上海市崇明县2019-2020学年高考五诊数学试题含解析

合集下载

【数学】上海市崇明区2019届高三5月三模试题(解析版)

【数学】上海市崇明区2019届高三5月三模试题(解析版)

上海市崇明区2019届高三5月三模数学试题一、填空题(本大题共12小题,共36.0分) 1.设集合{1,2,3}A =,{|1}B x x =>,则A B =______【答案】{2,3}【解析】由交集定义可得:{}2,3A B ⋂= 本题正确结果:{}2,32.若2log 1042x -=-,则x =______【答案】4【解析】由行列式的定义可得:()()222log 140,log 2,4x x x --⨯-=∴==. 3.已知复数z 满足(2)5z i -=(i 为虚数单位),则z 的模为______【解析】52z i=-52z i ∴===-4.函数()cos f x x x =+的单调递增区间为______ 【答案】22,233k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z【解析】()cos 2sin 6f x x x x π⎛⎫=+=+⎪⎝⎭令22262k x k πππππ-+≤+≤+,k Z ∈,解得:22233k x k ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:22,233k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈ 本题正确结果:22,233k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈5.若一个球的体积是36π,则它的表面积是______ 【答案】【解析】设铁球的半径为,则,解得;则该铁球的表面积为.6.某校三个年级中,高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽取55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为______ 【答案】17【解析】高一高二人数之比为10:9,因此高二抽出的人数为18人,高三抽出的人数为55-20-18=17人7.一名工人维护3台独立的游戏机,一天内这3台需要维护的概率分别为0.9、0.8和0.6,则一天内至少有一台游戏机不需要维护的概率为______(结果用小数表示) 【答案】0.568【解析】记“至少有一台游戏机不需要维护”为事件A则()0.90.80.60.432P A =⨯⨯= ()()10.568P A P A ∴=-= 本题正确结果:0.5688.已知不等式组22020x y x y y +≤⎧⎪+≥⎨⎪+≥⎩表示的平面区域为Ω,点M 坐标为(),x y ,对任意点M ∈Ω,则x y -的最大值为______ 【答案】6【解析】由约束条件可得平面区域Ω如下图阴影部分所示:令z x y =-,则z 取最大值时,y x z =-在y 轴截距最小平移y x =可知,当y x z =-过C 时,在y 轴截距最小 由220x y y +=⎧⎨+=⎩得:()4,2C - m a x 426z ∴=+= 本题正确结果:6.9.已知定义在R 上的增函数()y f x =满足()()40f x f x +-=,若实数,a b 满足不等式()()0f a f b +≥,则22a b +的最小值是______.【答案】8【解析】由()()40f x f x +-=得:()()4f b f b -=-()()0f a f b ∴+≥等价于()()()4f a f b f b ≥-=- ()f x 为R 上的增函数 4a b ∴≥-,即40a b +-≥则可知可行域如下图所示:则22a b +的几何意义为原点O 与可行域中的点的距离的平方 可知O 到直线40a b +-=的距离的平方为所求的最小值()222min8a b ∴+== 本题正确结果;810.若n a 是二项式(1)n x +展开式中2x 项的系数,则23111lim n n a a a →∞⎛⎫+++= ⎪⎝⎭______ 【答案】2【解析】()1nx +的展开式通项公式为:rrn C x ()212n n n n a C -∴==()1211211n an n n n ⎛⎫∴==⨯- ⎪--⎝⎭23111111111lim lim 212lim 122231n n n n a a a n n n →∞→∞→∞⎛⎫⎡⎤⎛⎫⎛⎫∴++⋅⋅⋅+=⨯-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦⎝⎭ 本题正确结果:211.已知F 是抛物线2y x =的焦点,点A 、B 在抛物线上且位于x 轴的两侧,若2OA OB ⋅= (其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是______ 【答案】3【解析】设直线AB 的方程为x ty m =+,点11(,)A x y ,22(,)B x y ,直线AB 与x 轴的交点为(0,)M m . 联立2{x ty m y x=+=,可得20y ty m --=,根据韦达定理可得12y y m ⋅=-. ∵2OA OB ⋅=∴12122x x y y +=,即21212()20y y y y ⋅+⋅-=.∴2m =或1m =-(舍),即122y y ⋅=-. ∵点A ,B 位于x 轴的两侧∴不妨令点A 在x 轴的上方,则10y >. ∵1(,0)4F∴12111111922()32248ABO AFO S S y y y y y ∆∆+=⨯⨯-+⨯=+≥=,当且仅当143y =时取等号.∴ABO ∆与AFO ∆面积之和的最小值是3. 故答案为3.12.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,如果对任意的实数λ,BA BC BC λ-≥恒成立,则c bb c+的取值范围是______【答案】2,5⎡⎤⎣⎦【解析】设E 为直线BC 上任意一点,且BE BC λ=则BA BC BA BE EA λ-=-= E A B C ∴≥恒成立 又minEA为边BC 的高h h a ∴≥恒成立2111sin 222ABC S ah bc A a ∆∴==≥ 2s i n a b c A∴≤ 由余弦定理可得:2222cos a b c bc A =+- 222cos sin b c bc A bc A ∴+-≤()222cos sinsin 2cos c b b c bc A bc AA A A b c bc bc ϕ++∴+=≤=+=+,其中tan 2ϕ=c b b c∴+≤2c bb c +≥(当且仅当b c =时取等号)c bb c⎡∴+∈⎣本题正确结果:⎡⎣二、选择题(本大题共4小题,共12.0分)13.已知,a b ∈R ,则“0ab =”是“220a b +=”的( )条件 A. 充分不必要 B. 必要不充分C. 充要D. 既不充分也不必要【答案】B【解析】当1a =,0b =时,0ab =,此时220a b +≠,可知充分条件不成立; 当220a b +=时,由20a ≥,20b ≥可知0a b ==,则0ab =,可知必要条件成立 则“0ab =”是“220a b +=”的必要不充分条件 本题正确选项:B 14.将函数sin 6y x π⎛⎫=-⎪⎝⎭的图象上所有的点向右平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( )A. 5sin 212y x π⎛⎫=- ⎪⎝⎭B. sin 212x y π⎛⎫=+ ⎪⎝⎭C. 5sin 212x y π⎛⎫=- ⎪⎝⎭D. 5sin 224x y π⎛⎫=- ⎪⎝⎭【答案】C 【解析】右平移4π个单位长度得带5πsin 12x ⎛⎫- ⎪⎝⎭,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变)得到5sin 212x y π⎛⎫=-⎪⎝⎭,故选C. 15.已知关于x 的方程20ax bx c ++=,其中,,a b c 都是非零向量,且,a b 不共线,则该方程的解的情况是( ) A. 至少有一个解 B. 至多有一个解 C. 至多有两个解 D. 可能有无数个解【答案】B【解析】由平面向量基本定理可得:(),c a b R λμλμ=+∈ 则方程20ax bx c ++=可变为:20ax bx a b λμ+++= 即:()()20xa xb λμ+++=,a b 不共线 20x x λμ⎧+=∴⎨+=⎩ 可知方程组可能无解,也可能有一个解∴方程20ax bx c ++=至多有一个解本题正确选项:B16.如图为正方体ABCD -A 1B 1C 1D 1,动点M 从B 1点出发,在正方体表面沿逆时针方向运动一周后,再回到B 1的运动过程中,点M 与平面A 1DC 1的距离保持不变,运动的路程x 与l =MA 1+MC 1+MD 之间满足函数关系l =f (x ),则此函数图象大致是( )A. B.C. D.【答案】C【解析】由于点M 与平面A 1DC 1的距离保持不变,所以点M 在平面1B AC 上, 运动的路线为11B A C B →→→, 设点P 为B 1C 的中点,l =MA 1+MC 1+MD 中,MA 1+MD 是定值, PC 1是定值,MC 1当M 从C 到1B ,运动到1PB 段时,运动的路程x 慢慢变大时, PM 变大,MC 1变大, 所以函数是增函数,所以C 正确;(类似讨论由1B 到A ,由A 到C 的过程,l =MA 1+MC 1+MD 之间满足函数关系l =f (x ). 故选:C .三、解答题(本大题共5小题,共60.0分)17.在直三棱柱111ABC A B C -中, 90ABC ∠=︒,11,2AB BC BB ===,求:(1)异面直线11B C 与1A C 所成角的余弦值; (2)直线11B C 到平面的距离.解:(1)因为11//B C BC ,所以1A CB ∠(或其补角)是异面直线11B C 与1A C 所成角. 1分 因为,,所以BC ⊥平面1ABB ,所以1BC A B ⊥. 3分在1Rt A BC 中,, 5分所以异面直线11B C 与1A C 所成角的余弦值为. 6分(2)因为11B C //平面1A BC所以11B C 到平面1A BC 的距离等于1B 到平面1A BC 的距离 8分 设1B 到平面1A BC 的距离为d , 因为111B A BC A BB C V V --=,所以11111133A BCB BC S d S A B ∆∆⨯=⨯10分可得d =分直线11B C 与平面1A BC . 12分18.已知向量11,sin cos 222a x x ⎛⎫=+ ⎪⎪⎝⎭和向量()()1,b f x =,且//a b . (1)求函数()f x 的最小正周期和最大值;(2)已知ABC ∆的三个内角分别为,,A B C ,若有3f A π⎛⎫-= ⎪⎝⎭,BC =sin 7B =,求AC 的长度.解:由//a b 得:()11sin cos 222f x x x =+则:()sin 2sin 3f x x x x π⎛⎫=+=+⎪⎝⎭(1)()f x 最小正周期为:221T ππ== 当sin 13x π⎛⎫+= ⎪⎝⎭时,()max 2f x = (2)由3f A π⎛⎫-= ⎪⎝⎭得:2sin A =sin 2A = 由正弦定理可知:sin sin BC ACA B=,即sin 2sin BC B AC A ⋅===19.某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线AB 是以点E 为圆心的圆的一部分,其中(0,)E t (025)t <≤,GF 是圆的切线,且GF AD ⊥,曲线BC 是抛物线250y ax =-+(0)a >的一部分,CD AD ⊥,且CD 恰好等于圆E 的半径.(1)若30CD =米,AD =t 与a 的值;(2)若体育馆侧面的最大宽度DF 不超过75米,求a 的取值范围. 解:(1)由抛物线方程得:()0,50B 50BE t ∴=-又BE ,CD 均为圆的半径 50CD t ∴=-,则503020t =-=∴圆E 的方程为:()2222030x y +-=()1,0A ∴OD AD AO ∴=-=-=()C代入抛物线方程得:(23050a =-+,解得:149a =(2)由题意知,圆E 的半径为:50t -,即50CD t =-则C 点纵坐标为50t -,代入抛物线方程可得:x =OD =5075DF t ∴=-+≤,整理可得:()216252550ta t t t≥=+++ (]0,25t ∈62550t t∴+≥=(当且仅当25t =时取等号) 1162510050t t∴≤++ 1100a ∴≥ 即a取值范围为:1,100⎡⎫+∞⎪⎢⎣⎭20.已知点F 1、F 2为双曲线222y C x 1b-=:(b >0)的左、右焦点,过F 2作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且∠MF 1F 2=30°,圆O 的方程是x 2+y 2=b 2.(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为P 1、P 2,求12P P P P ⋅uu vu v 的值;(3)过圆O 上任意一点Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,求证:|AB |=2|OM |.(1)解:设F 2,M 的坐标分别为))0y因为点M 在双曲线C 上,所以2202y 1b 1b+-=,即20y b =±,所以22MF b =在Rt △MF 2F 1中,012MF F 30∠=,22MF b =,所以21MF 2b =由双曲线的定义可知:212MF MF b 2-==故双曲线C 的方程为:22y x 12-=(2)解:由条件可知:两条渐近线分别为12l y 0l y 0-=+=; 设双曲线C 上的点P (x 0,y 0),设两渐近线的夹角为θ,则的则点P到两条渐近线的距离分别为12PP PP ==,因为P (x 0,y 0)在双曲线C :22y x 12-=上,所以22002x y 2-=,又1cos θ3=,所以12PP PP ⋅•cos (π-θ)=-22002x y 3-•13=-29(3)证明:由题意,即证:OA ⊥OB .设A (x 1,y 1),B (x 2,y 2),切线l 的方程为:x 0x +y 0y =2①当y 0≠0时,切线l 的方程代入双曲线C 中,化简得:()()222200002y x x 4x x 2y 40-+-+= 所以:()()()2001212222202y 44x x x x x 2yx2y x ++=-=---,, 又()()()20102201201201222200002x x 2x x 82x 1y y 42x x x x x x y y y 2y x ---⎡⎤=⋅=-++=⎣⎦- 所以()()()2222000012122222220002y 442x y 82xOA OB x x y y 02y x2y x 2y x +-+-⋅=+=-+==---②当y 0=0时,易知上述结论也成立. 所以1212OA OB x x y y 0⋅=+=综上,OA ⊥OB ,所以|=2||AB O |M uu u r uuu r.21.如果存在常数a ,使得数列{a n }满足:若x 是数列{a n }中的一项,则a -x 也是数列{a n }中的一项,称数列{a n }为“兑换数列”,常数a 是它的“兑换系数”.(1)若数列:2,3,6,m (m >6)是“兑换系数”为a 的“兑换数列”,求m 和a 的值; (2)已知有穷等差数列{b n }的项数是n 0(n 0≥3),所有项之和是B ,求证:数列{b n }是“兑换数列”,并用n 0和B 表示它的“兑换系数”;(3)对于一个不少于3项,且各项皆为正整数的递增数列{c n },是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.(1)解:因为2,3,6,m (m >6)是“兑换系数”为a 的“兑换数列” 所以a -m ,a -6,a -3,a -2也是该数列的项,且a -m <a -6<a -3<a -2, 故a -m =2,a -6=3,即a =9,m =7. (2)证明:设数列{b n }的公差为d , 因为数列{b n }是项数为n 0项的有穷等差数列若b 1≤b 2≤b 3≤…≤0n b ,则a -b 1≥a -b 2≥a -b 3≥…≥a -0n b ,即对数列{b n }中的任意一项b i (1≤i ≤n 0),a -b i =b 1+(n 0-i )d =0n b +1-i ∈{b n }同理可得:b 1≥b 2≥b 3≥…≥0n b ,a -b i =b 1+(n 0-i )d =0n b +1-i ∈{b n }也成立,由“兑换数列”的定义可知,数列{b n }是“兑换数列”; 又因为数列{b n }所有项之和是B ,所以B =()01n 0b b n2+⋅=an 2,即a =02B n ; (3)解:假设存在这样的等比数列{c n },设它的公比为q (q >1),因为数列{c n }为递增数列,所以c 1<c 2<c 3<…<c n ,则a -c 1>a -c 2>a -c 3>…>a -c n , 又因为数列{c n }为“兑换数列”,则a -c i ∈{c n },所以a -c i 是正整数 故数列{c n }必有穷数列,不妨设项数为n 项,则c i +c n +1-i =a (1≤i ≤n )①若n =3,则有c 1+c 3=a ,c 2=a 2,又c 22=c 1c 3,由此得q =1,与q >1矛盾 ②若n ≥4,由c 1+c n =c 2+c n -1,得c 1-c 1q +c 1q n -1-c 1q n -2=0 即(q -1)(1-q n -2)=0,故q =1,与q >1矛盾;综合①②得,不存在满足条件的数列{c n }.。

2019-2020年高三5月联考数学理.docx

2019-2020年高三5月联考数学理.docx

2019-2020 年高三 5 月联考数学理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150 分,考试时间120 分钟,(选择题,共 60 分)第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号.考试科目用铅笔涂写在答题卡上。

2.每题选出答案后,用 2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动用橡皮擦干净后,再改涂其它答案标号。

一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设 i 为虚数单位,复数1 i的虚部为12iA .一 11 11B .一C .D .一 i5352.函数 y=lg ( l-x )的定义域为A ,函数 y=( 1) x的值域为 B ,则 AB=3A .(0,1)B .( 1,1)C.D . R33.等比数列 { a n3 4xdx ,则公比 q 的值为}中, a 3=6,前三项和 S 3=A . l1 1 1B .一C .1 或一D .一 1 或一2224.右图是函数 y=Asin (x+ 5)(x ∈ R )在区间 [一 ,]66上的图象.为了得到这个函数的图象,只要将 y= sinx ( x∈ R )的图象上所有的点A .向左平移个单位长度,再把所得各点的横坐标缩3短到原来的1倍,纵坐标不变2B .向左平移个单位长度,再把所得各点的横坐标伸长到原来的 2 倍,纵坐标不变31倍,纵坐标不变C .向左平移个单位长度,再把所得各点的横坐标缩短到原来的62D .向左平移个单位长度,再把所得各点的横坐标伸长到原来的 2 倍,纵坐标不变65.某程序框图如图所示,该程序运行后输出的S 的值是1 A .2B .一2 1C .— 3D .—32x 2y 26.已知抛物线 y =2px ( p>0)焦点 F 恰好是双曲线22=ab1( a>o , b>o )的右焦点,且双曲线过点(3a 2, b 2 ,譬),则该双曲pp线的渐近线方程为A . y=±2xB .y=± xC . y=± 5 x15D . y=±x57.一个简单组合体的三视图及尺寸如右图所示(单位:mm ),则该组合体的体积为A .32B .48C . 56D . 648.若数列 { a n }满足 a 1=2 为数列 a n +a n+1=2n +2n-1, S n 为数列 { a n }的前 n 项和,则 log 2( S 2012 +2=A .2013B .2012C . 2011D .20109.连续投掷两次骰子得到的点数分别为m ,n ,向量 a =( m , n )与向量 b =( 1, 0)的夹角记为 a ,则 a ∈( 0,)的概率为45 517 A .B .C.D .1812212 10.二次函数 f (x )2, +a1 c 1=ax +2x+c (x ∈ R )的值域为 [0 ),则 aa 的最小值为cA .2B .2+ 2C . 4D .2十 2 211.盒中装有 6 个零件,其中 4 个是使用过的,另外2 个未经使用,从中任取3 个,若至少有一个是未经使用的不同取法种数是 k ,那么二项式( l+kx2 )6的展开式中 x 4 的系数为A .3600B .3840C . 5400D . 600012.已知 f ( x )一(1) x 一 log 2x ,实数 a 、 b 、 c 满足 f ( a ) f ( b ) f ( c ) <0,且 0<a<b<c ,若3实数 x 0 是函数 f ( x )的一个零点,那么下列不等式中,不可能成立的是A . x 0<aB .x 0 >bC . x 0<cD . x 0 >c第Ⅱ卷(非选择题共90分)注意事项:1.将第Ⅱ卷答案用0.5mm 的黑色签字笔答在答题纸的相应位置上。

2019-2020年高考数学试卷题含答案

2019-2020年高考数学试卷题含答案

xx 上海市学业水平考试暨春季高考数学试卷(有答案)一. 填空题(本大题共12题,每题3分,共36分)1.复数(为虚数单位)的实部是__________________. 2.若,则_________________. 3.直线与直线的夹角为__________________. 4. 函数的定义域为___________________.5. 三阶行列式135400121--中,元素的代数余子式的值为_____________________. 6. 函数的反函数的图像经过点,则实数______________.7. 在中,若,,,则_______________.8. 个人排成一排照相,不同排列方式的种数为____________________(结果用数值表示). 9. 无穷等比数列的首项为,公比为,则的各项的和为________________.10. 若(为虚数单位)是关于的实系数一元二次方程的一个虚根,则__________________. 11. 函数在区间上的最小值为,最大值为,则实数的取值范围是___________________. 12. 在平面直角坐标系中,点是圆上的两个动点,且满足,则的最小值为____________________.二. 选择题(本大题共12题,每题3分,共36分)13. 满足且的角属于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 14. 半径为的球的表面积为( )(A ) (B ) (C ) (D )15. 在的二项展开式中,项的系数为( )(A ) (B ) (C ) (D )16. 幂函数的大致图像是( )17. 已知向量,,则向量在向量方向上的投影为( )(A ) (B ) (C ) (D )18. 设直线与平面平行,直线在平面上,那么( )(A )直线平行于直线 (B )直线与直线异面(C )直线与直线没有公共点 (D )直线与直线不垂直19. 在用数学归纳法证明等式212322n n n ++++=+ 的第步中,假设时原等式成立,那么在时需要证明的等式为( )(A )2212322(1)22(1)(1)k k k k k k ++++++=+++++ (B )212322(1)2(1)(1)k k k k ++++++=+++ (C )221232212(1)22(1)(1)k k k k k k k ++++++++=+++++ (D )21232212(1)2(1)(1)k k k k k ++++++++=+++20. 关于双曲线与的焦距和渐近线,下列说法正确的是( )(A )焦距相等,渐近线相同 (B )焦距相等,渐近线不相同(C )焦距不相等,渐近线相同 (D )焦距不相等,渐近线不相同21. 设函数的定义域为,则“”是“为奇函数”的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件22. 下列关于实数的不等式中,不恒成立的是( )(A ) (B )(C ) (D )23. 设单位向量与既不平行也不垂直,对非零向量、有结论:○1若,则;○2若,则. 关于以上两个结论,正确的判断是( )(A )○1成立,○2不成立 (B )○1不成立,○2成立(C )○1成立,○2成立 (D )○1不成立,○2不成立24. 对于椭圆22(,)22: 1 (,0,)a b x y C a b a b a b+=>≠. 若点满足. 则称该点在椭圆内,在平面直角坐标系中,若点在过点的任意椭圆内或椭圆上,则满足条件的点构成的图形为( )(A )三角形及其内部 (B )矩形及其内部 (C )圆及其内部 (D )椭圆及其内部三. 解答题(本大题共5题,共8+8+8+12+12=48分)25. (本题满分8分)如图,已知正三棱柱的体积为,底面边长为,求异面直线与所成的角的大小.26.(本题满分8分)已知函数,求的最小正周期及最大值,并指出取得最大值时的值.27.(本题满分8分)如图,汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点处. 已知灯口直径是,灯深,求灯泡与反射镜的顶点的距离.28.(本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分.已知数列是公差为的等差数列.(1)若成等比数列,求的值;(2)设,数列的前项和为. 数列满足,记,求数列的最小项(即对任意成立).29.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.对于函数,记集合.(1)设,,求;(2)设,,,如果.求实数的取值范围.2019-2020年高考数学试卷题含答案一. 选择题:(9分)1.若函数是偶函数,则的一个值是 ( )(A) (B) (C) (D)2.在复平面上,满足的复数的所对应的轨迹是( )(A) 两个点 (B)一条线段 (C)两条直线 (D) 一个圆3.已知函数的图像是折线,如图,其中(1,2),(2,1),(3,2),(4,1),(5,2)A B C D E ,若直线与的图像恰有四个不同的公共点,则的取值范围是( )(A) (B) (C) (D)二. 填空题:(9分)4.椭圆的长半轴的长为_________________5.已知圆锥的母线长为10,母线与轴的夹角为,则该圆锥的侧面积为__________________6.小明用数列记录某地区xx12月份31天中每天是否下过雨,方法为:当第天下过雨时,记,当第天没下过雨时,记,他用数列记录该地区该月每天气象台预报是否有雨,方法为:当预报第天有雨时,记,当预报第天没有雨时,记记录完毕后,小明计算出112233313125a b a b a b a b ++++=,那么该月气象台预报准确的总天数为______________________三. 解答题:(12分)对于数列与,若对数列的每一项,均有或,则称数列是与的一个“并数列”。

