Regional Moisture Source Changes Inferred from Late Holocene Stable Isotope Records
气相色谱法测定沃柑中2,4-滴的方法改进
气相色谱法测定沃柑中2,4-滴的方法改进李琬婧,覃弘毅*(南宁市食品药品检验所,广西南宁 530007)摘 要:采用改进的气相色谱法测定沃柑中的2,4-滴。
试样经过乙腈提取,经过正丁醇加浓硫酸衍生化,弗罗里夕固相萃取柱净化浓缩后测定。
结果表明,2,4-滴在0.010~0.500 mg·L-1线性关系良好,相关系数(r)为0.999,定量限(10倍S/N)为0.001 mg·kg-1,回收率为82.7%~90.7%,RSD为1.6%~4.7%。
关键词:沃柑;气相色谱法;2,4-滴;农药残留Improvement of Gas Chromatography for Determination of2,4-D in Orah MandarinLI Wanjing, QIN Hongyi*(Nanning Institute for Food and Drug Control, Nanning 530007, China) Abstract: The pesticide residue of 2,4-D in Orah Mandarin was determined by improved gas chromatography. The sample was extracted with acetonitrile, derivatized with n-butanol and concentrated sulfuric acid, and cleaned up and concentrated on a Florisil cartrages solid phase extraction column for determination. The results showed that six compounds had the good linear relationship in the range of 0.010~0.500 mg·L-1. The correlation coefficients (r) was 0.999, the limit of quantitation (10 S/N) was 0.001 mg·kg-1, the recovery and relative standard deviations was 82.7%~90.7% and 1.6%~4.7%.Keywords: orah mandarin; gas chromatography; 2,4-dichlorophenoxyacetic acid; pesticide residue2021年柑橘产季全球柑橘产量达到1.585亿t,我国柑橘产量居世界首位,达4 460万t,占全球总产量的28%;出口量91.8万t仅排名第5,表明我国柑橘主要用于国内消费[1]。
亚热带东部稻田土壤酸缓冲性能与酸化特点研究
亚热带东部稻田土壤酸缓冲性能与酸化特点研究陈瑞燕,韩晶晶,邢波*,滕凯玲,周华(浙江省绍兴生态环境监测中心,浙江绍兴312000)摘要:我国亚热带东部降水丰富、淋溶作用强、稻田复种指数与施肥水平高、酸雨频繁,土壤酸化风险较大,但该区地貌和成土母质多变,土壤酸化行为具有较大的空间异质性。
为了解这一地区稻田土壤的酸化规律,以浙江省绍兴市为研究对象,通过室内模拟研究与田间广泛采样分析相结合的方法,探讨了该市稻田土壤酸缓冲性能及土壤酸化的时空变化特点。
结果表明,地貌对稻田土壤的酸缓冲性能及土壤酸化有较大的影响,土壤酸缓冲容量平均值:滨海平原(484mmol/kg )>水网平原(157mmol/kg )>河谷平原(111mmol/kg )>丘陵(80mmol/kg );土壤酸缓冲强度平均值:滨海平原(118mmol/kg )>水网平原(55mmol/kg )>河谷平原(45mmol/kg )>丘陵(35mmol/kg )。
全市稻田土壤pH 值在3.30~8.72,多数落在4.5~6.5范围内,占82.71%;土壤平均pH 值:滨海平原(7.73)>水网平原(6.00)>河谷平原(5.52)、丘陵(5.56);与第二次土壤普查相比,土壤pH≤5.50的稻田比例已由4.09%增大到42.00%;土壤pH 值平均下降了0.36个单位。
根据土壤对酸性物质的缓冲作用,可把土壤pH 值分为大于或等于6.50、3.50~6.50和小于或等于3.50三段,其中土壤pH 值为3.50~6.50时对酸缓冲能力较弱,易发生酸化。
研究区稻田土壤酸化同时受自然因素与人为活动的影响,酸化稻田土壤的治理应采取综合措施。
关键词:绍兴市;稻田土壤;酸化;酸缓冲性;降酸措施中图分类号:X22;S158文献标志码:A文章编号:2096-2347(2023)02-0100-12收稿日期:2023-01-11作者简介:陈瑞燕,工程师,主要从事农用地土壤环境监测状况研究。
Development of Regional Climate Model for Midwest Applications. Sensitivity to Buffer Zone Treatment
᭧2001American Meteorological Societyand European Centre for Medium-Range Weather Fore-casts(ECMWF)global reanalysis(ERA;Gibson et al. 1997)as proxies for the most realistic GCM simulations of the observed climate.This joint system is then ap-plied to simulate the Midwest1993summerflood, where sensitivity experiments are conducted to inves-tigate buffer zone treatment impacts on RCM perfor-mance.Given the ever-increasing demand forfiner mod-el resolutions,the nesting of multiple,progressively re-fined meshes is an effective solution to reduce CPU burden.Although this has often been used in weather forecasts,RCM climate applications have so far adopted a single mesh.This study attempts to use the RCM with two nested meshes for Midwest climate applications.2.Buffer zone treatmentThe buffer zones are designed to integrate GCM forc-ings into the RCM formulation,where GCM–RCM con-sistency is maintained in the zones,while the RCM generates its own mesoscale circulation within the do-main interior.Minor lateral boundary condition(LBC) errors,however,quickly propagate into the RCM do-main and cause the model to produce unrealistic sim-ulations(Giorgi et al.1993;Jones et al.1995;Warner et al.1997;Gong and Wang2000).For a given appli-cation(e.g.,the U.S.Midwest),we must determine op-timal buffer zone locations and assimilation techniques such that robust GCM signals are realistically integrated into the RCM while LBC errors are effectively ab-sorbed.a.Buffer zone locationObvious concerns about RCM buffer zone location specification are numerical stability and domain size issues.For example,Giorgi et al.(1996)placed the left buffer zone over the U.S.Pacific coastal waters to avoid complex topography within the inflow western bound-ary and,thus,eliminate instability caused by LBC spa-tial interpolation errors.Jones et al.(1995)showed that a small domain is needed for the RCM to closely re-produce the circulation on scales skillfully resolved by the driving GCM.On the other hand,strong LBC control in a small domain decreases the freedom for the RCM to develop its mesoscale circulation in response to unique regional and local processes.Seth and Giorgi (1998)clearly demonstrated that small domains produce spurious LBC dynamical effects and thus cause the RCM to generate unrealistic responses to internal forc-ings.A more fundamental issue is how to correctly rep-resent the key physical processes near the buffer zones that govern the GCM resolvable circulation in the RCM domain interior.The buffer zones must be carefully po-sitioned to realistically integrate robust planetary and synoptic regimes across the zones as well as to better resolve dominant mesoscale features within the domain.Because GCM climate drift1and prediction performance are region dependent(Boer et al.1992;Liang et al. 1997;Gates et al.1999),buffer zone locations should correspond to those regions where the driving GCM has a small climate drift but a high predictive skill of plan-etary-and synoptic-scale phenomena,especially low-frequency oscillations.In our RCM,the left buffer zone is located well to the west of the Rocky Mountains to better resolve to-pographic effects.Another factor to consider is the po-sition of large-scale robust