, ∴k =3;(3)∵B (3,0),C (0,3a ),D (2,-a ),∴BC 2=32+(3a )2=9+9a 2,CD 2=22+(-a -3a )2=4+16a 2,BD 2=(3-2)2+a 2=1+a 2, ∵∠BCD <∠BCO <90°,∴△BCD 为直角三角形时,只能有∠CBD =90°或∠CDB =90°两种情况,①当∠CBD =90°时,则有BC 2+BD 2=CD 2,即9+9a 2+1+a 2=4+16a 2,解得a =-1(舍去)或a =1,此时抛物线解析式为y =x 2-4x +3;②当∠CDB =90°时,则有CD 2+BD 2=BC 2,即4+16a 2+1+a 2=9+9a 2解得a =-22(舍去)或a =22,此时抛物线解析式为y =22x 2-22x +322; 综上可知,当△BCD 是直角三角形时,抛物线解析式为y =x 2-4x +3或y =22x 2-22x +322. 8.解:(1)-1,(1,4),y =-x +3;【解法提示】∵抛物线y =ax 2-2ax +a +4(a <0)经过点A(-1,0), ∴a +2a +a +4=0,解得a =-1; ∴抛物线解析式为y =-x 2+2x +3,∴-b 2a =-2-2=1,4ac -b 24a =4×(-1)×3-44×(-1)=4, ∴顶点D 的坐标为:(1,4);令x =0,得y =3,即点C 的坐标为(0,3), ∵点A (-1,0),对称轴为直线x =1, ∴1×2-(-1)=3, ∴点B 的坐标为(3,0), 设直线BC 的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧3k +b =0b =3,解得⎩⎪⎨⎪⎧k =-1b =3, ∴直线BC 的解析式为y =-x +3; (2)①设点M 的坐标为(m ,-m 2+2m +3), ∵∠COM =∠DBN , ∴tan ∠COM =tan∠DBN ,∴m -m 2+2m +3=24,解得m =±3,∵m >0, ∴m =3,∴点M (3,23);②设直线BD 的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧3k +b =0k +b =4,解得⎩⎪⎨⎪⎧k =-2b =6, ∴直线BD 的解析式为:y =-2x +6;∴点P (t ,-t 2+2t +3),点E (t ,-2t +6),点F (t ,-t +3),∴PE =(-t 2+2t +3)-(-2t +6)=-t 2+4t -3,EF =(-2t +6)-(-t +3)=-t +3,FG =-t +3,∴EF =FG .∵EF +FG -PE =2(-t +3)-(-t 2+4t -3)=(t -3)2>0, ∴EF +FG >PE ,∴当1<t <3时,线段PE ,EF ,FG 总能组成等腰三角形, 由题意得12PE EF =35,即12(-t 2+4t -3)-t +3=35,∴5t 2-26t +33=0,解得t =3或115,∴1<t <3, ∴t =115.9.(1)解:因为抛物线与x 轴交于(-1,0),(4,0),可以假设y =a (x +1)(x -4), ∵a =-12,∴y =-12(x +1)(x -4),即y =-12x 2+32x +2;(2)①证明:把C (m ,m -1)代入y =-12x 2+32x +2得,m -1=-12m 2+32m +2,∴m 1=-2,m 2=3, ∵C 在第一象限,∴⎩⎪⎨⎪⎧m >0m -1>0,∴m >1, ∴m =-2(不符合题意,舍),m =3, ∴C 的坐标是(3,2), ∵BC ∥DE ,DF ∥AC ,∴四边形DECF 是平行四边形, ∵AB 2=25,AC 2=20,BC 2=5, ∴AB 2=AC 2+BC 2, ∴∠ACB =90°, ∴▱BECF 是矩形; ②∵DE ∥BC , ∴△AED ∽△ACB ,∴ED BC =ADAB①, 同理,得DF AC =BDAB②,①+②得ED BC +DF AC =AD +BDAB=1,∵AC =25,BC =5,CF =ED , ∴ED5+DF 25=1,即2ED +DF =25, ∴ED +DF +FC =25,∴DE 、DF 、CF 的长度之和不变化,ED +DF +FC =2 5.10.解:(1)∵直线y =-x +3交坐标轴于A ,B 两点, ∴A (0,3),B (3,0),把A (0,3),B (3,0)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧c =39+3b +c =0,解得⎩⎪⎨⎪⎧b =-4c =3, 故答案为-4,3;(2)∵将直线AB :y =-x +3向下平移h 个单位长度,得直线EF , ∴可设直线EF 的解析式为y =-x +3-h .把y =-x +3-h 代入y =x 2-4x +3,得x 2-4x +3=-x +3-h . 整理得x 2-3x +h =0. ∵直线EF 与抛物线没有交点, ∴Δ=(-3)2-4×1×h =9-4h <0, 解得h >94.∴当h >94时,直线EF 与抛物线没有交点;(3)∵y =x 2-4x +3=(x -2)2-1, ∴顶点C (2,-1).设直线AC 的解析式为y =mx +n .则⎩⎪⎨⎪⎧n =32m +n =-1,解得⎩⎪⎨⎪⎧m =-2n =3 ,∴直线AC 的解析式为y =-2x +3.如解图,设直线AC 交x 轴于点D ,则D (32,0),BD =32;∴S △ABC =S △ABD +S △BCD =12×32×3+12×32×1=3,∵直线x =m 与线段AB 、AC 分别交于M 、N 两点,则0≤m ≤2, ∴M (m ,-m +3),N (m ,-2m +3), ∴MN =(-m +3)-(-2m +3)=m .∵直线x =m 把△ABC 的面积分为1∶2两部分,∴分两种情况讨论: ①当S △AMN S △ABC =13时,即12m 23=13,解得m =±2;②当S △AMN S △ABC =23时,即12m 23 =23,解得 m =±2;∵0≤m ≤2, ∴m =2或m =2.∴当m =2或2时,直线x =m 把△ABC 的面积分为1∶2两部分.第10题解图11.解:(1)抛物线的解析式为y =-38x 2+94x +6;(2)设运动时间为t 秒,则AM =3t ,BN =t ,∴MB =10-3t ,在Rt △BOC 中,BC =82+62=10, 如解图①,过点N 作NH ⊥AB 于点H ,第11题解图①∴NH ∥CO , ∴△BHN ∽△BOC ,∴HN OC =BN BC ,即HN 6=t10, ∴HN =35t ,∴S △MBN =12MB ·HN =12(10-3t )·35t =-910t 2+3t =-910(t -53)2+52,∵当△MBN 存在时,0<t <103, ∴当t =53时,S △MBN 最大,最大面积是52,即运动53秒时,使△MBN 的面积最大,最大面积是52;(3)存在.设直线BC 的解析式为y =kx +c (k ≠0), 把B (8,0),C (0,6)代入,得⎩⎪⎨⎪⎧8k +c =0c =6,解得⎩⎪⎨⎪⎧k =-34c =6,∴直线BC 的解析式为y =-34x +6,∵点P 在抛物线上, ∴设P (m ,-38m 2+94m +6),如解图②,过点P 作PE ∥y 轴,交BC 于点E ,第11题解图②则E 点的坐标为(m ,-34m +6),∴EP =-38m 2+94m +6-(-34m +6)=-38m 2+3m ,当△MBN 的面积最大时,S △BPC =9S △MBN =452,∵S △BPC =S △CEP +S △BEP =12EP ·m +12EP ·(8-m ) =12×8EP =4×(-38m 2+3m )=-32m 2+12m ,∴-32m 2+12m =452, 解得m 1=3,m 2=5,当m 1=3时,-38m 2+94m +6=758, 当m 2=5时,-38m 2+94m +6=638, ∴P (3,758)或(5,638).。

2018年中考数学真题汇编 二次函数试题答案

2018年中考数学真题汇编 二次函数试题答案

2018中考数学真题汇编:二次函数试题1-8页+试题答案8-25页一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B.C. D.3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-34.二次函数的图像如图所示,下列结论正确是( )A. B.C. D. 有两个不相等的实数根5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B.C. D.6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 49.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. B.C. D.二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

2018年中考数学真题汇编二次函数(含答案)

2018年中考数学真题汇编二次函数(含答案)

中考数学真题演练2 2018年中考数学真题汇编----二次函数
一、选择题
1.给出下列函数:①y=-3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()
A. ①③
B. ③④
C. ②④
D. ②③
【答案】B
2.如图,函数和 ( 是常数,且 )在同一平面直角坐标系的图象可能是()
A. B.
C. D.
【答案】B
3.关于二次函数,下列说法正确的是()
A. 图像与轴的交点坐标为
B. 图像的对称轴在轴的右侧
C. 当时,的值随值的增大而减小
D. 的最小值为-3
【答案】D
4.二次函数的图像如图所示,下列结论正确是( )
A. B.
C. D. 有两个不相等的实数根
【答案】C
5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B.
C. D.
【答案】B
6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()
A. (-3,-6)
B. (-3,0)
C. (-3,-5)
D. (-3,-1)
【答案】B
7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是()。

