导数的运算训练学案
导数及其应用学案+作业 (答案)
变化率与导数、导数的计算1.函数y =f (x )在x =x 0处的导数:f ′(x 0)=lim Δx →ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. 2.函数f (x )在点x 0处的导数f ′(x 0)的几何意义:f ′(x 0)是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二、基本初等函数的导数公式 原函数导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.1.用定义法求下列函数的导数.(1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2, 所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →ΔyΔx.2.求下列函数的导数.(1)y =x 2sin x ;(2)y =e x +1e x -1;[自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.3.求下列复合函数的导数: (1)y =(2x -3)5;(2)y =3-x ; (3)y =sin 2⎝⎛⎭⎫2x +π3;(4)y =ln(2x +5). [自主解答] (1)设u =2x -3,则y =(2x -3)5由y =u 5 与u =2x -3复合而成,∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′ =5u 4·2=10u 4=10(2x -3)4.(2)设u =3-x ,则y =3-x 由y =u 12与u =3-x 复合而成.∴y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′ =12u -12(-1)=-12u 12- =-123-x =3-x 2x -6.(3)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =4sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3 =2sin ⎝⎛⎭⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x , ∴y ′=12x +5·(2x +5)′=22x +5.4.若f (x )=x e x ,则f ′(1)=( )A .0B .eC .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e. 5.函数y =x cos x -sin x 的导数为________.解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x6.(1)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2.又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C7.若上题 (1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程.解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20.又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1.∴k =3,y 0=10.∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.8.(1)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.(2)(直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B9.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( )A .2B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.10.曲线y =x -x +3在点(1,3)处的切线方程为________.解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2. ∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=0作业111.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2)B .2(x 2+a 2)C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).12.已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线方程为y =-2x .13.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).14.已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8. 答案:815.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a23,因斜率最小的切线与12x +y =6平行,即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.16.等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212.17.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________.解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x , 以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:018.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0, 故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.19.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +b x 2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.导数的应用(一)1.函数的单调性在(a ,b )内可导函数f (x ),f ′(x )在(a ,b )任意子区间内都不恒等于0. f (x )在(a ,b )上为增函数⇒f ′(x )≥0 f (x )在(a ,b )上为减函数⇒f ′(x )≤0⇔ 2.函数的极值 (1)函数的极小值:函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其它点的函数值都小,f ′(a )=0,而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)函数的极大值:函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近的其他点的函数值都大,f ′(b )=0,而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.1.f ′(x )>0与f (x )为增函数的关系:f ′(x )>0能推出f (x )为增函数,但反之不一定.如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0,所以f ′(x )>0是f (x )为增函数的充分 不必要条件.2.可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f ′(x 0)=0是可导函数f (x )在x =x 0处取得极值的必要不充分条件.例如函数y =x 3在x =0处有y ′|x =0=0,但x =0不是极值点.此外,函数不可导的点也可能是函数的极值点.3.可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.20.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)解析:选B 函数y =12x 2-ln x 的定义域为(0,+∞),y ′=x -1x =(x -1)(x +1)x,令y ′≤0,则可得0<x ≤1. 21.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是________.解析:f ′(x )=3x 2-a 在x ∈[1,+∞)上f ′(x )≥0, 则f ′(1)≥0⇒a ≤3. 答案:322.已知函数f (x )=ln x +k e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间. [自主解答] (1)由f (x )=ln x +ke x, 得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞),由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞),令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0;x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.23.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)是否存在a使函数f(x)为R上的单调递减函数,若存在,求出a的取值范围;若不存在,请说明理由.解:(1)当a=2时,f(x)=(-x2+2x)e x,∴f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,∵e x>0,∴-x2+2>0,解得-2<x< 2.∴函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R上单调递减,则f′(x)≤0对x∈R都成立,即[-x2+(a-2)x+a]e x≤0对x∈R都成立.∵e x>0,∴x2-(a-2)x-a≥0对x∈R都成立.∴Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故不存在a使函数f(x)在R上单调递减.24.若函数f(x)=x3+ax2+3x-9在x=-3时取得极值,则a等于()A.2B.3C.4 D.5解析:选D∵f′(x)=3x2+2ax+3,f′(-3)=0,∴a=5.25.设函数f(x)=x e x,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点解析:选D求导得f′(x)=e x+x e x=e x(x+1),令f′(x)=e x(x+1)=0,解得x=-1,易知x=-1是函数f(x)的极小值点.26.若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点. (1)求a 和b 的值;(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点.[自主解答] (1)由题设知f ′(x )=3x 2+2ax +b ,且f ′(-1)=3-2a +b =0, f ′(1)=3+2a +b =0,解得a =0,b =-3.(2)由(1)知f (x )=x 3-3x .因为f (x )+2=(x -1)2(x +2),所以g ′(x )=0的根为x 1=x 2=1,x 3=-2,于是函数g (x )的极值点只可能是1或-2.当x <-2时,g ′(x )<0;当-2<x <1时,g ′(x )>0,故-2是g (x )的极值点. 当-2<x <1或x >1时,g ′(x )>0,故1不是g (x )的极值点. 所以g (x )的极值点为-2. 求函数极值的步骤 (1)确定函数的定义域; (2)求方程f ′(x )=0的根;(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并形成表格; (4)由f ′(x )=0根的两侧导数的符号来判断f ′(x )在这个根处取极值的情况.27.设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.解:(1)因为f (x )=2x 3+ax 2+bx +1, 故f ′(x )=6x 2+2ax +b , 从而f ′(x )=6⎝⎛⎭⎫x +a 62+b -a 26, 即y =f ′(x )关于直线x =-a6对称.从而由题设条件知-a 6=-12,即a =3.又由于f ′(1)=0,即6+2a +b =0, 得b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1, 所以f ′(x )=6x 2+6x -12=6(x -1)(x +2), 令f ′(x )=0, 即6(x -1)(x +2)=0, 解得x =-2或x =1,当x ∈(-∞,-2)时,f ′(x )>0,即f (x )在(-∞,-2)上单调递增; 当x ∈(-2,1)时,f ′(x )<0, 即f (x )在(-2,1)上单调递减; 当x ∈(1,+∞)时,f ′(x )>0, 即f (x )在(1,+∞)上单调递增.从而函数f (x )在x =-2处取得极大值f (-2)=21, 在x =1处取得极小值f (1)=-6.28.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.解析:f ′(x )=x 2+2x -3,f ′(x )=0,x ∈[0,2], 得x =1.比较f (0)=-4,f (1)=-173, f (2)=-103.可知最小值为-173.答案:-17329.已知函数f (x )=(x -k )e x .(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值. [自主解答] (1)f ′(x )=(x -k +1)e x . 令f ′(x )=0,得x =k -1. f (x )与f ′(x )的情况如下:所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞).(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k-1;当k -1≥1时,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.30.上题条件不变,求f (x )在区间[0,1]上的最大值.解:当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增. 所以f (x )在[0,1]上的最大值为f (1)=(1-k )e.当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最大值为f (0)和f (1)较大者.