08-09概率论期末考试试卷A (1)
交大概率统计2008-2009-1期末考试含答案
一。
单项选择题(每题3分,共18分)1.设A 与B 为随机事件,且1)(0<<A P ,0)(>B P ,)|(1)|(A B P A B P -=则必有 ( )(A))|()|(B A P B A P =; (B))|()|(B A P B A P ≠; (C))()()(B P A P AB P =; (D))()()(B P A P AB P ≠。
2.设随机变量X 服从参数为2的指数分布,则X e Y 21-=服从 ( )(A )泊松分布; (B )指数分布; (C )正态分布; (D )均匀分布。
3.设)(321X X X ,,是取自总体)10(~,N X 的样本,以下数学期望)(X E 的点估计中最有效的是( )(A)321313131X X X ++; (B) 321414121X X X ++; (C) 321412121X X X ++; (D) 321414141X X X ++。
4.设二维随机变量)0;9,2;4,1(~),(N Y X ,则)2(22Y X E -=( )(A)21; (B)-21; (C)5; (D)-7。
5.设),(~2σμN X ,且2σ未知,则μ的置信度为95.0的置信区间为 ( )(A) )(025.0t nS X ±; (B) )(025.0t nX σ±;(C) )(025.0Z nS X ±; (D) )(025.0Z nX σ±。
6.设随机变量X 和Y 相互独立, 且都服从均匀分布)1,0(U , 则以下随机变量中仍服从均匀分布的随机变量是 ( ))(A Y X Z +=; )(B Y X Z -=; )(C ),(Y X ; )(D ),(2Y X 。
二.填空题(每题3分,共18分)7.已知3.0)(,5.0)(=-=B A P B P ,则)(--B A P = 。
8.已知n X X X ,,,21 是取自于总体X 的样本,则ini i Xk Y ∑==1是)(X E 的无偏估计的充分必要条件为 。
概率论与数理统计期末考试试题(答案)
概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。
事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
08-09概率论期末考试试卷A (1)
《概率论与数理统计》期末考试试卷(A1)2、下列叙述中正确的是( A ). (A) ()1X EX D DX -= (B) ~(0,1)X EXN DX- (C) 22)(EX EX = (D) 22()EX DX EX =-3、设θ是总体X 中的参数,称),(θθ为θ的置信度a -1的置信区间,下面说话正确的是( D ).(A) 以),(θθ估计θ的范围,不正确的概率是a -1 (B) θ 以概率a -1落入),(θθ (C) θ以概率a 落在),(θθ之外 (D) ),(θθ以概率a -1包含θ4、设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积分别为,G D S S ,则{(,)}(B )P x y D ∈=.(A)GD S S (B) ⎰⎰Ddxdy y x f ),( (C) (,)G g x y dxdy ⎰⎰ (D) G G D S S5、设总体分布为),(2σμN ,若μ未知,则要检验20:100H σ≥,应采用统计量( B ).(A)nS X /μ- (B)100)(21∑=-ni iX X(C)100)(21∑=-ni iXμ (D)22)1(σS n -6、有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( A ).(A)157 (B)4519 (C)135(D)3019 7、设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( B ). (A) ⎰-=-adx x f a F 0)(1)((B) ∑⎰-=-adx x f a F 0)(21)((C) )()(a F a F =- (D) 1)(2)(-=-a F a F题目 一 二 三 四 五 六 七 八 九 十 总分 得分一.填空题:(本大题共7小题,每小题3分,共21分)1. 已知样本1621,,,X X X 取自正态分布总体(3,1)N ,X 为样本均值,已知{}0.5P X λ<=,则=λ 3 。
概率论期末考试试卷试题A卷包括答案
07 级?概率论?期末考试试题 A 卷及答案一、填空题〔总分值 15 分〕:1.一部五卷的文集,按任意次序放到书架上,那么“第一卷及第五卷出现在旁边〞的概率为1。
1023!1解答: p15!102.设 P( A) p, P( B)q, P( A B)r , 那么 P( AB )r q。
解答: P( AB )P( A B)P[( A B) B)] P( A B) P(B)r q3.设随机变量的分布列为P( X k )a k, k0,1,2,...3则a =2. 3解答: 1a a113 a a2k 03k12334. 设随机变量为与, D=25,D=36,,0.4 ,那么 D( -)= 37.解答:D ()D D 2 cov(, ),cov(,) D DD () D D 2 D D,25 36 2 5 6 0.4 375. 设随机变量服从几何分布 P(k )q k 1 p,k 1,2,... 。
那么的特征函数f (t )。
解 : f t E(e it)e itk q k1 p pe it qe it itk 1pe it .k1k 11qe二、单项选择题〔总分值15 分〕:1.设 .A 、 B、 C 为三个事件 , 用 A、 B、 C 的运算关系表示“三个事件至多一个发生〞为(④).① A B C .②AB C A BC AB C③ABC .④ A BC ABC ABC A BC2. 以下函数中, ()可以作为连续型随机变量的分布函数.①. F x e xx0②G xe x x01x01x0③ x0x0④ H x0x01e x x0 1 e x x03. 下面是几个随机变量的概率分布,其中期望不存在的为〔②〕。