action centers given by the Pacific–North American teleconnection pattern(PNA; Wallace and Gutzler1981).Numerous studies have demonstrated that anomalies associated with the PNA pattern are among the most robust extratropical signals reproduced by GCMs(e.g.,Fennessy and Shukla1991; Lau and Nath1994;Liang et al.1997;Saravanan1998). Placement of the left buffer zone is thus chosen to co-incide with the north Pacific action center,which is sea-sonally dependent and located between35Њ–55ЊN and 135Њ–155ЊW(Liang et al.1996).The remaining buffer zones are chosen so that the RCM resolves key regional characteristics,including the ULJ in the north(Tren-berth and Guillemot1996)and the Gulf of Mexico(Hig-gins et al.1996),and LLJ in the south(Stensrud1996; Paegle et al.1996;Higgins et al.1997)as well as the Gulf Stream in the east.The southern buffer zone is positioned to ensure that the LLJ is always located with-in the RCM domain.The eastern buffer zone is placed so that the western branch of the Gulf Stream is included in the RCM domain.The buffer zones must also be prescribed to restrict GCM-generated errors from being integrated into the RCM domain.The global analyses or reanalyses,how-ever,show substantial regional moistureflux differences (Trenberth and Guillemot1995;Higgins et al.1996;Mo and Higgins1996;Boyle2000),which represent ob-servational uncertainties.The problem in using the glob-al analyses or reanalyses as the observational proxies is illustrated in Fig.1,which shows summer interannual correlations(using monthly means)between the NRA and ERA during the overlap period1979–93as well as instantaneous correlations with6-hourly samples in July 1993(our case study period).A small correlation co-efficient indicates that the two reanalyses differ.For 850-hPa wind,differences occur over the Rockies and likely result from the use of inconsistent vertical inter-polation schemes in the two assimilation models(Tren-berth et al.1993).Wind differences become more sig-nificant toward the surface in the Tropics.The greatest uncertainty is identified with near-surface moisture fields,where the two reanalyses lack consistency over oceans,especially in the Tropics.We must position the RCM buffer zones away from these problematic areas. 1The GCM climate drift or bias is alternatively used in this study, and is defined as the difference in long-term averaged climate con-ditions between GCM and observations.←F IG .1.Pointwise correlation coefficients (ϫ10)between the NRA and ERA for 850-hPa meridional wind (V850),and 925-hPa specific and relative humidity (Q925,RH925).The summer (JJA)interannual correlations are calculated using 1979–93monthly means,and the 1993Jul correlations are obtained with 6-h samples.The contour interval is 2.Light and dense shadings indicate where correlations fail to pass the Student’s t test at the 99%and 95%confidence levels,respectively.Following the above reasons,we specify the ‘‘con-trol’’RCM domain and buffer zone locations by the nested outer A and inner S meshes (Fig.2).This con-figuration is denoted as domain A in Table 1.To quantify the suitability of this domain for Midwest climate ap-plications and study RCM performance sensitivity to buffer zone location,we design several other domain configurations (Fig.2;Table 1),which are described in section 3.b.Buffer zone data assimilationData assimilation techniques applied in the buffer zones must be designed such that the resulting obser-vational uncertainties and GCM noise are effectively absorbed while the impact of GCM climate biases on the joint forecast is minimized.The MM5incorporates a dynamic relaxation technique (Davies and Turner 1977)that applies Newtonian nudging and horizontal diffusion within the RCM buffer zones.For a given RCM predictive variable F m ,2ץF /ץt ϭᑬ{F ϪF },ᑬϵϪ␥ٌm n m ϭa (l )·,␥ϭ␣(l )·␥,00l ϭ1,2,...,L,2ϭ1/10␦t,␥ϭ␦s /50␦t (1)00where ␦t is the time interval,␦s the grid spacing,l the distance separating the nudged grid from the RCM outer boundary,and L a measure of buffer zone width.The parameter ␣varies from 1at the outer boundary to 0at the buffer zone inner edge.The ᑬterm minimizes instantaneous differences between the RCM calculation F m and the driving LBC F n .The parameters and ␥(units t Ϫ1)determine how quickly the RCM responds to the GCM forcing for the integration to remain nu-merically stable.This buffer zone assimilation is applied to tendencies of horizontal wind components,temper-ature,water vapor,and nonhydrostatic pressure pertur-bations.The MM5adopts linear-decay relaxation coefficients (Grell et al.1994):␣(l )ϭ(L Ϫl )/(L Ϫ1),L ϭ4.(2)Giorgi et al.(1993)found that this scheme is not ap-propriate for large-domain RCM simulations and for-mulated exponential-decay relaxation coefficients withF IG.2.RCM domain design for all experiments.Each experiment has two nested outer andinner meshes.Each outer(inner)mesh is labeled at its southwest(southeast)corner.The controldomain consists of outer A and inner S.The regions of the MFA in1993summer and theprevailing LLJ are also marked.T ABLE1.RCM experiment description and comparison of observed(OBS)and RCM simulated rainfall statistics(mean,standard devi-ation,and temporal correlation based on daily averages)over theMFA for each experiment during1Jun–28Jul.Each experiment isnamed by a base with a superscript and subscript,which denotedomain specification,LBC assimilation technique,and data source,respectively.All domains use an identical map projection.Thus,thecenter