人教高中数学A版必修一对数的概念

合集下载

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。

高中数学 2.2.1.1对数课件 新人教A版必修1

高中数学 2.2.1.1对数课件 新人教A版必修1

提示:①a<0,N取某些值时,logaN不存在,如根据指数的运算性质可知,不存在实数x使(-12)x=2成
立,所以log(-
1 2
)2不存在,所以a不能小于0.②a=0,N≠0时,不存在实数x使ax=N,无法定义logaN;N
=0时,任意非零实数x,有ax=N成立,logaN不确定.③a=1,N≠1时,logaN不存在;N=1,loga1有无 数个值,不能确定.
1
30
思考 1 对数恒等式 a logaN=N 成立的条件是什么? 提示:成立的条件是a>0,a≠1且N>0.
思考 2 用 a logaN (a>0 且 a≠1,N>0)化简求值的关键是什么?
提示:用 a logaN (a>0 且 a≠1,N>0)化简求值的关键是凑准公式的结构,尤其是对数的底数和幂底数 要一致,为此要灵活应用幂的运算性质.
思考 根据对数的定义以及对数与指数的关系,你能求出loga1=?logaa=?
提示: ∵对任意a>0且a≠1,都有a0=1, ∴化成对数式为loga1=0; ∵a1=a,∴化成对数式为logaa=1.
1
24
[典例示法] 例3 求下列各式中x的值. (1)logx27=32;(2)log2x=-23; (3)x=log2719;(4)log3(lgx)=1.
题目(1)(2)中的对数式化为指数式是怎样的?题目(3)(4)呢?
3
提示:(1)化为指数式x2
=27,(2)化为指数式2-23
=x,(3)化为指数式27x=19,(4)化为指数式31=lgx.
1
25
[解]
(1)由logx27=32可得x32 =27,
2

人教A版高中数学必修一课件 《对数》指数函数与对数函数PPT(第一课时对数的概念)

人教A版高中数学必修一课件 《对数》指数函数与对数函数PPT(第一课时对数的概念)

【解】 (1)loge16=a,即 ln16=a. (2)log6414=-13. (3)32=9. (4)xz=y.
将下列指数式与对数式互化:
(1)log216=4;
(2)log127=-3; 3
(3)43=64; (4)14-2=16. 解:(1)由 log216=4 可得 24=16.
(2)由
1.对数的概念 一 般 地 , 如 果 ax = N(a>0 , 且 a≠1) , 那 么 数 x 叫 做 _以___a_为___底__N__的__对__数____ , 记 作 _x_=___lo_g_a_N__ , 其 中 a 叫 做 ___对__数__的__底__数____,N 叫做真 __数___.
把对数式 loga49=2 写成指数式为( )
A.a49=2
B.2a=49
C.492=a
D.a2=49
答案:D
log32x- 5 1=0,则 x=________.
答案:3
指数式与对数式的互化
将下列指数式与对数式互化: (1)ea=16; (2)64-13=14; (3)log39=2; (4)logxy=z(x>0 且 x≠1,y>0).
log127=-3 3
可得13-3=27.
(3)由 43=64 可得 log464=3.
(4)由14-2=16
可得
log116=-2. 4源自利用对数式与指数式的关系求值
求下列各式中 x 的值: (1)log27x=-23; (2)logx16=-4; (3)lg10100=x; (4)-lne-3=x.
4.3对数 第一课时 对数
的概念
第四章 指数函数与对数函数
考点
学习目标

高中数学 第二章 第2节 对数函数 新人教A版必修1知识精讲

高中数学 第二章 第2节 对数函数 新人教A版必修1知识精讲

高中数学 第二章 第2节 对数函数 新人教A 版必修1知识精讲一、学习目标:1. 理解对数的概念及其运算性质,知道换底公式。

2. 理解对数函数的概念,图象和性质。

3. 了解对数函数与指数函数互为反函数的关系。

二、重点、难点:重点是理解对数的概念及其运算性质,对数函数的概念、图象和性质。

难点是换底公式和对数函数模型的应用,以及反函数的概念。

三、考点分析:对数函数是高中数学的重要函数。

高考中,既考查定义与图象及主要性质,又在数学思想方法上考查分类讨论的方法及字母运算能力。

既有选择题、填空题,又可以解答题出现,且对综合能力要求较高。

学习过程中不仅要从概念,图象,性质三方面理解对数、对数函数,还要增强运用分类讨论的思想方法以及综合运用函数图像及性质解题的能力。

1. 对数对数的定义:b N N a a b=⇔=log 。

对数式log a N b =是由指数式b a N =转化而来的。

两式底数相同,对数式中的真数N 就是指数式中的幂值N ,而对数值b 则是指数式中的幂指数。

这是指数式与对数式互化的依据。

关于对数的几个结论: (1)零和负数没有对数; (2)log 10a =; (3)log 1a a =;(4)log a N a N =。

底数10a =的对数叫做常用对数,记作lg N ;底数e a =的对数叫做自然对数,记作ln N ,其中e 是一个无理数,e 2.71282=。

2. 对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么:(1)M a (log ·=)N M a log +N a log ; (2)=N Malog M a log -N a log ; (3)na M log n =M a log )(R n ∈.3. 换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m nb a na m log log =;(2)ab b a log 1log =. 4. 对数函数的概念一般地,把函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞)。