① P(k )n p k (1p) n k ,0 p 1, k 0,1,..., n .k② P((1) k 3k)1, k 1,2,... .k3kk③ P(k )e,0, k0,1,2.. .k!④ . P(k )(1p)k 1 p, 0p 1, k1,2,...4. 设( ,) 服从二维正态分布 N ( a1 , a2 ; 1 2 ,22 ; r ) ,r0是,独立的〔③ 〕。
2008-2009学年第1学期期末考试试卷(A)(概率统计)
考试课程: 班级: 姓名: 学号:------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------第 1 页(共 2 页)求:1)X 和Y 的边缘分布律;2)1=X 下Y 的条件分布律。
8 设n X X X ,,,21⋅⋅⋅是来自总体X 的样本,总体X 的概率密度函数为⎪⎩⎪⎨⎧≥=-其它情况001),(x ex f xθθθ,其中θ未知,且0>θ。
1)求θ的极大似然估计量∧θ;2)判断∧θ是否为θ的无偏估计。
三 应用题(每小题8分,共16分)1为了估计产品使用寿命的均值μ和标准差σ,测试了9件产品,求得,1500=x 20=S , 若已知产品使用寿命服从正态分布),(2σμN ,分别求总体均值μ和方差2σ的置信度为95%的 置信区间。
(注:023.19)9(,3060.2)8(96.1,2622.2)9(2025.0025.0025.0025.0====χt z t ,180.2)8(,535.17)8(,700.2)9(2975.02025.02975.0===χχχ)2 某厂生产的某种型号的电池,其寿命(以小时计)长期以来服从方差50002=σ的正态 分布,现有一批这种电池,从它的生产情况来看,寿命的波动性有所改变,现随机取26只 电池,测出其寿命的样本方差92002=s ,问根据这一数据能否推断这批电池的寿命的波动 性较以往的有显著的变化?(取02.0=α) (注:642.45)26(,524.11)25(,314.44)25(201.0299.0201.0===χχχ,198.12)26(299.0=χ)四 证明题(共6分)设二维连续型随机变量),(Y X 的两个分量X 和Y 相互独立,且服从同一分布,证明:21)(=≤Y X P 。
概率论与数理统计期末考试试卷答案
《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、ABC 、ABD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、5 8、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EXDX == B 、13EX DX ==C 、13,3EX DX ==D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=- 11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4EX Y += B 、()3E XY = C 、()12D X Y -= D 、()216E Y +=12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}PX c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EXDX =。
概率论期末试题及答案
概率论期末试题及答案在概率论的学习过程中,期末试题是评估学生对该学科知识理解和应用的重要方式。
本文将给出一份概率论的期末试题及答案,以供参考。
试题将按照适当的格式整理,确保排版整洁美观,语句通顺,全文表达流畅,同时符合阅读体验的要求。
试题一:概率基础1. 已知事件A发生的概率为0.4,事件B发生的概率为0.6,求事件A和事件B同时发生的概率。
2. 一桶中装有6个红色球和4个蓝色球,从中随机抽取2个球,求这2个球颜色相同的概率。
3. 掷一颗骰子,点数为1至6的概率各为1/6。
连续投掷两次,求两次投掷结果和为7的概率。
试题二:概率分布1. 某商品的销售量服从正态分布N(150, 25),计算销售量在120至180之间的概率。
2. 某批产品的质量服从均匀分布U(60, 80),求产品质量小于75的概率。
3. 甲、乙两个小组分别进行同一项任务,甲组平均完成时间为4小时,标准差为0.5小时;乙组平均完成时间为3.8小时,标准差为0.3小时。
求完成时间小于4.2小时的概率。
试题三:条件概率1. 假设事件A和事件B是相互独立的,已知P(A)=0.3,P(B)=0.4,求P(A|B)和P(B|A)。
2. 某城市的天气预报根据历史数据和气象模型给出,根据预报可以推测出降雨的概率。
已知天气预报准确率为80%,预报为有降雨的概率为30%,求实际发生降雨的概率。
3. 从一批产品中随机抽取一件进行检验,已知该批产品中次品率为5%,已检一件产品为次品,求该件产品来自次品批次的概率。
试题四:随机变量1. 设随机变量X服从指数分布Exp(λ),已知λ=0.1,求P(X≥2)。
2. 设随机变量X服从均匀分布U(20, 40),求X的期望值E(X)和方差Var(X)。
3. 设随机变量X服从正态分布N(60, 16),求P(X>70)和P(50≤X≤80)。
试题五:大数定律和中心极限定理1. 设随机变量X服从参数为p的二项分布B(n,p),当n=200,p=0.4时,根据大数定律,计算X的期望值E(X)和方差Var(X)。
华农-2008-2009概率论与数理统计期末试卷解答