of the outer mesh isfixed and a broader mesh expands evenlyon the west–east and/or south–north sides.Note that domain D(E)resembles domain A(C)except that a larger inner mesh is nested.Refer to Fig.2for domain locations.Experi-ment Domain specification Periodmean(mmdayϪ1)Dailydeviation(mmdayϪ1)C o r r e l a-tion withOBS(%)OBSA RevNRA A DefNRA A DefERA B DefNRA B DefERA C DefNRA C RevNRA D RevNRA E RevNRA A(Outer AϩInner S)A(Outer AϩInner S)A(Outer AϩInner S)B(Outer BϩInner S)B(Outer BϩInner S)C(Outer CϩInner S)C(Outer CϩInner S)D(Outer AϩInner L)E(Outer CϩInner L)6.966.315.815.245.013.095.785.854.995.844.484.464.934.924.213.345.134.253.724.3053.143.533.922.7Ϫ4.730.963.831.645.9a larger L to ensure stronger control by the LBCs near the outer boundaries and a smoother transition toward the domain interior.They also noted that low-level lat-eral forcings are especially important,while large gra-dients and instabilities may be generated in upper-level dynamicfields due to spurious perturbations introduced at the boundaries.We follow Giorgi et al.(1993)and implement into the MM5a combined linear–exponential decay for-mulation:␣(l)ϭ(LϪl)/(LϪ1)͗exp[Ϫ(lϪ1)/N()]͘N()ϭmax(3,3ϩ2(0.85Ϫ)],Lϭ14,(3) whereis a scaled vertical coordinate and defined as the ratio between model layer and surface pressure.In the following,we denote the schemes using Eqs.(2) and(3)as the default and revised data assimilation tech-niques,respectively.3.Model configuration and experiment design Recordflooding occurred in the Mississippi River basin during summer1993(Kunkel et al.1994).This extreme event has been identified with physical mech-anisms at both the planetary and local scales and thus is an ideal case for evaluation of RCM performance with various buffer zone treatments.Thefloods coin-cided with a mature El Nin˜o event,which contributed to an anomalous southward displacement of the ULJ and associated storm track over the central United States.The unusual storm track was part of a persistent large-scale upper-level anomaly pattern over the entire country,where a trough was located in the northwest and a ridge over the southeast.The subsequent circu-F IG .3.1Jun to 28Jul daily rainfall (mm day Ϫ1)time series,averaged over the MFA,for observations (dashed),(heavy solid),andDef A NRA (light solid).DefA ERA lation produced a high frequency of upper-tropospheric synoptic disturbances,which reinforced the ULJ (Tren-berth and Guillemot 1996).The anomalous upper-level westerlies also interacted with the Rocky Mountains to produce a persistent lee trough that,in turn,sustained the LLJ over the basin (Mo et al.1995).Amplification of the LLJ diurnal oscillation contributed to enhanced moisture flux convergence and nocturnal mesoscale con-vective activity over the basin (Paegle et al.1996).In this study we distinguish between June and July,when distinct regional circulations and rainfall patterns occurred.During June,there was an approximate 5-day rainfall periodicity that corresponded to the regular pas-sage of synoptic-scale cyclones across the Midwest (Bosilovich and Sun 1999;also see Fig.3below).The July mean ULJ was much more intense because the upper-level ridge/trough pattern was nearly stationary,which contrasts with the progressive pattern that char-acterized June.The July precipitation was focused over Nebraska,Iowa,Kansas,and Missouri,where the max-imum rainfall rate was 20mm day Ϫ1.This region is defined as the major flood area (MFA)in this work and is illustrated in Fig.2.The RCM is based on the newly released MM5ver-sion 3.3(Dudhia et al.2000)and,in this study,incor-porates a computational domain with two nested meshes (Fig.2).Warner et al.(1997)suggested that nested meshes should use compatible convective parameteri-zations to minimize inconsistencies at the computational grid interfaces.For our purpose,all meshes adopt an identical physics configuration as follows.The land sur-face is represented by the Oregon State University Land Surface Model (Chen and Dudhia 2001).The planetary boundary layer is parameterized by the medium-range forecast nonlocal-K approach (Hong and Pan 1996).Precipitation is determined by a combination of the Goddard Space Flight Center explicit microphysical treatment (Tao and Simpson 1989),the Grell (1993)cumulus parameterization,and shallow convection.Warner and Hsu (2000)showed that the Grell scheme simulates rainfall with reasonable skill.Solar and in-frared radiation are incorporated as in the NCAR Com-munity Climate Model,version 2(Hack et al.1993),and are calculated every 30min,where the radiative effects of both cumulus and nonconvective clouds are considered.These modules are included in the MM5,although several corrections were made to ensure con-sistent coupling.Note that the SST distribution was originally fixed at a specific time and is inappropriate for climate simulations.Thus,a modification is made to incorporate observed daily SST variations into the RCM.To study the effects of buffer zone treatments on RCM performance,we design five domains (A through E)within which nine experiments are conducted (Table 1;Fig.2).Recall that domain A is designated as the control and was put forth in section 2as that best suited to Midwest climate applications.Each domain contains two nested meshes,with the outer mesh driven by the LBC forcings (constructed from the NRA or ERA).The meshes interact throughout the integration where infor-mation is passed across the interface in both directions,and