若f (0)=f (1),所以-k =(1-k )e ,即k =e e -1. 当1<k <e e -1时函数f (x )的最大值为f (1)=(1-k )e ,当ee -1≤k <2时,函数f (x )的最大值为f (0)=-k ,当k -1≥1时,即k ≥2时,函数f (x )在[0,1]上单调递减. 所以f (x )在[0,1]上的最大值为f (0)=-k .综上所述,当k <ee -1时,f (x )的最大值为f (1)=(1-k )e.当k ≥ee -1时,f (x )的最大值为f (0)=-k .求函数f (x )在[a ,b ]上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );31.已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16.(1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值. 解:(1)因f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b , 由于f (x )在点x =2处取得极值c -16,故有⎩⎪⎨⎪⎧f ′(2)=0,f (2)=c -16,即⎩⎪⎨⎪⎧ 12a +b =0,8a +2b +c =c -16,化简得⎩⎪⎨⎪⎧12a +b =0,4a +b =-8,解得a =1,b =-12. (2)由(1)知f (x )=x 3-12x +c ; f ′(x )=3x 2-12=3(x -2)(x +2). 令f ′(x )=0,得x 1=-2,x 2=2.当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,2)时,f ′(x )<0,故f (x )在(-2,2)上为减函数; 当x ∈(2,+∞)时,f ′(x )>0,故f (x )在(2,+∞)上为增函数.由此可知f (x )在x 1=-2处取得极大值f (-2)=16+c ,f (x )在x 1=2处取得极小值f (2)=c -16. 由题设条件知16+c =28,得c =12. 此时f (-3)=9+c =21,f (3)=-9+c =3, f (2)=-16+c =-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.课后作业232.函数f (x )=x +eln x 的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析:选A 函数定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞). 33.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:选C 依题意得,当x ∈(-∞,c )时,f ′(x )>0;当x ∈(c ,e )时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.因此,函数f (x )在(-∞,c )上是增函数,在(c ,e )上是减函数,在(e ,+∞)上是增函数,又a <b <c ,所以f (c )>f (b )>f (a ). 34.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D 函数f (x )的定义域为(0,+∞),f ′(x )=-2x 2+1x =x -2x 2,当x =2时,f ′(x )=0;当x >2时,f ′(x )>0,函数f (x )为增函数;当0<x <2时,f ′(x )<0,函数f (x )为减函数,所以x =2为函数f (x )的极小值点. 35.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =( )A .-2或2B .-9或3C .-1或1D .-3或1解析:选A 设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.36.若f (x )=ln xx ,e<a <b ,则( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1解析:选A f ′(x )=1-ln xx 2,当x >e 时,f ′(x )<0,则f (x )在(e ,+∞)上为减函数,f (a )>f (b ). 37.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( )A .20B .18C .3D .0解析:选A 因为f ′(x )=3x 2-3=3(x -1)(x +1),令f ′(x )=0,得x =±1,所以-1,1为函数的极值点.又f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,所以在区间[-3,2]上f (x )max =1,f (x )min =-19.又由题设知在区间[-3,2]上f (x )max -f (x )min ≤t ,从而t ≥20,所以t 的最小值是20.38.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是________.解析:f ′(x )=3x 2+2mx +m +6=0有两个不等实根,即Δ=4m 2-12×(m +6)>0.所以m >6或m <-3. 答案:(-∞,-3)∪(6,+∞)39.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值为________.解析:求导得f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x .由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增,所以对m ∈[-1,1]时,f (m )min =f (0)=-4. 答案:-440.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________. 解析:∵y ′=3x 2+6ax +3b ,⎩⎪⎨⎪⎧ 3×22+6a ×2+3b =03×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.∴y ′=3x 2-6x ,令3x 2-6x =0,则x =0或x =2. ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:441.已知函数f (x )=ax 2+b ln x 在x =1处有极值12.(1)求a ,b 的值;(2)判断函数y =f (x )的单调性并求出单调区间. 解:(1)∵f ′(x )=2ax +bx . 又f (x )在x =1处有极值12.∴⎩⎪⎨⎪⎧ f (1)=12,f ′(1)=0,即⎩⎪⎨⎪⎧a =12,2a +b =0. 解得a =12,b =-1.(2)由(1)可知f (x )=12x 2-ln x ,其定义域是(0,+∞),且f ′(x )=x -1x =(x +1)(x -1)x.由f ′(x )<0,得0<x <1; 由f ′(x )>0,得x >1.所以函数y =f (x )的单调减区间是(0,1), 单调增区间是(1,+∞).42.设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值; (2)求函数f (x )的极值. 解:(1)因f (x )=a ln x +12x +32x +1, 故f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x 1=1,x 2=-13⎝⎛因x 2=-13不在定 义域内,舍去.当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3. 43.已知函数f (x )=x 3-ax 2+3x .(1)若f (x )在x ∈[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =3是f (x )的极值点,求f (x )在x ∈[1,a ]上的最大值和最小值. 解:(1)∵f ′(x )=3x 2-2ax +3≥0在[1,+∞)上恒成立, ∴a ≤⎣⎡⎦⎤32⎝⎛⎭⎫x +1x min =3(当x =1时取最小值). ∴a 的取值范围为(-∞,3]. (2)∵f ′(3)=0,即27-6a +3=0, ∴a =5,f (x )=x 3-5x 2+3x ,x ∈[1,5], f ′(x )=3x 2-10x +3.令f ′(x )=0,得x 1=3,x 2=13(舍去).当1<x <3时,f ′(x )<0,当3<x <5时,f ′(x )>0, 即当x =3时,f (x )取极小值f (3)=-9. 又f (1)=-1,f (5)=15,∴f (x )在[1,5]上的最小值是f (3)=-9,最大值是f (5)=15.44.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R).若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )的图象是( )解析:选D 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (1)+f ′(1)=0;选项D 中,f (1)>0,f ′(1)>0,不满足f ′(1)+f (1)=0.45.已知定义在R 上的奇函数f (x ),设其导函数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值范围是( ) A .(-1,2) B.⎝⎛⎭⎫-1,12 C.⎝⎛⎭⎫12,2D .(-2,1)解析:选A 由F (x )=xf (x ),得F ′(x )=f (x )+xf ′(x )=xf ′(x )-f (-x )<0,所以F (x )在(-∞,0)上单调递减,又可证F (x )为偶函数,从而F (x )在[0,+∞)上单调递增,故原不等式可化为-3<2x -1<3,解得-1<x <2.46.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 解析:选D 由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数在x =-2处取得极大值,在x =2处取得极小值. 47.已知函数f (x )=(2-a )ln x +1x +2ax (a ∈R).(1)当a =0时,求f (x )的极值; (2)求f (x )的单调区间.解:(1)∵当a =0时,f (x )=2ln x +1x ,f ′(x )=2x -1x 2=2x -1x2(x >0),∴f (x )在⎝⎛⎭⎫0,12上是减函数,在⎝⎛⎭⎫12,+∞上是增函数. ∴f (x )的极小值为f ⎝⎛⎭⎫12=2-2ln 2,无极大值. (2)f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2(x >0).①当a ≥0时,f (x )在⎝⎛⎭⎫0,12上是减函数,在⎝⎛⎭⎫12,+∞上是增函数; ②当-2<a <0时,f (x )在⎝⎛⎭⎫0,12和⎝⎛⎭⎫-1a ,+∞上是减函数,在⎝⎛⎭⎫12,-1a 上是增函数; ③当a =-2时,f (x )在(0,+∞)上是减函数;④当a <-2时,f (x )在⎝⎛⎭⎫12,+∞和⎝⎛⎭⎫0,-1a 上是减函数,在⎝⎛⎭⎫-1a ,12上是增函数.导数的应用(二)48. 已知函数f (x )=x 2ln x -a (x 2-1),a ∈R.(1)当a =-1时,求曲线f (x )在点(1,f (1))处的切线方程; (2)若当x ≥1时,f (x )≥0成立,求a 的取值范围. [自主解答] (1)当a =-1时,f (x )=x 2ln x +x 2-1, f ′(x )=2x ln x +3x .则曲线f (x )在点(1,f (1))处的切线的斜率为f ′(1)=3,又f (1)=0,所以切线方程为3x -y -3=0. (2)f ′(x )=2x ln x +(1-2a )x =x (2ln x +1-2a ),其中x ≥1.当a ≤12时,因为x ≥1,所以f ′(x )≥0,所以函数f (x )在[1,+∞)上单调递增,故f (x )≥f (1)=0.当a >12时,令f ′(x )=0,得x =e a -12.若x ∈[1,e a -12),则f ′(x )<0,所以函数f (x )在[1,e a -12)上单调递减.所以当x ∈[1,e a -12)时,f (x )≤f (1)=0,不符合题意.综上a 的取值范围是⎝⎛⎦⎤-∞,12. 利用导数解决参数问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解.(2)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题.(3)已知函数的零点个数求参数的取值范围:利用函数的单调性、极值画出函数的大致图象,数形结合求解.49.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围. 解:(1)函数f (x )的定义域为(-∞,+∞), ∵f ′(x )=x +e x -(e x +x e x )=x (1-e x ), 若x =0,则f ′(x )=0;若x <0,则1-e x >0,所以f ′(x )<0; 若x >0,则1-e x <0,所以f ′(x )<0. ∴f (x )在(-∞,+∞)上为减函数, 即f (x )的单调减区间为(-∞,+∞). (2)由(1)知,f (x )在[-2,2]上单调递减. 故[f (x )]min =f (2)=2-e 2,∴m <2-e 2时,不等式f (x )>m 恒成立. 故m 的取值范围为(-∞,2-e 2). 50.(理科)已知函数f (x )=e-kx·⎝⎛⎭⎫x 2+x -1k (k <0). (1)求f (x )的单调区间;(2)是否存在实数k ,使得函数f (x )的极大值等于3e -2?若存在,求出k 的值;若不存在,请说明理由.解:(1)f (x )的定义域为R. f ′(x )=-k e -kx⎝⎛⎭⎫x 2+x -1k +e -kx (2x +1)=e-kx[-kx 2+(2-k )x +2],即f ′(x )=-e-kx(kx -2)(x +1)(k <0).令f ′(x )=0,解得x =-1或x =2k . 当k =-2时,f ′(x )=2e 2x (x +1)2≥0, 故f (x )的单调递增区间是(-∞,+∞). 当-2<k <0时,f (x ),f ′(x )随x 的变化情况如下:所以函数f (x )的单调递增区间是⎝⎛⎭⎫-∞,2k 和(-1,+∞),单调递减区间是⎝⎛⎭⎫2k ,-1. 当k <-2时,f (x ),f ′(x )随x 的变化情况如下:所以函数f (x )的单调递增区间是(-∞,-1)和⎝⎛⎭⎫2k ,+∞,单调递减区间是⎝⎛⎭⎫-1,2k . (2)当k =-1时,f (x )的极大值等于3e -2.理由如下:当k =-2时,f (x )无极大值.当-2<k <0时,f (x )的极大值为f ⎝⎛⎭⎫2k =e -2⎝⎛⎭⎫4k 2+1k , 令e -2⎝⎛⎭⎫4k 2+1k =3e -2,即4k 2+1k =3, 解得k =-1或k =43(舍去).