八年级下期中测试题

合集下载

人教版八年级数学下册期中测试卷【带答案】

人教版八年级数学下册期中测试卷【带答案】

人教版八年级数学下册期中测试卷【带答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)13x x=,则x=__________2.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.3.若m+1m=3,则m2+21m=________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、D6、B7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、03、74、x >3.5、706、20三、解答题(本大题共6小题,共72分)1、2x =2、22mm -+ 1. 3、(1)102b -≤≤;(2)2 4、(1)略;(2)结论:四边形ACDF 是矩形.理由见解析.5、(1)略;(2)112.5°.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

2023年八年级语文(下册期中)试卷及答案(必考题)

2023年八年级语文(下册期中)试卷及答案(必考题)

2023年八年级语文(下册期中)试卷及答案(必考题)满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列加点字的读音全部正确的一项是()A.歼.灭(jiān)炽.热(zhì)要塞.(sài)坠.毁(zhuì)B.仲.裁(zhòng)匿.名(nì)滞.留(zhì)沿溯.(sù)C.悄.然(qiǎo)畸.形(jī)鬈.发(juǎn)篡.改(cuàn)D.颔.首(hàn)窒.息(zhì)禁锢.(gù)殷.红(yīn)3、下列各句中加点成语使用错误的一项是()A.人的一生,有艰难困苦的逆境,也有峰回路转....的风景。

B.小王同学在学校辩论会上引经据典、断章取义....赢得了大家的阵阵掌声。

C.他们两人的爱好、处事方法迥然不同....,谁也没法理解谁,谁也没法改变谁。

D.我市掀起“创卫”高潮,经过外墙粉刷、路面平整等系列改造,城市面貌焕.然一新...。

4、下列句子有语病的一项是()A.孩子无不希望得到父母的褒奖,这对其自尊心的培养具有至关重要的作用。

B.今年判阅语文微写作的老师要求必须读过《红楼梦》《老人与海》等原著。

C.南方科技大学校园开放日16日举行,来自多个省市的近千名考生和家长冒雨前来。

D.英国的莎士比亚、狄更斯等世界级文豪对中国文坛有着深远的影响。

5、下列修辞手法判断错误的一项是()A.为什么我的眼里常含泪水?因为我对这土地爱得深沉……(反问)B.读书使人充实,讨论使人机智,作文使人准确。

(排比)C.老树是通灵的,它预知被伐,将自己的灾祸先告诉体内的寄生虫。

(拟人)D.壁立千仞,无欲则刚;海纳百川,有容乃大。

(对偶)6、给下列句子排序最恰当的一项是()①这部小说采用日记体形式,讲述一个叫恩利科的小男孩成长的故事,记录了他一年之内在学校、家庭、社会的所见所闻。

②在意大利,《爱的教育》一直是孩子们的必读书。

八年级数学下册期中测试卷(可打印)

八年级数学下册期中测试卷(可打印)

八年级数学下册期中测试卷(可打印) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的相反数是( )A .12-B .12C .2D .2-2.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .284x y x y +=⎧⎨-=⎩6. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .47.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.如图,在Rt △PQR 中,∠PRQ =90°,RP =RQ ,边QR 在数轴上.点Q 表示的数为1,点R 表示的数为3,以Q 为圆心,QP 的长为半径画弧交数轴负半轴于点P 1,则P 1表示的数是( )A .-2B .-22C .1-22D .22-19.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D . 10.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC=7,则MN 的长度为( )A .32B .2C .52D .3二、填空题(本大题共6小题,每小题3分,共18分)1.若613x ,小数部分为y ,则(213)x y +的值是________.2.分解因式2242xy xy x ++=___________。

人教版八年级下册数学《期中检测题》及答案

人教版八年级下册数学《期中检测题》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.使二次根式3a -有意义的的取值范围是( ) A. 3a > B. 3a < C. 3a ≥ D. 3a ≤2.下列各式中,是最简二次根式是( )A. 12 B. 5 C. 18 D. 2a3.如图,点E 在正方形ABCD 的边AB 上,若正方形ABCD 的面积是3,2EC =,那么EB 的长为()A. 1B. 3C. 5D. 34.下列运算正确的是( )A. 325+=B. 326⨯=C. 2(31)31-=-D. 225353-=-5.如图,在△ABC 中,AB=3,BC=6,AC=4,点D,E 分别是边AB,CB 的中点,那么DE 的长为( )A. 1.5B. 2C. 3D. 46.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30°7.已知直角三角形ABC 中,30A ∠=,90C =∠,若23AC =,则AB 长为( )A. 2B. 3C. 4D. 438.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD9.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A 278cmB. ()24330cm + C. 21210cm D. 22410cm 10.如图,在□ABCD 中,ABAC ,若AB=4,AC=6,则BD 的长是( )A. 11B. 10C. 9D. 811.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如图2)观察所得到的四边形,下列判断正确的是( )A. ∠BCA =45°B. AC =BDC. BD 的长度变小D. AC ⊥BD12.如图,矩形ABCD 中,是BC 中点,作AEC ∠的角平分线交AD 于点,若3AB =,8AD =,则FD 的长度为( )A. B. C. D.13.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A. 42B. 6C. 210D. 814.将四根长度相等细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当60B ∠=时,如图(1),测得3AC =;当90B =∠时,如图(2),此时AC 的长为( )A. 32B. 23C. 3D. 22二、填空题15.若23a =-,则241a a -+的值为__________.16.如图,在平行四边形ABCD 中,65A ∠=,DC DB =,则CDB ∠=__________.17.如图,点P (-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的坐标为__________.18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点,且DE CE =,若AB 6=,则DE =_________.19.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC 经过两次折叠,得到边AB ,BC ,CA 上的点D ,E ,F .折叠方法如下:如图2,(1)AC 边向BC 边折叠,使AC 边落在BC 边上,得到折痕交AB 于D ;(2)C点向AB 边折叠,使C 点与D 点重合,得到折痕交BC 边于E ,交AC 边于F .则下列结论:①四边形DECF 一定是矩形,②四边形DECF 一定是菱形,③四边形DECF 一定是正方形.其中错误的是__________(填序号)三、解答题20.计算:(1)148(12)3-+ (2)2(221)243-+÷21.(1)如图1,在Rt ABC 中,90C =∠,2BC =,4AC =,求AB 的长.(2)如图2,在ABC 中,3AB =,6AC =,120A ∠=,求BC 的长.22.在平行四边形ABCD 中,用尺规作图ABC ∠的角平分线(不用写过程,留下作图痕迹),交DC 边于点H ,若6BC =,12DH HC =,求平行四边形ABCD 的周长.23.如图,是ABC ∆的边AC 上一点,//BE AC ,DE 交BC 于点,若FB FC =.(1)求证:四边形CDBE 平行四边形;(2)若BD AC ⊥,5EF EB ==,求四边形CDBE 的面积.24.(1)填空:(只填写符号:,,><=)①当2m =,2n =时,m n + 2mn ;②当3m =,3n =时,m n + 2mn ;③当12m =,12n =时,m n + 2mn ; ④当4m =,1n =时,m n + 2mn ;⑤当5m =,3n =时,m n + 2mn ;⑥当13m =,12n =时,m n + 2mn ;则关于m n +与2mn 之间数量关系的猜想是 .(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值. 25.如图,在四边形ABCD 中,//AD BC ,连接AC ,过B 点作AC 平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(1)补全图形;(2)求证:DF EF =.26.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH . (1)求证:GF=GC ;(2)用等式表示线段BH与AE的数量关系,并证明.答案与解析一、选择题1.有意义的取值范围是( )A. 3a >B. 3a <C. 3a ≥D. 3a ≤[答案]D[解析][分析]根据二次根式有意义的条件可得30a -≥,再解不等式即可.[详解]由题意得:30a -≥,解得:3a ≤,故选:D .[点睛]本题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 2.下列各式中,是最简二次根式的是( )[答案]B[解析][分析]判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.[详解](1)A 被开方数含分母,错误.(2)B 满足条件,正确.(3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.[点睛]本题考查最简二次根式的定义,掌握相关知识是解题关键.3.如图,点E 在正方形ABCD 的边AB 上,若正方形ABCD 的面积是3,2EC =,那么EB 的长为( )A. 1B. 3C. 5D. 3[答案]A[解析][分析] 先根据正方形的性质得出∠B =90°,BC 2=3,然后在Rt △BCE 中,利用勾股定理即可求出EB 的长.[详解]解:解:∵四边形ABCD 是正方形,∴∠B =90°,∴EB 2=EC 2-BC 2,又∵正方形ABCD 的面积=BC 2=3,2EC =, ∴2231EB =-=故选:A .[点睛]本题主要考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.4.下列运算正确的是( ) 325=326=C. 231)31-=- 225353-=-[答案]B[解析][分析]根据二次根式的性质、运算法则及完全平方公式对各选项进行分析即可.[详解]解:A 、32+无法计算,故此选项不合题意; B 、326⨯=,正确; C 、2(31)3231423-=-+=-,故此选项不合题意; D 、2253164-==,故此选项不合题意.故选:B .[点睛]此题主要考查了二次根式的性质、运算法则及完全平方公式的应用,正确化简二次根式是解题关键. 5.如图,在△ABC 中,AB=3,BC=6,AC=4,点D,E 分别是边AB,CB 的中点,那么DE 的长为( )A. 1.5B. 2C. 3D. 4[答案]B[解析] ∵点,分别是边AB ,CB 的中点,114222DE AC ∴==⨯= .故选B. 6.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30°[答案]C[解析] 试题分析:根据勾股定理即可得到AB,BC,AC 的长度,进行判断即可. 试题解析:连接AC,如图:根据勾股定理可以得到:510.∵525210)2.∴AC 2+BC 2=AB 2.∴△ABC 是等腰直角三角形.∴∠ABC=45°.故选C .考点:勾股定理.7.已知直角三角形ABC 中,30A ∠=,90C =∠,若23AC =则AB 长为( )A. 2B. 3C. 4D. 3[答案]C[解析][分析]根据 cos AC A AB∠=计算. [详解]解:∵∠A=30°,∠C=90°,AC=3 ∴ 3cos cos30,2AC A AB ∠=︒== ∴23 4.3AB == 故选:.[点睛]本题考查了三角函数,熟练运用三角函数关系是解题的关键8.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD[答案]C[解析][分析]根据矩形的判定定理逐项排除即可解答. [详解]解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形;由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形; 由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD 时,能判定口ABCD 是矩形.故选答案为C .[点睛]本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.9.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A. 278cmB. (24330cm C. 210cm D. 22410cm [答案]D[解析][分析] 根据题意利用正方形的面积公式即可求得大正方形的边长,则可求得阴影部分的面积进而得出答案.[详解]从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,+=+,大正方形的边长是30483043留下部分(即阴影部分)的面积是:()2+--=++--=(cm2).304330483083034830482410故选:D.[点睛]本题主要考查了二次根式的应用、完全平方公式的应用,正确求出阴影部分面积是解题关键.10.如图,在□ABCD中,ABAC,若AB=4,AC=6,则BD的长是()A. 11B. 10C. 9D. 8[答案]B[解析][分析]利用平行四边形的性质可知AO=3,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=10.[详解]解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=3.在Rt△ABO中,利用勾股定理可得:22+=345∴BD=2BO=10.故选B.[点睛]本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.11.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是( )A. ∠BCA =45°B. AC =BDC. BD 的长度变小D. AC ⊥BD[答案]B[解析][分析]根据矩形的性质即可判断;[详解]解:∵四边形ABCD 是平行四边形,又∵AB ⊥BC ,∴∠ABC =90°,∴四边形ABCD 是矩形,∴AC =BD .故选B . [点睛]本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,矩形ABCD 中,是BC 中点,作AEC ∠的角平分线交AD 于点,若3AB =,8AD =,则FD 的长度为( )A.B. C. D.[答案]B[解析][分析]求出∠AFE=∠AEF ,推出AE=AF ,求出BE ,根据勾股定理求出AE ,即可求出AF ,即可求出答案[详解]∵四边形ABCD 是矩形,∴AD=BC=8,AD ∥BC ,∴∠AFE=∠FEC ,∵EF 平分∠AEC ,∴∠AEF=∠FEC ,∴∠AFE=∠AEF ,∴AE=AF ,∵E 为BC 中点,BC=8,∴BE=4,在Rt △ABE 中,AB=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD−AF=8−5=3故选:B[点睛]本题考查了矩形的性质, 等腰三角形的判定与性质, 直角三角形中利用勾股定理求边长. 13.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A. 42B. 6C. 10D. 8[答案]A[解析][分析]连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.[详解]解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠F AO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD =42故选:A .[点睛]本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.14.将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当60B ∠=时,如图(1),测得3AC =;当90B =∠时,如图(2),此时AC 的长为( )A. 32B. 23C. 3D. 22[答案]A[解析][分析] 图(1)中根据有一个角是60°的等腰三角形是等边三角形即可求得BC ,图2中根据勾股定理即可求得正方形的对角线的长.[详解]如图(1)中,连接AC ,∵∠B=60°,AB=BC ,∴△ABC 为等边三角形,∴AC=AB=BC=3,如图(2)中,连接AC ,∵AB=BC=CD=DA=3,∠B=90°,∴四边形ABCD 是正方形,∴22223332AB BC ++=故选:A .[点睛]本题考查了正方形的性质和判定,菱形的性质,勾股定理以及等边三角形的判定和性质,利用等边三角形的判定确定边长是关键.二、填空题15.若23a =-,则241a a -+的值为__________.[答案]0[解析][分析]利用完全平方公式变形得:()224123a a a -+=--,再代入求值即可得到答案.[详解]解:()224123a a a -+=--, ()22323330,=---=-=故答案为:[点睛]本题考查是利用因式分解求代数式的值,同时考查了二次根式的乘法的运算,掌握完全平方公式的变形是解题的关键.16.如图,在平行四边形ABCD 中,65A ∠=,DC DB =,则CDB ∠=__________.[答案]50°[解析][分析]由平行四边形ABCD 中,易得∠C =∠A ,又因为DB =DC ,所以∠DBC =∠C ,根据三角形内角和即可求出CDB ∠.[详解]解:∵四边形ABCD 是平行四边形,∴∠C =∠A =65°,∵DB =DC ,∴∠DBC =∠C =65°,∴180218026550CDB C ∠=︒-∠=︒-⨯︒=︒,故答案为:50°.[点睛]此题是平行四边形的性质与等腰三角形的性质的综合,解题时注意特殊图形的性质应用.17.如图,点P (-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的坐标为__________.[答案]()13,0- [解析][分析]根据勾股定理求得PO 的长度,从而确定点A 的坐标.[详解]解:由题意可知:222313OP OA ==+= ∴A 点坐标为:()130-,故答案:()130-,. [点睛]本题考查实数与数轴,掌握勾股定理计算公式,利用数形结合思想解题是关键.18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点,且DE CE =,若AB 6=,则DE =_________.[答案2[解析][分析]根据菱形的性质及等腰三角形的性质可知∠BEC=2∠EDC=2∠EBC ,从而可求∠EBC=30°,在Rt △BCE 中可求EC 值,由DE=EC 可求DE 的长.[详解]∵四边形ABCD是菱形,∴CD=BC=AB=6,∴∠EDC=∠EBC,∵DE=CE,∴∠EDC=∠ECD,∴∠BEC=2∠EDC=2∠EBC,在Rt△BCE中,∠EBC+∠BEC=90°,∴∠EBC=30°,∴3BC tan30623EC=⋅︒=⨯=,∴DE=EC=2,故答案为:2.[点睛]本题主要考查了菱形的性质、等腰三角形的判定和性质、解直角三角形的应用;熟练掌握菱形的性质,得出∠EBC=30°是解题的关键.19.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC经过两次折叠,得到边AB,BC,CA上的点D,E,F.折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C 点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.则下列结论:①四边形DECF一定是矩形,②四边形DECF一定是菱形,③四边形DECF一定是正方形.其中错误的是__________(填序号)[答案]①③[解析][分析]根据折叠的性质可知,CD和EF互相垂直且平分,即可得到结论.详解]解:连接DF、DE,DC、EF相交于点O,根据折叠的性质得,CD ⊥EF ,且OD=OC ,OE=OF ,∴四边形DECF 是菱形.菱形DECF 因条件不足,无法证明是正方形.故答案为:①③[点睛]本题考察了菱形的判定以及折叠的性质,灵活运用即可.三、解答题20.计算:(114812)3(2)2(221)243+[答案](153;(2)922- [解析][分析](1)先化简成最简二次根式,再根据二次根式加减法法则计算即可;(2)先利用完全平方公式展开,再根据二次根式混合运算法则计算即可得答案. [详解](1481(12)3-+=3323-=533; (2)2(221)243+=28=942+22=922-. [点睛]本题考查了二次根式的运算,熟练掌握运算法则是解题关键.21.(1)如图1,在Rt ABC 中,90C =∠,2BC =,4AC =,求AB 的长.(2)如图2,在ABC 中,3AB =,6AC =,120A ∠=,求BC 的长.[答案](1)25;(2)37[解析][分析](1)根据勾股定理计算,得到答案;(2)作CD ⊥AB 交BA 的延长线于点D ,根据直角三角形的性质求出AD ,根据勾股定理求出CD ,再根据勾股定理计算即可.[详解]解:(1)在Rt △ABC 中,∠C =90°, ∴AB =222242AC BC +=+=25;(2)作CD ⊥AB 交BA 的延长线于点D ,∵∠BAC =120°,∴∠DCA =30°,∴AD =12AC =3,∴CD =22AC AD -=226333-=,∵BD =AD+AB =6,∴在Rt △CDB 中,BC =2237CD BD +=.[点睛]本题考查的是勾股定理、含30°的直角三角形的性质,解题关键在于正确做出辅助线,求线段长度. 22.在平行四边形ABCD 中,用尺规作图ABC ∠的角平分线(不用写过程,留下作图痕迹),交DC 边于点H ,若6BC =,12DH HC =,求平行四边形ABCD 的周长.[答案]30[解析][分析]利用基本作图作BH 平分∠ABC ,则∠ABH =∠CBH ,再利用平行四边形的性质得到CD ∥AB ,AB=CD ,AD=BC=6,接着证明∠CBH =∠BHC 得到CH =BC =6,所以DH=3,然后计算平行四边形ABCD 的周长.[详解]如图,BH 为所作.∵BH 平分∠ABC ,∴∠ABH =∠CBH ,∵四边形ABCD 为平行四边形,∴CD ∥AB ,AB =CD ,AD =BC =6,∴∠ABH =∠BHC ,∴∠CBH =∠BHC ,∴CH =BC =6,∵DH =12CH , ∴DH =3,∴平行四边形ABCD 周长=2(BC+CD )=2×(6+9)=30.[点睛]本题考查了作图-基本作图和平行四边形的性质,等腰三角形的判定和性质.解决本题的关键是熟记平行四边形的性质.23.如图,是ABC ∆的边AC 上一点,//BE AC ,DE 交BC 于点,若FB FC =.(1)求证:四边形CDBE 是平行四边形;(2)若BD AC ⊥,5EF EB ==,求四边形CDBE 的面积.[答案](1)见解析;(2)3[解析][分析](1)首先利用ASA 得出△DCF ≌△EBF ,进而利用全等三角形的性质得出CD =BE ,即可得出四边形CDBE 是平行四边形;(2)由BD ⊥AC ,四边形CDBE 是平行四边形,可推出四边形CDBE 是矩形,由F 为BC 的中点,求出BC ,根据勾股定理即可求得CE ,由矩形面积公式即可求得结论.[详解](1)证明:∵BE ∥AC ,∴∠ACB =∠CBE ,在△DCF 和△EBF 中,DCF EBF FC FBCFD BFE ∠∠⎧⎪=⎨⎪∠∠⎩==, ∴△DCF ≌△EBF (ASA ),∴CD =BE ,∵BE ∥CD ,∴四边形CDBE 是平行四边形;(2)∵BD ⊥AC ,四边形CDBE 是平行四边形,∴四边形CDBE 是矩形,在Rt △CEB 中,F 为BC 的中点,∴BC=DE=2EF=10,∴CE 2=BC 2BE 2=10252=75,∴CE =∴四边形CDBE 的面积=BEEC =.[点睛]本题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定和性质,勾股定理的应用,得出△DCF ≌△EBF 是解题关键.24.(1)填空:(只填写符号:,,><=)①当2m =,2n =时,m n +②当3m =,3n =时,m n +③当12m =,12n =时,m n +④当4m =,1n =时,m n +⑤当5m =,3n =时,m n +⑥当13m =,12n =时,m n +则关于m n +与之间数量关系的猜想是 .(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.[答案](1)①=,②=,③=,④>,⑤>,⑥>, m n +≥,≥);(2)见解析;(3)4[解析][分析](1)①-⑥分别代入数据进行计算即可得解;(2)根据非负数的性质,(m n -)2≥0,再利用完全平方公式展开整理即可得证; (3)镜框为正方形时,周长最小,然后根据正方形的面积求出边长,即可得解. 探究证明:根据非负数的性质, [详解](1)①当m =2,n =2时,由于224+=,2224⨯=,所以m n +=2mn ;②当m =3,n =3时,由于336+=,2336⨯=,所以m n +=2mn ;③当m =14,n =14时,由于111442+=,1112442⨯=,所以m n +=2mn ; ④当m =4,n =1时,由于415+=,2414⨯=,所以m n +>2mn ;⑤当m =5,n =12时,由于111522+=,125102⨯=,所以m n +>2mn ; ⑥当m =13,n =6时,由于119633+=,126223⨯=,所以m n +>2mn ; 则关于2m n +与mn 之间数量关系的猜想是m n +≥2mn (≥,≥); (2)证明:根据非负数的性质(m n -)2≥0,∴m2mn +n≥0,整理得,m n +≥2mn ;(3)面积为1平方米的长方形镜框长与宽相等,即为正方形时,周长最小,所以,边长为1,周长为1×4=4.[点睛]本题考查了二次根式的应用,完全平方公式的应用,准确进行运算判断出两个算式的大小关系是解题的关键.25.如图,在四边形ABCD 中,//AD BC ,连接AC ,过B 点作AC 的平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(1)补全图形;(2)求证:DF EF =.[答案](1)见解析;(2)见解析.[解析][分析](1)根据题目连接AC ,按要求分别作出BM 、CN 即可解答;(2)过点D 作DG //AB ,由平行四边形判定和性质可得CE =CE ,DG //CE ,再证明△GDF ≌△CEF (ASA )即可得出结论.[详解](1)解:如图所示:连接AC ,过B 点作AC 的平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(2)证明:过点D 作DG //AB ,∵AD //BC ,DG //AB ,∴四边形ADGB 是平行四边形,∴AB =DG ,∵BE //AC ,AB //CE ,∴四边形BACE 是平行四边形,∴CE =AB ,DG //CE∴DG =CE ,∠GDF =∠CEF ,∵在△GDF 和△CEF 中,GDF CEF GFD CFE DG CE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△GDF ≌△CEF (AAS ),∴DF =EF .[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边平行且相等.26.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH . (1)求证:GF=GC ;(2)用等式表示线段BH 与AE 的数量关系,并证明.[答案](1)证明见解析;(2)BH=2AE ,理由见解析.[解析][分析](1)连接DF .根据对称的性质可得AD FD =.AE FE =.证明ADE FDE △≌△,根据全等三角形的性质得到DAE DFE ∠=∠.进而证明Rt DCG △≌Rt DFG △,即可证明.(2)在AD 上取点M 使得AM AE =,连接ME .证明DME ≌EBH △,根据等腰直角三角形的性质即可得到线段BH 与AE 的数量关系.[详解](1)证明:连接DF .∵,关于DE 对称.∴AD FD =.AE FE =.在ADE 和FDE 中.AD FD AE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△∴DAE DFE ∠=∠.∵四边形ABCD 是正方形∴90A C ∠=∠=︒.AD CD =∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒∴DFG C ∠=∠∵AD DF =.AD CD =∴DF CD =在Rt DCG △和Rt DFG △.DC DF DG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △∴CG FG =. (2)2BH AE =.证明:在AD 上取点M 使得AM AE =,连接ME .∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒.∵DAE △≌DFE △∴ADE FDE ∠=∠同理:CDG FDG ∠=∠∴11145222EDG EDF GDF ADF CDF ADC ∠=∠+∠=∠+∠=∠=︒∵DE EH ⊥∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒∴EHD EDH ∠=∠∴DE EH =.∵90A ∠=︒∴90ADE AED ∠+∠=︒∵90DEH ∠=︒∴90AED BEH ∠+∠=︒∴ADE BEH ∠=∠∵AD AB =.AM AE =∴DM EB =在DME 和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME ≌EBH △∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME∴BH .[点睛]本题是四边形的综合题,考查了正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定等知识此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.。