华南农业大学2008(1)概率论与数理统计A 试卷参考答案一、填空题('63⨯=18分)1. 0.9762. 0.3753. 21e --4. 175. 16. 8二.选择题('63⨯=18分)1. D2.B3.A4.D5.D6.A 三.(5分)解:X 的概率分布为3323()()()0,1,2,3.55k k kP X k C k -===即01232754368125125125125X P26355EX =⨯=……………1分 231835525DX =⨯⨯=四、(10分)解 设B ={此人出事故},A1,A2分别表示此人来自第一类人和第二类人 由已知,有1()0.3P A =,2()0.7P A =,1()0.05P B A =,2()0.01P B A =,(1)由全概率公式有1122()()()()()0.30.050.70.010.022P B P A P B A P A P B A =+=⨯+⨯=(2)由贝叶斯公式有111()()0.30.0515()0.682.()0.02222P A P B A P A B P B ⨯===≈答:从两类人中任意抽取一人,此人一年内出事故的概率为0.022; 若已知此人出事故,此人来自第一类人的概率约为0.682. 五、(10分) 解:(1)222001()(1)()222a f x dx ax dx x x a +∞-∞==+=+=+⎰⎰ 12a ∴=-(2)X 的分布函数为200,0,0,0,()()(1),02,,02,241,2.1, 2.x xx x x u F x f u du du x x x x x -∞≤⎧≤⎧⎪⎪⎪⎪==-<≤=-<≤⎨⎨⎪⎪>>⎪⎪⎩⎩⎰⎰(3)32111(13)()(1)24x P x f x dx dx <<==-=⎰⎰六、(14分)解:区域D 的面积2211ln 2e e D S dx x === 1,(,),(,)20,x y D f x y ⎧∈⎪=⎨⎪⎩其它.(1)122011,1,,1,()(,)220,.0,.x X x e dy x e f x f x y dy x +∞-∞⎧⎧≤≤≤≤⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其它其它22221122111(1),1,1,22111,1,1,()(,)2220,0,e y Y e y e dx y e e y dx e yf y f x y dx y --+∞---∞⎧⎧-≤≤≤≤⎪⎪⎪⎪⎪⎪-<≤<≤===⎨⎨⎪⎪⎪⎪⎪⎪⎩⎩⎰⎰⎰其它其它(2)因(,)()()X Y f x y f x f y ≠⋅,所以,X Y 不独立. (3)2(2)1(2)1(,)x y P X Y P X Y f x y dxdy +<+≥=-+<=-⎰⎰22112xdx dy -=⎰⎰1113110.752244=-⨯=-==七、(10分)解: 矩估计:()11()E X xf x dx dx +∞-∞===⎰⎰由()X E X ==得,矩估计量为2X ()1Xθ=- 极大似然函数为 111211(,,,;)nnn i i L x x x xθ====∏两边同时取对数,得1ln 1)ln nii L n x ==∑令ln ln 02nix d L n d θθ==∑ 故极大似然估计量为21()ln nii nxθ=-=∑八、(10分)解:(1)μ的置信度为1α-下的置信区间为/2/2(((X t n X t n αα--+- 其中,X 表示样本均值,S 表示样本标准差,n 表示样本容量,又0.05125, 2.71,7,0.1,(6) 1.943X S n t α=====所以μ的置信度为90%的置信区间为(123,127) (2)本问题是在0.10α=下检验假设 01:124,:124,H H μμ=≠ 由于正态总体的方差2σ未知,所以选择统计量X T =,由题意知,在0H 成立的条件下,此问题的拒绝域为2||0.976(1)T t n α==>-这里显然0.050.976 1.943(71)t <=-,说明没有落在拒绝域中,从而接受零假设0H ,即在显著性水平0.10下,可认为这块土地的平均面积μ显著为124平方米。
(答案)-08级《线性代数与概率论》(A)期末考试试题
08级《线性代数与概率统计》期末考试试题(A 卷)2009学年(1)学期《中山大学授予学士学位工作细则》第六条:“考试作弊不授予学士学位。
”姓名:___________________学号:____________________分数:____________________(答案一律写在答题纸上)一、是非题(下列叙述正确的打“√”,错误的打“×”)(共10分)1、设A 是m ×n 矩阵,若m <n ,则A X=0有无穷多个解。
( √ )2、对于随机变量X 、Y ,若ρXY ≠0,则X 与Y 必定不相互独立。
( √ )3、基础解系中的解向量一定线性无关。
( √ )4、已知()(),A B A B A B A B C ++++++=则C =B 。
( √ )5、交换行列式的某两行,行列式的值变为相反数。
( √ )6、将一枚硬币抛掷10000次,出现正面5800次,认为这枚硬币均匀是合理。
( × )7、包含有θ向量的任意一个向量组一定线性相关。
( √ ) 8、对于事件A 、B 、C ,必定有A +(B -C )=A +B -C 成立。
( × ) 9、[1]是单位矩阵,但不是初等矩阵。
( × )10、在样本空间S 中存在两个事件A 、B 满足()()()A B P AB P A P B φ⋂==且( √ )二、选择题(20分)1、已知A 、B 、C 为某随机试验中的事件,则下列各式一定正确的是( D ) (A )();A B B A -+= (B )()();A B C A B C +-=+- (C );A C B C A B +=+⇒= (D )以上答案都不一定正确2、设ξ~f (x ),如果恒有0≤f (x )≤1,则( D ) (A )1N(,);25ξμ(B )2N(1,);ξσ(C )21N(,);25ξσ(D )N(,2)ξμ3、设向量组123,,ααα线性无关,向量β1可由123,,ααα线性表出,而向量β2不能由123,,ααα线性表出,则对于任意常k ,必有( A )。
西安邮电学院2008-2009年第一学期电子专业《概率论与随机过程》期末考试及答案A卷
(4)因为其一步转移概率矩阵
P
0.9 0.1
0.1 0.9
无零元,所以此链具有遍历性。
………… (12 分)
3.解 因为
说明:用本模板出题,请将插入方式换成改写方式,除填空题、图解及特殊要求外,一般不留答题空间;装订试卷、考生答卷纸不得拆开或在框外留有任何标记,否则按零分计
共 3 页 第 页 总印 1200
t1)
CX
(t1,
t2
)
RX
(t1, t2 )
X
(t1 ) X
(t2
)
RX
(t1,
t2
)
a2 2
cos (t2
t1)
……(10 分)
1
P{Y k} C3k pk (1 p)3k , k 0,1, 2, 3,其中p 1 e3.