2019-2020学年上海市崇明区高考数学一模试卷

2019-2020学年上海市崇明区高考数学一模试卷

上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a },若A ∪B={1,2,3,5},则a= .2.(4分)抛物线y 2=4x 的焦点坐标为 .3.(4分)不等式<0的解是 .4.(4分)若复数z 满足iz=1+i (i 为虚数单位),则z= . 5.(4分)在代数式(x ﹣)7的展开式中,一次项的系数是 .(用数字作答)6.(4分)若函数y=2sin (ωx ﹣)+1(ω>0)的最小正周期是π,则ω= .7.(5分)若函数f (x )=x a 的反函数的图象经过点(,),则a= . 8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm 3,则该几何体的侧面积为 cm 2.9.(5分)已知函数y=f (x )是奇函数,当x <0 时,f (x )=2x ﹣ax ,且f (2)=2,则a= .10.(5分)若无穷等比数列{a n }的各项和为S n ,首项 a 1=1,公比为a ﹣,且S n =a ,则a= .11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成 4人志愿者服务队,要求服务队中至少有 1 名女生,共有 种不同的选法.(用数字作答)12.(5分)在ABC 中,BC 边上的中垂线分别交BC ,AC 于点D ,E .若•=6,||=2,则AC= .二、选择题(本大题共有4题,满分20分) 13.(5分)展开式为ad ﹣bc 的行列式是( )祝您高考马到成功!A .B .C .D .14.(5分)设a ,b ∈R ,若a >b ,则( ) A .< B .lga >lgb C .sin a >sin b D .2a >2b15.(5分)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 16.(5分)直线x=2与双曲线﹣y 2=1的渐近线交于A ,B 两点,设P 为双曲线上任一点,若=a+b(a ,b ∈R ,O 为坐标原点),则下列不等式恒成立的是( ) A .a 2+b 2≥1 B .|ab |≥1 C .|a +b |≥1 D .|a ﹣b |≥2三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2,A 1C 与底面ABCD 所成的角为60°,(1)求四棱锥A 1﹣ABCD 的体积;(2)求异面直线A 1B 与 B 1D 1所成角的大小.18.(14分)已知f (x )=2sinxcosx +2cos 2x ﹣1.(1)求f (x )的最大值及该函数取得最大值时x 的值; (2)在△ABC 中,a ,b ,c 分别是角 A ,B ,C 所对的边,若a=,b=,且f ()=,求边c 的值.19.(14分)2016 年崇明区政府投资 8 千万元启动休闲体育新乡村旅游项目.规祝您高考马到成功!划从 2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记 2016 年为第 1 年,f (n )为第 1 年至此后第 n (n ∈N*)年的累计利润(注:含第 n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n )为正值时,认为该项目赢利. (1)试求 f (n )的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由. 20.(16分)在平面直角坐标系中,已知椭圆C :+y 2=1 (a >0,a ≠1)的两个焦点分别是F 1,F 2,直线l :y=kx +m (k ,m ∈R )与椭圆交于A ,B 两点.(1)若M 为椭圆短轴上的一个顶点,且△MF 1F 2是直角三角形,求a 的值;(2)若k=1,且△OAB 是以O 为直角顶点的直角三角形,求a 与m 满足的关系;(3)若a=2,且k OA •k OB =﹣,求证:△OAB 的面积为定值.21.(18分)若存在常数k (k >0),使得对定义域D 内的任意x 1,x 2(x 1≠x 2),都有|f (x 1)﹣f (x 2)|≤k |x 1﹣x 2|成立,则称函数f (x )在其定义域 D 上是“k ﹣利普希兹条件函数”. (1)若函数f (x )=,(1≤x ≤4)是“k ﹣利普希兹条件函数”,求常数k 的最小值;(2)判断函数f (x )=log 2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由; (3)若y=f (x )(x ∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x 1,x 2,都有 |f (x 1)﹣f (x 2)|≤1.祝您高考马到成功!上海市崇明区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a },若A ∪B={1,2,3,5},则a= 3 . 【解答】解:∵集合A={1,2,5},B={2,a }, A ∪B={1,2,3,5}, ∴a=3. 故答案为:3.2.(4分)抛物线y 2=4x 的焦点坐标为 (1,0) .【解答】解:∵抛物线y 2=4x 是焦点在x 轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)3.(4分)不等式<0的解是 (﹣1,0) .【解答】解:不等式<0,即 x (x +1)<0,求得﹣1<x <0,故答案为:(﹣1,0).4.(4分)若复数z 满足iz=1+i (i 为虚数单位),则z= 1﹣i . 【解答】解:由iz=1+i ,得z==1﹣i故答案为:1﹣i .5.(4分)在代数式(x ﹣)7的展开式中,一次项的系数是 21 .(用数字作答)祝您高考马到成功!【解答】解:(x ﹣)7的展开式的通项为=,由7﹣3r=1,得r=2, ∴一次项的系数是.故答案为:21.6.(4分)若函数y=2sin (ωx ﹣)+1(ω>0)的最小正周期是π,则ω= 2 .【解答】解:根据正弦函数的图象与性质,知 函数y=2sin (ωx ﹣)+1(ω>0)的最小正周期是T==π,解得ω=2.故答案为:2.7.(5分)若函数f (x )=x a 的反函数的图象经过点(,),则a=.【解答】解:若函数f (x )=x a 的反函数的图象经过点(,), 则:(,)满足f (x )=x α, 所以:,解得:,故答案为:.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm 3,则该几何体的侧面积为 18π cm 2.【解答】解:将一个正方形绕着它的一边所在的直线旋转一周,所得几何体是圆柱体,设正方形的边长为acm ,则圆柱体的体积为 V=πa 2•a=27π,祝您高考马到成功!解得a=3cm ;∴该圆柱的侧面积为S=2π×3×3=18πcm 2. 故答案为:18π.9.(5分)已知函数y=f (x )是奇函数,当x <0 时,f (x )=2x ﹣ax ,且f (2)=2,则a= ﹣ .【解答】解:∵函数y=f (x )是奇函数,当x <0 时,f (x )=2x ﹣ax , ∴x >0时,﹣f (x )=2﹣x ﹣a (﹣x ), ∴f (x )=﹣2﹣x ﹣ax , ∵f (2)=2,∴f (2)=﹣2﹣2﹣2a=2, 解得a=﹣. 故答案为:﹣.10.(5分)若无穷等比数列{a n }的各项和为S n ,首项 a 1=1,公比为a ﹣,且S n =a ,则a= 2 .【解答】解:无穷等比数列{a n }的各项和为S n ,首项 a 1=1,公比为a ﹣,且S n =a ,可得=a ,即有=a ,即为2a 2﹣5a +2=0, 解得a=2或,由题意可得0<|q |<1, 即有0<|a ﹣|<1,检验a=2成立;a=不成立. 故答案为:2.祝您高考马到成功!11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成 4人志愿者服务队,要求服务队中至少有 1 名女生,共有 780 种不同的选法.(用数字作答)【解答】解:根据题意,要求服务队中至少有 1 名女生,则分3种情况讨论: ①、选出志愿者服务队的4人中有1名女生,有C 53C 31=30种选法,这4人选2人作为队长和副队有A 42=12种,其余2人为普通队员,有1种情况, 此时有30×12=360种不同的选法,②、选出志愿者服务队的4人中有2名女生,有C 52C 32=30种选法,这4人选2人作为队长和副队有A 42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,③、选出志愿者服务队的4人中有3名女生,有C 51C 33=5种选法,这4人选2人作为队长和副队有A 42=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法, 则一共有360+360+60=780; 故答案为:780.12.(5分)在ABC 中,BC 边上的中垂线分别交BC ,AC 于点D ,E .若•=6,||=2,则AC= 4 .【解答】解:建立平面直角坐标系如图所示, 设B (﹣a ,0),C (a ,0),E (0,b ),∠ABC=α, 由||=2,知A (﹣a +2cosα,2sinα),∴=(a ﹣2cosα,b ﹣2sinα),=(2a ,0), ∴•=2a (a ﹣2cosα)+0=2a 2﹣4acosα=6,∴a 2﹣2acosα=3; 又=(2a ﹣2cosα,﹣2sinα),祝您高考马到成功!∴=(2a ﹣2cosα)2+(﹣2sinα)2=4a 2﹣8acosα+4 =4(a 2﹣2acosα)+4 =4×3+4 =16,∴||=4,即AC=4.故答案为:4.二、选择题(本大题共有4题,满分20分) 13.(5分)展开式为ad ﹣bc 的行列式是( ) A .B .C .D .【解答】解:根据叫做二阶行列式,它的算法是:ad ﹣bc ,由题意得,=ad ﹣bc .故选B .14.(5分)设a ,b ∈R ,若a >b ,则( ) A .< B .lga >lgb C .sin a >sin b D .2a >2b【解答】解:由a >b ,利用指数函数的单调性可得:2a >2b .再利用不等式的性质、对数函数的定义域与单调性、三角函数的单调性即可判断出A ,B ,C 不正确. 故选:D .祝您高考马到成功!15.(5分)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【解答】解:∵S 4+S 6>2S 5, ∴4a 1+6d +6a 1+15d >2(5a 1+10d ), ∴21d >20d , ∴d >0,故“d >0”是“S 4+S 6>2S 5”充分必要条件, 故选:C16.(5分)直线x=2与双曲线﹣y 2=1的渐近线交于A ,B 两点,设P 为双曲线上任一点,若=a+b(a ,b ∈R ,O 为坐标原点),则下列不等式恒成立的是( ) A .a 2+b 2≥1B .|ab |≥1C .|a +b |≥1D .|a ﹣b |≥2【解答】解:双曲线﹣y 2=1的渐近线为:y=±x .把x=2代入上述方程可得:y=±1.不妨取A (2,1),B (2,﹣1).=a+b=(2a +2b ,a ﹣b ).代入双曲线方程可得:﹣(a ﹣b )2=1,化为ab=. ∴=ab ,化为:|a +b |≥1.故选:C .三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2,A 1C 与底面ABCD 所祝您高考马到成功!成的角为60°,(1)求四棱锥A 1﹣ABCD 的体积;(2)求异面直线A 1B 与 B 1D 1所成角的大小.【解答】解:(1)∵长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2, ∴AA 1⊥平面ABCD ,AC==2,∴∠A 1CA 是A 1C 与底面ABCD 所成的角, ∵A 1C 与底面ABCD 所成的角为60°, ∴∠A 1CA=60°,∴AA 1=AC•tan60°=2•=2, ∵S 正方形ABCD =AB ×BC=2×2=4, ∴四棱锥A 1﹣ABCD 的体积: V===. (2)∵BD ∥B 1D 1,∴∠A 1BD 是异面直线A 1B 与B 1D 1所成角(或所成角的补角).∵BD=,A 1D=A 1B==2, ∴cos ∠A 1BD===.∴∠A 1BD=arccos.∴异面直线A 1B 与 B 1D 1所成角是arccos.祝您高考马到成功!18.(14分)已知f (x )=2sinxcosx +2cos 2x ﹣1.(1)求f (x )的最大值及该函数取得最大值时x 的值;(2)在△ABC 中,a ,b ,c 分别是角 A ,B ,C 所对的边,若a=,b=,且f ()=,求边c 的值.【解答】解:f (x )=2sinxcosx +2cos 2x ﹣1=sin2x +cos2x=2sin (2x +)(1)当2x +=时,即x=(k ∈Z ),f (x )取得最大值为2;(2)由f ()=,即2sin (A +)=可得sin (A +)=∵0<A <π ∴<A < ∴A=或∴A=或当A=时,cosA==∵a=,b=,解得:c=4 当A=时,cosA==0∵a=,b=,解得:c=2.祝您高考马到成功!19.(14分)2016 年崇明区政府投资 8 千万元启动休闲体育新乡村旅游项目.规划从 2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记 2016 年为第 1 年,f (n )为第 1 年至此后第 n (n ∈N*)年的累计利润(注:含第 n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n )为正值时,认为该项目赢利. (1)试求 f (n )的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.【解答】解:(1)由题意知,第1年至此后第n (n ∈N *)年的累计投入为8+2(n ﹣1)=2n +6(千万元),第1年至此后第n (n ∈N *)年的累计净收入为+×+×+…+×=(千万元).∴f (n )=﹣(2n +6)=﹣2n ﹣7(千万元).(2)方法一:∵f (n +1)﹣f (n )=[﹣2(n +1)﹣7]﹣[﹣2n ﹣7]=[﹣4],∴当n ≤3时,f (n +1)﹣f (n )<0,故当n ≤4时,f (n )递减; 当n ≥4时,f (n +1)﹣f (n )>0,故当n ≥4时,f (n )递增. 又f (1)=﹣<0,f (7)=≈5×﹣21=﹣<0,f (8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利. 答:该项目将从2023年开始并持续赢利; 方法二:设f (x )=﹣2x ﹣7(x ≥1),则f′(x )=,令f'(x )=0,得=≈=5,∴x ≈4.祝您高考马到成功!从而当x ∈[1,4)时,f'(x )<0,f (x )递减; 当x ∈(4,+∞)时,f'(x )>0,f (x )递增. 又f (1)=﹣<0,f (7)=≈5×﹣21=﹣<0,f (8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.20.(16分)在平面直角坐标系中,已知椭圆C :+y 2=1 (a >0,a ≠1)的两个焦点分别是F 1,F 2,直线l :y=kx +m (k ,m ∈R )与椭圆交于A ,B 两点.(1)若M 为椭圆短轴上的一个顶点,且△MF 1F 2是直角三角形,求a 的值; (2)若k=1,且△OAB 是以O 为直角顶点的直角三角形,求a 与m 满足的关系; (3)若a=2,且k OA •k OB =﹣,求证:△OAB 的面积为定值.【解答】解:(1)∵M 为椭圆短轴上的一个顶点,且△MF 1F 2是直角三角形, ∴△MF 1F 2为等腰直角三角形, ∴OF 1=OM , 当a >1时,=1,解得a=,当0<a <1时,=a ,解得a=,(2)当k=1时,y=x +m ,设A (x 1,y 1),(x 2,y 2),由,即(1+a 2)x 2+2a 2mx +a 2m 2﹣a 2=0,∴x 1+x 2=﹣,x 1x 2=,∴y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=,∵△OAB 是以O 为直角顶点的直角三角形,∴•=0,祝您高考马到成功!∴x 1x 2+y 1y 2=0, ∴+=0,∴a 2m 2﹣a 2+m 2﹣a 2=0 ∴m 2(a 2+1)=2a 2,(3)证明:当a=2时,x 2+4y 2=4, 设A (x 1,y 1),(x 2,y 2), ∵k OA •k OB =﹣, ∴•=﹣,∴x 1x 2=﹣4y 1y 2, 由,整理得,(1+4k 2)x 2+8kmx +4m 2﹣4=0.∴x 1+x 2=,x 1x 2=,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2 =++m 2=,∴=﹣4×,∴2m 2﹣4k 2=1, ∴|AB |=•=•=2•=∵O 到直线y=kx +m 的距离d==,∴S △OAB =|AB |d==•==1祝您高考马到成功!21.(18分)若存在常数k (k >0),使得对定义域D 内的任意x 1,x 2(x 1≠x 2),都有|f (x 1)﹣f (x 2)|≤k |x 1﹣x 2|成立,则称函数f (x )在其定义域 D 上是“k ﹣利普希兹条件函数”. (1)若函数f (x )=,(1≤x ≤4)是“k ﹣利普希兹条件函数”,求常数k 的最小值;(2)判断函数f (x )=log 2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f (x )(x ∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x 1,x 2,都有 |f (x 1)﹣f (x 2)|≤1. 【解答】解:(1)若函数f (x )=,(1≤x ≤4)是“k ﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x 1,x 2(x 1≠x 2),均有|f (x 1)﹣f (x 2)|≤k |x 1﹣x 2|成立,不妨设x 1>x 2,则k ≥=恒成立.∵1≤x 2<x 1≤4,∴<<,∴k 的最小值为.(2)f (x )=log 2x 的定义域为(0,+∞),令x 1=,x 2=,则f ()﹣f ()=log 2﹣log 2=﹣1﹣(﹣2)=1, 而2|x 1﹣x 2|=,∴f (x 1)﹣f (x 2)>2|x 1﹣x 2|, ∴函数f (x )=log 2x 不是“2﹣利普希兹条件函数”.证明:(3)设f (x )的最大值为M ,最小值为m ,在一个周期[0,2]内f (a )=M ,f (b )=m ,则|f (x 1)﹣f (x 2)|≤M ﹣m=f (a )﹣f (b )≤|a ﹣b |. 若|a ﹣b |≤1,显然有|f (x 1)﹣f (x 2)|≤|a ﹣b |≤1. 若|a ﹣b |>1,不妨设a >b ,则0<b +2﹣a <1,祝您高考马到成功!∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.!功成到马考高您祝。

上海市崇明县2019-2020学年高一下期末达标测试数学试题含解析

上海市崇明县2019-2020学年高一下期末达标测试数学试题含解析

上海市崇明县2019-2020学年高一下期末达标测试数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知0m >,0xy >,当2x y +=时,不等式24mx y+≥恒成立,则m 的取值范围是 A .)2,⎡+∞⎣ B .[)2,+∞C .(0,2⎤⎦D .(]0,2【答案】B 【解析】 【分析】根据2x y +=为定值,那么24m x y +≥乘以()12x y +后值不变,由基本不等式可消去x ,y 后,对得到的不等式因式分解,即可解得m 的值. 【详解】因为0m >,0xy >,2x y +=,所以()21212222m m mx y x y m x y x y y x ⎛⎫⎛⎫+=++=+++≥ ⎪ ⎪⎝⎭⎝⎭()12222m m ++.因为不等式24m x y +≥恒成立,所以()122242m m ++≥,整理得()()3220m m +-≥,解得2m ≥,即2m ≥.【点睛】本题考查基本不等式,由2x y +=为定值和已知不等式相乘来构造基本不等式,最后含有根式的因式分解也是解题关键.2.一个三棱锥的三视图如图所示,则该棱锥的全面积为( )A .1232+B .1262+C .932+D .962+【答案】A 【解析】 【分析】数形结合,还原出该几何体的直观图,计算出各面的面积,可得结果. 【详解】 如图BCD ∆为等腰直角三角形,AO ⊥平面BCD根据三视图,可知2,3AO BC BD ===3432,2DC AD AC ===点A 到BC 2235222⎛⎫+= ⎪⎝⎭ 点A 到BD 2235222⎛⎫+= ⎪⎝⎭所以193322BCD S ∆=⋅⋅=, 1322322ACD S ∆=⋅=15153224ABD ABC S S ∆∆==⋅⋅=故该棱锥的全面积为915322123224+⨯=+故选:A 【点睛】本题考查三视图还原,并求表面积,难点在于还原几何体,对于一些常见的几何体要熟悉其三视图,对解题有很大帮助,属中档题.3.把函数sin y x =的图像上所有的点向左平行移动3π个单位长度,再把所得图像上所有点的横坐标缩短到原来的12(纵坐标不变),得到的图像所表示的函数是( )A .sin 23y x π⎛⎫=-⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 23y x π⎛⎫=+ ⎪⎝⎭D .2sin 23y x π⎛⎫=+⎪⎝⎭【答案】C 【解析】 【分析】根据左右平移和周期变换原则变换即可得到结果. 【详解】sin y x =向左平移3π个单位得:sin 3y x π⎛⎫=+ ⎪⎝⎭ 将sin 3y x π⎛⎫=+⎪⎝⎭横坐标缩短为原来的12得:sin 23y x π⎛⎫=+ ⎪⎝⎭本题正确选项:C 【点睛】本题考查三角函数的左右平移变换和周期变换的问题,属于基础题. 4.已知非零向量a 与b 的夹角为23π,且1,22b a b =+=,则a ( )A .1B .2C D .【答案】B 【解析】 【分析】根据条件可求出1||2a b a =-,从而对|2|2a b +=两边平方即可得出2||2||0a a -=,解出||a 即可.【详解】向量a 与b 的夹角为23π,且1,22b a b =+=; ∴1||2a b a =-;∴2222(2)44||2||44a b a a b b a a +=++=-+=; ∴2||2||0a a -=; ∴||2a =或0(舍去); ∴||2a =.故选:B .本题主要考查了向量数量积的定义及数量积的运算公式,属于中档题.5.平面直角坐标系xOy 中,角α的顶点在原点,始边在x 轴非负半轴,终边与单位圆交于点34,55A ⎛⎫⎪⎝⎭,将其终边绕O 点逆时针旋转34π后与单位园交于点B ,则B 的横坐标为( )A .5-B .10-C .10D .10-【答案】B 【解析】 【分析】34cos ,sin 55αα==,B 的横坐标为3cos()4απ+,计算得到答案.【详解】有题意知:34cos ,sin 55αα==B 的横坐标为:333cos()cos cos sin sin 44410απαπαπ+=-=-故答案选B 【点睛】本题考查了三角函数的计算,意在考查学生的计算能力. 6.设a ,b ,c 均为正实数,则三个数1a b +,1b c +,1c a+( ) A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2【答案】D 【解析】 【分析】 【详解】 由题意得111111()()()2226a b c a b c b c a a b c+++++=+++++≥++=, 当且仅当1a b c ===时,等号成立, 所以111,,a b c b c a+++至少有一个不小于2,故选D. 7.在四边形ABCD 中,若AC AB AD =+,则四边形ABCD 一定是( ) A .正方形 B .菱形C .矩形D .平行四边形【答案】D试题分析:因为,根据向量的三角形法则,有,则可知,故四边形ABCD 为平行四边形.考点:向量的三角形法则与向量的平行四边形法则.8.过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是() A .()()22314x y -++= B .()()22314x y ++-= C .()()22114x y -+-= D .()()22114x y +++=【答案】C 【解析】 【分析】直接根据所给信息,利用排除法解题。

2019-2020学年上海市崇明区第二次高考模拟高三数学模拟试卷(有答案)

2019-2020学年上海市崇明区第二次高考模拟高三数学模拟试卷(有答案)