八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .20 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM BN=,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是________.6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:22169211x x xx x⎛⎫-++-÷⎪+-⎝⎭,其中2x=.3.已知222111x x xAx x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、C5、D6、D7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、60°或120°4、145、36、1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、13xx-+;15.3、(1)11x-;(2)14、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。

八年级数学下册期中测试卷(完整)

八年级数学下册期中测试卷(完整)

八年级数学下册期中测试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .10C .8或10D .63.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .124.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .156.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2109.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm=,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x=,则x=__________2.计算1273-=___________.3.使x2-有意义的x的取值范围是________.4.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________.5.如图,在ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,ABCD的周长为40,则S ABCD 四边形为________.6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中a=(3-5)0+-113⎛⎫ ⎪⎝⎭-2(-1).3.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知13(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.5.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、B7、D8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、8333、x 2≥4、67°.5、486、120三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、-33a +,;12-.3、﹣1≤x <2.4、(1)(0,3);(2)112y x =-. 5、(1)略(2)菱形6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。

人教版数学八年级下册《期中检测题》附答案解析

人教版数学八年级下册《期中检测题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列图形中,是轴对称图形,但不是中心对称图形的是( ) A. B. C. D.2.下列四组线段中,可以构成直角三角形的是( )A. 6,15,17B. 1.5,2,2.5C. 5,10,12D. 1,2,3 3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A. 当AB BC =时,它是菱形B. 当AC BD ⊥时,它是菱形C. 当90ABC ︒∠=时,它是矩形D. 当AC BD =时,它是正方形5. 如图,已知在△ABC中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E,BC=5,DE=2,则△BCE的面积等于( )A 10 B. 7 C. 5 D. 46.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8 cm 2C. 10 cm 2D. 12 cm 27.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则所有正方形的面积的和是( 2)cm .A. 28B. 49C. 98D. 1478.如图,分别以直角ABC 斜边AB ,直角边AC 为边向ABC 外作等边ABD △和等边ACE △,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,90ACB ∠=︒,30BAC ∠=︒.给出如下结论:①EF ⊥AC ; ②四边形ADFE 为菱形; ③4AD AG =; ④14FH BD =; 其中正确结论的是( )A ①②③ B. ②③④ C. ①③④ D. ①②④二、填空题9.若直角三角形的两直角边的长分别为a 、b ,3a -(b ﹣4)2=0,则该直角三角形的斜边长为_____. 10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm,则菱形的边长是______cm .11.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED =____度.12.如图,□ABCD 的对角线AC 、BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是_______.13.如图:在Rt ABC ∆中,CD 是斜边AB 上中线,若20A ∠=︒,则BDC ∠=_________.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m 高的墙头吗?____(填“能”或“不能”).15.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.16.如图,OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2…依此法继续作下去,得20142015OP P S ∆=____.三、解答题17.已知一个正多边形内角和比外角和多720°,求此多边形的边数及每一个内角的度数.18.已知:如图,GB =FC ,D 、E 是BC 上两点,且BD =CE ,作GE ⊥BC ,FD ⊥BC ,分别与BA 、CA 的延长线交于点G ,F .求证:GE =FD .19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE .∠E =50°,求∠BAO 的大小.20.如图,已知四边形ABCD 是平行四边形,点E 、B 、D 、F 在同一直线上,且BE=DF .求证:AE ∥CF .21.在如图的方格纸中,△ABC 的三个顶点都在格点上.(1)若111A B C ∆与△ABC 关于点成中心对称,请画出111A B C ∆.(2)求四边形11ABA B 的面积.22.已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG//DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,求证四边形AGBD 是矩形.23.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.24.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)求∠PED的度数.25.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD 同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①请直接写出线段DG与PC的数量关系(不要求证明);②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.26.如图,在平行四边形ABCD中,AB = 6cm ,BC = 12cm ,∠B = 30︒,点P 在BC 上由点B向点C 出发,速度为每秒2cm;点Q 在边AD上,同时由点D 向点A 运动,速度为每秒1cm ,当点P 运动到点C时,P 、Q 同时停止运动,连接PQ,设运动时间为t秒.(1)当t为何值时四边形ABPQ 为平行四边形?(2)当t为何值时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三?(3)连接AP ,是否存在某一时刻t,使∆ABP 为等腰三角形?并求出此刻t的值.答案与解析一、选择题1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.[答案]B[解析]试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:A、C、D既是轴对称图形,也是中心对称图形,只有B是轴对称图形,但不是中心对称图形.考点:轴对称图形、中心对称图形.2.下列四组线段中,可以构成直角三角形的是()A. 6,15,17B. 1.5,2,2.5C. 5,10,12D. 12,3[答案]B[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判断即可.[详解]解:、22261517+≠,该三角形不是直角三角形,不合题意;、222+=,该三角形是直角三角形,符合题意;1.522.5、222+≠,该三角形不是直角三角形,不合题意;51012、222+≠,该三角形不是直角三角形,不合题意.123故选:B[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°[答案]D[解析][分析]两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.[详解]解: 当三个内角度数依次是88°,108°,88°时,第四个角是76°,故A 不是平行四边形; 当三个内角度数依次是88°,104°,108°时,第四个角是60°,故B 不是平行四边形;当三个内角度数依次是88°,92°,92°时,第四个角是88°,而C 中相等的两个角不是对角,故C 不是平行四边形;,当三个内角度数依次是88°,92°,88°时,第四个角是92°,D 中满足两组对角分别相等,故D 是平行四边形. 故选D .[点睛]此题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角对应的位置关系,并不是有两组角相等的四边形就是平行四边形.4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A. 当AB BC =时,它是菱形B. 当AC BD ⊥时,它是菱形C. 当90ABC ︒∠=时,它是矩形D. 当AC BD =时,它是正方形 [答案]D[解析][分析]根据特殊平行四边形的判定方法判断即可.[详解]解:有一组邻边相等的平行四边形是菱形,A 选项正确;对角线互相垂直的平行四边形是菱形,B 选项正确;有一个角是直角的平行四边形是矩形,C 选项正确;对角线互相垂直且相等的平行四边形是正方形,D 选项错误.故答案为D[点睛]本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.5.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE 的面积等于( )A. 10B. 7C. 5D. 4[答案]C[解析] 试题分析:如图,过点E 作EF⊥BC 交BC 于点F,根据角平分线的性质可得DE=EF=2,所以△BCE 的面积等于1152522BC EF ⨯⨯=⨯⨯=,故答案选C .考点:角平分线的性质;三角形的面积公式.6.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8 cm 2C. 10 cm 2D. 12 cm 2[答案]A[解析][分析]首先根据翻折的性质得到ED=BE,用AE表示出ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE 的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.[详解]解:∵将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知:AB2+AE2=BE2.∴32+AE2=(9﹣AE)2.解得:AE=4cm.∴△ABE的面积为:12×3×4=6(cm2).故选:A.[点睛]此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.7.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是(2)cm.A. 28B. 49C. 98D. 147[答案]D[解析][分析]根据勾股定理即可得到正方形A 的面积加上B 的面积等于E 的面积,同理,C,D 的面积的和是F 的面积,E,F 的面积的和是M 的面积.即可求解.[详解]解:根据勾股定理可得:S A +S B =S E ,S C +S D =S M ,S E +S F =S M所以,所有正方形的面积的和是正方形M 的面积的3倍:即49×3=147cm 2.故选D[点睛]理解正方形A,B 的面积的和是E 的面积是解决本题的关键.若把A,B,E 换成形状相同的另外的图形,这种关系仍成立.8.如图,分别以直角ABC 的斜边AB ,直角边AC 为边向ABC 外作等边ABD △和等边ACE △,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,90ACB ∠=︒,30BAC ∠=︒.给出如下结论: ①EF ⊥AC ; ②四边形ADFE 为菱形; ③4AD AG =; ④14FH BD =; 其中正确结论的是( )A. ①②③B. ②③④C. ①③④D. ①②④[答案]C[解析][分析] 根据已知先判断ABC EFA ∆≅∆,则AEF BAC ∠=∠,得出EF AC ⊥,由等边三角形的性质得出30BDF ∠=︒,从而证得DBF EFA ∆≅∆,则AE DF =,再由FE AB =,得出四边形ADFE 为平行四边形而不是菱形,根据平行四边形的性质得出4AD AG =,从而得到答案.[详解]解:ACE ∆是等边三角形,60EAC ∴∠=︒,AE AC =,30BAC ∠=︒,90FAE ACB ∴∠=∠=︒,2AB BC =, F 为AB 的中点,2AB AF ∴=,BC AF ∴=,ABC EFA ∴∆≅∆,FE AB ∴=,30AEF BAC ∠=∠=︒,又∵60EAC ∠=︒,EF AC ∴⊥,故①正确,EF AC ⊥,90ACB ∠=︒,//HF BC ∴, F 是AB 的中点,12HF BC ∴=, 12BC AB =,AB BD =, 14HF BD ∴=,故④说法正确;AD BD =,BF AF =,90DFB ∴∠=︒,30BDF ∠=︒,90FAE BAC CAE ∠=∠+∠=︒,DFB EAF ∴∠=∠,EF AC ⊥,30AEF ∴∠=︒,BDF AEF ∴∠=∠,()DBF EFA AAS ∴∆≅∆,AE DF ∴=,FE AB =,四边形ADFE 为平行四边形,AE EF ≠,四边形ADFE 不是菱形;故②说法不正确;∵四边形ADFE 为平行四边形,12AG AF ∴=, 14AG AB ∴=, AD AB =,则4AD AG =,故③说法正确,综上所述:正确结论的是①③④.故选.[点睛]本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.二、填空题9.若直角三角形的两直角边的长分别为a 、b ,(b ﹣4)2=0,则该直角三角形的斜边长为_____. [答案]5[解析][分析]直接利用偶次方的性质以及二次根式的性质得出a ,b 的值,再利用勾股定理得出斜边长.[详解]()240b -=, 3,4a b ∴==.5=.故答案为5.[点睛]本题主要考查了勾股定理以及二次根式的性质,正确得出a ,b 的值是解题关键.10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm,则菱形的边长是______cm .[答案[解析]分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=22cm.23=13故答案为13.点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED=____度.[答案]45[解析][分析]根据正三角形和正方形的性质可得∠EAB=150°,AE=AB,,从而得出∠AEB的大小,进而得出∠BE D的大小.[详解]∵四边形ABCD是正方形,△AED是正三角形∴∠EAD=60°,∠AED=60°,∠DAB=90°,AE=AD=AB∴△AEB是等腰三角形,∠EAB=150°∴∠AEB=∠ABE=15°∴∠BED=45°故答案为:45°[点睛]本题考查正方形和正三角形的性质,解题关键利用正三角形和正方形的性质,得出∠AEB=∠ABE.12.如图,□ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是_______.[答案]9.[解析][详解]试题分析:解:∵E 为AD 中点,四边形ABCD 是平行四边形,∴DE=AD=BC ,DO=BD ,AO=CO ,∴OE=CD , ∵△BCD 的周长为18,∴BD+DC+BC=18,∴△DEO 的周长是DE+OE+DO=(BC+DC+BD )=×18=9,故答案为9.考点:平行四边形的性质;三角形中位线定理.13.如图:在Rt ABC ∆中,CD 是斜边AB 上的中线,若20A ∠=︒,则BDC ∠=_________.[答案]40︒[解析][分析] 先根据直角三角形斜边中线的性质得出12CD AD AB ==,则有20DCA A ∠=∠=︒,最后利用三角形外角的性质即可得出答案.[详解]∵在Rt ABC ∆中,CD 是斜边AB 上的中线,, ∴12CD AD AB ==.∵20A ∠=︒,∴20DCA A ∠=∠=︒,∴40BDC DCA A ∠=∠+∠=︒.故答案为:40︒.[点睛]本题主要考查直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质,掌握直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质是解题的关键.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m 高的墙头吗?____(填“能”或“不能”).[答案]不能[解析][分析]根据梯子的长度得到梯子距离墙面的距离,然后用勾股定理求出梯子的顶端距离地面的高度后与8.5比较即可作出判断.[详解]解:∵梯子底端离墙约为梯子长度的13,且梯子的长度为9米, ∴梯子底端离墙约为梯子长度为9×13=3米,==∵8.5<,∴梯子的顶端不能到达8.5米高的墙头.故答案为:不能.[点睛]本题考查了勾股定理的应用,解题的关键是根据习惯和告诉的梯子的长度求出梯子的底端距离墙面的距离.15.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.[答案]①③④⑤[解析][分析]当把完全重合含有30角的两块三角板拼成的图形有三种情况:①把短直角边重合拼图;②把长直角边重合拼图;③把斜边重合拼图;可得六种拼图,进行判断即可.[详解]解:如图,把完全重合的含有30角的两块三角板拼成的图形共有六种情况,其中可以拼出等边三角形,等腰三角形(腰与底边不相等),矩形,平行四边形(不含矩形、菱形).故答案为:①③④⑤.[点睛]本题考查了图形的剪拼接,关键是在解题时要注意分类讨论,得出拼成的所有图形.16.如图,OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2…依此法继续作下去,得20142015OP P S ∆=____.[答案]20152[解析][分析] 根据勾股定理和已知条件,找出线段长度的变化规律,从而求出2014OP 的长度,然后根据三角形的面积公式求面积即可.[详解]解:∵OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 12212OP PP +=再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2221123OP PP +=又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3222234OP P P +=∴P n P n+1=1,OP n 1n +∴P 2014P 2015=1,OP 2014201412015+=∴20142015OP P S ∆=12P 2014P 2015·OP 20142015故答案为:20152.[点睛]此题考查的是利用勾股定理探索规律题,找到线段长度的变化规律并归纳公式是解决此题的关键.三、解答题17.已知一个正多边形内角和比外角和多720°,求此多边形的边数及每一个内角的度数.[答案]8边形,每一个内角为135°[解析][分析]先根据内外角和的关系,得出内角和,再利用内角和公式确定边数,最后得出每一个内角大小.[详解]∵内角和比外角和多720°∴内角和=720°+360°=1080°设多边形的边数为n则:(n-2)×180=1080解得:n=8∵是正多边形∴每个内角=1080135 8︒=︒[点睛]本题考查多边形的内角和公式,解题关键是通过外角和求解出内角和的大小.18.已知:如图,GB=FC,D、E是BC上两点,且BD=CE,作GE⊥BC,FD⊥BC,分别与BA、CA的延长线交于点G,F.求证:GE=FD.[答案]见详解[解析][分析]根据“HL ”证明Rt △GEB ≌Rt △FDC ,问题得证.[详解]解:证明:∵BD=CE ,∴BE=CD ,∵GE ⊥BC ,FD ⊥BC ,∴∠GEB=∠FDC=90°,∵GB =FC ,∴Rt △GEB ≌Rt △FDC ,∴GE =FD .[点睛]本题考查了三角形全等的证明,当三角形为直角三角形时,直角可以作为一个条件应用,也可以考虑用“HL ”进行证明.19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE .∠E =50°,求∠BAO 的大小.[答案]40BAO ∠=︒[解析][分析]先证明四边形BECD 是平行四边形,得到50ABO E ∠=∠=︒,再根据菱形性质得到AC BD ⊥,根据直角三角形两锐角互余得到40BAO ∠=︒.[详解]证明:四边形ABCD 是菱形,AB CD ∴=,//AB CD ,又BE AB =,BE CD ∴=,//BE CD ,四边形BECD 是平行四边形,//BD CE ∴,50ABO E ∴∠=∠=︒,又四边形ABCD 是菱形,AC BD ∴⊥,9040BAO ABO∴∠=︒-∠=︒.[点睛]本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.20.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE∥CF.[答案]AE∥CF(过程见详解)[解析][分析]根据平行四边形的对边相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠ABD=∠CDB,然后求出∠ABE=∠CDF,再利用“SAS”证明△ABE和△CDF全等,根据全等三角形对应角相等证明即可.[详解]解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,∵AB CDABE CDF BE DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS).∴∠E=∠F,∴AE∥CF.[点睛]本题考查平行四边形的性质;全等三角形的判定和性质及平行线的判定.21.在如图的方格纸中,△ABC 的三个顶点都在格点上.(1)若111A B C ∆与△ABC 关于点成中心对称,请画出111A B C ∆.(2)求四边形11ABA B 的面积.[答案](1)见解析;(2)14.[解析][分析](1)根据中心对称的定义,找到各点的对应点,然后顺次连接即可;(2)根据平行四边形的面积公式求解即可.[详解](1)如图;(2)由图可知:AB=A 1B 15A 1B=AB 1=7,∴四边形11ABA B 是平行四边形,∴四边形11ABA B 的面积是72⨯=14.[点睛]本题考查了中心对称的性质,以及平行四边形的判定与性质,熟练掌握中心对称的性质是解答本题的关键.22.已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG//DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,求证四边形AGBD是矩形.[答案](1)见详解;(2)见详解.[解析][分析](1)证三角形全等根据边角边即可证明;(2)先证明ADBG是平行四边形再证明有一个角是直角的平行四边形是矩形即可证明;[详解](1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠BAD=∠C,AD//BC,又∵E、F分别为边AB、CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,∴△ADE≌△CBF(SAS);(2)∵AD//BC,AG//DB,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴BE=DE,∵E、F分别为边AB、CD的中点, ∴AE=BE,∴BE=DE=AE,∴∠ADE=∠EAD,∠EDB=∠EBD,∵∠EAD+∠EDA+∠EDB+∠EBD=180°,∴∠EDA+∠EDB=90°,∴∠ADB=90°,∴四边形ADBG是矩形,[点睛]本题考查平行四边形的性质,菱形的性质,矩形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识型.23.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.[答案](1)见解析;(2)16秒.[解析][分析](1)过点A作AC⊥ON,求出AC的长,即可判断是否受影响;(2)设当火车到B点时开始对A处有噪音影响,直到火车到D点噪音才消失,根据勾股定理即可求出BD的长,即可求出影响的时间.[详解](1)如图,过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米<200,故受到火车的影响,(2)当火车到B点时开始对A处有噪音影响,此时AB=200,∵AB=200,AC=120,利用勾股定理得出BC=160,同理CD=160.即BD=320米,∴影响的时间为3201620秒.[点睛]此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.24.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)求∠PED的度数.[答案](1)见解析;(2)45°[解析][分析](1)根据正方形的性质四条边都相等可得BC=CD,对角线平分一组对角,可得∠ACB=∠ACD,然后利用“边角边”证明△PBC和△PDC全等,根据全等三角形对应边相等可得PB=PD,然后等量代换即可得证;(2)根据全等三角形对应角相等可得∠PBC=∠PDC,根据等边对等角可得∠PBC=∠PEB,从而得到∠PDC=∠PEB,再根据∠PEB+∠PEC=180°,求出∠PDC+∠PEC=180°,然后根据四边形的内角和定理求出∠DPE=90°,判断出△PDE是等腰直角三角形,根据等腰直角三角形的性质求解即可.[详解](1)∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD,在△PBC和△PDC中,∵BC CDACB ACD PC PC=∠=∠=⎧⎪⎨⎪⎩,∴△PBC≌△PDC(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)∵四边形ABCD是正方形,∴∠BCD=90°,∵△PBC≌△PDC,∴∠PBC=∠PDC,∵PE=PB,∴∠PBC=∠PEB,∴∠PDC=∠PEB,∵∠PEB+∠PEC=180°,∴∠PDC+∠PEC=180°,在四边形PECD中,∠EPD=360°−(∠PDC+∠PEC)−∠BCD=360°−180°−90°=90°,又∵PE=PD,∴△PDE是等腰直角三角形,∴∠PED=45°.[点睛]本题主要考查正方形的性质,三角形全等的判定和性质定理,四边形的内角和等于360°以及等腰直角三角形的性质,熟练掌握正方形的性质,三角形全等的判定和性质定理,四边形的内角和等于360°以及等腰直角三角形的性质是解题的关键.25.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD 的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①请直接写出线段DG与PC的数量关系(不要求证明);②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.[答案](1)①DG=2PC,理由见解析;②见解析;(2)四边形PEFD是菱形,理由见解析.[解析][分析](1)①结论:DG=2PC,如图1中,作PM⊥AD于M.只要证明四边形PMDC是矩形,推出PC=DM,再证明MG=MD即可解决问题.②由四边形PMDC是矩形得CD=PM,由△ADF≌△MPG,推出PG=PF,进而可得DP=PF,再证明DF∥PE,推出四边形PEFD是平行四边形,再结合PD=PE即可证明四边形PEFD是菱形;(2)如图2中,作PM⊥AD于M.则四边形CDMP是矩形,CD=PM,由△ADF≌△MPG,推出DP=PG=PE =PF,再证明DF∥PE,推出四边形PEFD是平行四边形,由PD=PE,即可证明四边形PEFD是菱形.[详解]解:(1)①结论:DG=2PC.理由:如图1中,作PM⊥AD于M.∵四边形ABCD是正方形,∴∠C=∠CDM=∠DMP=90°,AD=CD,∴四边形DCPM是矩形,∴PC=DM,∵PD=PG,PM⊥DG,∴MG=MD,∴DG=2PC.线段DG与PC的数量关系为DG=2PC.②∵四边形CDMP 矩形,∴CD =PM ,∵AD =CD ,∴AD =PM ,∵DF ⊥PG ,∴∠DAF =∠PMG =∠GHD =90°,∴∠ADF +∠AFD =90°,∠ADF +∠PGM =90°,∴∠AFD =∠PGM ,在△ADF 和△MPG 中,AFD PGM FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GMP ,∴DF =PG∵PG =PE =PD ,∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF ∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.(2)结论:四边形PEFD 是菱形.理由:如图2中,作PM ⊥AD 于M .则四边形CDMP 是矩形,CD =PM ,∵∠DAF =∠PMG =∠DHG =90°,∴∠ADF +∠AFD =90°,∠G +∠GDH =90°,∵∠ADF =∠GDH ,∴∠AFD =∠G ,∵AD =CD ,CD =PM ,∴AD =PM ,在△ADF 和△MPG 中,AFD G FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△MPG ,∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF ∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.[点睛]本题考查旋转变换、等腰三角形的性质、正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,属于中考常考题型. 26.如图,在平行四边形 ABCD 中,AB = 6cm ,BC = 12cm ,∠B = 30︒,点P 在 BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点 D 向点 A 运动,速度为每秒1cm ,当点 P 运动到点C 时,P 、Q 同时停止运动,连接 PQ ,设运动时间为t 秒.(1)当t 为何值时四边形 ABPQ 为平行四边形?(2)当t 为何值时,四边形 ABPQ 的面积是四边形 ABCD 的面积的四分之三?(3)连接 AP ,是否存在某一时刻t ,使∆ABP 为等腰三角形?并求出此刻t 的值.[答案](1)当4t =时,四边形ABPQ 是平行四边形;(2)当6t =时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三;(3)存在,当3t =333,ABP ∆为等腰三角形[解析][分析](1)利用平行四边形的对边相等得AQ BP =,建立方程求解即可;(2)分别表示出四边形ABPQ 和四边形ABCD 面积,利用面积关系即可求出;(3)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.[详解]解:(1)由P 、Q 的运动方式得:(2)=BP t cm ,DQ t =cm ,∵当点P 运动到点C 时,P 、Q 同时停止运动,∴06t <≤,在平行四边形 ABCD 中,BC = 12cm ,∴12AD BC ==cm ,则(12)=-AQ t cm ,若四边形 ABPQ 为平行四边形,则BP AQ =,即212=-t t ,解得:4t =,∴当4t =时,四边形ABPQ 是平行四边形;(2)如图 1,过点作AE BC ⊥于,在Rt ABE △中,30B ∠=︒,6AB =cm ,3AE ∴=cm ,四边形ABCD 是平行四边形,BC = 12cm ,∴12336=⋅=⨯=ABCD S BC AE cm 2,由(1)得:(2)=BP t cm ,(12)=-AQ t cm ,∴S 四边形ABPQ =113()(212)3(18)222+⋅=+-⨯=+BP AQ AE t t t cm 2, 若四边形ABPQ 的面积是四边形ABCD 的面积的四分之三, 即33183624+=⨯t ,解得:6t =, ∴当6t =时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三;(3)存在某一时刻t ,使ABP △为等腰三角形,若ABP △为等腰三角形,则AB BP =或AP BP =或AB AP =, ①当AB BP =时,则6BP =cm ,即26t =,解得:3t =;②当AP BP =时, 如图 2 ,过作PM 垂直于AB ,垂足为点M ,∵AP BP =,PM ⊥AB , ∴132==BM AB cm , 30B ∠=︒,∴23BP =cm ,则223=t ,解得:3t =,③当AB AP =时,如图3,∵AB AP =,AE BC ⊥,∴E 为BP 中点,则BP =2BE ,在Rt ABE △中,30B ∠=︒,6AB =cm ,AE =3cm , ∴33BE =,263==BP BE ,则263=t 解得:33t =,所以,当3t =3或33,ABP ∆为等腰三角形.[点睛]本题是四边形综合题,主要考查了平行四边形的性质、含30的直角三角形的性质,等腰三角形的定义,解题的关键是熟练运用这些性质和运用分类讨论的思想思考问题.。