当k <-2时,f (x )的极大值为f (-1)=-e kk . 因为e k <e-2,0<-1k <12,所以-e k k <12e -2.因为12e -2<3e -2,所以f (x )的极大值不可能等于3e -2.综上所述,当k =-1时,f (x )的极大值等于3e -2.51.(理科)已知函数f (x )=x -12ax 2-ln(1+x ),其中a ∈R.(1)若x =2是f (x )的极值点,求a 的值; (2)求f (x )的单调区间;(3)若f (x )在[0,+∞)上的最大值是0,求a 的取值范围. 解:(1)f ′(x )=x (1-a -ax )x +1,x ∈(-1,+∞).依题意,得f ′(2)=0,解得a =13.经检验,a =13时,符合题意.故a =13.(2)①当a =0时,f ′(x )=x x +1,由f ′(x )>0和f ′(x )<0,易得f (x )的单调递增区间是(0,+∞),单调递减区间是(-1,0). ②当a >0时,令f ′(x )=0,得x 1=0或x 2=1a -1.当0<a <1时,f (x )与f ′(x )的变化情况如下表:所以,f (x )的单调递增区间是⎝⎭0,1a -1,单调递减区间是(-1,0)和⎝⎛⎭1a -1,+∞. 当a =1时,f (x )的单调递减区间是(-1,+∞). 当a >1时,-1<x 2<0,f (x )与f ′(x )的变化情况如下表:所以,f (x )的单调递增区间是⎝⎛⎭1a -1,0,单调递减区间是⎝⎭-1,1a -1和(0,+∞). ③当a <0时,f (x )的单调递增区间是(0,+∞),单调递减区间是(-1,0). 综上,当a ≤0时,f (x )的单调递增区间是(0,+∞),单调递减区间是(-1,0);当0<a <1时,f (x )的单调递增区间是⎝⎛⎭⎫0,1a -1,单调递减区间是(-1,0)和⎝⎛⎭⎫1a -1,+∞; 当a =1时,f (x )的单调递减区间是(-1,+∞);当a >1时,f (x )的单调递增区间是⎝⎛⎭⎫1a -1,0,单调递减区间是⎝⎛⎭⎫-1,1a -1和(0,+∞). (3)由(2)知a ≤0时,f (x )在(0,+∞)上单调递增,由f (0)=0,知a ≤0时不合题意.当0<a <1时,f (x )在(0,+∞)上的最大值是f ⎝⎛⎭⎫1a -1,由f ⎝⎛⎭⎫1a -1>f (0)=0,知0<a <1时不合题意. 当a ≥1时,f (x )在(0,+∞)上单调递减,可得f (x )在[0,+∞)上的最大值是f (0)=0,符合题意.所以f (x )在[0,+∞)上的最大值是0时,a 的取值范围是[1,+∞).52. 已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln xx ,其中e 是自然常数,a ∈R.(1)讨论a =1时,函数f (x )的单调性和极值; (2)求证:在(1)的条件下,f (x )>g (x )+12.[自主解答] (1)∵f (x )=x -ln x ,f ′(x )=1-1x =x -1x,∴当0<x <1时,f ′(x )<0,此时f (x )单调递减; 当1<x <e 时,f ′(x ) >0,此时f (x )单调递增. ∴f (x )的极小值为f (1)=1.(2)证明:由(1)知[f (x )]min =1.又g ′(x )=1-ln xx 2, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增. ∴[g (x )]max =g (e)=1e <12.∴[f (x )]min -[g (x )]max >12.∴在(1)的条件下,f (x )>g (x )+12.(3)在本例条件下,是否存在正实数a ,使f (x )的最小值是3?若存在,求出a 的值;若不存在,说明理由. 解:假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e])有最小值3.因为f ′(x )=a -1x =ax -1x ,当0<1a <e 时,f (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎦⎤1a ,e 上单调递增, 所以[f (x )]min =f ⎝⎛⎭⎫1a =1+ln a =3,a =e 2,满足条件; 当1a ≥e 时,f (x )在(0,e]上单调递减, [f (x )]min =f (e)=a e -1=3,a =4e(舍去),所以,此时a 不存在.综上,存在实数a =e 2,使得当x ∈(0,e]时f (x )有最小值3.利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,确定函数的最值证明h (x )>0. 53.已知f (x )=x ln x .(1)求g (x )=f (x )+kx (k ∈R)的单调区间; (2)证明:当x ≥1时,2x -e ≤f (x )恒成立. 解:(1)g (x )=ln x +kx , ∴令g ′(x )=x -kx 2=0得x =k . ∵x >0,∴当k ≤0时,g ′(x )>0.∴函数g (x )的增区间为(0,+∞),无减区间; 当k >0时g ′(x )>0得x >k ;g ′(x )<0得0<x <k , ∴增区间为(k ,+∞),减区间为(0,k ).(2)证明:设h (x )=x ln x -2x +e(x ≥1), 令h ′(x )=ln x -1=0得x =e , h (x ),h ′(x )的变化情况如下:故h (x )≥0.即f (x )≥2x -e.课后作业354.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )解析:选A ∵xf ′(x )≤-f (x ),f (x )≥0, ∴⎝⎛⎭⎫f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0.则函数f (x )x 在(0,+∞)上是单调递减的,由于0<a <b ,则f (a )a ≥f (b )b.即af (b )≤bf (a ). 55.若商品的年利润y (万元)与年产量x (百万件)的函数关系式y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( ) A .1百万件 B .2百万件 C .3百万件D .4百万件解析:选C 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.56.已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.解析:在(0,+∞)上有f ′(x )>0,所以f (x )在(0,+∞)单调递增.又函数f (x )是R 上的偶函数,所以f (1)=f (-1)=0.当x >0时,f (x )<0,∴0<x <1;当x <0时,图象关于y 轴对称,f (x )>0,∴x <-1.答案:(-∞,-1)∪(0,1)57.直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则a 的取值范围是________.解析:令f ′(x )=3x 2-3=0,得x =±1,可得极大值为f (-1)=2,极小值为f (1)=-2,如图,观察得-2<a <2时恰有三个不同的公共点.答案:(-2,2)58.已知函数f (x )=x 2+ln x .(1)求函数f (x )在[1,e]上的最大值和最小值;(2)求证:当x ∈(1,+∞)时,函数f (x )的图象在g (x )=23x 3+12x 2的下方.解:(1)∵f (x )=x 2+ln x ,∴f ′(x )=2x +1x .∵x >1时,f ′(x )>0,故f (x )在[1,e]上是增函数, ∴f (x )的最小值是f (1)=1,最大值是f (e)=1+e 2. (2)证明:令F (x )=f (x )-g (x )=12x 2-23x 3+ln x ,∴F ′(x )=x -2x 2+1x =x 2-2x 3+1x=x 2-x 3-x 3+1x =(1-x )(2x 2+x +1)x . ∵x >1,∴F ′(x )<0.∴F (x )在(1,+∞)上是减函数.∴F (x )<F (1)=12-23=-16<0,即f (x )<g (x ).∴当x ∈(1,+∞)时,函数f (x )的图象总在g (x )的图象的下方. 59.已知函数(理)f (x )=e x-m-x ,(文)f (x )=1em e x -x ,其中m 为常数.(1)若对任意x ∈R 有f (x )≥0成立,求m 的取值范围; (2)当m >1时,判断f (x )在[0,2m ]上零点的个数,并说明理由. 解:(1)依题意,可知f (x )在R 上连续,且f ′(x )=e x -m-1,令f ′(x )=0,得x =m . 故当x ∈(-∞,m )时,e x -m<1,f ′(x )<0,f (x )单调递减;当x ∈(m ,+∞)时,e x-m>1,f ′(x )>0,f (x )单调递增;故当x =m 时,f (m )为极小值,也是最小值. 令f (m )=1-m ≥0,得m ≤1,即对任意x ∈R ,f (x )≥0恒成立时,m 的取值范围是(-∞,1]. (2)由(1)知f (x )在[0,2m ]上至多有两个零点,当m >1时,f (m )=1-m <0. ∵f (0)=e-m>0,f (0)·f (m )<0,∴f (x )在(0,m )上有一个零点. 又f (2m )=e m -2m ,令g (m )=e m -2m , ∵当m >1时,g ′(m )=e m -2>0, ∴g (m )在(1,+∞)上单调递增. ∴g (m )>g (1)=e -2>0,即f (2m )>0.∴f (m )·f (2m )<0,∴f (x )在(m,2m )上有一个零点. 故f (x )在[0,2m ]上有两个零点.60.已知函数f (x )=(x 2-3x +3)e x ,x ∈[-2,t ](t >-2).(1)当t <1时,求函数y =f (x )的单调区间;(2)设f (-2)=m ,f (t )=n ,求证:m <n .解:(1)f ′(x )=(2x -3)e x +e x (x 2-3x +3)=e x x (x -1), ①当-2<t ≤0,x ∈[-2,t ]时,f ′(x )≥0,f (x )单调递增; ②当0<t <1,x ∈[-2,0)时,f ′(x )>0,f (x )单调递增, 当x ∈(0,t ]时,f ′(x )<0,f (x )单调递减.综上,当-2<t ≤0时,y =f (x )的单调递增区间为[-2,t ];当0<t <1时,y =f (x )的单调递增区间为[-2,0),单调递减区间为(0,t ]. (2)证明:依题意得m =f (-2)=13e -2,n =f (t )=(t 2-3t +3)e t ,设h (t )=n -m =(t 2-3t +3)e t -13e -2,t >-2,h ′(t )=(2t -3)e t +e t (t 2-3t +3)=e t t (t -1)(t >-2). 故h (t ),h ′(t )随t 的变化情况如下表:由上表可知h (t )的极小值为h (1)=e -13e 2=e e2>0,又h (-2)=0,故当-2<t <0时,h (t )>h (-2)=0,即h (t )>0,因此,n -m >0,即m <n .61.已知函数f (x )=x 3-3ax +b (a ,b ∈R)在x =2处的切线方程为y =9x -14.(1)求f (x )的单调区间;(2)令g (x )=-x 2+2x +k ,若对任意x 1∈[0,2],均存在x 2∈[0,2],使得f (x 1)<g (x 2),求实数k 的取值范围. 解:(1)f ′(x )=3x 2-3a ,∵f (x )在x =2处的切线方程为y =9x -14,∴⎩⎪⎨⎪⎧ f (2)=4,f ′(2)=9,则⎩⎪⎨⎪⎧ 8-6a +b =4,12-3a =9,解得⎩⎪⎨⎪⎧a =1,b =2. ∴f (x )=x 3-3x +2,则f ′(x )=3x 2-3=3(x +1)(x -1). 由f ′(x )>0,得x <-1或x >1; 由f ′(x )<0,得-1<x <1.故函数f (x )的单调递减区间是(-1,1);单调递增区间是(-∞,-1),(1,+∞). (2)由(1)知,函数f (x )在(0,1)上单调递减,在(1,2)上单调递增. 又f (0)=2,f (2)=4,有f (0)<f (2),∴函数f (x )在区间[0,2]上的最大值f (x )max =f (2)=4. 又g (x )=-x 2+2x +k =-(x -1)2+k +1,∴函数g (x )在[0,2]上的最大值为g (x )max =g (1)=k +1. ∵对任意x 1∈[0,2],均存在x 2∈[0,2],使f (x 1)<f (x 2)成立, ∴有f (x )max <g (x )max ,则4<k +1,即k >3. 故实数k 的取值范围是(3,+∞).62.设函数f (x )=ln x -p (x -1),p ∈R.(1)当p =1时,求函数f (x )的单调区间;(2)设函数g (x )=xf (x )+p (2x 2-x -1),对任意x ≥1都有g (x )≤0成立,求p 的取值范围. 解:(1)当p =1时,f (x )=ln x -x +1,其定义域为(0,+∞). 所以f ′(x )=1x -1.由f ′(x )=1x -1>0得0<x <1,由f ′(x )<0得x >1.所以函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)由函数g (x )=xf (x )+p (2x 2-x -1)=x ln x +p (x 2-1)(x >0),得g ′(x )=ln x +1+2px . 由(1)知,当p =1时,f (x )≤f (1)=0, 即不等式ln x ≤x -1成立.①当p ≤-12时,g ′(x )=ln x +1+2px ≤(x -1)+1+2px =(1+2p )x ≤0,即函数g (x )在[1,+∞)上单调递减,从而g (x )≤g (1)=0,满足题意; ②当-12<p <0时,若x ∈⎝⎛⎭⎫1,-12p ,则ln x >0,1+2px >0, 从而g ′(x )=ln x +1+2px >0,即函数g (x )在⎝⎛⎭⎫1,-12p 上单调递增,从而存在x 0∈⎝⎛⎭⎫1,-12p 使得g (x 0)>g (1)=0,不满足题意;③当p ≥0时,由x ≥1知g (x )=x ln x +p (x 2-1)≥0恒成立,此时不满足题意. 综上所述,实数p 的取值范围为⎝⎛⎦⎤-∞,-12.集合与常用逻辑用语 函数、导数及其应用一、选择题(本题共12小题,每小题5分,共60分)1.(2012·广州调研)已知函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤0,a x ,x >0,若f (1)=f (-1),则实数a 的值等于( )A .1B .2C .3D .4。
导数的计算导学案
导数的计算导学案导数是微积分中的一个重要概念,它描述了函数在其中一点的变化速率。
导数的计算方法非常重要,下面将介绍导数的计算导学案。