2018年中考数学真题汇编 二次函数

2018年中考数学真题汇编 二次函数

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B. C.D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A. B.C.D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0) C. (-3,-5) D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139m D. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是(). 乙 C.丙 D.丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C.D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

近五年(2017-2021)年浙江中考数学真题分类汇编之二次函数(含解析)

近五年(2017-2021)年浙江中考数学真题分类汇编之二次函数(含解析)

2017-2021年浙江中考数学真题分类汇编之二次函数一.选择题(共16小题)1.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)2.(2021•绍兴)关于二次函数y=2(x﹣4)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值6 3.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.4.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)5.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0D.若m<1,则(m+1)a+b<0 6.(2021•杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()A.B.C.D.7.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y =(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.(2019•衢州)二次函数y=(x﹣1)2+3图象的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)9.(2020•宁波)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y 轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c10.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 11.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.12.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥13.(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3 14.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是()A.1B.2C.3D.4 15.(2020•嘉兴)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值16.(2019•舟山)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时得到如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④二.填空题(共4小题)17.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是.18.(2017•金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=m2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.19.(2021•台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt ﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=.20.(2021•湖州)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a ≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是.三.解答题(共3小题)21.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.22.(2021•杭州)在直角坐标系中,设函数y=ax2+bx+1(a,b是常数,a≠0).(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;(2)写出一组a,b的值,使函数y=ax2+bx+1的图象与x轴有两个不同的交点,并说明理由.(3)已知a=b=1,当x=p,q(p,q是实数,p≠q)时,该函数对应的函数值分别为P,Q.若p+q=2,求证:P+Q>6.23.(2020•金华)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.2017-2021年浙江中考数学真题分类汇编之二次函数参考答案与试题解析一.选择题(共16小题)1.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【考点】二次函数的性质.【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选:A.【点评】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.2.(2021•绍兴)关于二次函数y=2(x﹣4)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值6【考点】二次函数的性质;二次函数的最值.【专题】二次函数图象及其性质;应用意识.【分析】根据题目中的函数解析式和二次函数的性质,可以得到该函数有最小值,最小值为6,然后即可判断哪个选项是正确的.【解答】解:∵二次函数y=2(x﹣4)2+6,a=2>0,∴该函数图象开口向上,有最小值,当x=4取得最小值6,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确二次函数的性质,会求函数的最值.3.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.【考点】二次函数的性质;一次函数的图象.【专题】函数及其图象.【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.4.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【考点】抛物线与x轴的交点;二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换.【专题】二次函数图象及其性质.【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x ﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.5.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0D.若m<1,则(m+1)a+b<0【考点】二次函数图象与系数的关系.【分析】由对称轴x=﹣=1得:b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴x=﹣=1得:b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a+b=(m﹣1)a﹣2a=(m﹣3)a,(m﹣1)a+b与0无法判断.当m<1时,(m+1)a+b=(m+1)a﹣2a=(m﹣1)a>0.故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.6.(2021•杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()A.B.C.D.【考点】二次函数图象与系数的关系.【专题】函数思想;应用意识.【分析】比较任意三个点组成的二次函数,比较开口方向,开口向下,则a<0,只需把开口向上的二次函数解析式求出即可.【解答】解:由图象知,A、B、D组成的二次函数图象开口向上,a>0;A、B、C组成的二次函数开口向上,a>0;B、C、D三点组成的二次函数开口向下,a<0;A、D、C三点组成的二次函数开口向下,a<0;即只需比较A、B、D组成的二次函数和A、B、C组成的二次函数即可.设A、B、C组成的二次函数为y1=a1x2+b1x+c1,把A(0,2),B(1,0),C(3,1)代入上式得,,解得a1=;设A、B、D组成的二次函数为y=ax2+bx+c,把A(0,2),B(1,0),D(2,3)代入上式得,,解得a=,即a最大的值为,也可以根据a的绝对值越大开口越小直接代入ABD三点计算,即可求求解.故选:A.【点评】本题考查待定系数法求函数解析式,解本题的关键要熟练掌握二次函数的性质和待定系数法求函数的解析式.7.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y =(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质.【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),故选:B.【点评】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.8.(2019•衢州)二次函数y=(x﹣1)2+3图象的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【考点】二次函数的性质.【专题】二次函数图象及其性质.【分析】由抛物线顶点式可求得答案.【解答】解:∵y=(x﹣1)2+3,∴顶点坐标为(1,3),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).9.(2020•宁波)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y 轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】二次函数图象及其性质;运算能力.【分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据二次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)2+b(﹣n2﹣2)+c=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【解答】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误;∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)2+b(﹣n2﹣2)+c=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.【点评】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2【考点】二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;运算能力.【分析】求出抛物线的对称轴为直线x=﹣2,然后根据二次函数的增减性和对称性解答即可.【解答】解:抛物线的对称轴为直线x=﹣=﹣2,∵a=﹣3<0,∴x=﹣2时,函数值最大,又∵﹣3到﹣2的距离比1到﹣2的距离小,∴y3<y1<y2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.11.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】一次函数及其应用;二次函数图象及其性质.【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题.【解答】解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.【点评】本题考查二次函数的图象、一次函数的图象,解题的关键是明确二次函数与一次函数图象的特点.12.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质.【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣,满足条件,可得a≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵Δ>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.【点评】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.13.(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3【考点】二次函数图象与几何变换.【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14故选:A.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.14.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是()A.1B.2C.3D.4【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;推理能力.【分析】不妨假设a>0,利用图象法一一判断即可.【解答】解:方法一:不妨假设a>0.①如图1中,P1,P2满足x1>x2+2,∵P1P2∥AB,∴S1=S2,故①错误.②当x1=﹣2,x2=﹣1,满足x1<2﹣x2,则S1>S2,故②错误,③∵|x1﹣2|>|x2﹣2|>1,∴P1,P2在x轴的上方,且P1离x轴的距离比P2离x轴的距离大,∴S1>S2,故③正确,④如图2中,P1,P2满足|x1﹣2|>|x2+2|>1,但是S1=S2,故④错误.故选:A.方法二:解:∵抛物线y=ax2+bx+c与x轴的交点为A(1,0)和B(3,0),∴该抛物线对称轴为x=2,当x1>x2+2时与当x1<2﹣x2时无法确定P1(x1,y1),P2(x2,y2)在抛物线上的对应位置,故①和②都不正确;当|x1﹣2|>|x2﹣2|>1时,P1(x1,y1)比P2(x2,y2)离对称轴更远,且同在x轴上方或者下方,∴|y1|>|y2|,∴S1>S2,故③正确;当|x1﹣2|>|x2+2|>1时,即在x轴上x1到2的距离比x2到﹣2的距离大,且都大于1,可知在x轴上x1到2的距离大于1,x2到﹣2的距离大于1,但x2到2的距离不能确定,所以无法比较P1(x1,y1)比P2(x2,y2)谁离对称轴更远,故无法比较面积,故④错误;故选:A.【点评】本题考查抛物线与x轴的交点,二次函数图象上的点的特征等知识,解题的关键是学会利用图象法解决问题,属于中考选择题中的压轴题.15.(2020•嘉兴)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值【考点】二次函数的性质;二次函数的最值.【专题】函数的综合应用;几何直观;运算能力.【分析】方法1、①当b﹣a=1时,当a,b同号时,先判断出四边形BCDE是矩形,得出BC=DE=b﹣a=1,CD=BE=m,进而得出AC=n﹣m,即tan∠ABC=n﹣m,再判断出45°≤∠ABC<90°,即可得出n﹣m的范围,当a,b异号时,m=0,当a=﹣,b=时,n最小=,即可得出n﹣m的范围;②当n﹣m=1时,当a,b同号时,同①的方法得出NH=PQ=b﹣a,HQ=PN=m,进而得出MH=n﹣m=1,而tan∠MHN=,再判断出45°≤∠MNH<90°,当a,b 异号时,m=0,则n=1,即可求出a,b,即可得出结论.方法2、根据抛物线的性质判断,即可得出结论.【解答】解:方法1、①当b﹣a=1时,当a,b同号时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADE=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b﹣a=1,CD=BE=m,∴AC=AD﹣CD=n﹣m,在Rt△ACB中,tan∠ABC==n﹣m,∵点A,B在抛物线y=x2上,且a,b同号,∴45°≤∠ABC<90°,∴tan∠ABC≥1,∴n﹣m≥1,当a,b异号时,m=0,当a=﹣,b=时,n=,此时,n﹣m=,∴≤n﹣m<1,即n﹣m≥,即n﹣m无最大值,有最小值,最小值为,故选项C,D都错误;②当n﹣m=1时,如图2,当a,b同号时,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b﹣a,HQ=PN=m,∴MH=MQ﹣HQ=n﹣m=1,在Rt△MHN中,tan∠MNH==,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴≥1,当a,b异号时,m=0,∴n=1,∴a=﹣1,b=1,即b﹣a=2,∴b﹣a无最小值,有最大值,最大值为2,故选项A错误;故选:B.方法2、当n﹣m=1时,当a,b在y轴同侧时,a,b都越大时,a﹣b越接近于0,但不能取0,即b﹣a没有最小值,当a,b异号时,当a=﹣1,b=1时,b﹣a=2最大,当b﹣a=1时,当a,b在y轴同侧时,a,b离y轴越远,n﹣m越大,但取不到最大,当a,b在y轴两侧时,当a=﹣,b=时,n﹣m取到最小,最小值为,因此,只有选项B正确,故选:B.【点评】此题主要考查了二次函数的性质,矩形的判定和性质,锐角三角函数,确定出∠MNH的范围是解本题的关键.16.(2019•舟山)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时得到如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点;等腰直角三角形;一次函数图象上点的坐标特征.【专题】数形结合;二次函数图象及其性质.【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【解答】解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1∴这个函数图象的顶点始终在直线y=﹣x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1解得:x1=m﹣,x2=m+∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|﹣m+1|=|m﹣(m﹣)|解得:m=0或1,当m=1时,二次函数y=﹣(x﹣1)2,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且a=﹣1<0∴y1>y2故结论③错误;④当﹣1<x<2时,y随x的增大而增大,且a=﹣1<0∴m的取值范围为m≥2.故结论④正确.故选:C.【点评】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.二.填空题(共4小题)17.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是﹣2.【考点】抛物线与x轴的交点;正方形的性质;二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;矩形菱形正方形.【分析】根据正方形的性质结合题意,可得出点B的坐标为(﹣,﹣),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.【解答】解:∵四边形ABOC是正方形,∴点B的坐标为(﹣,﹣).∵抛物线y=ax2过点B,∴﹣=a(﹣)2,解得:b1=0(舍去),b2=﹣2.故答案为:﹣2.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.18.(2017•金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=88πm2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.【考点】二次函数的应用;等边三角形的判定与性质;矩形的性质.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10﹣x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【解答】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,∴S=×π•102+•π•62+•π•42=88π,故答案为:88π;(2)如图2,设BC=x,则AB=10﹣x,∴S=•π•102+•π•x2+•π•(10﹣x)2=(x2﹣5x+250)=(x﹣)2+,当x=时,S取得最小值,∴BC=,故答案为:.【点评】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.19.(2021•台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt ﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=:1.【考点】二次函数的应用;解直角三角形.【专题】二次函数的应用;推理能力.【分析】利用h=vt﹣4.9t2,求出t1,t2,再根据h1=2h2,求出v1=v2,可得结论.【解答】解:由题意,t1=,t2=,h1==,h2==,∵h1=2h2,∴v1=v2,∴t1:t2=v1:v2=:1,故答案为::1.【点评】本题考查二次函数的应用,解题的关键是求出t1,t2,证明v1=v2即可.20.(2021•湖州)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a ≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是2或﹣8.【考点】二次函数的性质;二次函数图象上点的坐标特征;勾股定理的逆定理.【专题】二次函数图象及其性质;等腰三角形与直角三角形;推理能力.【分析】由题意△AOM是直角三角形,当对称轴x≠0或x≠3时,可知一定存在两个以A,O为直角顶点的直角三角形,当对称轴x=0或x=3时,不存在满足条件的点M,当以OA为直径的圆与抛物线的对称轴x=﹣相切时,对称轴上存在1个以点M为直角顶点的直角三角形,此时对称轴上存在3个不同的点M,使△AOM为直角三角形,利用图象法求解即可.【解答】解:∵△AOM是直角三角形,∴当对称轴x≠0或x≠3时,一定存在两个以A,O为直角顶点的直角三角形,且点M 在对称轴上的直角三角形,当对称轴x=0或x=3时,不存在满足条件的点M,∴当以OA为直径的圆与抛物线的对称轴x=﹣相切时,对称轴上存在1个以M为直角顶点的直角三角形,此时对称轴上存在3个不同的点M,使△AOM为直角三角形(如图所示).观察图象可知,﹣=﹣1或4,∴=2或﹣8,故答案为:2或﹣8.【点评】本题考查二次函数的性质,直角三角形的判定,圆周角定理等知识,解题的关键是判断出对称轴的位置,属于中考填空题中的压轴题.三.解答题(共3小题)21.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.。