湖北省武汉市武珞路中学2023-2024学年八年级下学期期中测试英语试题

湖北省武汉市武珞路中学2023-2024学年八年级下学期期中测试英语试题

湖北省武汉市武珞路中学2023-2024学年八年级下学期期中测试英语试题学校:___________姓名:___________班级:___________考号:___________一、单项选择1.—Would you like to go shopping with me this Saturday?—________ Will Sunday be OK?A.Sure, it’s up to you.B.Sure, no problem.C.Sorry, it depends. D.Sorry, I am not available that time. 2.—Dave, could you please clean the living room? I’m going to take the dog for a walk.—________. I’ll do it at once, Mom.A.It’s my pleasure.B.No, I can’t.C.With pleasure. D.Sorry, I have to do my homework. 3.—Mr. Brown, I spent all day working without a ________.—All right, you may go out for fresh air and have a rest.A.stop B.break C.choice D.decision 4.—The taxi driver was ________ to the sign “No parking” just now.—He would get a ticket from the police.A.blind B.weak C.deaf D.impolite 5.—The thief ________ to us. In fact, he didn’t ________ the purse on the cupboard.—Yeah. The police found it ________ at the corner of the kitchen.A.lied; lay; lied B.lay; lie; lying C.lied; lay; lying D.lay; lying; lied 6.—I think the frozen yogurt is the same as ice cream.—I don’t agree with you. It tastes like ice cream but has ________ of the fat.A.any B.neither C.either D.none7.The truth of the story is discovered little by little as the story ________.A.ends B.begins C.develops D.happens 8.—Look, Cathy is crying. What ________ her to be so sad?—The result of the English exam.A.turned B.made C.kept D.caused9.—The heavy snow ________ the road to the village.—The firefighters are trying their best to make it clear.A.cut off B.cut down C.cut out D.cut through 10.The famous poem “So let us wish that man will live long as he can! Though miles apart, we’ll share the beauty she displays.” tells us ________.A.what will the writer share B.who the writer wishes to live longC.how far are the writer’s family apart D.how much the writer misses his family二、完形填空My grandfather often said “I won’t” to show his dislike of dishonesty (不诚实). When he was young, he worked 11 a furniture (家具) maker. One day, a neighbor invited him to make some furniture. When arriving, he noticed the wood 12 was a little wet, so he said, “I won’t start right away.” He chose to let the wood dry for a month. He knew working with wet wood could cause 13 later on.At the same time, another furniture maker was also asked for a 14 job by a different family. Unlike my grandfather, he began working right away. 15 , the neighbor started doubting my grandfather, thinking he was trying to make more money by 16 the work. However, my grandfather waited 17 . He wanted the best wood for the furniture he was making.A month later, the furniture maker who finished his work quickly received his 18 and went back home. My grandfather began to make strong and beautiful furniture when the wood was 19 dry. A few months passed and the furniture made by that maker began to 20 . The neighbor then felt sorry that he didn’t trust my grandfather. People came to understand his 21 and skill, spreading his fame (名声) far and wide.Influenced by my grandfather, my father also follows the 22 of “I won’t”. He always serves the freshest food, 23 makes his restaurant very popular in town. Once a trader wanted to sell some cheap but smell y seafood to my father, he said “No!” and stopped the 24 .Now, my brother and I keep in 25 what our grandfather and father taught us.Through ups and downs in life, we’ve come to deeply understand our family value behind this saying—be truthful and honest.11.A.like B.for C.as D.with 12.A.served B.passed C.used D.provided 13.A.accidents B.illness C.events D.trouble 14.A.same B.different C.similar D.special 15.A.In fact B.As a result C.After a while D.In a word 16.A.checking out B.turning down C.giving up D.putting off 17.A.excitedly B.patiently C.sadly D.worriedly 18.A.cost B.furniture C.pay D.wood 19.A.totally B.especially C.typically D.partly 20.A.break B.drop C.carry D.waste 21.A.fairness B.honesty C.love D.politeness 22.A.joy B.plan C.shape D.value 23.A.that B.what C.why D.which 24.A.business B.competition C.interview D.communication 25.A.heart B.mind C.brain D.head三、阅读理解The Journey of a Legendary Landscape Painting A dance performanceThe Journey of a Legendary Landscape Painting dra w everyone’s attention. The creators got an idea from a great ancient Chinese painting called A Panorama of Mountains and Rivers by Wang Ximeng. The poetic dance tells the story of a researcher from the Palace Museum passing through (穿越) the Song Dynasty. “It is not to tell people how great the painting is, but to help peopleunderstand traditional Chinese culture.” says Xie Suhao, who plays the character.__________________________________________At Milan Fashion Week last September in Italy, people were amazed at the beautiful pictures on the models’ clothes. They were Chinese traditional Miao embroidery (刺绣). Their beautiful embroidery showed the traditional artistry (工艺技术) of the Miao people. They have got ideas for these pictures from nature and their ethnic (民族的) history. “Traditional costumes can be very fashionable,” said an embroidery designer. “Hopefully, our ethnic culture has lots of attraction from all over the world.”Life is a Song A special exhibition (展览会) titled Life Is a Song—WanTongshu and Xinjiang Uygur Muqam Art (木卡姆艺术) was held from August 23 to 27 in Aksu, Xinjiang. Through pictures, sounds, and other forms, it was held to remember the Chinese musician Wan Tongshu because he helped protect Uygur Muqam art. Xingjiang Uygur Muqam art mixes songs, dances and folk and classical music. For its cultural value. Xinjiang Uygur Muqam art was included as one of UNESCO’s Masterpieces of Oral and Intangible Heritage of Humanity (人类口头和非物质遗产代表作) in 2005.26.In which SECTION of the newspaper can we read the news?A.HISTORY. B.CULTURE. C.PEOPLE. D.NVENT27.It’s clear that ________.A.the beautiful pictures on the models’ clothes surprised people.B.the poetic dance tells a story of a poet from the Song Dynasty.C.the creators of the poetic dance got the idea from Wang XimengD.the exhibition was held to thank Wan Tongshu in all kinds of forms28.The best heading for the second news would be ________.A.Artistry of the Miao people B.China’s Miao embroidery dresses shineC.Ideas from Nature D.Tradition around the world29.Which of the following might Xingjiang Uygur Muqam art mix?①songs②pictures③poems④classical music⑤dancesA.①②③B.②③④C.③④⑤D.①④⑤30.What can we infer from the news?A.The poetic dance shows the excellence of the ancient painting.B.Traditional costumes are very fashionable and popular.C.Nature and the ethnic history of Miao people make a difference to their creation.D.Xingjiang Uygur Muqam is so special that everyone is interested in it.As Ginni Bazlinton reached Antarctica, she was greeted by a group of little Gentoo penguins (企鹅) who seemed happy to say hello. These lovely penguins welcomed and started a trip that Ginni would never forget.Ginni, now 71, has had a deep love for travel when she was young. As a professional dancer she travelled around the UK, but always hoped to find more. When she retired from dancing, ★After taking a degree at Chichester University in Related Arts, Ginni began to travel around the world and found a job teaching English in Japan and Chile. It was in Chile she discovered she could get a cheap ticket going to Antarctica from the islands off Tierra del Fuego, “I just decided I wanted to go.” she says. “I had no idea about what I’d find there and I wasn’t nervous. I just wanted to do it. And I wanted to do it alone as I always love it that way.”In March 2008, Ginni boarded a ship to begin the journey to Antarctica with 48 passengers. “From seeing the wildlife to enjoying sunrises, the whole experience was wonderful. Antarctica is b etter than any other place,” Ginni says. “I remember the first time I saw a humpback whale (座头鲸): it just rose out of the water like some prehistoric creature (生物) and I thought it was smiling at us. You could still hear the beautiful sound it was making u nderwater.”The realization that Antarctica is a valuable and important land which needs to be respected(尊敬) by humans is the biggest thing for Ginni.31.What’s the genre (体裁) of this passage?A.A profile which gives facts about a person. B.A play which has many different scenes.C.A fairy tale which tells stories about magic. D.An argumentation which showsdifferent opinions.32.What made Ginni decide on the trip to Antarctica?A.Lovely penguins. B.A low price for a ticket.C.A friend’s invitation.D.Beautiful sunrise.33.Which of the following sentence can be put in ★ .A.she chose to find a job as an English teacher in Chile.B.she made a promise to stay at home and have a relaxing life.C.she showed no interest in travelling anymore.D.she decided it was time to do something challenging.34.The underlined word “it” refers to ________.A.Teaching English B.Meeting penguinsC.Taking a trip to Antarctica D.Travelling around the world35.What does Ginni think about Antarctica after the journey?A.It could be an excellent home for her. B.It needs more attention and care fromhumans.C.Humans should fully introduce Antarctica. D.Humans should come often toAntarctica.Roger Federer, a world-famous sports star, quit (放弃) the 2020 Olympic Games to deal with his knee problem. It was a hard decision because no one wanted to be a quitter. But finding the courage to let go can be good for you.Nothing is fun all the time. Never giving up doing something difficult teaches us important skills like perseverance. Howev er, learning to let go when things aren’t right is important too. Maybe your heart isn’t in playing the piano any more, or you only play football because your friends do and you want to try a different sport instead. Making the decision to walk away can make you have more free time and energy to spend on something you really enjoy. In fact, studiesshow that not paying much attention to the goals you can’t reach or don’t really want can build up your confidence and help you lead a happier and healthier life.But how can you know it’s time to stop or move on? Eric Bean is an expert in sports psychology (心理学) who helps athletes and teams understand their feelings. He says, “Quitting is never a matter of black and white.” He suggests thinking carefully about why you aren’t enjoying something any more. Is it because you’ve argued with a teammate or can’t get on with a new art teacher? Talk about this with an adult or a friend who you trust. That can help you decide whether you should stick or quit.Quitting doe sn’t completely mean giving up, though. For example, playing an instrument might be more fun if you want to take away the pressure of exams. If you decide to give up an activity, Bean suggests picking up another where you can still enjoy things like teamwork, creativity, and exercise.36.The writer mentions “Roger Federer” in Paragraph 1 to show that ________.A.we should never give up B.we should get away from troubleC.it’s all right to stop and quit D.it’s difficult to win Olympic medals 37.The underline d word “perseverance” in paragraph 2 means ________.A.determination B.development C.independence D.competition 38.According to Paragraph 2, learning to let go is important because we can ________.A.have enough money to spend B.feel more confident in ourselvesC.live a busier and fuller life D.learn about perseverance39.From the passage we can learn that ________.A.Remember not to give up even if things go wrong.B.Roger Federer quit the Olympic Games because he was afraid to lose.C.Think twice about the reason before planning to give up the things you are enjoying.D.One needs to give up everything when choosing to quit40.Which can be the best title for the passage?A.Knowing When to Stop B.Working Hard to Move onC.Showing Why to Stop D.Starting Early to Give up四、选词填空阅读下面短文,用方框中所给的单词或短语填空,使每个句子在结构、语意和逻辑上正确。

