考点突破三函数答案..
北京市2019届初三三轮冲刺复习:考点突破(3)——实验原理分析之特殊装置分析 word版含答案
北京市2019届初三三轮冲刺:考点突破(3)——特殊装置分析(2018中考)1.用右图装置进行实验(夹持仪器略去)。
(1)高锰酸钾分解的化学方程式为。
(2)木炭遇O2燃烧时,现象为。
2.用下图装置进行实验(夹持仪器略去)。
加热一段时间后,蜡烛熔化、掉落,之后火柴燃烧。
(1)能说明铜具有导热性的现象是。
(2)能体现物质化学性质的现象是(填序号)。
A.酒精燃烧B.蜡烛熔化C.火柴燃烧(2017中考)3.利用下图装置进行实验(两支玻璃管内径相同)。
实验前K1、K2、K3均已关闭。
(1)实验1:锌与稀硫酸反应的化学方程式为;为使反应停止,Ⅲ中的操作是。
(2)实验2:打开K2,右管中液面下降,原因是;计算空气中氧气体积分数的表达式为(用h0、h1表示)。
(19海淀一模)4.用右图所示装置进行实验(夹持仪器略去)。
已知:白磷的着火点为40 ℃。
(1)从长颈漏斗注入过氧化氢溶液,乙中发生反应的化学方程式为。
(2)甲、丙中现象不同的原因是 。
(19朝阳一模)5.研究小组利用下图装置进行实验(注射器的摩擦力忽略不计)。
已知:A 的容积为250 mL ,B 中盛有足量的水,实验前K 1、K 2、K 3均已关闭。
(1)检查 A 装置的气密性。
打开 K 1,向外拉注射器的活塞,松手后,观察到 ,说明装置的气密性良好。
(2)测定 A 瓶气体中二氧化碳含量。
打开K 1,用注射器向A 中注入20 mL NaOH 溶液(足量),关闭K 1,充分反应后, (填实验操作),观察到 B 中的水进入 A 中,当B 中液面不再变化时,测得B 中减少了60 mL 水,则A 中CO 2的体积分数约为 %。
(19东城一模)6.利用下图所示实验装置(气密性良好),验证浓硫酸、浓盐酸的挥发性。
其中甲、乙、丙三个广口瓶中依次装有浓硫酸、浓氨水、浓盐酸。
已知:2NH 3 + H 2SO 4 = (NH 4)2SO 4;(NH 4)2SO 4为白色固体。
2025中考复习数学考点突破课件:第三章 函数 考点13 反比例函数
=1,∴直线 AB 的解析式为 y = x +1,反比例函数图
象的解析式为 y = (x>0).
1
2
3
4
5
6
回到目录
考点13
反比例函数
(2)求△ ABC 的面积.
【解】(2)∵直线 y = x +1与 y 轴交于点 B ,
当 x =0时, y =1,∴ B (0,1).
∵ BC ∥ x 轴,且 BC 与反比例函数 y = (x>0)的图象
F , G . ∵点 B 在第一象限,纵坐标为4, D 为 AB 的中点,且点 C , D 在
反比例函数 y = (k>0, x >0)的图象上,∴ C ( ,4), D ( ,2).根据反
4
2
1
比例函数中 k 的几何意义,得 S梯形 CDFG = S△ COD =6,∴ ×(2+4)( - )
函数中 k 的几何意义知, S矩形 ABOF = k .∵ S矩形 ABOF = AB ·OB , S平行四边形
ABCD = AB ·OB =2 S△ BCE =8,∴ S矩形 ABOF = k =8.故选C.
1
2
3
4
5
6
7
8
回到目录
考点13
刷易错
考点13
8.
反比例函数
−−
[2024湖南株洲石峰区一模]若函数 y =(m+1)
题意.故选C.
1
2
3
4
5
6
7
8
回到目录
考点13
反比例函数
2. [2023湖北武汉中考]关于反比例函数 y = ,下列结论正确的是(
中考数学考点系统复习 第三章 函数 方法技巧突破(一) 反比例函数中的面积问题
S 阴影=|k1|-|k2|
图形
S =S -S 阴影 △AOB △AOD 结论 1 1
=2|k1|-2|k2|
S =S -S 阴影 △COB △OCD 11
=2|k1|-2|k2|
图形
过点 D 作 DF⊥x 轴于点
结论
S 阴影=S 矩形 -S -S = OABC △OCD △OAE |k1|-|k2|
【模型示例】
图形
结论
S 四边形 PMON=|k|
S =S 四边形 ABCD
四边形 PQMD
2.(2021·荆州)如图,过反比例函数 y=kx(k>0,x>0) 图象上的四点 P1,P2,P3,P4 分别作 x 轴的垂线,垂足 分别为 A1,A2,A3,A4,再过 P1,P2,P3,P4 分别作 y 轴, P1A1,P2A2,P3A3 的垂线,构造了四个相邻的矩形.若这四个矩形的面积从 左到右依次为 S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则 S1 与 S4 的数量关 系为 S1=S1=44SS44.
x 轴于点 B,连接 BC,则△ABC 的面积等于
A.8
B.6 C.4 D.2
( C)
模型四:两点两垂线 【模型特征】
反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂 线围成的图形面积等于 2|k|.
【模型示例】
图形
结论
S△APP′=2|k| S 四边形 ANBM=2|k|
4.(2021·南京)如图,正比例函数 y=kx 与函数 y=6x的图象交于 A,B 两点,BC∥x 轴,AC∥y 轴,则 S△ABC=1 12 2.
A.4
B.6
C.8
D.12
( C)
中考数学频考点突破--锐角三角函数
中考数学频考点突破--锐角三角函数1.教育部颁布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B 处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:√3,AB=10米,AE=21米(测角器的高度忽略不计,结果精确到0.1米,参考数据:√2≈1.41,√3≈1.73,sin53°≈45,cos53°≈35,tan53°≈43)(1)求点B距水平地面AE的高度;(2)若市政规定广告牌的高度不得大于7米,请问该公司的广告牌是否符合要求,并说明理由.2.如图,AD是△ABC的中线,tanB= 13,cosC= √22,AC= √2.求:(1)BC的长;(2)sin△ADC的值.3.如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.以轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航向,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:√2≈1.4,√3≈1.7)4.如图,AB是△O的直径,PA切△O于点A,PO交△O于点C,连接BC,△P=△B.(1)求△P的度数;(2)连接PB,若△O的半径为a,写出求△PBC面积的思路.5.如图,是住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC= 30m,现需了解甲楼对乙楼的采光的影响情况.(1)当太阳光与水平线的夹角为30°角时,求甲楼的影子在乙楼上有多高(答案可用根号表示);(2)若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?6.化简:(1)√9 ﹣( 12 )0+2sin30°(2)x+1x−1﹣ xx+1 .7.如图,我市某中学在创建“特色校园”的活动中,将奉校的办学理念做成宣传牌(CD ),放置在教学楼的顶部(如图所示)该中学数学活动小组在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿坡面AB 向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度为i=1: √3 ,AB=10米,AE=15米.(i=1: √3 是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平而AE 的高度BH ; (2)求宣传牌CD 的高度.(结果精确到0.1米.参考数据: √2 ≈1.414, √3 ≈1.732)8.如图, AB 为 ⊙O 直径,D 为 ⊙O 上一点, BC ⊥CD 于点C ,交 ⊙O 于点E , CD 与 BA 的延长线交于点F , BD 平分 ∠ABC .(1)求证: CD 是 ⊙O 的切线;(2)若 AB =10,CE =1 ,求 CD 和 DF 的长.9.如图,已知△O 是以AB 为直径的△ABC 的外接圆,过点A 作△O 的切线交OC 的延长线于点D ,交BC 的延长线于点E.(1)求证:△DAC=△DCE;(2)若AB=2,sin△D= 13,求AE的长.10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使△CAD=30 °,△CBD=60 °.(1)求AB的长(精确到0.1米,参考数据:√3≈1.73,√2≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.11.如图,PA,PB是△O的两条切线,切点分别为A,B,OP交AB于点C,OP=13,sin△APC= 513.(1)求△O的半径;(2)求弦AB的长.12.根据题意解答(1)计算:|﹣√2|+(π﹣3)0+(12)﹣1﹣2cos45°(2)若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,求方程的另一个根.13.如图,四边形ABCD内接于△O,点O在AB上,BC=CD,过点C作△O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF△EF;(2)若cos△DAB=34,BE=1,则线段AD的长是.14.如图,在Rt△ABC中,△C=90°,AC=8,sin A= 3 5(1)求AB的长;(2)若点E在Rt△ABC的直角边上,点F在斜边AB上,当△CFE△△ABC时,求CE的长.15.如图海中有一灯塔P,它的周围8海里内有暗礁,海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东58°方向上,航行40分钟到达B处,测得灯塔P 在北偏东26°方向上.(1)求灯塔P到点B的距离;(2)如果海轮不改变航线由B继续向东航行,通过计算估计海轮有没有触礁的危险?16.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD△AE于点D,座杆CE=15cm,且△EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)答案解析部分1.【答案】(1)解:过B作BG⊥DE于G,BH⊥AE于H,Rt△ABH中,i=tan∠BAH=√3,∴∠BAH=30°,∴BH=12AB=5米∴点B距水平地面AE的距离为5米.(2)解:由(1)得:BH=5,AH=5√3,∵BG⊥DE于G,BH⊥AE于H,△AED=90°,∴四边形BHEG是矩形,∴BG=HE即BG=AH+AE=5√3+21,在Rt△BGC中,∠CBG=45°,∴CG=BG=5√3+21.在Rt△ADE中,∠DAE=53°,AE=21,∴DE=AEtan53°=43AE=43×21=28.