each finer-grid solution replaces the coarse-grid so-lution in the coincident area.For all domains,the outer and inner meshes have a horizontal grid spacing of 90and 30km,respectively.These values are chosen as a compromise between the NRA and ERA grid increments (2.5Њlatitude ϫ2.5Њlongitude)and the MM5nesting ratio of 3:1.In addition,both meshes incorporate 23identical computational layers where the model top is located at 100hPa.The outer and inner meshes in domain A contain 65ϫ50and 64ϫ64points,respectively.The outer mesh is expanded in domain B,where 15(10)points are added to both the west and east (south and north)sides.Domain B is designed to explore the impact that arises from NRA and ERA data differences where,as shown in Fig.1,cor-relations are low,especially in the southern buffer zone.To delineate the roles of the west–east versus south–north buffer zones,domain C is formulated to stretch domainF IG .4.(top)Mean rainfall (mm day Ϫ1)spatial distributions for observations,(middle),and (bottom)in (left)Def DefA A NRA ERA Jun and (right)Jul.Contour interval is 2,where light (dark)shading indicates values greater than 4(6).F IG .5.(top)Mean 850-hPa wind (m s Ϫ1)spatial distributions for observations,(middle),and (bottom)in (left)Def DefA A NRA ERA Jun and (right)Jul.Wind speed contour interval is 2,where light (dark)shading indicates values greater than 6(8).Wind direction is represented by vectors (streamfunction)in observations (simulations)to enhance the display clarity.A only in the west–east direction.Domains A,B,and C use an identical inner mesh (S).However,because the LLJ (MFA)is located at the southwest corner (close to the western edge)of the inner mesh and edge effect distortions may occur,we nest domains D and E with a larger inner mesh (L)where 6,15,and 18points are added to the west,east,and south sides,respectively.This inner mesh covers virtually the entire United States east of the Rocky Moun-tains.The outer mesh of domain D (E)is identical to that of domain A (C).All RCM experiments are initialized on 1May 1993and integrated until 28July.Surface and atmospheric initial conditions are given by NRA while LBCs during the integration period are constructed from either NRA or ERA,depending on the specific experiment.Thus,initial conditions have little impact on comparisons be-tween the NRA and ERA paired experiments.Each ex-periment is identified by a base with a superscript and subscript,which denote domain specification (A through E),LBC assimilation technique (default/revised)and LBC data source (NRA/ERA),respectively.For example,()uses domain A (B),the revised (default)Rev DefA B NRA ERA assimilation technique,and LBCs constructed from NRA(ERA).Comparisons among ,,and depict Def Def DefA B C NRA NRA NRA RCM sensitivity to domain choice.Intercomparisonsamong ,,,and delineate the effects Def Def Def DefA AB B NRA ERA NRA ERA associated with LBC data uncertainties and their depen-dence upon domain parisons among ,Def A NRA ,,and reveal the impacts that are caused Rev Def RevA C C NRA NRA NRA by different LBC data assimilation techniques.Also,()is compared with ()to determine Rev Rev Rev RevA C D E NRA NRA NRA NRA the effects of changing inner domain size.The purpose for using a nested domain is to produce accurate mesoscale simulations on the inner mesh,while the outer mesh exists simply to provide reasonable large-scale circulation conditions.Thus,in the following sections,spatial distribution analyses will focus on June and July mean rainfall on the inner mesh and large-scale wind circulations in the outer mesh.In addition,we examine temporal variations of rainfall averaged over the MFA and low-level southerly flow within the LLJ area to evaluate RCM ability to simulate the observed sequence of mesoscale processes.4.Resultsa.General evaluationTable 1compares observed (rain gauge measure-ments)with RCM simulated rainfall averaged over the MFA for the nine experiments.Observed rainfall be-tween 1June and 28July was 6.96mm day Ϫ1,where the daily standard deviation was 4.48mm day Ϫ1.The results are reasonably realistic,where the period Rev A NRA mean,daily deviation,and temporal correlation with observations are 6.31and 4.46mm day Ϫ1and 0.531,respectively.The comparison between and indicates thatDef DefA A NRA ERA the effect of LBC data sources on simulation quality fordomain A is small.However,when domain B is adopted,the period mean,daily deviation,and temporal corre-lations decrease,where the most important differences arise between experiments with ERA LBCs.When com-pared with ,produces only 58%(67%)of the Def DefA B ERA ERA rainfall mean (deviation),while the correlation with ob-servations declines from 0.339to Ϫ0.047.Since thedifferences among ,,and are much small-Def Def DefA B C NRA NRA NRA er,it is clear that RCM simulations are less sensitive to domain choice when NRA LBCs are utilized.2This im-plies that large uncertainties exist in ERA when the domain size increases.Recall that there are substantial inconsistencies between NRA and ERA,especially over the Tropics (Fig.1).Because the southern buffer zone of domain B is located along the edge of this high un-certainty area,we conclude that ERA cannot be used to reliably specify southern LBCs in domain B.A comparison between and shows that Def RevA A NRA NRA changing the LBC assimilation from the default to re-vised technique causes the mean rainfall and temporal correlation (daily deviation)to increase (decrease).Al-though