一、导数的定义根据导数的定义,函数f在点x处的导数可以通过极限的方法得到:f'(x) = lim(h->0) (f(x+h) - f(x))/h二、导数的基本计算方法根据导数的定义,我们可以利用一些基本的规则计算导数:1.常数的导数为0若c为常数,则d(c)/dx = 02.幂函数的导数对于幂函数y = x^n(n为正整数),导数为dy/dx = nx^(n-1)例如,y = x^2,则dy/dx = 2x3.指数函数的导数对于指数函数y = a^x(a>0且a≠1),导数为dy/dx = a^x * ln(a)例如,y = e^x,则dy/dx = e^x * ln(e) = e^x4.对数函数的导数对于对数函数y = log_a(x)(a>0且a≠1),导数为dy/dx =(1/ln(a)) * (1/x)特别地,自然对数函数y = ln(x)的导数为dy/dx = 1/x5.三角函数的导数对于三角函数,有以下导数公式:sin(x)的导数为cos(x)cos(x)的导数为-sin(x)tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)tan(x)csc(x)的导数为-csc(x)cot(x)6.反三角函数的导数对于反三角函数,有以下导数公式:arcsin(x)的导数为1/√(1-x^2)arccos(x)的导数为-1/√(1-x^2)arctan(x)的导数为1/(1+x^2)7.速度与加速度若y表示物体的位移,t表示时间,则速度v的导数为dy/dt,加速度a的导数为d^2y/dt^2三、导数的基本运算法则导数具有一些基本的运算法则,例如和差法则、积法则和商法则等,它们可以辅助我们计算复合函数的导数。
高中数学《导数的计算》学案1 新人教A版选修
高中数学《导数的计算》学案1 新人教A版选修3、2 导数的计算【成功细节】张玥谈导数的计算的方法(xx年,北京文9)已知是的导函数,则的值是____、本节内容公式和法则比较多,以公式的推导、记忆以及应用为主,重点是基本初等函数导数公式以及导数的四则运算法则的灵活运用,公式的形式多样,容易引起混淆,并且公式中往往会有一些条件容易忽略,导致遗漏错误、所以在学习时,我认为应注意以下几个方面:(1)要牢记常数函数和幂函数的求导公式,能用定义法求这些函数的导数的方法,注意四种常见函数实际上就是四种特殊的幂函数;(2)要熟记基本初等函数的导数公式,特别是对数函数和指数函数的导函数的形式,;(3)熟练掌握导数的四则运算法则,注意公式的形式以及前提条件,两个函数的和与差的导数与两个函数积的导数的形式是不同的;(4)和(或差)、积的函数的导数运算法则可以推广到两个以上函数的和(差)、积的求导;(5)在求函数的导数时,一定要先化简函数的表达式,尽量不使用积的函数的导数的法则;(6)若两个函数不可导,则它们的和、差、积、商不一定不可导。
如,这个题主要考查基本初等函数的导数公式以及函数和的导数的计算法则,是一个简单的小题,但计算时要细心,可先求出导函数,然后再求导数值,显然有公式可得,,所以、【高效预习】(核心栏目)“要养成学生阅读书籍的习惯就非教他们预习不可”。
叶圣陶【关注、思考】1、阅读课本第8182页,总结四个常用函数的导数公式,认真阅读导数公式的推导过程,这四个常用函数有什么共同的特征,其导数有什么意义?细节提示:利用导数的定义求解四种函数的导数,对照函数图象,把握住导数的物理意义和几何意义;四种常用函数实际上都是幂函数,探讨规律时,应把导函数的系数与幂指数与原函数进行对比、【领会、感悟】1、这四种函数实质上都是特殊的幂函数,它们的导函数的系数为幂函数的指数,指数为幂函数的指数减去1所的数值;函数的导数的几何意义是函数图象在该点处的切线的斜率【领会感悟】2、基本初等函数的导数公式是我们求解函数导数的基础,要记准确,记牢,才可能在运算过程中不出现错误。
最新导数的概念及运算学案
导数的概念及运算学案第三章 导数及其应用 学案13 导数的概念及运算导学目标: 1.了解导数概念的实际背景,理解函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.2.能根据导数定义,求函数y =C (C为常数),y =x ,y =x 2,y =1x ,y =x 的导数.熟记基本初等函数的导数公式(c ,x m (m 为有理数),sin x ,cos x ,e x ,a x,ln x ,log a x 的导数),能利用基本初等函数的导数公式及导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b ))的导数.自主梳理1.函数的平均变化率一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商________________________=ΔyΔx称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率.2.函数y =f (x )在x =x 0处的导数 (1)定义函数y =f (x)在点x 0处的瞬时变化率______________通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即______________________________.(2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0))的____________.导函数y =f ′(x )的值域即为__________________. 3.函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作____________.4.基本初等函数的导数公式表原函数 导函数 f (x )=C f ′(x )=______ f (x )=x α (α∈Q *) f ′(x )=______ (α∈Q *) F (x )=sin x f ′(x )=__________ F (x )=cos x f ′(x )=____________f (x )=a x (a >0,a ≠1)f ′(x )=____________(a >0,a ≠1)f (x )=e x f ′(x )=________f (x )=log a x (a >0,a ≠1,且x >0) f ′(x )=__________(a >0,a ≠1,且x >0) f (x )=ln x f ′(x )=__________5.导数运算法则 (1)[f (x )±g (x )]′=__________; (2)[f (x )g (x )]′=______________;(3)⎣⎡⎦⎤f (x )g (x )′=______________ [g (x )≠0].6.复合函数的求导法则:设函数u =φ(x )在点x 处有导数u x ′=φ′(x ),函数y =f (u )在点x 处的对应点u 处有导数y u ′=f ′(u ),则复合函数y =f (φ(x ))在点x 处有导数,且y ′x =y ′u ·u ′x ,或写作f ′x (φ(x ))=f ′(u )φ′(x ).自我检测1.在曲线y =x 2+1的图象上取一点(1,2)及附近一点(1+Δx ,2+Δy ),则ΔyΔx为 ( )A .Δx +1Δx +2B .Δx -1Δx-2C .Δx +2D .2+Δx -1Δx2.设y =x 2·e x ,则y ′等于( )A .x 2e x +2xB .2x e xC .(2x +x 2)e xD .(x +x 2)·e x3.(2010·全国Ⅱ)若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于 ( )A .64B .32C .16D .84.(2011·临汾模拟)若函数f (x )=e x +a e -x 的导函数是奇函数,并且曲线y =f (x )的一条切线的斜率是32,则切点的横坐标是( )A .-ln 22B .-ln 2C.ln 22D .ln 2 5.(2009·湖北)已知函数f (x )=f ′(π4)cos x +sin x ,则f (π4)=________.探究点一 利用导数的定义求函数的导数例1 利用导数的定义求函数的导数:(1)f (x )=1x 在x =1处的导数;(2)f (x )=1x +2.变式迁移1 求函数y =x 2+1在x 0到x 0+Δx 之间的平均变化率,并求出其导函数.探究点二 导数的运算例2 求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ;(2)y =ln xx ;(3)y =x e x ;(4)y =tan x .变式迁移2 求下列函数的导数:(1)y =x 2sin x ;(2)y =3x e x -2x +e ;(3)y =ln xx 2+1.探究点三 求复合函数的导数 例3 (2011·莆田模拟)求下列函数的导数:(1)y =(1+sin x )2;(2)y =11+x 2;(3)y =ln x 2+1;(4)y =x e 1-cos x .变式迁移3 求下列函数的导数:(1)y =1(1-3x )4;(2)y =sin 2⎝⎛⎭⎫2x +π3; (3)y =x 1+x 2.探究点四 导数的几何意义例4 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程;(3)求满足斜率为1的曲线的切线方程.变式迁移4 求曲线f (x )=x 3-3x 2+2x 过原点的切线方程.1.准确理解曲线的切线,需注意的两个方面:(1)直线与曲线公共点的个数不是切线的本质特征,若直线与曲线只有一个公共点,则直线不一定是曲线的切线,同样,若直线是曲线的切线,则直线也可能与曲线有两个或两个以上的公共点.(2)曲线未必在其切线的“同侧”,如曲线y =x 3在其过(0,0)点的切线y =0的两侧. 2.曲线的切线的求法:若已知曲线过点P (x 0,y 0),求曲线过点P 的切线则需分点P (x 0,y 0)是切点和不是切点两种情况求解.(1)点P (x 0,y 0)是切点的切线方程为y -y 0=f ′(x 0)(x -x 0). (2)当点P (x 0,y 0)不是切点时可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程. 3.求函数的导数要准确地把函数分割为基本初等函数的和、差、积、商及其复合运算,再利用运算法则求导数.在求导过程中,要仔细分析函数解析式的结构特征,紧扣法则,联系基本初等函数求导公式,对于不具备求导法则结构形式的要适当变形.(满分:75分)一、选择题(每小题5分,共25分)1.已知函数f (x )=2ln(3x )+8x ,则«Skip Record If...»f (1-2Δx )-f (1)Δx的值为( )A .10B .-10C .-20D .202.(2011·温州调研)如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +f ′(x )的零点所在的区间是 ( )A.⎝⎛⎭⎫14,12 B .(1,2) C.⎝⎛⎭⎫12,1D .(2,3)3.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为 ( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=04.(2010·辽宁)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 ( )A.⎣⎡⎭⎫0,π4B.⎣⎡⎭⎫π4,π2C.⎝⎛⎦⎤π2,3π4D.⎣⎡⎭⎫3π4,π5.(2011·珠海模拟)在下列四个函数中,满足性质:“对于区间(1,2)上的任意x 1,x 2 (x 1≠x 2),|f (x 2)-f (x 1)|<|x 2-x 1|恒成立”的只有 ( )A .f (x )=1xB .f (x )=|x |x 26.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是__________.7.若点P 是曲线f (x )=x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.8.设点P 是曲线y =x 33-x 2-3x -3上的一个动点,则以P 为切点的切线中,斜率取得最小值时的切线方程是__________________.三、解答题(共38分)9.(12分)求下列函数在x =x 0处的导数.(1)f (x )=e x 1-x +e x1+x ,x 0=2;(2)f (x )=x -x 3+x 2ln xx 2,x 0=1.10.(12分)(2011·保定模拟)有一个长度为5 m 的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s 的速度离开墙脚滑动,求当其下端离开墙脚1.4 m 时,梯子上端下滑的速度.11.(14分)(2011·平顶山模拟)已知函数f (x )=12x 2-a ln x (a ∈R ).(1)若函数f (x )的图象在x =2处的切线方程为y =x +b ,求a ,b 的值; (2)若函数f (x )在(1,+∞)上为增函数,求a 的取值范围.自主梳理 1.«Skip Record If...»2.(1)«Skip Record If...» «Skip Record If...» (2)切线的斜率 切线斜率的取值范围3.y ′或f ′(x)4.0 αx α-1 cos x -sin x a x ln a e x 1x ln a 1x5.(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x ) (3)f ′(x )g (x )-f (x )g ′(x )[g (x )]2自我检测1.C 2.C 3.A 4.D 5.1解析 ∵f ′(x )=-f ′(π4)sin x +cos x ,∴f ′(π4)=2-1.∴f (π4)=1.课堂活动区例1 解题导引 (1)用导数定义求函数导数必须把分式ΔyΔx 中的分母Δx 这一因式约掉才可能求出极限,所以目标就是分子中出现Δx ,从而分子分母相约分.(2)第(1)小题中用到的技巧是“分子有理化”.“有理化”是处理根式问题常用的方法,有时用“分母有理化”,有时用“分子有理化”.(3)注意在某点处的导数与导数定义式的区别: «Skip Record If...»; «Skip Record If...»; (4)用导数的定义求导的步骤为:①求函数的增量Δy ;②求平均变化率ΔyΔx ;③化简取极限.解 (1)Δy Δx =f (1+Δx )-f (1)Δx=«Skip Record If...» =«Skip Record If...» =«Skip Record If...» =«Skip Record If...»,∴«Skip Record If...»=-12.(2)Δy Δx =f (x +Δx )-f (x )Δx =«Skip Record If...» =(x +2)-(x +2+Δx )Δx (x +2)(x +2+Δx ) =-1(x +2)(x +2+Δx ),∴«Skip Record If...»=-1(x +2)2.变式迁移1 解 ∵Δy =(x 0+Δx )2+1-x 20+1=(x 0+Δx )2+1-x 20-1(x 0+Δx )2+1+x 20+1=2x 0Δx +(Δx )2(x 0+Δx )2+1+x 20+1,∴Δy Δx=2x 0+Δx (x 0+Δx )2+1+x 20+1.∴«Skip Record If...»∴y '=«Skip Record If...»=2x 2x 2+1=xx 2+1. 例2 解题导引 求函数的导数要准确地把函数分割为基本函数的和、差、积、商及其复合运算,再利用运算法则求导数.