…………… (10 分)
说明:用本模板出题,请将插入方式换成改写方式,除填空题、图解及特殊要求外,一般不留答题空间;装订试卷、考生答卷纸不得拆开或在框外留有任何标记,否则按零分计
1.设随机变量 (X ,Y ) 的联合密度函数为
1 f (x, y)
,
x2 y2 1,
0, x2 y2 1.
(1)求 XY ,判定 X和Y 是否是不相关的,为什么?(2) X和Y 是否相互独立,为什么?
4.某保险公司多年的统计资料表明,在索赔户中被盗索赔户占 20%,以 X 表示在随机抽查的 100 个索
线
学号(8 位)
线
共 3 页 第 页 总印 1200
份 (附卷纸
2 页)
200 年 月 日 考试用
西安邮电学院课程考试试题(A 卷)
(2008——2009 学年度第 一 学期)
08-09I概率论与数理统计试卷(A)参考答案
| | | | | | | |装| | | | |订| | | | | |线| | | | | | | | ||防灾科技学院2008~2009学年 第一学期期末考试概率论与数理统计试卷(A )使用班级07601/ 07602/07103 答题时间120分钟一填空题(每题2分,共20分)1、已知事件A ,B 有概率4.0)(=A P ,条件概率3.0)|(=A B P ,则=⋂)(B A P 0.28 ;2、设),(~1p n b X ,),(~2p n b Y 则~Y X +),(21p n n b +;3、若)2(~πX ,则=)(2X E 6 ;4、随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≤<≤<≤--<=x x x x x F 3,131,8.011,6.01,0)(,则=≤<-)31(X P0.4 ;5、连续型随机变量的概率密度函数为)0(0,)(>⎩⎨⎧≤>=-λλλx x ex f x,则分布函数为⎩⎨⎧≤>-=-000,1)(x x e x F x λ;6、若)1,0(~),1,0(~N Y N X 且X 与Y 相互独立,则~2/)(22Y X X +)2(t ;7、若随机变量X ,1)(,2)(==X D X E ,则利用切比雪夫不等式估计概率()≥<-32X P 98;8、若总体),(~2σμN X ,则样本方差的期望=)(2S E 2σ;9、设随机变量)2,1(~-U X ,令⎩⎨⎧<≥=.0,0,0,1X X Y ,则Y10、已知灯泡寿命)100,(~2μN X ,今抽取25只灯泡进行寿命测试,得样本1200=x 小时,则μ的置信度为95%的置信区间是 (1160.8,1239.2) (96.1025.0=z )。
二、单项选择题(本大题共5小题,每题2分,共10分)1、若6.0)(,4.0)(,5.0)(===B A P B P A P ,则=)(A B P ( C )(A) 0.2 ; (B) 0.45; (C) 0.6; (D) 0.75;2、设离散型随机变量X 的分布律为k k X P αβ==}{, ,2,1=k 且0>α,则参数=β( C )(A )11-=αβ ;(B )1+=αβ;(C )11+=αβ;(D )不能确定; 3、设随机变量X 和Y 不相关,则下列结论中正确的是( B )(A )X 与Y 独立; (B ))(4)()2(Y D X D Y X D +=-;(C ))(2)()2(Y D X D Y X D +=-; (D ))(4)()2(X D Y D Y X D -=-;4、若)1,0(~N X ,则)2|(|>X P =( A )(A ))]2(1[2Φ-;(B )1)2(2-Φ;(C ))2(2Φ-;(D ))2(21Φ-; 5、下列不是评价估计量三个常用标准的是( D ))(A 无偏性; )(B 有效性; )(C 相合性; )(D 正态性。
2)《概率统计》试题A卷答案
广州大学2008-2009学年第二学期考试卷概率论与数理统计(A 卷)参考解答与评分标准一、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5个小题,每小题3分,总计15分)1.对于任意两个事件A 与B,若A ⊆B,则P(A −B)= ( B )。
A. P(A)−P(B) B. 0 C. 1 D. P(A)2.设B A ,是两个概率不为0且互不相容的事件,则下列成立的是( D )。
A. A 与B 互不相容 B. A 与B 独立C.)(B A P = )()(B P A PD. )(B A P = )(A P3.设)(x f 为某连续型随机变量的概率密度函数, 则必有( B )。
A .1)(0≤≤x f B. 1)(=⎰+∞∞-dx x fC. 在定义域内单调不减D.1)(lim =+∞→x f x4.设一个连续型随机变量的分布函数为⎪⎩⎪⎨⎧≥<≤+<=a x a x k x x x F 1000)(则( C )。
A. 21,0==a kB. 21,21==a kC. 1,0==a kD. 1,21==a k学院专业班 级 姓 名学号5.设二维随机变量()的联合分布概率为若X 与Y 独立,则}3{=+Y X P =( A )。
A. 1/3 B. 5/6 C. 1/6 D. 2/3二、填空题(本大题共5小题,每小题3分,总计15分)(1) 三阶方阵⎪⎪⎪⎭⎫ ⎝⎛=c b a A 000000中的c b a ,,取3,2,1,0的概率都相同,则该阵为可逆阵的概率为_27/64____。