a similar outcome occurs when and Def RevC C NRA NRA are compared,the larger domain produces greater de-viation and correlation differences.In particular,thecorrelation is more than double the value.Rev DefC C NRA NRA Nevertheless,results for and are closer toRev RevA C NRA NRA observations than those generated by and ,Def DefA C NRA NRA respectively.Therefore,the revised assimilation tech-nique improves overall RCM simulations.A comparison between and indicates that Rev RevD A NRA NRA the larger inner mesh produces a less realistic simula-tion.On the other hand,comparison of experimentsand ,where the outer mesh extends in the Rev RevE C NRA NRA west–east direction,shows little difference in the rainfall mean and deviation.This suggests that the closeness of the inner and outer meshes in may lead to edge Rev D NRA effect distortions.A much greater impact is identified in the temporal correlations with observations,wherethe ()coefficients decrease by about 20%rel-Rev RevD E NRA NRA ative to ().These results contradict the a priori Rev Rev A C NRA NRA expectation that a larger inner domain would improve regional rainfall simulations.This arises because when the inner mesh size is increased,distortions are gener-ated at the nesting interfaces.In ,extreme rainfall Rev E NRA peaks are identified at the southern and eastern edges and correspond to unrealistic copious rainfall production along the U.S.southeast coastline and the northeast Gulf of Mexico (not shown).b.Effect of data uncertaintyFigure 3shows the observed and daily Def DefA A NRA ERA rainfall time series averaged over the MFA.The basic2One reviewer commented that the RCM and NRA model physics consistency,including land surface,planetary boundary,and con-vection parameterizations,may partially explain the better RCM per-formance with NRA LBCs.F IG .6.(left)Mean Jul rainfall (mm day Ϫ1)and (right)850-hPa wind (m s Ϫ1)spatial distributions for (top)and Def C NRA (bottom).Rainfall contour interval is 2where light (dark)shading indicates values larger than 4(6).Wind speed Def B NRAcontour is 2where light (dark)shading gives values greater than 6(8),and direction is depicted by streamfunction.Note that the winds are displayed over the entire continental United States.temporal variations are reproduced by the RCM,in-cluding the different climate regimes between June and July.There are,however,minor phase differences be-tween the simulations and observations.In particular,neither experiment generates the observed 29June–3July and 21–25July heavy rainfall episodes while both produced a spurious peak on 4June.Differences be-tween and are small,except for 22–25June Def DefA A NRA ERA (5–10July)when rainfall is much greater (less)Def A ERA than .As discussed earlier,the correlation with ob-DefA NRA servations is larger for than for (0.435vs Def DefA A NRA ERA 0.339;Table 1).Figure 4illustrates the geographical distributions ofobserved and rainfall over the inner mesh.Def DefA A NRA ERA Observed rainfall in June was concentrated in the north-ern MFA,where maximum values exceeded 9mm day Ϫ1.Amounts in the southern MFA were in excess of 5mm day Ϫ1while those in the remainder of the area ranged from 3to 5mm day Ϫ1.In contrast,and Def A NRA heavy rainfall is less focused but distributed over DefA ERA a larger area.The most intense rainfall (7mmDef A NRA day Ϫ1)occurs along a narrow band that extends from Nebraska to northern Illinois.Additional heavy rainfall covers several smaller areas north of this band.On the other hand,while simulated maximum rainfall Def A ERA agrees more closely with observations,the heavy rain-fall area is shifted to the west and covers the entire western edge of the MFA.In addition,a spurious max-imum is produced over the southeast.Relative to June,the observed July pattern reveals that heavy rainfall encompassed virtually the entire MFA and was much more intense,where the maximum rate was 20mm day Ϫ1.Additional heavy rainfall ex-tended north from the main area to North Dakota as well as east along a narrow band through the Ohio River valley.Little rainfall occurred over the remainder of the←F IG .7.Diurnal cycles of observed (dark shading)and RCM sim-ulated (light shading)rainfall (mm day Ϫ1)averaged over the MFA as well as 850-hPa meridional wind (m s Ϫ1;hatched)averaged overthe LLJ area for ,,and .The abscissa corresponds to Def Def DefA A A NRA ERA NRA UTC hours,and the arrows denote conventional radiosonde mea-surement times.region.The reproduces the overall structure and Def A NRA magnitude of the rainfall pattern but differs from ob-servations in several respects.In particular,the simu-lated maximum rainfall area is located approximately 300km to the north.Other RCMs have produced a similar shift (e.g.,Bosilovich and Sun 1999).In addi-tion,heavier rainfall extends to the northeast of the MFA while amounts are deficient over the Ohio River valley.