容斥原理奥数原题
奥数训练专题——容斥原理
容斥原理1、某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?2、某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?3、四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.(6级)4、五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.(6级)5、光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?(6级)6、新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有多少人?7、五年级三班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的3.5倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数.8、六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项.其中,爱好体育的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人.问:有多少人只爱好科学和文艺两项?只爱好体育的有多少人?9、在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:三种都带了的有几人?只带了一种的有几个?9、盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.10、全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么,数学成绩优秀的有几个学生?有几个人既会游泳,又会滑冰?11、在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比只摘李子的人数多3个;只摘草莓者比摘了山莓和草莓但没有摘李子者多4人;50个人没有摘草莓;11个人摘了山莓和李子但没有摘草莓;总共有60人摘了李子.如果参与采摘水果的总人数是100,你能回答下列问题吗?①有人摘了山莓;②有人同时摘了三种水果;③有人只摘了山莓;④有人摘了李子和草莓,而没有摘山莓;⑤有人只摘了草莓.12、五年级一班共有36人,每人参加一个兴趣小组,共有A 、B 、C 、D 、E 五个小组,若参加A 组的有15人,参加B 组的人数仅次于A 组,参加C 组、D 组的人数相同,参加E 组的人数最少,只有4人.那么,参加B 组的有多少人?13、五一班有28位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6个同学参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是3个小组全参加的人数的5倍,并且知道3个小组全参加的人数是一个不为0的偶数,那么仅参加数学和语文小组的人有多少人?14、某学校派出若干名学生参加体育竞技比赛,比赛一共只有三个项目,已知参加长跑、跳高、标枪三个项目的人数分别为10、15、20人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之一的人还参加了别的比赛项目,求这所学校一共派出多少人参加比赛?图形中的重叠问题1、 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?2、把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?3、两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?4、 如图,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.图32厘米4厘米图35、一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.6、三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?7、如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?8、如图所示,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A 与B 、B 与C 的公共部分的面积分别为8、7,A 、B 、C 这三张纸片的公共部分为3.求A 与C 公共部分的面积是多少?容斥原理在数论问题中的应用1、 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?2、 在自然数1100~中,能被3或5中任一个整除的数有多少个?3、 在前100个自然数中,能被2或3整除的数有多少个?4、 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?CB A105、求在1至100的自然数中能被3或7整除的数的个数.5、以105为分母的最简真分数共有多少个?它们的和为多少?7、分母是385的最简真分数有多少个?并求这些真分数的和.8、在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有个.9、在从1到1998的自然数中,能被2整除,但不能被3或7整除的数有多少个?10、50名同学面向老师站成一行.老师先让大家从左至右按1,2,3,…,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名?11、有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3, (2000)然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?12、写有1到100编号的灯100盏,亮着排成一排,每一次把编号是3的倍数的灯拉一次开关,第二次把编号是5的倍数的灯拉一次开关,那么亮着的灯还有多少盏?13、在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支?14、在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份;如果沿每条刻度线将木棍锯断,则木棍总共被锯成________段.15、一根101厘米长的木棒,从同一端开始,第一次每隔2厘米画一个刻度,第二次每隔3厘米画一个刻度,第三次每隔5厘米画一个刻度,如果按刻度把木棒截断,那么可以截出段.16、一根1.8米长的木棍,从左端开始每隔2厘米画一个刻度,涂完后再从左端开始每隔3厘米画一个刻度,再从左端每隔5厘米画一个刻度,再从左端每隔7厘米画一个刻度,涂过按刻度把木棍截断,一共可以截成多少段小木棍?容斥原理中的最值问题1、将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?2、如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?3、某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班至少有多少学生这三项运动都会?4、某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有人.5、60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人?6、图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?7、甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?8、在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人浇过的花最少有多少盆?恰好被1个人浇过的花最多有多少盆?9、甲、乙、丙同时给100盆花浇水.已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?。