【浙江卷】二次函数(2018)

【浙江卷】二次函数(2018)

二次函数复习1(2018浙江重点中学联考)已知函数241y x x =-+的定义域为[]1,t ,在该定义域上函数的最大值与最小值之和为5-,则实数t 的取值范围是( )(].1,3A[].2,3B(].1,2C().2,3D2(2018浙江杭州重点中学联考)若函数()2f x x ax b =++有两个零点12x x ,,且235x x <<<,那么()()35f f ,( )A. 只有一个小于1,B. 都小于1B. 都大于1 D. 至少有一个小于13(2018浙江绍兴一中调研卷)已知函数()2f x ax bx c =++,且存在相异实数,m n ,满足()()0f m f n ==,若30a b c ++=,则m n -的最小值是( ).A.B.C.D4(2017浙江新高考测试卷)已知函数()()221,01,0x x x f x f x x ⎧--+<⎪=⎨->⎪⎩则()y f x x =-的零点有( )A. 1个B.2个C.3个D.4个5. (2017浙江杭州二模)设函数()()2,f x x ax b a b R =++∈的两个零点分别是12,x x ,若122x x +≤,则( ).1A a ≥.1B b ≤.22C a b +≥.22D a b +≤6. (2018浙江台州期末卷)当[]1,4x ∈时,不等式322044ax bx a x ≤++≤恒成立,则a b +的取值范围是( )[].4,8A -[].2,8B -[].0,6C[].4,12D7. (2017浙江暨阳联考卷)设二次函数()2f x x ax b =++,若对任意实数a,都存在实数1,22x ⎡⎤∈⎢⎥⎣⎦,使得不等式()f x x ≥成立,则实数b 的取值范围是( )[)1.,2,3A ⎛⎤-∞-⋃+∞ ⎥⎝⎦ 11.,,34B ⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ 11.,,49C ⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ 19.,,34D ⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭8.(2018浙江七彩阳光联盟卷)设关于x 的方程220x ax --=和210x x a ---=的实数根分别为12,x x 和34,x x ,若1324x x x x <<<,则a 的取值范围是 ;9.(2018浙江模拟卷)已知关于x 的方程()220,x bx c b c R ++=∈在[]1,1-上有实数根,若043b c ≤+≤,则b 的取值范围是 ;10. (2018浙江绍兴期末卷) 已知()()()2,2f x x ax f f x =-≤在[]1,2上恒成立,则实数a 的最大值是 ;11. (2017浙江杭二中卷)记(),,M x y z 为,,x y z 三个数中的最小数,若二次函数()2f x ax bx c =++(),,0a b c >有零点,则,,b c c a a b M ab c +++⎛⎫⎪⎝⎭的最大值为( ) .2A5.4B 3.2C.1D12. (2018浙江镇海期中卷)设二次函数()()2,,f x x ax b a b R =++∈(1)若对任意实数a ,总存在实数m ,当[]1,1x m m ∈-+,时,使得()0f x ≤恒成立,求b 的最大值;(2)若存在实数x R ∈,使得不等式()21f x ax b x a x a --≤--+-成立,求a 的取值范围;13.(2018浙江柯桥中学卷)已知()()()223,21.f x x ag x a x =-=+(1)若()()f x g x <的解集中有且仅有一个整数,求a 的取值范围;(2)若()()4f x g x a -≤在[]1,4x a ∈上恒成立,求a 的取值范围答案1.已知函数241y x x =-+的定义域为[]1,t ,在该定义域上函数的最大值与最小值之和为5-,则实数t 的取值范围是( B )(].1,3A[].2,3B(].1,2C().2,3D2.若函数()2f x x ax b =++有两个零点12x x ,,且235x x <<<,那么()()35f f ,( D )C. 只有一个小于1, B. 都小于1D. 都大于1 D. 至少有一个小于13.已知函数()2f x ax bx c =++,且存在相异实数,m n ,满足()()0f m f n ==,若30a b c ++=,则m n -的最小值是( C ).3A.3B.3C.3D解:()2222222344=1291293a c ac b ac c c m n t t a a a a +--⎛⎫⎛⎫-==-+=++≥ ⎪ ⎪⎝⎭⎝⎭4.已知函数()()221,01,0x x x f x f x x ⎧--+<⎪=⎨-≥⎪⎩则()y f x x =-的零点有 ( C )B. 1个 B.2个C.3个D.4个5.设函数()()2,f x x ax b a b R =++∈的两个零点分别是12,x x ,若122x x +≤,则( B ).1A a ≥ .1B b ≤.22C a b +≥.22D a b +≤解: 由题意知:1212.222;A x x x x a a +≤+≤⇒-≤⇒≤121B x x b ≥+≥=⇒≤.2。