崇明区第二次高考模拟考试试卷数 学考生注意:1. 本试卷共4页,21道试题,满分150分,考试时间120分钟.2. 本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一、填空题(本大题共有12题,满分54分,其中1~6题每题4分,7~12题每题5分)【考生应在答题纸相应编号的空格内直接填写结果.】1.函数212sin (2)y x =-的最小正周期是 ▲ .2.若全集U R =,集合{}{}10A x x x x =<≥∪,则U C A = ▲ . 3.若复数z 满足2iz i i++=(i 为虚数单位),则z = ▲ . 4.设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = ▲ .5.已知正四棱锥的底面边长是2,则该正四棱锥的体积为 ▲ .6.若实数,x y 满足10304x y x y y -+⎧⎪+-⎨⎪⎩≤≥≤,则目标函数2z x y =-的最大值为 ▲ .7.若1nx ⎫⎪⎭的二项展开式中各项的二项式系数的和是64,则展开式中的常数项的值为▲ .8.数列{}n a 是等比数列,前n 项和为n S ,若122a a +=,231a a +=-,则lim n n S →∞= ▲ .9.若函数1()42x x f x +=+的图像与函数()y g x =的图像关于直线y x =对称,则(3)g = ▲ .10.甲与其四位朋友各有一辆私家车,甲的车牌尾数是0,其四位朋友的车牌尾数分别是0, 2, 1, 5,为遵守当地4月1日至5日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案总数为 ▲ .11.已知函数[)22sin(),0(),0,23cos(),0x x x f x x x x παπα⎧++>⎪=∈⎨⎪-++<⎩是奇函数,则α= ▲ . 12.已知ABC ∆是边长为PQ 为ABC ∆外接圆O 的一条直径,M 为ABC ∆边上的动点,则PM MQ ⋅的最大值是 ▲ .二、选择题(本大题共有4题,满分20分)【每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.】13.一组统计数据12345,,,,x x x x x 与另一组统计数据1234523,23,23,23,23x x x x x +++++相比较(A)标准差相同(B)中位数相同(C)平均数相同(D)以上都不相同14.2b <是直线y b =+与圆2240x y y +-=相交的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件15.若等比数列{}n a 的公比为q ,则关于,x y 的二元一次方程组132421a x a y a x a y +=⎧⎨+=⎩的解的情况下列说法正确的是 (A)对任意(0)q R q ∈≠,方程组都有唯一解 (B)对任意(0)q R q ∈≠,方程组都无解(C)当且仅当12q =时,方程组有无穷多解 (D)当且仅当12q =时,方程组无解 16.设函数()x x x f x a b c =+-,其中0,0c a c b >>>>.若a 、b 、c 是ABC ∆的三条边长,则下列结论中正确的个数是①对于一切(,1)x ∈-∞都有()0f x >;②存在0x >使,,x x x xa b c 不能构成一个三角形的三边长;③若ABC ∆为钝角三角形,则存在(1,2)x ∈,使()0f x =.(A)3个(B)2个(C)1个(D)0个三、解答题(本大题共有5题,满分76分)【解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.】17.(本题满分14分,本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分)在三棱锥C ABO -中,OA 、OB 、OC 所在直线两两垂直, 且OA OB =,CA 与平面AOB 所成角为60︒,D 是AB 中点,BCO(1)求三棱锥C ABO -的高;(2)在线段CA 上取一点E ,当E 在什么位置时,异面直线18.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分)设12F F 、分别为椭圆22221(0)x y a b a bC +=>>:的左、右焦点,点A 为椭圆C 的左顶点,点B 为椭圆C的上顶点,且AB =,12BF F ∆为直角三角形. (1)求椭圆C 的方程;(2)设直线2y k x =+与椭圆交于P 、Q 两点,且OP OQ ⊥,求实数k 的值.19.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分)某校兴趣小组在如图所示的矩形区域ABCD 内举行机器人拦截挑战赛,在E 处按EP 方向释放机器人甲,同时在A 处按某方向释放机器人乙,设机器人乙在Q 处成功拦截机器人甲.若点Q 在矩形区域ABCD 内(包含边界),则挑战成功,否则挑战失败.已知18AB =米,E 为A B 中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记EP 与EB 的夹角为θ.(1)若60θ=︒,AD 足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到0.1︒) (2)如何设计矩形区域ABCD 的宽AD 的长度,才能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域ABCD 内成功拦截机器人甲?E20.(本题满分16分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分7分) 对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.()f x 是否为“M 类函数”?并说明理由;(2)设()2x f x m =+是定义在[]1,1-上的“M 类函数”,求实数m 的最小值;(3)若22,2log (2)(),23x x mx f x x ⎧-⎪=⎨<-⎪⎩≥为其定义域上的“M 类函数”,求实数m 的取值范围.21.(本题满分18分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分)已知数列{}n a 满足111,,*nn n a a a p n N +=-=∈.(1)若1p =,写出4a 所有可能的值;(2)若数列{}n a 是递增数列,且123,2,3a a a 成等差数列,求p 的值; (3)若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.崇明区第二次高考模拟高三数学参考答案及评分标准一、填空题1.2π; 2.[0,1)43; 6.2; 7.15; 8.83; 9.0; 10.64; 11.76π; 12.3二、选择题13.D ; 14.A ; 15.C ; 16.A三、解答题17.解:(1)因为,OC OA OC OB ⊥⊥,所以OC AOB ⊥平面...............................2分 所以CAO ∠就是CA 与平面AOB 所成角,所以60CAO ∠=︒..............................3分所以........6分 所以1a =,所以三棱锥C ABO -的高分(2则11(1,1,3),(,,0)BE OD λλ=--=....10分||14||||BE OD BE OD ⋅=⋅...................................12分或去).................................................................................13分OD所成的角为arccos 分18.解:(1)||AB ==223a b +=因为12BF F ∆为直角三角形,所以b c =..........................................................................3分又222b c a +=,...............................................................................................................4分 所以1a b ==,所以椭圆方程为2212x y +=........................................................6分 (2)由22122x y y k x ⎧+=⎪⎨⎪=+⎩,得:22(12)860k x kx +++= (8)分 由22(8)4(12)60k k ∆=-+⋅>,得:232k >..........................................................9分 设1122(,),(,)P x y Q x y ,则有12122286,1212k x x x x k k +=-⋅=++.......................10分 因为OP OQ ⊥所以1212OP OQ x x y y ⋅=⋅+⋅2212122610(1)2()44012k k x x k x x k-=+⋅+++=+=+.....12分 所以25k =,满足232k >........................................................................................13分所以k =.............................................................................................................14分19.解:(1)AEQ 中,2,120AQ EQ AEQ =∠=︒............................................2分由正弦定理,得:sin sin EQ AQQAE AEQ=∠∠所以sin 4QAE ∠=............................................................................................4分所以25.7QAE ∠=≈︒所以应在矩形区域ABCD 内,按照与AB 夹角为25.7︒的向量AQ 方向释放机器人乙,才能挑战成功.............................................................................................................6分(2)以AB 所在直线为x 轴,AB 中垂线为y 轴,建平面直角坐标系, 设(,)(0)Q x y y ≥...........................................................................................8分由题意,知2AQ EQ =,=所以22(3)36(0)x y y -+=≥..................................................................11分即点Q 的轨迹是以(3,0)为圆心,6为半径的上半圆在矩形区域ABCD 内的部分所以当6AD ≥米时,能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域ABCD 内成功拦截机器人甲...........................................14分20.解(1)由()()f x f x -=-分所以..............3分00()()f x f x -=-M 类函数” (4)分(2)因为()2x f x m =+是定义在[]1,1-上的“M 类函数”, 所以存在实数0[1,1]x ∈-满足00()()f x f x -=-, 即方程2220xxm -++=在[]1,1-上有解, (5)分 令12,22x t ⎡⎤=∈⎢⎥⎣⎦.............................................................................................6分 则11()2m t t=-+ 因为11()()2g t t t =-+在1[,1]2上递增,在[1,2]上递减..............................8分 所以当12t =或2t =时,m 取最小值54-....................................................9分 (3)由220x mx ->对2x ≥恒成立,得1m <...........................................10分因为若22,2log (2)(),23x x mx f x x ⎧-⎪=⎨<-⎪⎩≥为其定义域上的“M 类函数”所以存在实数0x ,满足00()()f x f x -=-①当02x ≥时,02x -≤-,所以22003log (2)x mx -=--,所以00142m x x =- 因为函数14(2)2y x x x=-≥是增函数,所以1m ≥-..............................12分 ②当022x -<<时,022x -<-<,所以-3=3,矛盾.............................13分③当02x ≤-时,02x -≥,所以2200log (2)3x mx +=,所以00142m x x =-+因为函数14(2)2y x x x=-+≤-是减函数,所以1m ≥-.............................15分 综上所述,实数m 的取值范围是[1,1)-.....................................................16分 21.(1)4a 有可能的值为-2024,,,...............................................................4分(2)因为数列{}n a 是递增数列,所以11.nn n n n a a a a p ++-=-=而11a =,所以2231,1a p a p p =+=++.............................................6分又123,2,3a a a 成等差数列,所以21343a a a =+.....................................8分所以230p p -=.解得13p =或0p =当0p =时,1n n a a +=,这与{}n a 是递增数列矛盾,所以13p =...........10分(3)因为{}21n a -是递增数列,所以2+1210n n a a -->,所以()()2+122210n n n n a a a a --+-> ① 但2211122n n -<,所以2+12221n n n n a a a a --<- ② 由①,②知,2210n n a a -->,所以()221221211122nn n n n a a ----⎛⎫-==⎪⎝⎭③......13分因为{}2n a 是递减数列,同理可得2120n n a a +-<所以()21221221122n nn n na a ++-⎛⎫-=-=⎪⎝⎭④由③,④知,()1112n n nna a ++--==.............................................................16分所以121321()()()n n n a a a a a a a a -=+-+-++-()()()11211111111412111222233212n n nnnn -+-----=+-++=+=+⋅+ 所以数列{}n a 的通项公式为()1141332nn n a --=+⋅...........................................18分。

2019年上海市崇明区高考数学一模试卷(含解析)

2019年上海市崇明区高考数学一模试卷(含解析)

2019年上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中第1-6题每题4分,第7-12每每题5分)【考生应在答题纸相应编号的空格内直接填写加过】1.(4分)=.2.(4分)已知集合A={x|﹣1<x<2},B={﹣1,0,1,2,3},则A∩B=.3.(4分)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=.4.(4分)(x2﹣)8的展开式中x7的系数为(用数字作答)5.(4分)角θ的终边经过点P(4,y),且,则tanθ=.6.(4分)在平面直角坐标系xOy中,已知抛物线y2=4x上一点P到焦点的距离为5,则点P的横坐标是.7.(5分)圆x2+y2﹣2x+4y=0的圆心到直线3x+4y+5=0的距离等于.8.(5分)设一个圆锥的侧面展开图是半径为2的半圆,则此圆锥的体积等于.9.(5分)若函数f(x)=log2的反函数的图象过点(﹣3,7),则a=10.(5分)2018年上海春季高考有23所高校招生,如果某3位同学恰好被其中2所高校录取,那么不同的录取方法有种.11.(5分)设f(x)是定义在R上的以2为周期的偶函数,在区间[0,1]上单调递减,且满足f(π)=1,f(2π)=2,则不等式组的解集为.12.(5分)已知数列{a n}满足:①a1=0,②对任意的n∈N*都有a n+1>a n成立.函数f n(x)=|sin(x﹣a n)|,x∈[a n,a n+1]满足:对于任意的实数m∈[0,1),f n(x)=m总有两个不同的根,则{a n}的通项公式是.二、选择题(本大题共有4题,满分20分)【每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.】13.(5分)若a<0<b,则下列不等式恒成立的是()A.B.﹣a>b C.a2>b2D.a3<b314.(5分)“p<2”是“关于x的实系数方程x2+px+1=0有虚数根”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件15.(5分)已知满足,且,则中最小的值是()A.B.C.D.不能确定16.(5分)函数f(x)=x,g(x)=x2﹣x+2.若存在x1,x2,…,x n∈[0,],使得f(x1)+f(x2)+…+f(x n﹣1)+g(x n)=g(x1)+g(x2)+…+g(x n﹣1)+f(x n),则n的最大值是()A.11B.13C.14D.18三、解答题(本大题共有5题,满分76分)【解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤】17.(14分)如图,设长方体ABCD﹣A1B1C1D1中,AB=BC=2,直线A1C与平面ABCD 所成角为.(1)求三棱锥A﹣A1BD的体积;(2)求异面直线A1B与B1C所成角的大小.18.(14分)已知函数f(x)=cos x•sin x+.(1)求函数f(x)的单调递增区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=,a=3,b=4.求△ABC的面积.19.(14分)某创业投资公司拟投资开发某种新能源产品,估计能活得25万元~1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为y=f(x)时,则公司对函数模型的基本要求是:当x∈[25,1600]时,①f(x)是增函数;②f(x)≤75恒成立;(3)恒成立.)(1)判断函数是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数符合公司奖励方案函数模型要求,求实数a的取值范围.20.(16分)已知椭圆Γ:,B1,B2分别是椭圆短轴的上下两个端点,F1是椭圆的左焦点,P是椭圆上异于点B1,B2的点,若△B1F1B2的边长为4的等边三角形.(1)写出椭圆的标准方程;(2)当直线PB1的一个方向向量是(1,1)时,求以PB1为直径的圆的标准方程;(3)设点R满足:RB1⊥PB1,RB2⊥PB2,求证:△PB1B2与△RB1B2的面积之比为定值.21.(18分)已知数列{a n},{b n}均为各项都不相等的数列,S n为{a n}的前n项和,.(1)若,求a4的值;(2)若{a n}是公比为q(q≠1)的等比数列,求证:数列为等比数列;(3)若{a n}的各项都不为零,{b n}是公差为d的等差数列,求证:a2,a3,…,a n,…成等差数列的充要条件是.2019年上海市崇明区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,其中第1-6题每题4分,第7-12每每题5分)【考生应在答题纸相应编号的空格内直接填写加过】1.(4分)=.【考点】6F:极限及其运算.【专题】11:计算题;52:导数的概念及应用.【分析】将分式分子、分母同时除以n,再利用,,可求解.【解答】解:====,故答案为:.【点评】本题考查了极限的运算,属简单题.2.(4分)已知集合A={x|﹣1<x<2},B={﹣1,0,1,2,3},则A∩B={0,1}.【考点】1E:交集及其运算.【专题】36:整体思想;4O:定义法;5J:集合.【分析】直接利用交集运算得答案.【解答】解:A∩B={0,1}.故答案为:{0,1}.【点评】本题考查了交集及其运算,是基础题.3.(4分)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=1﹣2i.【考点】A5:复数的运算.【专题】11:计算题;36:整体思想;4O:定义法;5N:数系的扩充和复数.【分析】设复数z=a+bi,(a、b是实数),则=a﹣bi,代入已知等式,再根据复数相等的含义可得a、b的值,从而得到复数z的值.【解答】解:设z=a+bi,(a、b是实数),则=a﹣bi,∵2z+=3﹣2i,∴2a+2bi+a﹣bi=3﹣2i,∴3a=3,b=﹣2,解得a=1,b=﹣2,则z=1﹣2i故答案为:1﹣2i.【点评】本题给出一个复数乘以虚数单位后得到的复数,求这个复数的值,着重考查了复数的四则运算和复数相等的含义,属于基础题.4.(4分)(x2﹣)8的展开式中x7的系数为﹣56(用数字作答)【考点】DA:二项式定理.【专题】34:方程思想;35:转化思想;5P:二项式定理.【分析】利用通项公式即可得出.【解答】解:T r+1==x16﹣3r,令16﹣3r=7,解得r=3.∴(x2﹣)8的展开式中x7的系数为=﹣56.故答案为:﹣56.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.5.(4分)角θ的终边经过点P(4,y),且,则tanθ=.【考点】G9:任意角的三角函数的定义.【专题】35:转化思想;49:综合法;56:三角函数的求值.【分析】由题意利用任意角的三角函数的定义,求得tanθ的值.【解答】解:角θ的终边经过点P(4,y),且=,∴y=﹣3,则tanθ==﹣,故答案为:﹣.【点评】本题主要考查任意角的三角函数的定义,属于基础题.6.(4分)在平面直角坐标系xOy中,已知抛物线y2=4x上一点P到焦点的距离为5,则点P的横坐标是4.【考点】K8:抛物线的性质.【专题】35:转化思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知|PF|=5,则P到准线的距离也为5,即x+1=5,即可求出x.【解答】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|PF|=x+1=5,∴x=4,故答案为:4.【点评】考查了抛物线的定义、焦半径.到焦点的距离常转化为到准线的距离求解,属于基础题7.(5分)圆x2+y2﹣2x+4y=0的圆心到直线3x+4y+5=0的距离等于0.【考点】IT:点到直线的距离公式;J9:直线与圆的位置关系.【专题】38:对应思想;4R:转化法;5B:直线与圆.【分析】先求圆的圆心坐标,利用点到直线的距离公式,求解即可.【解答】解:由已知得圆心为:P(1,﹣2),由点到直线距离公式得:d==0,故答案为:0.【点评】本题以圆为载体考查点到直线的距离公式,考查学生计算能力,是基础题.8.(5分)设一个圆锥的侧面展开图是半径为2的半圆,则此圆锥的体积等于.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】38:对应思想;49:综合法;5Q:立体几何.【分析】根据圆锥的侧面展开图的弧长为圆锥底面周长得出圆锥底面半径,从而得出圆锥的高,代入体积公式计算即可.【解答】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高h==.∴圆锥的体积V==.故答案为:.【点评】本题考查了圆锥的结构特征,侧面展开图,属于基础题.9.(5分)若函数f(x)=log2的反函数的图象过点(﹣3,7),则a=6【考点】4O:对数函数的单调性与特殊点;4R:反函数.【专题】11:计算题;51:函数的性质及应用.【分析】∵f(x)的反函数图象过点(﹣3,7),所以原函数f(x)的图象过(7,﹣3),然后将点(7,﹣3)代入f(x)可解得.【解答】解:∵f(x)的反函数图象过点(﹣3,7),所以原函数f(x)的图象过(7,﹣3),∴f(7)=﹣3,即log2=﹣3,∴=2﹣3,∴a=6.故答案为:6【点评】本题考查了反函数.属基础题.10.(5分)2018年上海春季高考有23所高校招生,如果某3位同学恰好被其中2所高校录取,那么不同的录取方法有1518种.【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;38:对应思想;4O:定义法;5O:排列组合.【分析】解决这个问题得分三步完成,第一步把三个学生分成两组,第二步从23所学校中取两个学校,第三步,把学生分到两个学校中,再用乘法原理求解【解答】解:由题意知本题是一个分步计数问题,解决这个问题得分三步完成,第一步把三个学生分成两组,第二步从23所学校中取两个学校,第三步,把学生分到两个学校中,共有C31C22A232=1518,故答案为:1518.【点评】本题考查分步计数问题,本题解题的关键是把完成题目分成三步,看清每一步所包含的结果数,本题是一个基础题.11.(5分)设f(x)是定义在R上的以2为周期的偶函数,在区间[0,1]上单调递减,且满足f(π)=1,f(2π)=2,则不等式组的解集为[π﹣2,8﹣2π].【考点】3N:奇偶性与单调性的综合.【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用.【分析】根据f(x)是以2为周期的偶函数,并且在[0,1]上单调递减,便可由f(π)=1,f(2π)=2得出f(4﹣π)=1,f(2π﹣6)=2,并且由1≤x≤2得出0≤2﹣x≤1,从而由1≤f(x)≤2得出f(4﹣π)≤f(2﹣x)≤f(2π﹣6),进而得出,解该不等式组即可.【解答】解:∵f(x)是以2为周期的偶函数,且f(x)在[0,1]上单调递减;∴由f(π)=1,f(2π)=2得,f(4﹣π)=1,f(2π﹣6)=2,且4﹣π,2π﹣6∈[0,1];由1≤x≤2得,0≤2﹣x≤1;∴由得,;∴;解得π﹣2≤x≤8﹣2π;∴原不等式组的解集为[π﹣2,8﹣2π].故答案为:[π﹣2,8﹣2π].【点评】考查周期函数和偶函数的定义,以及减函数的定义,不等式的性质.12.(5分)已知数列{a n}满足:①a1=0,②对任意的n∈N*都有a n+1>a n成立.函数f n(x)=|sin(x﹣a n)|,x∈[a n,a n+1]满足:对于任意的实数m∈[0,1),f n(x)=m总有两个不同的根,则{a n}的通项公式是a n=π.【考点】8H:数列递推式.【专题】11:计算题;38:对应思想;4F:归纳法;54:等差数列与等比数列.【分析】利用三角函数的图象与性质、诱导公式、数列的递推关系可得a n+1﹣a n=nπ,再利用“累加求和”方法、等差数列的求和公式即可得出.【解答】解:∵a1=0,当n=1时,f1(x)=|sin(x﹣a1)|=|sin x|,x∈[0,a2],又∵对任意的m∈[0,1),f1(x)=m总有两个不同的根,∴a2=π,∴f1(x)=sin x,x∈[0,π],a2=π,又f2(x)=|sin(x﹣a2)|=|sin(x﹣π)|=|cos|,x∈[π,a3],∵对任意的m∈[0,1),f1(x)=m总有两个不同的根,∴a3=3π,又f3(x)=|sin(x﹣a3)|=|sin(x﹣3π)|=|sinπ|,x∈[3π,a4],∵对任意的b∈[0,1),f1(x)=m总有两个不同的根,∴a4=6π,由此可得a n+1﹣a n=nπ,∴a n=a1+(a2﹣a1)+…+(a n﹣a n﹣1)=0+π+…+(n﹣1)π=π,故答案为:a n=π,【点评】本题考查了三角函数的图象与性质、诱导公式、数列的递推关系、“累加求和”方法、等差数列的求和公式,考查了推理能力与计算能力,属于中档题二、选择题(本大题共有4题,满分20分)【每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.】13.(5分)若a<0<b,则下列不等式恒成立的是()A.B.﹣a>b C.a2>b2D.a3<b3【考点】72:不等式比较大小.【专题】11:计算题;34:方程思想;4O:定义法;59:不等式的解法及应用.【分析】若a=﹣1,b=1,则A,B,C不正确,对于D,根据幂函数的性质即可判断正确.【解答】解:∵a<0<b,若a=﹣1,b=1,则A,B,C不正确,对于D,根据幂函数的性质即可判断正确,故选:D.【点评】本题考查了不等式的大小比较,特殊值法是常用的方法,属于基础题.14.(5分)“p<2”是“关于x的实系数方程x2+px+1=0有虚数根”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;5L:简易逻辑.【分析】先求出关于x的实系数方程x2+px+1=0有虚数根的充要条件为:△=p2﹣4<0,即﹣2<p<2,再由“p<2”与“﹣2<p<2”的关系得解,【解答】解:关于x的实系数方程x2+px+1=0有虚数根的充要条件为:△=p2﹣4<0,即﹣2<p<2,又“p<2”不能推出“﹣2<p<2”,“﹣2<p<2”能推出“p<2”,即“p<2”是“关于x的实系数方程x2+px+1=0有虚数根”的必要不充分条件,故选:B.【点评】本题考查了充分条件、必要条件、充要条件及简易逻辑知识,属简单题15.(5分)已知满足,且,则中最小的值是()A.B.C.D.不能确定【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;5A:平面向量及应用.【分析】由已知可得∴=﹣(),两边同时平方可得=,同理可得,=,=,结合,即可判断【解答】解:∵,∴=﹣(),两边同时平方可得,,∴=,同理可得,=,=,∵,∴>2>2即>2>2故最小的为故选:B.【点评】本题主要考查了向量的数量积的性质的简单应用,属于基础试题.16.(5分)函数f(x)=x,g(x)=x2﹣x+2.若存在x1,x2,…,x n∈[0,],使得f(x1)+f(x2)+…+f(x n﹣1)+g(x n)=g(x1)+g(x2)+…+g(x n﹣1)+f(x n),则n的最大值是()A.11B.13C.14D.18【考点】37:区间与无穷的概念.【专题】34:方程思想;4I:配方法;51:函数的性质及应用.【分析】由已知得n﹣2=(x n﹣1)2﹣[(x1﹣1)2+(x2﹣1)2+…+(x n﹣1﹣1)2],又x1,x2,…,x n∈[0,],可求n的最大值.【解答】解:∵f(x1)+f(x2)+…+f(x n﹣1)+g(x n)=x1+x2+…+x n﹣1+x n2﹣x n+2,g(x1)+g(x2)+…+g(x n﹣1)+f(x n)=x12+x22+…+x n﹣12﹣(x1+x2+…+x n﹣1)+2(n﹣1)+x n,∴(x1﹣1)2+(x2﹣1)2+…+(x n﹣1﹣1)2+(n﹣2)=(x n﹣1)2,∴n﹣2=(x n﹣1)2﹣[(x1﹣1)2+(x2﹣1)2+…+(x n﹣1﹣1)2]当x1=x2=…=x n﹣1=1,x n=时,(n﹣2)max=(﹣1)2=,∴n﹣2≤,又∵n∈N,∴n max=14.故选:C.【点评】本题考查参数的最值,配方是关键,考查推理能力和计算能力,属中档题.三、解答题(本大题共有5题,满分76分)【解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤】17.(14分)如图,设长方体ABCD﹣A1B1C1D1中,AB=BC=2,直线A1C与平面ABCD所成角为.(1)求三棱锥A﹣A1BD的体积;(2)求异面直线A1B与B1C所成角的大小.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【专题】11:计算题;45:等体积法;5Q:立体几何.【分析】(1)转换顶点,以A1为顶点,易求体积;(2)B1C平移至A1D,化异面直线为共面直线,利用余弦定理求解.【解答】解:(1)连接AC,则∠A1CA为A1C与平面ABCD所成的角,∴∠A1CA=,∵AB=BC=2,∴,∴∴V=V==,(2)连接A1D,易知A1D∥B1C,∴∠BA1D(或其补角)即为所求,连接BD,在△A 1DB中,,,BD=2,由余弦定理得:cos∠BA1D==,,故异面直线A1B,B1C所成角的大小为arccos.【点评】此题考查了三棱锥体积,异面直线所成角的求法等,难度不大.18.(14分)已知函数f(x)=cos x•sin x+.(1)求函数f(x)的单调递增区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=,a=3,b=4.求△ABC的面积.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】35:转化思想;4R:转化法;57:三角函数的图象与性质.【分析】(1)利用二倍角,辅助角公式化简,结合三角函数的单调性即可求解f(x)的单调递增区间;(2)根据f(A)=,求解A,a=3,b=4.利用余弦定理求解c,即可求解△ABC的面积.【解答】解:(1)函数f(x)=cos x•sin x+=sin2x+cos2x=sin(2x+)令≤2x+,得≤x≤,∴f(x)的单调递增区间为[,];k∈Z;(2)由f(A)=,即sin(2A+)=,△ABC是锐角三角形,∴2A+=可得A=余弦定理:cos A==解得:c=△ABC的面积S==4.【点评】本题主要考查三角函数的图象和性质,余弦定理的应用,利用三角函数公式将函数进行化简是解决本题的关键.19.(14分)某创业投资公司拟投资开发某种新能源产品,估计能活得25万元~1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为y=f(x)时,则公司对函数模型的基本要求是:当x∈[25,1600]时,①f(x)是增函数;②f(x)≤75恒成立;(3)恒成立.)(1)判断函数是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数符合公司奖励方案函数模型要求,求实数a的取值范围.【考点】5C:根据实际问题选择函数类型.【专题】11:计算题;33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】(1)研究它的单调性和恒成立问题,即可判断是否符合的基本要求;(2)先求出g(x)max=a﹣5≤75,此时a的范围,再求出满足恒成立a的范围,即可求出【解答】解:(1)对于函数模型f(x)=+10,当x∈[25,1600]时,f(x)是单调递增函数,则f(x)≤f(1600)=10≤75,显然恒成立,若函数f(x)=+10﹣≤0恒成立,即x≥60∴f(x)=+10不恒成立,综上所述,函数模型f(x)=+10,满足基本要求①②,但是不满足③,故函数模型f(x)=+10,不符合公司要求;(2)x∈[25,1600]时,g(x)=a﹣5有意义,∴g(x)max=a﹣5≤75,∴a≤2,设a﹣5≤恒成立,∴ax≤(5+)2恒成立,即a≤+2+,∵+≥2=2,当且仅当x=25时取等号,∴a≤2∵a≥1,∴1≤a≤2,故a的取值范围为[1,2]【点评】本题主要考查函数模型的选择,其实质是考查函数的基本性质,同时,确定函数关系实质就是将文字语言转化为数学符号语言﹣﹣数学化,再用数学方法定量计算得出所要求的结果,关键是理解题意,将变量的实际意义符号化.20.(16分)已知椭圆Γ:,B1,B2分别是椭圆短轴的上下两个端点,F1是椭圆的左焦点,P是椭圆上异于点B1,B2的点,若△B1F1B2的边长为4的等边三角形.(1)写出椭圆的标准方程;(2)当直线PB1的一个方向向量是(1,1)时,求以PB1为直径的圆的标准方程;(3)设点R满足:RB1⊥PB1,RB2⊥PB2,求证:△PB1B2与△RB1B2的面积之比为定值.【考点】K4:椭圆的性质.【专题】34:方程思想;49:综合法;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由△B1F1B2是边长为4的等边三角形得a=4,进一步求得b=2,则椭圆方程可求;(2)由直线PB1的一个方向向量是(1,1),可得直线PB1所在直线的斜率k=1,得到直线PB1的方程,由椭圆方程联立,求得P点坐标,得到PB1的中点坐标,再求出|PB1|,可得以PB1为直径的圆的半径,则以PB1为直径的圆的标准方程可求;(3)方法一、设P(x0,y0),R(x1,y1)求出直线PB1的斜率,进一步得到直线RB1的斜率,得到直线RB1的方程,同理求得直线RB2的方程,联立两直线方程求得R的横坐标,再结合P(x0,y0)在椭圆上可得x1与x0的关系,由求解;方法二、设直线PB1,PB2的斜率为k,k',得直线PB1的方程为y=kx+2.结合RB1⊥PB1,可得直线RB1的方程为y=﹣,把y=kx+2与椭圆方程联立可得x0=,再由P(x0,y0)在椭圆上,得到,从而得到k•k′==,得.结合RB2⊥PB2,可得直线RB2的方程为y=4kx﹣2.与线RB1的方程联立求得.再由求解.【解答】(1)解:如图,由△B1F1B2的边长为4的等边三角形,得a=4,且b=2.∴椭圆的标准方程为;(2)解:∵直线PB1的一个方向向量是(1,1),∴直线PB1所在直线的斜率k=1,则直线PB1的方程为y=x+2,联立,得5x2+16x=0,解得,∴.则PB1的中点坐标为,.则以PB1为直径的圆的半径r=.∴以PB1为直径的圆的标准方程为;(3)证明:方法一、设P(x0,y0),R(x1,y1).直线PB1的斜率为,由RB1⊥PB1,得直线RB1的斜率为.于是直线RB1的方程为:.同理,RB2的方程为:.联立两直线方程,消去y,得.∵P(x0,y0)在椭圆上,∴,从而.∴,∴.方法二、设直线PB1,PB2的斜率为k,k',则直线PB1的方程为y=kx+2.由RB1⊥PB1,直线RB1的方程为y=﹣,将y=kx+2代入,得(4k2+1)x2+16kx=0,∵P是椭圆上异于点B1,B2的点,∴x0≠0,从而x0=.∵P(x0,y0)在椭圆上,∴,从而.∴k•k′==,得.∵RB2⊥PB2,∴直线RB2的方程为y=4kx﹣2.联立,解得,即.∴=||=4.【点评】本题考查椭圆方程的求法,考查直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是中档题.21.(18分)已知数列{a n},{b n}均为各项都不相等的数列,S n为{a n}的前n项和,.(1)若,求a4的值;(2)若{a n}是公比为q(q≠1)的等比数列,求证:数列为等比数列;(3)若{a n}的各项都不为零,{b n}是公差为d的等差数列,求证:a2,a3,…,a n,…成等差数列的充要条件是.【考点】83:等差数列的性质;8E:数列的求和;8H:数列递推式.【专题】15:综合题;38:对应思想;4R:转化法;54:等差数列与等比数列.【分析】(1)直接代入计算即可;(2)通过设a n=a1q n﹣1(q≠1),利用等比数列的求和公式及a n+1b n=S n+1,计算可知b n,进而化简即得结论;(3)通过数列{b n}是公差为d的等差数列,对a n+1b n﹣a n(b n﹣d)=a n变形可知﹣==,然后分别证明充分性、必要性即可.【解答】解:(1)∵a n+1b n=S n+1,a1=1,b n=,∴a2===4,a3===6,a4===8,证明:(2)设a n=a1q n﹣1(q≠1),则S n=,∵a n+1b n=S n+1,∴b n===,∴b n+=+=∴b n+1+=∴=q,(q为常数)∴数列为等比数列,(3)∵数列{b n}是公差为d的等差数列,∴当n≥2时,a n+1b n﹣a n(b n﹣d)=a n,即(a n+1﹣a n)b n=(1﹣d)a n,∵数列{a n}的各项都不为零,∴a n+1﹣a n≠0,1﹣d≠0,∴当n≥2时,=,当n≥3时,=,两式相减得:当n≥3时,﹣==.先证充分性:由d=可知﹣=1,∴当n≥3时,+1=,又∵a n≠0,∴a n+1﹣a n=a n﹣a n﹣1,即a2,a3,…,a n…成等差数列;再证必要性:∵a2,a3,…,a n…成等差数列,∴当n≥3时,a n+1﹣a n=a n﹣a n﹣1,∴﹣=﹣=1=,∴d=.综上所述,a2,a3,…,a n…成等差数列的充要条件是d=【点评】本题考查数列的递推式,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