小学奥数趣味学习《容斥问题》典型例题及解答
小学奥数趣味学习《容斥问题》典型例题及解答容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
常见的容斥问题有两者容斥、三者容斥两种。
数量关系:A∪B = A+B - A∩BA∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C解题思路和方法:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
可画文氏(韦恩)图来解题。
例题1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。
钉成的木板长 _____ 厘米。
解:1、本题考查了学生的运算能力、应用能力。
解决重叠问题时,要注意重叠的部分不能重复计算。
2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。
例题2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。
A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。
孩子没有进行画图理解,只是凭自己的主观想象进行思考,没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。
2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。
选择B。
例题3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。
奥数 容斥原理(例题+详解)
容斥原埋在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理.为了说明这个原理,我们先介绍一些集合的初步知识。
例1、桌上有两张圆纸片A、B.假设圆纸片A的面积为30平方厘米,圆纸片B的面积为20平方厘米.这两张圆纸片重叠部分的面积为10平方厘米.则这两张圆纸片覆盖桌面的面积由容斥原理的公式(1)可以算出为:|A∪B|=30+20-10=40(平方厘米)。
例2、求在1至100的自然数中能被3或7整除的数的个数。
分析解这类问题时首先要知道在一串连续自然数中能被给定整数整除的数的个数规律是:在n个连续自然数中有且仅有一个数能被n整除.根据这个规律我们可以很容易地求出在1至100中能被3整除的数的个数为33个,被7整除的数的个数为14个,而其中被3和7都能整除的数有4个,因而得到解:设A={在1~100的自然数中能被3整除的数},B={在1~100的自然数中能被7整除的数},则A∩B={在1~100的自然数中能被21整除的数}。
∵100÷3=33…1,∴|A|=33。
∵100÷7=14…2,∴|B|=14。
∵100÷21=4…16,∴|A∩B|=4。
由容斥原理的公式(1):|A∪B|=33+14-4=43。
答:在1~100的自然数中能被3或7整除的数有43个。
例3、求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?分析如果在1~100的自然数中去掉5的倍数、6的倍数,剩下的数就既不是5的倍数也不是6的倍数,即问题要求的结果。
解:设A={在1~100的自然数中5的倍数的数},B={在1~100的自然数中6的倍数的数},数.为此先求|A∪B|。
∵100÷50=20,∴|A|=20又∵100÷6=16…4,∴|B|=16∵100÷30=3…10,∴|A∩B|=3,|A∪B|=|A|+|B|-|A∩B|=20+16-3=33。
小学奥数总复习第七讲《容斥原理》练习
1、先包含——A +B 重叠部分A ∩B 计算了2次,多加了1次;2、再排除——A +B -A ∩B小学奥数总复习第七讲《容斥原理》练习容斥原理1:两量重叠问题计算公式:A ∪B=A +B-A ∩B说明:A ∪B 读作:“A 并B ”,表示A 、B 情况的总和。
A ∩B 读作:“A 交B ”,表示A 、B 的公共部分。
容斥原理2:三量重叠问题计算公式: A ∪B ∪C= A +B +C -A ∩B -B ∩C -A ∩C -A ∩B ∩C说明:A ∪B ∪读作:“A 并B 并C ”,表示A 、B 、C 情况的总和。
A ∩B ∩C 读作:“A 交B 交C ”,表示A 、B 、C 的公共部分。
1、有两块一样长的木板,各长130厘米,中间钉在一起后成了一块长木板,中间钉在一起的重叠部分时10厘米,长木板的长度是多少?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
中间重叠部分长11厘米。
这两块木板各长多少厘米?3、老师出了两道数学题,在40人中,做对第一题的有31人,做对第二题的有28人,每人至少做对一道,两道题都做对的有几人?4、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种,已知参加赛跑的有36人,参加跳绳的有38人。
问两项比赛都参加的有几人?5、某班共有42人,参加美术小组的有11人,参加陶艺小组的有15人,有6人两个小组都参加。
这个班既没参加美术小组也没参加陶艺小组的有多少人?6、三(2)班订《数学报》的有32人,订《阅读报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸,三(1)班有学生多少人?7、校运动会上,四个年级共有118人参加跑步比赛。
其中一、二年级共有70人参加,一、三年级共有65人参加,二、三年级共有59人参加。
问:四年级有多少学生参加跑步比赛?8、某校三年级共有三个班级128名学生,一班和二班共有89人,二班和三班共有87人。
三年级各班有多少名学生?A ∩C A ∩B ∩C B ∩C A ∩B 图中小圆表示A 的个数,中圆表示B 的个数,大圆表示C 的个数 1、先包含——A +B +C 重叠部分A ∩B 、 B ∩C 、 A ∩C 重叠了2次, A ∩B ∩C 重叠了3次。
高中奥数(容斥原理)
例5:1992位科学家,每人至少与1329人合作过,那么,其中一定有四位数学家两两合作过。
分析:在与一个人A合作的人中我们找到B。
再说明一定有人与A和B都合作过为C。
最后再说明有人与A、B、C都合作过为D,那么A、B、C、D就是找的人了。
证明:一个人A。
不妨设B与之合作。
那么。
即C与A和B均合作过,分别表示与A、B合作过的人的集合。
同样地,。
所以存在。
则A、B、C、D就是所求,证毕。
说明:把一个普通的叙述性问题转化为集合的语言描述的问题通常为解题的关键之处,也是同学们需加强的。
例4:将与105互素的所有正整数,从小到大排成一个数列,试求出该数的第1000项.【解】105=3×5×7.由容斥原理,每连续105个数中,有个数与105互素.a1=1,a2=2,a3=4,a4=8,a5=11,a6=13,a7=16,a8=17。
a48=104a49=106,a50=107,。
a96=209a1+k*48=k*105+1,。
a (1+k)*48=k*105+1041000=48×20+40=48×20+48-8a48×20=105×20=2100而自105向前倒数,第9个与105互素的数是86,所以a1000=2100+86=2186例10:对于任何的集合S,记|S|为集合的元素个数,记n(S)为集合S的子集个数,若A,B,C是三个集合,满足:n(A)+n(B)+n(C)=n(A∪B∪C)|A|=|B|=100求|A∩B∩C|的最小值【解】:有k个元素的集合的子集个数为2^k,而|A|=|B|=100==> n(A)=n(B)=2^100==> n(A)+n(B)+n(C)=2^100+2^100+n(C)=2^101+n(C)由题目知道,n(A)+n(B)+n(C)=n(A∪B∪C)==> 2^101+n(C)=n(A∪B∪C),其中n(C)和n(A∪B∪C)均为2的整数次幂==> n(C)=2^101,n(A∪B∪C)=2^102==> |C|=101,|A∪B∪C|=102现在我们知道,|A|=|B|=100,|C|=101,|A∪B∪C|=102也就是说,(A∪B∪C)除了包含C的101个元素外,还包含一个属于A∪B而不属于C的元素。
小学奥数《容斥原理》
有的有27人,这个班有学生多少人?