在求导过程中,要仔细分析函数解析式的结构特征,紧扣求导法则,联系基本函数求导公式.对于不具备求导法则结构形式的要适当恒等变形.解 (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =«Skip Record If...», ∴y ′=«Skip Record If...» =«Skip Record If...».(2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2 =«Skip Record If...».(3)y ′=x ′e x +x (e x )′=e x +x e x =e x (x +1). (4)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x=cos x cos x -sin x (-sin x )cos 2x =1cos 2x. 变式迁移2 解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(3x e x )′-(2x )′+(e)′ =(3x )′e x +3x (e x )′-(2x )′ =3x ln 3·e x +3x e x -2x ln 2 =(ln 3+1)(3e)x -2x ln 2.(3)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-ln x ·2x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.例3 解题导引 (1)求复合函数导数的思路流程为: 分解复合关系→分解复合关系→分层求导(2)由复合函数的定义可知,中间变量的选择应是基本函数的结构,解这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外向内,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程.解 (1)y ′=[(1+sin x )2]′ =2(1+sin x )·(1+sin x )′ =2(1+sin x )·cos x =2cos x +sin 2x .(2)y ′=«Skip Record If...»′«Skip Record If...»(3)y ′=(ln x 2+1)′=1x 2+1·(x 2+1)′=1x 2+1·12(x 2+1)-12·(x 2+1)′=x x 2+1. «Skip Record If...»变式迁移3 解 (1)设u =1-3x ,y =u -4. 则y x ′=y u ′·u x ′=-4u -5·(-3)=12(1-3x )5.(2)设y =u 2,u =sin v ,v =2x +π3,则y x ′=y u ′·u v ′·v x ′=2u ·cos v ·2=4sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3 =2sin ⎝⎛⎭⎫4x +2π3. (3)y ′=(x1+x 2)′=x ′·1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=1+2x 21+x 2.例4 解题导引 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异;过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)求函数对应曲线在某一点处的切线的斜率,只要求函数在该点处的导数即可. (3)解决“过某点的切线”问题,一般是设出切点坐标解决. 解 (1)∵y ′=x 2,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为 y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20.∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0), 即y =x 20x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求切线方程为4x -y -4=0或x -y +2=0. (3)设切点为(x 0,y 0),则切线的斜率为k =x 20=1,解得x 0=±1, 故切点为⎝⎛⎭⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.变式迁移4 解 f ′(x )=3x 2-6x +2.设切线的斜率为k .(1)当切点是原点时k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 30-3x 20+2x 0,k =f ′(x 0)=3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②由①②得x 0=32,k =-14.∴所求曲线的切线方程为y =-14x .综上,曲线f (x )=x 3-3x 2+2x 过原点的切线方程为y =2x 或y =-14x .课后练习区1.C 2.C 3.A 4.D 5.A 6.1秒或2秒末 7. 28.12x +3y +8=09.解 (1)∵f ′(x )=⎝ ⎛⎭⎪⎫2e x1-x ′=(2e x )′(1-x )-2e x (1-x )′(1-x )2=2(2-x )e x(1-x )2,∴f ′(2)=0.………………………………………………………………(6分) (2)∵f ′(x )=(x -32)′-x ′+(ln x )′=-32x -52-1+1x ,∴f ′(1)=-32.……………………………………………………(12分)10.解 设经时间t 秒梯子上端下滑s 米, 则s =5-25-9t 2,当下端移开1.4 m 时,……………………………………………………………………(3分)t 0=1.43=715,……………………………………………………………………………(5分)精品好文档,推荐学习交流仅供学习与交流,如有侵权请联系网站删除 谢谢9 又s ′=-12(25-9t 2)-12·(-9·2t ) =9t ·125-9t2,…………………………………………………………………………(10分)所以s ′(t 0)=9×715·125-9×⎝⎛⎭⎫7152 =0.875 (m /s ).故所求的梯子上端下滑的速度为0.875 m /s .……………………………………………(12分) 11.解 (1)因为f ′(x )=x -a x(x >0),……………………………………………………(2分)又f(x )在x =2处的切线方程为y =x +b , 所以⎩⎪⎨⎪⎧ 2-a ln 2=2+b ,2-a 2=1,……………………………………………………………(5分) 解得a =2,b =-2ln 2.……………………………………………………………………(7分)(2)若函数f (x)在(1,+∞)上为增函数,则f ′(x )=x -a x≥0在(1,+∞)上恒成立,……………………………………………(10分)即a ≤x 2在(1,+∞)上恒成立.所以有a ≤1.……………………………………………………………………………(14分)。
导数的概念及运算--附答案
3.1导数的概念及运算(学案) 姓名【一.导数的意义】1.函数y =f (x )在x =x 0处的瞬时变化率 0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆ 称为函数()y f x =在0x x =处的导数.其几何意义为:【二.导数的运算公式】①()c '= ;②()nx '= ;③(sin )x '= ;④(cos )x '= ;⑤()xa '= ;⑥()x e '= ;⑦(log )a x '= ;⑧(ln )x '= ;⑨1()x'=;⑩'= ; 【三.导数的运算法则】①.和差的导数:[()()]f x g x '±= ;②.[()]C f x '⋅= ;其中C 为常数。
③.积的导数:[()()]f x g x '= ;④.商的导数:()()f x g x '⎛⎫ ⎪⎝⎭=(()0)g x ≠。
【四.复合函数的导数】设函数()u g x =在点x 处有导数x u ',函数()y f u =在点x 的对应点u 处有导数u y ',则复合函数(())y f g x =在点x 处也有导数,且x y '=__ ______, 【五.求导】1.求导:①)5'⋅xa x (=5x 4·a x +x 5·a x ln a;② sin(2)3x π'⎛⎫+ ⎪⎝⎭=③2ln 1x x '⎛⎫ ⎪+⎝⎭=2.已知 f (x )=x 2+3x (2)f ',则(2)f '=__-2___.3.求函数y =(x -1)(x -2)·…·(x -100) (x >100)的导数.解析:两边取对数得ln y =ln(x -1)+ln(x -2)+…+ln(x -100).两边对x 求导:y ′y =1x -1+1x -2+…+1x -100.∴y ′=⎝⎛⎭⎫1x -1+1x -2+…+1x -100·(x -1)(x -2)·…·(x -100).【六.导数的几何意义】4.已知曲线y =13x 3+43.(1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.解 (1)∵y =13x 3+43,∴y ′=x 2,∴曲线在点(2,4)处的切线的斜率k =y ′|x =2=4 由y -4=4(x -2),得4x -y -4=0.∴曲线在点(2,4)处的切线方程为 4x -y -4=0(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43 则切线的斜率k =y ′|x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43∵点P (2,4)在切线上,∴4=2x 20-23x 30+43即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0, ∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=05.在平面直角坐标系xOy 中,已知P 是函数f (x )=e x (x >0)的图象上的动点,该图象在点P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是___max 11()2t e e=+_____. 解析:设00(,),xP x e 则00000:(),(0,(1))x x x l y ee x x M x e -=-∴-,过点P 作l 的垂线000000(),(0,)x x x x y e e x x N e x e ---=--+,00000000011[(1)]()22x x x x x x t x e e x e e x e e --=-++=+-00'01()(1)2x x t e e x -=+-,所以,t 在(0,1)上单调增,在(1,)+∞单调减,max 11()2t e e=+。
导数的计算导学案
1.2导数的计算导学案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--导数的计算导学案第一课时:几个常用函数的导数一.学习目标:1.学会应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2y x =、1y x=、y = 2.掌握并能运用这四个公式正确求函数的导数. 二.学习重、难点:五种常见函数y c =、y x =、2y x =、1y x=、y =三.学习过程 (一)创设情景我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢?根据导数的定义,求函数()y f x =的导数,就是求出当x ∆趋近于0的时候,yx∆∆所趋于的那个定值。
(二)获取新知1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x∆+∆--===∆∆∆ 所以00limlim 00x x yy ∆→∆→∆'===0y '=表示函数y c =图像上每一点处的切线的斜率都为 .若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数 因为()()1y f x x f x x x xx x x∆+∆-+∆-===∆∆∆所以00lim lim 11x x yy x ∆→∆→∆'===∆1y '=表示函数y x =图像上每一点处的切线的斜率都为 .若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.3.函数2()y f x x ==的导数因为22()()()y f x x f x x x x x x x∆+∆-+∆-==∆∆∆ 2222()2x x x x x x x x+∆+∆-==+∆∆所以00limlim (2)2x x yy x x x x ∆→∆→∆'==+∆=∆2y x '=表示函数2y x =图像(图)上点(,)x y 处的切线的斜率都为 ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .4.函数1()y f x x==的导数 因为11()()y f x x f x x x x x x x-∆+∆-+∆==∆∆∆2()1()x x x x x x x x x x -+∆==-+∆∆+⋅∆所以220011lim lim ()x x y y x x x x x∆→∆→∆'==-=-∆+⋅∆5.函数y=()()y f x x f x xx∆+∆-==∆∆因为==0limlim x x y y x ∆→∆→∆'===∆所以推广:若*()()n y f x x n Q ==∈,则1()n f x nx -'=(三)课堂小结第二课时:基本初等函数的导数公式及导数的运算法则【学习目标】1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.。
3.2导数的计算学案
高二数学选修1-1 §3.2导数的计算学案
一、学习目标:1、能根据定义求函数c y =,x y =,2x y =,x
y 1
=
的导数。
2、能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单的函数的导数。
二、自主学习
1、几个常用函数的导数
探究1;在同一平面直角坐标系中,画出函数x y 2=,x y 3=,x y 4=的图像,并根据导数定义,求出他们的导数。
(1) 从图像上看,他们的导数分别表示什么?
(2) 这三个函数中哪个增加的最快?哪个增加的最慢?
(3) 函数kx y =(k ≠0)增(减)的快慢和什么有关?
探究2:画出函数x
y 1
=
的图像,根据图像,描述它的变化情况,并求出曲线在点(1,1)处的切线方程。
2、基本初等函数的导数公式
3、函数x e y =的导数与函数x
a y =的导数有何关系?函数x y ln =的导数与函数x y a log =的导数有什么关
系?
4、若)(/x f =x e ,则)(/x f =x
e 这种说法 正确吗? 5、导数的四则运算法则
6、思考:导数的运算法则成立的条件是什么?
7、能否认为函数2
2
2)(x ax a x f -+=的导数为)(/
x f =2
22x x a -+或)(/
x f =a x 22+-?