人教版八年级下册数学《期中考试卷》附答案

人教版八年级下册数学《期中考试卷》附答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷选择题一、选择题1.若12x +在实数范围内有意义,则的取值范围在数轴上表示正确的是( ) A. B. C. D.2.已知点A 的坐标为(2,-1),则点A 到原点的距离为( )A. 3B. 3C. 5D. 13. 下列说法中正确的是( )A. 12化简后的结果是22B. 9的平方根为3C. 8是最简二次根式D. ﹣27没有立方根4.下列计算正确的是( )A 310255-= B. 7111()1111711⋅÷= C. (7515)325-÷= D.18183239-= 5.如图,测得楼梯长为5米,高为3米,计划在楼梯表面铺地毯,地毯的长度至少是( )A. 4米B. 5米C. 7米D. 10米6.下列二次根式中的最简二次根式是( )A 30 B. 12 C. 8 D. 0.5 7.如果()212a -=2a -1,那么 ( ) A. a<12 B. a≤12 C. a>12 D. a≥128.如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A. 51-B. 51+C. 31-D. 31+9.如图,顺次连接四边形ABCD 各边的中点的四边形EFGH ,要使四边形EFGH 为矩形,应添加的条件是( )A. AB ∥DCB. AC=BDC. AC ⊥BDD. AB=CD10.如图,P 是矩形ABCD 的对角线AC 的中点,E 是AD 的中点.若AB=6,AD=8,则四边形ABPE 的周长为( )A. 14B. 16C. 17D. 18第Ⅱ卷非选择题二、填空题11.38a -172a -,那么 a 值为__________.12.有一个直角三角形的两边为4、5,要使三角形为直角三角形,则第三边等于_____.13.已知、为两个连续的整数,且28a b <<,则+a b =________.14.一只蚂蚁从长、宽都是3cm ,高是8cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________cm.15.如图,将长8cm ,宽4cm 的矩形ABCD 纸片折叠,使点A 与C 重合,则折痕EF 的长为_________cm .三、解答题16.计算下列各题:(1)122053455-+- (2)4118285433⎛⎫-÷⨯ ⎪⎝⎭(3)20511235+-⨯ (4)2093(3)|2|28π-⨯+---+⨯(5)(37)(37)2(22)-++-(6)0(3)(6)|21|(52)π-⨯-+-+-17.如图,BD 是▱ABCD 的对角线,AE ⊥BD 于E,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.18.已知32,32x y ==求x 2+y 2+2xy ﹣2x ﹣2y 的值.19.如图,公路 MN 和公路 PQ 在点 P 处交会,且∠QPN=30°.点 A 处有一所中学,AP=160m ,一辆拖拉机从 P 沿公路 MN 前行,假设拖拉机行驶时周围 100m 以内会受到噪声影响,那么该所中学是否会受到噪声影响,请说明理由,若受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多长?20.如图,将▱ABCD的边AB延长至点E,使BE=AB,连接DE、EC、BD、DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.21.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD 的面积;(3)如图2,以A 为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=14S四边形ABCD,求P的坐标.22.如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm 速度移动;点Q从点B开始沿BC边向点C以每秒2cm的速度移动,如果点P,Q同时出发,那么过3s时,△BPQ 的面积为多少?23. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.答案与解析第Ⅰ卷选择题一、选择题1.若12x+在实数范围内有意义,则的取值范围在数轴上表示正确的是()A. B. C. D.[答案]B[解析][分析]根据二次根式有意义,分式的分母不为0,建立关于x的不等式,解不等式求出x的取值范围,再观察各选项中的数轴上的不等式的解集,可得答案。

八年级数学下册期中测试卷及完整答案

八年级数学下册期中测试卷及完整答案

八年级数学下册期中测试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±3 3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.56.估计()-⋅1230246的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.分解因式:3x -x=__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)21324x x x -+-=0 (2)13222x x x-+=--2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中a=(3-5)0+-113⎛⎫ ⎪⎝⎭-2(-1).3.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、A6、B7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、﹣33、x (x+1)(x -1)4、25、2456、85三、解答题(本大题共6小题,共72分)1、(1)x=﹣1;(2)x=23.2、-33a +,;12-.3、(1)略;(2)4或4+.4、(1)DE=3;(2)ADB S 15∆=.5、略6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =46.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:a 2-9=_____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、03、(a+3)(a ﹣3)4、135°5、56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、1a b-+,-1 3、3p =,1q =.4、(1)DE=3;(2)ADB S 15∆=.5、(5a 2+3ab )平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。

2023年人教版八年级语文(下册期中)试卷附答案

2023年人教版八年级语文(下册期中)试卷附答案

2023年人教版八年级语文(下册期中)试卷附答案满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列字形和加点字注音全部正确的一项是()A.畸.形(jī)文绉绉..(zōu)诚慌诚恐深恶.痛疾(wù)B.由衷.(zhōng)畎亩殚.精竭虑(dān)杳无消息C.一厝.(chuò)殷勤夷.为平地(yí)抑扬顿坐D.鸡枞.(cóng)遏制倒坍.(tān)紊.乱(wěn)3、下列句子加点的成语使用恰当的一项是()。

A.莱芜九龙大峡谷全长20多公里,谷内怪石嶙峋,溪水潺潺;两边奇峰突兀,层峦叠翠,真可谓巧夺天工....。

B.据笔者观察,近年来我省小型剧目的创作一直比较活跃,涌现出了不少脍炙..人口..的作品。

C.摩拜单车一推出,便受到人们的欢迎,其始作俑者....胡玮炜受邀登上了央视《朗读者》的舞台。

D.5月19日,在第七个“世界家庭医生日”来临之际,芳草社区卫生服务中心处心积虑....让家庭医生走进百姓家门。

4、下列句子没有语病的一项是()A.学习成绩的提高,主要取决于学生自身是否努力。

B.写文章语言要精练,一定要把不必要的啰嗦话统统删去。

C.经过开展机动车使用乙醇汽油的活动,会昌县城的空气更加清新。

D.秋天的会昌是人们避暑纳凉的好季节。

5、下列句子没有使用修辞手法的一项是()A.蝉在枝头鸣叫,是为了唱响生命的赞歌;种子在土里静卧,是为了积蓄成长的力量;雄鹰在蓝天翱翔,是为了探寻奋斗的目标。

B.这橘子酸得我的牙都快掉了。

C.大家都很喜欢他,因为他长得好像周杰伦。

D.于是点上一枝烟,再继续写些为“正人君子”之流所深恶痛疾的文字。

6、选出下列句子排序最恰当的一项()①前后《赤壁赋》很好地解决这对矛盾。

②“熟”与“俗”是书法艺术里的一对矛盾。

③只有多看多写,胸有成竹,下笔时才能挥运自如。

③但是,正因为熟练了,容易顺着套路、惯性书写,作品就显得俗气。

山西省太原市2023-2024学年八年级下学期期中英语测试题(笔试部分)(含答案)

山西省太原市2023-2024学年八年级下学期期中英语测试题(笔试部分)(含答案)

2023-2024太原初二第二学期期中考试笔试部分一、补全对话三、阅读理解A请阅读下面信息,判断句子正误。

与短文内容相符的选“T”,与短文内容不相符的选“F”,并在答题卡上将该项涂黑。

36.The Green Family Farm needs volunteers to help plant trees this summer.( )37.The Green Family Farm is at No.2 Shahe Street in Qingxu,Taiyuan.( )38.We can volunteer in the Green Family Farm every weekend from May to August.( )39.If you want to learn more information,you can call 0351-******* or send an e-mail.( )40.Students can learn all kinds of life skills at the Green Family Farm.( )BNowadays,whether teenagers should do chores or not has become a hot topic.Here is a post(帖子)about it on .Question:Should teenagers do chores?Labor(劳动)education catches people's eye these days.But many surveys show that kids are getting lazier and more parents are doing all the housework.Do you think teenagers should spend time on chores? Please leave your comments(评论)about this question.CommentsDavid Children often get a lot of homework and have much stress about school.So they don't have time and energy to do chores.Parents should do the housework insteadof the children.Bob Doing chores helps children to be more independent.It also teaches them life skills such as washing clothes,cooking and cleaning.Kids should be able to do thingsby themselves.They can't live with their parents forever.Mary Doing chores may take a long time.If you are not good at doing chores,you may get into trouble like breaking things or hurting yourself.So there is no need forteenagers to do chores.Alice We students sit on the chairs all day to study and play with our phones sometimes after school,not wanting to exercise or do other things at all.It is bad for our health.However,doing housework,from doing the dishes to sweeping the floor,can makeus move around and keep away from our phones for a while.Peter If we take the responsibility to do it,parents will be very happy!In fact,all the family members,not just our mothers,should share the housework.It shows ourlove to the family and the idea of fairness.41.The passage is from______________.A.a storybookB.a reportC.a website42.From David's words,we can know that_______________.A.David gets a lot of stress from houseworkB.David wants to do housework together with his familyC.David thinks that doing chores should be parents' job43. Which of the following is TRUE according to Alice's words?A.Doing chores is good for children's health.B,Children just want to make their parents happyC.Doing chores can make children independent.44. What does the underlined word “responsibility" mean in the text?A.责任B.机会C.挑战45. Who has the similar idea with Peter?A. David.B. Bob.C.Mary.CIt's normal to have different ideas from others. People may think that disagreement causes fights. However, this is not true, If we communicate with others in a proper way, disagreement will also be happy and educational.46First of all,we should listen to others carefully when they show different ideas. Sometimes we may want to show our ideas too much,so we don't really listen. 47When you listen to others, give them your full attention to show them that your are interested in what they are saying.Secondly, when somebody doesn’t agree with you, don't treat him in an unfair way.48 Instead, we should use the facts, not your feelings to communicate with others. Try to realize that their ideas cover something useful, though you don't have to agree with them.49 When you show your opinion, make sure you are using “I” language, not “we language. The use of “we” may let others feel that the speaker feels like ganging together (拉结派).It's not helpful to reach an agreement.All in all, if we know the truth of communication, it'll be easier for us to reach an agreement. 50 It is all about listening and understanding. What's more, rememberto respect(尊重)each other though we have different opinions.A. It means we shouldn’t get angry with him or shout at himB. But careful listening is the first step to know others betterC. Thirdly, be sure that you are speaking only for yourself.D. Make sure your friends will agree with you finallyE. Then what is the truth of communication?F. Here's some advice.DAccidents happen more often than you think.Every year in China,3.2 million people die in accidents—that's almost six people every minute.Scientists say that the 10 minutes after an accident can make the difference between life and death.This is why learning first aid(急救)is so important for everyone.Common first aid training teaches you how to deal with emergencies(突发情况),do CPR(心肺复苏),and treat things like burns,bleeding and broken bones.You can learn first aid by visiting the official website(官方网站)of China First Aid training.You can also read books or watch videos that can be found on free apps.Going to some first aid camps is also a good idea,and it takes only a few hours to learn some useful skills there.Knowing the importance of learning first aid skills,many schools in Taiyuan have started first aid training lessons.After taking these lessons,a lot of students not only learned how to deal with small accidents,but also learned to keep calm when facing them.Taiyuan Daily ReportOn Mar.21st,a man had a sudden heart problem at the subway station.As soon as he fell down on the floor,several warm-hearted citizens(市民)came to help.Zhang英语试题参考答案及等级评定建议一、补全对话(每小题2分,共10分)21—25 BEAGF二、完形填空(每小题1分,共10分)26—30 BCABC31—35 ABABC三、阅读理解(每小题2分,共40分)(A)36—40 FTFTF(B)41—45 CCAAB(C)46—50 FBACE(D)51.Because the 10 minutes after an accident can make the differencebetween life and death.52.They can visit the official website of China First Aid Training or readbooks./By visiting the official website of China First Aid Training or reading books./They can watch videos that can be found on free apps orgo to some first aid camps./…(任写两种方式即可)53.(It will take)1.5 hours/one(an)hour and a half/one and a half hours.54.(We can learn)Zhang Hua not only learned how to deal with smallaccidents,but also learned to keep calm when facing them(at school)./We should learn first aid skills and try to help others in need (just likeZhang Hua)./It's necessary for students to learn first aid skills./.…(言之有理即可)55.I learned how to deal with bleeding./…I learned it on the Internet./At school./…(开放性答案,言之有理即可。

内蒙古自治区呼和浩特市北京四中呼和浩特分校2023-2024学年八年级下学期期中测试英语试题

内蒙古自治区呼和浩特市北京四中呼和浩特分校2023-2024学年八年级下学期期中测试英语试题

2023——2024学年度八年级英语第二学期教学效果反馈测试(满分100分)第一部分听力(共两大题,满10分)Ⅰ.短对话理解(共3小题:每小题1分,满分3分)你将听到三段对话,每段对话后有一个小题。