2020学年崇明区高三一模数学试卷(含解析)

2020学年崇明区高三一模数学试卷(含解析)

高三数学 共4页 第1页崇明区2020学年第一次高考模拟考试试卷(含解析)数学考生注意:1. 本试卷共4页,21道试题,满分150分,考试时间120分钟.2. 本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一、填空题(本大题共有12题,满分54分,其中1~6题每题4分,7~12题每题5分)【考生应在答题纸相应编号的空格内直接填写结果.】1.设集合{1,2,3}A =,集合{3,4}B =,则A B = .2.不等式102x x -<+的解集是 . 3.已知复数z 满足(z 2)i 1-=(i 是虚数单位),则z = . 4.设函数1()1f x x =+的反函数为1()f x -,则1(2)f -= . 5.点(0,0)到直线2x y +=的距离是 . 6.计算:123lim(2)n nn n →∞+++⋅⋅⋅+=+ .7.若关于x 、y 的方程组46132x y ax y +=⎧⎨-=⎩无解,则实数a = .8.用数字0、1、2、3、4、5组成无重复数字的三位数,其中奇数的个数为 .(结果用数值表示)9.若23(2)n a b +的二项展开式中有一项为412ma b ,则m = .10.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE △的面积为1,则双曲线C 的焦距的最小值为 . 11.已知函数()=y f x ,对任意x R ∈,都有(2)()f x f x k +⋅=(k 为常数),且当[0,2]x ∈时,2()1f x x =+,则(2021)f = .12.已知点D 为圆22:4O x y +=的弦MN 的中点,点A 的坐标为(1,0),且1AM AN ⋅=,则OA OD ⋅的范围是 .高三数学 共4页 第2页二、选择题(本大题共有4题,满分20分)【每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.】13.若0a b <<,则下列不等式恒成立的是( )A .11a b> B .a b ->C .22a b >D .33a b <14.正方体上的点P 、Q 、R 、S 是其所在棱的中点,则直线PQ 与直线RS 异面的图形是( )A .B .C .D . 15.设{}n a 为等比数列,则“对于任意的*2,m m m a a +∈>N ”是“{}n a 为递增数列”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件16.设函数()y f x =的定义域是R ,对于下列四个命题: (1)若函数()y f x =是奇函数,则函数()()y f f x =是奇函数; (2)若函数()y f x =是周期函数,则函数()()y f f x =是周期函数; (3)若函数()y f x =是单调减函数,则函数()()y f f x =是单调减函数;(4)若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点;其中正确的命题共有( ) A .1个B .2个C .3个D .4个三、解答题(本大题共有5题,满分76分)【解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.】17.(本题满分14分,本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分) 如图,已知AB ⊥平面BCD ,BC BD ⊥,直线AD 与平面BCD 所成的角为30°,且2AB BC ==.(1)求三棱锥A BCD -的体积;(2)设M 为BD 的中点,求异面直线AD 与CM 所成角的大小(结果用反三角函数值表示).SRP QQ PRS Q PS RRPS Q高三数学 共4页 第3页18.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分)已知函数21()sin 23cos 2f x x x =-.(1)求函数()y f x =的最小正周期;(2)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若锐角A 满足13()f A -=,6C π=, 2c =,求ABC △的面积.19.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分)研究表明:在一节40分钟的网课中,学生的注意力指数y 与听课时间x (单位:分钟) 之间的变化曲线如图所示.当[0,16]x ∈时,曲线是二次函数图像的一部分;当[16,40]x ∈时,曲线是函数0.8log ()80y x a =++图像的一部分.当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数()y f x =的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)yx 12 16 4080 84 O· · ·· ·· · ·20.(本题满分16分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分7分)已知椭圆22:14xyΓ+=的左右顶点分别为A、B,P为直线4x=上的动点,直线P A与椭圆Γ的另一交点为C,直线PB与椭圆Γ的另一交点为D.(1)若点C的坐标为(0,1),求点P的坐标;(2)若点P的坐标为(4,1),求以BD为直径的圆的方程;(3)求证:直线CD过定点.高三数学共4页第4页高三数学 共4页 第5页21.(本题满分18分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分)对于数列{}n a ,若从第二项起的每一项均大于该项之前的所有项的和,则称{}n a 为P 数列. (1)若数列1,2,,8x 是P 数列,求实数x 的取值范围; (2)设数列12310,,,,a a a a 是首项为1-、公差为d 的等差数列,若该数列是P 数列,求d 的取值范围;(3)设无穷数列{}n a 是首项为a 、公比为q 的等比数列,有穷数列{}n b ,{}n c 是从{}n a中取出部分项按原来的顺序所组成的不同数列,其所有项和分别记为1T ,2T . 求证:当0a >且12T T =时,数列{}n a 不是P 数列.高三数学 共4页 第6页崇明区2021届第一次高考模拟考试(数学)参考答案及评分标准一、填空题1. {3};2.(2,1)-;3.2i +;4.1-; ; 6.12; 7.2-; 8.48; 9.60; 10. 11. 2; 12.[-1,2).二、选择题13.D; 14.B; 15.C;16.B三、解答题17.解:(1)因为AB ⊥平面BCD ,所以ADB ∠就是直线AD 与平面BCD 所成的角,所以30ADB ∠=︒...............3分 所以BD =所以13A BCD BCD V S AB -=⋅=...........................7分 (2)取线段AB 的中点N,联结CN 、MN ,则//MN AD所以CMN ∠就是异面直线AD 与CM 所成的角...........................4分 在CMN 中,2MN =,CN=CM =所以222cos 214CM MN CN CMN CM MN +-∠==⋅...........................7分18.解:(1)1()sin 2sin(2)23f x x x π==-分所以函数()y f x =的最小正周期2||T ππω==...........................6分 (2)由()f A =,得:1sin(2)=32A π-因为(0,)2A π∈,所以22(,)333A πππ-∈-,所以2=36A ππ-,4A π=...........................3分所以22224cos 242b c a b A bc b +--===2b =...........................6分所以1sin 12ABC S bc A ==...........................8分19.解:(1)当[0,16]x ∈时,设2()(12)84(0)f x b x b =-+<由(16)80f =,得:2(1612)84=80b -+,故14b =-...........................2分当[16,40]x ∈时,由(16)80f =,得:0.8log (16)8080a ++=,故15a =-.................4分高三数学 共4页 第7页所以20.81(12)84,[0,16]()4log (15)80,(16,40]x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩...........................6分(2)当[0,16]x ∈时,由21(12)84684x --+≤,得:[0,4]x ∈...........................3分当[16,40]x ∈时,由0.8log (15)8068x -+≤,得:12150.829.6x -≥+≈ 所以[30,40]x ∈...........................3分因此,在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有14分钟..............8分. 20. 解:(1)由题意,(2,0)A -,直线AP 的方程是:12xy =-...........................3分 由124xy x ⎧=-⎪⎨⎪=⎩,得:点P 的坐标是(4,3)...........................4分 (2)由题意,(2,0)B ,直线PB 的方程是:22x y -=,代入2214x y +=,得:220x x -=,解得:0x =,或2x =,所以点D 坐标为(0,-1),线段BD 中点为1(1,)2-,||BD =分所以以BD 为直径的圆的方程是2215(1)()24x y -++=...........................5分(3)设0(4,)P y ,11(,)C x y ,22D(,)x y ,则直线AP 的方程是:0(2)6y x y +=代入2214x y +=,得:2222000(9)44360y x y x y +++-=所以20120218=9y x y -++,012069y y y =+ 同理,可得:2022022=1y x y -+,022021y y y -=+..........................4分 所以直线CD 的方程为:2220000002222220000002622222182()()()()191191y y y y y y x y y y y y y y ----+---=--++++++ 令0y =,得:1x =所以直线CD 过定点(1,0)..........................7分21.解:(1)由题意,得:12812x x>+⎧⎨>++⎩,所以35x <<..........................4分(2)由题意知,该数列的前n 项和为(1)2n n n S n d -=-+,11n a nd +=-+, 由数列12310,,,,a a a a P 数列,可知211a S a >=,故公差0d >..........................3分高三数学 共4页 第8页21311022n n d S a n d n +⎛⎫-=-++< ⎪⎝⎭对满足1,2,3,9n =的任意n 都成立,则239911022d d ⎛⎫⋅-++< ⎪⎝⎭,解得827d <, 故d 的取值范围为80,27⎛⎫⎪⎝⎭..........................6分 (3)若{}n a 是P 数列,则12a S a aq =<=,因为0a >,所以1q >,又由1n n a S +>对一切正整数n 都成立,可知11n nq aq a q ->⋅-,即12nq q ⎛⎫-< ⎪⎝⎭对一切正整数n 都成立,由10nq ⎛⎫> ⎪⎝⎭,1lim 0nn q →∞⎛⎫= ⎪⎝⎭,故20q -≤,可得2q ≥..........................3分若{}n b 中的每一项都在{}n c 中,则由这两数列是不同数列,可知12T T <; 若{}n c 中的每一项都在{}n b 中,同理可得12T T ;若{}n b 中至少有一项不在{}n c 中且{}n c 中至少有一项不在{}n b 中,设{}n b ',{}n c '是将{}n b ,{}n c 中的公共项去掉之和剩余项依次构成的数列,它们的所有项和分别为1T ',2T ',不妨设{}n b ',{}n c '中最大的项在{}n b '中,设为)2(m a m ≥, 则21211m m T a a a a T -≤+++<≤'',故21T T '<',故总有12T T ≠与12T T =矛盾,故假设错误,原命题正确...........................8分。