8、函数x
x
x f cos )(=,则)(/x f =
三、本节课的收获:。
1.2.3 导数的四则运算法则 学案(含答案)
1.2.3 导数的四则运算法则学案(含答案)1.2.3导数的四则运算法则导数的四则运算法则学习目标1.能利用导数的四则运算法则求解导函数.2.能运用复合函数的求导法则进行复合函数的求导知识点一导数的四则运算法则已知fxx,gx1x.思考1fx,gx的导数分别是什么答案fx1,gx1x2.思考2试求Gxx1x,Hxx1x的导数并说出Gx,Hx与fx,gx 的关系答案Gx11x2.同理,Hx11x2.Gxfxgx,Hxfxgx思考3fxgxfxgx正确吗那么fxgxfxgxgx0且gx0是否正确答案fxgxfxgx,fxgxfxgx.梳理导数的四则运算法则1设fx,gx是可导的,则法则语言叙述fxgxfxgx两个函数的和或差的导数,等于这两个函数的导数和或差fxgxfxgxfxgx两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数fxgxfxgxfxgxg2xgx0两个函数的商的导数,等于分子的导数乘以分母减去分母的导数乘以分子的差除以分母的平方2特别地,CfxCfx,1gxgxg2xgx0特别提醒1fxgxfxgx可推广到任意有限个函数的和或差的求导2afxbgxafxbgx知识点二复合函数yfux的导数yfux是x的复合函数,则yfuxdydududxfuux1函数fxxex的导数是fxexx12当gx0时,1gxgxg2x.3函数yex的导数为yex.类型一利用导数的四则运算法则求导例1求下列函数的导数1yx3ex;2yxsinx2cosx2;3yx2log3x;4yex1ex1.解1yx3exx3ex3x2exx3exx23xex.2yx12sinx,yx12sinx112cosx.3yx2log3xx2log3x2x1xln3.4yex1ex1ex1ex1ex12exex1ex1exex122exex12.反思与感悟求函数的导数的策略1先区分函数的运算特点,即函数的和.差.积.商,再根据导数的运算法则求导数2对于三个以上函数的积.商的导数,依次转化为“两个”函数的积.商的导数计算跟踪训练11已知fxxaxbxc,则afabfbcfc________.答案0解析fxxaxbxcxaxbxcxaxbxcxbxcxaxcxaxb,faabac,fbbabcabbc,fccacbacbcafabfbcfcaabacbabbccacbcabcbaccababbcac0.2求下列函数的导数y2x33xx1xx;yx21x23;yx1x3x5;yxsinx2cosx.解313122223yxxxx,1352222333.22yxxxx方法一yx21x23x21x23x2322xx232xx21x2324xx232.方法二yx21x23x232x2312x23,y12x232x232x232x23x2324xx232.方法一yx1x3x5x1x3x5x1x3x1x3x5x1x32x4x5x1x33x218x23.方法二yx1x3x5x24x3x5x39x223x15,yx39x223x153x218x23.yxsinx2cosxxsinxxsinx2cosx2cosxcos2xsinxxcosx2sinx cos2x.类型二简单复合函数求导例2求下列函数的导数1yecosx1;2ylog22x1;3y2sin3x6;4y112x.解1设yeu,ucosx1,则yxyuuxeusinxecosx1sinx.2设ylog2u,u2x1,则yxyuux2uln222x1ln2.3设y2sinu,u3x6,则yxyuux2cosu36cos3x6.4设yu12,u12x,则yxyuux12u12x1232u212x32.反思与感悟求复合函数导数的步骤1确定中间变量,正确分解复合关系,即明确函数关系yfu,ugx2分步求导弄清每一步求导是哪个变量对哪个变量求导,要特别注意中间变量对自变量的求导,即先求yu,再求ux.3计算yuux,并把中间变量转化为自变量整个过程可简记为“分解求导回代”三个步骤,熟练以后可以省略中间过程跟踪训练21已知函数fx2x15,则f0的值为________答案10解析fx52x142x1102x14,f010.2求下列函数的导数y3x;y12lnx21;ya12xa0,a1解设yu,u3x,则yxyuux12u1123x.设y12lnu,ux21,则yxyuux121u2x121x212xxx21.令yau,u12x,则yxyuuxaulna2a12xlna22a12xlna.类型三导数运算法则的综合应用命题角度1利用导数求函数解析式例31已知函数fxlnxx2xf1,试比较fe与f1的大小关系;2设fxaxbsinxcxdcosx,试确定常数a,b,c,d,使得fxxcosx.解1由题意得fx1lnxx22f1,令x1,得f11ln112f1,即f11.fxlnxx2x.felnee2e1e2e,f12,由fef11e2e20,得fef12由已知得fxaxbsinxcxdcosxaxbsinxcxdcosxaxbsinxaxbsinxcxdcosxcxdcos xasinxaxbcosxccosxcxdsinxacxdsinxaxbccosx.又fxxcosx,adcx0,axbcx,即ad0,c0,a1,bc0,解得ad1,bc0.反思与感悟1中确定函数fx的解析式,需要求出f1,注意f1是常数2中利用待定系数法可确定a,b,c,d的值完成12问的前提是熟练应用导数的运算法则跟踪训练3函数fxx2x1f1,则f1________.答案1解析对fx求导,得fx2x12x2x1212x12,则f11.命题角度2与切线有关的问题例41若曲线yxlnx上点P处的切线平行于直线2xy10,则点P的坐标是________答案e,e解析设Px0,y0yxlnx,ylnxx1x1lnx,k1lnx0.又k2,1lnx02,x0e.y0elnee.点P的坐标是e,e2已知函数fxax2bx3a0,其导函数为fx2x8.求a,b的值;设函数gxexsinxfx,求曲线gx在x0处的切线方程解因为fxax2bx3a0,所以fx2axb,又知fx2x8,所以a1,b8.由可得gxexsinxx28x3,所以gxexsinxexcosx2x8,所以g0e0sin0e0cos02087.又知g03,所以gx在x0处的切线方程为y37x0,即7xy30.反思与感悟1与切线有关的问题往往涉及切点.切点处的导数.切线方程三个主要元素其他的条件可以进行转化,从而转化为这三个要素间的关系2准确利用求导法则求出导函数是解决与切线有关的问题的第一步,也是解题的关键,务必做到准确3分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点跟踪训练41设曲线y2cosxsinx在点2,2处的切线与直线xay10垂直,则a________.答案1解析ysin2x2cosxcosxsin2x12cosxsin2x,当x2时,y12cos2sin221.又直线xay10的斜率是1a,1a1,即a1.2曲线yesinx在0,1处的切线与直线l平行,且与l的距离为2,求直线l的方程解设usinx,则yesinxeusinxcosxesinx,即y|x01,则切线方程为y1x0,即xy10.若直线l与切线平行,可设直线l的方程为xyc0.两平行线间的距离d|c1|22,所以c3或c1.故直线l的方程为xy30或xy10.1设函数y2exsinx,则y等于A2excosxB2exsinxC2exsinxD2exsinxcosx答案D解析y2exsinxexcosx2exsinxcosx2对于函数fxexx2lnx2kx,若f11,则k等于A.e2B.e3Ce2De3答案A解析fxexx2x31x2kx2,f1e12k1,解得ke2,故选A.3曲线yxx2在点1,1处的切线方程为Ay2x1By2x1Cy2x3Dy2x2答案A解析yxx2xx2x222x22,ky|x121222,切线方程为y12x1,即y2x1.4函数y2cos2x在x12处的切线斜率为________考点简单复合函数的导数题点简单复合函数的导数的综合应用答案1解析由函数y2cos2x1cos2x,得y1cos2x2sin2x,所以函数在x12处的切线斜率为2sin2121.5在曲线yx33x26x10的切线中,斜率最小的切线的方程为________________答案3xy110解析y3x26x63x22x23x1233,当x1时,斜率最小,此时切点坐标为1,14,切线方程为y143x1,即3xy110.1应用和.差.积.商的求导法则和常见函数的导数公式求导数时,要先利用代数.三角恒等变换对函数进行化简,然后再求导,这样可以减少运算量,提高运算速度,避免出错2注意区分两个函数积与商的求导公式中符号的异同,积的导数公式中是“”,而商的导数公式中分子上是“”3求复合函数的导数应处理好以下环节1正确分析函数的复合层次2中间变量应是基本初等函数结构3一般是从最外层开始,由外及里,一层层地求导4善于把一部分表达式作为一个整体5最后要把中间变量换成自变量的函数。
导数计算导学案
3.2 《导数的计算》导学案编写人 审核人: 编写时间:2014.3.1班级:_________ 组别:_____ 组名:________________ 姓名:________【学习目标】(1)、能用导数的定义求五个函数的导数,并理解导数不同方面(几何、物理方面)的意义;(2)、熟记基本初等函数的导数公式和导数运算法则并能利用其求简单函数的导数; (3)、学会求函数在某点或过某点的切线方程【学习重难点】重点:会利用定义计算5个函数的导数,感受根据导数定义求导数这种基本方法,并能利用基本初等函数的导数公式和导数运算法则求简单函数的导数. 难点:与导数有关的切线方程的应用。
【学法指导】1,熟读课本81到85页,认真完成导学案 2,注意双色笔的使用【知识链接】1、利用导数的定义求五个函数y=c (常数), y=x, y=2x , y=x1,x y =的导数。
2.根据定义求函数的导数实际上最终归结为求极限.具体步骤是 (1)计算y ∆,并化简y x∆∆; (2)观察当x ∆趋近于0时,yx∆∆趋近于哪个定值(3)y x∆∆趋近于的定值就是函数的导数. 【基础预习】新知1、基本初等函数的导数公式(熟记)____='C (C 为常数);_______)(='x a ___________)(='x e ;______)(log ='x a =')(ln x _________;)('αx =_____________ ; )(sin 'α=____________ =')(cos α________ .新知2、导数运算法则(熟记) []='±)()(x g x f[]=')()(x g x f ______________________ []=')(x Cf ______________='⎥⎦⎤⎢⎣⎡)()(x g x f __________________________ 注:教材直接给出基本初等函数的导数公式及导数的运算法则,不要求根据导数的定义推导这些公式和法则,只要求能够利用它们求简单函数的导数即可。
导数的四则运算教案
导数的四则运算教案
一、教学目标
1. 理解导数的四则运算,掌握导数的加、减、乘、除运算规则。
2. 能够运用导数的四则运算规则解决一些简单的实际问题。
3. 培养学生的数学逻辑思维和运算能力。
二、教学内容
1. 导数的加法运算规则
2. 导数的减法运算规则
3. 导数的乘法运算规则
4. 导数的除法运算规则
三、教学难点与重点
难点:理解导数的四则运算规则,掌握其应用方法。
重点:导数的加、减、乘、除运算规则。
四、教具和多媒体资源
1. 黑板
2. 投影仪
3. 教学软件:几何画板
五、教学方法
1. 激活学生的前知:回顾导数的定义和性质,为学习导数的四则运算做准备。
2. 教学策略:通过讲解、示范、小组讨论等方式进行教学。
3. 学生活动:进行导数的四则运算练习,解决实际问题。
六、教学过程
1. 导入:通过实际问题导入,例如:速度的变化与加速度的关系,曲线的切线斜率等。
2. 讲授新课:讲解导数的四则运算规则,并举例说明。
3. 巩固练习:给出几个实际问题,让学生运用导数的四则运算规则求解。
4. 归纳小结:总结导数的四则运算规则,强调在实际问题中的应用。
七、评价与反馈
1. 设计评价策略:通过课堂小测验或小组报告的方式评价学生的学习效果。
2. 为学生提供反馈:根据学生的测验或报告结果,为学生提供学习建议和指导。