(Note that there may exist observational rainfall data uncertainties over the Great Lakes and adjacent northern areas.)When compared with over the MFA,Def A NRA rainfall is underestimated and areal coverage is DefA ERA reduced.In addition,too little (much)rainfall is simu-lated over North Dakota (the Gulf Coast states).Figure 5shows observed and 850-hPa wind Def DefA A NRA ERA circulations for June and July.The location of the sim-ulated jet in June is similar to observations,although the RCM features are slightly stronger.The observed increase in LLJ intensity from June to July is also re-produced in both and .However,simulated jet Def DefA A NRA ERA intensity is greater than that in observations,with max-imum speeds exceeding 15m s Ϫ1.The LLJ core is also shifted to central Oklahoma and Kansas,north of the observed position over Texas.In addition,there is in-sufficient curvature of the jet exit region in the upper Midwest.These features explain the poleward shift of the heavy rainfall pattern during July (Fig.4).c.Effect of domain choiceFigure 6shows the geographic distributions of July mean rainfall and 850-hPa wind circulation for and Def C NRA ,while the observed,,and fields are given Def Def DefB A A NRA NRA ERA in Figs.4–5.The LLJ magnitude is realistic,while DefC NRA the jet core remains too far north.This leads to a poleward shift of the heavy rainfall pared with ,Def A NRA however,the jet is weaker,which,to a certain extent,DefC NRA causes rainfall to be lighter and less organized in the MFA.Additional factors that contribute to this rainfall deficiency include the ULJ,which will be discussed in section 4d.Similarly,rainfall decreases and the areal Def B NRA coverage shrinks.The heavy rainfall area,however,ex-pands to the south.In addition,rainfall to the east of the MFA is substantially reduced.Although the general pat-tern in is closer to observations than ,the period Def DefB A NRA NRA mean,deviation,and temporal correlation with obser-vations decrease (Table 1).Note that the LLJ is evenweaker in than .The above sensitivities are Def DefB C NRA NRA amplified when LBCs are constructed from ERA insteadF IG .8.Same as Fig.6but for during (top)Jun and (bottom)Jul.Rev A NRA of NRA.These results reiterate the critical role that theLLJ plays in Midwest rainfall distribution.One key feature of the LLJ is its distinct diurnal cycle.Observations show that,although prevailing LLJ winds are from the south or southwest,there exists a large diurnal speed variation with a nighttime or early morn-ing maximum that exceeds twice the afternoon mini-mum (Mitchell et al.1995;Whiteman et al.1997;Arritt et al.1997).This leads to a marked diurnal cycle in low-level water vapor flux over the Great Plains (Ras-musson 1967;Bonner and Paegle 1970).The transport of warm,moist,potentially unstable air provides a fa-vorable environment for the development of nocturnal thunderstorms,mesoscale convective complexes,and their associated heavy rainfall across the central United States (Wallace 1975;Balling 1986;Higgins et al.1997).It is,however,difficult to acquire observations to validate the LLJ in RCM simulations.Because LLJ strength and frequency of occurrence are maximized between the 0000and 1200UTC launch times,con-ventional radiosonde measurements are insufficient (Mitchell et al.1995).On the other hand,radar profiles provide continuous data but are contaminated by near-surface objects and bird migrations (Arritt et al.1997).Based on the well-established relationship between the LLJ and Midwest rainfall,we will use rainfall mea-surements to indirectly evaluate RCM performance in simulating the LLJ.Figure 7illustrates the diurnal cycles of observed and RCM simulated rainfall averaged over the MFA as well as the 850-hPa meridional wind averaged over the LLJ area (see Fig.2).For ,the model produces an ac-Def A NRA curate diurnal rainfall cycle but generally underesti-mates amounts,especially during the afternoon and ear-ly evening.Conversely,Bosilovich and Sun (1999)overestimated rainfall during the same times.In addi-tion,the rainfall cycle follows the LLJ by approximately 3h.This result is intuitive given that there exists a time lag between moisture transport and rainfall production,and suggests that the RCM simulation is realistic.When。
基于重症支气管哮喘差异表达基因及其治疗中药筛选的生物信息学分析
第 50 卷第 2 期2024年 3 月吉林大学学报(医学版)Journal of Jilin University(Medicine Edition)Vol.50 No.2Mar.2024DOI:10.13481/j.1671‐587X.20240214基于重症支气管哮喘差异表达基因及其治疗中药筛选的生物信息学分析陈丽平1,2, 韩立1, 卞华1, 庞立业1(1. 南阳理工学院河南省张仲景方药与免疫调节重点实验室,河南南阳473004;2. 河南中医药大学呼吸疾病中医药防治省部共建协同创新中心,河南郑州450046)[摘要]目的目的:通过生物信息学方法探讨重症支气管哮喘[简称重症哮喘(SA)]的差异表达基因,分析其作用机制,并筛选潜在具有治疗作用的中药及活性成分。
方法:在高通量基因表达(GEO)数据库中选取GSE136587和GSE158752数据集,利用R软件对数据集进行差异分析获得差异表达基因,并进行蛋白-蛋白相互作用(PPI)网络分析,筛选核心基因,寻找关键通路和枢纽基因。
最后将核心基因提交至Coremine数据库筛选具有潜在治疗作用的中药,并通过《中华医典》检索相关中药方剂。
结果结果:共筛选出466个差异表达基因。
通过STRING平台构建PPI网络共筛选包括25 kDa 突触关联蛋白(SNAP25)、谷氨酸离子型受体2(GRIA2)、轴突蛋白1(NRXN1)、钾电压门控通道亚家族A成员1(KCNA1)、突触囊泡蛋白 1(SYT1)和嗜铬蛋白A(CHGA)等核心靶点25个。
基因本体(GO)功能富集显示SA的生物学过程与细胞趋化性和白细胞迁移等有重要关系,京都基因与基因组百科全书(KEGG)富集的通路主要涉及骨髓白细胞迁移、白细胞趋化性、细胞趋化性、白细胞迁移、对外部刺激反应的正向调节和骨髓白细胞活化等信号通路。
采用网络药理学方法基于核心靶点筛选得到具有潜在治疗SA作用的中药367种,其中人参、水牛角、全蝎和黄芪等中药涉及多个核心靶点,与SA具有高度相关性,在《中华医典》中检索具有高度相关性的中药,共得到17个潜在具有治疗效果的中药方剂。
欧洲标准变应原联合化妆品筛选变应原对女性面部皮炎患者的斑贴试验
圭堡医堂羞堂麓嶷盘查垫塑生!!魍整!§盎筮!塑£b虹LM趟△!!!b坠鱼§璎£!!Q£!Q鲢12塑2:YQl:;§:艘2:§欧洲标准变应原联合化妆品筛选变应原对女性面部皮炎患者的斑贴试验周成霞李械李利【摘要l蹦的采矮蚊溯标准嶷辙鳆联合化妆赫筛遴燮应原对女性llli鄙发炎患者进行斑贴试验,薅壹主要致竣藤;方法霹弱诊女瞧露帮安炎患者果弼讫绶曩蘩选变绽琢联合黢鞘标灌变应蘸送行褒雅试验,按嚣繇接魅建皮炎瓣究组捶荐标准巅潦缝祭。
结果4i灏焱褴患者逢幸亍了38静德妆酷筛选变虑原和26种欧洲标准变腹原的斑贴试验。
熊巾阳性率最高ff缸他妆鼎筛选变应原计裔鸟洛托品(12.20%)、硫柳汞(9.76%)、双咪唑烷基脲(7.32%)及DMDM海因(7.32%),阳性率躐高的欧洲标准嶷成原汁有硫酸镍(22.20%)、甲醛(14.63%)、对苯二胺(9.76%)及香料混骨芍势f9。
弱%)。
绥谂辘臻耱,争鏊、岛渗托瑟、骧秘汞、对答:藏、蚕辫浸合耢,双曝迹靛基骣,DMDM海毽等是女瞧嚣零瘦灸患毒主要簸被骧。
【关键词l欧渊标准变琏原;化妆品筛选变赢愿#巅部皮炎;疆髂试簸PatchtestingforselectionofcosmeticalllergensinfemalefaeialdermatitisbyEuropeanstandardofc08mmeticallergenszH(彤Cheng-xia,L{w武,乙iLi.DepartmentofDermatology,We啦ChinaHos“pitat,Si商#口镕汝iverMtY,酝ongdu§10041,China[Abstract]ObjectiveToidentifytheeomnqonallergensofthefemalepatientswkhfaeiaidef—matitiswithEuropeanstandardofcosmeticallergens.MethodsFemalepatientswithfaciaidermatitisweretestedwithEuropeanstandardofcosmeticallergens.ThereactionstoallergensweredocumentedhyfollowingtheInternationalContaetDermatitisResearchGrouprecommendations.ResultsTotal4lfemalepatientswithfacialdermatitisweretestedwithEuropeanstandardofcosmeticallergens,themaincosmeticallergensvcerehexamine(12,20),thimerosal(9。