(2) 某人射击某一个目标的命中率为0.6,现不停的射击,直到命中为止,则第3次才命中目标的概率为_0.096__。
(3)设)6,1(~U X ,则方程012=++Xx x 有实数根的概率为__5/6 。
(4)设X 和Y 是相互独立的两个随机变量,且)3,2(~-U X ,)4,1(~N Y ,则=+)(Y X E __1.5__。
概率论期末试题答案
概率论期末试题答案1. (a) 解:根据题意,已知事件A和事件B相互独立,可以得到以下关系式:P(A | B) = P(A) (由事件A和事件B相互独立可得)P(B | A) = P(B) (由事件A和事件B相互独立可得)又根据贝叶斯定理,可以得到以下关系式:P(A | B) = P(B | A) * P(A) / P(B)将以上两个关系式结合在一起,即可得到答案:P(A) = P(B | A) * P(A) / P(B)(b) 解:根据题意,已知事件A和事件B相互依赖,可以得到以下关系式:P(A | B) ≠ P(A) (由事件A和事件B相互依赖可得)P(B | A) ≠ P(B) (由事件A和事件B相互依赖可得)又根据贝叶斯定理,可以得到以下关系式:P(A | B) = P(B | A) * P(A) / P(B)将以上两个关系式结合在一起,即可得到答案:P(A) ≠ P(B | A) * P(A) / P(B)2. 此题为条件概率的计算。
根据题意,已知P(A) = 0.4,P(B) = 0.6,P(A | B) = 0.5,求P(A ∪ B)。
解:根据概率公式,可以得知:P(A ∪ B) = P(A) + P(B) - P(A | B)将已知的数值代入上述公式,即可求解:P(A ∪ B) = 0.4 + 0.6 - 0.5 = 0.5所以,P(A ∪ B) = 0.5。
3. 解:根据题意,已知事件A和事件B相互独立,且P(A) = 0.2,P(B) = 0.3,求P(A' ∪ B')。
首先,我们可以得到以下关系式:P(A' ∪ B') = 1 - P((A' ∪ B')') (根据全概率公式)= 1 - P((A ∩ B)') (德摩根定律)= 1 - (1 - P(A ∩ B)) (补集的概率为1减去该集合的概率)= P(A ∩ B)由于事件A和事件B相互独立,可以得到以下关系式:P(A ∩ B) = P(A) * P(B)将已知的数值代入上述关系式,即可求解:P(A' ∪ B') = P(A ∩ B) = P(A) * P(B) = 0.2 * 0.3 = 0.06所以,P(A' ∪ B') = 0.06。
概率论期末考试试题和答案
概率论期末考试试题和答案### 概率论期末考试试题#### 第一部分:选择题(每题2分,共20分)1. 事件A和事件B是互斥的,如果P(A)=0.3,P(B)=0.4,那么P(A∪B)的值是:A. 0.1B. 0.3C. 0.7D. 0.52. 若随机变量X服从参数为λ的泊松分布,那么P(X=k)的表达式是:A. \( e^{-\lambda}\lambda^k / k! \)B. \( \lambda^k / e^{\lambda} \)C. \( e^{-k}\lambda^k / k! \)D. \( k! / \lambda^k e^{\lambda} \)3. 以下哪个不是随机变量的期望值的性质?A. 线性B. 非负性C. 可加性D. 可分解性4. 两个事件A和B独立,如果P(A)=0.6,P(B)=0.5,那么P(A∩B)的值是:A. 0.3B. 0.5C. 0.6D. 0.35. 随机变量X和Y的协方差Cov(X,Y)表示的是:A. X和Y的平均值B. X和Y的方差C. X和Y的线性相关性D. X和Y的独立性6. 如果随机变量X服从标准正态分布,那么P(X<0)的值是:A. 0.5B. 0.3C. 0.7D. 0.257. 以下哪个是大数定律的表述?A. 随机变量的期望值等于其观察值的平均值B. 随机变量的方差随着观察次数的增加而减小C. 随机变量的观察值的平均值随着观察次数的增加而趋于稳定D. 随机变量的观察值的方差随着观察次数的增加而趋于稳定8. 以下哪个是中心极限定理的结论?A. 独立同分布的随机变量之和的分布趋近于正态分布B. 独立同分布的随机变量之差的分布趋近于正态分布C. 独立同分布的随机变量之积的分布趋近于正态分布D. 独立同分布的随机变量之比的分布趋近于正态分布9. 以下哪个是马尔可夫链的性质?A. 状态转移概率只依赖于当前状态B. 状态转移概率只依赖于初始状态C. 状态转移概率只依赖于最终状态D. 状态转移概率依赖于所有历史状态10. 以下哪个是贝叶斯定理的应用?A. 根据先验概率和似然函数计算后验概率B. 根据后验概率和先验概率计算似然函数C. 根据似然函数和后验概率计算先验概率D. 根据先验概率和后验概率计算似然函数#### 第二部分:简答题(每题10分,共30分)1. 解释什么是条件概率,并给出一个实际的例子。
最新a概率统计08-09第二学期期末考试试卷
A. On MondayB. On Friday C. At weekend
第二节 听下面5段对话或独白.每段对话或独白读两遍.
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题(每空4分,共24分)
得分
评阅人
1. 设事件 的概率分别为 与 ,且 ,则 _____.