人教A版(2019)高中数学必修第一册4.4.1对数函数的概念教案

人教A版(2019)高中数学必修第一册4.4.1对数函数的概念教案

4.4.1 对数函数的概念教学目标:通过具有现实背景的具体实例,经历数学抽象,理解对数函数的概念,了解对数函数的实际意义.教学重点:对数函数的概念,包括定义、底数a的取值范围、定义域.教学难点:由指数函数(a>0,且a≠1),能想到x也是y的函数,总结归纳出对数函数的概念.教学过程:引导语:在4.2节中,我们用指数函数模型研究了呈指数增长或衰减变化规律的问题.对这样的问题,在引入对数后,我们还可以从另外的角度,对蕴含的规律作进一步的研究.1.形成定义问题1:在4.2.1的问题2中,我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律是函数(x≥0).进一步地,死亡时间x是碳14的含量y的函数吗?追问1:解决这个问题,显然要依据函数的定义.那么依据定义应该怎样进行判断呢?师生活动:教师引导学生先回忆函数的定义,然后确定判断方法.函数的定义:设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.所以要判断死亡时间x是否是碳14的含量y的函数,就要确定,对于任意一个y∈(0,1],是否都有唯一确定的x与其对应.追问2:若已知死亡生物体内碳14的含量,如何得知它死亡了多长时间呢?如图1,观察(x≥0)的图象,过y轴正半轴上任意一点(0,y0)(0<y0≤1)作x轴的平行线,与(x≥0)的图象有几个交点?这说明对任意一个y∈(0,1],都有几个x与其对应?能否将x看成是y的函数?师生活动:按照追问1确定的办法,先由学生分析,之后教师用软件进行演示,直观呈现对任意一个y∈(0,1],都有唯一确定的x与其对应.根据函数的定义,可知能将x看成是y的函数.追问3:能否求出生物死亡年数随体内碳14含量变化的函数解析式?师生活动:学生应该有足够能力解决此问题.通过指数与对数的运算关系,可以将这种对应关系,改写为.习惯上用x表示自变量,用y表示函数值,于是就得到函数,x∈(0,1],刻画时间y随碳14含量x的衰减而变化的规律.设计意图:通过再次分析4.2.1的问题2,并与指数函数进行比较,形成对比,从另外的角度刻画其中蕴含的规律,引出用函数的方式描述问题,为抽象得到对数函数做准备.问题2:对于一般的指数函数(a>0,且a≠1),根据指数与对数的运算关系,转换成(a>0,且a≠1),能否将x看成是y的函数?师生活动:利用解决问题1的经验,先由学生解答这个问题,之后师生一起完善.教师讲授:通常,我们用x表示自变量,y表示函数.为此,可将(a>0,且a≠1)改写为:(a>0,且a≠1).这就是对数函数.追问1:通过与指数函数对比,函数的定义域是什么?师生活动:根据指数函数的定义可知,在对数函数中,自变量x的取值范围是(0,+∞).于是就得到了:定义:一般地,函数(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).设计意图:通过从特殊到一般的过程,抽象出对数函数的基本形式,得出对数函数的概念.并在与指数函数对比的基础上,建立关联,得出对数函数的定义域.2.应用定义例1求下列函数的定义域:追问:求解的依据是什么?据此求解的步骤是什么?师生活动:教师利用追问引导学生,一切从定义出发.对数函数(a>0,且a≠1)的定义域是(0,+∞),那么(1)中的和(2)中的(4-x)的取值范围就是(0,+∞),于是得到不等式,将定义域问题转化为解不等式问题,进而求出定义域.设计意图:通过求函数定义域,进一步理解对数函数定义域的特殊性.在中学阶段,对数函数是为数不多的定义域不是实数集R的函数,这属于一个特殊情况.此前遇到的特殊情况还包括分母不能为0,二次根式下不能为负数.可以前后形成对比,加深对函数定义域和一些特殊情况的理解.练习1.求下列函数的定义域:练习2.画出下列函数的图象:设计意图:通过对数函数与分式、绝对值等多种形式的结合,并利用函数的解析式法、图象法,从不同角度推动学生对对数函数定义域的理解,进一步明确概念,体会对数函数定义域的特殊性.例2 假设某地初始物价为1,每年以5%的增长率递增,经过y年后的物价为x.(1)该地的物价经过几年后会翻一番?(2)填写下表,并根据表中的数据,说明该地物价的变化规律.师生活动:教师引导学生,顺着题意,理清思路,进行解答.对于(1),先写出x关于y的函数,再根据对数与指数间的关系,转换为y关于x的函数.对于(2),利用计算工具,快速填好表格,探索发现,随着x的增长,y的增长在减缓.由表中的数据可以发现,该地区的物价随时间的增长而增长,但大约每增加1倍所需要解:观察集合A和集合B的数据,猜测其对应关系为以2为底的指数函数,将数据依次代入函数进行检验,发现都满足该函数的解析式,所以选①.(1)先通过4.2.1的问题2中所阐述的实际问题,利用图象上x与y的对应关系,理解x也是y的函数,再利用指数与对数的运算关系,依据函数的定义,从交换自变量与函数值“地位”的方向进行研究,得到对数函数的概念.(2)对数函数与指数函数是密不可分的.对于呈指数增长或衰减变化的问题,我们可以用指数函数进行描述,还可以从对数函数的角度进行描述,从而能够更全面地研究其中蕴含的规律.设计意图:(1)得到对数函数概念的基本过程,是函数研究套路“背景-概念-图象与性质-应用”中的“背景-概念”环节.通过不断重复这一过程,使学生逐步掌握研究一个数学对象的基本套路.(2)明确对数函数的现实背景,可以使学生明白这类函数区别于其他初等函数的主要特征,为对数函数的图象性质和应用奠定基础.4.布置作业根据课堂教学情况,从教科书习题4.4中选择合适的题目,可选题目为第1,3,5,9,10题.(五)目标检测设计1.设对数函数y=f(x)的底数为a,如果f(9)=2,f(27)=3,那么a=____ ,f(81)=_____ .设计意图:考查对数函数的概念.。

数学人教A版(2019)必修第一册4-3-2 对数的运算

数学人教A版(2019)必修第一册4-3-2 对数的运算
1
(2) log 5 10 − log 5 2 = ______.
(3) 10 =
1
_______.
2
思考:在积的对数运算性质中,三项的乘积式log ()
是否适用?你能得到一个怎样的结论?
提示:适用,log () = log + log + log ,积
m
n
(2)loga b logb a = 1
(3)loga b logb c logc d = loga d
注意:
1.公式的正用、逆用
2.统一形式
3.通常换为以10或e为底
在4.2.1的问题1中,求经过多少年B地景区的游客人次是2001年的2倍,
就是计算 = . 2 的值。
由换底公式可得; =
人教A版高中数学必修第一册
对数的运算
教学目标
1.理解对数的运算性质.(重点)
2.能用换底公式将一般对数转化成自然对
数或常用对数.(难点)
3.会运用运算性质进行一些简单的化简与
证明.(易混点)
数学学科素养
1.数学抽象:对数的运算性质;
2.逻辑推理:换底公式的推导;
3.数学运算:对数运算性质的应用;

. 2=

.