上海市崇明县2019-2020学年高考数学五月模拟试卷含解析

上海市崇明县2019-2020学年高考数学五月模拟试卷含解析

上海市崇明县2019-2020学年高考数学五月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线2222:1(0,0)x y E a b a b-=>>满足以下条件:①双曲线E 的右焦点与抛物线24y x =的焦点F 重合;②双曲线E 与过点(4,2)P 的幂函数()f x x α=的图象交于点Q ,且该幂函数在点Q 处的切线过点F 关于原点的对称点.则双曲线的离心率是( )A.12 B.12 C .32 D1【答案】B【解析】【分析】由已知可求出焦点坐标为(1,0)(-1,0),,可求得幂函数为()f x =设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率.【详解】依题意可得,抛物线24y x =的焦点为(1,0)F ,F 关于原点的对称点(1,0)-;24α=,12α=,所以12()f x x ==,()f x '=,设0(Q x0=01x =,∴ ()1,1Q ,可得22111a b -=,又1c =,222c a b =+,可解得a =故双曲线的离心率是c e a ===. 故选B .【点睛】 本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.2.不等式42,3x y x y -⎧⎨+⎩…„的解集记为D ,有下面四个命题:1:(,),25p x y D y x ∀∈-„;2:(,),22p x y D y x ∃∈-…;3:(,),22p x y D y x ∀∈-„;4:(,),24p x y D y x ∃∈-….其中的真命题是( )A .12,p pB .23,p pC .13,p pD .24,p p【答案】A【解析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当1,2x y ==时,max (2)3y x -=,即2y x -的取值范围为(,3]-∞,所以1(,),25,x y D y x p ∀∈-„为真命题;2(,),22,x y D y x p ∃∈-…为真命题;34,p p 为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题. 3.如图所示,已知某几何体的三视图及其尺寸(单位:cm ),则该几何体的表面积为( )A .15π2cmB .21π2cmC .24π2cmD .33π2cm【答案】C【解析】【分析】 由三视图知,该几何体是一个圆锥,其母线长是5cm ,底面直径是6cm ,据此可计算出答案.由三视图知,该几何体是一个圆锥,其母线长是5cm ,底面直径是6cm ,∴该几何体的表面积233524S πππ=⨯+⨯⨯=.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键. 4.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A .240,18B .200,20C .240,20D .200,18【答案】A【解析】【分析】 利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.【详解】样本容量为:(150+250+400)×30%=240, ∴抽取的户主对四居室满意的人数为:15024040%18.150250400⨯⨯=++ 故选A .【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.5.将函数()sin(2)f x x ϕ=-的图象向右平移18个周期后,所得图象关于y 轴对称,则ϕ的最小正值是( )A .8πB .34πC .2πD .4π 【答案】D由函数()sin y A ωx φ=+的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于ϕ的方程,对k 赋值即可求解.【详解】由题意知,函数()sin(2)f x x ϕ=-的最小正周期为22T ππ==,即88T π=, 由函数()sin y A ωx φ=+的图象平移变换公式可得,将函数()sin(2)f x x ϕ=-的图象向右平移18个周期后的解析式为 ()sin 2sin 284g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=--=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 因为函数()g x 的图象关于y 轴对称,所以,42k k z ππϕπ--=+∈,即3,4k k z πϕπ=-+∈, 所以当1k =时,ϕ有最小正值为4π. 故选:D【点睛】 本题考查函数()sin y A ωx φ=+的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.6.函数()3sin 3x f x x π=+的图象的大致形状是( ) A . B . C .D .【分析】根据函数奇偶性,可排除D ;求得()f x '及()f x '',由导函数符号可判断()f x 在R 上单调递增,即可排除AC 选项.【详解】函数()3sin 3x f x x π=+ 易知()f x 为奇函数,故排除D.又()2cos x f x x π'=+,易知当0,2x π⎡⎤∈⎢⎥⎣⎦时,()0f x '>; 又当,2x π⎛⎫∈+∞ ⎪⎝⎭时,()2sin 1sin 0x f x x x π''=->-≥, 故()f x '在,2π⎛⎫+∞⎪⎝⎭上单调递增,所以()24f x f ππ⎛⎫''>= ⎪⎝⎭, 综上,[)0,x ∈+∞时,()0f x '>,即()f x 单调递增.又()f x 为奇函数,所以()f x 在R 上单调递增,故排除A ,C.故选:B【点睛】本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.7.一艘海轮从A 处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .6 2海里B .3C .2海里D .3海里【答案】A【解析】先根据给的条件求出三角形ABC 的三个内角,再结合AB 可求,应用正弦定理即可求解.【详解】由题意可知:∠BAC =70°﹣40°=30°.∠ACD =110°,∴∠ACB =110°﹣65°=45°,∴∠ABC =180°﹣30°﹣45°=105°.又AB =24×0.5=12.在△ABC 中,由正弦定理得4530AB BC sin sin =︒︒, 122BC =,∴62BC =故选:A.【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.8.数列{}n a 满足:3111,25n n n n a a a a a ++=-=,则数列1{}n n a a +前10项的和为 A .1021 B .2021 C .919 D .1819【答案】A【解析】分析:通过对a n ﹣a n+1=2a n a n+1变形可知1112n n a a +-=,进而可知121n a n =-,利用裂项相消法求和即可. 详解:∵112n n n n a a a a ++-=,∴1112n na a +-=, 又∵31a =5, ∴()3112n 32n 1n a a =+-=-,即121n a n =-, ∴()111111222121n n n n a a a a n n ++⎛⎫=-=- ⎪-+⎝⎭,∴数列{}1n n a a +前10项的和为1111111110112335192122121L ⎛⎫⎛⎫-+-++-=-= ⎪ ⎪⎝⎭⎝⎭, 故选A . 点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2) 1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9.若()()613x a x -+的展开式中3x 的系数为-45,则实数a 的值为( )A .23B .2C .14D .13【答案】D【解析】【分析】将多项式的乘法式展开,结合二项式定理展开式通项,即可求得a 的值.【详解】∵()()()()666131313x a x x x a x -+=+-+所以展开式中3x 的系数为2233663313554045C aC a -=-=-, ∴解得13a =. 故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.10.已知函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0ϕπ<<)的图象关于点5,012M π⎛⎫ ⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33N π⎛⎫-⎪⎝⎭,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴; ②点,012π⎛⎫- ⎪⎝⎭是函数()f x 的一个对称中心;③函数1y =与()351212y f x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图象的所有交点的横坐标之和为7π. 其中正确的判断是( )A .①②B .①③C .②③D .①②③ 【答案】C【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T ,再代入最低点可求得解析式为()3sin 26f x x π⎛⎫=+ ⎪⎝⎭,依次判断各选项的正确与否. 详解:因为5,012M π⎛⎫ ⎪⎝⎭为对称中心,且最低点为2,33N π⎛⎫- ⎪⎝⎭, 所以A=3,且254312T πππ⎛⎫=⨯-=⎪⎝⎭ 由222T ππωπ=== 所以()()3sin 2f x x ϕ=+,将2,33N π⎛⎫-⎪⎝⎭带入得 6π=ϕ ,所以()3sin 26f x x π⎛⎫=+ ⎪⎝⎭由此可得①错误,②正确,③当351212x ππ-≤≤时,0266x ππ≤+≤,所以与1y = 有6个交点,设各个交点坐标依次为123456,,,,,x x x x x x ,则1234567x x x x x x π+++++=,所以③正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题.11.已知三棱锥,1,P ABC AC BC AC BC -==⊥且2,PA PB PB =⊥平面ABC ,其外接球体积为( )A .43πB .4πC .323πD .【答案】A【解析】【分析】由AC BC ⊥,PB ⊥平面ABC ,可将三棱锥P ABC -还原成长方体,则三棱锥P ABC -的外接球即为长方体的外接球,进而求解.【详解】由题,因为2,1,AC BC AC BC ==⊥,所以223AB AC BC =+=,设PB h =,则由2PA PB =,可得232h h +=,解得1h =,可将三棱锥P ABC -还原成如图所示的长方体,则三棱锥P ABC -的外接球即为长方体的外接球,设外接球的半径为R ,则22221(2)12R =++=,所以1R =,所以外接球的体积34433V R ππ==. 故选:A【点睛】本题考查三棱锥的外接球体积,考查空间想象能力.12.复数()(1)2z i i =++的共轭复数为( )A .33i -B .33i +C .13i +D .13i - 【答案】D【解析】【分析】直接相乘,得13i +,由共轭复数的性质即可得结果【详解】∵21()()13z i i i =++=+∴其共轭复数为13i -.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.二、填空题:本题共4小题,每小题5分,共20分。

上海市崇明县2019-2020学年高考适应性测试卷数学试题(1)含解析

上海市崇明县2019-2020学年高考适应性测试卷数学试题(1)含解析

上海市崇明县2019-2020学年高考适应性测试卷数学试题(1)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a Q 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>Q ,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠Q ,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意. 所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列. 所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题. 2.点P 为棱长是2的正方体1111ABCD A B C D -的内切球O 球面上的动点,点M 为11B C 的中点,若满足DP BM ⊥,则动点P 的轨迹的长度为( )A B C D 【答案】C 【解析】设1B B 的中点为H ,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出BM ⊥平面DCH ,这样可以确定动点P 的轨迹,最后求出动点P 的轨迹的长度.【详解】设1B B 的中点为H ,连接,CH DH ,因此有CH BM ⊥,而DC MB ⊥,而,DC CH ⊂平面CDH ,DC CH C =I ,因此有BM ⊥平面DCH ,所以动点P 的轨迹平面DCH 与正方体1111ABCD A B C D -的内切球O 的交线. 正方体1111ABCD A B C D -的棱长为2,所以内切球O 的半径为1R =,建立如下图所示的以D 为坐标原点的空间直角坐标系:因此有(1,1,1),(0,2,0),(2,2,1)O C H ,设平面DCH 的法向量为(,,)m x y z =u r,所以有200(1,0,2)2200y m DC m DC m x y z m DH m DH ⎧⎧=⎧⊥⋅=⇒⇒⇒=-⎨⎨⎨++=⊥⋅=⎩⎩⎩u u u v u u u v v v v u u u uv u u u u v v v ,因此O 到平面DCH 的距离为:55m ODd m⋅==u r u u u r u r ,所以截面圆的半径为:2225r R d =-=,因此动点P 的轨迹的长度为4525r ππ=. 故选:C【点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.3.若P 是q ⌝的充分不必要条件,则⌝p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】 【分析】 【详解】试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p 是q ⌝的充分不必要条件知“若p 则q ⌝”为真,“若q ⌝则p”为假,根据互为逆否命题的等价性知,“若q 则p ⌝”为真,“若p ⌝则q”为假,故选B . 考点:逻辑命题4.已知某几何体的三视图如图所示,则该几何体的体积是( )A .643B .64C .323D .32【答案】A 【解析】 【分析】根据三视图,还原空间几何体,即可得该几何体的体积. 【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故()16444433V =⨯⨯⨯=. 故选:A 【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.5.已知正三角形ABC 的边长为2,D 为边BC 的中点,E 、F 分别为边AB 、AC 上的动点,并满足2AE CF =u u u v u u u v ,则DE DF ⋅u u u v u u u v的取值范围是( )A .11[,]216- B .1(,]16-∞ C .1[,0]2-D .(,0]-∞【答案】A 【解析】 【分析】建立平面直角坐标系,求出直线:1)AB y x =+,:1)AC y x =-设出点(1)),(,1))E m m F n n +-,通过||2||AE CF =u u u r u u u r,找出m 与n 的关系.通过数量积的坐标表示,将DE DF ⋅u u u r u u u r表示成m 与n 的关系式,消元,转化成m 或n 的二次函数,利用二次函数的相关知识,求出其值域,即为DE DF ⋅u u u r u u u r的取值范围. 【详解】以D 为原点,BC 所在直线为x 轴,AD 所在直线为y 轴建系,设(1,0),(1,0)A B C -,则直线:1)AB y x =+ ,:1)AC y x =-设点(1)),(,1))E m m F n n +-,10,01m n -≤<<≤所以(),(1,1))AE m CF n n ==--u u u r u u u r由||2||AE CF =u u u r u u u r得224(1)m n =- ,即2(1)m n =- ,所以22713(1)(1)4734()816DE DF mn m n n n n ⋅=-+-=-+-=--+u u u r u u u r ,由12(1)0m n -≤=-<及01n <≤,解得112n ≤<,由二次函数2714()816y n =--+的图像知,11[,]216y ∈-,所以DE DF ⋅u u u r u u u r 的取值范围是11[,]216-.故选A .【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.6.函数tan 42y x ππ⎛⎫=- ⎪⎝⎭ 的部分图象如图所示,则 ()OA OB AB +⋅=u u u r u u u r u u u r ( )A .6B .5C .4D .3【答案】A 【解析】 【分析】根据正切函数的图象求出A 、B 两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果. 【详解】由图象得,令tan 42y x ππ⎛⎫=- ⎪⎝⎭=0,即42x ππ-=kπ,k Z ∈k=0时解得x=2, 令tan 42y x ππ⎛⎫=-⎪⎝⎭=1,即424x πππ-=,解得x=3,∴A(2,0),B(3,1),∴()()()2,0,3,1,1,1OA OB AB ===u u u r u u u r u u u r,∴()()()5,11,1516OA OB AB +⋅=⋅=+=u u u r u u u r u u u r.故选:A. 【点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题. 7.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅ 【答案】B【解析】试题分析:由集合A 中的函数,得到,解得:,∴集合,由集合B 中的函数,得到,∴集合,则,故选B .考点:交集及其运算. 8.已知13ω>,函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值,给出下列四个结论:①()f x 在(,2)ππ上单调递增; ②511,1224ω⎡⎤∈⎢⎥⎣⎦ ③()f x 在[0,]π上没有零点; ④()f x 在[0,]π上只有一个零点. 其中所有正确结论的编号是( ) A .②④ B .①③C .②③D .①②④【答案】A 【解析】 【分析】先根据函数()sin 23f x x πω⎛⎫=-⎪⎝⎭在区间(,2)ππ内没有最值求出1512224k k ω-+剟或51112224k k ω++剟.再根据已知求出1132ω<…,判断函数的单调性和零点情况得解. 【详解】因为函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值. 所以22422332k k πππππωπωππ--<-+剟,或32242,2332k k k πππππωπωππ+-<-+∈Z 剟 解得1512224k k ω-+剟或51112224k k ω++剟. 又212,23T ππωω=>…,所以1132ω<…. 令0k =.可得511,1224ω⎡⎤∈⎢⎥⎣⎦.且()f x 在(,2)ππ上单调递减. 当[0,]x π∈时,2,2333x πππωπω⎡⎤-∈--⎢⎥⎣⎦,且72,3212ππππω⎡⎤-∈⎢⎥⎣⎦, 所以()f x 在[0,]π上只有一个零点. 所以正确结论的编号②④ 故选:A. 【点睛】本题主要考查三角函数的图象和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平. 9.已知集合{}1,2,3,,M n =L (*n N ∈),若集合{}12,A a a M =⊆,且对任意的b M ∈,存在{},1,0,1λμ∈-使得i j b a a λμ=+,其中,i j a a A ∈,12i j ≤≤≤,则称集合A 为集合M 的基底.下列集合中能作为集合{}1,2,3,4,5,6M =的基底的是( ) A .{}1,5 B .{}3,5C .{}2,3D .{}2,4【答案】C 【解析】 【分析】根据题目中的基底定义求解. 【详解】因为11213=-⨯+⨯,21203=⨯+⨯, 30213=⨯+⨯, 41212=⨯+⨯,51213=⨯+⨯, 61313=⨯+⨯,所以{}2,3能作为集合{}1,2,3,4,5,6M =的基底, 故选:C 【点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.10.设等比数列{}n a 的前n 项和为n S ,则“1322a a a +<”是“210n S -<”的( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要【答案】A 【解析】 【分析】首先根据等比数列分别求出满足1322a a a +<,210n S -<的基本量,根据基本量的范围即可确定答案. 【详解】{}n a 为等比数列,若1322a a a +<成立,有()21201q a q -+<,因为2210q q -+≥恒成立, 故可以推出10a <且1q ≠, 若210n S -<成立,当1q =时,有10a <, 当1q ≠时,有()211101n a q q--<-,因为21101n q q-->-恒成立,所以有10a <, 故可以推出10a <,q ∈R ,所以“1322a a a +<”是“210n S -<”的充分不必要条件. 故选:A. 【点睛】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.11.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .14【答案】D 【解析】试题分析:先画出可行域如图:由{2y x x y =+=,得(1,1)B ,由{x a y x==,得(,)C a a ,当直线2z x y =+过点(1,1)B 时,目标函数2z x y =+取得最大值,最大值为3;当直线2z x y =+过点(,)C a a 时,目标函数2z x y =+取得最小值,最小值为3a ;由条件得343a =⨯,所以14a =,故选D.考点:线性规划.12.已知函数f (x )=sin 2x+sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14C 3D 2【答案】A 【解析】【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x+sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+, =1cos 23sin 2111cos 222223x x x π⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。

上海市崇明县2019-2020学年第五次中考模拟考试数学试卷含解析

上海市崇明县2019-2020学年第五次中考模拟考试数学试卷含解析

上海市崇明县2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .342.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )A .B .C .D .3.如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC ,若AB=8,CD=2,则cos ∠ECB 为( )A .35B .313C .23D .2134.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )A .8B .10C .21D .225.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF ⊥AC 分别交DC 于F ,交AB 于点E ,点G 是AE 中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG ;(2)OG= 12BC ;(3)△OGE 是等边三角形;(4)16AOE ABCD S S ∆=矩形.A.1 B.2 C.3 D.46.在0,π,﹣3,0.6,2这5个实数中,无理数的个数为()A.1个B.2个C.3个D.4个7.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A.12 B.14 C.16 D.188.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若E也在格点上,且∠AED=∠ACD,则∠AEC 度数为()A.75°B.60°C.45°D.30°9.已知a=12(7+1)2,估计a的值在()A.3 和4之间B.4和5之间C.5和6之间D.6和7之间10.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M 和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.411.圆锥的底面半径为2,母线长为4,则它的侧面积为()A.8πB.16πC.43πD.4π12.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( ) A .2.536×104人B .2.536×105人C .2.536×106人D .2.536×107人二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:364-的值是______________.14.已知二次函数y=x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).15.当关于x 的一元二次方程ax 2+bx+c =0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”.如果关于x 的一元二次方程x 2+(m ﹣2)x ﹣2m =0是“倍根方程”,那么m 的值为_____. 16.若一次函数y=kx ﹣1(k 是常数,k≠0)的图象经过第一、三、四象限,则是k 的值可以是_____.(写出一个即可).17.二次函数2(1)3y x =--的图象与y 轴的交点坐标是________.18.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67AB BC =,EF=4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本). 若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y 与x 的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.20.(6分)如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)21.(6分)如图,ABC ∆在方格纸中.(1)请在方格纸上建立平面直角坐标系,使(2,3)A ,(6,2)C ,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC ∆放大,画出放大后的图形'''A B C ∆; (3)计算'''A B C ∆的面积S .22.(8分)如图所示,小王在校园上的A 处正面观测一座教学楼墙上的大型标牌,测得标牌下端D 处的仰角为30°,然后他正对大楼方向前进5m 到达B 处,又测得该标牌上端C 处的仰角为45°.若该楼高为16.65m ,小王的眼睛离地面1.65m ,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m ).23.(8分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n (n >10,且n 为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)24.(10分)(1)解方程:x 2﹣4x ﹣3=0; (2)解不等式组:25.(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.26.(12分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(I)AC的长等于_____.(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).27.(12分)下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A 30 25 0.05B 50 50 0.05C 120 不限时设上网时间为t小时.(I)根据题意,填写下表:月费/元上网时间/h 超时费/(元)总费用/(元)方式A 30 40方式B 50 100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,2222∴=+=+=,3534AD AO OD=,故选D.∴正方形ABCD的面积是3434342.D【解析】【分析】根据中心对称图形的定义解答即可.【详解】选项A不是中心对称图形;选项B不是中心对称图形;选项C不是中心对称图形;选项D是中心对称图形.故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.3.D【解析】【分析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.【详解】解:连接EB,由圆周角定理可知:∠B=90°,设⊙O的半径为r,由垂径定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:13∴cos∠ECB=CBCE213,故选D.【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.4.D【解析】分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.故选D.点睛:考查中位数的定义,看懂条形统计图是解题的关键.5.C【解析】∵EF⊥AC,点G是AE中点,∴OG=AG=GE=12AE , ∵∠AOG=30°, ∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°, ∴△OGE 是等边三角形,故(3)正确; 设AE=2a ,则OE=OG=a ,由勾股定理得,,∵O 为AC 中点,∴,∴BC=12,在Rt △ABC 中,由勾股定理得,,∵四边形ABCD 是矩形, ∴CD=AB=3a ,∴DC=3OG ,故(1)正确;∵OG=a ,12BC=2a , ∴OG≠12BC ,故(2)错误;∵S △AOE =12=22,S ABCD 2, ∴S △AOE =16S ABCD ,故(4)正确; 综上所述,结论正确是(1)(3)(4)共3个, 故选C .【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键. 6.B 【解析】 【分析】分别根据无理数、有理数的定义逐一判断即可得. 【详解】解:在0,π,-3,0.6,2这5个实数中,无理数有π、2这2个,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.7.C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.8.B【解析】【分析】将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.【详解】将圆补充完整,找出点E的位置,如图所示.∵弧AD所对的圆周角为∠ACD、∠AEC,∴图中所标点E符合题意.∵四边形∠CMEN为菱形,且∠CME=60°,∴△CME为等边三角形,∴∠AEC=60°.故选B.【点睛】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.9.D【解析】【分析】首先计算平方,然后再确定7的范围,进而可得4+7的范围.【详解】解:a=12×(7+1+27)=4+7,∵2<7<3,∴6<4+7<7,∴a的值在6和7之间,故选D.【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.10.D【解析】【分析】【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=12 AD.∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC=12AC•BC=12AC•A32D=34AC•AD.∴S△DAC:S△ABC13AC AD?AC AD1344::⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D. 11.A【解析】【详解】解:底面半径为2,底面周长=4π,侧面积=12×4π×4=8π,故选A.12.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2536000人=2.536×106人.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】-1.故答案为:-1.14.增大.【解析】【分析】根据二次函数的增减性可求得答案【详解】∵二次函数y=x 2的对称轴是y 轴,开口方向向上,∴当y 随x 的增大而增大. 故答案为:增大. 【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质. 15.-1或-4 【解析】 分析:设“倍根方程”2(2)20x m x m +--=的一个根为α,则另一根为2α,由一元二次方程根与系数的关系可得2(2)?22m m αααα+=--⋅=-,,由此可列出关于m 的方程,解方程即可求得m 的值. 详解:由题意设“倍根方程”2(2)20x m x m +--=的一个根为α,另一根为2α,则由一元二次方程根与系数的关系可得:2(2)?22m m αααα+=--⋅=-,,∴223m m αα-=-=-,, ∴22()3m m --=-, 化简整理得:2540m m ++=,解得 1241m m =-=-,. 故答案为:-1或-4.点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程2(0)0 ax bx c a ++=≠的两根分别为αβ、,则 b c a aαβαβ+=-=,. 16.1 【解析】 【分析】由一次函数图象经过第一、三、四象限,可知k >0,﹣1<0,在范围内确定k 的值即可. 【详解】解:因为一次函数y=kx ﹣1(k 是常数,k≠0)的图象经过第一、三、四象限,所以k >0,﹣1<0,所以k 可以取1. 故答案为1. 【点睛】根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k 的取值范围.17.(0,2)- 【解析】 【分析】求出自变量x 为1时的函数值即可得到二次函数的图象与y 轴的交点坐标. 【详解】把0x =代入2(1)3y x =--得:132y =-=-,∴该二次函数的图象与y 轴的交点坐标为(0,2)-, 故答案为(0,2)-. 【点睛】本题考查了二次函数图象上点的坐标特征,在y 轴上的点的横坐标为1. 18.503【解析】试题分析:根据67AB BC =,EF=4可得:AB=和BC 的长度,根据阴影部分的面积为542cm 可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为256,则菱形的周长为:256×4=503. 考点:菱形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)①y=400x ﹣1.(5<x≤10);②9元或10元;(2)能, 11元. 【解析】 【分析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x 的值得出答案. 【详解】解:(1)①y=400(x ﹣5)﹣2.(5<x≤10), ②依题意得:400(x ﹣5)﹣2≥800, 解得:x≥8.5,∵5<x≤10,且每份套餐的售价x (元)取整数, ∴每份套餐的售价应不低于9元. (2)依题意可知:每份套餐售价提高到10元以上时, y=(x ﹣5)[400﹣40(x ﹣10)]﹣2,当y=1560时, (x ﹣5)[400﹣40(x ﹣10)]﹣2=1560,解得:x 1=11,x 2=14,为了保证净收入又能吸引顾客,应取x 1=11,即x 2=14不符合题意. 故该套餐售价应定为11元. 【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.20.见解析.【解析】试题分析:先做出∠AOB的角平分线,再求出线段MN的垂直平分线就得到点P.试题解析:考点:尺规作图角平分线和线段的垂直平分线、圆的性质.21.(1)作图见解析;(2,1)B.(2)作图见解析;(3)1.【解析】分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出△A'B'C';(3)直接利用(2)中图形求出三角形面积即可.详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:△A'B'C'即为所求;(3)S△A'B'C'=12×4×8=1.点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.22.大型标牌上端与下端之间的距离约为3.5m.【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离.试题解析:设AB,CD 的延长线相交于点E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE=3tan30203oAE⋅=⨯=11.54,∴CD=CE﹣DE=15﹣11.54≈3.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m.23.(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解. 24.(1),;(2)1≤x<1.【解析】试题分析:利用配方法进行解方程;首先分别求出两个不等式的解,然后得出不等式组的解.试题解析:(1)-1x=3-1x+1=7=7 x-2=±解得:,(2)解不等式1,得x≥1 解不等式2,得x<1 ∴不等式组的解集是1≤x<1考点:一元二次方程的解法;不等式组.25.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.26.37作a∥b∥c∥d,可得交点P与P′【解析】【分析】(1)根据勾股定理计算即可;(2)利用平行线等分线段定理即可解决问题.【详解】(I)AC=2261=37,故答案为:37;(II)如图直线l1,直线l2即为所求;理由:∵a∥b∥c∥d,且a与b,b与c,c与d之间的距离相等,∴CP=PP′=P′A,∴S△BCP=S△ABP′=13S△ABC.故答案为作a∥b∥c∥d,可得交点P与P′.【点睛】本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.(I)见解析;(II)见解析;(III)见解析.【解析】【分析】(I)根据两种方式的收费标准分别计算,填表即可;(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.【详解】(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,填表如下:(II)当0≤t≤25时,y1=30,当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=30(025){345(25)tt t≤≤->;当0≤t≤50时,y2=50,当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=50(050){3100(50)tt t≤≤->;(III)当75<t<100时,选用C种计费方式省钱.理由如下:当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75<t<100时,选用C种计费方式省钱.【点睛】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.。