2、设随机变量 服从 上的均匀分布,则 的数学期望为_____.
3、设离散型随机变量 的分布律为 , 则 _____.
4.设 是某个随机变量的概率密度,则 _____.
求:(1)系数 与 ;(2) 落在 内的概率;(3) 的概率密度.(15分)
2、设二维随机变量 的概率密度为
求 的数学期望.(10分)
五、应用题(11分)
得分
评阅人
某保险公司把被保险人分成三类:“安全的”、“一般的”与“危险的”。统计资料表明,对于上述三种人而言,在一年期间内卷入某一次事故的概率依次为0.05,0.15与0.3。如果被保险人中“安全的”占15%,“一般的”占55%,“危险的”占30%,试求任一保险人在固定的一年中出现事故的概率是多少?
( )2.What does the man suggest the woman do?
A. Follow the instructions B. Choose a course C. Attend a class
( )3.What is the probable relationship between the speakers?
A. Husband and wife
B. Boss and secretary
《概率论与数理统计》期末考试试题及答案
(1)根据边缘概率与联合概率之间的关系得出-1 0 10 Nhomakorabea1
0
0
0
………….4分
(2)因为
所以 与 不相互独立
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
1. 2. , 3. 4.
(1)如果 ,则 .
(2)设随机变量 的分布函数为
则 的密度函数 , .
(3)
(4) 设总体 和 相互独立,且都服从 , 是来自总体 的
样本, 是来自总体 的样本,则统计量
服从分布(要求给出自由度)。
三、(6分)设 相互独立, , ,求 .
解:0.88=
= (因为 相互独立)……..2分
求随机变量Y=2X+1的概率密度。
解:因为 是单调可导的,故可用公式法计算………….1分
当 时, ………….2分
由 ,得 …………4分
从而 的密度函数为 …………..5分
= …………..6分
六、(8分)已知随机变量 和 的概率分布为
而且 .
(1)求随机变量 和 的联合分布;
(2)判断 与 是否相互独立?
…………4分
即为[4.801,5.199]…………5分
令 ………..5分
于是 的最大似然估计:
。……….7分
十二、(5分)某商店每天每百元投资的利润率 服从正态分布,均值为 ,长期以来方差 稳定为1,现随机抽取的100天的利润,样本均值为 ,试求 的置信水平为95%的置信区间。( )
概率论期末考试试卷答案
概率论与数理统计 试卷A〔考试时间:90分钟; 考试形式:闭卷〕〔注意:请将答案填写在答题专用纸上,并注明题号。
答案填写在试卷和草稿纸上无效〕一、单项选择题(本大题共20小题,每题2分,共40分) 1、A ,B 为二事件,那么AB =()A 、AB B 、A BC 、A BD 、AB2、设A ,B ,C 表示三个事件,那么A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,假设()0.8P AB =,()0.2P A =,()0.4P B =,那么()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,那么()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,那么以下说法错误的选项是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,那么(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它,那么常数c =()A 、15 B 、14C 、4D 、5 8、设X ~)1,0(N,密度函数22()x x ϕ-=,那么()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,那么下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),那么有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,假设X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:那么常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,那么c 等于()A 、1B 、0C 、12 D 、-1 14、1,3EX DX =-=,那么()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
概率统计A 期末样卷(1)答案
当前位置: 概率论与数理统计样卷库 → 概率论与数理统计试卷参考答案概率论与数理统计(I )期末考试样卷1参考答案一、填空题( 每小题3分,共24分)1. 在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3个记录其纪念章的号码。
则 最小号码为5的概率=。
2. 设事件都不发生的概率为,且,则同时发生的概率为. 3. 已知,则= 1/3 。
4. 设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出次品的只数,则X 的分布律为5. 设连续型随机变量的分布函数为则____1______,____1/2______6. 设随机变量X 服从均值为10,均方差为的正态分布,设Ф(x)为标准正态分布函数,已知Ф()=,则X 落在区间(,)内的概率为 。
7. 设随机变量相互独立同服从,则.8. 设, X 与Y 独立,则=_____13_____二、单项选择题( 每小题2分,共8分)1.设事件满足,则下列结论中肯定正确的是( D ). (A )互不相容; (B )相容;(C ); (D ).2.设是两个事件,且,则下列选项必然成立的是( B ).(A ); (B ); (C ); (D ). 3.设,且独立,记,则( C ). (A ); (B ); (C ); (D ).X 0 1 2 p k22/3512/351/354.设的方差存在,且,则( B ).(A);(B);(C)与独立;(D)与不独立.三、计算题(共48分)1(8分)某商品由三个厂家供应,其供应量为:甲厂家是乙厂家的2倍;乙、丙两厂相等。