请在每小题所给的A、B、C三个选项中选出一个最佳选项。

每段对话读两遍。

1.What was the doctor’s advice for the girl?A. B. C.2.Where does the girl’s friend come from?A.Japan.B.England.C.Greece.3.How could the speakers make money?A.By repairing bikes.B.By selling old bikes.C.By going bike riding.Ⅱ.长对话理解(共4小题,每小题1分,满分4分)你将听到两段对话,每段对话后2个小题。

请在每小题所给的A、B、C三个选项中选出一个最佳选项。

每段对话读两遍。

4.What movie are they going to see?A.The Sound of Music.B.Cats.C.Love Me Once More,Mom.5.How does the boy like the movie?A.It’s so boring.B.It’s so moving.C.It’s so interesting.听下面一段对话,完成第6、7两小题。

6.Where did they go yesterday?A.The Summer Palace.B.The Great Wall.C.The Ming Tombs.7.What happened to Jack?A.He ran into the wall.B.A car hit him.C.A track hit him.Ⅲ.长对话理解(共3小题,每小题1分,满分3分)你将听到一段对话,对话后3个小题。

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。

八年级语文下册期中测试卷及答案【完整】

八年级语文下册期中测试卷及答案【完整】

八年级语文下册期中测试卷及答案【完整】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列词语中加点的字,每组读音都不相同的一项是()A.吆喝./喝.彩鲜.腴/屡见不鲜.舐犊.情深/穷兵黩.武B.踌躇./踟蹰.蹒.跚/瞒.天过海重峦叠.嶂/喋.喋不休C.斟酌./着.色顽强./强.词夺理摩肩接踵./德高望重.D.辟.邪/辟.谣差.事/差.之毫厘塞.翁失马/敷衍塞.责3、下列句子中成语使用恰当的二项是()A.虽然敌人来势凶猛,简直锐不可当,但我军顽强战斗,终于击溃了敌人的疯狂进攻。

B.下岗后,她开了一个小饭馆,整日兢兢业业,惨淡经营,收入还算不错。

C.这一别具匠心的设计,赢得了评委的一致好评。

D.最近几年,各种各样的电脑学习班越来越多,简直到了汗牛充栋的程度。

4、下列句子没有语病的一项是()A.经过表决、推举、讨论等一系列程序,出席职工代表大会的人选顺利产生。

B.近视患者都应该接受专业医师的检查,选配合适的眼镜,切忌不要因为怕麻烦、爱漂亮而不戴眼镜。

C.为了防止这类交通事故的发生,我校加强了交通安全的教育和管理。

D.“中国诗词大会”节目受到人们的喜爱,是因为其形式新颖,有文化内涵的原因。

5、对下列各句修辞手法的判断不正确的一项是()A.因为我在这里不但得到优待,又可以免念“秩秩斯干幽幽南山”了。

(借代)B.夹着潺潺的船头激水的声音,在左右都是碧绿的豆麦田地的河流中,飞一般径向赵庄前进了(夸张)C.回望戏台在灯火光中,却又如初来未到时候一般,又漂渺得像一座仙山楼阁,满被红霞罩着了。

(比喻)D.那航船,就像一条大白鱼背着一群孩子在浪花里蹿。

(拟人)6、将下列句子组成一段话,排序正确的是()①“柴门闻犬吠,风雪夜归人”,是江南雪夜,更深人静后的景况。

②“前村深雪里,昨夜一枝开”又到了第二天的早晨,和狗一样喜欢雪的村童来报告村景了。

③一提到雨,也就必然的要想到雪:“晚来天欲雪,能饮一杯无?”自然是江南日暮的雪景。

2023年八年级语文下册期中考试(带答案)

2023年八年级语文下册期中考试(带答案)

2023年八年级语文下册期中考试(带答案)满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列加点字注音全都正确的一项是()A.渗.透(shèn) 锐不可当.(dāng)气氛.(fēn) 刹.那(chà) B.颓.败(tuí) 一丝不苟.(ɡǒu) 着.陆(zháo)湛.蓝(zhàn)C.悄.然(qiāo) 殚.精竭虑(dān)扼.制(è)轻盈.(yíng)D.歼.退(qiān)颔.首低眉(hàn)沿溯.(sù) 长啸.(xiào)3、下列加点的成语使用有误的一项是()A.老一辈科学家苦心孤诣获得的科研成果,足以作为我们的前车之鉴....。

B.读屏和读书两种阅读方式并存,相得益彰....,共同构成了多元化的阅读时代。

C.智力雾霾没有捷径可走,没有特效药,不可能一招制敌,一蹴而就....。

D.“一带一路”把40多亿人联结成休戚..与共的利益共同体和命运共同体。

4、下列句子中没有语病的一项是()A.通过参加志愿者活动,让许多学生都感受到了奉献的快乐。

B.“百度”、“美团”、“饿了么”,这三家外卖平台的全国日订单量大约在700万单左右。

C.在有关部门的大力治理下,我市PM2. 5指数下降了一倍多,空气质量得到明显改善。

D.高速铁路具有服务大众、紧贴民生的特点。

5、下列句子没有运用修辞手法的一句是()A.故渔者歌曰:“巴东三峡巫峡长,猿鸣三声泪沾裳。

”B.庭下如积水空明,水中藻、荇交横,盖竹柏影也。

C.自富阳至桐庐一百许里,奇山异水,天下独绝。

D.急湍甚箭,猛浪若奔。

6、下列句子排序最恰当的一项是()①如果能做到这些,你一定会成为一个富有创造性的人。

②任何人都拥有创造力,首先要坚信这一点。

③一旦产生小的灵感,相信它的价值,并锲而不舍地把它发展下去。

④不满足于一个答案,而去探求新思路,去运用所得的知识。

部编人教版八年级语文下册期中测试卷及答案【完整版】

部编人教版八年级语文下册期中测试卷及答案【完整版】

部编人教版八年级语文下册期中测试卷及答案【完整版】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列加点字注音完全正确的一项是()A.悄.然( qiāo )荒谬.(miù)溃.退 (kuì ) 锐不可当.(dāng)B.要塞.(sài)瞥.见(piē)仲裁.( cái )歼.灭(qiān)C.翘.首( qiáo )荇.(xìng)寒噤.(jìn) 寒颤.(zhàn)D.屏.息( bǐng )诘.问(jié)教诲.(huǐ)素湍.绿潭(tuān)3、下列各句中,加点成语使用不恰当的一项是()A.中国父母普遍是“老黄牛”,呕心沥血....培养孩子,有求必应不图回报。