利用计算工具,可得=
.
≈ . ≈ ,
由此可得,大约经过7年,B地景区的
游客人次就达到2001年的2倍,类似地,
可以求出游客人次是2001年的3倍,4倍,
…所需要的年数。
例题讲解
例3.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对
x
当 a>0,且 a≠1 时,则 a =N ⇔ x =logaN

人教高中数学必修一A版《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数说课教学课件

人教高中数学必修一A版《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数说课教学课件

(3)在同一坐标系中,对数函数 y=log2x,y=log5x,y=log 1 x,y=log 1 x 的
2
5
图象如图所示.从图中看,对数函数图象的分布与底数有什么关系?
提示:在直线x=1的右侧,a>1时,a越大,图象越靠近x轴,0<a<1时,a
越小,图象越靠近x轴.
课前篇
自主预习



2.填表
对数函数的图象和性质
数的大小,如图所示.
2.牢记特殊点:对数函数 y=logax(a>0,且 a≠1)的图象经过
(1,0),(a,1),
1

,-1 .
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
变式训练2作出函数y=
解:先画出函数y=lg x的图象(如图①).
再将该函数图象向右平移1个单位长度得到函数y=lg(x-1)的图象
思想方法
随堂演练
反思感悟 1.对数函数是一个形式定义:
2.对数函数解析式中只有一个参数a,用待定系数法求对数函数
解析式时只须一个条件即可求出.
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
变式训练1(1)若函数f(x)=log(a+1)x+(a2-2a-8)是对数函数,则a=
(2)点A(8,-3)和B(n,2)在同一个对数函数图象上,则n=
2