各厂产品的次品率为2%, 2%, 4%.(1)从市场上随机抽取一件此种商品,求它是合格品的概率;(2)从市场上随机抽取一件此种商品,发现是次品,求它是甲厂生产的概率解:(1)用1、2、3分别记甲、乙、丙厂,设=“取到第i个工厂的产品”,B=“取到次品”,由题意得:。
概率论期末考试试题A卷及答案(最终)
07 级?概率论?期末测验试题 A 卷及答案一、 填空题〔总分值 15 分〕: 1. 一部五卷的文集,按任意次序放到书架上,那么“第一卷及第五卷呈此刻旁边〞的概 1 率为。
102 3!1 5!10解答: p 12. 设 P( A)p, P( B)q, P(A B) r ,那么 P( AB)r q。
解答: P( AB) P( A B) P[( A B) B)] P( A B) P(B) r q3. 设随机变量的分布列为a3kP( Xk) ,k 0,1, 2,...23 那么 a =.a 1 3 2 3解答: 1a a ak1 3k 03214. 设随机变量为 与 , D =25,D =36,, 那么 D( - )=37.,解答:D() D D 2 cov( , )cov( , )D D,D() DD2 DD25 36 2 5 6 37k ) q k 1 p,k 1,2 ,... ,5. 设 随机变 量服 从几 何 分布 P(。
那么 的 特征函数f (t)。
pe it k 1解: f t E(e it )itk k 1it qe ite q ppe.1 qe itk 1k 1二、 单项选择题〔总分值 15分〕: 1. 设.A 、B 、C 为三个事件 , 用 A 、B 、C 的运算关系暗示“三个事件至多一个发生〞为(④ ). ① A B C .② ABC ABC ABC④A B C ABC ABC A B CABC ③.2. 以下函数中, ( ) 可以作为持续型随机变量的分布函数 .e x x 0 exx 0 x 0 x 0x 0①. F x ②G x ④ H x1x 01 0 x 0 0 ③x1 e x x 01 ex3. 下面是几个随机变量的概率分布,此中期望不存在的为〔② 〕。
n k n kP(k)p (1 ),0 p p 1, k0,1,...,n .① k3k k1k② P(( 1) k )), k 1,2,... . 3kke , 0,k 0,1, 2.. .③ P(k!k ) (1 p)k 1 p, 0p 1, k 1,2,...④. P(2 2( , ) N (a , a ; ,; r ) , r 0是独立的〔 ③ 〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》期末考试试卷(A1)2、下列叙述中正确的是( A ). (A) ()1X EX D DX -= (B) ~(0,1)X EXN DX- (C) 22)(EX EX = (D) 22()EX DX EX =-3、设θ是总体X 中的参数,称),(θθ为θ的置信度a -1的置信区间,下面说话正确的是( D ).(A) 以),(θθ估计θ的范围,不正确的概率是a -1 (B) θ 以概率a -1落入),(θθ (C) θ以概率a 落在),(θθ之外 (D) ),(θθ以概率a -1包含θ4、设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积分别为,G D S S ,则{(,)}(B )P x y D ∈=.(A)GD S S (B) ⎰⎰Ddxdy y x f ),( (C) (,)G g x y dxdy ⎰⎰ (D) G G D S S5、设总体分布为),(2σμN ,若μ未知,则要检验20:100H σ≥,应采用统计量( B ).(A)nS X /μ- (B)100)(21∑=-ni iX X(C)100)(21∑=-ni iXμ (D)22)1(σS n -6、有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( A ).(A)157 (B)4519 (C)135(D)3019 7、设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( B ). (A) ⎰-=-adx x f a F 0)(1)((B) ∑⎰-=-adx x f a F 0)(21)((C) )()(a F a F =- (D) 1)(2)(-=-a F a F题目 一 二 三 四 五 六 七 八 九 十 总分 得分一.填空题:(本大题共7小题,每小题3分,共21分)1. 已知样本1621,,,X X X 取自正态分布总体(3,1)N ,X 为样本均值,已知{}0.5P X λ<=,则=λ 3 。
2.已知11()()(),()0,()()48p A p B p C p AB p AC p BC ======,则C B A ,,全不发生的概率为12。
3. 设5~(0,1),5,X N Y X =+ 则()E Y = 5 .4.设X 在[2,]b 服从均匀分布,n X X ,,1 是从总体X 中抽取的样本,则b 的矩估计量为:22X +. 随机变量 X 的分布函数为: F (x ) =(1),0.5(11),0.8(13),1(3).x x x x <-⎧⎪-≤<⎪⎨≤<⎪⎪≤⎩, 则X 的概率分布律5.设为 .6.某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取16个,测得直径平均值为10毫米,给定05.0=α,则滚珠的平均直径的区间估计为: (9.902, 10.098)0.050.025( 1.645, 1.96)Z Z ==.7. 已知~(3,1)X N -,~(2,1)Y N ,且,X Y 相互独立,记28,Z X Y =-+Z 则服从的分布为:(1,5)N 。