2018年浙江省中考《第15讲:二次函数的图象与性质》总复习讲解

2018年浙江省中考《第15讲:二次函数的图象与性质》总复习讲解

(最小值 ),可
交点式
若已知二次函数图象与 x 轴的两个交点的坐标为 (x1, 0), (x2,0),可
设所求的二次函数为

4.二次函数与一元二次方程以及不等式之间的关系
考试内容
二次函数 与一元二
次方程
二次函数 与不等式
二次函数 y= ax2+bx+ c 的图象与
轴的交点的

标是一元二次方程 ax2+ bx+ c=0 的根.
c
c
c>0
交.
b2- 4ac 特殊关系
c<0
与y轴
半轴相交.
b2- 4ac= 0 b2- 4ac>0
与 x 轴有 ____________________交点
(顶点 ). 与 x 轴有
不同交点.
b2- 4ac<0
与 x 轴 ____________________ 交点.
若 a+ b+ c>0,即当 x=1 时, y____________________0.
若 a+ b+ c<0,即当 x=1 时, y____________________0.
3.确定二次函数的解析式
考试内容
考试
方法
适用条件及求法
一般式
若已知条件是图象上的三个点或三对自变量与函数的对应值,则可设 所求二次函数解析式为 ____________________.
顶点式
若已知二次函数图象的顶点坐标或对称轴方程与最大值 设所求二次函数为 ____________________.
考试内容
基本 思想
数形结合,从二次函数的图象研究其开口方向、对称轴、顶点坐标、 增减性、最值及其图象的平移变化,到利用二次函数图象求解方程与 方程组,再到利用图象求解析式和解决实际问题,都体现了数形结合 的思想.

【精编】2018年中考数学真题汇编 二次函数

【精编】2018年中考数学真题汇编 二次函数

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B.B.C. D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B.C. D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6) B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t +1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B (﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

浙江省2018年中考数学《二次函数》总复习阶段检测试卷含答案

浙江省2018年中考数学《二次函数》总复习阶段检测试卷含答案

阶段检测4 二次函数一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.在同一平面直角坐标系中,函数y =ax +b 与y =ax 2-bx 的图象可能是( )2.对于二次函数y =-14x 2+x -4,下列说法正确的是( ) A .当x >0时,y 随x 的增大而增大 B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点3.设A(-2,y 1),B(1,y 2),C(2,y 3)是抛物线y =-(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 24.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y =x 2+1,则原抛物线的解析式不可能的是( )A .y =x 2-1B .y =x 2+6x +5C .y =x 2+4x +4D .y =x 2+8x +175.如图是二次函数y =ax 2+bx +c 的图象,下列结论:第5题图①二次三项式ax 2+bx +c 的最大值为4;②4a +2b +c <0;③一元二次方程ax 2+bx +c =1的两根之和为-1;④使y ≤3成立的x 的取值范围是x ≥0.其中正确的个数有( )A .1个B .2个C .3个D .4个6.二次函数y =ax 2+bx +c ,自变量x 与函数y 的对应值如表:下列说法正确的是( )A .抛物线的开口向下B .当x >-3时,y 随x 的增大而增大C .二次函数的最小值是-2D .抛物线的对称轴是x =-527.二次函数y =ax 2+bx +c 的图象如图,点C 在y 轴的正半轴上,且OA =OC ,则( )第7题图A .ac +1=bB .ab +1=cC .bc +1=aD .以上都不是8.(2019·宜宾)如图,抛物线y 1=12(x +1)2+1与y 2=a(x -4)2-3交于点A(1,3),过点A 作x 轴的平行线,分别交两条抛物线于B 、C 两点,且D 、E 分别为顶点.则下列结论第8题图①a =23;②AC =AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2,其中正确结论的个数是( )A .1个B .2个C .3个D .4个9.二次函数y =x 2+bx 的图象如图,对称轴为直线x =1,若关于x 的一元二次方程x 2+bx -t =0(t 为实数)在-1<x <4的范围内有解,则t 的取值范围是( )A .t ≥-1B .-1≤t <3C .-1≤t <8D .3<t <8第9题图 第10题图 10.如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .y =225x 2B .y =425x 2 C .y =25x 2 D .y =45x 2 二、填空题(本大题有6小题,每小题5分,共30分)11.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长量l/mm 与温度t/℃之间是二次函数关系:l =-t 2-2t +49.由此可以推测最适合这种植物生长的温度为 ℃.第11题图12.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b +c >0;④2c <3b ,其中正确结论的序号有 .第12题图 第13题图 第14题图 第15题图13.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y =x 2-2x -3,AB 为半圆的直径,则这个“果圆”被y 轴截得的弦CD 的长为 .14.如图,四边形ABCD 是矩形,A 、B 两点在x 轴的正半轴上,C 、D 两点在抛物线y =-x 2+6x 上.设OA =m(0<m <3),矩形ABCD 的周长为l ,则l 与m 的函数解析式为 .15.如图,边长为1的正方形OABC 的顶点A 在x 轴的正半轴上,将正方形OABC 绕顶点O 顺时针旋转75°,使点B 落在抛物线y =ax 2(a <0)的图象上,则该抛物线的解析式为 .16.已知:抛物线y =a(x -2)2+b(ab <0)的顶点为A ,与x 轴的交点为B 、C.(1)抛物线对称轴方程为 ;(2)若D 点为抛物线对称轴上一点,若以A ,B ,C ,D 为顶点的四边形是正方形,则a ,b 满足的关系式是 .三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.已知抛物线y =x 2-2x +1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x >2时,y 的取值范围.第18题图18.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx(a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34m ,到墙边的距离分别为12m ,32m . (1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m ,则最多可以连续绘制几个这样的拋物线型图案?第19题图19.如图,二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0).(1)求a ,b 的值;(2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x(2<x <6),写出四边形OACB的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.20.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m ≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元.(1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.21.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:其中a 为常数,且3≤a ≤5.(1)若产销甲、乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.22.A 、B 两个水管同时开始向一个空容器内注水.如图是A 、B 两个水管各自注水量y(m 3)与注水时间x(h )之间的函数图象,已知B 水管的注水速度是1m 3/h ,1小时后,A 水管的注水量随时间的变化是一段抛物线,其顶点是(1,2),且注水9小时,容器刚好注满.请根据图象所提供的信息解答下列问题:(1)直接写出A 、B 注水量y(m 3)与注水时间x(h )之间的函数解析式,并注明自变量的取值范围:第22题图y A =⎩⎪⎨⎪⎧2x (0≤x ≤1) ( ) y B =________( ) (2)求容器的容量;(3)根据图象,通过计算回答,当y A >y B 时,直接写出x 的取值范围.23.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,羽毛球飞行的高度y(m )与水平距离x(m )之间满足函数表达式y =a(x -4)2+h ,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当a =-124时,①求h 的值;②通过计算判断此球能否过网; (2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7m ,离地面的高度为125m 的Q 处时,乙扣球成功,求a 的值.第23题图24.如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4).第24题图(1)求抛物线解析式及顶点坐标;(2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.阶段检测4 二次函数一、1—5.CBABB6—10.DABCC二、11.-1 12.①③④ 13.3+3 14.l =-2m 2+8m +12 15.y =-23x 2 16.(1)x =2 (2)ab =-1三、17.(1)y =x 2-2x +1=(x -1)2,对称轴为直线x =1,顶点坐标为(1,0); (2)抛物线图象如图所示:当x =2时,y =1.由图象可知当x>2时,y 的取值范围是y>1.第17题图18.(1)根据题意得:B ⎝⎛⎭⎫12,34,C ⎝⎛⎭⎫32,34,把B ,C 代入y =ax 2+bx 得⎩⎨⎧34=14a +12b ,34=94a +32b ,解得:⎩⎪⎨⎪⎧a =-1,b =2,∴拋物线的函数关系式为y =-x 2+2x ;∴图案最高点到地面的距离=-224×(-1)=1; (2)令y =0,即-x 2+2x =0,∴x 1=0,x 2=2,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.19.(1)将A(2,4)与B(6,0)代入y =ax 2+bx ,得⎩⎪⎨⎪⎧4a +2b =4,36a +6b =0,解得:⎩⎪⎨⎪⎧a =-12,b =3,(2)如图,过A 作x 轴的垂线,垂足为D(2,0),连结CD ,BC ,过C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F ,S △OAD =12OD ·AD =12×2×4=4;S △ACD =12AD ·CE =12×4×(x -2)=2x -4;S △BCD =12BD ·CF =12×4×⎝⎛⎭⎫-12x 2+3x =-x 2+6x ,则S =S △OAD +S △ACD +S △BCD =4+2x -4-x 2+6x =-x 2+8x ,∴S 关于x 的函数表达式为S =-x 2+8x(2<x <6),∵S =-x 2+8x =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 有最大值,最大值为16.第19题图20.(1)y =⎩⎪⎨⎪⎧120x , (0<x ≤30)[120-(x -30)]x , (30<x ≤m )[120-(m -30)]x , (x>m ). (2)由(1)可知当0<x ≤30或x>m ,函数值y 都是随着x 的增加而增加,当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5625,∵a =-1<0,∴x ≤75时,y 随着x 增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m ≤75.21.(1)y 1=(6-a)x -20,(0<x ≤200),y 2=10x -40-0.05x 2=-0.05x 2+10x -40.(0<x ≤80). (2)对于y 1=(6-a)x -20,∵6-a >0,∴x =200时,y 1的值最大=(1180-200a)万元.对于y 2=-0.05(x -100)2+460,∵0<x ≤80,∴x =80时,y 2最大值=440万元.(3)①(1180-200a)=440,解得a =3.7,②(1180-200a)>440,解得a <3.7,③(1180-200a)<440,解得a >3.7,∵3≤a ≤5,∴当a =3.7时,生产甲乙两种产品的利润相同.当3≤a <3.7时,生产甲产品利润比较高.当3.7<a ≤5时,生产乙产品利润比较高.22.(1)y A =⎩⎪⎨⎪⎧2x (0≤x ≤1)18(x -1)2+2(1<x ≤9);y B =x(0≤x ≤9), (2)容器的总容量是:x =9时,V 总容量=x +18(x -1)2+2=9+10=19(m 3), (3)当x =18(x -1)2+2时,解得:x 1=5-22,x 2=5+22,利用图象可得出:当y A >y B 时,x 的取值范围是:0<x <5-22或5+22<x ≤9.23.(1)①当a =-124时,y =-124(x -4)2+h ,将点P(0,1)代入,得:-124×16+h =1,解得:h =53;②把x =5代入y =-124(x -4)2+53,得:y =-124×(5-4)2+53=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、⎝⎛⎭⎫7,125代入y =a(x -4)2+h ,得:⎩⎪⎨⎪⎧16a +h =1,9a +h =125,解得:⎩⎨⎧a =-15,h =215,∴a =-15. 24.(1)设抛物线的解析式为y =ax 2+bx +c ,将A 、B 点的坐标代入函数解析式,得⎩⎪⎨⎪⎧-b 2a =72,36a +6b +c =0,c =-4,解得⎩⎪⎨⎪⎧a =-23,b =143,c =-4,抛物线的解析式为y =-23x 2+143x -4,配方,得y =-23⎝⎛⎭⎫x -722+256,顶点坐标为⎝⎛⎭⎫72,256; (2)E 点坐标为⎝⎛⎭⎫x ,-23x 2+143x -4,S =2×12OA ·y E =6⎝⎛⎭⎫-23x 2+143x -4,即S =-4x 2+28x -24; (3)平行四边形OEAF 的面积为24时,平行四边形OEAF 可能为菱形,理由如下:当平行四边形OEAF 的面积为24时,即-4x 2+28x -24=24,化简,得x 2-7x +12=0,解得x =3或4,当x =3时,EO =EA ,平行四边形OEAF 为菱形.当x =4时,EO ≠EA ,平行四边形OEAF 不为菱形.∴平行四边形OEAF 的面积为24时,平行四边形OEAF 可能为菱形.。