八、作业布置
1. 完成教材上的相关练习题。
2. 自行寻找一些实际问题,运用导数的四则运算规则求解。
导数的运算大学教案
教学对象:大学本科生教学目标:1. 理解导数的概念,掌握导数的定义及求导方法。
2. 掌握导数的四则运算法则,包括导数的加法、减法、乘法和除法法则。
3. 学会运用导数的四则运算法则求解复合函数的导数。
4. 通过实例分析,培养学生运用导数解决实际问题的能力。
教学重点:1. 导数的四则运算法则。
2. 复合函数的导数求解。
教学难点:1. 导数的四则运算法则的推导和应用。
2. 复合函数导数的求解。
教学准备:1. 教学课件2. 练习题教学过程:一、导入1. 复习导数的定义和求导方法。
2. 引入导数的四则运算法则,提出教学目标。
二、新知讲解1. 导数的四则运算法则(1)导数的加法法则:若函数f(x)和g(x)的导数存在,则它们的和的导数为f'(x) + g'(x)。
(2)导数的减法法则:若函数f(x)和g(x)的导数存在,则它们的差的导数为f'(x) - g'(x)。
(3)导数的乘法法则:若函数f(x)和g(x)的导数存在,则它们的积的导数为f'(x)g(x) + f(x)g'(x)。
(4)导数的除法法则:若函数f(x)和g(x)的导数存在,且g'(x)≠0,则它们的商的导数为(f'(x)g(x) - f(x)g'(x)) / [g(x)]^2。
2. 复合函数的导数求解(1)内函数和外函数的导数存在。
(2)根据链式法则,复合函数的导数为外函数导数乘以内函数导数。
三、例题分析1. 举例说明导数的四则运算法则的应用。
2. 举例说明复合函数导数的求解。
四、练习1. 学生独立完成练习题,巩固所学知识。
2. 教师解答学生疑问。
五、总结1. 回顾本节课所学内容,强调导数的四则运算法则和复合函数导数的求解。
2. 强调导数在实际问题中的应用。
六、课后作业1. 完成课后练习题,加深对导数的四则运算法则和复合函数导数的理解。
2. 预习下一节课内容。
教学反思:1. 本节课通过讲解导数的四则运算法则和复合函数导数的求解,帮助学生掌握了导数的运算方法。
导数四则运算学案
§1.2.3导数的四则运算法则学案(1) 教学目标 知识与技能:能利用导数的运算法则和基本初等函数的导数公式求简单函数的导数,理解并掌握复合函数的求导法则. 过程与方法:掌握运用导数的运算法则和导数公式来求复合函数的导数.情感态度价值观:通过利用导数方法解决实际问题,体会导数在现实生活中的应用价值,提高数学应用能力. 重点导数的四则运算法则(加法+乘法) 难点导数的四则运算法则的应用 小卷重点导数的四则运算法则的应用 教法 问题探究,讲授 教具 学案一、复习导入:1、导数的定义:()()()xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆00lim lim2、基本求导公式: ()()()()()10ln 1log sin cos cos sin ln n n x x a c x nx a a a x x x x x x a -'''==='''===-3、巩固练习:求下列函数的导数:()()='='23x x利用导数的定义求()23x x x f +=的导数.猜想:[()()]()()f x g x f x g x '''++与的关系?二、导数四则运算法则()()是可导的设x g x f ,1、函数和(或差)的求导法则: 即:两个函数的和(或差)的导数,等于这两个函数的导数和(或差)2、函数积的求导法则:即:两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.即:常数与函数之积的导数,等于常数乘以函数的导数.例1、(1)求函数 的导数例2、(1)求x x y sin =的导数. (2)求2ln y x x =的导数.变式:求下列函数的导数[]()()()().f xg x f x g x '''±=±2()sin f x x x =+.2623)()2(23的导数求函数+--=x x x x g []()()()()()g ().f x g x f x x f x g x '''=±[]()()Cf x Cf x ''=(1)()()2325y x x =+- (2)()()35738y x x =-+ 例3、求下列函数在指定点的导数:(1)cos ,4y x x x π== (2)2321,0y x x x =++=例4、已知函数()x f 的导函数()f x ',且满足()()21ln f x xf x '=+,则()1f '=( )A.-eB.-1C.1D.e变式:已知函数()x x f x f cos sin 2+⎪⎭⎫ ⎝⎛'=π,则⎪⎭⎫ ⎝⎛'4πf = 抚顺德才高中高二当堂检测卷(数学选修2-2第一章小卷)课题:1.2.3导数的四则运算(1)检测重点:导数的四则运算法则的应用1.下列求导运算正确的是:( )A .211)1(xx x +='+ ; B .2ln 1)(log 2x x ='; C .e x x 3log 3)3(⋅=' ; D .x x x x sin 2)cos (2-='。
《导数的四则运算法则》导学案
第4课时导数的四则运算法则1.记住两个函数的和、差、积、商的导数运算法则.2.能通过运算法则求出导数并解决相应问题.3.经历由定义到具体求解的研究数学问题的过程,体会探究的乐趣,激发学习热情.你能利用导数的定义推导f(x)·g(x)的导数吗?若能,请写出推导过程.问题1:基本初等函数的导数公式表:①若f(x)=c,则f'(x)=;②若f(x)=xα(α∈Q),则f'(x)=;③若f(x)=sin x,则f'(x)=;④若f(x)=cos x,则f'(x)=;⑤若f(x)=a x,则f'(x)=(a>0);⑥若f(x)=e x,则f'(x)=;⑦若f(x)=log a x,则f'(x)=(a>0,且a≠1);⑧若f(x)=ln x,则f'(x)=.问题2:导数运算法则①[f(x)±g(x)]'=;②[f(x)·g(x)]'=;③[]'=(g(x)≠0).④从导数运算法则②可以得出[cf(x)]'=c'f(x)+c[f(x)]'=,也就是说,常数与函数的积的导数,等于常数乘以函数的导数,即[cf(x)]'=.问题3:运用导数的求导法则,可求出多项式f(x)=a0+a1x+…+a r x r+…+a n x n的导数.f'(x)=.问题4:导数法则[f(x)±g(x)]'=f'(x)±g'(x)的拓展有哪些?(1)可以推广到有限个函数的和(或差)的情形:若y=f1(x)±f2(x)±…±f n(x),则y'=.(2)[af(x)±bg(x)]'=af'(x)±bg'(x)(a,b为常数).(3)[f(x)±c]'=f'(x).1.函数y=lg x的导数为().A.B.ln10C.D.2.曲线y=x3在x=α处的导数为12,则α等于().A.±4B.±2C.2D.43.函数y=(x+1)2(x-1)在x=1处的导数等于.4.求下列函数的导数.(1)y=sin(x+);(2)y=lo x2-lo x.求函数的导数求下列函数的导数:(1)f(x)=a2+2ax-x2;(2)f(x)=.求曲线的切线方程已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.(1)求直线l2的方程;(2)求由直线l1,l2和x轴所围成的三角形的面积.导数公式的综合应用已知直线x-2y-4=0与抛物线y2=x相交于A,B两点,O为坐标原点,试在直线AB左侧的抛物线上求一点P,使△ABP的面积最大.求下列函数的导数:(1)y=(x+1)(x+2)(x+3);(2)y=1+sin cos;(3)y=-2x.(1)求曲线y=x cos x在x=处的切线方程;(2)求曲线y=在点(1,1)处的切线方程.点P是曲线y=e x上任意一点,求点P到直线y=x的最小距离.1.曲线y=e x在点A(0,1)处的切线斜率为().A.1B.2C.eD.2.曲线y=sin x上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是().A.[0,]∪[,π)B.[0,π)C.[,]D.[0,]∪[,]3.设函数f(x)=log a x,f'(1)=-1,则a=.4.已知直线y=kx是y=ln x的一条切线,求k的值.(2012年·新课标卷)曲线y=x(3ln x+1)在点(1,1)处的切线方程为.考题变式(我来改编):第4课时导数的四则运算法则知识体系梳理问题1:①0②αxα-1③cos x④-sin x⑤a x ln a⑥e x⑦⑧问题2:①f'(x)±g'(x)②f'(x)g(x)+f(x)g'(x)③④cf'(x)cf'(x)问题3:a1+2a2x1+…+ra r x r-1+…+na n x n-1问题4:(1)f'1(x)±f'2(x)±…±f'n(x)基础学习交流1.C∵(log a x)'=,∴(lg x)'=.2.B y'=3x2,∵y'|x=α=12,∴3α2=12,解得α=±2,选B.3.4∵y=(x+1)2(x-1)=(x2-1)(x+1)=x3+x2-x-1,∴y'=(x3)'+(x2)'-(x)'-(1)'=3x2+2x-1,∴y'|x=1=4.4.解:(1)∵y=sin(x+)=cos x,∴y'=(cos x)'=-sin x.(2)∵y=lo x2-lo x=2lo x-lo x=lo x(x>0),∴y'=(lo x)'==-.重点难点探究探究一:【解析】(1)f'(x)=(a2+2ax-x2)'=2a+2x.(2)f'(x)=()'===x sin x+x2cos x.[问题]求函数的导数是对谁求导?导数的运算法则正确吗?[结论](1)求导是对自变量的求导,要分清表达式中的自变量.本题的自变量是x,a是常量.(2)不正确,商的求导法则是:分母的平方作分母,分子是差的形式,等于分子的导数乘以分母的积减去分母的导数乘以分子的积.于是,正确解答为:(1)f'(x)=(a2+2ax-x2)'=-2x+2a.(2)f'(x)=()'==.【小结】1.利用导数公式求函数的导数时,一定要将函数化为八个基本函数中的某一个,再套用公式求导数.2.求函数的导数时应注意以下几点:(1)要遵循先化简函数解析式,再求导的原则.(2)化简时注意化简的等价性,避免不必要的运算失误.(3)求导时,既要重视求导法则,更要注意求导法则对导数的制约作用.探究二:【解析】(1)∵y'=2x+1,∴y'|x=1=3.∴直线l1的方程为y=3(x-1)=3x-3.设直线l2过曲线y=x2+x-2上的点P(x0,+x0-2),则直线l2的方程为y-(+x0-2)=(2x0+1)(x-x0).∵l1⊥l2,∴3(2x0+1)=-1,x0=-.∴直线l2的方程为y=-x-.(2)解方程组得又直线l1,l2与x轴的交点分别为(1,0),(-,0).∴所求三角形面积为S=×|-|×(1+)=.【小结】解决曲线的切线问题要灵活利用切点的性质:①切点在切线上;②切点在曲线上;③切点处的导数为此点处的切线的斜率.探究三:【解析】∵|AB|为定值,∴三角形面积最大,只需P到AB的距离最大,∴点P是与AB平行且与抛物线相切的切线的切点.设点P(x0,y0),由题意知点P在x轴上方的图像上,即P在y=上,∴y'=.又∵k AB=,∴=,得x0=1.由y0=,得y0=1,∴P(1,1).【小结】利用基本初等函数的求导公式结合导数的几何意义可以解决一些与距离、面积相关的几何的最值问题,解题的关键是正确确定所求切线的位置,进而求出切点坐标.另外也可利用函数的方法求切点的坐标,运用配方法求出最值.思维拓展应用应用一:(1)(法一)y'=[(x+1)(x+2)(x+3)]'=[(x+1)(x+2)]'(x+3)+[(x+1)(x+2)](x+3)'=[(x+1)'(x+2)+(x+1)(x+2)'](x+3)+(x+1)(x+2)=(x+2+x+1)(x+3)+(x+1)(x+2)=(2x+3)(x+3) +(x+1)(x+2)=3x2+12x+11.(法二)y=(x2+3x+2)(x+3)=x3+6x2+11x+6,y'=3x2+12x+11.(2)y=1+sin x,y'=cos x.(3)y'=()'-(2x)'=-2x ln2=-2x ln2=-2x ln2.应用二:(1)y'=x'cos x+x·(cos x)'=cos x-x sin x,y'=-,切点为(,0),∴切线方程为y-0=-(x-),即2πx+4y-π2=0.(2)y'==,y'|x=1==0,即曲线在点(1,1)处的切线的斜率k=0.因此曲线y=在(1,1)处的切线方程为y=1.应用三:根据题意设平行于直线y=x的直线与曲线y=e x相切于点P0(x0,y0),该切点即为与y=x距离最近的点,如图.则在点P 0(x0,y0)处的切线斜率为1,即y'=1.∵y'=(e x)'=e x,∴=1,得x0=0,代入y=e x,得y0=1,即P0(0,1).∴d==.基础智能检测1.A由条件得y'=e x,根据导数的几何意义,可得k=y'|x=0=e0=1.2.A∵(sin x)'=cos x,∵k l=cos x,∴-1≤k l≤1,∴αl∈[0,]∪[,π).3.∵f'(x)=,∴f'(1)==-1,∴ln a=-1,∴a=.4.解:设切点坐标为(x0,y0).∵y=ln x,∴y'=.∴f'(x0)==k.∵点(x0,y0)既在直线y=kx上,也在曲线y=ln x上,∴把k=代入①式得y0=1,再把y0=1代入②式求出x0=e.∴k==.全新视角拓展4x-y-3=0由题意得,y=x(3ln x+1)=3x ln x+x⇒y'=3ln x+4,所以y'|x=1=4,由点斜式方程得y-1=4(x-1),整理得4x-y-3=0.。