容斥原理
订阅报纸的总人数是 多少?(2)两种报纸 都没订阅的有多少人?
一个班有45名学生,订阅《小学生数学报》的有15人, 订阅《今日少年报》的有10人,两种报纸都订阅的有6人。
二.有100位旅客,其中有10人既不懂英语又不 懂俄语,有75人懂英语,83人懂俄语,问既 懂英语又懂俄语的有多少人?
三.求不超过100的自然数中,不能被3、5中任 何一数整除的数的个数。
一个俱乐部里,会下中国象棋的有69人,会下 国际象棋的有52人,这两种棋都不会下的有12 人,都会下的有30人。这个俱乐部里有多少人?
. 六一班有学生46人,其中会骑自行 的有19人,会游泳的有25人,既会骑 又会游泳的有7人,既不会骑自行车 不会游泳的有多少人?
例4. 某年级的课外小组分为美术、音乐、手 工三个小组,参加美术小组有20人,参加音 乐小组有24人,参加手工小组有31人,同时 参加美术和音乐两个小组有5人,同时参加音 乐和手工两个小组有6人,同时参加美术和手 工两个小组的有7人,三个小组都参加的有3 人,这个年级参加课外小组的同学共有多少人?
如果被计数的事物有A、B、C三类,那么, A类或B类或C类元素个数= A类元素个数 + B类元素个数+C类元素个数—既是A类 又是B类的元素个数—既是A类又是C类的 元素个数—既是B类又是C类的元素个数+ 既是A类又是B类而且是C类的元素个数。
一.四(1)班有40个学生,其中25人参加数学 小组,23人参加航模小组,有19个人两个小 组都参加了,那么,有多少人两个小组都没 有参加?
小学奥数计数之容斥原理练习【三篇】
小学奥数计数之容斥原理练习【三篇】导读:本文小学奥数计数之容斥原理练习【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】 1.一个班有45个小学生,统计借课外书的情况是:全班学生都借有语文或数学课外书.借语文课外书的有39人,借数学课外书的有32人.语文、数学两种课外书都借的有人. 3.在1~100的自然数中,是5的倍数或是7的倍数的数有个. 4.某区100个外语教师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师为人. 5.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有人. 6.在1至10000中不能被5或7整除的数共有个. 7.在1至10000之间既不是完全平方数,也不是完全立方数的整数有个. 8.某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有人. 9.分母是1001的最简真分数有个. 10.在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐,又爱好体育的人最少有人,最多有人. 【第二篇】[ 例1 ] 洗好的8块手帕夹在绳子上晾干,同一个夹子夹住相邻的两块手帕的两边,这样一共要多少个夹子?分析:两块手帕有一边重叠,用3个夹子。
三块手帕有两边重叠,用4个夹子,我们发现夹子数总比手帕数多1,因此8块手帕就要用9个夹子。
[ 例2 ] 把图画每两张重叠在一起钉在墙上,现在有5张画要多少个图钉呢?分析:每排两张画要6个图钉,每排三张画要8个图钉,每排四张画要10个图钉。
可以看出,图画每增加一张,图钉就要增加2颗,那么5张画要12个图钉。
1.有两块木板,一块长72厘米,另一块长56厘米,如果把两块木板重叠后钉成一块木板,重叠部分是20厘米。
小学奥数计数之容斥原理练习题
小学奥数计数之容斥原理练习题1.一个班有45个小学生,统计借课外书的情况是:全班学生都借有语文或数学课外书.借语文课外书的有39人,借数学课外书的有32人.语文、数学两种课外书都借的有人.3.在1~100的自然数中,是5的倍数或是7的倍数的数有个.4.某区100个外语教师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师为人.5.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有人.6.在1至10000中不能被5或7整除的数共有个.7.在1至10000之间既不是完全平方数,也不是完全立方数的整数有个.8.某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有人.9.分母是1001的最简真分数有个.10.在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐,又爱好体育的人最少有人,最多有人.【篇二】知识要点:排队问题:从前面数,从后面数,丽丽都排第6,这个排共有几个人?这里丽丽被重复数了两次,有时我们也把这类问题叫重叠问题。
[例1]洗好的8块手帕夹在绳子上晾干,同一个夹子夹住相邻的两块手帕的两边,这样一共要多少个夹子?分析:两块手帕有一边重叠,用3个夹子。
三块手帕有两边重叠,用4个夹子,我们发现夹子数总比手帕数多1,所以8块手帕就要用9个夹子。
[例2]把图画每两张重叠在一起钉在墙上,现在有5张画要多少个图钉呢?分析:每排两张画要6个图钉,每排三张画要8个图钉,每排四张画要10个图钉。
能够看出,图画每增加一张,图钉就要增加2颗,那么5张画要12个图钉。
1.有两块木板,一块长72厘米,另一块长56厘米,如果把两块木板重叠后钉成一块木板,重叠部分是20厘米。
六年级上册奥数试题-第5讲:容斥原理_全国通用(含答案)