.
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练

新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数对数函数讲义

新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数对数函数讲义

最新课程标准:(1)通过具体实例,了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.(2)知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).(3)收集、阅读对数概念的形成与发展的历史资料,撰写小论文,论述对数发明的过程以及对数对简化运算的作用.知识点一对数函数的概念函数y=log a x (a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).错误!形如y=2log2x,y=log2错误!都不是对数函数,可称其为对数型函数.知识点二对数函数的图象与性质a>10<a<1图象性质定义域(0,+∞)值域R过点(1,0),即当x=1时,y=0在(0,+∞)上是增函数在(0,+∞)上是减函数错误!底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.知识点三反函数一般地,指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的定义域与值域正好互换.[教材解难]1.教材P130思考根据指数与对数的关系,由y =错误!5730x(x ≥0)得到x =log 573012y (0<y ≤1).如图,过y 轴正半轴上任意一点(0,y 0)(0<y 0≤1)作x 轴的平行线,与y =错误!5730x(x ≥0)的图象有且只有一个交点(x 0,y 0).这就说明,对于任意一个y ∈(0,1],通过对应关系x =log 573012y ,在[0,+∞)上都有唯一确定的数x 和它对应,所以x 也是y 的函数.也就是说,函数x =log 573012y ,y ∈(0,1]刻画了时间x 随碳14含量y 的衰减而变化的规律.2.教材P 132思考利用换底公式,可以得到y =log 12x =—log 2x .因为点(x ,y )与点(x ,—y )关于x轴对称,所以y =log 2x 图象上任意一点P (x ,y )关于x 轴的对称点P 1(x ,—y )都在y =log 12x 的图象上,反之亦然.由此可知,底数互为倒数的两个对数函数的图象关于x 轴对称.根据这种对称性,就可以利用y =log 2x 的图象画出y =log 12x 的图象.3.教材P 138思考一般地,虽然对数函数y =log a x (a >1)与一次函数y =kx (k >0)在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数y=log a x(a>1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内,log a x可能会大于kx,但由于log a x的增长慢于kx的增长,因此总会存在一个x0,当x>x0时,恒有log a x<kx.4.4.1对数函数的概念[基础自测]1.下列函数中是对数函数的是()A.y=log14xB.y=log14(x+1)C.y=2log14xD.y=log14x+1解析:形如y=log a x(a>0,且a≠1)的函数才是对数函数,只有A是对数函数.答案:A2.函数y=错误!ln(1—x)的定义域为()A.(0,1)B.[0,1)C.(0,1] D.[0,1]解析:由题意,得错误!解得0≤x<1;故函数y=错误!ln(1—x)的定义域为[0,1).答案:B3.函数y=log a(x—1)(0<a<1)的图象大致是()解析:∵0<a<1,∴y=log a x在(0,+∞)上单调递减,故A,B可能正确;又函数y=log a(x—1)的图象是由y=log a x的图象向右平移一个单位得到,故A正确.答案:A4.若f(x)=log2x,x∈[2,3],则函数f(x)的值域为________.解析:因为f(x)=log2x在[2,3]上是单调递增的,所以log22≤log2x≤log23,即1≤log2x≤log23.答案:[1,log23]题型一对数函数的概念例1下列函数中,哪些是对数函数?(1)y=log a错误!(a>0,且a≠1);(2)y=log2x+2;(3)y=8log2(x+1);(4)y=log x6(x>0,且x≠1);(5)y=log6x.【解析】(1)中真数不是自变量x,不是对数函数.(2)中对数式后加2,所以不是对数函数.(3)中真数为x+1,不是x,系数不为1,故不是对数函数.(4)中底数是自变量x,而非常数,所以不是对数函数.(5)中底数是6,真数为x,系数为1,符合对数函数的定义,故是对数函数.用对数函数的概念例如y=log a x(a>0且a≠1)来判断.方法归纳判断一个函数是对数函数的方法跟踪训练1若函数f(x)=(a2—a+1)log(a+1)x是对数函数,则实数a=________.解析:由a2—a+1=1,解得a=0或a=1.又底数a+1>0,且a+1≠1,所以a=1.答案:1对数函数y=log a x系数为1.题型二求函数的定义域[教材P130例1]例2求下列函数的定义域:(1)y=log3x2;(2)y=log a(4—x)(a>0,且a≠1).【解析】(1)因为x2>0,即x≠0,所以函数y=log3x2的定义域是{x|x≠0}.(2)因为4—x>0,即x<4,所以函数y=log a(4—x)的定义域是{x|x<4}.真数大于0.教材反思求定义域有两种题型,一种是已知函数解析式求定义域,常规为:分母不为0;0的零次幂与负指数次幂无意义;偶次根式被开方式(数)非负;对数的真数大于0,底数大于0且不等于1.另一种是抽象函数的定义域问题.同时应注意求函数定义域的解题步骤.跟踪训练2求下列函数的定义域:(1)y=lg(x+1)+错误!;(2)y=log(x—2)(5—x).解析:(1)要使函数有意义, 需错误!即错误!∴—1<x <1,∴函数的定义域为(—1,1). (2)要使函数有意义,需错误!∴错误! ∴定义域为(2,3)∪(3,5).真数大于0,偶次根式被开方数大于等于0,分母不等于0,列不等式组求解. 题型三 对数函数的图象问题例3 (1)函数y =x +a 与y =log a x 的图象只可能是下图中的( )(2)已知函数y =log a (x +3)—1(a >0,a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x +b 的图象上,则f (log 32)=________.(3)如图所示的曲线是对数函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象,则a ,b ,c ,d 与1的大小关系为________.【解析】 (1)A 中,由y =x +a 的图象知a >1,而y =log a x 为减函数,A 错;B 中,0<a <1,而y =log a x 为增函数,B 错;C 中,0<a <1,且y =log a x 为减函数,所以C 对;D 中,a <0,而y =log a x 无意义,也不对.(2)依题意可知定点A (—2,—1),f (—2)=3—2+b =—1,b =—错误!,故f (x )=3x —错误!,f (log 32)=33log 2—错误!=2—错误!=错误!.(3)由题干图可知函数y=log a x,y=log b x的底数a>1,b>1,函数y=log c x,y=log d x的底数0<c<1,0<d<1.过点(0,1)作平行于x轴的直线,则直线与四条曲线交点的横坐标从左向右依次为c,d,a,b,显然b>a>1>d>c.【答案】(1)C (2)错误!(3)b>a>1>d>c错误!(1)由函数y=x+a的图象判断出a的范围.(2)依据log a1=0,a0=1,求定点坐标.(3)沿直线y=1自左向右看,对数函数的底数由小变大.方法归纳解决对数函数图象的问题时要注意(1)明确对数函数图象的分布区域.对数函数的图象在第一、四象限.当x趋近于0时,函数图象会越来越靠近y轴,但永远不会与y轴相交.(2)建立分类讨论的思想.在画对数函数图象之前要先判断对数的底数a的取值范围是a>1,还是0<a<1.(3)牢记特殊点.对数函数y=log a x(a>0,且a≠1)的图象经过点:(1,0),(a,1)和错误!.跟踪训练3(1)如图所示,曲线是对数函数y=log a x(a>0,且a≠1)的图象,已知a取错误!,错误!,错误!,错误!,则相应于C1,C2,C3,C4的a值依次为()A.错误!,错误!,错误!,错误!B.错误!,错误!,错误!,错误!C.错误!,错误!,错误!,错误!D.错误!,错误!,错误!,错误!(2)函数y=log a|x|+1(0<a<1)的图象大致为()解析:(1)方法一作直线y=1与四条曲线交于四点,由y=log a x=1,得x=a(即交点的横坐标等于底数),所以横坐标小的底数小,所以C1,C2,C3,C4对应的a值分别为错误!,错误!,错误!,错误!,故选A.方法二由对数函数的图象在第一象限内符合底大图右的规律,所以底数a由大到小依次为C1,C2,C3,C4,即错误!,错误!,错误!,错误!.故选A.增函数底数a>1,减函数底数0<a<1.(2)函数为偶函数,在(0,+∞)上为减函数,(—∞,0)上为增函数,故可排除选项B,C,又x=±1时y=1,故选A.先去绝对值,再利用单调性判断.答案:(1)A (2)A课时作业231.下列函数是对数函数的是()A.y=2+log3xB.y=log a(2a)(a>0,且a≠1)C.y=log a x2(a>0,且a≠1)D.y=ln x解析:判断一个函数是否为对数函数,其关键是看其是否具有“y=log a x”的形式,A,B,C全错,D正确.答案:D2.若某对数函数的图象过点(4,2),则该对数函数的解析式为()A.y=log2xB.y=2log4xC.y=log2x或y=2log4xD.不确定解析:由对数函数的概念可设该函数的解析式为y=log a x(a>0,且a≠1,x>0),则2=log a4即a2=4得a=2.故所求解析式为y=log2x.答案:A3.设函数y=错误!的定义域为A,函数y=ln(1—x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(—2,1)D.[—2,1)解析:由题意可知A={x|—2≤x≤2},B={x|x<1},故A∩B={x|—2≤x<1}.答案:D4.已知a>0,且a≠1,函数y=a x与y=log a(—x)的图象只能是下图中的()解析:由函数y=log a(—x)有意义,知x<0,所以对数函数的图象应在y轴左侧,可排除A,C.又当a>1时,y=a x为增函数,所以图象B适合.二、填空题5.若f(x)=log a x+(a2—4a—5)是对数函数,则a=________.解析:由对数函数的定义可知错误!,∴a=5.答案:56.已知函数f(x)=log3x,则f错误!+f(15)=________.解析:f错误!+f(15)=log3错误!+log315=log327=3.答案:37.函数f(x)=log a(2x—3)(a>0且a≠1)的图象恒过定点P,则P点的坐标是________.解析:令2x—3=1,解得x=2,且f(2)=log a1=0恒成立,所以函数f(x)的图象恒过定点P(2,0).答案:(2,0)三、解答题8.求下列函数的定义域:(1)y=log3(1—x);(2)y=错误!;(3)y=log7错误!.解析:(1)由1—x>0,得x<1,∴函数y=log3(1—x)的定义域为(—∞,1).(2)由log2x≠0,得x>0且x≠1.∴函数y=错误!的定义域为{x|x>0且x≠1}.(3)由错误!>0,得x<错误!.∴函数y=log7错误!的定义域为错误!.9.已知f(x)=log3x.(1)作出这个函数的图象;(2)若f(a)<f(2),利用图象求a的取值范围.解析:(1)作出函数y=log3x的图象如图所示(2)令f(x)=f(2),即log3x=log32,解得x=2.由图象知,当0<a<2时,恒有f(a)<f(2).∴所求a的取值范围为0<a<2.[尖子生题库]10.已知函数y=log2x的图象,如何得到y=log2(x+1)的图象?y=log2(x +1)的定义域与值域是多少?与x轴的交点是什么?解析:y=log2x错误!y=log2(x+1),如图.定义域为(—1,+∞),值域为R,与x轴的交点是(0,0).。

