八年级上册数学 第十二章全等三角形 教学课件 PPT 八年级上册数学 (1)

合集下载

12.1《全等三角形》教学课件+说课

12.1《全等三角形》教学课件+说课

探究新知
平行、垂直都有符号表示,那么怎样表示两个三角形全等?
A
D
B
C
E
F
“全等”用符号“≌”表示,读作“全等于”
如上图:△ABC和△DEF全等,记作“△ABC ≌ △DEF”
探究新知
观察图形并思考:
A
如上图,△ABC与△DEF全等,当△ABC与DEF重合时
①与顶点A重合的点是哪个点?
点D
能够相互重合的点叫做对应顶点
合作交流
图中的两个三角形全等吗?你能从中找到什么规律?
1.平移
A
D
B
C
E
F
合作交流
图中的两个三角形全等吗?你能从中找到什么规律?
2.翻折
A
B
C
D
合作交流
图中的两个三角形全等吗?你能从中找到什么规律?
3.旋转
A
B
CD
E
探究新知
一个图形经过平移、翻折、旋转后,位置 变化了,但形状、大小都没有改变,即平移、 翻转、旋转前后的图形全等。
_
3.若△ABC ≌ △CDA,AB=
∠BAC=
_
∠B
∠DCA
CD
BD
∠CEA
CE
D C
巩固新知
如图,△OCA ≌ △OBD,点C与点D,点A与点D是对应顶点。 说出这两个三角形中相等的边和角。
C
B
O
A
D
课堂小结
全等形
定义
完全重合的两个图形
全等三角形
定义
全等三角形
符号
性质
完全重合的两个三角形 “≌” 对应边相等
每组同学剪下的三角形是完全重合吗?

八年级数学12.1全等三角形 (1)优秀课件

八年级数学12.1全等三角形 (1)优秀课件

C
B
O
A
D
证明:∵△ AOC ≌ △BOD
∴∠A=∠B
∴AC∥BD
思考题:把四边形ABCD纸片沿EF折叠使 点C落在四边形ABCD内部,如图,那么∠C与 ∠1+∠2之间的一种数量关系始终保持不变,这
个规律是( B )
A.∠C=∠1+∠ 2
A
B. 2∠C=∠1+∠2 C.3∠C=∠1+∠2 D.3∠C=2(∠1+∠2)
∠D 与∠C ,∠DAB与∠CEB,
∠ABD与∠EBC是对应角。
例3 如图,△ADE≌△CBF 求证:AE∥CF , DB=FE
AC
DB 证明:∵△ADE ≌ △CBF ∴∠AED=∠CFB , DE=BF ∴AE∥CF ,
DE-BE = BF-BE 即 DB=FE
EF
1、假设△ BCE ≌ △ CBF,那么
B
C′ 12
D
EF
C
△ABD ≌ △EBC ,且 AB=3cm,DE=2cm,求BC的长.
D
2cm
E
解:∵△ABD ≌ △EBC
∴AB=EB,BD=BC
A 3cm B
C ∵AB=3cm
∴EB=3cm
∴BC=BD=DE+BE =2+3=5cm
在找全等三角形的对应元素时一般有什么规律?
A
AB=CD, ∠APB=∠CPD
B
P
BP=DP, ∠A=∠C
D
AP=CP, ∠B=∠D
C
对应角所对的边是对应边;
对应边所对的角是对应角。
寻找对应元素的规律
〔1〕公共边是对应边; 〔2〕公共角是对应角; 〔3〕对顶角是对应角; 〔4〕最大边是对应边,最小边是对应边; 〔5〕最大角是对应角,最小角是对应角; 〔6〕对应角所对的边是对应边; 〔7〕对应边所对的角是对应角。