∴CD=CG+GE−DE=26+5√3−28≈6.7m<7m.答:广告牌CD高符合要求.【知识点】解直角三角形的应用【解析】【分析】(1)过B作BG△DE于G,BH△AE于H,根据坡度可得△BAH=30°,然后根据含30°角的直角三角形的性质就可得到BH;(2)由(1)得BH=5,AH=5√3,易得四边形BHEG是矩形,则BG=HE,求出BG,进而得到CG,在Rt△ADE中,应用三角函数的概念可得DE,进而可求得CD. 2.【答案】(1)解:过点A作AE△BC于点E,∵cosC= √22,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB= 13,即AEBE=13,∴BE=3AE=3,∴BC=BE+CE=4(2)解:∵AD是△ABC的中线,∴CD= 12BC=2,∴DE=CD﹣CE=1,∵AE△BC,DE=AE,∴△ADC=45°,∴sin△ADC= √22.【知识点】解直角三角形【解析】【分析】(1)过点A作AE△BC于点E,根据cosC= √22,求出△C=45°,求出AE=CE=1,根据tanB= 13,求出BE的长即可;(2)根据AD是△ABC的中线,求出BD的长,得到DE的长,得到答案.3.【答案】(1)解:延长AB交海岸线l于点D,过点B作BE△海岸线l于点E,过点A作AF△l于F,如图所示.∵△BEC=△AFC=90°,△EBC=60°,△CAF=30°,∴△ECB=30°,△ACF=60°,∴△BCA=90°,∵BC=12,AB=36× 4060=24,∴AB=2BC,∴△BAC=30°,△ABC=60°,∵△ABC=△BDC+△BCD=60°,∴△BDC=△BCD=30°,∴BD=BC=12,∴时间t= 1236=13小时=20分钟,∴轮船照此速度与航向航向,上午11:00到达海岸线(2)∵BD=BC,BE△CD,在Rt△BEC中,∵BC=12,△BCE=30°,∴BE=6,EC=6 √3≈10.2,∴CD=20.4,∵20<20.4<21.5,∴轮船不改变航向,轮船可以停靠在码头.【知识点】解直角三角形的应用﹣方向角问题【解析】【分析】(1)延长AB交海岸线l于点D,过点B作BE△海岸线l于点E,过点A作AF△l于F,首先证明△ABC是直角三角形,再证明△BAC=30°,再求出BD的长即可角问题.(2)求出CD的长度,和CN、CM比较即可解决问题.本题考查方向角、解直角三角形等知识,解题的关键是添加辅助线构造直角三角形,由数量关系推出△BAC=30°,属于中考常考题型.4.【答案】(1)解:∵PA切△O于点A,∴PA△AB,∴△P+△POA=90°.∵△POA=△B+△OCB,∴△P+△B+△OCB=90°,∵OB=OC,∴△B=△OCB.又∵△P=△B,∴△P=△B=△OCB.∴△P=30°;(2)解:∵在Rt△PAO中,△APO=30°,OA=a,∴PA= √3AO=√3a,∴△PBC面积是12PA×AB= 12× √3a×(a+a)= √3a2【知识点】切线的性质;解直角三角形【解析】【分析】(1)根据切线的性质求出△PAB=90°,求出△P=△B=△OCB,即可得出答案;(2)解直角三角形求出AP,根据三角形面积公式求出即可.5.【答案】(1)解:如图,延长OB交DC于E,作EF⊥AB,交AB于F,在 RtΔBEF 中,∵EF =AC =30m , ∠FEB =30∘ , ∴BE =2BF设 BF =x ,则 BE =2x ,根据勾股定理知, BE 2=BF 2+EF 2 , ∴(2x)2=x 2+302 ,∴x =±10√3 ,(负值舍去), x =10√3 因此, EC =30−10√3(m)(2)解:当甲幢楼的影子刚好落在点 C 处时, ΔABC 为等腰三角形, 因此,当太阳光与水平线夹角为 45∘ 时,甲楼的影子刚才不落在乙楼的墙上【知识点】解直角三角形的应用【解析】【分析】(1)如图所示作出辅助线,在 RtΔBEF 中运用勾股定理列出方程解答即可;(2)当甲幢楼的影子刚好落在点 C 处时,可得 ΔABC 为等腰三角形,从而得出太阳光与水平线夹角.6.【答案】(1)解:原式=3﹣1+2× 12=3﹣1+1 =3(2)解:原式= (x+1)2(x+1)(x−1) ﹣ x(x−1)(x+1)(x−1) = x 2+2x+1−x 2+x (x+1)(x−1)= 3x+1(x+1)(x−1)【知识点】实数的运算;分式的加减法;0指数幂的运算性质;特殊角的三角函数值 【解析】【分析】(1)由二次根式的化简、零指数幂的性质以及特殊角的三角函数值,即可将原式化简,继而求得答案;(2)首先通分,然后利用同分母的分式相加减的运算法则求解即可,注意运算结果需化为最简.7.【答案】(1)解:在Rt△ABH 中, ∵tan△BAH= BH AH =i= 1√3 = √33. ∴△BAH=30°,∴BH=AB .sin△BAH=10.sin30°=10× 12=5.答:点B 距水平面AE 的高度BH 是5米;(2)解:在Rt△ABH中,AH=AB.cos△BAH=10.cos30°=5 √3,在Rt△ADE中,tan△DAE= DE AE,即tan60°= DE15,∴DE=15 √3,如图,过点B作BF△CE,垂足为F,∴BF=AH+AE=5 √3+15,DF=DE﹣EF=DE﹣BH=15 √3﹣5,在Rt△BCF中,△C=90°﹣△CBF=90°﹣45°=45°,∴△C=△CBF=45°,∴CF=BF=5 √3+15,∴CD=CF﹣DF=5 √3+15﹣(15 √3﹣5)=20﹣10 √3≈20﹣10×1.732≈2.7(米),答:广告牌CD的高度约为2.7米.【知识点】解直角三角形的应用﹣仰角俯角问题【解析】【分析】(1)在Rt△ABH中,由tan△BAH= BHAH=i=1√3= √33.得到△BAH=30°,于是得到结果BH=AB.sin△BAH=10.sin30°=10× 12=5;(2)在Rt△ABH中,AH=AB.cos△BAH=10.cos30°=5 √3,在Rt△ADE中,tan△DAE=DEAE,即tan60°= DE15,得到DE=15 √3,如图,过点B作BF△CE,垂足为F,求出BF=AH+AE=5 √3+15,于是得到DF=DE﹣EF=DE﹣BH=15 √3﹣5,在Rt△BCF 中,△C=90°﹣△CBF=90°﹣45°=45°,求得△C=△CBF=45°,得出CF=BF=5 √3+15,即可求得结果.8.【答案】(1)证明:如图,连接OD,则OB=OD,∴∠OBD=∠ODB,∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD//BC,∵BC⊥CD,∴OD⊥CD,又∵OD是⊙O的半径,∴CD是⊙O的切线;(2)解:如图,连接OD,OE,DE,过点D作DG⊥OE于点G,∵AB=10,∴OD=OE=12AB=5,∴∠ODE=∠OED,∵OD//BC,∴∠ODE=∠CED,∴∠OED=∠CED,∵DG⊥OE,BC⊥CD,∴CD=GD(角平分线的性质),在Rt△DEG和Rt△DEC中,{GD=CDDE=DE,∴Rt△DEG≅Rt△DEC(HL),∴GE=CE=1,∴OG=OE−GE=4,在Rt△ODG中,GD=√OD2−OG2=√52−42=3,∴CD=GD=3,由圆周角定理得:∠FOE=2∠ABC,即∠FOD+∠DOE=2∠ABC,∵OD//BC,∴∠FOD=∠ABC,∴∠FOD+∠DOE=2∠FOD,解得∠FOD=∠DOE,在Rt△ODG中,tan∠DOE=GDOG=34,∴tan∠FOD=tan∠DOE=34,在Rt△DOF中,DF=OD⋅tan∠FOD=5×34=154.【知识点】直角三角形全等的判定(HL);角平分线的性质;圆周角定理;切线的判定;解直角三角形【解析】【分析】(1)连接OD,根据等腰三角形的性质及角平分线的定义可得∠ODB=∠CBD,可证OD//BC,利用平行线的性质可得OD⊥CD,根据切线的判定定理即证;(2)连接OD,OE,DE,过点D作DG⊥OE于点G,先求出OD=OE=12AB=5,证明Rt△DEG≅Rt△DEC(HL),可得GE=CE=1,从而求出OG=OE−GE=4,在Rt△ODG中利用勾股定理求出GD=3,由角平分线的性质可得CD=GD=3,由圆周角定理及平行线的性质可求出∠FOD=∠DOE,从而可得tan∠FOD=tan∠DOE=GD OG=34,利用DF=OD⋅tan∠FOD求出结论即可.9.【答案】(1)解:∵AD是圆O的切线,∴△DAB=90°. ∵AB是圆O的直径,∴△ACB=90°.∵△DAC+△CAB=90°,△CAB+△ABC=90°,∴△DAC=△B.∵OC=OB,∴△B=△OCB.又∵△DCE=△OCB,∴△DAC=△DCE.(2)解:∵AB=2,∴AO=1.∵sin△D= 13,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD= √OD2−OA2= 2√2.∵△DAC=△DCE,△D=△D,∴△DEC△△DCA,∴DCAD=DEDC,即2√2=ED2.解得:DE= √2,∴AE=AD﹣DE= √2.【知识点】圆周角定理;切线的性质;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由切线的性质可知△DAB=90°,由直角所对的圆周为90°可知△ACB=90°,根据同角的余角相等可知△DAC=△B,然后由等腰三角形的性质可知△B=△OCB,由对顶角的性质可知△DCE=△OCB,故此可知△DAC=△DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD= 2√2,由△DAC=△DCE,△D=△D 可知△DEC△△DCA,故此可得到DC2=DE•AD,故此可求得DE= √2,于是可求得AE= √2.10.【答案】(1)解:由题意得,在Rt△ADC中,AD=CDtan30°=√33=21√3,在Rt△BDC中,BD=CDtan60°=√3=7√3,∴AB=AD-BD= 21√3−7√3=14√3≈14×1.73=24.22≈24.2(米).(2)解:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.【知识点】解直角三角形的应用【解析】【分析】(1)分别再Rt△ADC和Rt△BDC中,利用正切函数,即可求出AD 与BD的长,从而求出AB的长;(2)由从A到B用时2秒,即可求得这辆车的速度,比较与40千米每小时的大小即可确定是否超速。
三角函数概念(重难点突破)(解析版)