二、选择题:(本大题共7小题,每小题2分,共14分)1、设0()1,0()1,(|)()1P A P B P A B P A B <<<<+=且,则下列正确的是( D ). (A) A 与B 不相容 (B) A 与B 相容 (C) A 与B 不独立(D) A 与B 独立X -1 1 3 P0.5 0.3 0.2东华理工大学2008— 2009学年第 二 学期《概率论与数理统计》期末考试试卷(A2)五、某运输公司有500辆汽车参加保险,在一年内每辆汽车出事故的概率为0.006,每辆参加保险的汽车每年交保险费800元,若一辆车出事故保险公司最多赔偿50000元.试利用中心极限定理计算,保险公司一年赚钱少于200000元的概率.(8分) 附:标准正态分布分布函数()x Φ表:x0.56 0.57 0.58 0.59 ()x Φ0.71230.71570.71900.7224解:设=A {某辆汽车出事故},则()006.0=A P ,设X 表示运输公司一年内出事故的车数.则()006.0500~,B X .保险公司一年内共收保费400000500800=⨯,若按每辆汽车保险公司赔偿50000元计算,则保险公司一年赚钱小于200000元,则在这一年中出事故的车辆数超过4辆.因此所求概率为()5000.00645000.00645000.0060.9945000.0060.994X P X P -⨯-⨯⎛⎫>=>⎪⨯⨯⨯⨯⎝⎭5000.00610.585000.0060.994X P -⨯⎛⎫=-≤⎪⨯⨯⎝⎭()10.580.2810≈-Φ=.六、设总体()2,~σμN X ,其中02>σ已知,μ是未知参数.()n X X ,, 1是从该总体中抽取的一个样本,求未知参数μ的极大似然估计量。
(8分) 解: 当02>σ为已知时,似然函数为()()()2222112exp 2nn i i L x μπσμσ-=⎧⎫=--⎨⎬⎩⎭∑因而 ()()()22211ln ln 222nii n L x μπσμσ==---∑ 所以,由似然方程()()()211ln 0nii d L x d μμμσ==-=∑,解得11nii x nμ==∑, 所以μ的极大似然估计量为11ni i X X n ==∑。
三、一座20层的高楼的底层电梯上了10位乘客,乘客从第3层起开始离开电梯,每一名乘客在各层离开电梯是等可能的,求没有两位乘客在同一层离开的概率。
(7分)解:设A 表示事件没有两位乘客在同一层离开,则样本空间包含的样本点数为1018,事件A 包含的样本点数为1018P ,因此()1018100.044518PP A == 四、已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设32X YZ =- (1) 求)(Z E ;)(Z D ; (2) 求YZ ρ.(12分)解:(1)()32X Y E Z E ⎛⎫=- ⎪⎝⎭11()()32E X E y =- 111032=⨯-⨯31= ;()32X Y D Z D ⎛⎫=-= ⎪⎝⎭()()2222()3232X Y X Y E Z EZ E E ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭=222()()93432X XY Y EX EY E -+--=2219349EX EXEY EY -+- ; 又因为()101922=+=+=EX DX EX,16016)(22=+=+=EY DY EY所以D(Z)=591416910=-+; (2)(,)Cov Y Z 1132(,)Cov Y X Y =-=()32X Y E Y ⎛⎫⨯--⎪⎝⎭()E Y E (32X Y -)()22111132328E EY E E EY E =X -Y -X +Y =- 则YZ ρ=(),Cov Y Z DY DZ=825545-=-东华理工大学2008— 2009学年第 二 学期《概率论与数理统计》期末考试试卷(A3)九、设某种产品的一项质量指标 )150,1600(~2N X ,现从一批产品中随机地抽取16件,测得该指标的均值 1645X =.以05.0=α检验这批产品的质量指标是否合格? (8分). 0.050.025( 1.645, 1.96)Z Z ==解:设001:1600,:1600H H μμμ==≠当0H 为真时,检验统计量为/X nμσ-,给定显著性水平0.05α=,拒绝域为0.025 1.96/X z nμσ->=.代入数据得0164516001.2 1.96/150/16X nμσ--==<,落在拒绝域外,故接受0H ,即质量指标合格.十、设总体()2~,Y Nμσ,其中μ,02>σ都是未知参数.()1n Y Y ,,是从该总体中抽取的一个样本,(6分)(1)试证明11ni i Y Y n ==∑为μ的无偏估计量。
(普通班同学解答)(2)假设μ是已知的,试证明()2211ˆn i i Y n σμ==-∑为2σ的无偏估计量。
(实验班同学解答)(1)因为()2~i Y Nμσ,,()n i ,,, 21=, 所以()iE Y μ=,则()11111n ni i i i E Y E Y n n n n μμ==⎛⎫==⋅= ⎪⎝⎭∑∑,所以11n i i Y Y n ==∑为μ的无偏估计量。
(2)因为()2~i Y Nμσ,,所以()~01i Y N μσ-,,所以()22~1i Y μχσ-⎛⎫ ⎪⎝⎭,所以21i Y E μσ⎡⎤-⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()n i ,,, 21=;因此,()()2211ˆn i i E E Y n σμ=⎡⎤=-⎢⎥⎣⎦∑ 22222222111n n ni i i i i i Y Y Y E E E n n n n n μμμσσσσσσσσ===⎡⎤⎡⎤⎡⎤---⎛⎫⎛⎫⎛⎫====⋅=⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑ 所以,()2211ˆn i i Y n σμ==-∑是未知参数2σ的无偏估计.七、设随机变量X 与Y 的联合密度函数为22(1)(,)0.bx yx y f x y ⎧≤≤=⎨⎩,(其他)(1) 求常数b ;(2) 求Y 的边缘密度函数; (8分)解:(1)由(,)1f x y +∞+∞-∞-∞=⎰⎰得到1152200213yy dy bx ydx by dy -==⎰⎰⎰,解得214b = (2)()()522217,01,420,y y Y x ydx y y f y f x y dx +∞--∞⎧=≤≤⎪==⎨⎪⎩⎰⎰其他八、设随机变量X 密度函数为(),X f x x -∞<<+∞,求Y X =的概率密度。
(8分)解:当0y <时,()0Y F y =,当0y ≥时,()()()()()y Y X yF y P Y y P X y P y X y f x dx -=≤=≤=-≤≤=⎰,因此()()()0,00Y X X y f y f y f y y <⎧⎪=⎨+-≥⎪⎩。