B.齐白石画展在美术馆开幕了,国画研究院的画家竞相观摩,艺术爱好者也纷.至沓来...。

C.环卫工人的劳动也许是具体而微....的,但又是不可缺少的,因为我们的城市需要“美容师”,他们应受到尊重。

D.阅读是源头活水,课堂是半亩方塘,只有把活水引入方塘,语文教学才能清澈如许,这是不言而喻....的。

4、下列句子中,没有语病的一项是()A.据调查,我国超80%左右的成年人全谷物摄入不足,导致维生素B、膳食纤维等的缺失。

B.这三年多来,“一带一路”建设从无到有、由点及面,进度和成果都超出了预期。

C.通过在扬州钟书阁举办的《人间送小温》首发式,使更多年轻读者深入了解汪曾祺。

D.我们不仅要学习巴西人“用脑踢球”的理念,但也要大力发展我国青少年的足球事业。

5、下列句子运用修辞手法不同于其他三项的一项是 ( )A.有些顶端尖峭,并微微倾向一旁,宛如美女的纤指。

B.洁白轻薄的云朵,微光闪烁,仿佛身披霓裳羽衣的纯洁天使。

C.此乃一座山门,原来我们已亲眼目睹了被称“阿尔卑斯之王”的勃朗峰。

D.刚才空中的华丽色彩,天衣云锦,恰如那在阳光下破裂并蔓延开去的肥皂泡。

人教版数学八年级下册《期中检测卷》及答案

人教版数学八年级下册《期中检测卷》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分.下列各小题给出的四个选项中,只有一个符合题目要求) 1.下列图形既是轴对称图形又是中心对称图形的是( )A. 平行四边形B. 等边三角形C. 等腰梯形D. 圆2.等腰三角形一个角是50°,则它的底角的度数为( )A 50° B. 50°或 80° C. 50°或 65° D. 65°3.若a <b ,则下列不等式不一定成立的是()A. a +2<b +2B. 2a <2bC. 22a bD. a 2<b 24.△ABC 中,∠B =50°,∠A =80°,若AB =6,则AC =( ) A. 6B. 8C. 5D. 135. 下列命题,假命题是( )A. 有一个内角等于60°的等腰三角形是等边三角形B. 有一个角是40°,腰相等两个等腰三角形全等C. 在直角三角形中,最大边的平方等于其他两边的平方和D. 三角形两个内角平分线的交点到三边的距离相等6. 如图.在Rt△A BC 中,∠A=30°,DE 垂直平分斜边AC,交AB 于D,E 是垂足,连接CD,若BD=1,则AC 的长是( )A. 2B. 2C. 4D. 47.某市出租车的收费标准是:起步价为8元(即行驶距离不超过3km ,都需付8元车费),超过3km 后,每增加1km,加收1.5元(不足1km按1km计算).某人从甲地到乙地经过的路程是xkm,出租车费为15.5元,那么x 的最大值是()A. 11B. 8C. 7D. 58.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )A. 14B. 7C. ﹣2D. 29.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为( )A. x>﹣2B. x<﹣2C. x>﹣5D. x<﹣5∠=,将ABP绕点A逆时针旋转后,能与ACP'重合,如果AP3=,那么PP'的长10.ABC中,BAC90等于()A. 3B. 32C. 23D. 不能确定二、填空题(每题4分,共16分)11.如图,△ABC与△BDE都是等腰直角三角形,若△ABC经旋转后能与△BDE重合,则旋转中心是________,旋转了_______°.12.已知点P(m﹣2,2m﹣1)在第二象限,则实数m的取值范围是_____.13.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、AB分别于点D、E, 则△AEC的周长等于________.14.如图,在△ABC 中∠ACB =90°,AC=BC ,AE 是BC 边上的中线CF ⊥AE ,垂足为F ,BD ⊥BC 交CF 的延长线于D .若AC =12cm ,则BD =______.三、解答题(本大题共6小题,共54分,答题时应写出文字说明、证明过程或演算步骤) 15.(1)解不等式:()21132x x +-≥+,并把它的解集表示在数轴上;(2)解不等式组()32211163x x x x ⎧+>-⎪⎨-->⎪⎩,并写出它的所有非负整数解. 16.如图,在建立平面直角坐标系网格纸中,每个小方格都是边长为1个单位长度的小正方形,△ABC 的顶点均在格点上,点P 的坐标为(-1,0).(1)把△ABC 绕点P 旋转180°得到△A’B’C’,作出△A’B’C’;(2)把△ABC 向右平移7个单位长度得到△A ″B ″C ″,作出△A ″B ″C ″;(3)△A’B’C’与△A ″B ″C ″是否成中心对称?若是,则找出对称中心P’,并写出其坐标;若不是,请说明理由. 17.已知关于x ,y 的方程组232x y m x y m+=-⎧⎨-=⎩的解,x ,y 均为负数. (1)求m 的取值范围;(2)化简:|m-5|+|m+1|18.如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.19.在今年年初,新型冠状病毒在武汉等地区肆虐,为了缓解湖北地区疫情,全国各地的医疗队员都纷纷报名支援湖北,某方舱医院需要8组医护人员支援,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人,若每组人数比预定人数少分配一人,则总数不够90人,那么预定每组分配的人数是多少人?20.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.四、填空题(每小题4分,共20分)21.不等式组1013xa x+>⎧⎪⎨-<⎪⎩的解集是1x>-,则a的取值范围是________.22.一个面积为63的等腰三角形,它的一个内角是30°,则以它的腰长为边长的正方形面积为_______.23.如图,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形三边距离之和PD+PE+PF的值是______.24.如图,△ABC是一个边长为1的等边三角形,BB1是△ABC的高,B1B2是△ABB1的高,B2B3是△AB1B2的高,……B n-1B n是△AB n-2B n-1的高,则B4B5的长是________,猜想B n-1B n的长是________.25.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是_____.五、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.2020年年初,在我国湖北等地区爆发了新型冠状病毒引发的肺炎疫情,对此湖北武汉率先采取了“封城”的措施,为了解决武汉市民的生活物资紧缺问题,某省给武汉捐献一批水果和蔬菜共435吨,其中蔬菜比水果多97吨.(1)求蔬菜和水果各有多少吨?(2)某慈善组织租用甲、乙两种货车共16辆,已知一辆甲车同时可装蔬菜18吨,水果10吨;一辆乙车同时可装蔬菜16吨,水果11吨;若将这批货物一次性运到武汉,有哪几种租车方案?请你帮忙设计出来.(3)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(2)中的那种方案,才能使所付的燃油费最少?最少的燃油费是多少元?27.如图,在平面直角坐标系中,点A、B的坐标分别是(0,8),(6,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A'处,折痕所在直线交y轴正半轴于点C.(1)求直线BC的函数表达式;(2)把直线BC向左平移,使之经过点A',求平移后直线的函数表达式.28.已知Rt△ABC中,∠BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE⊥AE,过点B作BD⊥AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求∠EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG⊥FH,交FH的延长线于点G,若GH:FH=6:5,△FHM的面积为30,∠EHB=∠BHG,求线段EH的长.答案与解析一、选择题(每题3分,共30分.下列各小题给出的四个选项中,只有一个符合题目要求)1.下列图形既是轴对称图形又是中心对称图形的是()A. 平行四边形B. 等边三角形C. 等腰梯形D. 圆[答案]D[解析][分析]根据轴对称图形与中心对称图形的概念解答即可.[详解]解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.[点睛]本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.等腰三角形一个角是50°,则它的底角的度数为( )A. 50°B. 50°或80°C. 50°或65°D. 65°[答案]C[解析][分析]分这个角为底角和顶角两种情况讨论即可.[详解]当底角为50°时,则底角为50°,当顶角为50°时,由三角形内角和定理可求得底角为:65°,所以底角为50°或65°,故选C.[点睛]本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论.3.若a <b ,则下列不等式不一定成立的是()A. a +2<b +2B. 2a <2bC. 22a bD. a 2<b 2[答案]D[解析][分析]根据不等式的性质逐一判断即可.[详解]解:A 、两边都加2,不等号的方向不变,故A 不符合题意;B 、两边都乘以2,不等号的方向不变,故B 不符合题意;C 、两边都除以2,不等号的方向不变,故C 不符合题意;D 、当a <b <0时,a 2>b 2,故D 符合题意;故选:D .[点睛]本题考查了不等式的性质,熟练掌握不等式的性质是解题关键.4.△ABC 中,∠B =50°,∠A =80°,若AB =6,则AC =( ) A. 6B. 8C. 5D. 13 [答案]A[解析][分析]由已知条件先求出∠C 的度数是50°,根据等角对等边的性质求解即可.[详解]解:∵∠A =80°,∠B =50°,∴∠C =180°﹣80°﹣50°=50°,∴∠C =∠B ,∴AC =AB =6.故选:A .[点睛]本题考查了三角形的内角和及等腰三角形的判定,求出∠C 的度数是解题的关键.5. 下列命题,假命题是( )A. 有一个内角等于60°的等腰三角形是等边三角形B. 有一个角是40°,腰相等的两个等腰三角形全等C. 在直角三角形中,最大边的平方等于其他两边的平方和D. 三角形两个内角平分线的交点到三边的距离相等[答案]B[解析]试题分析:利用等边三角形的判定定理,勾股定理以及角平分线的性质定理即可判断.解:A、是等边三角形的判定定理,正确;B、40°的角可能是顶角也可能是底角,故是假命题,选项错误;C、根据勾股定理即可得到,故正确;D、根据角平分线上的点到角的两边的距离相等,即可得到,故正确.故选B、考点:命题与定理.6. 如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是( )A. 2B. 2C. 4D. 4[答案]A[解析]试题分析:∵∠A=30°,∠B=90°,∴∠ACB=180°-30°-90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°-30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在△BCD中,由勾股定理得:CB=3,在△ABC中,由勾股定理得:AC=222 3.AB BC+=考点:1.线段垂直平分线的性质;2. 含30度角的直角三角形的性质7.某市出租车的收费标准是:起步价为8元(即行驶距离不超过3km,都需付8元车费),超过3km后,每增加1km,加收1.5元(不足1km按1km计算).某人从甲地到乙地经过的路程是xkm,出租车费为15.5元,那么x 的最大值是()A. 11B. 8C. 7D. 5[答案]B[解析][分析]根据等量关系,即(经过的路程﹣3)×1.5+起步价8元≤15.5,列出不等式求解.[详解]解:根据题意可知:(x﹣3)×1.5+8≤15.5,解得:x≤8.即此人从甲地到乙地经过的路程最多为8km.故选:B.[点睛]考查了一元一次不等式的应用.解题的关键是正确理解题意,找出题目中的不等关系.8.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )A. 14B. 7C. ﹣2D. 2[答案]D[解析][分析]解不等式得到x≥12m+3,再列出关于m的不等式求解.[详解]23m x-≤﹣2,m﹣2x≤﹣6, ﹣2x≤﹣m﹣6,x≥12m+3,∵关于x的一元一次不等式23m x-≤﹣2的解集为x≥4,∴12m+3=4,解得m=2.故选D.考点:不等式的解集9.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为( )A. x>﹣2B. x<﹣2C. x>﹣5D. x<﹣5[答案]A[解析][分析]函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),求不等式3x+b>ax﹣3的解集,就是看函数在什么范围内y1=3x+b的图像在函数y2=ax﹣3的图象上面,据此进一步求解即可.[详解]从图像得到,当x>﹣2时,y1=3x+b的图像对应的点在函数y2=ax﹣3的图像上面,∴不等式3x+b>ax﹣3的解集为:x>﹣2.故选:A.[点睛]本题主要考查了一次函数与不等式的综合运用,熟练掌握相关方法是解题关键.10.ABC中,BAC90∠=,将ABP绕点A逆时针旋转后,能与ACP'重合,如果AP3=,那么PP'的长等于()A. 3B. 32C. 3D. 不能确定[答案]B[解析][分析]由AB 旋转后和AC 重合,得出旋转角是90,又旋转前后长度不变,得出等腰直角三角形APP',根据勾股定理求出即可.[详解]解:如图:根据旋转的旋转可知:PAP'BAC 90∠∠==,AP AP'3==, 根据勾股定理得:22PP'3332=+=,故选B .[点睛]本题考查了旋转的旋转,勾股定理,等腰直角三角形等知识点的应用,根据旋转的性质得出:旋转角相等,对应点到旋转中心的距离相等,得到的APP'是一个等腰直角三角形,是解此题的关键,再根据勾股定理求解即可.二、填空题(每题4分,共16分)11.如图,△ABC 与△BDE 都是等腰直角三角形,若△ABC 经旋转后能与△BDE 重合,则旋转中心是________,旋转了_______°.[答案] (1). B (2). 45[解析][分析]由于△ABC 与△DBE 都是等腰直角三角形,由此可以得到∠ABC 与∠DBE 都是45°,如果△ABC 经过旋转后能与△DBE 重合,那么根据旋转的性质即可确定旋转中心及旋转角.[详解]解:∵△ABC 与△BDE 都是等腰直角三角形,∠ACB 与∠DEB 都是直角,点C 在DB 上,∴∠ABC 与∠DBE 都是45°,而△ABC 经过旋转后与△DBE 重合,那么旋转中心为点B ,旋转角为∠DBE ,∴旋转角度为45°.故答案为:B,45.[点睛]此题主要考查了旋转的性质及等腰直角三角形的性质,首先根据旋转的性质确定旋转中心、旋转角,然后利用等腰直角三角形的性质即可解决问题.12.已知点P(m﹣2,2m﹣1)在第二象限,则实数m的取值范围是_____.[答案]12<m<2.[解析][分析]根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.[详解]解:∵点P(m﹣2,2m﹣1)在第二象限,∴20210mm-<⎧⎨->⎩①②,解不等式①得,m<2,解不等式②得,m>12,所以,不等式组的解集是12<m<2,故答案为12<m<2.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).13.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、AB分别于点D、E, 则△AEC的周长等于________.[答案]a+b.[解析]考点:线段垂直平分线的性质.分析:要求三角形的周长,知道AC=b,只要求得AE+EC即可,由DE是BC的垂直平分线,结合线段的垂直平分线的性质,知EC=BE,这样三角形周长的一部分AE+EC=AE+BE=AB,代入数值,答案可得.解答:解:∵ED垂直且平分BC,∴BE=CE.∵AB=a,∴EC+AE=a,∵AC=b.∴△AEC的周长为:AE+EC+AC=a+b,故答案为a+b.点评:本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.进行线段的有效转移是解决本题的关键.14.如图,在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线CF⊥AE,垂足为F,BD⊥BC交CF的延长线于D.若AC=12cm,则BD=______.[答案]6cm[解析][分析]证明△CDB≌△AEC(AAS),得出BD=CE,根据中线求出CE,即可得出答案.