突破5.2 三角函数的概念一、考情分析二、考点梳理考点1 三角函数的定义 1.任意角的三角函数定义正弦r y =αsin ,余弦r x =αcos ,正切xy =αtan 2.三角函数的定义域:三角函数 定义域=)(x f sin x R =)(x f cos x R=)(x f tan x⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且考点2 三角函数值的符号第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.考点3 诱导公式一由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一: απαsin )2sin(=+k απαcos )2cos(=+k απαtan )2(tan =+k 其中Z k ∈ 考点4 单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线.OM 表示α角的余弦值,叫做余弦线. 如图(2)AT 表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.三、题型突破重难点题型突破01 判断三角函数符号的正负例1.(1)、(2019·江苏省新海高级中学高一期中)已知()cos305sin305,P ,则点P 在第( )象限 A .一 B .二C .三D .四【答案】D【分析】首先判断305位于第四象限,再根据各象限三角函数的符号特征判断即可. 【详解】解:因为270305360<<,所以305为第四象限角, 所以0cos305>,0sin305<,所以点()cos305sin305,P 位于第四象限; 故选:D(2)、(2021·全国·高一课时练习)给出下列各三角函数值: ①sin 1()00-︒;②cos 2()20-︒;③()tan 10-;④cos π. 其中符号为负的有( ) A .1个 B .2个C .3个D .4个【答案】D 【分析】确定各角所在象限,然后由象限角的三角函数值符号判断. 【详解】因为-100°角是第三象限角,所以sin 10()00-︒<;因为-220°角是第二象限角,所以cos 22()00-︒<;因为710,32⎛⎫-∈-π-π ⎪⎝⎭,所以角-10是第二象限角,所以()tan 100-<;cos 10π=-<.所以符号为负的有4个, 故选:D .【变式训练1-1】、(2021·北京·潞河中学高三月考)若2α=,则( ) A .sin 0α>且cos 0α> B .sin 0α>且cos 0α< C .sin 0α<且cos 0α< D .sin 0α<且cos 0α>【答案】B 【分析】确定α所在象限,再根据各象限内角的三角函数值的符号判断作答. 【详解】 因22ππ<<,则2α=是第二象限象限角,所以sin 0,cos 0αα><. 故选:B【变式训练1-2】、(2022·福建·莆田二中高三阶段练习)设α角属于第二象限,且cos cos22αα=-,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】根据α为第二象限角可求得2α为第一或第三象限角,由cos 02α<可得结果.【详解】α为第二象限角,()90360180360k k k α∴+⋅<<+⋅∈Z ,()45180901802k k k α∴+⋅<<+⋅∈Z ;当()2k n n =∈Z 时,2α为第一象限角;当()21k n n =+∈Z 时,2α为第三象限角; 2α∴为第一或第三象限角;coscos22αα=-,cos02α∴<,2α∴为第三象限角.故选:C.重难点题型突破02 三角函数的概念例2.(1)、(2021·辽宁·高三月考)已知角α的终边与单位圆交于63P ⎝⎭,则sin cos αα⋅=( )A .3B .23- C 3D 2【答案】B 【分析】根据角α的终边与单位圆交于63P ⎝⎭,利用三角函数的定义求解. 【详解】因为角α的终边与单位圆交于63P ⎝⎭, 所以1r OP ==, 所以36sin αα==, 所以362sin cos αα⋅==. 故选:B(2)、(2021·全国·高一课时练习)已知角α的终边经过点()3,P m ,且2sin mα=,求cos α,tan α的值.【答案】答案见解析 【分析】根据正弦函数的定义求出m 值,然后再由余弦函数、正切函数的定义计算. 【详解】由题意,可知3x =-y m =,所以2223r x y m ++ 所以22sin 3y m r mα==+解得0m =或5± 当0m =时,3r =cos 1x r α==-,tan 0yxα==; 当5m =22r =6cos x r α==15tan y x α== 当5m =22r =6cos x r α==15tan y x α== (3)、(2021·重庆市秀山高级中学校高三月考)已知角α的终边经过点()1,1P -,则sin α= ( ) A .12B .12-C 2D .2【答案】C 【分析】首先根据题意求出2r =sin α的值. 【详解】22(1)12r -+=2sin 2α=故选:C【变式训练2-1】、若角终边经过点,则( ) A.B. C. D. 【答案】D【解析】, ,选D. 【变式训练2-2】、(2020·永州市第四中学高一月考)若一个α角的终边上有一点()4,P a -且3sin cos 4αα⋅=,则a 的值为( ) A .3B .43±C .-3433D 3【答案】C 【解析】由已知,得()()()22222243sin 4444aa a a αα-==∴=-+-+-+,解得43a =-433α()()3,40P a a a ≠sin α=354535±45±229165r a a a =+=44sin 55a a α==±故选C .【变式训练2-3】、(2021·天津·大钟庄高中高三月考)已知角α的终边经过点P (-4,m ),且3sin 5α=-,则m =___________. 【答案】3- 【分析】利用任意角的三角函数的定义求解. 【详解】解:∵已知角α的终边经过点P (-4,m ),且3sin 5α=-,∴223sin 5(4)m α=--+,显然0m <,解得3m =-,3m =(舍去), 故答案为:3-例3.(2022·全国·高一课时练习)已知顶点在原点,始边与x 轴非负半轴重合的角α的终边上有一点()3,P m -,且()2sin 0m α=≠,求m 的值,并求cos α与tan α的值. 【答案】5m =±;当5m =时,6cos 4α=-,15tan 3α=-;当5m =-时,6cos 4α=-,15tan 3α= 【分析】根据三角函数定义可由()22sin 043m m m m α==≠+求得m 的值;结合m 的值,由三角函数定义可求得cos ,tan αα. 【详解】()22sin 043m m m m α==≠+,5m ∴=±; 当5m =时,236cos 43m α=-=-+,15tan 33m α=-=-; 当5m =-时,236cos 43m α=-=-+,15tan 33m α=-=. 【变式训练3-1】、(2021·江苏·高一专题练习)已知α角的终边经过点()3,P m -,且满足2sin 4m α=. (1)若α为第二象限角,求sin α值; (2)求cos tan αα+的值.【答案】(1)10sin 4=a ; (2)1-或61543--或61543-+. 【分析】(1)根据三角函数的定义得到2243m m m =+,通过解方程即可求出m 的值,从而可求出sin α值;(2)根据(1)中求出的m 值,通过分类讨论,利用三角函数的定义即可求出答案. (1)由三角函数的定义,可知2243m m m =+,解得0m =或5m =±, ∵α为第二象限角,∴m >0,所以m =5, ∴10sin 4α=; (2)由(1)知0m =或5m =±,当0m =时,cos 1,tan 0αα=-=,所以cos tan 1αα+=-; 当5m =时,6cos 4α=-,15tan 3α=-,所以cos ta 43n 615αα=--+; 当5m =-时,6cos 4α=-,15tan 3α=,所以cos ta 43n 615αα=-++. 综上所述,cos tan αα+的取值为1-或61543--或61543-+.重难点题型突破03 同角三角函数的公式例4、(1)、(2022·湖北·安陆第一高中高一阶段练习)已知角α的终边经过点()1,2P ,sin 2cos sin cos αααα--+的值是____________. 【答案】43-【分析】先利用三角函数的定义求出tan 2α=,再进行弦化切,代入求解. 【详解】因为角α的终边经过点()1,2P ,所以12cos 0,tan 215αα.所以sin 2sin 2cos tan 2224cos sin sin cos tan 12131cos αααααααααα--------====-++++. 故答案为:43-(2)、(2022·贵州·高二开学考试)若tan 2α=,则225sin 3cos 1αα-+的值为( ) A .175B .4C .225D .285【答案】C【分析】根据22sin cos 1αα+=,将原式齐次化后再弦化切即可得答案. 【详解】解:原式222222225sin 3cos sin cos 6tan 222sin cos tan 15αααααααα-++-===++. 故选:C .(3)、(2022·天津市新华中学高三阶段练习)已知tan 3α=,则222sin sin cos 3cos αααα+-的值为( ) A .95B .18C .1710D .15【答案】A【分析】原式可除以22sin cos αα+化简成222tan tan 3tan 1ααα+-+,代入tan 3α=求值即可【详解】222sin sin cos 3cos αααα+- 22222sin sin cos 3cos sin cos αααααα+-+=222tan tan 3tan 1ααα+-=+, 代入tan 3α=可算得原式的值为95.故选:A【变式训练4-1】、(2021·江苏·扬州中学高三月考)若sin 2cos 55cos sin 16αααα+=-,则tan α=( )A .13B .12C .13-D .12-【答案】C 【分析】利用同角三角函数基本关系化弦为切即可求解. 【详解】 由sin 2cos 55cos sin 16αααα+=-可得tan 255tan 16αα+=-,解得:1tan 3α=-,故选:C.【变式训练4-2】.(2022·宁夏·青铜峡市宁朔中学高二期末(文))已知tan 4θ=,则2cos sin cos 2sin θθθθ-=+_____________ 【答案】29-【分析】分子,分母同除以cos θ,再把tan θ的值代入即可求解 【详解】2cos sin 2tan 242cos 2sin 12tan 1249θθθθθθ---===-+++⨯故答案为:29-【变式训练4-3】.已知点(1,2)P -是角α终边上的一点,则tan α=______,sin 2cos 2sin 3cos αααα-+=_______.【答案】2- 4 【解析】根据题意知:2tan 21α-==-,sin 2cos tan 242sin 3cos 2tan 3αααααα--==++. 故答案为:-2;4.例5.(2020·内蒙古·北方重工集团第五中学高一阶段练习(文))(1)已知tan 3α=,计算3sin αcos αsin α2cos α;(2)已知1sin cos (0)2αααπ+=<<,求sin cos αα.【答案】(1)10;(2)38-【分析】(1)利用商数关系化弦为切,即可得解;(2)将1sin cos 2αα+=进行平方即可求得答案 【详解】(1)因为tan 3α=,所以3sin cos 3tan 110sin 2cos tan 2αααααα++==--;(2)由1sin cos (0)2αααπ+=<<,平方可得221sin cos 2sin cos 12sin cos 4αααααα++=+=,所以3sin cos 8αα=-【变式训练5-1】、(2022·全国·高一课时练习)已知23sin 4sin cos 10ααα-+=. (1)求tan α的值; (2)求2sin cos 1cos ααα+的值.