高中数学第四章指数函数与对数函数4-3对数4-3-1对数的概念新人教A版必修第一册

高中数学第四章指数函数与对数函数4-3对数4-3-1对数的概念新人教A版必修第一册
又因为 x>0,所以 x=
=4,故选 B.
答案:B
4.已知 loga2=m,loga3=n,则 a2m-n=
.
解析:因为 loga2=m,loga3=n,所以 am=2,an=3,所以
a2m-n=
= = .
探索点三 利用对数的性质或对数恒等式求值
【例 3】 (1)求下列各式中的 x 的值.
①lg(ln x)=0;
1.对数与指数间的关系
当 a>0,且 a≠1 时,ax=N⇔x= logaN .
2.对数的性质
(1)负数和 0 没有 对数;
(2)loga1= 0 ;
(3)logaa= 1 .
3.对数恒等式
= N (a>0,且 a≠1,N>0).
【思考】
能将(-2)3=-8 化为对数式吗?
提示:不能.底数要求是不等于1的正数.
> -,
解析:由题意可得 - > , 即 > ,
≠ ,
- ≠ ,
解得 x>1,且 x≠2.
(2)将下列对数式化为指数式或将指数式化为对数式.
①2-7=
②lo
;
③lg 1 000=3;
32=-5;
④ln x=2.

= ,得


解:①由 2
log2 =-7.

-5
2.将下列指数式与对数式进行互化.

-
(1) =

;(2)lo


-
解:(1)由 =
(2)由 lo
4=4;(3)lg

,得

0.001=-3.


log5 =- .