第5讲容斥原理知识网络我们经常会遇到这样一类问题,题目中涉及到包含与排除,也就是说有重叠部分。
解答此类问题的主要依据是容斥原理。
容斥原理一:设A、B是两类有重叠部分的量(如图1所示),若A对应的量为a,B对应的量为b,A与B重叠部分对应的量为ab,那么这两类量的总量可以用下面的公式进行计算:总量=a+b-ab容斥原理二:设A、B、C是三类有重叠部分的量(如图2所示),若A对应的量为a,B 对应的量为b,C以应的量为c,A与B重叠部分以应的量为ab,B与C重叠部分对应的量为bc,C与A重叠部分对应的量为ca,A、B、C三部分重叠部分对应的量为abc,则这三类量的总量可以用下面的公式进行计算:总量=a+b+c-ab-bc-ca+abc重点·难点容斥原理的表述虽然简单,但涉及容斥原理的题型很多,范围很广。
我们往往会遇到一些看似与容斥原理无关的问题,然而通过恰当的转化,便可利用容斥原理顺利求解。
如何分析题目,准确找到重叠部分,将问题转化成可用容斥原理解决的问题是本节的难点。
学法指导解决本节问题的最基本方法是示意图法,即通过示意图来表示题目中的数量关系,使分析、推理与计算结合起来,达到使题目的内容形象化,数量之间关系直观化的目的。
因此,这就要求我们在解题过程中,仔细分析,找出所需量并用示意图表示出来,进而通过观察示意图,确定几类量的重叠部分,然后运用容斥原理解决问题。
经典例题[例1]分母是1001的最简真分数,共有多少个?思路剖析分母是1001的真分数有共1000个,为了方便计算,增加一个分数在1001个分数中考虑问题。
由于1001=7×11×13,所心1~1001的分子里只要含有7、11、13的倍数的就一定能同分母约分,即不是最简真分数,应排除掉。
因此,首先应考虑1~1001中,有多少个7、11或13的倍数。
解答因为1001=7×11×13,所以在1~1001的自然数中,7的倍数共有(11×13)个,11的倍数共有(7×13)个,13的倍数共有(7×11)个;7、11年公倍数有13个,7、13的公倍数有11个,11、13的公倍数有7个;7、11、13的公倍数有1个(即1001)。
容斥原理-五年级奥数
容斥原理1、五年级(1)班有学生56人,其中45人完成数学作业,42人完成语文作业,这个班两种作业都做完的有多少人?2、某校挑选18名学生参加春季运动会,获一等奖的有12人,获二等奖的有11人,两个奖都取得的有9人,这次运动会上两个奖都没取得的有多少人?3、在1-100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?4、某学校组织同学参加足球和乒乓球比赛,参加足球比赛的有20人,参加乒乓球比赛的有18人,同时参加足球和乒乓球比赛的有13人,问参加比赛的共有多少人?5、某班有46人,其中会骑车的有17人,会游泳的有14人,既会骑车又会游泳的有5人,问两样都不会的有几人?6、某班共有45人,其中有35人会用电脑打字,这个班有男生23人,女生中有6人不会用电脑打字,那么男生中有多少人会用电脑打字?7、五(1)班有40名学生,参加围棋班的有15人,参加电脑班的有11人,参加美术班的有13人,同时参加围棋和电脑班的有4人,同时参加围棋和美术班的有5人,同时参加美术和电脑班的有5人呢,班上有3人三个班都参加了,问班级中没有参加兴趣班的有多少人?8、在一根长的木棍上有三种刻度线,第一种刻度线,将木棍10等分,第二种刻度线将木棍12等分,第三种刻度线将木棍15等分。
如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?创新题1、一个班有45个小学生,统计借课外书的情况是:全班学生都借有语文或数学课外书,借语文课外书的有39人,借数学课外书的有32人,语文、数学两种课外书都借的有多少人?2、在1-100的所有自然数中,既非3的倍数也不是4或5的倍数的数有多少个?3、80个外语老师中,懂英语的有65人,懂日语的有35人,其中必有既懂英语又懂日语的的老师,问只懂英语的老师有多少人?4、五年级某班学生进行百米跑、跳远、投掷3个项目的测试,跳远达到优秀的有28人,投掷达到优秀的有26人,百米跑达到优秀的有24人,百米跑和跳远都达优的有12人,跳远和投掷达优的有9人,百米跑和投掷都达优的有14人,3项都达优的有5人,这个班有多少位同学?单元测试题1、某班有50名学生,在第一次测验中有26人得满分,在第二次测验中有21 人得满分,如果两次测验都没得过满分的学生有17人,那么两次测验都活得满分的有多少人?2、第一小组的同学们都在做两道练习题,做对第一题的有15人,做对第二题的有10人,两题都做对的有7人,两题都做错的有2人,第一小组一共有多少人?3、问1-1000中所有不能被6,8,10整除的自然数有多少个?4、某校100个老师懂英语或法语,其中懂英语的有75人,既懂英语又懂法语的有20人,问懂法语的有多少人?只懂法语的有多少人?5、五年级112名同学参加语文、数学考试,没人至少有一门获优,已知语文获优者60人,数学获优者73人,求只有语文一门获优的人数.6、五一班有56名同学,只会打乒乓球的有28人,会打乒乓球又会打羽毛球的有16人,只会打羽毛球的有多少人?7、在1,2,3,、、、,1998这1998个数中,既不是8的倍数,又不是12的倍数的数共有多少个?。
六年级奥数容斥原理