上海市崇明县2019-2020学年中考数学五模试卷含解析

上海市崇明县2019-2020学年中考数学五模试卷含解析

上海市崇明县2019-2020学年中考数学五模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为()A.50°B.40°C.30°D.25°2.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.3.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )A.6 B.3.5 C.2.5 D.14.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到DEF∆,则四边形ABFD的周长为()A.8 B.10 C.12 D.165.如图是由四个小正方体叠成的一个几何体,它的左视图是()A.B.C.D.6.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A .AD ∥BCB .∠DAC=∠EC .BC ⊥DED .AD+BC=AE7.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则∠C 与∠D 的大小关系为( )A .∠C >∠DB .∠C <∠D C .∠C=∠D D .无法确定8.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( )A .6B .2C .-2D .-69.cos60°的值等于( )A .1B .12C .22D 310.3--的倒数是( )A .13- B .-3 C .3 D .1311.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次12.如果一组数据6,7,x ,9,5的平均数是2x ,那么这组数据的中位数为( )A .5B .6C .7D .9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:16a 3﹣4a=_____.14.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶6千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C .小明发现古镇C 恰好在A 地的正北方向,则B 、C 两地的距离是_____千米.15.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_____.16.如图,已知,第一象限内的点A在反比例函数y=2x的图象上,第四象限内的点B在反比例函数y=kx的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.17.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.18.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O 相切于点D.已知∠CDE=20°,则»AD的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.20.(6分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =.()2若20ADE ∠=o ,求DMC ∠的度数.21.(6分)△ABC 中,AB=AC ,D 为BC 的中点,以D 为顶点作∠MDN=∠B .如图(1)当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅助线,写出图中所有与△ADE 相似的三角形.如图(2),将∠MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交线段AC ,AB 于E ,F 点(点E 与点A 不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF 的面积等于△ABC 的面积的14时,求线段EF 的长. 22.(8分)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.23.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m=;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为;已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.24.(10分)如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)将△ABC绕点O逆时针旋转90°得到△DEF,画出△DEF;(2)以O为位似中心,将△ABC放大为原来的2倍,在网格内画出放大后的△A1B1C1,若P(x,y)为△ABC 中的任意一点,这次变换后的对应点P1的坐标为.25.(10分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?26.(12分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.27.(12分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】如图,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故选A.【点睛】此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.2.C【解析】【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.3.C【解析】【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选C.【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.4.B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选C.“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.5.A【解析】试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.考点:简单组合体的三视图.6.C【解析】【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【详解】∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.7.A【解析】【分析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:∵∠ACB=∠AEB,∠AEB>∠D,∴∠C>∠D.故选:A.【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.8.A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.9.A【解析】【分析】根据特殊角的三角函数值直接得出结果.【详解】解:cos60°=12故选A.【点睛】 识记特殊角的三角函数值是解题的关键.10.A【解析】【分析】 先求出33--=-,再求倒数.【详解】 因为33--=- 所以3--的倒数是13-故选A【点睛】考核知识点:绝对值,相反数,倒数.11.A【解析】试题分析:不可能事件发生的概率为0,故A 正确;随机事件发生的概率为在0到1之间,故B 错误;概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误;故选A .考点:随机事件.12.B【解析】【分析】直接利用平均数的求法进而得出x 的值,再利用中位数的定义求出答案.【详解】∵一组数据1,7,x ,9,5的平均数是2x ,∴679525x x ++++=⨯,解得:3x =,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1.【点睛】此题主要考查了中位数以及平均数,正确得出x的值是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4a(2a+1)(2a﹣1)【解析】【分析】首先提取公因式,再利用平方差公式分解即可.【详解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案为4a(2a+1)(2a﹣1)【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.14.36【解析】【分析】作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.【详解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BE AB,∴BE=AB•sin∠BAC=3633=由题意得,∠C=45°,∴BC=BEsin C=23362=,故答案为6.【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的15.1【解析】【分析】由n 行有n 个数,可得出第10行第8个数为第1个数,结合奇数为正偶数为负,即可求出结论.【详解】解:第1行1个数,第2行2个数,第3行3个数,…,∴第9行9个数,∴第10行第8个数为第1+2+3+…+9+8=1个数.又∵第2n ﹣1个数为2n ﹣1,第2n 个数为﹣2n ,∴第10行第8个数应该是1.故答案为:1.【点睛】本题考查了规律型中数字的变化类,根据数的变化找出变化规律是解题的关键.16.-6【解析】如图,作AC ⊥x 轴,BD ⊥x 轴,∵OA ⊥OB ,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD ,∴△ACO ∽△ODB , ∴OA OC AC OB BD OD==, ∵∠OAB=60°,∴3OA OB =, 设A (x ,2x),∴x ,x ,∴B x ,),把点B 代入y=kx 得,,解得k=-6,故答案为-6.17.8【解析】【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.18.7π【解析】【分析】连接OD,由切线的性质和已知条件可求出∠AOD的度数,再根据弧长公式即可求出»AD的长.【详解】连接OD,∵直线DE与⊙O相切于点D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴»AD 的长=1409180π⨯⨯=7π, 故答案为:7π.【点睛】本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD 的度数是解题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)152【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC ⊥OA , ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD , ∴∠2+∠5=90°,∵OA=OB , ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.(2)作DF ⊥AB 于F ,连接OE ,∵DB=DE , ∴EF=12BE=3,在 RT △DEF 中,EF=3,DE=BD=5,EF=3 , ∴22534-=∴sin ∠DEF=DF DE = 45 , ∵∠AOE=∠DEF , ∴在RT △AOE 中,sin ∠AOE=45AE AO = , ∵AE=6, ∴AO=152. 【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.20.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=o ,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE V ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,Q 四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=o ,ADE QV ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=o o o Q ,15DFC DCF ADE AED ∴∠=∠=∠=∠=o ,601575FDE ∴∠=+=o o o ,90MFD FDM ∴∠+∠=o ,90FMD ∴∠=o ,故答案为90o()1ABE QV 为等边三角形,60EAB ∴∠=o ,EA AB =.ADF QV 为等边三角形,60FDA ∴∠=o ,AD FD =.Q 四边形ABCD 为矩形,90BAD ADC ∴∠=∠=o ,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=o Q ,150CDF FDA ADC ∠=∠+∠=o ,EAD CDF ∴∠=∠.在EAD V 和CDF V中, AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴V ≌CDF V. ED FC ∴=;()2EAD QV ≌CDF V ,20ADE DFC ∴∠=∠=o ,602020100 DMC FDM DFC FDA ADE DFC∴∠=∠+∠=∠+∠+∠=++=o o o o.【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.21.(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【解析】【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出BD DF=CE ED,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的14,求出DH的长,从而利用S△DEF的值求出EF即可【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴BD DF=CE ED.∵BD=CD,∴CD DF=CE ED,即CD CE=DF ED.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC ,D 是BC 的中点,∴AD ⊥BC ,BD=12BC=1. 在Rt △ABD 中,AD 2=AB 2﹣BD 2,即AD 2=102﹣3,∴AD=2.∴S △ABC =12•BC•AD=12×3×2=42, S △DEF =14S △ABC =14×42=3. 又∵12•AD•BD=12•AB•DH , ∴AD BD 8624DH AB 105⋅⨯===. ∵△BDF ∽△DEF ,∴∠DFB=∠EFD .∵DH ⊥BF ,DG ⊥EF ,∴∠DHF=∠DGF .又∵DF=DF ,∴△DHF ≌△DGF (AAS ).∴DH=DG=245. ∵S △DEF =12·EF·DG=12·EF·245=3, ∴EF=4.【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.22.解:(1)2y x 2x 3=--;(2)存在,P (1-132,13-12);(1)Q 点坐标为(0,-72)或(0,32)或(0,-1)或(0,-1).【解析】【分析】(1)已知点A 坐标可确定直线AB 的解析式,进一步能求出点B 的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B 的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C 的坐标,在△POB 和△POC 中,已知的条件是公共边OP ,若OB 与OC 不相等,那么这两个三角形不能构成全等三角形;若OB 等于OC ,那么还要满足的条件为:∠POC=∠POB ,各自去掉一个直角后容易发现,点P 正好在第二象限的角平分线上,联立直线y=-x 与抛物线的解析式,直接求交点坐标即可,同时还要注意点P 在第二象限的限定条件.(1)分别以A 、B 、Q 为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.【详解】解:(1)把A (1,﹣4)代入y =kx ﹣6,得k =2,∴y =2x ﹣6,令y =0,解得:x =1,∴B 的坐标是(1,0).∵A 为顶点,∴设抛物线的解析为y =a (x ﹣1)2﹣4,把B (1,0)代入得:4a ﹣4=0,解得a =1,∴y =(x ﹣1)2﹣4=x 2﹣2x ﹣1.(2)存在.∵OB =OC =1,OP =OP ,∴当∠POB =∠POC 时,△POB ≌△POC ,此时PO 平分第二象限,即PO 的解析式为y =﹣x .设P (m ,﹣m ),则﹣m =m 2﹣2m ﹣1,解得m (m 0,舍),∴P ). (1)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB ,∴1DQ ADOD DB =,即6DQ 1=52, ∴OQ 1=72,即Q 1(0,-72); ②如图,当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴2OQ OB OD OB =,即2363OQ =,∴OQ 2=32,即Q 2(0,32); ③如图,当∠AQ 1B =90°时,作AE ⊥y 轴于E ,则△BOQ 1∽△Q 1EA ,∴33OQ OB Q E AE =,即33341OQ OQ =- ∴OQ 12﹣4OQ 1+1=0,∴OQ 1=1或1,即Q 1(0,﹣1),Q 4(0,﹣1).综上,Q 点坐标为(0,-72)或(0,32)或(0,﹣1)或(0,﹣1). 23.(1)150,(2)36°,(3)1.【解析】【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可; (3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【详解】(1)m=21÷14%=150, (2)“足球“的人数=150×20%=30人, 补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×15150=36°; (4)1200×20%=1人, 答:估计该校约有1名学生最喜爱足球活动.故答案为150,36°,1.【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.24.(1)见解析;(2)见解析,(﹣2x,﹣2y).【解析】【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点D、E、F,即可得到△DEF;(2)先根据位似中心的位置以及放大的倍数,画出原三角形各顶点的对应顶点,再顺次连接各顶点,得到△A1B1C1,根据△A1B1C1结合位似的性质即可得P1的坐标.【详解】(1)如图所示,△DEF即为所求;(2)如图所示,△A1B1C1即为所求,这次变换后的对应点P1的坐标为(﹣2x,﹣2y),故答案为(﹣2x,﹣2y).【点睛】本题主要考查了位似变换与旋转变换,解决问题的关键是先作出图形各顶点的对应顶点,再连接各顶点得到新的图形.在画位似图形时需要注意,位似图形的位似中心可能在两个图形之间,也可能在两个图形的同侧.25.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫可设为2x 件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a 元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件. 由题意可得:2880013200102x x-=,解得120x =,经检验120x =是原方程的根. (2)设每件衬衫的标价至少是a 元.由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元)由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.26.(1)(2)(0,)【解析】【分析】(1)根据反比例函数比例系数k 的几何意义得出|k|=1,进而得到反比例函数的解析式;(2)作点A 关于y 轴的对称点A′,连接A′B ,交y 轴于点P ,得到PA+PB 最小时,点P 的位置,根据两点间的距离公式求出最小值A′B 的长;利用待定系数法求出直线A′B 的解析式,得到它与y 轴的交点,即点P 的坐标.【详解】(1)∵反比例函数 y= =(k >0)的图象过点 A ,过 A 点作 x 轴的垂线,垂足为 M , ∴|k|=1,∵k >0,∴k=2,故反比例函数的解析式为:y=;(2)作点 A 关于 y 轴的对称点 A′,连接 A′B ,交 y 轴于点 P ,则 PA+PB 最小.由,解得,或,∴A(1,2),B(4,),∴A′(﹣1,2),最小值A′B==,设直线A′B 的解析式为y=mx+n,则,解得,∴直线A′B 的解析式为y=,∴x=0 时,y=,∴P 点坐标为(0,).【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.27.答案见解析【解析】【分析】利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.【详解】解:∵E是AC的中点,∴AE=CE.在△ADE与△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.。

上海市崇明区2019届高三数学5月三模试题(含解析)

上海市崇明区2019届高三数学5月三模试题(含解析)