人教A版高中数学必修第一册 同步学案4-3-1 对数的概念

人教A版高中数学必修第一册 同步学案4-3-1 对数的概念

4.3 对数4.3.1 对数的概念1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值.1.对数的定义一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.常用对数与自然对数通常我们将以10为底的对数叫做常用对数,记为lgN.在科学技术中常使用以无理数e=2.71828…为底的对数,以e为底的对数称为自然对数,并记为lnN.3.指数与对数的互化当a>0,a≠1时,a x=N⇔x=log a N.4.对数的性质(1)log a1=0;(2)log a a=1;(3)零和负数没有对数.1.指数方程3x=3如何求解?[答案] 化为3x=312,求得x=122.如何求解3x=2?[答案] x=log323.判断正误(正确的打“√”,错误的打“×”)(1)log a N是log a与N的乘积.( )(2)(-2)3=-8可化为log(-2)(-8)=3.( )(3)对数运算的实质是求幂指数.( )(4)等式log a1=0对a∈R均成立.( )[答案] (1)×(2)×(3)√(4)×题型一 指数式与对数式的互化【典例1】 将下列指数式化为对数式,对数式化为指数式: (1)3-2=19;(2)⎝ ⎛⎭⎪⎫14-2=16;(3)log 1327=-3;(4)log x64=-6.[思路导引] 借助a b=N ⇔b =log a N(a>0,且a ≠1)转化. [解] (1)∵3-2=19,∴log 319=-2.(2)∵⎝ ⎛⎭⎪⎫14-2=16,∴log 1416=-2.(3)∵log 1327=-3,∴⎝ ⎛⎭⎪⎫13-3=27.(4)∵logx 64=-6,∴(x)-6=64.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式; (2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式. [针对训练]1.将下列指数式化为对数式,对数式化为指数式: (1)2-7=1128;(2)3a=27;(3)10-1=0.1;(4)log 12 32=-5;(5)lg0.001=-3. [解] (1)log 21128=-7.(2)log 327=a. (3)lg0.1=-1.(4)⎝ ⎛⎭⎪⎫12-5=32. (5)10-3=0.001. 题型二 对数的计算【典例2】 求下列各式中的x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg100=x ;(4)-lne 2=x.[思路导引] 把对数式化为指数式求解.求对数值的3个步骤(1)设出所求对数值. (2)把对数式转化为指数式. (3)解有关方程,求得结果. [针对训练]2.求下列各式中的x 值: (1)log x 27=32;(2)log 2x =-23;(3)x =log 2719;(4)x =log 12 16.(3)由x =log 2719,可得27x=19,∴33x =3-2,∴x =-23.(4)由x =log 1216,可得⎝ ⎛⎭⎪⎫12x=16.∴2-x=24,∴x =-4.题型三 对数的性质[思路导引] 首先利用对数的基本性质化“繁”为“简”,再求值. [解] (1)由log (2x 2-1)(3x 2+2x -1)=1 得⎩⎪⎨⎪⎧3x 2+2x -1=2x 2-1,3x 2+2x -1>0,2x 2-1>0且2x 2-1≠1,解得x =-2.(2)由log 2[log 3(log 4x)]=0可得log 3(log 4x)=1,故log 4x =3,所以x =43=64.对数性质的应用要点(1)使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对于多重对数符号的,可以先把内层视为整体,逐层使用对数的性质.(2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.这就要求首先要牢记对数恒等式alog a N=N及其格式.[针对训练]3.求下列各式中x的值:(1)log2(log4x)=0;(2)log3(lgx)=1.[解] (1)∵log2(log4x)=0,∴log4x=20=1,∴x=41=4.(2)∵log3(lgx)=1,∴lgx=31=3,∴x=103=1000.课堂归纳小结1.对数概念的理解(1)规定a>0且a≠1.(2)由于在实数范围内,正数的任何次幂都是正数,所以a b=N中,N总是正数,即零和负数没有对数.(3)对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N⇔log a N=b(a>0且a≠1,N>0),据此可得两个常用恒等式:①log a a b=b;②a log a N=N.2.在关系式a x=N中,已知a和x求N的运算称为求幂运算,而如果已知a和N求x的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.1.下列指数式与对数式互化不正确的一组是( ) A .e 0=1与ln1=0 B .8-13 =12与log 812=-13C .log 39=2与9 12=3 D .log 77=1与71=7[解析] 由log 39=2,得32=9,故选C. [答案] C2.已知log x 16=2,则x 等于( ) A .4 B .±4 C .256D .2[解析] ∵log x 16=2,∴x 2=16,又x>0,∴x =4. [答案] A 3.设5log 5(2x -1)=25,则x 的值等于( )A .10B .13C .100D .±100[解析] 由5 log 5(2x -1)=2x -1=25,得x =13.[答案] B 4.式子2log 25+log 321的值为________.[解析] 原式=5+0=5. [答案] 5课后作业(二十九)复习巩固一、选择题1.使对数log a(5-a)有意义的a的取值范围为( )A.(0,1)∪(1,+∞) B.(0,5)C.(0,1)∪(1,5) D.(-∞,5)[解析] 由对数的概念可知a需满足a>0且a≠1且5-a>0,解得0<a<5且a≠1. [答案] C[解析] 根据对数的定义可知,-3=log3127.[答案] C3.已知lnx=2,则x等于( )A.±2B.e2C.2e D.2e[解析] 由lnx=2得,e2=x,所以x=e2.[答案] B4.已知log7[log3(log2x)]=0,那么x等于( )A.9 B.8C.7 D.6[解析] 由条件知,log3(log2x)=1,所以log2x=3,所以x=8. [答案] B[解析] 由原方程得=31,所以log x24=1,即x2=4,即x=±2,经检验知x=±2都是方程的解.[答案] D二、填空题[答案] 2[解析] 原式=2log23+0-102·10lg2=3-200=-197.[答案] -197[答案] 4 3三、解答题9.将下列指数式化为对数式,对数式化为指数式.(1)53=125;(2)4-2=116;(3)log128=-3;(4)log3127=-3.[解] (1)∵53=125,∴log5125=3.(2)∵4-2=116,∴log 4116=-2.(3)∵log 128=-3,∴⎝ ⎛⎭⎪⎫12-3=8.(4)∵log 3127=-3,∴3-3=127.10.若log 12x =m,log 14y =m +2,求x2y的值.[解] ∵log 12 x =m,∴⎝ ⎛⎭⎪⎫12m =x,x 2=⎝ ⎛⎭⎪⎫122m .∵log 14 y =m +2,∴⎝ ⎛⎭⎪⎫14m +2=y,y =⎝ ⎛⎭⎪⎫122m +4.∴x 2y =⎝ ⎛⎭⎪⎫122m ⎝ ⎛⎭⎪⎫122m +4=⎝ ⎛⎭⎪⎫122m -(2m +4)=⎝ ⎛⎭⎪⎫12-4=16. 综合运用11.若log a 5b =c,则下列关系式中正确的是( ) A .b =a 5cB .b 5=a cC .b =5a cD .b =c 5a[解析] 由log a 5b =c,得a c =5b,∴b =(a c )5=a 5c. [答案] A12.已知log a x =2,log b x =1,log c x =4(a,b,c,x>0且x ≠1),则log x (abc)=( ) A.47 B.27 C.72 D.74[答案] D13.方程log 3(2x 2-1)=1的解为x =________. [解析] 由log 3(2x 2-1)=1,得2x 2-1=3, ∴2x 2=4,x =± 2. [答案] ± 214.⎝ ⎛⎭⎪⎫12-1+log 0.54的值为________. [解析] ⎝ ⎛⎭⎪⎫12-1+log 0.54=⎝ ⎛⎭⎪⎫12-1·=2×4=8.[答案] 8[解] (1)∵log 2[log 3(log 4x)]=0, ∴log 3(log 4x)=1, ∴log 4x =3,∴x =43=64. 由log 4(log 2y)=1,知log 2y =4, ∴y =24=16.。

最新人教A版高中数学必修一课件:4.3.1 对数的概念

最新人教A版高中数学必修一课件:4.3.1 对数的概念

(二)基本知能小试
1.判断正误:
(1)因为(-2)2=4,所以 2=log(-2)4.
()
(2)logaN 是 loga 与 N 的乘积.
()
(3)使对数 log2(-2a+1)有意义的 a 的取值范围是-∞,12.
()
(4)对数的运算实质是求幂指数.
()
答案:(1)× (2)× (3)√ (4)√
[解析]
(1)由题意知aa--22>≠01,, 5-a>0,
解得 2<a<3 或 3<a<5.
(2)①由 53=125,得 log5125=3.②由 log216=4,得 24=16.③由 10-2=0.01,
得 lg 0.01=-2.④由 log 5125=6,得( 5)6=125.
[答案]C
[方法技巧] 指数式与对数式互化的思路
提示:①a<0,N 取某些值时,logaN 不存在,如根据指数的运算性质可知,
不存在实数 x 使-12x=2 成立,所以
不存在,所以 a 不能小于 0.
②a=0,N≠0 时,不存在实数 x 使 ax=N,无法定义 logaN;N=0 时,任
意非零实数 x,有 ax=N 成立,logaN 不确定.
③a=1,N≠1 时,logaN 不存在;N=1,loga1 有无数个值,不能确定.
【对点练清】 1.[变条件]本例(2)②中若将“log3(log4(log5x))=0”改为“log3(log4(log5x))=
1”,则 x=________.
解析:由 log3(log4(log5x))=1,可得 log4(log5x)=3,则 log5x=43=64,所以 x=564. 答案:564