人教版八年级数学上册第十二章全等三角形PPT教学课件全套

人教版八年级数学上册第十二章全等三角形PPT教学课件全套

D
C
O
A
B
∴∠D=∠C.
2021/10/28
思维拓展
6.如图,AB=AC,BD=CD,BH=CH,图中有几组
全等的三角形?它们全等的条件是什么?
2021/10/28
AB=AC, BD=CD, AD=AD,
AB=AC, BH=CH, AH=AH, BH=CH, BD=CD, DH=DH,
△ABD≌△ACD(SSS)
第十二章 全等三角形
12.2三角形全等的判定
第1课时 “边边边”
2021/10/28
学习目标
1.探索三角形全等条件.(重点)
情境引入
2.“边边边”判定方法和应用.(难点)
3.会用尺规作一个角等于已知角,了解图形的作法.
2021/10/28
导入新课
情境引入
为了庆祝国庆节,老师要求同学们回家制作三 角形彩旗(如图),那么,老师应提供多少个数据 了,能保证同学们制作出来的三角形彩旗全等呢? 一定要知道所有的边长和所有的角度吗?
③ CA=FD ⑥ ∠C= ∠F
即:三条边分别相等,三个角分别相等的两个三角 形全等.
想一想:
如果只满足这些条件中的一部分,那么能保证 △ABC≌△DEF吗?
2021/10/28
一 三角形全等的判定(“边边边”定理)
探究活动1:一个条件可以吗?
(1)有一条边相等的两个三角形 不一定全等 (2)有一个角相等的两个三角形 不一定全等
B
D
C
2021/10/28
BD=CD
D是BC的中点
证明:∵ D 是BC中点, 准备条件
指明范 ∴ BD =DC.

在△ABD 与△ACD 中,

最新人教部编版八年级数学上册《第十二章 全等三角形【全章】》精品PPT优质课件

最新人教部编版八年级数学上册《第十二章 全等三角形【全章】》精品PPT优质课件

追问1 请同学们将问题2 的两个三角形分别 标为△ABC、△DEF,观察这两个三角形有何对 应关系?
点A 与点D、点B 与点E、 点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、 边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、 ∠C 与∠F 重合,称为对应角.
追问2 你能用符号表示出这两个全等三角形吗?
练习6 如图,已知△ABE≌△ACD, ∠ADE=∠AED,∠B=∠C,指出其他的对应边 和对应角.若BD=2cm,DE=3cm,你能求出DC的 长吗?
解:AB = AC,AE = AD, BE =CD,∠BAE =∠CAD. DC = BE = BD+DE = 5cm.
随堂演练 基础巩固 1.判断题:
△ABC和△DEF全等, 记作:“△ABC ≌△DEF”, 读作:“△ABC 全等于△DEF”.
问题4 请同学们拿出问题2 准备的素材,按 照教材第32 页图12.1-2 进行平移、翻折、旋转, 变换前后的两个三角形还全等吗?
(1) △ABC ≌△DEF
(2) △ABC ≌△DBC
(3)△ABC ≌△ADE
(2)判断线段EH 与NG 的大小关系,并说明理由.
E
(1)平行;理由略.
H
(2)相等.
M
F
G
N
练习5 如图,△OCA≌△OBD,C和B,A 和D是对应顶点,说出这两个三角形中相等的边 和角.若∠A=20°,∠AOC=75°,你能求出∠B 的度数吗?
解:OC=OB,OA=OD,CA=BD, ∠COA=∠BOD,∠C=∠B,∠A=∠D. ∠B=∠C=180°-∠A-∠AOC=85°.
Thank you!

12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)

12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)

新课讲授
探究:请同学们把课前准备好的三角尺按在纸片上, 划下图形,照图形裁下来的纸片和三角尺的形状、 大小完全一样吗?把三角尺和裁得的纸片放在一起 能够完全重合吗?
归纳总结
全等形的定义: 能够完全重合的两个图形称为全等形. 全等形的性质: 形状相同,大小相等.
练一练 下面哪些图形是全等形?
看大小、形状 是否完全相同
课堂小结
定义
能够完全重合的两个三角形叫做全等三角形

对应边相等
等 三
基本性质
对应角相等

长对长,短对短,中对中

对应边 公共边一般是对应边
对应元素 确定方法
对应角
大角对大角,小角对小角 公共角一般是对应角 对顶角一般是对应角
作业布置
1.完成课本P33页1-4题; 2.复习整理本节课知识框架,预习全等三角 形的判定并尝试整理思维导图; 3.探究性作业:利用全等形设计美丽的图案, 比比看谁的设计最好。
“全等”用符号“≌”表示,读作“全等于”.
A
D
B
C
E
F
△ABC≌△DEF
注意:记两个三角形全等时,通常把表示对应顶点
的字母写在对应的位置上.
全等三角形的性质
A
D
B
C
E
F
∵△ABC≌△DEF,
∴ AB = DE,AC = DF,BC = EF (全等三角形的对应边 相等),
∠A =∠D,∠B =∠E,∠C =∠F(全等三角形对应角相等).
牛刀小试
如图,△ABC 与△ADC 全等,请用数学符号表示出
这两个三角形全等,并写出相等的边和角. D 解:△ABC≌△ADC.
A

人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)

人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)