【答案】(1)1tan 2α=(2)29 【分析】(1)利用“1”的代换及弦切互化可求1tan 2α=. (2)利用“1”的代换及弦切互化可求三角函数式的值. (1)解法一:∵22sin cos 1αα+=,23sin α-4sin cos 10αα+=, ∴2223sin 4sin cos 10sin cos ααααα-+=+, 分子分母同时除以2cos α,得223tan 4tan 10tan 1ααα-+=+,即()22tan 10α-=,解得1tan 2α=.解法二:∵23sin 4sin cos 10ααα-+=,∴224sin 4sin cos cos 0αααα-+=, 即2(2sin cos )0αα-=,∴2sin cos 0αα-= ∴1tan 2α=. (2) ∵1tan 2α=,∴2222sin cos sin cos tan 21cos sin 2cos tan 29ααααααααα===+++.重难点题型突破4 综合应用例6.(2022·全国·高一课时练习)求证:()2cos sin cos sin 1sin 1cos 1sin cos αααααααα--=++++ 【答案】详见解析【证明】方法一左边()()()()cos 1cos sin 1sin 1sin 1cos αααααα+-+=++ 22cos sin cos sin 1sin cos sin cos αααααααα-+-=+++ ()()()2cos sin cos sin 111cos sin sin cos 22αααααααα-++=++++ ()()()22cos sin cos sin 1sin cos 1αααααα-++=++ ()2cos sin 1sin cos αααα-=++ =右边,∴原式成立.方法二∵cos 1sin cos 1sin 1sin cos 1sin cos αααααααα-+-==+++, sin 1cos sin 1cos 1cos sin 1cos sin αααααααα-+-==+++, ∴()2cos sin cos sin 1sin 1cos 1cos sin αααααααα--=++++, ∴原式成立.【分析】方法一:从等式左边推出右边,通分化简,再有()2sin cos 1sin cos 2αααα+-=,整理化简即可得到等式右边,得证.方法二:由恒等式2222cos 1sin ,sin 1cos αααα=-=-,得cos 1sin sin 1cos ,1+sin cos 1cos sin αααααααα--==+ ,然后运用等比定理即可证明. 【详解】证明:方法一左边()()()()cos 1cos sin 1sin 1sin 1cos αααααα+-+=++ 22cos sin cos sin 1sin cos sin cos αααααααα-+-=+++()()()2cos sin cos sin 111cos sin sin cos 22αααααααα-++=++++ ()()()22cos sin cos sin 1sin cos 1αααααα-++=++ ()2cos sin 1sin cos αααα-=++ =右边, ∴原式成立.方法二∵cos 1sin cos 1sin 1sin cos 1sin cos αααααααα-+-==+++, sin 1cos sin 1cos 1cos sin 1cos sin αααααααα-+-==+++, ∴()2cos sin cos sin 1sin 1cos 1cos sin αααααααα--=++++, ∴原式成立.【点睛】本题考查利用同角三角函数的基本关系进行恒等式的证明;其中法一()2sin cos 1sin cos 2αααα+-=是证明的关键,法二恒等式cos 1sin sin 1cos ,1+sin cos 1cos sin αααααααα--==+的合理利用是证明的关键;本题属于难题. 【变式训练6-1】、(2022·天津市滨海新区塘沽第一中学高三阶段练习)已知sin cos sin cos θθθθ+=,则角θ所在的区间可能是A .(,)42ππ B .3(,)24ππ C .(,)24ππ-- D .5(,)4ππ 【答案】C 【详解】令sin cos sin cos a θθθθ+==,则111sin 2,222a θ⎡⎤=∈-⎢⎥⎣⎦,又由()2sin cos 2sin cos 10θθθθ+--=,得2210a a --=,解得12a =-,舍去()12+,则sin cos 120θθ=-<,θ在第二或第四象限,排除A 和D ,又sin cos 120θθ+=-<而sin cos 2sin 4πθθθ⎛⎫+=+ ⎪⎝⎭,当3,24ππθ⎛⎫∈ ⎪⎝⎭时,sin cos 2sin 04πθθθ⎛⎫+=+> ⎪⎝⎭排除B ,只有C 答案满足,故选C. 点睛:本题主要考查了三角恒等式的应用,三角函数在各象限内的符号,以及排除法在选择题中的应用,具有一定难度;令sin cos sin cos a θθθθ+==,可将已知等式转化为关于a 的一元二次方程,结合三角函数的有界性可得12a =-,即sin θ和cos θ的符号相反,可排除A 和D ,当3,24x ππ⎛⎫∈ ⎪⎝⎭时,可求出sin cos 2sin 04πθθθ⎛⎫+=+> ⎪⎝⎭与所求矛盾,排除B.【变式训练6-2】、(2021·上海·高一期末)若对任意实数x ,不等式2sin 2cos 3x a x a -≤+恒成立,则实数a 的取值范围是______. 【答案】[]1,3-【分析】原不等式可化为2cos 2cos 20x a x a +++≥,令cos ,[1,1]t x t =∈-,转化为二次不等式 2220t at a +++≥当[1,1]t ∈-时恒成立,利用二次函数求最小值即可解决.【详解】由原不等式可化简为2cos 2cos 20x a x a +++≥对任意x R ∈恒成立,令cos ,[1,1]t x t =∈-得:2220t at a +++≥当[1,1]t ∈-时恒成立,令2()22h t t at a =+++,[1,1]t ∈-,函数对称轴方程为t a =-,当1t a =-<-,即1a >时,min ()(1)30h t h a =-=-≥,解得13a ,当11t a -≤=-≤,即11a -≤≤时,2min ()()20h t h a a a =-=-++≥,解得12a -≤≤, 所以11a -≤≤,当1t a =->,即1a <-时,min ()(1)330h t h a ==+≥,解得1a ≥-,所以a ∈∅,综上实数a 的取值范围是13a -≤≤,故答案为[]1,3-【点睛】本题主要考查了二次函数的最值,分类讨论的思想,换元法,属于难题.四、课堂训练1.(2022·北京市西城外国语学校高三阶段练习)角α的终边上有一点(2,2)P -,则sin α=( )A 2B .2C .2D .1 【答案】A【分析】根据给定条件,利用三角函数定义直接计算作答.【详解】角α的终边上点(2,2)P -,则||22r OP ==,所以22sin 2r α==. 故选:A2.(2022·山东·青岛中学高二阶段练习)已知tan 2θ=,则cos sin sin cos θθθθ-+的值为( ) A .13- B .13 C .3- D .3 【答案】A 【分析】利用同角三角函数基本关系,分子分母同时除以cos θ,将弦化切,代入求解即可.【详解】tan 2θ=, ∴cos sin 1tan 121sin cos tan 1123θθθθθθ---===-+++. 故选:A.3.(2021·山东·德州市陵城区翔龙高级中学高一阶段练习)下列说法正确的有( )A .经过30分钟,钟表的分针转过2π-弧度B .若sin 0,cos 0θθ><,则θ为第二象限角C .若sin cos 1θθ+>,则θ为第一象限角D .第一象限角都是锐角,钝角都在第二象限 【答案】BC【分析】根据任意角的概念可判断A ;由正弦值余弦值的正负可判断角的范围,判断B;将sin cos 1θθ+>平方推出sin 0,cos 0θθ,判断θ为第一象限角,判断C;举反例可判断D.【详解】对于A, 经过30分钟,钟表的分针转过π-弧度,A 错误;对于B ,若sin 0,cos 0θθ><,则θ为第二象限角,正确;对于C ,因为sin cos 1θθ+>,故2(sin cos )1,12sin cos 1θθθθ+>∴+>,即sin cos 0>θθ,结合sin cos 1θθ+>可知sin 0,cos 0θθ,故θ为第一象限角,C 正确;对于D ,第一象限角不都是锐角,比如390是第一象限角,但不是锐角, 故D 错误;故选:BC4.(2021·江苏·高一专题练习)已知角α的终边经过点()()4,30P a a a -≠,求2sin cos αα+的值. 【答案】25或25-. 【分析】先求点P 到原点的距离,再利用定义求sin α,cos α,应注意分类讨论.【详解】225r x y a =+=,∴当0a >时,5r a =,33sin 55a a α-∴==-,4cos 5α=,22sin cos 5αα∴+=-; 当0a <时,5r a =-,33sin 55a a α-∴==-,4cos 5=-α,22sin cos 5αα∴+=. 综上可知,2sin cos αα+的值为25或25-.16。
2023学年浙江九年级科学上学期考点全突破期末考试模拟(三)(中考模拟)(解析版)
浙教版9年级上册考点全突破期末考试模拟(三)(中考模拟)总分:160分考试时间:120分钟一、选择题(本大题共60分,每小题3分,每小题只有一个选项符合题意)1.(2019·温州模拟)下列说法正确的是()A.吸收热量的变化一定是化学反应B.化学反应一定发生了能量变化C.需要点燃或加热的反应一定是吸热反应D.有热量放出的变化一定是化学反应【答案】B【解析】A、吸收热量的变化不一定是化学变化,如干冰升华吸热没有新物质生成,属于物理变化,故错误;B、化学反应过程中的能量变化通常为热量变化;故正确;C、放出热量的变化不一定是化学变化,如灯泡发光放热没有新物质生成,属于物理变化,故错误;D、有的放热反应也需要加热才能发生,如铝热反应需高温条件下发生,却属于放热反应,故错误。
故答案为:B2.(2021·杭州)有一种人造氢原子(可表示为4H)的原子核中有3个中子,它可以结合成4H2分子。
一个4H2分子中,下列微粒的个数不等于2的是()A.原子B.质子C.中子D.电子【答案】C【解析】一个4H2分子中含有2个H原子,一个人造氢原子质子数为1,中子数为3,则4H2分子中质子数=电子数=2,中子数为6;故选C。