[详解]解:∵BD⊥BC,∴∠CBD=90°,∴∠D+∠BCD=90°,∵CF⊥AE,∴∠AEC +∠BCD =90°,∴∠D =∠AEC ,在△CDB 和△AEC 中,D AEC DBC ACE BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDB ≌△AEC (AAS ),∴BD =CE ,∵AE 是边BC 上的中线,AC =BC =12,∴CE =12BC =6, ∴BD =6.故答案:6cm .[点睛]本题考查了全等三角形的判定和性质、直角三角形的性质、等腰直角三角形的性质等知识,解题的关键是证明三角形全等,属于中考常考题型.三、解答题(本大题共6小题,共54分,答题时应写出文字说明、证明过程或演算步骤) 15.(1)解不等式:()21132x x +-≥+,并把它的解集表示在数轴上;(2)解不等式组()32211163x x x x ⎧+>-⎪⎨-->⎪⎩,并写出它的所有非负整数解. [答案](1)x ≤-1.数轴表示见解析;(2)不等式组的解集为:-4<x <73.不等式组的非负整数解为:0,1,2. [解析][分析](1)先去括号,移项,合并同类项,把x 的系数化为1,再把x 的取值范围在数轴上表示出来即可;(2)分别求出各不等式的解集,再求出其公共部分,在其解集范围内找出x 的非负整数解即可.[详解](1)()21132x x +-≥+,去括号得,2x+2-1≥3x+2,移项得,2x-3x≥2-2+1,合并同类项,-x≥1,把x 的系数化为1得,x≤-1.在数轴上表示为:;(2)() 32211163x xx x⎧+>-⎪⎨-->⎪⎩①②,由①得,x>-4;由②得,x<73,故此不等式组的解集为:-4<x<73.所以,不等式组的非负整数解为:0,1,2.[点睛]本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.如图,在建立平面直角坐标系的网格纸中,每个小方格都是边长为1个单位长度的小正方形,△ABC的顶点均在格点上,点P的坐标为(-1,0).(1)把△ABC绕点P旋转180°得到△A’B’C’,作出△A’B’C’;(2)把△ABC向右平移7个单位长度得到△A″B″C″,作出△A″B″C″;(3)△A’B’C’与△A″B″C″是否成中心对称?若是,则找出对称中心P’,并写出其坐标;若不是,请说明理由.[答案](1)见解析;(2)见解析;(3)P'(2.5,0)[解析][分析](1)根据网格结构找出点A、B、C绕点P旋转180°的对应点A′、B′、C′位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C平移后的对应点A″、B″、C″的位置,然后顺次连接即可;(3)利用观察对应点的连线即可求解.[详解]解:(1)如图,△A'B'C'即为所求;(2)如图,A''B''C''即为所求;(3)如图,P'(2.5,0).[点睛]本题考查的是作图﹣旋转变换和平移变换,熟知图形旋转的性质及平移的性质是解答此题的关键.17.已知关于x,y的方程组232x y mx y m+=-⎧⎨-=⎩的解,x,y均为负数.(1)求m的取值范围;(2)化简:|m-5|+|m+1|[答案](1)﹣1<m<1;(2)6[解析][分析](1)先利用加减消元法求出方程组的解,再根据x,y均为负数列出关于m的不等式组,再解不等式组即可;(2)根据﹣1<m<1可得m﹣5<0,m+1>0,由此即可化简|m-5|+|m+1|得到答案.[详解]解:(1)232x y mx y m+=-⎧⎨-=⎩①②①+②得:3x=3m﹣3 解得x=m﹣1,把x=m﹣1,代入②得:y=﹣m﹣1∵x,y均为负数,∴1010 mm-<⎧⎨--<⎩③④由③得m<1,由④得m>﹣1,∴不等式组的解集为﹣1<m<1,∴m的取值范围为﹣1<m<1;(2)∵﹣1<m<1,∴m﹣5<0,m+1>0,∴|m﹣5|+|m+1|=5﹣m+m+1=6.[点睛]本题考查了二元一次方程组的解法和一元一次不等式组的解法以及绝对值的化简,熟练掌握二元一次方程组及一元一次不等式组的解法是解决本题的关键.18.如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.[答案](1)证明见解析;(2)AG=3DG,理由见解析.[解析][分析](1)、根据角平分线的性质得出DE=DF,∠AED=∠AFD=90°,从而得出∠DEF=∠DFE,则∠AEF=∠AFE,从而说明AE=AF,即点A、D都在EF的垂直平分线上,得出答案;(2)、根据∠BAC=60°,AD平分∠BAC得出AD=2DE,根据∠EGD=90°,∠DEG=30°得出DE=2DG,从而说明AD=4DG,即AG=3DG.[详解](1)、∵AD 为△ABC 的角平分线,DE ⊥AB ,DF ⊥AC , ∴DE=DF ,∠AED=∠AFD=90°, ∴∠DEF=∠DFE ,∴∠AEF=∠AFE ,∴AE=AF ∴点A 、D 都在EF 的垂直平分线上,∴AD 垂直平分EF .(2)、AG=3DG .∵∠BAC=60°,AD 平分∠BAC ,∴∠EAD=30°,∴AD=2DE ,∠EDA=60°,∵AD ⊥EF ,∴∠EGD=90°,∴∠DEG=30°∴DE=2DG ,∴AD=4DG , ∴AG=3DG . 考点:(1)、角平分线的性质;(2)、中垂线的性质.19.在今年年初,新型冠状病毒在武汉等地区肆虐,为了缓解湖北地区的疫情,全国各地的医疗队员都纷纷报名支援湖北,某方舱医院需要8组医护人员支援,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人,若每组人数比预定人数少分配一人,则总数不够90人,那么预定每组分配的人数是多少人?[答案]12[解析][分析]首先设预定每组分配x 人,根据题意可得不等式为:(预定每组分配的人数+1)×组数>100;(预定每组分配的人数﹣1)×组数<90,由此可得到不等式组,解不等式组后,取整数解即可.[详解]解:设预定每组分配x 人,根据题意得:8(1)1008(1)90x x +>⎧⎨-<⎩, 解得:11.5<x <12.25.∵x 为整数,∴x =12.答:预定每组分配的人数是12人.[点睛]此题主要考查了一元一次不等式组的应用,弄清题意,根据题目中的不等关系列出相应的不等式组是解决本题的关键.20.如图,在△ABC 中,AB =AC =2,∠B =∠C =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BDA =115°时,∠EDC = °,∠DEC = °;点D 从B 向C 运动时,∠BDA 逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.[答案](1)25°,115°,小;(2)当DC=2时,△ABD≌△DCE,见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,见解析[解析][分析](1)根据∠BDA=115°以及∠ADE=40°,即可得出∠EDC=180°﹣∠ADB﹣∠ADE,进而求出∠DEC的度数,(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE,(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.[详解]解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°,∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA =110°时,∴∠ADC =70°,∵∠C =40°,∴∠DAC =70°,∠AED =∠C +∠EDC =30°+40°=70°,∴∠DAC =∠AED ,∴△ADE 的形状是等腰三角形;∵当∠BDA 的度数为80°时,∴∠ADC =100°,∵∠C =40°,∴∠DAC =40°,∴∠DAC =∠ADE ,∴△ADE 的形状是等腰三角形.[点睛]本题考查了等腰三角形的判定及性质、全等三角形的判定及性质,熟练掌握性质定理是解题的关键.四、填空题(每小题4分,共20分)21.不等式组10103x a x +>⎧⎪⎨-<⎪⎩的解集是1x >-,则a 的取值范围是________. [答案]13a ≤-[解析][详解]解不等式10x +>,得1x >-,解不等式103a x -<,得3x a >,∵不等式组的解集为1x >-,则31a ≤-,∴13a ≤-22.一个面积为3,它的一个内角是30°,则以它的腰长为边长的正方形面积为_______. [答案]324[解析][分析]分两种情形讨论:①当30度角是等腰三角形的顶角,②当30度角是等腰三角形的底角,分别作腰上的高即可.[详解]解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=12AB=12a,∴12•a•12a=63,∴a2=243,∴△ABC的腰长为边的正方形的面积为243.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a, ∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,∵在Rt△ABD中,∠D=90°,∠BAD=60°,∴BD=32a,∴12•a•32a=63,∴a2=24,∴△ABC的腰长为边的正方形的面积为24.故答案为:243或24.[点睛]本题考查了正方形的性质、等腰三角形的性质以及含30°的直角三角形的性质等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.23.如图,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形三边距离之和PD+PE+PF的值是______.[答案3[解析][分析]连接AP、BP、CP,过点A作AH⊥BC于点H,先利用勾股定理求得AH的长,再分别求出△APC、△APB、△BPC的面积,而三个三角形的面积之和等于△ABC面积,由此等量关系可求出到三角形的三边距离之和PD+PE+PF等于△ABC的高AH,进而可得答案.[详解]解:如图,连接AP、BP、CP,过点A作AH⊥BC于点H,∵正三角形ABC边长为2,AH⊥BC,∴BH=CH=1,∴AH2222213AB BH--=∵S△BPC=12BC PD,S△APC=12AC PE,S△APB=12AB PF,∴S△ABC=111222BC PD AC PE AB PF++,∵AB=BC=AC,∴S△ABC=11()22BC PD PE PF BC AH++=,∴PD+PF+PE=AH3故答案为:3.[点睛]本题考查了等边三角形的性质及三角形的面积公式,正确运用等面积法是解决本题的关键. 24.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.[答案] (1).332 (2). 32n [解析][分析] 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=32,求出△ABC 的面积是34;求出1138ABB BCB S S ==根据三角形的面积公式求出B 1B 2=34,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 333=,B 3B 433=B 4B 533=,推出B n ﹣1B n =32n . [详解]解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB S S ==⨯,12=×1×B 1B 2,B 1B 2由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3=8,B 3B 4=16,B 4B 5…,B n ﹣1B n故答案为:32,2n . [点睛]本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.25.如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△A ′B ′C ,M 是BC 的中点,P 是A ′B ′的中点,连接PM ,若BC =2,∠BAC =30°,则线段PM 的最大值是_____.[答案]3.[解析][分析]连接PC.先依据直角三角形斜边上中线的性质求出PC=2,再依据三角形的三边关系可得到PM≤PC+CM,由此可得到PM的最大值为PC+CM.[详解]解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为3.[点睛]本题考查旋转性质,直角三角形的性质、三角形的三边关系,解题的关键是掌握本题的辅助线的作法.五、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.2020年年初,在我国湖北等地区爆发了新型冠状病毒引发的肺炎疫情,对此湖北武汉率先采取了“封城”的措施,为了解决武汉市民的生活物资紧缺问题,某省给武汉捐献一批水果和蔬菜共435吨,其中蔬菜比水果多97吨.(1)求蔬菜和水果各有多少吨?(2)某慈善组织租用甲、乙两种货车共16辆,已知一辆甲车同时可装蔬菜18吨,水果10吨;一辆乙车同时可装蔬菜16吨,水果11吨;若将这批货物一次性运到武汉,有哪几种租车方案?请你帮忙设计出来.(3)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(2)中的那种方案,才能使所付的燃油费最少?最少的燃油费是多少元?[答案](1)蔬菜有266吨,水果有169吨;(2)有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(3)选择(2)中的方案一租车,才能使所付的费用最少,最少费用是21200元.[解析][分析](1)设水果有m吨,则蔬菜有(m+97)吨,根据水果和蔬菜共435吨列出方程求解即可;(2)设租用甲种货车x辆,则租用乙种货车为(16﹣x)辆,然后根据装运的蔬菜和水果数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(3)分别求出三种方案的燃油费用,比较即可得解.[详解]解:(1)设水果有m吨,则蔬菜有(m+97)吨,根据题意得m+(m+97)=435,解得m=169,∴m+97=266,答:蔬菜有266吨,水果有169吨;(2)设租用甲种货车x辆,则租用乙种货车为(16﹣x)辆,根据题意得1816(16)266 1011(16)169x xx x+-⎧⎨+-⎩①②,由①得x≥5,由②得x≤7,∴5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(3)当x=5时,16﹣5=11辆,5×1600+11×1200=21200元;当x=6时,16﹣6=10辆,6×1600+10×1200=21600元;当x=7时,16﹣7=9辆,7×1600+9×1200=22000元.∵21200<21600<22000,∴方案一所付费用最少,答:选择(2)中的方案一租车,才能使所付的费用最少,最少费用是21200元.[点睛]本题考查了一元一次方程和一元一次不等式组的应用,读懂题目信息,找出题中等量关系及不等量关系,列出方程及不等式组是解题的关键.27.如图,在平面直角坐标系中,点A、B的坐标分别是(0,8),(6,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A'处,折痕所在直线交y轴正半轴于点C.(1)求直线BC的函数表达式;(2)把直线BC向左平移,使之经过点A',求平移后直线的函数表达式.[答案](1)y=﹣12x+3;(2)y=﹣12x﹣2.[解析][分析](1)在Rt△OAB中,OA=8,OB=6,用勾股定理计算出AB=10,再根据折叠的性质得BA′=BA=10,CA′=CA,则OA′=BA′﹣OB=4,设OC=t,则CA=CA′=8﹣t,在Rt△OA′C中,根据勾股定理得到t2+42=(8﹣t)2,解得t=3,则C点坐标为(0,3),然后利用待定系数法确定直线BC的函数表达式即可;(2)由(1)可知点A′的坐标为(﹣4,0),根据平移的性质可设平移后的直线为y=﹣12x+m,再将(﹣4,0)代入即可求得平移后直线的函数表达式.[详解]解:(1)∵A(0,8),B(6,0), ∴OA=8,OB=6,在Rt△OAB中,AB10.∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处, ∴BA′=BA=10,CA′=CA,∴OA′=BA′﹣OB=10﹣6=4.设OC=t,则CA=CA′=8﹣t,在Rt△OA′C中,∵OC2+OA′2=CA′2,∴t2+42=(8﹣t)2,解得t=3,∴C点坐标为(0,3),设直线BC的解析式为y=kx+b,把B(6,0)、C(0,3)代入得603k bb+=⎧⎨=⎩,解得123kb⎧=-⎪⎨⎪=⎩,∴直线BC的解析式为y=﹣12x+3;(2)∵OA′=4,∴点A′的坐标为(﹣4,0)∵把直线BC向左平移,使之经过点A',∴设平移后直线的函数表达式为y=﹣12x+m,将(﹣4,0)代入,得0=2+m,解得m=﹣2,∴平移后直线函数表达式为y=﹣12x﹣2.[点睛]本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理和待定系数法求一次函数解析式以及一次函数图像平移的性质,熟练掌握一次函数的图像性质以及勾股定理是解决本题的关键.。