今日任务—— 课堂作业:课本P31-32习题1、2 家庭作业:3、4
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为
对应边;最大角与最大角(最小角与最小角)为对 应角;
(5)对应角所对的边为对应边;对应边所对 的角为对应角;
(6)根据书写规范,按照对应顶点找对应边 或对应角.
△ABC≌△BAD的对应边和
角∴
AB∠-BAACE= ∠=AEBFD-EA AF∠=ABEB=C_=_6_-2∠_=_B4AD
对应角
角 ∠C= ∠D
等式的性质1
谈谈你这节课的收获
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形; (2)全等三角形的性质:对应边相等、对应角相等; (3)全等三角形用符号“≌”表示,且一般对应顶点写在对应位置上.
人教版八年级数学上册
12.1全等三角形
教学目标
知识与能力
1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合
思 考 能够完全重合的两个图形叫做 全等形
2021年8月12日星期四
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 )
∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
A

随堂练习:
B
CE

第二题图
1、若△ ABC≌ △ DEF,则∠B= ∠E , ∠BAC= ∠EDF ,

数学人教版八年级上册121.1全等三角形1全等三角形(黄青)精品PPT课件

数学人教版八年级上册121.1全等三角形1全等三角形(黄青)精品PPT课件

什么结论?
A
D
B
A
C EM
SF
C
O
O B
D
N
T
全等三角形的对应边相等, 全等三角形的对应角相等.
A
如图:∵△ABC≌ △DFE
B
C
∴ AB=DF, BC=FE, AC=DE
D
∵△ABC≌ △DFE
F
E
∴∠A=∠D,∠B=∠F,∠C=∠E
先写出全等式,再指出
它们的对应边和对应角
A
D
C
E
B
F
∵△ACB≌△DEF
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
∠ACB= ∠AED.
规律三:有公共角的,公共角是对应角
先写出全等式,再指出 它们的对应边和对应角
A ∵△ABC≌△FDE
F B
∴AB=FD,AC=FE,
BC=DE
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
C
D
规律四:一对最长的边是对应边
一对最短的边是对应边
规律五:一对最大的角是对应角
E
一对最小的角是对应角
1.有公共边的,公共边一定是对应边。
2.有对顶角的,对顶角一定是对应角。
3.有公共角的,公共角一定是对应角。
4.对应角所对的边是对应边,对应边 所对的角是对应角. 5.在两个全等三角形中最长边对最长边, 最短边对最短边,最大角对最大角,最 小角对最小角。
找出下列全等三角形的对应边、对应角 A △ABC≌△ADE

八年级数学人教版上册第12章全等三角形12.3角平分线的性质(图文详解)

八年级数学人教版上册第12章全等三角形12.3角平分线的性质(图文详解)
条件是:_______________,并给予证明.
A
E F
B
D
c
八年级数学上册第12章全等三角形
解法一:添加条件:AE=AF, 在△AED与△AFD中,
∵AE=AF,∠EAD=∠FAD,AD=AD, ∴△AED≌△AFD(SAS). 解法二:添加条件:∠EDA=∠FDA,
在△AED与△AFD中, ∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA, ∴△AED≌△AFD(ASA).
八年级数学上册第12章全等三角形
通过本课时的学习,需要我们掌握: 1.角平分线的性质: 角的平分线上的点到角的两边的距离相等. 2.角平分线的判定: 到角的两边的距离相等的点在角平分线上.
A
为半径作弧.两弧在∠AOB的内部交于C.
3.作射线OC.
M
C
射线OC即为所求.
O
N
B
八年级数学上册第12章全等三角形
为什么OC是∠AOB的角平分线?
证明:连结MC,NC由作法知: 在△OMC和△ONC中
OM=ON MC=NC OC=OC
O ∵△OMC≌△ONC(SSS) ∴∠AOC=∠BOC 即OC 是∠AOB的角平分线.
将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC
画一条射线AE,AE就是∠DAB的平分线.你能说明它的道
理吗?
B
E
C
A D
八年级数学上册第12章全等三角形
【证明】 在△ACD和△ACB中
B
E
C
AD=AB(已知)
DC=BC(已知)
A D
CA=CA(公共边)
∴ △ACD≌ △ACB(SSS)
∴∠CAD=∠CAB(全等三角形的对应角相等)