上海市崇明区2019届高三数学5月三模试题(含解析)一、填空题(本大题共12小题,共36.0分)1.设集合{1,2,3}A =,{|1}B x x =>,则A B =I ______【答案】{2,3}【解析】【分析】根据交集的定义直接得到结果.【详解】由交集定义可得:{}2,3A B ⋂=本题正确结果:{}2,3【点睛】本题考查集合运算中的交集运算,属于基础题.2.若2log 1042x -=-,则x =______【答案】4【解析】由行列式的定义可得:()()222log 140,log 2,4x x x --⨯-=∴==.3.已知复数z 满足(2)5z i -=(i 为虚数单位),则z 的模为______【解析】【分析】根据复数模长运算性质可直接求得结果. 【详解】52z i=-Q52z i ∴===-【点睛】本题考查复数模长的求解,属于基础题.4.函数()3sin cos f x x x =+的单调递增区间为______ 【答案】22,233k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z 【解析】【分析】 利用辅助角公式可整理出()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,令22262k x k πππππ-+≤+≤+,k Z ∈,解出x 的范围即为所求区间.【详解】()3sin cos 2sin 6f x x x x π⎛⎫=+=+⎪⎝⎭ 令22262k x k πππππ-+≤+≤+,k Z ∈,解得:22233k x k ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:22,233k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈ 本题正确结果:22,233k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈ 【点睛】本题考查正弦型函数单调区间的求解,关键是采用整体对应的方式来进行求解.5.若一个球的体积是36π,则它的表面积是______【答案】【解析】设铁球的半径为,则,解得;则该铁球的表面积为. 考点:球的表面积与体积公式.6.某校三个年级中,高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽取55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为______【答案】17【解析】试题分析:高一高二人数之比为10:9,因此高二抽出的人数为18人,高三抽出的人数为55-20-18=17人考点:分层抽样7.一名工人维护3台独立的游戏机,一天内这3台需要维护的概率分别为0.9、0.8和0.6,则一天内至少有一台游戏机不需要维护的概率为______(结果用小数表示)【答案】0.568【解析】【分析】记“至少有一台游戏机不需要维护”为事件A ,首先求解出()P A ,利用对立事件概率公式可求得结果.【详解】记“至少有一台游戏机不需要维护”为事件A 则()0.90.80.60.432P A =⨯⨯= ()()10.568P A P A ∴=-=本题正确结果:0.568【点睛】本题考查对立事件概率的求解,属于基础题.8.已知不等式组22020x y x y y +≤⎧⎪+≥⎨⎪+≥⎩表示的平面区域为Ω,点M 坐标为(),x y ,对任意点M ∈Ω,则x y -的最大值为______【答案】6【解析】【分析】由约束条件画出平面区域Ω,可知z 取最大值时,y x z=-y 轴截距最小,通过平移直线可知当过C 时,z 取最大值,求出C 点坐标,代入求得结果.【详解】由约束条件可得平面区域Ω如下图阴影部分所示:令z x y =-,则z 取最大值时,y x z =-在y 轴截距最小平移y x =可知,当y x z =-过C 时,在y 轴截距最小由220x y y +=⎧⎨+=⎩得:()4,2C - max 426z ∴=+= 本题正确结果:6【点睛】本题考查线性规划中最值问题的求解,关键是将问题转化为在y 轴截距的最值的求解问题,通过平移直线求得结果.9.已知定义在R 上的增函数()y f x =满足()()40f x f x +-=,若实数,a b 满足不等式()()0f a f b +≥,则22a b +的最小值是______.【答案】8【解析】【分析】由()()40f x f x +-=知()()4f b f b -=-,可将不等式变为()()4f a f b ≥-,利用函数单调性可得40a b +-≥,根据线性规划的知识,知22a b +的几何意义为原点O 与可行域中的点的距离的平方,从而可知所求最小值为O 到直线40a b +-=的距离的平方,利用点到直线距离公式求得结果.【详解】由()()40f x f x +-=得:()()4f b f b -=-()()0f a f b ∴+≥等价于()()()4f a f b f b ≥-=-()f x Q 为R 上的增函数 4a b ∴≥-,即40a b +-≥则可知可行域如下图所示:则22a b +的几何意义为原点O 与可行域中的点的距离的平方可知O 到直线40a b +-=的距离的平方为所求的最小值()222min 482a b -∴+== 本题正确结果;8【点睛】本题考查函数单调性的应用、线性规划中的平方和型的最值的求解,关键是能够利用平方和的几何意义,将问题转化为两点间距离的最值的求解问题.10.若n a 是二项式(1)n x +展开式中2x 项的系数,则23111lim n n a a a →∞⎛⎫+++= ⎪⎝⎭L ______ 【答案】2【解析】【分析】根据二项展开式的通项公式可得n a ,进而得到11121n a n n ⎛⎫=⨯- ⎪-⎝⎭,利用裂项相消法和数列极限的求解方法可求得结果.【详解】()1n x +的展开式通项公式为:r r n C x ()212n n n n a C -∴==()1211211n a n n n n ⎛⎫∴==⨯- ⎪--⎝⎭ 23111111111lim lim 212lim 122231n n n n a a a n n n →∞→∞→∞⎛⎫⎡⎤⎛⎫⎛⎫∴++⋅⋅⋅+=⨯-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦⎝⎭ 本题正确结果:2【点睛】本题考查数列中的极限的求解问题,关键是能够通过二项展开式的通项公式求得通项,从而确定采用裂项相消的方式求得数列各项的和.11.已知F 是抛物线2y x =的焦点,点A 、B 在抛物线上且位于x 轴的两侧,若2OA OB ⋅= (其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是______【答案】3【解析】设直线AB 的方程为x ty m =+,点11(,)A x y ,22(,)B x y ,直线AB 与x 轴的交点为(0,)M m . 联立2{x ty m y x=+=,可得20y ty m --=,根据韦达定理可得12y y m ⋅=-. ∵2OA OB ⋅=u u u v u u u v∴12122x x y y +=,即21212()20y y y y ⋅+⋅-=. ∴2m =或1m =-(舍),即122y y ⋅=-.∵点A ,B 位于x 轴的两侧∴不妨令点A 在x 轴的上方,则10y >. ∵1(,0)4F∴12111111922()32248ABO AFO S S y y y y y ∆∆+=⨯⨯-+⨯=+≥=,当且仅当143y =时取等号.∴ABO ∆与AFO ∆面积之和的最小值是3.故答案为3.点睛:本题考查了直线与抛物线的位置关系及基本不等式求最值的应用,着重考查了推理与运算能力,其中通过韦达定理和2OA OB ⋅=u u u v u u u v推出122y y ⋅=-的表达式和运用基本不等式是解答的关键.12.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,如果对任意的实数λ,BA BC BCλ-≥u u u v u u u v u u u v恒成立,则c b b c+的取值范围是______【答案】⎡⎣【解析】【分析】设E 为直线BC 上任意一点,且BE BC λ=u u u v u u u v ,可知EA BC ≥u u u v u u u v 恒成立,可知minEA u u u v 为边BC 的高h ,利用三角形面积公式可得:2sin a bc A ≤;结合余弦定理整理可得()sin 2cos c b A A A b cϕ+≤+=+,从而可得最大值,利用基本不等式可求得最小值,从而得到取值范围.【详解】设E 为直线BC 上任意一点,且BE BC λ=u u u v u u u v 则BA BC BA BE EA λ-=-=u u u v u u u v u u u v u u u v u u u v EA BC ∴≥u u u v u u u v 恒成立 又minEA u u u v 为边BC 的高h h a ∴≥恒成立 2111sin 222ABC S ah bc A a ∆∴==≥ 2sin a bc A ∴≤ 由余弦定理可得:2222cos a b c bc A =+- 222cos sin b c bc A bc A ∴+-≤()222cos sinsin 2cos c b b c bc A bc A A A A b c bc bcϕ++∴+=≤=+=+,其中tan 2ϕ=c b b c∴+≤又2c b b c +≥(当且仅当b c =时取等号)c b b c⎡∴+∈⎣本题正确结果:⎡⎣【点睛】本题考查解三角形中的取值范围的求解问题,关键是能够通过恒成立的不等关系得到边长与三角形高的长度关系,利用三角形面积公式和余弦定理可构造出不等式,从而可求得最值.二、选择题(本大题共4小题,共12.0分)13.已知,a b ∈R ,则“0ab =”是“220a b +=”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要【答案】B【解析】【分析】根据充分条件和必要条件的判定方式进行判定即可.【详解】当1a =,0b =时,0ab =,此时220a b +≠,可知充分条件不成立;当220a b +=时,由20a ≥,20b ≥可知0a b ==,则0ab =,可知必要条件成立则“0ab =”是“220a b +=”的必要不充分条件本题正确选项:B【点睛】本题考查充分条件与必要条件的判定,属于基础题.14.将函数sin 6y x π⎛⎫=- ⎪⎝⎭的图象上所有的点向右平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( ) A. 5sin 212y x π⎛⎫=- ⎪⎝⎭ B. sin 212x y π⎛⎫=+ ⎪⎝⎭ C. 5sin 212x y π⎛⎫=- ⎪⎝⎭ D.5sin 224x y π⎛⎫=- ⎪⎝⎭【答案】C【解析】 右平移4π个单位长度得带5πsin 12x ⎛⎫- ⎪⎝⎭,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变)得到5sin 212x y π⎛⎫=- ⎪⎝⎭,故选C.15.已知关于x 的方程20ax bx c ++=r r r r ,其中,,a b c r r r 都是非零向量,且,a b r r 不共线,则该方程的解的情况是( )A. 至少有一个解B. 至多有一个解C. 至多有两个解D. 可能有无数个解【答案】B【解析】【分析】 根据平面向量基本定理可知(),c a b R λμλμ=+∈r r r ,从而将方程整理为()()20x a x b λμ+++=r r r ,由,a b r r 不共线可得200x x λμ⎧+=⎨+=⎩,从而可知方程组至多有一个解,从而得到结果.【详解】由平面向量基本定理可得:(),c a b R λμλμ=+∈r r r则方程20ax bx c ++=r r r r 可变为:20ax bx a b λμ+++=r r r r r即:()()20x a x b λμ+++=r r r ,a b Q r r 不共线 200x x λμ⎧+=∴⎨+=⎩可知方程组可能无解,也可能有一个解∴方程20ax bx c ++=r rr r 至多有一个解本题正确选项:B【点睛】本题考查平面向量基本定理的应用,关键是能够利用定理将方程进行转化,利用向量和为零和向量不共线可得方程组,从而确定方程解的个数.16.如图为正方体ABCD-A 1B 1C 1D 1,动点M 从B 1点出发,在正方体表面沿逆时针方向运动一周后,再回到B 1的运动过程中,点M 与平面A 1DC 1的距离保持不变,运动的路程x 与l=MA 1+MC 1+MD 之间满足函数关系l=f (x ),则此函数图象大致是( )A. B. C. D.【答案】C【解析】【分析】先找到点M 的路线,把其路线分成六小段,分析从P 到1B 过程函数的单调性得解.【详解】由于点M 与平面A 1DC 1的距离保持不变,所以点M 在平面1B AC 上, 运动的路线为11B A C B →→→,设点P 为B 1C 的中点,l=MA 1+MC 1+MD 中,MA 1+MD 是定值, PC 1是定值,MC 1221PC PM +当M 从C 到1B ,运动到1PB 段时,运动的路程x 慢慢变大时, PM 变大,MC 1变大, 所以函数是增函数,所以C 正确;(类似讨论由1B 到A,由A 到C 的过程,l=MA 1+MC 1+MD 之间满足函数关系l=f (x ). 故选:C .【点睛】本题主要考查立体几何轨迹问题,考查函数的单调性的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题(本大题共5小题,共60.0分)17.在直三棱柱111ABC A B C -中, 90ABC ∠=︒,11,2AB BC BB ===,求:(1)异面直线11B C 与1A C 所成角的余弦值; (2)直线11B C 到平面的距离.【答案】(1)25【解析】试题分析:(1)将11B C 平移到BC ,根据异面直线所成角的定义可知ACB ∠为异面直线11B C 与AC 所成角(或它的补角),在Rt ACB V 中求出此角即可;(2)根据1AA ABC ⊥平面,则1AA 就是几何体的高,再求出底面积,最后根据三棱锥1A ABC -的体积公式ABC 1V S AA 3V =⨯求解.试题解析:(1)因为11//B C BC ,所以1A CB ∠(或其补角)是异面直线11B C 与1A C 所成角. 1分 因为,,所以BC ⊥平面1ABB ,所以1BC A B ⊥. 3分在1Rt A BC V 中,, 5分所以异面直线11B C 与1A C 所成角的余弦值为. 6分(2)因为11B C //平面1A BC所以11B C 到平面1A BC 的距离等于1B 到平面1A BC 的距离 8分 设1B 到平面1A BC 的距离为d , 因为111B A BC A BB C V V --=,所以11111133A BCB BC S d S A B ∆∆⨯=⨯10分 可得55d =11分 直线11B C 与平面1A BC 25. 12分 考点:两条异面直线所成角的余弦值; 直线到平面的距离18.已知向量113,sin 22a x x ⎛⎫= ⎪ ⎪⎝⎭r 和向量()()1,b f x =r ,且//a b r r . (1)求函数()f x 的最小正周期和最大值;(2)已知ABC ∆的三个内角分别为,,A B C ,若有33f A π⎛⎫-= ⎪⎝⎭,7BC =21sin 7B =,求AC 的长度.【答案】(1)最小正周期为2π,最大值为2;(2)2. 【解析】 【分析】由//a b r r 整理可得:()sin 32sin 3f x x x x π⎛⎫=+=+ ⎪⎝⎭;(1)根据正弦型函数的最小正周期和最值的求解方法直接求得结果;(2)利用33f A π⎛⎫-= ⎪⎝⎭求得sin A ,利用正弦定理求得结果.【详解】由//a b rr得:()113sin cos 222f x x x =+ 则:()sin 3cos 2sin 3f x x x x π⎛⎫=+=+ ⎪⎝⎭(1)()f x 最小正周期为:221T ππ== 当sin 13x π⎛⎫+= ⎪⎝⎭时,()max 2f x = (2)由33f A π⎛⎫-= ⎪⎝⎭得:2sin 3A =,则3sin A =由正弦定理可知:sin sin BC ACA B=,即217sin 72sin 3BC B AC A ⨯⋅===【点睛】本题考查三角函数中的正弦型函数的最小正周期、最值的求解、解三角形中的正弦定理的应用,涉及到平面向量共线定理、辅助角公式的应用.19.某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线AB 是以点E 为圆心的圆的一部分,其中(0,)E t (025)t <≤,GF 是圆的切线,且GF AD ⊥,曲线BC 是抛物线250y ax =-+(0)a >的一部分,CD AD ⊥,且CD 恰好等于圆E 的半径.(1)若30CD =米,5AD =,求t 与a 的值;(2)若体育馆侧面的最大宽度DF 不超过75米,求a 的取值范围. 【答案】(1)20t =,149a =;(2)1,100⎡⎫+∞⎪⎢⎣⎭. 【解析】 【分析】(1)根据抛物线方程求得()0,50B ,从而可得半径,即50CD t =-,进而解得t ;通过圆E 的方程求得A 点坐标,从而得到C 点坐标,代入抛物线方程求得a ;(2)求解出C 点坐标后,可知5075DF t =-≤,可整理为162550a t t ≥++,利用基本不等式可求得162550t t++的最大值,从而可得a 的范围.【详解】(1)由抛物线方程得:()0,50B 50BE t ∴=- 又BE ,CD 均为圆的半径 50CD t ∴=-,则503020t =-=∴圆E 的方程为:()2222030x y +-= ()A ∴OD AD AO ∴=-==,则()C代入抛物线方程得:(23050a =-+,解得:149a =(2)由题意知,圆E 的半径为:50t -,即50CD t =- 则C 点纵坐标为50t -,代入抛物线方程可得:x =即OD =5075DF t ∴=-≤,整理可得:()216252550t a t t t≥=+++ (]0,25t Q ∈ 62550t t∴+≥=(当且仅当25t =时取等号)1162510050t t∴≤++ 1100a ∴≥ 即a取值范围为:1,100⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查函数在实际生活中的应用问题,涉及到函数方程的求解、根据函数最值求解参数范围的问题,关键是能够通过分离变量的方式,得到所求变量和函数最值的关系,从而通过基本不等式求得最值,进而得到参数范围.20.已知点F 1、F 2为双曲线222y C x 1b-=:(b >0)的左、右焦点,过F 2作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M,且∠MF 1F 2=30°,圆O 的方程是x 2+y 2=b 2. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为P 1、P 2,求12PP PP ⋅u u u v u u u v的值;(3)过圆O 上任意一点Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M,求证:|AB|=2|OM|.【答案】(1)22y x 12-=;(2)-29;(3)见解析 【解析】 【分析】(1)解:设F 2,M 的坐标分别为))0y ,再通过双曲线的定义和解三角形得到双曲线C 的方程为22y x 12-=;(2)设双曲线C 上的点P (x 0,y 0),设两渐近线的夹角为θ,再求出12PP PP 、和cos θ的值,即得12PP PP ⋅u u u r u u u r的值;(3)由题意,即证:OA ⊥OB,分y 0≠0和y 0=0两种情况证明1212OA OB x x y y 0⋅=+=u u u r u u u r,原题即得证.【详解】(1)解:设F 2,M 的坐标分别为))0y因为点M 在双曲线C 上,所以2202y 1b 1b+-=,即20y b =±,所以22MF b =在Rt △MF 2F 1中,012MF F 30∠=,22MF b =,所以21MF 2b =由双曲线的定义可知:212MF MF b 2-==故双曲线C 的方程为:22y x 12-=(2)解:由条件可知:两条渐近线分别为12l y 0l y 0-=+=; 设双曲线C 上的点P (x 0,y 0),设两渐近线的夹角为θ,则则点P到两条渐近线的距离分别为12PP PP ==,因为P (x 0,y 0)在双曲线C :22y x 12-=上,所以22002x y 2-=,又1cos θ3=,所以12PP PP ⋅u u u r u u u r•cos (π-θ)=-22002x y 3-•13=-29(3)证明:由题意,即证:OA ⊥OB .设A (x 1,y 1),B (x 2,y 2),切线l 的方程为:x 0x+y 0y=2①当y 0≠0时,切线l 的方程代入双曲线C 中,化简得:()()222200002y x x 4x x 2y 40-+-+= 所以:()()()2001212222202y 44x x x x x 2yx2y x ++=-=---,, 又()()()20102201201201222200002x x 2x x 82x 1y y 42x x x x x x y y y 2y x ---⎡⎤=⋅=-++=⎣⎦- 所以()()()2222000012122222220000002y 442x y 82x OA OB x x y y 02y x 2y x 2y x u u u r u u u r +-+-⋅=+=-+==--- ②当y 0=0时,易知上述结论也成立. 所以1212OA OB x x y y 0⋅=+=u u u r u u u r综上,OA ⊥OB,所以|=2||AB O |M uu u r uuu r.【点睛】本题主要考查双曲线的简单几何性质和双曲线方程的求法,考查直线和双曲线与圆的位置关系,考查平面向量的数量积,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.如果存在常数a,使得数列{a n }满足:若x 是数列{a n }中的一项,则a-x 也是数列{a n }中的一项,称数列{a n }为“兑换数列”,常数a 是它的“兑换系数”.(1)若数列:2,3,6,m (m >6)是“兑换系数”为a 的“兑换数列”,求m 和a 的值; (2)已知有穷等差数列{b n }的项数是n 0(n 0≥3),所有项之和是B,求证:数列{b n }是“兑换数列”,并用n 0和B 表示它的“兑换系数”;(3)对于一个不少于3项,且各项皆为正整数的递增数列{c n },是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.【答案】(1)a=9,m=7;(2)见解析;(3)见解析 【解析】 【分析】(1)利用“兑换数列”的定义得到a-m=2,a-6=3,即a=9,m=7.(2)利用“兑换数列”的定义可证明数列{b n }是“兑换数列”, 又因为数列{b n }所有项之和是B,所以B=()01n 0b b n 2+⋅=0an 2,即a=02B n ;(3)假设存在这样的等比数列{c n },设它的公比为q (q >1),通过推理得到q=1,与q >1矛盾,故不存在满足条件的数列{c n }.【详解】(1)解:因为2,3,6,m (m >6)是“兑换系数”为a 的“兑换数列” 所以a-m,a-6,a-3,a-2也是该数列的项,且a-m <a-6<a-3<a-2, 故a-m=2,a-6=3,即a=9,m=7. (2)证明:设数列{b n }的公差为d, 因为数列{b n }是项数为n 0项的有穷等差数列若b 1≤b 2≤b 3≤…≤0n b ,则a-b 1≥a-b 2≥a-b 3≥…≥a-0n b , 即对数列{b n }中的任意一项b i (1≤i ≤n 0),a-b i =b 1+(n 0-i )d=0n b +1-i∈{b n }同理可得:b 1≥b 2≥b 3≥…≥0n b ,a-b i =b 1+(n 0-i )d=0n b +1-i∈{b n }也成立,由“兑换数列”的定义可知,数列{b n }是“兑换数列”;又因为数列{b n}所有项之和是B,所以B=()01n 0b b n2+⋅=0an 2,即a=02B n ;(3)解:假设存在这样的等比数列{c n },设它的公比为q (q >1),因为数列{c n }为递增数列,所以c 1<c 2<c 3<…<c n ,则a-c 1>a-c 2>a-c 3>…>a-c n , 又因为数列{c n }为“兑换数列”,则a-c i ∈{c n },所以a-c i 是正整数 故数列{c n }必有穷数列,不妨设项数为n 项,则c i +c n+1-i =a (1≤i ≤n )①若n=3,则有c 1+c 3=a,c 2=a2,又c 22=c 1c 3,由此得q=1,与q >1矛盾 ②若n ≥4,由c 1+c n =c 2+c n-1,得c 1-c 1q+c 1q n-1-c 1q n-2=0 即(q-1)(1-q n-2)=0,故q=1,与q >1矛盾; 综合①②得,不存在满足条件的数列{c n }.【点睛】本题主要考查等差数列和等比数列,考查新定义的理解和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

上海市崇明区2019届高三5月三模数学试题(解析版)

上海市崇明区2019届高三5月三模数学试题(解析版)

上海市崇明区2019届高三5月三模数学试题一、填空题(本大题共12小题,共36.0分) 1.设集合{1,2,3}A =,{|1}B x x =>,则AB =______『答案』{2,3}『解析』由交集定义可得:{}2,3A B ⋂=本题正确结果:{}2,32.若2log 1042x -=-,则x =______『答案』4『解析』由行列式的定义可得:()()222log 140,log 2,4x x x --⨯-=∴==.3.已知复数z 满足(2)5z i -=(i 为虚数单位),则z 的模为______『解析』52z i=-52z i ∴===-4.函数()cos f x x x =+的单调递增区间为______『答案』22,233k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z『解析』()cos 2sin 6f x x x x π⎛⎫=+=+⎪⎝⎭令22262k x k πππππ-+≤+≤+,k Z ∈,解得:22233k x k ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:22,233k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈ 本题正确结果:22,233k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈ 5.若一个球的体积是36π,则它的表面积是______『答案』『解析』设铁球的半径为,则,解得;则该铁球的表面积为.6.某校三个年级中,高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽取55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为______『答案』17『解析』高一高二人数之比为10:9,因此高二抽出的人数为18人,高三抽出的人数为55-20-18=17人7.一名工人维护3台独立的游戏机,一天内这3台需要维护的概率分别为0.9、0.8和0.6,则一天内至少有一台游戏机不需要维护的概率为______(结果用小数表示)『答案』0.568『解析』记“至少有一台游戏机不需要维护”为事件A则()0.90.80.60.432P A =⨯⨯= ()()10.568P A P A ∴=-= 本题正确结果:0.5688.已知不等式组22020x y x y y +≤⎧⎪+≥⎨⎪+≥⎩表示的平面区域为Ω,点M 坐标为(),x y ,对任意点M ∈Ω,则x y -的最大值为______『答案』6『解析』由约束条件可得平面区域Ω如下图阴影部分所示:令z x y =-,则z 取最大值时,y x z =-在y 轴截距最小 平移y x =可知,当y x z =-过C 时,在y 轴截距最小由220x y y +=⎧⎨+=⎩得:()4,2C - max 426z ∴=+= 本题正确结果:6.9.已知定义在R 上的增函数()y f x =满足()()40f x f x +-=,若实数,a b 满足不等式()()0f a f b +≥,则22a b +的最小值是______.『答案』8『解析』由()()40f x f x +-=得:()()4f b f b -=-()()0f a f b ∴+≥等价于()()()4f a f b f b ≥-=- ()f x 为R 上的增函数 4a b ∴≥-,即40a b +-≥则可知可行域如下图所示:则22a b +的几何意义为原点O 与可行域中的点的距离的平方 可知O 到直线40a b +-=的距离的平方为所求的最小值()222min8a b ∴+== 本题正确结果;810.若n a 是二项式(1)n x +展开式中2x 项的系数,则23111lim n n a a a →∞⎛⎫+++= ⎪⎝⎭______ 『答案』2『解析』()1nx +的展开式通项公式为:rrn C x ()212n n n n a C -∴==()1211211na n n n n ⎛⎫∴==⨯- ⎪--⎝⎭23111111111lim lim 212lim 122231n n n n a a a n n n →∞→∞→∞⎛⎫⎡⎤⎛⎫⎛⎫∴++⋅⋅⋅+=⨯-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦⎝⎭ 本题正确结果:211.已知F 是抛物线2y x =的焦点,点A 、B 在抛物线上且位于x 轴的两侧,若2OA OB ⋅= (其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是______『答案』3『解析』设直线AB 的方程为x ty m =+,点11(,)A x y ,22(,)B x y ,直线AB 与x 轴的交点为(0,)M m . 联立2{x ty m y x=+=,可得20y ty m --=,根据韦达定理可得12y y m ⋅=-. ∵2OA OB ⋅=∴12122x x y y +=,即21212()20y y y y ⋅+⋅-=.∴2m =或1m =-(舍),即122y y ⋅=-. ∵点A ,B 位于x 轴的两侧∴不妨令点A 在x 轴的上方,则10y >. ∵1(,0)4F∴12111111922()32248ABO AFO S S y y y y y ∆∆+=⨯⨯-+⨯=+≥=,当且仅当143y =时取等号.∴ABO ∆与AFO ∆面积之和的最小值是3. 故答案为3.12.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,如果对任意的实数λ,BA BC BC λ-≥恒成立,则c bb c+的取值范围是______『答案』⎡⎣『解析』设E 为直线BC 上任意一点,且BE BC λ=则BA BC BA BE EA λ-=-= EA BC ∴≥恒成立 又minEA为边BC 的高h h a ∴≥恒成立2111sin 222ABC S ah bc A a ∆∴==≥ 2sin a bc A ∴≤ 由余弦定理可得:2222cos a b c bc A =+- 222cos sin b c bc A bc A ∴+-≤()222cos sinsin 2cos c b b c bc A bc AA A A b c bc bc ϕ++∴+=≤=+=+,其中tan 2ϕ=c b b c∴+≤,又2c bb c +≥(当且仅当b c =时取等号)c bb c⎡∴+∈⎣本题正确结果:⎡⎣二、选择题(本大题共4小题,共12.0分)13.已知,a b ∈R ,则“0ab =”是“220a b +=”的( )条件 A. 充分不必要 B. 必要不充分C. 充要D. 既不充分也不必要『答案』B『解析』当1a =,0b =时,0ab =,此时220a b +≠,可知充分条件不成立;当220a b +=时,由20a ≥,20b ≥可知0ab ,则0ab =,可知必要条件成立则“0ab =”是“220a b +=”的必要不充分条件 本题正确选项:B 14.将函数sin 6y x π⎛⎫=-⎪⎝⎭的图象上所有的点向右平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( ) A. 5sin 212y x π⎛⎫=-⎪⎝⎭B. sin 212x y π⎛⎫=+⎪⎝⎭C. 5sin 212x y π⎛⎫=-⎪⎝⎭D. 5sin 224x y π⎛⎫=-⎪⎝⎭『答案』C 『解析』右平移4π个单位长度得带5πsin 12x ⎛⎫-⎪⎝⎭,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变)得到5sin 212x y π⎛⎫=-⎪⎝⎭,故选C. 15.已知关于x 的方程20ax bx c ++=,其中,,a b c 都是非零向量,且,a b 不共线,则该方程的解的情况是( ) A. 至少有一个解 B. 至多有一个解 C. 至多有两个解D. 可能有无数个解『答案』B『解析』由平面向量基本定理可得:(),c a b R λμλμ=+∈则方程20ax bx c ++=可变为:20ax bx a b λμ+++= 即:()()20xa xb λμ+++=,a b 不共线 20x x λμ⎧+=∴⎨+=⎩可知方程组可能无解,也可能有一个解∴方程20ax bx c ++=至多有一个解本题正确选项:B16.如图为正方体ABCD -A 1B 1C 1D 1,动点M 从B 1点出发,在正方体表面沿逆时针方向运动一周后,再回到B 1的运动过程中,点M 与平面A 1DC 1的距离保持不变,运动的路程x 与l =MA 1+MC 1+MD 之间满足函数关系l =f (x ),则此函数图象大致是( )A. B.C. D.『答案』C『解析』由于点M 与平面A 1DC 1的距离保持不变,所以点M 在平面1B AC 上,运动的路线为11B A C B →→→, 设点P 为B 1C 的中点,l =MA 1+MC 1+MD 中,MA 1+MD 是定值, PC 1是定值,MC 1当M 从C 到1B ,运动到1PB 段时,运动的路程x 慢慢变大时, PM 变大,MC 1变大, 所以函数是增函数,所以C 正确;(类似讨论由1B 到A ,由A 到C 的过程,l =MA 1+MC 1+MD 之间满足函数关系l =f (x ). 故选:C .三、解答题(本大题共5小题,共60.0分)17.在直三棱柱111ABC A B C -中, 90ABC ∠=︒,11,2AB BC BB ===,求:(1)异面直线11B C 与1A C 所成角的余弦值; (2)直线11B C 到平面的距离.解:(1)因为11//B C BC ,所以1A CB ∠(或其补角)是异面直线11B C 与1A C 所成角. 1分 因为,,所以BC ⊥平面1ABB ,所以1BC A B ⊥. 3分在1Rt A BC 中,, 5分所以异面直线11B C 与1A C 所成角的余弦值为. 6分(2)因为11B C //平面1A BC所以11B C 到平面1A BC 的距离等于1B 到平面1A BC 的距离 8分 设1B 到平面1A BC 的距离为d , 因为111B A BC A BB C V V --=,所以11111133A BCB BC S d S A B ∆∆⨯=⨯10分可得5d =11分直线11B C 与平面1A BC . 12分18.已知向量11,sin cos 222a x x ⎛⎫=+ ⎪ ⎪⎝⎭和向量()()1,b f x =,且//a b .(1)求函数()f x 的最小正周期和最大值;(2)已知ABC ∆的三个内角分别为,,A B C ,若有3f A π⎛⎫-= ⎪⎝⎭,BC =sin 7B =,求AC 的长度.解:由//a b 得:()11sin 22f x x x =则:()sin 2sin 3f x x x x π⎛⎫=+=+ ⎪⎝⎭(1)()f x 最小正周期为:221T ππ== 当sin 13x π⎛⎫+= ⎪⎝⎭时,()max 2f x =(2)由3f A π⎛⎫-= ⎪⎝⎭得:2sin A =sin A = 由正弦定理可知:sin sin BC ACA B=,即sin 2sin BC B AC A ⋅===19.某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线AB 是以点E 为圆心的圆的一部分,其中(0,)E t (025)t <≤,GF 是圆的切线,且GF AD ⊥,曲线BC 是抛物线250y ax =-+(0)a >的一部分,CD AD ⊥,且CD 恰好等于圆E 的半径.(1)若30CD =米,AD =米,求t 与a 的值;(2)若体育馆侧面的最大宽度DF 不超过75米,求a 的取值范围. 解:(1)由抛物线方程得:()0,50B 50BE t ∴=-又BE ,CD 均为圆的半径 50CD t ∴=-,则503020t =-=∴圆E 的方程为:()2222030x y +-=()A ∴OD AD AO ∴=-==()C代入抛物线方程得:(23050a =-+,解得:149a =(2)由题意知,圆E 的半径为:50t -,即50CD t =- 则C 点纵坐标为50t -,代入抛物线方程可得:x =OD =5075DF t ∴=-+,整理可得:()216252550t a t t t≥=+++ (]0,25t ∈62550t t∴+≥=(当且仅当25t =时取等号)1162510050t t∴≤++ 1100a ∴≥ 即a取值范围为:1,100⎡⎫+∞⎪⎢⎣⎭20.已知点F 1、F 2为双曲线222y C x 1b-=:(b >0)的左、右焦点,过F 2作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且∠MF 1F 2=30°,圆O 的方程是x 2+y 2=b 2. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为P 1、P 2,求12PP PP ⋅的值;(3)过圆O 上任意一点Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,求证:|AB |=2|OM |.(1)解:设F 2,M 的坐标分别为))0y因为点M 在双曲线C 上,所以2202y 1b 1b+-=,即20y b =±,所以22MF b =在Rt △MF 2F 1中,012MF F 30∠=,22MF b =,所以21MF 2b =由双曲线的定义可知:212MF MF b 2-==故双曲线C 的方程为:22y x 12-=(2)解:由条件可知:两条渐近线分别为12l y 0l y 0-=+=; 设双曲线C 上的点P (x 0,y 0),设两渐近线的夹角为θ,则 则点P到两条渐近线的距离分别为12PP PP ==,因为P (x 0,y 0)在双曲线C :22y x 12-=上,所以22002x y 2-=,又1cos θ3=,所以12PP PP ⋅•cos (π-θ)=-22002x y 3-•13=-29(3)证明:由题意,即证:OA ⊥OB .的11设A (x 1,y 1),B (x 2,y 2),切线l 的方程为:x 0x +y 0y =2①当y 0≠0时,切线l 的方程代入双曲线C 中,化简得:()()222200002y x x 4x x 2y 40-+-+= 所以:()()()2001212222202y 44x x x x x 2yx2y x ++=-=---,, 又()()()20102201201201222200002x x 2x x 82x 1y y 42x x x x x x y y y 2y x ---⎡⎤=⋅=-++=⎣⎦- 所以()()()2222000012122222220002y 442x y 82x OA OB x x y y 02y x2y x 2y x +-+-⋅=+=-+==---②当y 0=0时,易知上述结论也成立. 所以1212OA OB x x y y 0⋅=+= 综上,OA ⊥OB ,所以|=2||AB O |M .21.如果存在常数a ,使得数列{a n }满足:若x 是数列{a n }中的一项,则a -x 也是数列{a n }中的一项,称数列{a n }为“兑换数列”,常数a 是它的“兑换系数”.(1)若数列:2,3,6,m (m >6)是“兑换系数”为a 的“兑换数列”,求m 和a 的值; (2)已知有穷等差数列{b n }的项数是n 0(n 0≥3),所有项之和是B ,求证:数列{b n }是“兑换数列”,并用n 0和B 表示它的“兑换系数”;(3)对于一个不少于3项,且各项皆为正整数的递增数列{c n },是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.(1)解:因为2,3,6,m (m >6)是“兑换系数”为a 的“兑换数列” 所以a -m ,a -6,a -3,a -2也是该数列的项,且a -m <a -6<a -3<a -2, 故a -m =2,a -6=3,即a =9,m =7. (2)证明:设数列{b n }的公差为d , 因为数列{b n }是项数为n 0项的有穷等差数列 若b 1≤b 2≤b 3≤…≤0n b ,则a -b 1≥a -b 2≥a -b 3≥…≥a -0n b ,即对数列{b n }中的任意一项b i (1≤i ≤n 0),a -b i =b 1+(n 0-i )d =0n b +1-i ∈{b n }同理可得:b 1≥b 2≥b 3≥…≥0n b ,a -b i =b 1+(n 0-i )d =0n b +1-i ∈{b n }也成立,由“兑换数列”的定义可知,数列{b n }是“兑换数列”; 又因为数列{b n }所有项之和是B ,所以B =()01n 0b b n2+⋅=an 2,即a =02B n ;(3)解:假设存在这样的等比数列{c n},设它的公比为q(q>1),因为数列{c n}为递增数列,所以c1<c2<c3<…<c n,则a-c1>a-c2>a-c3>…>a-c n,又因为数列{c n}为“兑换数列”,则a-c i∈{c n},所以a-c i是正整数故数列{c n}必有穷数列,不妨设项数为n项,则c i+c n+1-i=a(1≤i≤n)①若n=3,则有c1+c3=a,c2=a2,又c22=c1c3,由此得q=1,与q>1矛盾②若n≥4,由c1+c n=c2+c n-1,得c1-c1q+c1q n-1-c1q n-2=0即(q-1)(1-q n-2)=0,故q=1,与q>1矛盾;综合①②得,不存在满足条件的数列{c n}.12。