2018年秋浙教版九年级数学上册《二次函数》综合测评卷及解析

2018年秋浙教版九年级数学上册《二次函数》综合测评卷及解析

九年级数学上册《二次函数》综合测评卷一、选择题(每题3分,共30分)1.下列各式中,y 是x 的二次函数的是().A.x 2+2y 2=2B.x=y 2C.3x 2-2y=1D.21x +2y-3=02.对于二次函数y=(x-1)2+3的图象,下列说法正确的是().A.开口向下B.对称轴是直线x=-1C.顶点坐标是(1,3)D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD)花园,这个矩形花园的最大面积是().A.16m2B.12m2C.18m2D.以上都不对4.如果抛物线y=mx 2+(m-3)x-m+2经过原点,那么m 的值等于().A.0B.1C.2D.35.如图所示,直线x=1是抛物线y=ax 2+bx+c 的对称轴,那么有().A.abc>0B.b<a+cC.a+b+c<0D.c<2b(第5题)(第6题)(第7题)(第8题)6.已知二次函数的图象(0≤x≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是().A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y=ax 2+bx+c 的顶点为点P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A′,则AA′的长度为().A.343 B.241 C.32 D.38.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC=1m,则门高OE 为(B).A.9mB.764m C.8.7m D.9.3m9.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m),B(x 1+n,m)两点,则m,n 满足的关系为().A.m=21n B.m=41n C.m=21n 2D.m=41n 210.已知二次函数y=-(x-1)2+5,当m≤x≤n 且mn<0时,y 的最小值为2m,最大值为2n,则m+n 的值为().A.25 B.2C.23 D.21(第10题答图)二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y=3x 2的图象重合,那么这个二次函数的表达式可以是(只要写出一个).12.如图所示,抛物线y=ax 2+bx+c(a>0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(5,0)在抛物线上,则9a-3b+c 的值为.(第12题)(第13题)(第14题)(第15题)13.如图所示,抛物线y=ax 2+bx+c 与x 轴相交于点A,B(m+2,0),与y 轴相交于点C,点D 在该抛物线上,坐标为(m,c),则点A 的坐标是().14.如图所示,将两个正方形并排组成矩形OABC,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M,N 的二次函数的图象也过矩形的顶点B,C,若三个正方形边长均为1,则此二次函数的表达式为.15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量y(件)关于降价x(元)的函数表达式为.16.已知抛物线y=a(x-1)(x+a2)的图象与x 轴交于点A,B,与y 轴交于点C,若△ABC 为等腰三角形,则a 的值是.三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25).(1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y=4x-21x 2的图象的一段,斜坡的截线OA 是一次函数y=1x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.19.(8分)若直线y=x+3与二次函数y=-x 2+2x+3的图象交于A,B 两点,(1)求A,B 两点的坐标.(2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x(km),乘坐地铁的时间y 1(min)是关于x 的一次函数,其关系如下表所示:地铁站A B C D E x(km)89111.513y 1(min)182222528(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=1x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.21.(10分)已知二次函数y=ax 2+bx+21(a>0,b<0)的图象与x 轴只有一个公共点A.(1)当a=1时,求点A 的坐标.(2)过点A 的直线y=x+k 与二次函数的图象相交于另一点B,当b≥-1时,求点B 的横坐标m 的取值范围.22.(12分)设函数y=kx 2+(2k+1)x+1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值.23.(12分)如图1所示,点P(m,n)是抛物线y=1x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH⊥l,垂足为点H.【特例探究】(1)当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5.【猜想验证】(2)对任意m,n,猜想OP 与PH 的大小关系,并证明你的猜想.【拓展应用】(3)如图2所示,图1中的抛物线y=41x 2-1变成y=x 2-4x+3,直线l 变成y=m(m<-1).已知抛物线y=x 2-4x+3的顶点为点M,交x 轴于A,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y=m(m<-1)与对称轴交于点C,若对于抛物线上每一点都满足:该点到直线y=m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC,MN 及GN 的长,并写出相应的解答过程.②求m 的值及点N 的坐标.(第23题)【解析卷】九年级数学上册《二次函数》综合测评卷一、选择题(每题3分,共30分)1.下列各式中,y 是x 的二次函数的是(C).A.x 2+2y 2=2B.x=y 2C.3x 2-2y=1D.21x +2y-3=02.对于二次函数y=(x-1)2+3的图象,下列说法正确的是(C).A.开口向下B.对称轴是直线x=-1C.顶点坐标是(1,3)D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD)花园,这个矩形花园的最大面积是(C).A.16m2B.12m2C.18m2D.以上都不对4.如果抛物线y=mx 2+(m-3)x-m+2经过原点,那么m 的值等于(C).A.0B.1C.2D.35.如图所示,直线x=1是抛物线y=ax 2+bx+c 的对称轴,那么有(D).A.abc>0B.b<a+cC.a+b+c<0D.c<2b(第5题)(第6题)(第7题)(第8题)6.已知二次函数的图象(0≤x≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是(C).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y=ax 2+bx+c 的顶点为点P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A′,则AA′的长度为(A).A.343 B.241 C.32 D.38.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC=1m,则门高OE 为(B).A.9mB.764m C.8.7m D.9.3m9.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m),B(x 1+n,m)两点,则m,n 满足的关系为(D).A.m=21n B.m=41n C.m=21n 2D.m=41n 210.已知二次函数y=-(x-1)2+5,当m≤x≤n 且mn<0时,y 的最小值为2m,最大值为2n,则m+n 的值为(D).A.25 B.2 C.23 D.21(第10题答图)【解析】二次函数y=-(x-1)2+5的大致图象如答图所示:①当m≤0≤x≤n<1时,当x=m 时y 取最小值,即2m=-(m-1)2+5,解得m=-2或m=2(舍去).当x=n 时y 取最大值,即2n=-(n-1)2+5,解得n=2或n=-2(均不合题意,舍去).②当m≤0≤x≤1≤n 时,当x=m 时y 取最小值,由①知m=-2.当x=1时y 取最大值,即2n=-(1-1)2+5,解得n=5,或x=n 时y 取最小值,x=1时y 取最大值,2m=-(n-1)2+5,n=25,∴m=811.