八年级上册数学第十二章全等三角形课件PPT

八年级上册数学第十二章全等三角形课件PPT

三角形ABC 全等于三角形DEF
A
B
C
D
E
F
注意:书写全等式时要求把对应顶点字母放在对应 的位置上。
△ABC ≌ △
△ACB≌ △
△BAC≌ △
△BCA ≌ △
△CAB≌ △
△CBA≌ △
EFD
EDF
FED
FDE
DEF
DFE
A
B
C
D
E
F
互相重合的边叫做对应边
互相重合的顶点叫做对应顶点
例1:如图,若ΔABC≌ΔAEF, AB=AE,∠B=∠E,则下列结论:①AC=AF, ②∠FAB=∠EAB, ③EF=AB,④ ∠FAC=∠EAF,其中正确结论的是________
分析:由ΔABC≌ΔAEF和 ∠B=∠E知:AC=AF.所以①是正确的。

D
例2:如图,把ΔABC绕点A顺时针旋转30°后得到ΔADE.(1)△ABC与ΔADE的关系如何?
想一想:
BD=FH DC=HG BC=FG
∠B=∠F ∠D=∠H ∠C=∠G
能否根据下列全等式说出两个三角形的对应边和对应角
AO=BO OC=OD AC=BD
∠A=∠B ∠O=∠O ∠C=∠D
请小心:在具体图形中,有时角不能用一个 大写字母表示。
全等于

必做:课本 第4页 2
选做: A 第5页 4 B 第4页 1
挑战极限
如图四边形是长方形,你能将它分成两个全等的图形吗?有几种方法?
A
B
C
D
●O
思考题:
如图,已知⊿ABC≌⊿ADE,且∠CAD=100,∠DFB=900,∠B=250,求∠E和∠DGB的度数。

人教版八年级数学上册全等三角形精品课件PPT

人教版八年级数学上册全等三角形精品课件PPT


2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。

3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。

4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。

5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
A组: B组: C组:
第十二章 全等三角形 12.1 全等三角形
人教版八年级数学上册 12.1 全等三角形 课件
1、理解图形全等的概念和特征, 能识别全等形; 2、掌握全等三角形的性质,并能 进行简单的推理和计算。
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
找出下面的全等形。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
解:(1)和(9)、(2)和(8)、 (3)和(6)
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、图3中,△____≌△_____,其中对应边是_____ 对应角是_______.
从上述题中你能总结出找全等三角 形的对应边、对应角的规律吗?
找对应边、对应角的方法:
▪ 1、在两个全等三角形中一对最长的边(或最 大的角)是对应边(或角);一对最短的边 (或最小的角)是对应边(或角)。
▪ 2、公共角、对顶角必为对应角;公共边必为 对应边。
A
B
试一试9:
先写出全等式,再指出它们的对应边 和对应角
C
D
A
B
试一试9:
先写出全等式,再指出它们的对应边 和对应角
C
D DD DD
A
E
FB BB BB
A
C
E
D
B
试一试10:先 和写 对出应全角等式,再指出它们的对应边 A
C
E
D
B
AAAAAAAAA C EEEEEEEEE
DDDDDDDDD
BD
C
想一想: 能否根据下列全等式说出两个
三角形的对应边和对应角
1.△BDC ≌ △FHG
BD=FH DC=HG BC=FG ∠B=∠F ∠D=∠H ∠C=∠G
2.△AOC ≌ △BOD
AO=BO OC=OD AC=BD ∠A=∠B ∠O=∠O ∠C=∠D
请小心:在具体图形中,有时角不能用一个 大写字母表示。
沿BC方向平移一个单位得
到△DEF,则四边形ABFD的
周长为_1_0_____
BE C F
如图△ABD≌ △EBC, AB=3cm,BC=5cm,求DE的长.
D
E
A
B
C
课堂小结
1.能够重合的两个图形叫做 全等形。 互相重合的顶点叫做 对应顶点 。
其中 互相重合的边叫做 对应边 。 互相重合的角叫做 对应角 。
试一试1:
先写出全等式,再指出它们的对应边 和对应角
C
F
A
D
B
E
试一试2:
先写出全等式,再指出它们的对应边 和对应角
C
F F FF
A
D D DB
E E EE
试一试3:
先写出全等式,再指出它们的对应边 和对应角
C
E
A
D
B
试一试4:
先写出全等式,再指出它们的对应边 和对应角
D
E
O
A
B
试一试4:
A
∠B=∠E知:AC=AF.所以①
是正确的。
B
F
C
例2:如图,把ΔABC绕点A顺时针旋 转30°后得到ΔADE.
(1)△ABC与ΔADE的关系如何?
BE
(3)若ΔABC中,AC=3,∠C=31°,
求AE的长和∠E的度数.
C
A
(4)如果AC=3,AB=6,BC=7,求ΔADE的周长.
<2> . 对应角相等.
1.面积相等的两个图形是全等形 2.所有的等边三角形都是全等三角形 3.全等三角形的形状相同,但大小不同 4.全等三角形的对应边相等,对应角相等
试一试: 根据图形所提供的条件和全等式:
(1)在图上标出所缺的字母; (2)说出它们的对应边和对应角
△AFB ≌ △EDC
A
E
F
请观察,并说出你看到的现象
请观察,并说出你看到的现象 结论:这两个三角形重合
学习目标 1.掌握全等形及全等三角形的相关 概念。
2.会找全等三角形的对应顶点、对 应角及对应边。
3.理解并掌握全等三角形的性质。
“全等”用符号≌“
A
”来表示 读作“全等于”
D
B
CE
F
三角形ABC 全等于三角形DEF
B
A
E
C
B
试一试11:先 和写 对出应全角等式,再指出它们的对应边 A
E
C
B
试一试12:先 和写 对出应全角等式,再指出它们的对应边 A
E
B
D
C
寻找方法
1、图1中,若△AOC≌△BOD,对应
边有
,对应角有