3.关于流行性感冒下列哪项是错误的?()A.人群对流感病毒普遍易感B.持续高热.剧烈咳嗽.呼吸急促C.抗菌治疗无效D.流感患者愈后可获得终生免疫力【答案】D【解析】A、流感是一个威胁极大的传染病,因为它除了可引起发烧和周身不适外,还易使病人发生并发症,使原患有肺心病,冠心病的患者病情加重,甚至导致死亡,A正确;B、流行性感冒传播速度快,发病率高,患者表现为突然发烧、咽痛、干咳、乏力、球结膜发红、全身肌肉酸痛、呼吸急促等,B正确;C、流行性感冒病毒主要寄生在人或动物体内,能使人或动物患流感,属于动物病毒.抗菌治疗只针对细菌,对流行性感冒无效,C正确;D、流感病毒可分甲、乙.丙三型,同型病毒又可分为若干个亚型.甲型病毒易发生变异,常引起流行,乙型病毒变型缓慢,流行比较局限,丙型病毒很少变异,多呈散发,各型之间无交叉免疫,D错误.故选:D.4.(2018·台州)2月6日,台州市禁毒办开展禁毒“流动课堂”宣传教育活动。
同角三角函数的基本关系和诱导公式5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测
专题17同角三角函数的基本关系和诱导公式5题型分类一、同角三角函数基本关系1、同角三角函数的基本关系(1)平方关系:22sin cos 1αα+=.(2)商数关系:sin tan ()cos 2k απααπα=≠+;【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.注:1、利用22sin cos 1αα+=可以实现角α的正弦、余弦的互化,利用sin tan cos =aa a可以实现角α的弦切互化.2、“sin cos sin cos sin cos αααααα+-,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=(一)同角求值(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.(二)诱导求值与变形(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化(三)同角三角函数基本关系式和诱导公式的综合应用)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式(π(四)三角恒等式的证明三角恒等式的证明中涉及到同角三角函数基本关系,和角公式,差角公式,二角公式,辅助角公式等基本知识点,理解和掌握这些基本知识点是解答该类问题的基础和关键原式得证【点睛】本题考查了利用同角三角函数关系证明三角函数恒等式,属于基础题.5-4.(2024高三·全国·专题练习)(1)求证:tan 2αsin 2α=tan 2α-sin 2α;(2)已知tan 2α=2tan 2β+1,求证:2sin 2α=sin 2β+1.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)将22sin 1cos αα=-代入左式,化简即可得到右式.(2)将sin tan cos ααα=,sin tan cos βββ=代入条件,通分化简得到2212cos cos αβ=,即2cos 2α=cos 2β,然后由22sin cos 1αα+=,将余弦化成正弦即可证得结论.【详解】解析:(1)tan 2αsin 2α=tan 2α(1-cos 2α)=tan 2α-tan 2αcos 2α=tan 2α-sin 2α,则原等式得证.(2)因为tan 2α=2tan 2β+1,所以22sin cos αα+1=222sin 1cos ββ⎛⎫+ ⎪⎝⎭,即2212cos cos αβ=,从而2cos 2α=cos 2β,于是2-2sin 2α=1-sin 2β,也即2sin 2α=sin 2β+1,则原等式得证.一、单选题1.(2024·全国·模拟预测)已知2cos tan sin 5xx x =+,则cos2x =()A .13B .79C .23D .59【答案】B【分析】利用三角函数的基本关系式得到关于sin x 的方程,再利用倍角公式即可得解.【详解】因为2cos tan sin 5x x x =+,又sin tan cos xx x=,所以sin 2cos cos sin 5x xx x =+,则222cos sin 5sin x x x =+,即2222sin sin 5sin x x x -=+,则23sin 5sin 20x x +-=,即()()3sin 1sin 20x x -+=,所以1sin 3x =或sin 2x =-(舍去),所以217cos212sin 1299x x =-=-⨯=.故选:B.2.(2024·四川巴中·模拟预测)勾股定理,在我国又称为“商高定理”,最早的证明是由东汉末期数学家赵爽在为《周髀算经》作注时给出的,他利用了勾股圆方图,此图被称为“赵爽弦图”.“赵爽弦图”是由四个全等的直角三角形和中间的一个小正方形组成的大正方形图案(如图所示),若在大正方形内随机取一点,该点落在小正方形内的概率为917,则“赵爽弦图”里的直角三角形中最小角的正弦值为()A .217B C .217D 【答案】D【分析】设正方形的边长1,较小的角为θ,则中间小正方形的边长为cos sin θθ-,由题意可得29(cos sin )17θθ-=,显然可得π04θ<<,即可得到cos sin 0θθ>>,从而求出sin θ.【详解】设正方形的边长1,较小的角为θ,则中间小正方形的边长为cos sin θθ-,由题意可得29(cos sin )17θθ-=,显然π04θ<<,所以cos sin 0θθ>>,所以cos sin 17θθ-=,又229cos sin 2cos sin 17θθθθ+-=,所以2cos si 8n 17θθ=,所以22225(cos sin )cos sin 2cos sin 17θθθθθθ+==++,所以cos sin 17θθ+=,所以sin 17θ=.故选:D3.(2024·全国·模拟预测)已知2π2cos 53θ⎛⎫-= ⎪⎝⎭,则19π13π2sin cos 105θθ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭()A .2-B .2C .23-D .23【答案】A【分析】利用已知的三角函数值,利用换元法,结合三角函数的诱导公式,可得答案.【详解】令25m πθ=-,则22,cos 53m m πθ=+=,从而19π13π19π2π2π13π2sin cos 2sin cos 10510555m m θθ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-++=-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦3π2sin cos(3π)3cos 22m m m ⎛⎫=-++=-=- ⎪⎝⎭.故选:A.4.(2024·山西·模拟预测)已知α为锐角,且cos 6πα⎛⎫+= ⎪⎝⎭,则tan 3πα⎛⎫-= ⎪⎝⎭()A.2B.CD.2【答案】D【分析】注意到πππ632αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,利用同角三角函数的关系求角π6α+的正弦,再利用诱导公式求角π3α-的正弦、余弦,从而得到π3α-的正切.【详解】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭且πcos 6α⎛⎫+= ⎪⎝⎭,所以22πsin 06ππsin cos 166ααα⎧⎛⎫+> ⎪⎪⎪⎝⎭⎨⎛⎫⎛⎫⎪+++= ⎪ ⎪⎪⎝⎭⎝⎭⎩得πsin 6α⎛⎫+= ⎪⎝⎭由诱导公式得ππππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππcos sin 363αα⎛⎫⎛⎫-=+=⎪ ⎪⎝⎭⎝⎭.所以πsin π33tan π32cos 3ααα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭.故选:D5.(2024高三上·安徽合肥·阶段练习)已知角α为钝角,且角(02π)θθ<<终边上有一点()sin ,cos P αα-,则角θ=()A .πα+B .π2α+C .2πα-D .3π2α-【答案】B【分析】利用三角函数的诱导公式及三角函数的定义即可求解.【详解】点()sin ,cos P αα-,由诱导公式可化为ππcos ,sin 22P αα⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由三角函数的定义知,π2π2k θα=++,又因为α为钝角,02πθ<<,所以π2θα=+.故选:B.6.(2024高三上·宁夏银川·阶段练习)在平面直角坐标系中,在()1,3P 在角α终边上,则()()()3333sin πcos ππsin cos 2αααα++-⎛⎫--- ⎪⎝⎭的值为()A .1327B .1427C .1427-D .1413【答案】B【分析】根据三角函数的定义求角α的三角函数值,再利用诱导公式化简求值.【详解】因为点()1,3P 在角α终边上,则1x =,3y =,所以tan 3yxα==,()()()333333333sin πcos πsin cos 1114π227sin sin 2tan sin cos 2ααααααααα++---==+⎛⎫----- ⎪⎝⎭.故选:B7.(2024高三上·四川成都·期中)已知角α的顶点与坐标原点重合,始边与x 轴的正半轴重合,若角α的终边与23π角的终边相同,则sin()cos(2)3sin()2παπαπα+--=+()A1B1C.1D.1-【答案】C【分析】利用三角函数定义求得tan α=,再利用诱导公式化简即可.【详解】由题意得2tan tanπ3α==sin(π)cos(2π)sin cos sin cos sin cos tan 113ππcos cos sin()sin 22ααααααααααααα+------+====+=+-⎛⎫+-+ ⎪⎝⎭,故选:C.8.(2024·全国·模拟预测)已知直线:2310l x y +-=的倾斜角为θ,则()πsin πsin 2θθ⎛⎫-⋅-= ⎪⎝⎭()A .613B .613-C .25D .25-【答案】A【分析】根据直线一般方程可求得2tan 3θ=-,再利用诱导公式及同角三角函数之间的基本关系可得其结果.【详解】由直线l 的方程为2310x y +-=,得斜率2tan 3k θ==-,则()πsin cos sin πsin sin cos 21θθθθθθ-⋅⎛⎫-⋅-=-⋅= ⎪⎝⎭22222sin cos tan 63sin cos tan 113213θθθθθθ-⋅-====++⎛⎫-+ ⎪⎝⎭;故选:A .9.(2024·陕西宝鸡·一模)已知4ππsin 2sin 36αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则πsin 23α⎛⎫+= ⎪⎝⎭()A .34-B .34C .45-D .45【答案】C【分析】先利用诱导公式对已知条件化简得ππcos 2sin 66αα⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭;再利用同角三角函数基本关系求出2π1sin 65α⎛⎫+= ⎪⎝⎭;最后利用二倍角公式即可求解.【详解】4π3πππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.