1.2导数的计算(三课时)学案
选修2-2 第一章 导数及其应用 1.2导数的计算学案设计:绵阳市开元中学 王小凤老师 学生姓名:第一课时:几个常用函数的导数 一.学习目标:1.学会应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2y x =、1y x=、y =的导数公式;2.掌握并能运用这四个公式正确求函数的导数.二.学习重、难点:五种常见函数y c =、y x =、2y x =、1y x=、y 三.学习过程 (一)创设情景我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢?根据导数的定义,求函数()y f x =的导数,就是求出当x ∆趋近于0的时候,yx ∆∆所趋于的那个定值。
(二)获取新知1.函数()y f x c ==的导数根据导数定义,因为()()0y f x x f x c cx x x∆+∆--===∆∆∆ 所以00limlim 00x x yy∆→∆→∆'=== 0y '=表示函数y c =图像上每一点处的切线的斜率都为 .若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.2.函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆ 所以00limlim 11x x yy∆→∆→∆'=== 1y '=表示函数y x =图像上每一点处的切线的斜率都为 .若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动. 3.函数2()y f x x ==的导数因为22()()()y f x x f x x x x x x x∆+∆-+∆-==∆∆∆ 2222()2x x x x x x x x+∆+∆-==+∆∆所以00limlim (2)2x x yy x x x x∆→∆→∆'==+∆=∆2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为 ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x=增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .4.函数1()y f x x==的导数 因为11()()y f x x f x x x x x x x-∆+∆-+∆==∆∆∆2()1()x x x x x x x x x x -+∆==-+∆∆+⋅∆ 所以220011limlim ()x x y y x∆→∆→∆'==-=-∆5.函数y =的导数()()y f x x f x x x∆+∆-==∆∆因为==0limlim x x y y x ∆→∆→∆'===∆所以推广:若*()()n y f x x n Q ==∈,则1()n f x nx -'=(三)课堂小结第二课时:基本初等函数的导数公式及导数的运算法则一.学习目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;二.学习重、难点:基本初等函数的导数公式、导数的四则运算法则及其应用三.学习过程(一)获取新知1.基本初等函数的导数公式2.导数运算法则推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)(二)学以致用例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨。
导数小题分享教案模板范文
课时:1课时年级:高中学科:数学教学目标:1. 理解导数的概念,掌握导数的求法。
2. 学会运用导数解决实际问题,提高解题能力。
3. 培养学生合作交流、探究发现的能力。
教学重点:1. 导数的概念及求法。
2. 导数在实际问题中的应用。
教学难点:1. 导数的概念的理解。
2. 导数在实际问题中的应用。
教学过程:一、导入1. 复习函数的概念,引导学生回顾函数的增减性、最值等性质。
2. 提出问题:如何研究函数的增减性、最值等问题?二、新课讲授1. 引入导数的概念:导数是研究函数在某一点处变化率的一个数学工具。
2. 举例说明导数的求法,如求直线、二次函数、指数函数等的导数。
3. 强调导数的几何意义:导数表示函数在某一点处的切线斜率。
三、课堂练习1. 基础练习:求下列函数的导数。
(1)f(x) = x^2(2)g(x) = e^x(3)h(x) = ln(x)2. 应用练习:利用导数解决实际问题。
(1)已知函数f(x) = x^3 - 3x,求f(x)在x=2处的切线方程。
(2)已知函数f(x) = 2x^2 - 4x + 1,求f(x)在区间[1,3]上的最大值和最小值。
四、讨论与交流1. 学生分组讨论,交流导数的概念、求法及在实际问题中的应用。
2. 邀请学生代表分享自己的解题思路和心得。
五、总结与作业1. 总结本节课所学内容,强调导数的概念、求法及在实际问题中的应用。
2. 布置作业:完成课后习题,巩固所学知识。
教学反思:1. 本节课通过引入实际问题,引导学生理解导数的概念,提高学生对导数的认识。
2. 通过课堂练习和讨论,培养学生的合作交流、探究发现的能力。
3. 注重实际应用,让学生体会到导数在解决实际问题中的重要性。
板书设计:一、导数的概念1. 定义:导数是研究函数在某一点处变化率的一个数学工具。
2. 几何意义:导数表示函数在某一点处的切线斜率。
二、导数的求法1. 直线的导数:斜率2. 二次函数的导数:2x3. 指数函数的导数:e^x4. 对数函数的导数:1/x三、导数在实际问题中的应用1. 求切线方程2. 求函数的最值。
学案1导数的运算学生用.doc
y = (2/+3)(3口2)(2) y = tani (3)..71 、y = sin(— + (4) y = log] % 2变式训练:1、求下列函数的导数:(1)学案1: 变化率与导数' 导数的计算考纲要求:1、了解导数的概念,理解导数的几何意义;2、掌握基本初等函数的导数公式,能熟练运用导数公式和四则运算法则求 简单函数的导数。
3、根据导数的几何意义,会求曲线上某点处的切线方程。
基础知识再现: 一、基本概念1、 平均变化率 _____________________________________________________________2、 瞬时变化率 _____________________________________________________________3、 导数的定义 _____________________________________________________________4、 函数的导数 ____________________________________________________________________ 二、基本公式和法则三、导数的应用 导数的几何意义. 求曲线的切线方程:典例分析:题型一:导数定义的变型应用 例1 设函数/'(x )可导,则+等于( )AXTO 3A X A 、「⑴ B3'⑴ C 、|r (D D 、仰)变式训练: 若lin /3°F)-E =i,则广3。
)= _________________________________A XT O3Ax题型二:求函数的导数 例2 求下列各函数的导数:(1) j = 4x;(2) y = (x + l)(x + 2)(x + 3); (3) y = -sin —f 1 -2cos 2 —\(4) y = sin —.2、已知 f (x )=sinx (cosx+1),则 f'(x )等于( )A. cos2x-cosxB. cos2x-sinxC. cos2x+cosxD. cos 1 2x+cosx 题型三:导数的几何意义题型四:导数的综合应用V 2例4、已知函数f (x )=---1(。
1.2.2导数的运算法则(含复合函数的导数)(学生学案)
SCH 南极数学人教A 版选修2-2第一单元《导数及其应用》同步教学设计 班级 姓名 座号1.2导数的计算(学生学案)(2)1.2.2导数的运算法则(含复合函数的导数) 例1 求下列函数的导数:(1)y =x 5+x 7+x 9x;(2)y =x 2+1x 2+3;(3)y =(x +1)(x +3)(x +5);(4)y =x tan x .变式训练1 (1)若函数f (x )=(x -1)(x -2)(x -3)(x -4)(x -5),且f ′(x )是函数f (x )的导函数,则f ′(1)等于( ) A .24 B .-24 C .10 D .-10(2)已知函数f (x )=1x cos x ,则f ′(π2)等于( )A .-2π B.2π C.1π D .-1π(3)已知y =x 2-sin x 2cos x2,则y ′=________.例2:(课本P17例4)求下列函数的导数: (1)2(23)y x =+ (2)0.051x y e-+=(3)sin()y x πϕ=+ (其中,πϕ均为常数) 例3 求下列函数的导数:(1)y =32x -1;(2)y =1(2x +1)4;(3)y =5log 3(1-x );(4)y =x 2cos(2x -π3).变式训练3(1)若f (x )=(2x +a )2,且f ′(2)=20,则a =________.(2)已知y =ln 3xex ,则y ′|x =1=________.(3)已知y =sin 3x +cos 3x ,则y ′=______________________________ 四.【课时作业】 一、选择题:1.设y =-2e x sin x ,则y ′等于( ) A .-2e x cos x B .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )2.函数y =cos x1-x的导数是( )A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x3.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A.193 B.163 C.133 D.103 4.下列各函数的导数:①(x )′=12x 12-;②(a x )′=a 2ln x ;③(sin 2x )′=cos 2x ;④(x x +1)′=1x +1.其中正确的有( ) A .0个 B .1个 C .2个 D .3个5.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒6.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2B .0C .钝角D .锐角 7.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2 B.12 C .-12D .-28、(课本P18习题1.2 A 组NO :4) 9、(课本P18习题1.2 A 组NO :5) 10、(课本P18习题1.2 A 组NO :6) 11、(课本P18习题1.2 A 组NO :7) 12、(课本P18习题1.2 B 组NO :2) 13、(课本P18习题1.2 B 组NO :3)。