八年级语文下册期中测试卷及答案【完美版】

八年级语文下册期中测试卷及答案【完美版】

八年级语文下册期中测试卷及答案【完美版】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列各组词语的字形及加点字的注音全都正确的一项是()A.要塞.(sài) 颁.(bān)发燥.(zào)热深恶.(wù)痛绝B.泄.(xiè)气翘.(qiáo)首建树.(shù) 入木三分.(fèn) C.督.(dū)战教.(jiāo)诲凌.(línɡ)空屏.(bǐnɡ)息敛声D.溃.(kuì)退镌.(juān)刻遗嘱.(zhǔ) 殚.(dān)精揭虑3、下列语句中加点成语使用有误的一项是()A.五一期间,织金洞游人如织,摩肩接踵....。

B.蜀锦的传统技艺让许多现代工厂生产出来的锦缎黯然失色....。

C.韩国政府自出心裁....地部署“萨德”,引起周边国家的强烈不满。

D.网络是柄双刃剑,它虽然可以为我们提供丰富的学习资料,但是也会藏污纳...垢.。

4、下列句子没有语病的一项是( )A.看到眼前的毕业照,小新不由想起三年来大家一起玩耍、同桌共读。

B.新时代的教育应该培养学生善于观察、善于思考、善于创造的水平。

C.在经济社会快速发展的推动下,使居民的收入水平和社会购买力大幅度提高。

D.人类历史发展的过程,就是各种文明不断交流、融合、创新的过程。

5、下列分析有误的一项是()A.一触.到水,我们刚到.的客人就会.叫起来..那脆弱..,似乎他们溅起..的水花能抖掉的香蒲身上的冬天。

(句中加点词语都是动词)B.挑拨离间、目眩神迷、有益无损、人情世故。

(四个短语的结构类型一样)C.“四书”之一的《大学》里这样说:一个人教育的出发点是“格物致知。

”(句中标点符号使用正确)D.一些薄云掠过月亮时,就像丽江古城中,一个银匠,正在擦拭一只硕大的银盘。

(句中运用了比喻的修辞手法。

)6、给下列句子排序,最恰当的一项是()①马、鹿、野骆驼、鹅喉羚、鹭鸶等百余种野生动物在林中繁衍生息②胡杨林是牲畜天然的庇护所和栖息地③它们共同组成了一个特殊的生态系统④林中还伴着甘草、骆驼刺等多种沙生植物⑤养育着南疆750余万各民族儿女⑥营造了一个个绿洲A.①②④③⑤⑥ B.②①④⑥⑤③C.②①④③⑥⑤ D.①②④⑥③⑤7、默写古诗文,并写出相应的篇名。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下期中测试题 The document was prepared on January 2, 2021
数学:八年级下学期期中测试题(人教新课标八年级下)
一、 填空题(每空3分,共36分)
1、任意写出一个图象经过二、四象限的反比例函数的解析式:__________
2、若正比例函数y =mx (m ≠0)和反比例函数y =n x
(n ≠0)的图象有一个交点为点(2,3),则m =______,n =_________ .
3、已知正比例函数y=kx 与反比例函数y=3x
的图象都过A (m ,1)点,求此正比例函数解析式为________,另一个交点的坐标为________.
4、已知反比例函数2
k y x
-=,其图象在第一、三象限内,则k 的值可
为 。

(写出满足条件的一个k 的值即可)
5、已知反比例函数x
k y =的图象经过点)2
14(,,若一次函数1+=x y 的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标为______________ 6、已知双曲线x
k
y =
经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b .
7、函数y=x
2的图象如图所示,在同一直角坐标系内,如果将直线y=-x+1沿y
轴向上平移2个单位后,那么所得直线与函数y=
x
2
的图象的交点共有 个 8、已知函数y kx =- (k≠0)
与y=4
x
-的图象交于A 、B 两点,过点A 作
AC 垂直于y轴,垂足为点C ,则△BOC 的面积为____
9.如图,11POA 、 212P A A 是等腰直角三角形,点1P 、2P 在函数4
(0)y x x
=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________.
(第9
第(第9题)
10. 两个反比例函数x
y 3=,x
y 6=在第一象限内的图象如图所示, 点
P 1,P 2,
P 3,…,P 2 005在反比例函数x
y 6
=图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1, P 2,P 3,…,P 2 005分别作y 轴的平行线,与x
y 3=的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则y 2 005= . 二、选择题(每题3分,共30分)
11、反比例函数k
y x
=与直线2y x =-相交于点A ,A 点的横坐标为-1,则此反
比例函数的解析式为( ) A .2y x = B .12y x = C .2y x =- D .1
2y x
=-
12、如图所示的函数图象的关系式可能是( ).
(A )y = x (B )y =x
1
(C )y = x 2 (D) y = 1x
13、若点(3,4)是反比例函数221
m m y x
+-=图象上一点,则此函数图象必须
经过点( ).
(A )(2,6) (B )(2,-6) (C )(4,-3) (D )(3,-4)
14、在同一平面直角坐标系中,函数y=k(x -1)与y=)0(<k x
k
的大致图象是( )
A B C D
15.已知一个矩形的面积为24cm 2,其长为ycm ,宽为xcm ,则y 与x 之间的函数关系的图象大致是
A B C D
16、函数y =x
1
与函数y =x 的图象在同一平面直角坐标系内的交点的个数是
( )
A 、一个
B 、二个
C 、三个
D 、零个
x y o x y o x y
o x y o O
x
y
(第12题)
图5
x
y
O
A B
C D
17、已知点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数4y x
=
的图象上,则( )
(A )y 1<y 2<y 3 (B) y 3<y 2<y 1 (C) y 3<y 1<y 2 (D) y 2<y 1<y 3
18、如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别作y 轴的垂线,得到三个三角形P 1A 10、P 2A 20、P 3A 30,设它们的面积分别是S 1、S 2、S 3,则( ).
A . S 1<S 2<S 3
B . S 2<S 1<S 3
C .S 1<S 3<S 2
D .S 1=S 2=S 3 19.正比例函数y=x 与反比例函数y=1x
的图象相交于A 、C 两点.AB ⊥x 轴于
B,CD ⊥x 轴于D(如图),则四边形ABCD 的面积为( )
B.32
D.5
2
(第18题) (第19题) (第
20题)
20 .如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是【 】
(A )x <-1 (B )x >2 (C )-1<x <0,或x >2 (D )x <-1,或0<x <2 三、解答题
21.如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与双曲线2k
y x
=
(x <0)分别交于点C 、D ,且C 点的坐标为(1-,2). ⑴分别求出直线AB 及双曲线的解析式; ⑵求出点D 的坐标; ⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .
x
y o A B C
D
22.有一个ABC Rt ∆,090=∠A ,090=∠B ,1=AB ,将它放在直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数x
y 3
=的图象上,求点C 的坐标.
23、请任选一题作答:
(A 类)已知正比例函数x k y 1=与反比例函数x
k y 2
=
的图象都经过点(2,1).求这两个函数关系式.
(B 类)已知函数y = y 1 +y 2,y 1与x 成正比例,y 2与x 成反比例,且当x = 1时,y =-1;当x = 3时,y = 5.求y 关于x 的函数关系式.
24、(08山西省太原市)人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50km/h 时,视野为80度.如果视野f (度)是车速v (km/h )的反比例函数,求f v ,之间的关系式,并计算当车速为100km/h 时视野的度数.
25、制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x (分钟).据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.
(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式; (2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间
参考答案:
1、2y x =-等
2、32m =,6n =
3、1
3
y x =,(-3,-1) 4、3(只需大
于2就行)
5、(-1,0)
6、>
7、2个
8、2
9、(42,0) 10、 11~20、C 、D 、A 、B 、D 、B 、A 、D 、C 、D
21(1)13y x =+,22
y x
=-,(2)(-2,1)(3)21x -<<-
22、本题共有4种情况。

点C 的坐标分别为:(0,27)、(2
1
,0)、
(0,27-)、(0,2
1
-)
23、A 类:两函数关系式分别为12y x =和2y x =,B 类:3
2y x x
=-
24、【答案】设f v ,之间的关系式为(0)k
f k v
=≠.
50v =时,808050
k
f =∴=,
. 解,得4000k =.
所以,4000
f v
=.
当100v =时,4000
40100
f =
=(度). 答:当车速为100km/h 时视野为40度
25、(1)
915(05)
300
(5)
x x
y
x
x
+≤<


=⎨

⎪⎩
(2)20分钟。

相关文档
最新文档