由4ππsin 2sin 36αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭可得:ππcos 2sin 66αα⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭.因为22ππsin cos 166αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,所以2π1sin 65α⎛⎫+= ⎪⎝⎭.所以2ππππ4sin 22sin cos 4sin 36665αααα⎛⎫⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:C.10.(2024·全国·模拟预测)已知(ππtan cos 3cos 44ααα⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,则cos2α=()AB.2C .12-D .1-【答案】B 【分析】由诱导公式和同角三角函数关系得到(πtan 3tan 4αα⎛⎫=-+ ⎪⎝⎭,再利用正切和角公式得到方程,求出tan 1α=,利用余弦二倍角,齐次化求出答案.【详解】因为ππππcos sin sin 4244ααα⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以(ππtan cos 3sin 44ααα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,故(πtan 3tan 4αα⎛⎫=-+ ⎪⎝⎭,因为πtan tanπtan 14tan π41tan 1tan tan 4ααααα++⎛⎫+== ⎪-⎝⎭-,所以(tan 1tan 31tan ααα+=--,故)(2tan 21tan 30αα-+-=,解得tan 1α=,所以)()2222222211cos sin 1tan cos2cos sin 1tan 11ααααααα---=====+++-故选:B .11.(2024·全国·模拟预测)已知圆22:(1)(1)1C x y -+-=,过点()3,2P ,作圆C 的两条切线,切点分别为,A B ,则tan ACB ∠=()A .43-B .43C .12-D .34【答案】A【分析】设切线的方程为2(3)y k x -=-,求得圆心C到切线的距离1d ==,求得k 的值,得到4tan 3APB ∠=,结合180APB ACB ∠+∠=︒,即可求解.【详解】由题意知,圆22:(1)(1)1C x y -+-=的圆心为(1,1)C ,半径1r =,且切线PA ,PB 的斜率都存在,设切线的方程为2(3)y k x -=-,即320kx y k --+=,因为直线与圆相切,所以圆心C到切线的距离1d =,解得10k =或2k =43,所以4tan 3APB ∠=,在四边形APBC 中,因为90APC ABC ∠=∠= ,可得180APB ACB ∠+∠=︒,所以4tan tan(180)tan 3ACB APB APB ∠=-∠=-∠=-.故选:A .12.(2024·河南郑州·模拟预测)已知tan 2θ=,则3πsin sin 2θθ⎛⎫+= ⎪⎝⎭()A .35B .12C .12-D .25-【答案】D【分析】利用诱导公式,平方关系和商关系即可求解.【详解】3πsin sin sin cos 2θθθθ⎛⎫+=- ⎪⎝⎭222sin cos tan 2sin cos tan 15θθθθθθ=-=-=-++.故选:D13.(2024·陕西西安·二模)已知π5cos 513α⎛⎫-= ⎪⎝⎭,则7πsin 10α⎛⎫-= ⎪⎝⎭()A .513-B .513C .-1213D .1213【答案】A 【分析】因为7πππ1052αα⎛⎫-=-- ⎪⎝⎭,由诱导公式可得选项.【详解】7ππππ5sin sin cos 1052513ααα⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A.14.(2024·广东深圳·模拟预测)已知π4sin 35α⎛⎫+= ⎪⎝⎭,则5πcos 6α⎛⎫+ ⎪⎝⎭的值为()A .35-B .35C .45-D .45【答案】C 【分析】根据5πππ623αα⎛⎫+=++ ⎪⎝⎭,借助于诱导公式,即可求得结果.【详解】5πππcos cos 623αα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ sin 3πα⎛⎫=-+ ⎪⎝⎭45=-,5πcos 6α⎛⎫∴+ ⎪⎝⎭的值为45-,故选:C15.(2024高三上·陕西西安·阶段练习)若1sin 3A =,则()sin 6A π-的值为()A .13B .13-C.3-D.3【答案】B【分析】本题考查诱导公式的基础运用,套用公式即可.【详解】利用诱导公式可得()()1sin 6sin sin 3A A A π-=-=-=-,故选:B.16.(2024高三上·陕西西安·阶段练习)若()1sin 2πα+=-,则cos α的值为()A .12±B .12CD.【答案】D【分析】先化简已知得1sin =2α,再求cos α的值.【详解】由()1sin 2πα+=-得1sin =2α,所以α在第一、二象限,所以cos =2α=±.故选:D.17.(2024·贵州贵阳·模拟预测)已知πsin sin 2θθ⎛⎫-+= ⎪⎝⎭,则tan θ=()A.B .1-C .1D【答案】B【分析】利用诱导公式以及同角三角函数的平方关系可得出关于sin θ、cos θ的方程组,求出这两个量的值,即可求得tan θ的值.【详解】因为πsin sin sin cos 2θθθθ⎛⎫-+=-= ⎪⎝⎭,由题意可得22sin cos sin cos 1θθθθ⎧-=⎪⎨+=⎪⎩sin 2cos 2θθ⎧=⎪⎪⎨⎪=-⎪⎩,因此,sin tan 1cos θθθ==-.故选:B.18.(2024高一下·湖南长沙·阶段练习)已知1sin cos 5αα+=,且()0,πα∈,sin cos αα-=()A .75±B .75-C .75D .4925【答案】C【分析】将已知等式两边平方,利用三角函数的基本关系求得2sin cos αα的值,结合α的范围确定sin α与cos α的正负,再利用完全平方公式及三角函数的基本关系可求得sin cos αα-的值.【详解】因为1sin cos 5αα+=,两边平方得()21sin cos 12sin cos 25αααα+=+=,故242sin cos 025αα=-<,所以sin α与cos α导号,又因为0πα<<,所以sin 0α>,cos 0α<,所以7sin cos 5αα-====.故选:C.19.(2024高三下·重庆渝中·阶段练习)已知θ是三角形的一个内角,且满足sin cos 5θθ-=,则tan θ=()A .2B .1C .3D .12【答案】A【分析】利用平方关系可求得42sin cos 5θθ=,可解得29(sin cos )5θθ+=,再结合θ是三角形的一个内角即可得sin ,cos θθ==tan 2θ=.【详解】将sin cos θθ-=两边同时平方可得112sin cos 5θθ-=,即42sin cos 5θθ=;所以29(sin cos )12sin cos 5θθθθ+=+=若sin +cos θθ=,解得sin θθ==,这与θ是三角形的一个内角矛盾,所以sin +cos θθ=,解得sin θθ==,此时求得tan 2θ=.故选:A.20.(2024高三上·北京·阶段练习)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称,若4sin 5α=,则cos β=()A .45-B .45C .35-D .35【答案】B【分析】根据题意利用任意角的三角函数的定义,结合诱导公式可求得结果.【详解】因为平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称,所以ππ,Z 24k k αβ+=+∈,即π2π,Z 2k k αβ+=+∈,所以π2π,Z 2k k βα=-+∈,因为4sin 5α=,所以π4cos cos 2πsin (Z)25k k βαα⎛⎫=-+==∈ ⎪⎝⎭,故选:B21.(2024·辽宁抚顺·模拟预测)已知(),0,a βπ∈,则“tan tan 1αβ=”是“2a πβ+=”的()A .充要条件B .既不充分也不必要条件C .充分不必要条件D .必要不充分条件【答案】D【分析】根据诱导公式的逆运用以及由三角函数的概念即可判断其充分性,由2a πβ+=代入tan α化简计算即可判断其必要性,从而得出结论.【详解】若tan tan 1αβ=,则1tan ta 2n tan παββ⎛⎫==- ⎪⎝⎭,故()2k k παπβ=+-∈Z ,即()2k k παβπ+=+∈Z .又()0,2αβπ+∈,故0k =或1k =,充分性不成立;若2παβ+=,即2παβ=-,所以1tan tan 2tan παββ⎛⎫=-= ⎪⎝⎭,所以tan tan 1αβ=,所以必要性成立.故选:D .22.(2024·陕西榆林·二模)已知π7π1cos cos 12125αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,则2πc 23os +α⎛⎫ ⎪⎝⎭=()A .2325-B .2325C .2425-D .2425【答案】C【分析】利用诱导公式和倍角公式化简求值.【详解】7ππππcos cos sin 1212212ααα⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由π7π1cos cos 12125αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,有ππ1cos sin 12125αα⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,两边平方得π11sin 2625α⎛⎫-+= ⎪⎝⎭,则π24sin 2625α⎛⎫+= ⎪⎝⎭,故2ππππ24cos 2+=cos 2+=sin 2=225366ααα⎛⎫⎛⎫⎛⎫+-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C.23.(2024高三上·北京海淀·阶段练习)已知α为第二象限的角,且3cos 5α=-,则()sin πα-的值为()A .45B .45-C .35-D .35【答案】A【分析】先根据平方关系求出sin α,再利用诱导公式即可得解.【详解】因为α为第二象限的角,且3cos 5α=-,所以4sin 5α=,所以()4sin πsin 5αα-==.故选:A.24.(2024高一上·山西太原·阶段练习)已知π02α<<,且π1sin 34α⎛⎫-= ⎪⎝⎭,则5πsin 6α⎛⎫-= ⎪⎝⎭()A .4B .14-C .4D .14【答案】C【分析】根据角的范围及正弦值求出余弦值,进而利用诱导求出答案.