∵m<0,∴此种情形不合题意.∴m+n=-2+25=21.故选D.二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y=3x 2的图象重合,那么这个二次函数的表达式可以是y=3(x+2)2+3(只要写出一个).12.如图所示,抛物线y=ax 2+bx+c(a>0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(5,0)在抛物线上,则9a-3b+c 的值为0.(第12题)(第13题)(第14题)(第15题)13.如图所示,抛物线y=ax 2+bx+c 与x 轴相交于点A,B(m+2,0),与y 轴相交于点C,点D 在该抛物线上,坐标为(m,c),则点A 的坐标是(-2,0).14.如图所示,将两个正方形并排组成矩形OABC,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M,N 的二次函数的图象也过矩形的顶点B,C,若三个正方形边长均为1,则此二次函数的表达式为y=-34x 2+38x+1.15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量y(件)关于降价x(元)的函数表达式为y=60+x .16.已知抛物线y=a(x-1)(x+a2)的图象与x 轴交于点A,B,与y 轴交于点C,若△ABC 为等腰三角形,则a 的值是2或34或251±.三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25).(1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?【答案】(1)设抛物线的函数表达式为y=a(x-2)2-3,把(1,-25)代入,得-25=a-3,即a=21.∴抛物线的函数表达式为y=21x 2-2x-1.图略.(2)∵抛物线对称轴为直线x=2,且a>0,∴当x≥2时,y 随x 的增大而增大;当x≤2时,y 随x 的增大而减小.18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y=4x-21x 2的图象的一段,斜坡的截线OA 是一次函数y=1x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.【答案】(1)∵y=4x-21x 2=-21(x-4)2+8,∴网球抛出的最高点的坐标为(4,8).(2)由题意得4x-21x 2=21x,解得x=0或x=7.当x=7时,y=21×7=27.∴网球在斜坡的落点A 的垂直高度为27.19.(8分)若直线y=x+3与二次函数y=-x 2+2x+3的图象交于A,B 两点,(1)求A,B 两点的坐标.(2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?【答案】(1)由题意得⎩⎨⎧++-=+=3232x x y x y ,解得⎩⎨⎧==30y x 或⎩⎨⎧==41y x .∴A,B 两点的坐标分别为(0,3),(1,4).(2)∵A,B 两点的坐标是(0,3),(1,4),∴OA=3,OA 边上的高线长是1.∴S △OAB =21×3×1=23.(3)当x<0或x>1时,一次函数的值大于二次函数的值.20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x(km),乘坐地铁的时间y 1(min)是关于x 的一次函数,其关系如下表所示:地铁站A B C D E x(km)89111.513y 1(min)182222528(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)设y 1=kx+b,将(8,18),(9,20)代入,得⎩⎨⎧=+=+209188b k b k ,解得⎩⎨⎧==22b k .∴y 1关于x 的函数表达式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y.则y=y 1+y 2=2x+2+21x 2-11x+78=21x 2-9x+80.∴当x=9时,y 有最小值,y min =149802142⨯-⨯⨯=39.5.∴李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5min.21.(10分)已知二次函数y=ax 2+bx+21(a>0,b<0)的图象与x 轴只有一个公共点A.(1)当a=21时,求点A 的坐标.(2)过点A 的直线y=x+k 与二次函数的图象相交于另一点B,当b≥-1时,求点B 的横坐标m 的取值范围.【答案】(1)∵二次函数y=ax 2+bx+21(a>0,b<0)的图象与x 轴只有一个公共点A,∴Δ=b 2-4a×21=b 2-2a=0.∵a=21,∴b 2=1.∵b<0,∴b=-1.∴二次函数的表达式为y=21x 2-x+21.当y=0时,21x 2-x+21=0,解得x 1=x 2=1,∴A(1,0).(2)∵b 2=2a,∴a=1b 2,∴y=1b 2x 2+bx+1=1(bx+1)2.当y=0时,x=-1,∴A (-1,0).将点A (-1,0)代入y=x+k,得k=b 1.由⎪⎪⎩⎪⎪⎨⎧+=++=b x y bx x b y 1212122消去y 得21b 2x 2+(b-1)x+21-b 1=0,解得x 1=-b 1,x2=22b b -.∵点A 的横坐标为-b 1,∴点B 的横坐标m=22b b -.∴m=22b b -=2(21b -b 21)=2(b 1-41)2-81.∵2>0,∴当1<1时,m 随1的增大而减小.∵-1≤b<0,∴1≤-1.∴m≥2×(-1-1)2-1=3,即m≥3.22.(12分)设函数y=kx 2+(2k+1)x+1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值.【答案】(1)如:y=x+1,y=x 2+3x+1,图略.(2)不论k 取何值,函数y=kx 2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明如下:由y=kx 2+(2k+1)x+1,得k(x 2+2x)+(x-y+1)=0.当x 2+2x=0,x-y+1=0,即x=0,y=1,或x=-2,y=-1时,上式对任意实数k 都成立,∴函数的图象必过定点(0,1),(-2,-1).∵当k=0时,函数y=x+1的图象与x 轴有一个交点;当k≠0时,Δ=(2k+1)2-4k=4k 2+1>0,函数图象与x 轴有两个交点,∴函数y=kx 2+(2k+1)x+1的图象与x 轴至少有1个交点.(3)只要写出的m≤-1就可以.∵k<0,∴函数y=kx 2+(2k+1)x+1的图象在对称轴直线x=-kk 212+的左侧,y 随x 的增大而增大.由题意得m≤-k k 212+.∵当k<0时,k k 212+=-1-k21>-1.∴m≤-1.23.(12分)如图1所示,点P(m,n)是抛物线y=41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH⊥l,垂足为点H.【特例探究】(1)当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5.【猜想验证】(2)对任意m,n,猜想OP 与PH 的大小关系,并证明你的猜想.【拓展应用】(3)如图2所示,图1中的抛物线y=41x 2-1变成y=x 2-4x+3,直线l 变成y=m(m<-1).已知抛物线y=x 2-4x+3的顶点为点M,交x 轴于A,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y=m(m<-1)与对称轴交于点C,若对于抛物线上每一点都满足:该点到直线y=m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC,MN 及GN 的长,并写出相应的解答过程.②求m 的值及点N 的坐标.(第23题)【答案】(1)1,1,5,5.(2)猜想:OP=PH.证明:设PH 交x 轴于点Q∵P 在y=41x 2-1上,∴P (m,41m 2-1),PQ=∣41m 2-1∣,OQ=|m|.∵△OPQ 是直角三角形,∴OP=22OQ PQ +=222141m m +⎪⎭⎫ ⎝⎛+=22141⎪⎭⎫ ⎝⎛+m =14m 2+1.∵PH=yp-(-2)=(41m 2-1)-(-2)=41m 2+1,∴OP=PH.(3)①∵M(2,-1),∴CM=MN=-m-1.GN=CG-CM-MN=-m-2(-m-1)=2+m.②点B 的坐标是(3,0),BG=1,GN=2+m.由勾股定理得BN=22GN BG +=()2221m ++.∵对于抛物线上每一点都有:该点到直线y=m 的距离等于该点到点N 的距离,∴1+(2+m)2=(-m)2,解得m=-45.∵GN=2+m=2-45=43,∴N(2,-43).。