新人教A版高中数学必修一课件:4.4.1-2.1对数函数的概念、图象及性质

新人教A版高中数学必修一课件:4.4.1-2.1对数函数的概念、图象及性质
(4,-1)
________.
解析: y=logax的图象恒过点(1,0),令x-3=1,得x=4,则y=-1.
<d<1.
过点(0,1)作平行于x轴的直线,则直线与四条曲线交点的横坐标从左向右依次为c,d,a,b,显然b>a
>1>d>c.
(2)已知函数y=loga(x+3)-1(a>0,且a≠1)的图象恒过定点A,若
8
9
点A也在函数f(x)=3x+b的图象上,则f(log32)=________.
10
10
解析:依题意可知定点A(-2,-1),f(-2)=3-2+b=-1,b=- 9 ,故f(x)=3x- 9 ,f(log32)=3log32-
a
单调性
共点性
要点三
反函数
x
y=a
logax(a>0且a≠1)
指数函数______(a>0,且a≠1)与对数函数y=______________互为
反函数❸.
助 学 批 注
批注❶ 由指数式与对数式的关系知,对数函数的自变量x恰好是指
数函数的函数值y,所以对数函数的定义域是(0,+∞).
批注❷ 底数a与1的大小关系决定了对数函数图象的“升降”:当a
身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数
大于零且不等于1.
巩固训练2 (1)函数y=ln (4-x)+ x的定义域为(
A.(0,4)
B.(0,4]
C.[0,4)
D.[0,4]
答案:C
解析:函数y=ln (4-x)+ x,要使函数有意义可得ቊ
解得0≤x<4,所以函数的定义域为[0,4).
高中数学必修一
第1课时 对数函数的概念、图象及性质

高中数学2.2.1.1对 数(人教A版必修1)讲解

高中数学2.2.1.1对 数(人教A版必修1)讲解

1 27
=-3,
log6216=3写成指数式为63=216.
答案:log3
1 27
=-3
63=216
1.对数logaN中规定a>0且a≠1的原因
a不能取的值
原因
a<0
N取某些值时,logaN不存在,如根据指数的运
算性质可知,不存在实数x使(- 1 )x=2成立,
2
所以
log (
1)2
不存在,所以a不能小于0.
2.指数式与对数式互化在函数求值问题中的应用 利用指数式与对数式的关系,可以将对数运算转化为指数运算. 例如,(1)利用指数运算性质讨论对数运算性质; (2)给出指 数式(对数式)的条件求对数(幂)的值等问题.
【典例训练】
1.若f(10x)=x,则f(2)=________.
2.将下列指数式化为对数式,对数式化为指数式:
【阅卷人点拨】通过阅卷后分析,对解答本题的常见错误及解 题启示总结如下:(注:此处的①见解析过程)

在判断第(4)个说法时,常会忽视①处M=N=0,即
见 选B 真数等于零时对数无意义的情况,而导致判断说

法(4)正确.实质是对对数的定义理解不准确,对

数与指数的关系掌握不好造成的.
解 (1)判断一个说法错误时常用举反例的方法,而举反例的 题 关键是问题要考虑全面. 启 (2)学会利用指数式与对数式的关系理解对数的概念,尤 示 其要注意对数的底数和真数的取值范围.
2
a不能取的值
原因
N≠0时,不存在实数x使ax=N,无法定义logaN.
a=0 N=0时,任意非零实数x,有ax=N成立,logaN不 确定.
N≠1,logaN不存在.

【高中数学】对数函数的概念

【高中数学】对数函数的概念


.

归纳总结
[规律方法]
求对数型函数的定义域时应遵循的原则
分母不能为
根指数为偶数时,被开方数非负
对数的真数大于,底数大于且不为
提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定
义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大
(2)若 f(a)<f(2),利用图象求 a 的取值范围.
【答案】(1)作出函数 y=log3x 的图象如图所示.
(2)令 f(x)=f(2),
即 log3x=log32,解得 x=2.
由图象知:
当 0<a<2 时,恒有 f(a)<f(2).
所以所求 a 的取值范围为 0<a<2.
课堂小结
1.对数函数的概念及与指数函数的关系。
3
-1)
x;
1
④y=3log3x;⑤y=logx 3(x>0,且 x≠1);
⑥y=log2x.其中是对数函数的为(
π
)
A.③④⑤
B.②④⑥
C.①③⑤⑥
D.③⑥
(2)若函数 y=log(2a-1)x+(a2-5a+4)是对数函数,则 a=________.
(3)已知对数函数的图象过点(16,4),则
x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知它死亡
了多长时间呢?进一步地,死亡时间x是碳14的含量y的函数吗?
问题探究
根据指数与对数的关系,由 =
1 1
(( )5730 ) (x≥0)得到
2
如图过y轴正半轴上任意一点(0,0 )( 0 < 0 ≤1)
1 1