六年级奥数——容斥原理六年级奥数——容斥原理姓名得分1、一个班有45个小学生,统计借课外书的情况:全班学生都借有语文活数学课外书,借语文课外书的有39人,借数学课外书的有32人,语文、数学课外书都借的有多少人?2、六一班有46人,其中会骑自行车的有17人,会游泳的有14人,既会骑自行车又会游泳的4人,问两样都不会的有多少人?3、某区100个外语教师懂英语或俄语,其中懂英语的有75人,既懂英语又懂俄语的20人,那么懂俄语的教师有多少人?4、有长8厘米,宽6厘米的长方形与边长为5厘米的正方形,如图,放在桌面上(阴影是图形的重叠部分),那么这两个图形盖住桌面的面积是多少平方厘米?5、在1~100的自然数中,是5的倍数或是7的倍数的数有几个?6、在1至10000中不能被5或7整除的数有多少个?7、在1至10000之间既不是完全平方数,也不是完全立方数的整数有多少个?8、某班共有30名男生,其中20人参加足球队,已知没有一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加篮球队,有2人既参加篮球队又参加排球队,那么既参加足球队又参加排球队的有几人?9、分母是385的最简真分数有多少个,并求这些真分数的和?10、在100个学生中,音乐爱好者56,体育爱好者75人,那么既爱好音乐,又爱好体育得最少有几人,最多有几人?11、某校有学生960人,其中有510人订阅“作文报”,有330人订阅“数学报”,有120人订阅“科学爱好者”,全校学生中有270人订阅两种报刊,有58人三种都订,那么学校中没有订阅任何报刊的有几人?12、某门诊部统计某一天挂号的病人,内科150人,外科92人,其中内外两科都求诊的18人,这一天共来了多少个病人?13、在一次运动会中,甲班参加田赛的有15人,参加径赛的有12人,既参加田赛又参加径赛的有7人,没有参加比赛的有21人,那么甲班共有多少人?14、不超过30的正整数中,是3的倍数或4的倍数由多少个?。
小学奥数之容斥原理
小学奥数之容斥原理容斥原理例1:给定长8厘米,宽6厘米的长方形和边长5厘米的正方形,求这两个图形覆盖桌面的面积。
分析与解:两个图形的重叠部分是一个直角三角形,可以用三种方法求出它的面积:方法一:方法二:方法三:最终答案为67平方厘米。
例2:六一班共有26名学生参加了无线电小组和航模小组,其中有17人参加了无线电小组,14人参加了航模小组,有多少人参加了两个小组?分析与解:如果直接将17人和14人相加,会把两个小组都参加的人算两次,因此需要用容斥原理来计算。
具体地,两个小组都参加的人数等于总人数减去只参加一个小组的人数:另一种方法是:最终答案为5人。
例3:六一班共有46名学生,其中19人会骑自行车,25人会游泳,7人既会骑车又会游泳,有多少人既不会骑自行车也不会游泳?分析与解:首先计算会骑车或会游泳的人数,然后减去既会骑车又会游泳的人数,就得到了既不会骑车也不会游泳的人数:最终答案为9人。
例4:某年级的课外小组分为美术、音乐、手工三个小组,参加美术小组有20人,参加音乐小组有24人,参加手工小组有31人,同时参加美术和音乐两个小组的有5人,同时参加音乐和手工两个小组的有6人,同时参加美术和手工两个小组的有7人,三个小组都参加的有3人,这个年级参加课外小组的同学共有多少人?分析与解:用容斥原理计算总人数,需要减去重复多余的部分。
具体地,先计算参加至少一个小组的人数,然后减去同时参加两个小组的人数,再加上同时参加三个小组的人数:最终答案为60人。
例5:某班有若干学生参加了短跑、投掷和跳远三项检测,其中有4人三项都未达到优秀,其他人至少有一项是优秀。
给定各项检测中达到优秀的人数,求全班人数。
分析与解:用容斥原理计算全班人数,需要减去三项都未达到优秀的人数。
具体地,先计算跑、跳、投至少有一项达到优秀的人数,然后加上三项都未达到优秀的人数:最终答案为42人。
例6:求分母为105的最简真分数的个数。
分析与解:分母为105的最简真分数,可以表示成$a/105$ 的形式,其中 $a$ 是比105小的正整数,且 $a$ 和105互质。
五年级奥数容斥问
五年级奥数容斥问题:容斥原理(1)如果被计数的事物有a、b两类,那么,a类或b类元素个数= a类元素个数+b类元素个数—既是a类又是b类的元素个数。
容斥原理(2)如果被计数的事物有a、b、c三类,那么,a类或b类或c类元素个数= a类元素个数+b类元素个数+c类元素个数—既是a类又是b类的元素个数—既是a类又是c类的元素个数—既是b类又是c类的元素个数+既是a类又是b类而且是c类的元素个数1、艺术小学举行学生画展,其中18幅画不是六年级的,20幅画不是五年级的,现在知道五、六年级共展出22幅画。
问其他年级展出多少幅?分析:18幅不是六年级,那就是五年级和其他年级的,20幅不是五年级,就是六年级和其他年级,已知五六年级展出22幅,所以其他年级展出就是八幅。
(18+20-22)/2=8(幅)2、某地区100个外语教师中,每人至少懂英语和日语中的一种语言。
已知懂英语的75人,懂日语的有45人。
问只懂英语的有几人?分析;两种语言都懂的人为;懂英语的和懂日语和减外语教师总数。
只懂英语的就是75减两种都懂得了。
75+45-100=20(人)75-20=55(人)3、在1至100的整数中,能被2整除或能被3整除的数共有几个?分析:100中,能被2整除的有100/2=50个,能被3整除的有100/3=33个,同时能被2和3整除的100/6=16个,注意这16个包括在能被2和3整除的,要去掉。
就是100内能被或3整除的。
50+33-16=67个4、全班50人,不会骑自行车的有23人,不会滑旱冰的有35人,两样都会的有4人,两样都不会的有多少人?分析:骑自行车:27人会滑旱冰:15人都会:4人都不会的:50-(27+15-4)=12人画个图就可以看出来了,4个人是多加的,所以要减去。