2018年中考数学真题汇编:二次函数

2018年中考数学真题汇编:二次函数

中考数学真题汇编 :二次函数一、选择题1. 给出以下函数:①y=﹣ 3x+2;② y= ;③ y=2x 2;④ y=3x ,上述函数中切合条作“当x> 1 时,函数值y 随自变量 x 增大而增大“的是()A.①③B.③④C.②④D.②③【答案】 B2. 如图 , 函数和(是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】 B3. 对于二次函数,以下说法正确的选项是()A. 图像与轴的交点坐标为B.图像的对称轴在轴的右边C. 当时,的值随值的增大而减小D.的最小值为-3【答案】 D4. 二次函数的图像如下图,以下结论正确是()A. B. C. D.有两个不相等的实数根【答案】 C5. 若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移 2 个单位,再向下平移 3 个单位,获得的抛物线过点()A. B.C. D.【答案】 B6. 若抛物线 y=x2+ax+b 与 x 轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线 x=1,将此抛物线向左平移 2 个单位,再向下平移 3 个单位,获得的抛物线过点()A. (-3 ,-6 ) B. (-3 ,0) C.(-3 ,-5 ) D.(-3,-1)【答案】 B7. 已知学校航模组设计制作的火箭的升空高度( m)与飞翔时间(s)知足函数表达式=﹣2+ 24t + 1.则h t ht以下说法中正确的选项是()A. 点火后 9s 和点火后 13s 的升空高度同样B.点火后 24s火箭落于地面C.点火后 10s 的升空高度为139m D.火箭升空的最大高度为145m 【答案】 D8.如图,若二次函数 y=ax2+bx+c(a≠0)图象的对称轴为 x=1,与 y 轴交于点 C,与 x 轴交于点 A、点 B(﹣1, 0),则①二次函数的最大值为a+b+c;② a﹣b+c< 0;③ b2﹣ 4ac< 0;④当 y> 0 时,﹣ 1< x< 3,此中正确的个数是()A. 1B. 2C.3D. 4【答案】 B9. 如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是. 对于以下说法:①;②;③;④(为实数);⑤当时,,此中正确的选项是()A.①②④B.①②⑤C.②③④【答案】 A10. 如图,二次函数 y=ax 2+bx 的图象张口向下,且经过第三象限的点P.若点 P 的横坐标为 -1 ,则一次函数 y=( a-b ) x+b 的图象大概是()【答案】 D11. 四位同学在研究函数( b,c 是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙 C.丙 D. 丁【答案】 B12. 如下图 , △ DEF中 , ∠DEF=90°, ∠D=30°,DF=16,B 是斜边 DF上一动点 , 过 B作 AB⊥ DF于 B, 交边DE(或边 EF) 于点 A, 设 BD=x,△ ABD的面积为 y, 则 y 与 x 之间的函数图象大概为()A.(B.C. D.(【答案】 B二、填空题13. 已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽 4m,水面降落 2m,水面宽度增添 ________m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分 考点研究第三单元 函数 第15课时 二次函数综合题 浙江近9年中考真题精选(2009-2017)命题点 1 与一次函数结合(杭州必考)1.(2013杭州20题10分)已知抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A 、B (点A 、B 在原点O 两侧),与y 轴相交于点C ,且点A 、C 在一次函数y 2=43x +n 的图象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围.2.(2014杭州23题12分)复习课中,教师给出关于x 的函数y =2kx 2-(4k +1)x -k +1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图象经过(1,0)点; ②函数图象与坐标轴总有三个不同的交点;③当x >1时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数. 教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.3.(2016杭州22题12分)已知函数y 1=ax 2+bx ,y 2=ax +b (ab ≠0).在同一平面直角坐标系中.(1)若函数y 1的图象过点(-1,0),函数y 2的图象过点(1,2),求a ,b 的值; (2)若函数y 2的图象经过y 1的图象的顶点. ①求证:2a +b =0;②当1<x <32时,比较y 1与y 2的大小.4.(2017杭州22题12分)在平面直角坐标系中,设二次函数y 1=(x +a )(x -a -1),其中a ≠0.(1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式;(2)若一次函数y 2=ax +b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )在函数y 1的图象上.若m <n ,求x 0的取值范围.命题点 2 与几何图形结合类型一 与线段有关的综合题(温州2012.24)5.(2012温州24题14分)如图,经过原点的抛物线y =-x 2+2mx (m >0)与x 轴的另一个交点为A .过点P (1,m )作直线PM ⊥x 轴于点M ,交抛物线于点B .记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连接CB ,CP . (1)当m =3时,求点A 的坐标及BC 的长; (2)当m >1时,连接CA ,问m 为何值时CA ⊥CP ?(3)过点P 作PE ⊥P C 且PE =PC ,问是否存在m ,使得点E 落在坐标轴上?若存在,求出所有满足要求的m 的值,并求出相对应的点E 坐标;若不存在,请说明理由.第5题图类型二 与角度有关的综合题(绍兴2考)6.(2013绍兴24题14分)抛物线y =(x -3)(x +1)与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点D 为顶点.(1)求点B 及点D 的坐标;(2)连接B D ,CD ,抛物线的对称轴与x 轴交于点E . ①若线段BD 上一点P ,使∠DCP =∠BDE ,求点P 的坐标;②若抛物线上一点M ,作MN ⊥CD ,交直线CD 于点N ,使∠CMN =∠BDE ,求点M 的坐标.类型三 与面积有关的综合题(温州2考)7.(2016温州23题10分)如图,抛物线y =x 2-mx -3(m >0)交y 轴于点C ,CA ⊥y 轴,交抛物线于点A ,点B 在抛物线上,且在第一象限内,BE ⊥y 轴,交y 轴于点E ,交AO 的延长线于点D ,BE =2AC .(1)用含m 的代数式表示BE 的长;(2)当m =3时,判断点D 是否落在抛物线上,并说明理由; (3)作AG ∥y 轴,交OB 于点F ,交BD 于点G . ①若△DOE 与△BGF 的面积相等,求m 的值.②连接AE ,交OB 于点M .若△AMF 与△BGF 的面积相等,则m 的值是________.第7题图类型四 与三角形相似有关的综合题8.(2017宁波25题12分)如图,抛物线y =14x 2+14x +c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连接AB ,点C (6,152)在抛物线上,直线AC 与y 轴交于点D .(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连接PQ 与直线AC 交于点M ,连接MO 并延长交AB 于点N ,若M 为PQ 的中点. ①求证:△APM ∽△AON ;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).第8题图答案1.解:∵点C 在一次函数y 2=43x +n 的图象上,线段OC 长为8,∴n =±8;(2分)①当n =8时一次函数为y 2=43x +8,y =0时,x =-6,求得点A 的坐标为A (-6,0),第1题解图①∵抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A ,B (点A ,B 在原点O 两侧),与y 轴相交于点C ,且线段AB 长为16, ∴这时抛物线开口向下,B (10,0),如解图①所示,抛物线的对称轴是x =2,由图象可知:当y 1随着x 的增大而减小时,自变量x 的取值范围是x≥2;(5分)②当n =-8时一次函数为y 2=43x -8,y =0时,x =6,求得点A 的坐标为A (6,0),∵抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A ,B (点A ,B 在原点O 两侧),与y 轴相交于点C ,且线段AB 长为16, ∴这时抛物线开口向上,B (-10,0),如解图②所示,抛物线的对称轴是x =-2,由图象可知:当y 1随着x 的增大而减小时,自变量x 的取值范围是x ≤-2;(8分)第1题解图②综上所述,当y 1随着x 的增大而减小时,自变量x 的取值范围是x ≥2或x ≤-2.(10分) 2.解:①是真命题;②是假命题;③是假命题;④是真命题.(2分) 理由如下:①当k =0时,原函数变形为y =-x +1,当x =1时,y =0,即存在函数y =-x +1,其图象过(1,0)点,故是真命题;②当k =0时,原函数变形为y =-x +1,图象为直线且过第一、二、四象限,与坐标轴只有两个不同的交点,与总有三个不同交点矛盾,故是假命题;(5分)③由题可知当k =1时,函数解析式为y =2x 2-5x ,又x =-b 2a =54>1时,由图象可知当x >1时,y 随x 先减小再增大,故是假命题;(8分) ④当k ≠0时,y =4ac -b 24a =-24k 2+18k,当k >0时,函数图象开口向上,y 有最小值,最小值为负数;当k <0时,函数图象开口向下,y 有最大值,最大值为正数,故是真命题.(12分)3.(1)解:由题意,得⎩⎪⎨⎪⎧a -b =0a +b =2,解得⎩⎪⎨⎪⎧a =1b =1,∴a =1,b =1;(3分)(2)①证明:∵函数y 1的图象的顶点坐标为(-b 2a ,-b24a),∴a (-b 2a )+b =-b 24a ,即b =-b22a ,∵ab ≠0,∴-b =2a , 即证2a +b =0;(7分)②解:∵b =-2a ,∴y 1=ax (x -2),y 2=a (x -2), ∴y 1-y 2=a(x -2)(x -1), ∵1<x <32,∴x -2<0,x -1>0,∴(x -2)(x -1)<0,∴当a >0时,a (x -2)(x -1)<0,即y 1<y 2, 当a <0时,a (x -2)(x -1)>0,即y 1>y 2.