A
D
A
A
C
O C (图1) B
B
D
(图2)
C
B
D
(图3)
2、图2中,△ABD与△ADC全等,可记作:_______
请观察,并说出你看到的现象
请观察,并说出你看到的现象
请观察,并说出你看到的现象
请观察,并说出你看到的现象 结论:这两个图形完全重合
全等形定义:能够重合的图形叫做全等形 这两个五角星就是全等五角星
全等形定义:能够重合的图形叫做全等形 这两个正方形就是全等正方形
全等形定义:能够重合的图形叫做全等形
AB与DE
BC与EF
AC与DF
互相重合的角叫做对应角 ∠A与∠D ∠B与∠E ∠C与∠F
A
D
△ABC ≌ △DEF
B
CE
F
你能指出图中有哪些相等的线段,有哪些相等
的角吗?
相等的线段:AB=DE,BC=EF,AC=DF 相等的角:∠A=∠D,∠B=∠E,∠C=∠F
全等三角形的性质: 全等三角形的
<1> . 对应边相等,
三角形全等,则钝角所对的边是对应边;④两个
全等形无论怎样改变位置,都能够完全重合。
其中说法正确的个数有__3_个____
2. 已知:△MNP≌△ABC,MN=AB,MP=AC,
∠MPN=35º,∠CAB=40º,则∠ABC=_1_0_5_°,
∠M=_4_0_°_; 3.如图,将周长为8的△ABC
AD
▪ 3、对应角的对边为对应边;对应边的对角为 对应角。
▪ 4、根据书写规范,按照对应顶点找对应边或 对应角。
例1:如图,若ΔABC≌ΔAEF, AB=AE,∠B=∠E,
则下列结论:①AC=AF, ②∠FAB=∠EAB, ③
EF=AB,④ ∠FAC=∠EAF,其中正确结论的是
___①_____
E
分析:由ΔABC≌ΔAEF和
例3:如图,已知ΔABC≌ΔFED, BC=ED, 证证明明::AADB=∥CFEF
证明: ∵ΔABC≌ΔFED (已知)
∴∠ A =∠ F , ( 全等三角形的对应角相等 )A D
∴ AB∥EF
B
将上述证明过程补充完整.
E F
C
当堂检测
1.有下列说法:全等三角形的形状相同;周长
和面积都相等的两个三角形全等;若两个钝角
△ABC≌△DEF
注意:书写全等式时要求把对应顶点字母放在对应
的位置上。
A
E
B
CF
D
△ABC ≌ △ EFD
△ACB≌ △ EDF
△BAC≌ △ FED
△BCA ≌ △ FDE
△CAB≌ △ DEF
△CBA≌ △ DFE
A
D
△ABC ≌ △DEF
B
CE
F
互相重合的顶点叫做对应顶点
AD
BE
CF
互相重合的边叫做对应边
先写出全等式,再指出它们的对应边 和对应角
D
B
O
A
C
试一试5:
先写出全等式,再指出它们的对应边 和对应角
D
C
F
E
A
B
试一试6:
先写出全等式,再指出它们的对应边 和对应角
D
C
A
B
试一试7:
先写出全等式,再指出它们的对应边 和对应角
C
A
B
D
试一试8:
先写出全等式,再指出它们的对应边 和对应角
C
D
相关文档
最新文档