5、六年级有52人,其中喜欢绘画的36人,喜欢书法的有42人,喜欢唱歌的有48人,喜欢跳舞的有34人,这个班最少有多少学生对这四项活动都喜欢?分析:52-36=16个人不喜欢绘画,52-42=10个人不喜欢书法,52-48=4个人不喜欢唱歌,52-34=18个人不喜欢跳舞。
四年级奥数题第35讲容斥原理
第35讲容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b 分类(如图),那么具有性质a或性质b的事物的个数二N a+N b—N ab。
二、精讲精练:例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
练习一1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?练习二1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19 人两个小组都参加了。
那么,有多少人两个小组都没有参加?2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。
两种报纸都没有订阅的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。
两样都会的有多少人?2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。
(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展含答案
(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展容斥原理【知识点归纳】在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数﹣既是A类又是B类的元素个数用符号可表示成:A∪B=A+B﹣A∩B(其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).容斥原理2:三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数﹣既是A类又是B类的元素个数﹣既是B类又是C类的元素个数﹣既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A∪B∪C=A+B+C﹣A∩B﹣B∩C﹣A∩C+A∩B∩C1.三年级共有80名同学参加书法兴趣小组和美术兴趣小组,其中参加书法组的有52人,参加美术组的有48人.那么,既参加书法组又参加美术组的有多少人?2.我们班参入调查了饭后吃水果情况:30人喜欢吃苹果,27人喜欢吃梨,10人两种都喜欢,问我们班有多少人?3.同学们收集图片.张明、李红、蔡正明、王丹、熊威、高伟、梅芳7个人收集了名山图片,吴凤、李红、王丹、戴月红、高伟这5人收集了河流图片,吴心怡、张冬、李可这3人收集了奥运图片.(1)收集名山图片和奥运图片的共有多少人?(2)收集名山图片和河流图片的共有多少人?4.在校运动会上,共有30人参加跳远和跳高。
参加跳远的有18人,参加跳高的有22人,既参加跳远又参加跳高的有多少人?5.三(1)班有48人,其中订《少年报》的有32人,订《数学报》的有38人,有25人两份报都订。
奥数容斥原理练习题
奥数容斥原理练习题1、六(1)班54名学生都订了报纸,其中订阅《儿童报》的有34人,订阅《少年的》的有30人,有多少订阅了两种报纸?2、1~200中,能被3和5整除的数共有多少个?3、1~1000中不能被5和7整除的数共有多少个?4、五(1)班有58人参与三项课外活动小组,其中32人参与文学组,24人参与美术组,30人参与音乐组,既参与文学组又参与美术组的有13人,既参与美术组又参与音乐组的有12人,既参与文学组又参与音乐组的有11人,三项活动小组都参与的有几人?5、康大六校五年二班学生参与语文、数学、英语三科考试,90分以上的语文有21人,数学有19人,英语有20人,语文、数学都在90分以上的有9人,数学、英语在90分以上的有7人,语文、英语都在90分以上的有8人,另有5人三科都在90分以下,这个班最多能有多少人?6、两辆汽车从A、B两地同时动身相向而行,客车每小时行32千米,货车每小时行30千米,两车相遇后又离去。
已知动身5小时后两车相距93千米,求AB两地相距多少千米?7、100个学生中,每人至少懂一种外语,其中75人懂法语,83人懂英语,65人懂日语,懂三种语言的有50人,懂得两种外语的有几人?8、100个青年中,会骑自行车的83人,会游泳的75人,两样都不会的有10人,两样都会的有几人?9、康大学校第14届秋季运动会中,参与100米短跑的共156人,比参与200米短跑的少40人,比参与50米短跑的多26人,同时参与100米和50米短跑的有74人,同时参与200米和100米的有80人,是同时参与50米和200米人数的2倍,同时参与50米、100米和200米的有30人,求这届运动会中参与50、100米和200米的共有多少人?10、五(6)班有54人参与秋游活动其中35人喜爱玩“捉特务”,45人喜爱玩“老鹰捉小鸡”,40人喜爱踢足球,50人喜爱跳牛皮筋,你是否可以确定这个班至少有多少学生对这四项活动都喜爱。
五年级奥数-容斥原理(一)
容斥原理(一)
森林里住着100只小白兔,凡是不爱吃萝卜的小白兔都爱吃白菜。
其中爱吃萝卜的小白兔数量是爱吃白菜的小白兔数量的2倍,而不爱吃白菜的小白兔数量是不爱吃萝卜的小白兔数量的3倍。
它们当中有多少只小白兔既爱吃萝卜又爱吃白菜?