对数的概念—人教高中数学A版必修一

对数的概念—人教高中数学A版必修一

探究一
探究二
探究三 思维辨析 随堂演练
课堂篇 探究学习
反思感悟 1.在对数的运算中,常用对数的基本性质:(1)负数和零 没有对数;(2)loga1=0(a>0,a≠1);(3)logaa=1(a>0,a≠1)进行对数的化 简与求值.
2.对指数中含有对数值的式子进行化简、求值时,应充分考虑对 数恒等式的应用.对数恒等式 ������lo g������ ������ =N(a>0,且a≠1,N>0)的结构形 式:(1)指数中含有对数式;(2)它们是同底的;(3)其值为对数的真数.
提示:符号“ln”是一种对数符号,它是用来计算以“e”为底的对数的.
(3)ln M=n用指数式如何表示?
提示:en=M.
2.填空
常用对数 以 10 为底数,记作 lg N
自然对数 以 e 为底数,记作 ln N,其中 e=2.718 28…
3.做一做
(1)lg 105=
;(2)ln e=
.
答案:(1)5 (2)1
探究三 思维辨析 随堂演练
课堂篇 探究学习
反思感悟1.logaN=b与ab=N(a>0,且a≠1)是等价的,表示a,b,N三者 之间的同一种关系.如下图:
2.根据这个关系式可以将指数式与对数式互化:将指数式化为对 数式,只需将幂作为真数,指数作为对数,底数不变;而将对数式化为 指数式,只需将对数式的真数作为幂,对数作为指数,底数不变.
������2 + 3������ = ������ + 3, 正解:由对数的性质知 ������2 + 3������ > 0,
������ + 3 > 0,且������ + 3 ≠ 1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
������-1 > 0, 解析:(3)由题意得 ������-1 ≠ 1,
4������-5 > 0, 解得 x>54,且 x≠2. 答案:(1)B (2)D (3)C (4)①× ②×
课前篇 自主预习
课前篇 自主预习Biblioteka 一二三二、常用对数与自然对数
1.(1)10b=a用对数式如何表示?
提示:b=log10a,简记为b=lg a. (2)在科学计算器上,有一个特殊符号“ln”,你知道它是什么吗?
A.54≤x<2 C.54<x<2 或 x>2
B.52<x<2 D.2≤x≤3 ������-1 > 0,
解析:(3)由题意得
������-1 ≠ 1,
解得 x>5,且 x≠2.
4
4������-5 > 0,
答案:(1)B (2)D (3)C
一二三
(4)判断正误 ①因为(-2)2=4,所以log-24=2.( ) ②log34与log43表示的含义相同.( )
一二三
三、对数的基本性质 1.(1)“60=?”化成对数式呢? 提示:1 log61=0. (2)“51=?”化成对数式呢? 提示:5 log55=1. 2.填空 对数的基本性质 (1)负数和零没有对数. (2)loga1=0(a>0,a≠1). (3)logaa=1(a>0,a≠1). (4)对数恒等式������log ������������=N(a>0,且 a≠1,N>0).
一二三
一、对数的概念 1.(1)某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…依次类 推,那么1个这样的细胞分裂x次后,得到的细胞个数N是多少? 提示:N=2x. (2)上述问题中,若已知分裂后得到的细胞的个数分别为8个,16个, 则分裂的次数分别是多少? 提示:3次,4次. (3)上述问题中,如果已知细胞分裂后的个数N,能求出分裂次数x 吗? 提示:能,x=log2N. 2.填空: 一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记 作x=logaN,其中a叫做对数的底数,N叫做真数.
指数函数与对数函数
4.3.1 对数的概念
-1-
首页
课标阐释
1.理解对数的概念,掌握对数的 基本性质. 2.掌握指数式与对数式的互化, 能应用对数的定义和性质解方 程. 3.理解常用对数和自然对数的 定义形式以及在科学实践中的 应用. 4.了解对数的发展历史,了解数 学文化.
思维脉络
课前篇 自主预习
提示:符号“ln”是一种对数符号,它是用来计算以“e”为底的对数的.
(3)ln M=n用指数式如何表示?
提示:en=M.
2.填空
常用对数 以 10 为底数,记作 lg N
自然对数 以 e 为底数,记作 ln N,其中 e=2.718 28…
3.做一做
(1)lg 105=
;(2)ln e=
.
答案:(1)5 (2)1
探究三 思维辨析 随堂演练
课堂篇 探究学习
反思感悟1.logaN=b与ab=N(a>0,且a≠1)是等价的,表示a,b,N三者 之间的同一种关系.如下图:
2.根据这个关系式可以将指数式与对数式互化:将指数式化为对 数式,只需将幂作为真数,指数作为对数,底数不变;而将对数式化为 指数式,只需将对数式的真数作为幂,对数作为指数,底数不变.
一二三
课前篇 自主预习
3.在对数式x=logaN中,底数a和真数N的取值范围是什么,为什么? 提示:由于对数式中的底数a就是指数式中的底数a,所以a的取值 范围为a>0,且a≠1;由于在指数式中ax=N,而ax>0,所以N>0.
4.对数式与指数式的互化 (1)在指数式和对数式中都含有a,x,N这三个量,那么这三个量在 两个式子中各有什么异同点? 提示:
课前篇 自主预习
一二三
3.做一做
(1)式子4log43的值是( )
A. 3
B.13
C.3 3
D.3
(2)若log3(log2x)=0,则x=
.
解析:(2)由已知得log2x=1,故x=2.
答案:(1)D (2)2
课前篇 自主预习
探究一
探究二
探究三 思维辨析 随堂演练
对数式与指数式的互化
例1 将下列指数式与对数式互化:
探究一
探究二
探究三 思维辨析 随堂演练
变式训练1将下列指数式与对数式互化:
(1)2-2=14; (2)102=100; (3)ea=16; (4)log6414=-13; (5)logxy=z(x>0,且 x≠1,y>0). 解:(1)log214=-2. (2)log10100=2,即 lg 100=2. (3)loge16=a,即 ln 16=a. (4)64-13 = 14. (5)xz=y(x>0,且x≠1,y>0).
课前篇 自主预习
一二三
5.做一做
1
(1)若������2=b(a>0,且 a≠1),则( )
A.loga12=b B.logab=12
(2)若 log4x=12,则(
)
A.4x=12
1
B.������2=4
C.log1a=b D.log1b=a
2
2
C.x4=12
1
D.42=x
(3)若对数 log(x-1)(4x-5)有意义,则 x 的取值范围是 ( )
(1)log127=-3; (2)43=64;
3
(3)e-1=1e; (4)10-3=0.001.
分析:利用当a>0,且a≠1时,logaN=b⇔ab=N进行互化.
解:(1)
1 3
-3
=27.
(3)ln1e=-1.
(2)log464=3. (4)lg 0.001=-3.
课堂篇 探究学习
探究一
探究二
一二三
课前篇 自主预习
(2)53=125化为对数式是什么?log416=2化为指数式是什么?指数 式与对数式具有怎样的关系?
提示:log5125=3,42=16. 当a>0,a≠1时,ax=N⇔x=logaN. (3)(-3)2=9能否直接化为对数式log(-3)9=2? 提示:不能,因为只有符合a>0,a≠1时,才有ax=N⇔x=logaN.
课堂篇 探究学习
探究一
探究二
探究三 思维辨析 随堂演练
利用对数式与指数式的关系求值
例2求下列各式中x的值:
(1)4x=5·3x; (2)log7(x+2)=2;
(3)ln e2=x; (4)logx27=32;
(5)lg 0.01=x.
分析:利用指数式与对数式之间的关系求解.
相关文档
最新文档