【详解】因为π02α<<,所以ππ36π3α-<-<,又π1sin 34α⎛⎫-= ⎪⎝⎭,所以πcos 3α⎛⎫-== ⎪⎝⎭45πππππs 62in c 3sin cos os 33αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:C25.(2024·全国·模拟预测)已知π1tan 22θ⎛⎫+= ⎪⎝⎭,则()33sin 2cos sin πθθθ+=+()A .35B .56C .56-D .35-【答案】D【分析】结合诱导公式与同角三角函数的基本关系运算即可得.【详解】由题意得πsin cos 12πsin 2cos 2θθθθ⎛⎫+ ⎪⎝⎭==-⎛⎫+ ⎪⎝⎭,则tan 2θ=-,故()()33333322sin 2cos sin 2cos sin 2cos sin πsin sin sin cos θθθθθθθθθθθ+++==-+-+333323sin 2cos tan 2823sin sin cos tan tan 825θθθθθθθθ++-+=-=-=-=-++--.故选:D.26.(2024高三上·云南昆明·阶段练习)若π2αβ+=sin αβ+=tan α=()A.2BC .1D【答案】B【分析】由诱导公式可得出sin cos βα=,根据已知条件可得出关于sin α、cos α的方程组,解出这两个量的值,结合同角三角函数的商数关系可求得tan α的值.【详解】因为π2αβ+=,则π2βα=-,πsin sin cos 2αβαααα⎛⎫+=+-=+= ⎪⎝⎭联立22cos sin cos 1αααα+=+=⎪⎩sin cos αα⎧=⎨⎪=⎪⎩因此,sin tan cos 3ααα==故选:B.27.(2024高三上·四川成都·阶段练习)已知角α的终边过点()1,3,则πcos(π)cos()2αα-++的值是()A.B.C.D【答案】A【分析】利用三角函数定义,结合诱导公式计算得解.【详解】由角α的终边过点()1,3,得r =,31sin r r αα====,所以πcos(π)cos()cos sin 210105αααα-++=--=--=-.故选:A28.(2024高三上·安徽·阶段练习)在平面直角坐标系xOy 中,设角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,若角α的终边过点()4,3P -,则()3πsin 2cos π22αα⎛⎫++-= ⎪⎝⎭()A .1425-B .1425C .1725-D .1725【答案】A【分析】根据任意角的三角函数的定义可得sin α,再利用诱导公式、二倍角公式运算求解.【详解】由题意得,5OP ==,则3sin 5α=-,则()3πsin 2cos π2cos 2cos 22cos 22ααααα⎛⎫++-=--=- ⎪⎝⎭()22314212sin 212525α⎡⎤⎛⎫=--=-⨯-⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.故选:A .29.(2024高三上·安徽·期中)已知()sin ,cos P θθ是角π3-的终边上一点,则tan θ=()A .B .C D 【答案】B【分析】由三角函数的定义可得sin ,cos θθ,进而由商数关系可求tan θ.【详解】因为()sin ,cos P θθ是角π3-的终边上一点,所以π1πcos sin ,sin cos 3232θθ⎛⎫⎛⎫-==-==- ⎪ ⎪⎝⎭⎝⎭,则sin tan cos 3θθθ==,故选:B.30.(2024高三上·安徽·期中)已知角θ的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点()2,4P -,则()cos 2cos 2πθπθ⎛⎫--+= ⎪⎝⎭()A .5-B .5-C .0D .5【答案】C【分析】根据终边上的点可求得:sinθ=cos θ=,再结合三角函数诱导公式从而求解.【详解】因为:r OP ==(O 为坐标原点),所以:由三角函数的定义,得sin θ==cos θ==所以:()cos 2cos sin 2cos 02πθπθθθ⎛⎫--+=+= ⎪⎝⎭.故C 项正确.故选:C.31.(2024高一上·江苏常州·阶段练习)若π1cos()63α+=,则5π5πcos()sin()63αα--+=()A .0B .23C.13+D.13-【答案】A【分析】利用整体代换法与诱导公式化简求值即可.【详解】依题,令π6t α+=,则15ππsin ,ππ366t t αα⎛⎫=-=-+=- ⎪⎝⎭,5π3ππ3π3262t αα+=++=+,所以5π5πcos()sin()63αα--+3π=cos(π)sin()2t t --+cos cos 0t t =-+=.故选:A32.(2024高三上·重庆永川·期中)已知π0,2θ⎛⎫∈ ⎪⎝⎭,π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭,则πcos cos 22π4θθθ⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭()A .12-B .35-C .3D .53【答案】B【分析】由条件π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭化简求得tan 3θ=,将所求式子利用三角恒等变换化简再根据同角三角函数关系式转化为正切求得结果.【详解】由π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭,即tan 12tan 1tan 3θθθ+=--,又π0,2θ⎛⎫∈ ⎪⎝⎭,解得tan 3θ=,()()22πcos cos2sin cos sin2sin cos sinπsin cos4θθθθθθθθθθθ⎛⎫-⎪-⎝⎭∴==-+⎛⎫+⎪⎝⎭2222222sin cos sin tan tan333sin cos tan1315θθθθθθθθ---====-+++.故选:B.33.(2024高一下·山东潍坊·阶段练习)下列化简正确的是()A.()tanπ1tan1+=-B.()()sincostan360ααα-=-C.()()sinπtancosπααα-=+D.()()()cosπtanπ1sin2πααα---=-【答案】B【分析】应用诱导公式以及同角三角函数的基本关系对四个选项验证即可.【详解】对于A,由诱导公式得,()tanπ1tan1+=,故A错误;对于B,()()sin sin sincossintantan360cos aααααααα--===-- ,故B正确;对于C,()()sinπsintancosπcosααααα-==-+-,故C错误;对于D,()()()()()sincoscosπtanπcos tan cos1sin2πsin sinαααααααααα⋅----==-=---,故D错误.故选:B.二、多选题34.(2024·辽宁·模拟预测)设α为第一象限角,π1cos83α⎛⎫-=⎪⎝⎭,则()A.5π1sin83α⎛⎫-=-⎪⎝⎭B.7π1cos83α⎛⎫+=-⎪⎝⎭C.13πsin83α⎛⎫-=-⎪⎝⎭D.πtan8α⎛⎫-=-⎪⎝⎭【答案】BD【分析】首先由题意得π8α-是第一象限角,所以πsin 83α⎛⎫-=⎪⎝⎭,再利用诱导公式和同角三角函数关系式对选项逐个计算确定正确答案.【详解】由题意得π2π2π,Z 2k k k α<<+∈,则ππ3π2π2π,Z 888k k k α-<-<+∈,若π8α-在第四象限,则ππ1cos cos 8423α⎛⎫->=⎪⎝⎭,所以π8α-也是第一象限角,即πsin 8α⎛⎫-=⎪⎝⎭5πππππ1sin sin cos cos 828883αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 项错误;7πππ1cos cos πcos 8883ααα⎛⎫⎛⎫⎛⎫+=-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,B 项正确;13π3ππππ1sin sin cos cos 828883αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=--=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,C 项错误;πsin ππ8tan tan 2π88cos 8αααα⎛⎫- ⎪⎛⎫⎛⎫⎝⎭-=--=-=- ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭项正确.故选:BD.35.(江苏省宜兴中学、泰兴中学、泰州中学2023-2024学年高一上学期12月联合质量检测数学试卷)质点P 和Q 在以坐标原点O 1的圆O 上逆时针作匀速圆周运动,同时出发.P 的角速度大小为2rad /s ,起点为圆O 与x 轴正半轴的交点,Q 的角速度大小为5rad /s ,起点为角π3-的终边与圆O 的交点,则当Q 与P 重合时,Q 的坐标可以为()A .2π2πcos ,sin 99⎛⎫ ⎪⎝⎭B .ππcos ,sin 99⎛⎫- ⎪⎝⎭C .5π5πcos ,sin 99⎛⎫-- ⎪⎝⎭D .ππcos ,sin 99⎛⎫- ⎪⎝⎭【答案】ACD【分析】由题意列出重合时刻t 的表达式,进而可得Q 点的坐标,通过赋值对比选项即可得解.【详解】点Q 的初始位置1Q ,锐角1π3Q OP ∠=,设t 时刻两点重合,则π522π(N)3t t k k -∈=+,即π2π(N)93k t k +∈=,此时点ππcos 5,sin 533Q t t ⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即2π10π2π10πcos ,sin 9393k k Q ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(N)k ∈,当0k =时,2π2πcos ,sin 99Q ⎛⎫ ⎪⎝⎭,故A 正确;当1k =时,32π32πcos ,sin 99Q ⎛⎫ ⎪⎝⎭,即5π5πcos ,sin 99Q ⎛⎫-- ⎪⎝⎭,故C 正确;当2k =时,9,62π62πcos sin 9Q ⎛⎫ ⎪⎝⎭,即ππcos ,sin 99Q ⎛⎫- ⎪⎝⎭,故D 正确;由三角函数的周期性可得,其余各点均与上述三点重合,故B 错误,故选:ACD.36.(2024高一下·河南焦作·阶段练习)已知角,A B ,C 是锐角三角形ABC 的三个内角,下列结论一定成立的有()A .()sin sinBC A +=B .sin cos 22A B C +⎛⎫= ⎪⎝⎭C .()cos cos A B C +<D .sin cos A B<【答案】ABC【分析】根据三角形内角和及诱导公式,三角函数单调性一一判定选项即可.【详解】由题易知()()πsin sin πsin 2A B C A B C B C A A π⎛⎫++=<⇒+=-= ⎪⎝⎭、、,πsin sin cos 222A B C C +-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()()cos cos πcos 0cos A B C C C +=-=-<<,即A 、B 、C 结论成立.