(12分)4.解:(1)∵函数y 1=(x +a)(x -a -1)图象经过点(1,-2),∴把x =1,y =-2代入y 1=(x +a)(x -a -1)得,-2=(1+a )(-a ),(2分) 化简得,a 2+a -2=0,解得,a 1=-2,a 2=1, ∴y 1=x 2-x -2;(4分)(2)函数y 1=(x +a )(x -a -1)图象在x 轴的交点为(-a ,0),(a +1,0), ①当函数y 2=ax +b 的图象经过点(-a ,0)时, 把x =-a ,y =0代入y 2=ax +b 中, 得a 2=b ;(6分)②当函数y 2=ax +b 的图象经过点(a +1,0)时, 把x =a +1,y =0代入y 2=ax +b 中, 得a 2+a =-b ;(8分)(3)∵抛物线y 1=(x +a )(x -a -1)的对称轴是直线x =-a +a +12=12,m <n , ∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大, ∵m <n ,∴点Q 离对称轴x =12的距离比点P 离对称轴x =12的距离大,(10分)∴|x 0-12|<1-12,∴0<x 0<1.(12分)5.解:(1)当m =3时,y =-x 2+6x , 令y =0,得-x 2+6x =0,∴x 1=0,x 2=6, ∴A (6,0). 当x =1时,y =5, ∴B (1,5).∵抛物线y =-x 2+6x 的对称轴为直线x =3, 又∵B ,C 关于对称轴对称, ∴BC =4;(3分)(2)过点C 作CH ⊥x 轴于点H (如解图①),第5题解图①由已知得∠ACP =∠BCH =90°, ∴∠ACH =∠PCB , 又∵∠AHC =∠PBC =90°, ∴△ACH ∽△PCB ,∴AH CH =PB BC.∵抛物线y =-x 2+2mx 的对称轴为直线x =m ,其中m >1, 又∵B ,C 关于对称轴对称, ∴BC =2(m -1),∵B (1,2m -1),P (1,m ), ∴BP =m -1,又∵A (2m ,0),C(2m -1,2m -1), ∴H (2m -1,0),∵AH =1,CH =2m -1, ∴12m -1=m -12(m -1), ∴m =32;(7分)(3)∵B ,C 不重合,∴m ≠1.(Ⅰ)当m >1时,BC =2(m -1),PM =m ,BP =m -1.(ⅰ)若点E 在x 轴上(如解图①), ∵∠CPE =90°,∴∠MPE +∠BPC =∠MPE +∠MEP =90°, ∴∠BPC =∠MEP .又∵∠C B P =∠PME =90°,PC =EP , ∴△BPC ≌△MEP , ∴BC =PM , ∴2(m -1)=m ,∴m =2,此时点E 的坐标是(2,0); (ⅱ)若点E 在y 轴上(如解图②),第5题解图②过点P 作PN ⊥y 轴于点N , 易证△BPC ≌△NPE , ∴BP =NP =OM =1,∴m -1=1, ∴m =2,此时点E 的坐标是(0,4);(11分)(Ⅱ)当0<m <1时,BC =2(1-m ),PM =m ,BP =1-m , (ⅰ)若点E 在x 轴上(如解图③),第5题解图③易证△BPC ≌△MEP , ∴BC =PM , ∴2(1-m )=m ,∴m =23,此时点E 的坐标是(43,0);(12分)(ⅱ)若点E 在y 轴上(如解图④),第5题解图④过点P 作PN ⊥y 轴上点N ,易证△BPC ≌△NPE ,∴BP =NP =OM =1, ∴1-m =1, ∴m =0(舍去).综上所述,当m =2时,点E 的坐标是(2,0)或(0,4), 当m =23时,点E 的坐标是(43,0).(14分)6.解:(1)∵抛物线y=(x-3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x-3)(x+1)=0,解得x=3或-1,∴点B的坐标为(3,0).∵y=(x-3)(x+1)=x2-2x-3=(x-1)2-4,∴顶点D的坐标为(1,-4);(4分)(2)①∵抛物线y=(x-3)(x+1)=x2-2x-3与y轴交于点C,∴C点坐标为(0,-3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,如解图①所示,则H点坐标为(1,-3),第6题解图①∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=2,CB=32,BD=25,∴△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴OC OQ =CD CB =13, ∴OQ =3OC =9,即Q (-9,0).∴直线CQ 的解析式为y =-13x -3, 直线BD 的解析式为y =2x -6,由方程组⎩⎪⎨⎪⎧y =-13x -3y =2x -6,解得⎩⎪⎨⎪⎧x =97y =-247, ∴点P 的坐标为(97,-247);(9分) ②(Ⅰ)当点M 在对称轴右侧时,若点N 在射线CD 上,如解图②所示,延长MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G .第6题解图②∵∠CMN =∠BDE ,∠CNM =∠BED =90°,∴△MCN ∽△DBE ,∴CN MN =BE DE =12, ∵MN =2CN ,设CN =a ,则MN =2a ,∵∠CDE =∠DCF =45°,∴△CNF,△MGF 均为等腰直角三角形,∴NF =CN =a ,CF =2a , ∴MF =MN +NF =3a ,∴MG =FG =322a , ∴CG =FG -FC =22a , ∴M (322a ,-3+22a ), 代入抛物线y =(x -3)(x +1),解得a =729, ∴M (73,-209), 若点N 在射线DC 上,如解图③所示,MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G .第6题解图③∵∠CMN =∠BDE ,∠CN M =∠BED =90°,∴△MCN ∽△DBE ,∴CN MN =BE DE =12, ∴MN =2CN ,设CN =a ,则MN =2a .∵∠CDE =45°,∴△CNF ,△MGF 均为等腰直角三角形,∴NF =CN =a ,CF =2a , ∴MF =MN -NF =a ,∴MG =FG =22a , ∴CG =FG +FC =322a , ∴M (22a ,-3+322a ), 代入抛物线y =(x -3)(x +1),解得a =52,∴M (5,12);(Ⅱ)当点M 在对称轴左侧时,∵∠CMN =∠BDE <45°,∴∠MCN >45°,而抛物线左侧任意一点K ,都有∠KCN <45°,∴点M 不存在.综上可知,点M 坐标为(73,-209)或(5,12).(14分) 7.解:(1)∵抛物线的对称轴是x =m 2, ∴AC =m ,∴BE =2AC =2m ;(3分)(2)当m = 3 时,点D 落在抛物线上,理由如下: ∵m =3, ∴AC =3,BE =23,y =x 2-3x -3,把x =23代入y =x 2-3x -3,得y =(23)2-3×23-3=3,∴OE =3=OC ,∵∠DEO =∠ACO =90°,∠DOE =∠AOC ,∴△OED ≌△OCA ,∴DE =AC =3,∴D (-3,3),∴把x =-3代入y =x 2-3x -3,得y =(-3)2-3×(-3)-3=3,∴点D 落在抛物线上;(7分)(3)①由(1)得BE =2m ,则点B 的横坐标为2m ,如解图①,当x =2m 时,y =2m 2-3,则点B 的纵坐标为2m 2-3,∴OE =2m 2-3.第7题解图①∵AG ∥y 轴,∴EG =AC =12BE , ∴FG =12OE , ∵S △DOE =S △BGF ,即12DE ·OE =12BG ·FG , ∴DE =12BG =12AC . ∵∠DOE =∠AOC ,∴tan∠DOE =tan∠AOC ,∵∠DEO =∠ACO =90°,∴DE OE =AC OC, ∴OE =12OC =32, ∴2m 2-3=32,∴m =±32, 又∵m >0,∴m =32;(8分) ②322.(10分) 【解法提示】由①知B (2m ,2m 2-3),E(0,2m 2-3),A(m ,-3), ∵G 是BE 的中点,∴GF =m 2-32,则AF =m 2+32, 易得直线BO 的解析式为y =2m 2-32mx , 设直线AE 的解析式为y =k 1x +b ,则⎩⎪⎨⎪⎧k 1m +b 1=-3b 1=2m 2-3, 解得⎩⎪⎨⎪⎧k 1=-2m b 1=2m 2-3, ∴直线AE 的解析式为y =-2mx +2m 2-3.联立得⎩⎪⎨⎪⎧y =-2mx +2m 2-3y =2m 2-32m x , 解得x =(2m 2-3)·2m 6m 2-3, ∴点M 的横坐标为(2m 2-3)·2m 6m 2-3. 如解图②,过点M 作MN ⊥AG 于点N ,第7题解图②则MN =m -(2m 2-3)·2m 6m 2-3=2m 3+3m 6m 2-3, 由S △BGF =S △AMF 得12MN ·AF =12GB ·GF , 即2m 3+3m 6m 2-3·(m 2+32)=m ·(m 2-32), 解得m =322,或m =0(舍去),或m =-322(舍去).8.解:(1)把点C (6,152)代入y =14x 2+14x +c ,得152=9+32+c , 解得c =-3,(1分)∴y =14x 2+14x -3, 当y =0时,14x 2+14x -3=0, 解得x 1=-4,x 2=3,∴A (-4,0),(2分)设直线AC 的函数表达式为y =kx +b (k ≠0),把A (-4,0),C (6,152)代入,得⎩⎪⎨⎪⎧0=-4k +b 152=6k +b ,解得⎩⎪⎨⎪⎧k =34b =3, ∴直线AC 的函数表达式为y =34x +3;(4分) (2)①∵在Rt △AOB 中,tan∠OAB =OB OA =34. 在Rt △AOD 中,tan∠OAD =OD OA =34, ∴∠OAB =∠OAD ,(6分)∵在Rt△PO Q 中,M 为PQ 中点,∴OM =MP ,∴∠MOP =∠MPO ,∵∠MOP=∠AON,∴∠APM =∠AON ,∴△APM ∽△AON ;(8分)②如解图,过点M 作ME ⊥x 轴于点E .第8题解图 又∵OM =MP ,∴OE =EP ,∵点M 横坐标为m ,∴AE =m +4,AP =2m +4,(9分) ∵tan∠OAD =34,∴cos∠EAM =cos∠OAD =45,∴AM =54AE =5(m +4)4,(10分)∵△APM ∽△AON ,∴AM AN =AP AO ,(11分)∴AN =AM·AO AP =5m +202m +4.(12分)。

相关文档
最新文档