上海市达标名校2019年高考五月适应性考试数学试题含解析

上海市达标名校2019年高考五月适应性考试数学试题含解析

上海市达标名校2019年高考五月适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. “1sin 2x =”是“2()6x k k Z ππ=+∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P 为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭3.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则PN PM -的最大值是( ) A .254+B .9C .7D .252+4.正ABC ∆的边长为2,将它沿BC 边上的高AD 翻折,使点B 与点C 间的距离为3,此时四面体A BCD -的外接球表面积为( )A .103πB .4πC .133πD .7π5.等腰直角三角形ABE 的斜边AB 为正四面体ABCD 侧棱,直角边AE 绕斜边AB 旋转,则在旋转的过程中,有下列说法:(1)四面体E -BCD 的体积有最大值和最小值; (2)存在某个位置,使得AE BD ⊥;(3)设二面角D AB E --的平面角为θ,则DAE θ≥∠;(4)AE 的中点M 与AB 的中点N 连线交平面BCD 于点P ,则点P 的轨迹为椭圆. 其中,正确说法的个数是( )A .1B .2C .3D .46.已知A 类产品共两件12,A A ,B 类产品共三件123,,B B B ,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件A 类产品或者检测出3件B 类产品时,检测结束,则第一次检测出B 类产品,第二次检测出A 类产品的概率为( ) A .12B .35C .25D .3107.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( ) A .12πB .3πC .2πD .1π8.过抛物线C 的焦点且与C 的对称轴垂直的直线l 与C 交于A ,B 两点,||4AB =,P 为C 的准线上的一点,则ABP ∆的面积为( ) A .1B .2C .4D .89.下列四个图象可能是函数35log |1|1x y x +=+图象的是( )A .B .C .D .10.已知z 的共轭复数是z ,且12z z i =+-(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为( ) A .16B .14C .13D .1212.已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是( ) A .圆,但要去掉两个点 B .椭圆,但要去掉两个点 C .双曲线,但要去掉两个点D .抛物线,但要去掉两个点二、填空题:本题共4小题,每小题5分,共20分。

上海市崇明县2019-2020学年中考第五次适应性考试数学试题含解析

上海市崇明县2019-2020学年中考第五次适应性考试数学试题含解析

上海市崇明县2019-2020学年中考第五次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中,为无理数的是()A.1 3B.2C.﹣5 D.0.31562.如图,在正方形ABCD中,AB=12xx,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A.B.C.D.3.下列说法正确的是()A.﹣3是相反数B.3与﹣3互为相反数C.3与13互为相反数D.3与﹣13互为相反数4.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.13B.2C2D2251x在实数范围内有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1D.x≥﹣16.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A.B.C.D.7.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.38.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为()A.512B.1213C.513D.13129.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为()A.83×105B.0.83×106C.8.3×106D.8.3×10710.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E∠=o,90C o∠=,45A∠=o,30D∠=o,则12∠+∠等于()A.150o B.180o C.210o D.270o11.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=()A.2.5 B.3 C.4 D.512.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知二次函数y =ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表所示: x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 … y…﹣8﹣31…当y <﹣3时,x 的取值范围是_____. 14.计算a 3÷a 2•a 的结果等于_____.15.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大. 16.若正n 边形的内角为140︒,则边数n 为_____________. 17.分式方程26x 9--1=x3x-的解是x=________. 18.如图,在菱形纸片ABCD 中,2AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简后求值:已知:32,求2284111[(1)()]442x x x x+--÷--的值.20.(6分)今年3月12日植树节期间,学校预购进A ,B 两种树苗.若购进A 种树苗3棵,B 种树苗5棵,需2100元;若购进A 种树苗4棵,B 种树苗10棵,需3800元.求购进A ,B 两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A 种树苗至少需购进多少棵.21.(6分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.(1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC 为边向外作正△ABE 和正△ACD,CE 和BD相交于P 点.如图(2)①求∠CPD 的度数;②求证:P 点为△ABC 的费马点.22.(8分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A 种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.23.(8分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.24.(10分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:本次抽查的样本容量是;在扇形统计图中,“主动质疑”对应的圆心角为度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?25.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?26.(12分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:类别月用水量(立方米)供水价格(元/立方米)污水处理费(元/立方米)居民生活用水阶梯一0~18(含18) 1.901.00阶梯二18~25(含25) 2.85阶梯三25以上 5.70(注:居民生活用水水价=供水价格+污水处理费)(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.(2)4月份小明家用水量为20立方米,应付水费为:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议27.(12分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D 是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据无理数的定义解答即可.【详解】选项A 、13是分数,是有理数;选项B 是无理数; 选项C 、﹣5为有理数; 选项D 、0.3156是有理数; 故选B . 【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键. 2.B 【解析】∵在正方形ABCD 中, AB=∴AC =4,AD =DC =DAP =∠DCA =45o , 当点Q 在AD 上时,PA =PQ , ∴DP=AP=x, ∴S =211·22PQ AP x = ; 当点Q 在DC 上时,PC =PQ CP =4-x, ∴S =221111·(4)(4)(168)482222PC PQ x x x x x x =--=-+=-+; 所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下, 故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q 在AP 、DC 上这两种情况. 3.B 【解析】 【分析】符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确. 【详解】A 、3和-3互为相反数,错误;B 、3与-3互为相反数,正确;C 、3与13互为倒数,错误; D 、3与-13互为负倒数,错误;故选B . 【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键.4.C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.5.A【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】在实数范围内有意义,x1∴ x﹣1>0,解得:x>1.故选:A.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.6.C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.7.D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.8.A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:2213050=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.9.C【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤| a| <10|)的记数法.【详解】830万=8300000=8.3×106.故选C【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.10.C【解析】【分析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+Q ,2E EPB ∠∠∠=+, DOA COP ∠∠=Q ,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++ =D E 180C ∠∠∠++-o =309018090210++-=o o o o o , 故选C . 【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键. 11.A 【解析】 【分析】先利用直角三角形的性质求出CD 的长,再利用中位线定理求出EF 的长. 【详解】∵∠ACB=90°,D 为AB 中点 ∴CD=∵点E 、F 分别为BC 、BD 中点 ∴.故答案为:A. 【点睛】本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF 与题目已知长度的线段的数量关系. 12.C 【解析】 【分析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论. 【详解】解:观察二次函数图象可知: 开口向上,a >1;对称轴大于1,2ba->1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<1,﹣c<1,∴一次函数图象经过第二、三、四象限.故选C.【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x<﹣4或x>1【解析】【分析】观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y <-3时,x的取值范围即可.【详解】由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,且x=1时,y=-3,所以,y<-3时,x的取值范围为x<-4或x>1.故答案为x<-4或x>1.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键.14.a1【解析】【分析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【详解】解:原式=a3﹣1+1=a1.故答案为a1.【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则.15.x≤﹣1.【解析】试题分析:∵22y x x =--=2(1)1x -++,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y 随x 的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.16.9【解析】分析:根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可. 详解:由题意可得:140n=180(n-2),解得:n=9.故答案为:9.点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n 边形的内角和=180(n-2). 17.-5【解析】两边同时乘以(x+3)(x-3),得6-x 2+9=-x 2-3x ,解得:x=-5,检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案为:-5.【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.18.7【解析】【分析】过点A 作AP CD ⊥,交CD 延长线于P ,连接AE ,交FG 于O ,根据折叠的性质可得AFG EFG ∠=∠,FG AE ⊥,根据同角的余角相等可得PAE AFG ∠=∠,可得EFG APE ∠=∠,由平行线的性质可得PDA 60∠=︒,根据PDA ∠的三角函数值可求出PD 、AP 的长,根据E 为CD 中点即可求出PE 的长,根据余弦的定义cos APE ∠的值即可得答案.【详解】过点A 作AP CD ⊥,交CD 延长线于P ,连接AE ,交FG 于O ,∵四边形ABCD 是菱形,∴AD AB 2==,∵将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,∴AFG EFG ∠=∠,FG AE ⊥,∵CD //AB ,AP CD ⊥,∴AP AB ⊥,∴PAE EAF 90∠+=︒∠,∵EAF AFG 90∠+=︒∠,∴PAE AFG ∠=∠,∴EFG APE ∠=∠,∵CD //AB ,DAB 60∠=︒,∴PDA 60∠=︒, ∴3AP AD sin 60232=⋅︒=⨯=1PD AD cos60212=⋅︒=⨯=, ∵E 为CD 中点, ∴1DE AD 12==, ∴PE DE PD 2=+=, ∴22AE AP PE 7=+, ∴AP 3cos EFG cos PAE AE 7====∠∠217. 故答案为217【点睛】 本题考查了折叠的性质、菱形的性质及三角函数的定义,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊角的三角函数值是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.343- 【解析】 【分析】 先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式=1﹣()()8x 2x 2+-•(2444x x x +-÷x 22x -)=1﹣()()8x 2x 2+-•()224x x -•2x 2x -=1﹣42x +=x 22x -+, 当x=3﹣2时,原式=322322-+﹣﹣=343﹣=343-. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.20.(1)A 种树苗的单价为200元,B 种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元.则由等量关系列出方程组解答即可;(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元,可得:352100{4103800y x y x +=+=,解得:300200x y =⎧⎨=⎩, 答:A 种树苗的单价为200元,B 种树苗的单价为300元.(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,可得:200a+300(30﹣a )≤8000,解得:a≥10,答:A 种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用21.(1)①证明见解析;②;(2)①60°;②证明见解析;【解析】试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;(2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴,∴PB2=PA•PC=12,∴PB=2;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP ∽△CDF .∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC ﹣∠APC=120°,∴P 点为△ABC 的费马点.考点:相似形综合题22.(1)A 、B 两种奖品的单价各是10元、15元;(2)W (元)与m (件)之间的函数关系式是W=﹣5m+1,当购买A 种奖品75件时,费用W 的值最少.【解析】【分析】(1)设A 种奖品的单价是x 元、B 种奖品的单价是y 元,根据题意可以列出相应的方程组,从而可以求得A 、B 两种奖品的单价各是多少元;(2)根据题意可以得到W (元)与m (件)之间的函数关系式,然后根据A 种奖品的数量不大于B 种奖品数量的3倍,可以求得m 的取值范围,再根据一次函数的性质即可解答本题.【详解】(1)设A 种奖品的单价是x 元、B 种奖品的单价是y 元,根据题意得:32605395x y x y +=⎧⎨+=⎩解得:1015x y =⎧⎨=⎩. 答:A 种奖品的单价是10元、B 种奖品的单价是15元.(2)由题意可得:W=10m+15(100﹣m )=﹣5m+1.∵A 种奖品的数量不大于B 种奖品数量的3倍,∴m≤3(100﹣m ),解得:m≤75∴当m=75时,W 取得最小值,此时W=﹣5×75+1=2.答:W (元)与m (件)之间的函数关系式是W=﹣5m+1,当购买A 种奖品75件时,费用W 的值最少.【点睛】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.23.(1)m≥﹣;(2)m的值为2.【解析】【分析】(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为2.【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.24.(1)560;(2)54;(3)补图见解析;(4)18000人【解析】【详解】(1)本次调查的样本容量为224÷40%=560(人);(2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;(3)“讲解题目”的人数是:560−84−168−224=84(人).(4)60000×168560=18000(人), 答:在课堂中能“独立思考”的学生约有18000人.25.(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x 元.根据题意,得(60﹣x ﹣40)(100+x 2×20)=2240, 化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90%60⨯. 答:该店应按原售价的九折出售.26.(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.【解析】试题分析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可知小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x 立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)≤75.3,解得:x ≤24,即小明家每月的用水量不要超过24立方米.试题解析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可得:小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x 立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)≤75.3,解得:x ≤24, ∴当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.27.(1)sinB =21313;(2)DE =1. 【解析】 【分析】 (1)在Rt △ABD 中,利用勾股定理求出AB ,再根据sinB=AD AB 计算即可; (2)由EF ∥AD ,BE=2AE ,可得23EF BF BE AD BD BA ===,求出EF 、DF 即可利用勾股定理解决问题; 【详解】(1)在Rt △ABD 中,∵BD=DC=9,AD=6,∴AB=222296BD AD ++=313,∴sinB==313AD AB =21313. (2)∵EF ∥AD ,BE=2AE ,∴23EF BF BE AD BD BA ===,∴2693EF BF ==,∴EF=4,BF=6, ∴DF=3,在Rt △DEF 中,DE=2222=43EF DF ++=1.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市崇明县2019-2020学年高考五诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知1sin 243απ⎛⎫+= ⎪⎝⎭,则sin α的值等于( ) A .79-B .29-C .29D .79【答案】A 【解析】 【分析】由余弦公式的二倍角可得,27cos()12sin 2249παπα⎛⎫+=-+= ⎪⎝⎭,再由诱导公式有 cos()sin 2παα+=-,所以7sin 9α=-【详解】 ∵1sin 243απ⎛⎫+=⎪⎝⎭ ∴由余弦公式的二倍角展开式有27cos()12sin 2249παπα⎛⎫+=-+= ⎪⎝⎭又∵cos()sin 2παα+=-∴7sin 9α=- 故选:A 【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题 2.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( ) A .2 B .3 C .-2 D .-3【答案】B 【解析】 【分析】根据(1)3f '=求出2,a =再根据(1,)a b +也在直线32y x =-上,求出b 的值,即得解. 【详解】 因为1()f x a x'=+,所以(1)3f '=所以13,2a a +==,又(1,)a b +也在直线32y x =-上, 所以1a b +=, 解得2,1,a b ==- 所以3a b -=. 故选:B 【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.3.已知椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,上顶点为点A ,延长2AF 交椭圆Г于点B ,若1ABF V 为等腰三角形,则椭圆Г的离心率e =A .13BC .12D .2【答案】B 【解析】 【分析】 【详解】设2||BF t =,则12||BF a t =-,||AB a t =+,因为1||AF a =,所以1||||AB AF >.若11||||AF BF =,则2a a t =-,所以a t =, 所以11||||||2A A a BF B F =+=,不符合题意,所以1||||BF AB =,则2a t a t -=+, 所以2a t =,所以1||||3BF AB t ==,1||2AF t =,设12BAF θ∠=,则sin e θ=,在1ABF V 中,易得1cos23θ=,所以2112sin 3θ-=,解得sin θ=(负值舍去),所以椭圆Г的离心率e =B . 4.函数cos ()22x x x x f x -=+在,22ππ⎡⎤-⎢⎥⎣⎦上的图象大致为( )A .B .C .D .【答案】C 【解析】 【分析】根据函数的奇偶性及函数在02x π<<时的符号,即可求解.【详解】 由cos ()()22x xx xf x f x --=-=-+可知函数()f x 为奇函数.所以函数图象关于原点对称,排除选项A ,B ; 当02x π<<时,cos 0x >,cos ()220x xx xf x -∴=+>,排除选项D , 故选:C. 【点睛】本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题. 5.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A .16B .12C .8D .6【答案】B 【解析】 【分析】根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【详解】由题可知:该几何体的底面正三角形的边长为2 所以该正三棱柱的三个侧面均为边长为2的正方形, 所以该正三棱柱的侧面积为32212⨯⨯= 故选:B 【点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.6.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( )2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C 【解析】 【分析】计算球心连线形成的正四面体相对棱的距离为,得到最上层球面上的点距离桶底最远为)()101n +-cm ,得到不等式)101100n +-≤,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为,每装两个球称为“一层”,这样装n 层球,则最上层球面上的点距离桶底最远为)()101n +-cm ,若想要盖上盖子,则需要满足)101100n +-≤,解得113.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球. 故选:C 【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.7.函数()2x x e f x x=的图像大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据()0f x >排除C ,D ,利用极限思想进行排除即可. 【详解】解:函数的定义域为{|0}x x ≠,()0f x >恒成立,排除C ,D ,当0x >时,2()xx x e f x xe x ==,当0x →,()0f x →,排除B , 故选:A . 【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.8.30x y m -+=过双曲线C :22221(0,0)x y a b a b-=>>的左焦点F ,且与双曲线C 在第二象限交于点A ,若||||FA FO =(O 为坐标原点),则双曲线C 的离心率为 A .2 B .31 C 5D 51【答案】B 【解析】 【分析】 【详解】30x y m -+=的倾斜角为π3,易得||||FA FO c ==.设双曲线C 的右焦点为E ,可得AFE △中,90FAE ∠=o,则||3AE c =,所以双曲线C 的离心率为313e c c=-.故选B .9.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了( ) A .96里 B .72里C .48里D .24里【答案】B【解析】 【分析】人每天走的路程构成公比为12的等比数列,设此人第一天走的路程为1a ,计算1192a =,代入得到答案. 【详解】由题意可知此人每天走的路程构成公比为12的等比数列,设此人第一天走的路程为1a , 则61112378112a ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=-,解得1192a =,从而可得3241119296,1922422a a ⎛⎫=⨯==⨯= ⎪⎝⎭,故24962472a a -=-=.故选:B . 【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.10.已知:|1|2p x +> ,:q x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .1a ≤ B .3a ≤-C .1a ≥-D .1a ≥【答案】D 【解析】 【分析】“p ⌝是q ⌝的充分不必要条件”等价于“q 是p 的充分不必要条件”,即q 中变量取值的集合是p 中变量取值集合的真子集. 【详解】由题意知::|1|2p x +>可化简为{|31}x x x <->或,:q x a >, 所以q 中变量取值的集合是p 中变量取值集合的真子集,所以1a ≥. 【点睛】利用原命题与其逆否命题的等价性,对p ⌝是q ⌝的充分不必要条件进行命题转换,使问题易于求解. 11.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a Q 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>Q ,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠Q ,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意. 所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列. 所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题. 12.已知集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭,则()R P Q I ð为( ) A .[0,2) B .(2,3]C .[2,3]D .(0,2]【答案】B 【解析】 【分析】先求出{}{}|2,|03P x x Q x x =≤=<≤,得到{|2}R P x x =>ð,再结合集合交集的运算,即可求解. 【详解】由题意,集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭, 所以{}{}|2,|03P x x Q x x =≤=<≤,则{|2}R P x x =>ð, 所以(){|23}(2,3]R P Q x x =<≤=I ð. 故选:B. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档