evaluation and monitoring 翻译
兰吉特生态站点是兰吉特兰特的一个独特地区,因其产生独特植物群落的能力而与众不同。
它是负责其发展的所有环境因素的产物。
相互作用产生独特的高潮植物群落的主要因素是气候,土壤和地形。
高潮群落是在没有异常干扰的情况下进化出的植物物种的相对稳定的平衡。
这些物种适应其周围环境并在该地区的环境限制内生存。
通常,一个或两个物种占主导地位,并且每年都没有变化。
,高潮群落中的矿物质再循环达到最大水平,优势植物物种永远繁殖。
生产可能每年随气候变化而波动,但物种组成变化很小。
范围生态站点的特征在于组成高潮群落的植物的种类或比例存在显着差异,生产力显着差异或两者兼有。
重大差异是指对单个管理因素(如库存率)变化的要求。
范围生态站点之间的边界可能是截然不同的,其中土壤,地形或湿度的变化是突然的,但通常沿环境梯度边界的边界不太明显。
牧场生态场与管理单元牧场生态场与管理单元不应混淆。
通过围栏田地或牧场来创建管理单元。
无论围栏上发生了什么,都可以做出有关特定土地的管理决策。
一个管理单元中可能存在多个范围的生态站点。
或根据围栏的位置,将范围生态站点划分为两个管理单元-围栏一侧的一部分,另一侧的一部分。
范围条件范围条件指示当前植物群落相对于潜力或高潮的状态或组成,并表示植被组成,生产力和土地稳定性的变化。
条件根据当前植物群落的状态或组成与其潜力相差多远,分为四个类别:优异,良好,一般和不良。
这些等级与牧草值不同,并不一定指示在靶场上存在的物种的产量,营养价值或适口性。
三种植物类别(减少者/增加者/入侵者)中每种植物对生态场所范围的相对贡献决定了其当前状况等级(图32)。
许多影响可以改变或暂时破坏植被,但不一定消除潜在植物群落的恢复。
除非扰动特别严重或延长,否则不会永久影响场地的潜力,并且场地本身仍能够支持高潮社区。
由于干旱,萨斯喀彻温省的山脉通常被认为状况不佳。
这是一个不准确的评估,因为范围c 不会很快下降。
由于干旱,牧草产量可能会暂时减少,但范围条件不会改变,植物群落组成可能不会改变。
布地奈德鼻喷剂治疗血管运动性鼻炎的疗效分析
血管运动性鼻炎(vasomotor rhinitis ,VMR )是神经、内分泌对鼻黏膜血管、腺体功能调节失衡引起的一种鼻炎,主要症状为水样鼻涕、打喷嚏、鼻塞、头痛、面部压迫感等症状,是非变应性鼻炎中最常见的一个临床类型[1]。
恢复鼻黏膜植物神经是治疗血管运动性鼻炎的原则。
鼻用糖皮质激素可以在细胞水平发挥其非特异性抗原作用,影响炎症介质的释放,减少鼻黏膜各类细胞如T 细胞、嗜酸性粒细胞、肥大细胞等浸润,减轻患者鼻塞、水样涕等症状。
本试验将鼻用糖皮质激素(布地奈德鼻喷剂)应用于血管运动性鼻炎的治疗,通过多项主客观指标来评价鼻用糖皮质激素(布地奈德鼻喷剂)对血管运动性鼻炎的疗效。
员资料与方法1.1研究对象:2016年1月至2017年10月在我院门诊就布地奈德鼻喷剂治疗血管运动性鼻炎的疗效分析赵智杰张志斌DOI :10.11655/zgywylc2018.07.061作者单位:044000山西运城护理职业学院附属医院耳鼻喉科(赵智杰);山西中医学院附属医院耳鼻喉科(张志斌)素下病,特发性TTP 多因患者体内存在抗ADAMTS13自身抗体(抑制物),导致ADAMTS13酶活性降低或缺乏,临床上以特发性TTP 为最多[1~3]。
我国多位学者报道了获得性TTP的一些临床特征[4,5]。
另外TTP 应该和溶血尿毒综合征、弥散性血管内凝血(DIC )、HELLP 综合征、EVANS 综合征鉴别[6]。
本组病例有1例为妊娠合并遗传性TTP ,通过血浆输注,临床症状明显改善。
国内林晓等[7]报道1例孕晚期合并遗传性TTP 患者。
其余9例均为特发性的TTP ,女性占7/10,全部患者ADAMTS13酶活性均低于5%,故疑诊TTP 患者ADAMTS13酶活性测定及其抑制物测定极为重要。
目前TTP 的治疗以血浆置换为首选,其次可选择输注新鲜血浆和药物治疗。
药物治疗目前以糖皮质激素及免疫抑制剂为主,包括利妥昔单抗、长春新碱、硫唑嘌呤、环孢素等。
多色探针熔解曲线分析法评估结核分枝杆菌阳性患者对不同抗结核药物
- 82 -31(5):1172-1175.[6] GU H,WANG Y,DU M,et al. Effectiveness of using mean corpuscular volume and mean corpuscular hemoglobin for beta-thalassemia carrier screening in the guangdong population of China[J]. Biomedical and Environmental Sciences,2021,34(8):667-671.[7] MANTHEI D M,HARRO D M,KEREN D F. Incorrect migration of hemoglobin after capillary electrophoresis software update complicates diagnosis of an infant with hemoglobin S/Beta+thalassemia[J]. The Journal of Applied Laboratory Medicine,2021,6(5):1371-1375.[8]宋琪玲,郭杨柳,何勇均,等. RDW 筛查地中海贫血诊断界值的建立及其与MCV、MCH、HbA 2联合筛查的价值[J].中国实验血液学杂志,2021,29(3):847-852.[9] MAJI S K,DOLAI T K,PRADHAN S,et al. Implications of population screening for thalassemias and hemoglobinopathies in rural areas of West Bengal, India: report of a 10-year study of 287,258 cases[J]. Hemoglobin: International Journal for Hemoglobin Research,2020,44(6):432-437.[10]刘利,余楚壬,李珊珊,等. α地中海贫血基因携带者709例红细胞参数、血红蛋白A 2及基因检测结果分析[J].广东医学,2021,42(8):1006-1008.[11]宋琪玲,郭杨柳,何勇均,等. RDW 筛查地中海贫血诊断界值的建立及其与MCV、MCH、HbA 2联合筛查的价值[J].中国实验血液学杂志,2021,29(3):847-852.[12]周亚丽,李平萍,杨焜,等.临界血红蛋白A 2人群的β地中海贫血检出情况[J].广西医学,2021,43(5):587-589.(收稿日期:2023-11-09) (本文编辑:冯乐乐)①泉州市疾病预防控制中心 福建 泉州 362000多色探针熔解曲线分析法评估结核分枝杆菌阳性患者对不同抗结核药物耐药性的诊断效能陈李晓①【摘要】 目的:分析多色探针熔解曲线分析法(MMCA)评估结核分枝杆菌阳性患者对利福平、乙胺丁醇、链霉素、异烟肼、喹诺酮耐药性的诊断效能。
血栓四项对创伤性骨折患者围术期下肢深静脉血栓的诊断价值
DOI:10.19368/ki.2096-1782.2023.15.025血栓四项对创伤性骨折患者围术期下肢深静脉血栓的诊断价值郑立兵,邢乐文徐州仁慈医院检验科,江苏徐州221000[摘要]目的研究血栓四项在创伤性骨折患者围术期预测下肢深静脉血栓中的诊断价值。
方法选取2021年9月—2023年6月徐州仁慈医院收治的创伤性骨折患者围术期发生下肢深静脉血栓的60例纳入血栓组,选取同期健康体检者60例患者纳入对照组。
比较两组的血栓四项指标,分析血栓四项对下肢静脉血栓的诊断效能。
结果血栓组凝血酶-抗凝血酶复合物、纤溶酶-α2纤溶酶抑制剂复合物、组织型纤溶酶原激活剂-抑制剂1复合物和凝血调节蛋白均显著高于对照组,差异有统计学意义(P<0.001)。
ROC曲线分析表明,血栓四项联合检测下肢深静脉血栓的AUC为0.966,诊断的灵敏度和特异度分别为91.0%,98.0%,均高于单一诊断。
结论与对照组相比,创伤性骨折血栓组的血栓四项水平显著上升,具备较好的临床诊断效果,有助于指导临床鉴别血栓的发生。
[关键词]创伤性骨折;下肢深静脉血栓;血栓四项;诊断价值[中图分类号]R445 [文献标识码]A [文章编号]2096-1782(2023)08(a)-0025-04Diagnostic Value of Four Thrombus Tests for Perioperative Lower Extrem⁃ity Deep Vein Thrombosis in Patients with Traumatic FracturesZHENG Libing, XING Lewen1.Xuzhou Renci Hospital Laboratory, Xuzhou, Jiangsu Province, 221000 China[Abstract] Objective To study the diagnostic value of the thrombus quadruple in the perioperative prediction of deep venous thrombosis formation in the lower extremities in patients with traumatic fractures. Methods60 patients with traumatic fractures who developed deep vein thrombosis in the lower limbs during the perioperative period admitted to Xuzhou Renci Hospital from September 2021 to June 2023 were selected for inclusion in the thrombus group, and 60 healthy individuals who underwent physical examinations during the same period were selected for inclusion in the control group. Compared the four indicators of thrombosis between the two groups and analyzed the diagnostic efficacy of the four indicators for lower limb venous thrombosis. Results Thrombin-antithrombin complex, plasmin α2 antiplas⁃min complex, thrombomodulin and tissue plasminogen activator-inhibitor complex were significantly higher in the thrombus group than those in the control group, and the differences were statistically significant (P<0.001). The ROC curve analysis shows that the AUC of the combined detection of four factors for lower limb deep vein thrombosis was 0.966, with diagnostic sensitivity and specificity of 91.0% and 98.0%, respectively, which were higher than those of a single diagnosis. Conclusion Compared with the healthy control group, the thrombus four levels were significantly higher in the traumatic fracture thrombosis group, which possesses a better clinical diagnosis and helps to guide the clinical identification of thrombosis.[Key words] Traumatic fracture; Deep vein thrombosis of the lower extremities; Thrombus IV; Diagnostic value下肢深静脉血栓在创伤性骨折围术期时有发生,深静脉血栓影响创伤性骨折预后,延长患者住[作者简介] 郑立兵(1981-),女,本科,副主任检验技师,主要从事检验科临床工作。