有100位旅客,其中有10人既不懂英语,又不懂俄语,有75人懂英语,又83人懂俄语。
那么这100位旅客中既懂英语又懂俄语的有多少人。
在1至2011的自然数中,
⑴能被3或5或7整除的数有个;
⑵能同时被3,5,7整除的有个;
⑶能被3整除,但不能被5和7整除的有个;
⑷能被5和7整除,但不能被3整除的有个。
体育课上,60名学生面向老师站成一行,按老师口令,从左到右报数:1,2,3, (60)
然后,老师让所报的数是4的倍数的同学向后转,接着又让所报的数是5的倍数的同学向后转,最后让所报的数是6的倍数的同学向后转,现在面向老师的学生有________人。
中国田径队的40名运动员在训练基地进行封闭训练,其中男运动员有20名,训练长跑的运动员有15名,训练竞走的女运动员有8名,那么训练长跑的男运动员有多少名?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容斥原理在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+B类元素个数—既是A类又是B类的元素个数。
例1一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。
试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?(并说一说你的想法。
)容斥原理(2)如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数1、某艺术团的小演奏家们每人都至少会演奏小提琴和钢琴中的一种。
他们中有32人会拉小提琴,27人会弹钢琴,小提琴和钢琴都能演奏的有11人。
这个团共有多少个小演奏家?2、一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且全班每人至少参加一个队。
问:这个班两队都参加的有多少人?3、京华小学五年级学生采集标本。
采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人。
全班学生共有40人,没有采集标本的有多少人?4、有100位旅客,其中有10人既不懂英语又不懂日语,有75人懂英语,83人懂日语。
既懂英语又懂日语的有多少人?5、一个工厂有一批工人,每人至少会一门技术。
其中会开车床的有235人,会开铣床的有218人,会开刨床的有207人。
既会开车床又会开铣床的有112人,既会开车床又会开刨床的有71人,既会开铣床又会开刨床的有63人,三种都会的有19人。
这个工厂一共有多少人?6、外语学校有英语、法语和日语教师共27人。
其中只能教英语的有8人,只能教日语的有6人,能教英语和日语的有5人,能教法语和日语的有3人,能教英语和法语的有4人,能教英语、法语和日语的只有2人。
只能教法语的教师有多少人?7、某校五年级有学生54人,每人至少爱好一种球。
其中爱好乒乓球的有40人,爱好足球的有20人,爱好排球的有30人,既爱好乒乓球又爱好排球的有18人,既爱好足球又爱好乒乓球的有14人,既爱好足球又爱好排球的有12人。
这三种球都爱好的有多少人?8、如图,在一个边长为90厘米的正方形桌面上,放上两张边长分别为20厘米和45厘米的正方形纸。
问:桌面上没有被纸片盖住的面积是多少?9、如图,边长是2厘米、4厘米、5厘米的三个正方形叠放在桌面上,它们所覆盖的面积是多少?10、如图,在桌面上放置三个两两重叠,形状相同的圆形纸片,它们的面积都是24平方厘米。
三张纸片共同重叠的面积是9平方厘米,三张纸片盖住的总面积是37平方厘米。
求三个阴影部分面积的和是多少?第十七讲周期问题1、小朋把节省下来的硬币先按四个一分,再按三个2分,后按两个5分这样的顺序往下排,(1)他排的第111个硬币是几分硬币?(2)这111个硬币共多少元?2、把自然数中的偶数:2、4、6、8、…、依次按照右图规律排成5列,最左边的一列叫第一列,则2006出现在第几列?3、2007年元旦是星期一,那么,2008年元旦是星期几?2009年元旦是星期几?5、有一个77位数,它的各位数字都是1,这个数除以7,余数是多少?7、如图,将每列上、下两个字组成一组,例如第一组为(奥,数)第二组为(林,学),那么第340组是什么?8、如下图,每列上面的汉字和下面的字母组成一组,如第一组是(我,A),第二组是(们,B),……,那么,第100组是什么?9、将分母为15的所有最简假分数由小到大依次排列,问第99假分数的分子是几?10、有一排算式:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,2+19,…,那么,________+_________=2005。
11、A=2006.1234567891011121314……,A的小数点后第2006位是几?12、自然数的平方按从小到大排列成:1 4 9 1 6 2 5 3 6 4 9 6 4 8 1 1 0 0 1 21 ……,从左至右第100个数字是几?13、把1至2006这2006个自然数依次写下来,得一多位数:123456789101112……20052006,试求这一多位数除以9的余数。
14、一列数,第一个是1940,第二个是2006,从第三个开始,每个数是它前两个数的平均值的整数部分,这列数的第100个数是多少?15、有一串数字9286……,从第3个数字起,每一个数字都是它前面2个数字的积的个位数字。
问:第100个数字是几?前100个数字之和是多少?16、1,1,2,3,5,8,13,……,90个数排成一列,从第三个数起,每个数都等于它前面两个数的和。