《2024年美白化妆品普遍化的STS研究》范文
《美白化妆品普遍化的STS研究》篇一一、引言随着社会的进步和人们对美的追求,美白化妆品已成为现代女性日常护肤的必备品。
然而,美白化妆品的普遍化不仅是一种社会现象,还涉及到科技、社会、技术等多个层面的因素。
本文将通过STS(科学、技术、社会)的角度,对美白化妆品的普遍化进行深入研究。
二、科学角度从科学的角度来看,美白化妆品的普遍化源于人们对皮肤美白的科学认知。
随着皮肤科学的发展,人们逐渐认识到皮肤色素的形成与遗传、环境、生活习惯等多种因素有关。
因此,美白化妆品的研发基于皮肤科学的理论,通过抑制黑色素的形成、加速黑色素代谢等手段,达到美白皮肤的效果。
此外,美白化妆品中还添加了多种保湿、抗氧化的成分,以提升皮肤的健康状态。
三、技术角度从技术的角度来看,美白化妆品的普遍化得益于现代科技的发展。
随着化妆品技术的不断创新,美白化妆品的配方越来越科学、成分越来越高效。
例如,现代美白化妆品中常常添加的维生素C、熊果苷等成分,具有很好的美白效果。
此外,纳米技术的运用使得这些成分更容易被皮肤吸收,提高了产品的效果。
同时,现代生产技术的进步也使得美白化妆品的生产过程更加规范、安全、高效。
四、社会角度从社会的角度来看,美白化妆品的普遍化反映了当代社会的审美观念和文化背景。
在当今社会,白皙的皮肤被视为美丽的象征,因此许多女性追求皮肤美白。
此外,广告、媒体等社会舆论也对美白化妆品的普及起到了推动作用。
然而,我们也应该看到,美白化妆品的普及也带来了一些问题,如过度追求美白可能导致皮肤损伤、过度依赖化妆品等。
因此,我们需要从社会层面思考如何引导人们树立正确的审美观念和护肤观念。
五、结论综上所述,美白化妆品的普遍化是科技、社会、文化等多个因素共同作用的结果。
从科学的角度来看,美白化妆品的研发基于皮肤科学的理论;从技术的角度来看,现代科技的发展为美白化妆品的研发提供了更多可能性;从社会的角度来看,美白化妆品的普及反映了当代社会的审美观念和文化背景。
化妆品中保湿功效成分的前沿进展
56当代化工研究Chenmical I ntermediate综述与专论2018 • 08化妆品中保湿功效成分的前沿进展*黄瑞豪(重庆市第八中学校重庆404100)搞要:保湿向来是众多化妆品消费者的护肤诉求。
本文将概述保湿类化妆品这一热点话题,首先讲述保湿的定义,由皮肤结构深入到保湿原理•再者,将介绍几种保湿功效成分,着重于生物类保湿成分,如生物多糖、生物蛋白,以及其他一些近年来新发现的冷门保湿成 分,以吸水率,保水率,皮肤水分含量分析,经皮失水量为指针评价其保湿功效。
最后进行总结,展望未来保湿类化妆品的进展方向. 关键词:保湿;多糖;蛋白 中图分类吾:T文献标识码:AFrontier Progress in Moisturizing Ingredients in CosmeticsHuang Ruihao(The No . 8 Middle School of Chongqing City , Chongqing , 404100)Abstract: Moisturizing has always been the skin care demand o f many cosmetic consumers. This article will summarize the hot topic o fmoisturizing cosmetics. Firstly, it will explain the definition o f m oisturizing, f rom skin structure to moisturizing p rinciple. Furthermore, it w ill introduce several moisturizing ingredients, focusing on biological moisturizing ingredients, such as biological p olysaccharides, biological p roteins, and other unpopular moisturizing ingredients newly discovered in recent y ears, and by analyzing moisture absorption rate, water retention rate, skin moisture content, using percutaneous water loss as indicators to evaluate the development direction o f m oisturizing cosmetics.Key words z moisturizing ; polysaccharide% protein1.前言近些年来,皮肤护理成为最热门的话题之一,保湿是 皮肤护理的重要一步。
脑室外引流相关感染防控的研究进展
脑室外引流术(external ventricular drainage,EVD)是神经外科的基本术式之一,能有效引流脑室内容物,监测和控制颅内压(intracranial pressure,ICP),临床应用极为广泛。
世界上首例EVD由医生Claude-Nicholas Le Cat于1744年完成[1]。
在随后的200多年间,这一技术逐渐发展、改进和扩大了临床适应证。
时至今日,EVD已拥有一整套规范化的手术流程,现常用于脑室出血、蛛网膜下腔出血、脑积水和其他颅内疾病的诊治,特别是急性颅内高压等神经外科急症的治疗[2]。
EVD系统是由体内引流管和体外无菌闭合性引流装置组成,EVD通过这个密闭系统将脑脊液向体外持续引流。
虽然这类手术的标准化和精细化程度逐渐提升,并出现了新型的导管材料和标准化的术后导管护理,但是由于引流管通常需要长时间留置(通常达1至2周以上),患者术后容易发生脑室外引流相关感染(external ventricular drainage related infection,ERI),还脑室外引流相关感染防控的研究进展孙艳梅1,2,罗霜1,3综述王鹏1,3审校1.成都市第五人民医院(成都中医药大学附属第五人民医院,第二临床医学院)神经外科(成都611130);2.成都中医药大学医学与生命科学学院临床医学系(成都611137);3.成都市肿瘤防治所(成都611137)【摘要】脑室外引流术(external ventricular drainage,EVD)是神经外科常用的手术方式之一,通过穿刺患者脑室并安置外引流管从而达到引流脑室内容物的目的。
脑室外引流相关感染(external ventricular drainage related infection,ERI)是一种严重的EVD并发症,可显著增加死亡率、延长住院时间及增加治疗费用。
近年来,ERI的控制策略日渐完善和丰富,但主要集中在提高手术的整体安全性和制定群体性预防措施上,在感染信息化预测和精准防控方面还相对不足。
减少存焦量和销售量的测量误差
减少存焦量和销售量的测量误差
W.A.Thorpe;金磊
【期刊名称】《石化译文》
【年(卷),期】1993(000)004
【总页数】2页(P47-48)
【作者】W.A.Thorpe;金磊
【作者单位】不详;不详
【正文语种】中文
【中图分类】TE683
【相关文献】
1.之四:南非生活用纸市场销售额的增长掩盖了销售量的减少 [J], Magdalena Kondej;陈海昌
2.外国的水果在意大利市场的销售量减少 [J], 郑莉(译)
3.固特异第1季度销售量减少、利润增加 [J], 马晓
4.印度国家商品及衍生品交易所孜然销售量减少 [J], 黄艳
5.日本10月空调销售量同比减少4.7% [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
避免环境暴露可降低乳腺癌风险
避免环境暴露可降低乳腺癌风险
佚名
【期刊名称】《基础医学与临床》
【年(卷),期】2012(32)8
【摘要】据美国国家科学院学报(PNAS)网站(2011-12-08)报道,近日美国国家医学研究所(Institute of Medicine,IOM)于圣安东尼奥乳腺癌研讨会(SanAntonio Breast Cancer Symposium)中发表一份《乳腺癌与环境》报告指出,女性如能避免暴露于某些环境之中,如游离辐射、复合型荷尔蒙替代疗法、吸烟等,将可降低乳腺癌罹患风险。
【总页数】1页(P963-963)
【关键词】环境暴露;乳腺癌;风险;美国国家科学院;荷尔蒙替代疗法;医学研究所;游离辐射;复合型
【正文语种】中文
【中图分类】R181.35
【相关文献】
1.降低审计风险,避免审计失败——从注册会计师审计风险谈起 [J], 刘燕
2.端口暴露的利弊与如何避免端口暴露的风险 [J], 刘妍婕
3.职业暴露技能培训在降低实习护士血源性职业暴露风险中的应用效果研究 [J], 彭云;张志勤
4.职业暴露技能培训在降低实习护士血源性职业暴露风险中的应用效果研究 [J], 谷福妹
5.职业暴露技能培训在降低实习护士血源性职业暴露风险中的应用效果研究 [J], 谷福妹
因版权原因,仅展示原文概要,查看原文内容请购买。
新兴的皮肤抗老化成分
新兴的皮肤抗老化成分
方明
【期刊名称】《美容院》
【年(卷),期】2003(000)001
【总页数】4页(P36-39)
【作者】方明
【作者单位】无
【正文语种】中文
【中图分类】TQ658
【相关文献】
1.谈中医针灸美容与皮肤抗老化 [J],
2.一种稻米提取物的皮肤保湿和抗老化功能研究 [J], 赵小敏;瞿欣
3.基于主成分--粗糙集方法的战略性新兴产业创新驱动绩效评价--以战略性新兴产业上市公司为样本 [J], 欧阳峰;曾靖
4.EGCG护肤品对女性面部皮肤的抗老化作用 [J], 仲少敏;LEE HAE KWANG;YEON JAE HO;张金燕;陈璨;何泉泉;吴艳
5.熟食西红柿可提高皮肤抗老化能力 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
一种含辣木籽抗菌肽MOp2的Pickering乳液对乳饼的保鲜效果
一种含辣木籽抗菌肽MOp2的Pickering乳液对乳饼的保鲜
效果
邹丽蓉;黄志远;董文明;王雪峰
【期刊名称】《乳业科学与技术》
【年(卷),期】2022(45)3
【摘要】为了延长乳饼的保质期,将一种含辣木籽抗菌肽MOp2的Pickering乳液作为保鲜剂应用于乳饼,通过测定过氧化值、质构、菌落总数、大肠杆菌、色差和感官指标确定Pickering乳液对乳饼的保鲜效果。
结果表明:真空包装组(对照组)贮藏28 d时检出大肠杆菌,贮藏35 d时大肠杆菌超标,且菌落总数、过氧化值、色差显著高于涂抹Pickering乳液的实验组;实验组贮藏42 d内未出现腐败变质,其中前35 d感官品质较好,菌落总数增长较慢,未检测出大肠杆菌,在乳饼质构测定中,从21 d开始实验组与对照组呈现明显差异。
综合感官与理化指标分析与对照组相
比,Pickering乳液能将乳饼的贮藏时间延长1周,保鲜效果显著。
【总页数】5页(P29-33)
【作者】邹丽蓉;黄志远;董文明;王雪峰
【作者单位】云南农业大学食品科学技术学院
【正文语种】中文
【中图分类】TS252.56
【相关文献】
1.一种新型功能食用油——辣木籽油
2.环糊精稳定紫苏籽油Pickering乳液的制备及其稳定性
3.大肠杆菌细胞膜固定相萃取辣木籽抗菌肽
4.柠檬籽纤维素纳米晶/纳米纤丝协同稳定Pickering乳液包埋姜黄素研究
5.负载茶树精油的辣木籽渣蛋白乳液在槟榔保鲜中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。