那么,这90个数的和除以5的余数是多少?17、一串数1、2、4、7、11、16、……,其中第二个数比第一个数多1,第三个数比第二个数多2,第四个数比第三个数多3,依此类推,那么这串数左起第2003个数除以5的余数是几?18、70个数排成一行,除了两头的两个数以外,每个数的三倍都恰好等于它两边两个数的和。
这一行最左边的几个数是这样的:0、1、3、8、21、55、144、……,最右边一个数(第70个数)被6除余几?19、将既能被5整除又能被7整除的自然数自35起从小到大排成一行,共有1991个数。
这1991个数的和被11除的余数是多少?20、观察数列:1,1,2,3,5,8,13,21,34,……,这列数中第2006个数的个位上数字是几?21、在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米染一个红点,然后沿红点将木棍逐段锯开,那么,长度是1厘米的短木棍有多少根?22、有一个人在草坪上散步,从A点出发,面向正东向前走3米,然后向左转120°,再向前走3米,接着再向左转120°,仍向前走3米,不断重复进行,当这个人走过2000米后,他距出发点A的距离是多少米?第十讲行程问题(一)1、东西两地长217.5千米,甲车以每小时25千米的速度从东地到西地;1.5小时后,乙车从西地出发到东地,再过3小时两车还相距15千米。
乙车每小时行多少千米?2、甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行6千米,乙车每小时行8千米,两车在离中点32千米处相遇。
求A、B两地间的距离是多少千米?3、甲、乙两辆旅游车同时从A、B两地出发,相向而行,4小时相遇。
相遇后甲车继续行驶了3小时到达B地,乙车每小时行24千米。
问:A、B两地相距多少千米?4、两名运动员在湖的周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时同地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?5、两名运动员在湖的周围环形跑道上练习长跑。
甲每分比乙多跑50米。
如果两人同时同地同向出发,则经过45分甲追上乙。
如果两人同时同地反向出发,则经过5分可以相遇。
求甲乙两人的速度。
6、甲、乙两人以每分60米的速度同时、同地、同向步行出发,走15分后,甲返回原地取东西,而乙继续前进。
甲取东西用去5分时间,然后改骑自行车以每分360米的速度去追乙,骑车多少分才能追上乙?7、一艘轮船在河流的两个码头间航行,顺流需要6小时,逆流需要8小时,水流速度每小时为2.5千米。
求轮船在静水中的速度是多少?8、某人步行的速度为每秒2米,一列火车从后面开来,超过他用了10秒。
已知火车长90米。
求火车的速度?9、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒。
这列火车的速度和车身长各是多少?10、一列货车共50节,每节车身长30米,两节车间隔长1.5米,这列货车平均每分钟前进1000米,要穿过1426.5米山洞,需要多少分钟?11、一列火车长640米,从路旁的一棵大树旁通过,需40秒。
如果以同样的速度通过一座长800米的大桥,需要多少秒?12、有两列火车,一列长102米,每秒行20米,一列长120米,每秒行17米。
两列火车同向而行,从第一列车追上第二列车到两车离开需要几秒?13、甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米。
有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三辆车相遇。
求丙车的速度。
14、快、中、慢三辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人。
这三辆车分别用6分、10分、12分追上骑车人。
现知道快车每小时行24千米,中车每小时行20千米。
慢车每小时行多少千米?15、A、B两地相距21千米,上午8时甲、乙分别从A、B两地出发,相向而行。
甲到达B地后立即返回,乙到达A地后立即返回,上午11时他们第二次相遇。
此时,甲走的路程比乙走的路程多9千米。
甲每小时走多少千米?16、上午8时8分,小明骑自行车从家里出发。
8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立即回家。
到家后又立刻回头去追小明。
再追上他的时候,离家恰是8千米。
这时是几时几分?17、两辆汽车同时从A、B两城相向而行,在离A城52千米处相遇,到达对方城市后立即以原速返回,又在离A城44千米处相遇。
两城相距多少千米?18、甲、乙两地相距100千米,一辆汽车和一台拖拉机都从甲地开往乙地,汽车出发时,拖拉机已开出15千米;当汽车到达乙地时,拖拉机距乙地还有10千米。
那么,汽车是在距乙地多少千米处追上拖拉机的?19、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。
如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先多少米?20、两辆汽车同时从A、B两站相对开出,在B侧距中点20千米处两车相遇。
继续以原速前进,到达对方出发站后又立即返回。
两车再在距A站160千米处第二次相遇。
求A、B两站距离?21、兄弟骑车旅游,弟弟先出发,速度是每分200米,5分后,哥哥带一只狗出发,以每分250米的速度去追弟弟。
而狗则以每分300米的速度向弟弟跑去,追上弟弟后立即返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟后为止。