对于D ,由锐角三角形知,2A B π+>,得ππ022B A <-<<,因此πsin sin cos 2A B B ⎛⎫>-= ⎪⎝⎭,所以错误.故选:ABC37.(2024高一下·河北沧州·阶段练习)在△ABC 中,下列关系式恒成立的有()A .()sin sin ABC +=B .cos sin 22A B C +⎛⎫= ⎪⎝⎭C .()sin 22sin20A B C ++=D .()cos 22cos20A B C ++=【答案】ABC【分析】结合三角形的内角和定理和诱导公式,准确运算,即可求解.【详解】对于A 中,由()()sin sin sin A B C C π+=-=,所以A 正确;对于B 中由cos cos sin 2222A B C C π+⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以B 正确;对于C 中,由()()()sin 22sin2sin 2sin2sin 2sin2A B C A B C C Cπ⎡⎤⎡⎤++=++=-+⎣⎦⎣⎦()sin 22sin2sin2sin20C C C C π=-+=-+=,所以C 正确;对于D 中,()cos(22)cos2cos 2cos2cos[2()]cos2A B C A B C C Cπ⎡⎤++=++=-+⎣⎦()cos 22cos2cos2cos22cos2C C C C C π=-+=+=,所以D 错误.故选:ABC.38.(2024高一上·江苏无锡·阶段练习)下列结论正确的有()A .sin cos 63ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭B .52cos sin 063ππθθ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭C .()()22sin 15cos 751αα-++=D .()()22sin 15sin 751αα-++=【答案】ABD【解析】本题可通过诱导公式将sin 6απ⎛⎫+ ⎪⎝⎭转化为cos 3πα⎛⎫- ⎪⎝⎭,A 正确,然后通过诱导公式将5cos 6πθ⎛⎫+⎪⎝⎭转化为2sin 3πθ⎛⎫-- ⎪⎝⎭,B 正确,最后根据()()sin 15cos 75 αα-=+以及同角三角函数关系判断出C 错误以及D 正确.【详解】A 项:sin sin cos cos 63332πππππαααα⎛⎫⎛⎫⎛⎫⎛⎫+=+-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 正确;B 项:因为522cos sin sin sin 6333ππππθθπθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=---=-- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以52cos sin 063ππθθ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,B 正确;C 项:因为()()()sin 15sin 75cos 752πααα⎡⎤-=-+=+⎢⎥⎣⎦,所以()()()222sin 15cos 752cos 751ααα-++=+≠,C 错误;D 项:()()()()2222sin 15sin 75cos 75sin 751αααα-++=+++=,D 正确,故选:ABD.【点睛】关键点点睛:本题考查诱导公式以及同角三角函数关系的应用,考查的公式有sin cos 2παα⎛⎫+= ⎪⎝⎭、()cos cos αα=-、sin cos 2παα⎛⎫-= ⎪⎝⎭、22cos sin 1αα+=等,考查化归与转化思想,是中档题.39.(2024高一上·黑龙江齐齐哈尔·期末)已知下列等式的左右两边都有意义,则下列等式恒成立的是()A .cos 1sin 1sin cos x xx x-=+B .221sin 12tan sin cos tan x x x x x++=C .()()sin 53cos 37x x -=+D .()()sin 60cos 480x x -=+【答案】ABC【分析】对于A 、B ,由同角三角函数的基本关系进行化简证明即可,对于C 、D ,由诱导公式进行化简证明即可.【详解】对于A ,()()()()()22cos 1sin cos 1sin cos 1sin cos 1sin 1sin 1sin 1sin 1sin cos cos x x x x x x x x x x x x x x----====++--,故A 正确;对于B ,()2222222sin cos sin 1sin cos 2sin 12tan sin cos sin cos sin cos tan x x x x x x x x x x x x x x+++++===,故B 正确;对于C ,()()()sin 53sin 9037=cos 37x x x ⎡⎤-=-++⎣⎦,故C 正确;对于D ,()()()()cos 480=cos 0=cos 18060=cos 0126x x x x -⎡⎤++---⎣⎦,故D 错误.故选:ABC.三、填空题40.(2024·全国)若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=.【答案】5-【分析】根据同角三角关系求sin θ,进而可得结果.【详解】因为π0,2θ⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0θθ>>,又因为sin 1tan cos 2θθθ==,则cos 2sin θθ=,且22222cos sin 4sin sin 5sin 1+=+==θθθθθ,解得sin θ=或sin θ=(舍去),所以sin cos sin 2sin sin -=-=-=-θθθθθ故答案为:5-.41.(2024高一上·福建莆田·阶段练习)已知tan α=-2απ<<π,那么sin cos 1αα=+.【分析】由同角三角函数关系及已知条件求得1sin 33αα==-,代入目标式求值即可.【详解】由tan α=-2απ<<π,则1sin 33αα==-,所以sin cos 1αα=+.42.(2024高三·全国·对口高考)若sin cos 2sin cos x xx x-=+,求sin cos x x 的值为.【答案】310-/0.3-【分析】由已知求出tan 3x =-,再将sin cos x x 化为22sin cos sin cos x xx x+,利用齐次式法求值,即得答案.【详解】由sin cos 2sin cos x xx x-=+可得sin cos 2(sin cos ),sin 3cos x x x x x x -=+∴=-,因为cos 0x =不适合sin cos 2sin cos x xx x-=+,故cos 0x ≠,所以tan 3x =-,故222sin cos tan 33sin cos sin cos tan 19110x x x x x x x x -====-+++,故答案为:310-43.(2024高三上·江西南昌·阶段练习)若4tan 3θ=,则sin cos sin cos θθθθ-=+.【答案】17【分析】分式上下同除以cos θ,化弦为切,代入4tan 3θ=求值即可.【详解】4tan 3θ= ,sin 411sin cos tan 11cos 3sin 4sin cos tan 1711cos 3θθθθθθθθθθ----∴====++++.故答案为:17.44.(2024·上海浦东新·模拟预测)已知sin cos αα、是关于x 的方程2320x x a -+=的两根,则=a .【答案】56-【分析】先通过根与系数的关系得到sin ,cos αα的关系,再通过同角三角函数的基本关系即可解得.【详解】由题意:Δ41202sin cos 3sin cos 3a a αααα⎧⎪=-≥⎪⎪+=⎨⎪⎪=⎪⎩,所以13a ≤,所以()224sin cos 12sin cos 139a αααα+=+=+=,即650a +=,解得56a =-.故答案为:56-.45.(2024高三·全国·专题练习)已知1sin cos 4αα-=,则33sin cos αα-=.【答案】47128【分析】由立方差公式,得()()3322sin cos sin cos sin cos sin cos αααααααα-=-++.将1sin cos 4αα-=两边平方,解得15sin cos 32αα=,代入即可得解.【详解】由题知()()3322sin cos sin cos sin cos sin cos αααααααα-=-++,因为1sin cos 4αα-=,两边平方有112sin cos 16αα-=,所以15sin cos 32αα=,所以()3311547sin cos 1432128αα-=⨯+=.故答案为:47128.46.(2024高三上·安徽合肥·阶段练习)已知23sin 2m m α-=+,1cos 2m m α+=-+,且α为第二象限角,则()()sin 2024πcos 2023π2021πcos 2ααα+++=⎛⎫+ ⎪⎝⎭.【答案】73-/123-【分析】由已知可求出m 的取值范围,由同角三角函数的平方关系求出m 的值,可求出tan α的值,再利用诱导公式结合弦化切可求得所求代数式的值.【详解】因为23sin 2m m α-=+,1cos 2m m α+=-+,且α为第二象限角,则2302102m m m m -⎧>⎪⎪+⎨+⎪-<⎪+⎩,解得2m <-或32m >,因为22222223151010sin cos 12244m m m m m m m m αα-+-+⎛⎫⎛⎫+=+-== ⎪ ⎪++++⎝⎭⎝⎭,整理可得22730m m -+=,即()()2130m m --=,解得12m =(舍)或3m =,所以,233sin 25m m α-==+,14cos 25m m α+=-=-+,所以,sin 353tan cos 544ααα⎛⎫==⨯-=- ⎪⎝⎭,因此,()()sin 2024πcos 2023πsin cos 147112021πsin tan 33cos 2ααααααα+++-==-+=--=--⎛⎫+ ⎪⎝⎭.故答案为:73-.47.(2024·全国·模拟预测)若()223ππ1cos cos 714f x x x ⎡⎤⎤⎛⎫⎛⎫=--++ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎣⎦⎦,则()f x 的最大值为,()f x 的最小值为.【答案】91【分析】借助诱导公式将函数式转化,再利用两点间的距离公式将数转化为形,利用形的直观来求最值.【详解】因为πππ3π3πcos sin sin sin 1421477x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=--=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,=,此式可看作点(到点3π3πcos ,sin 77x x ⎡⎤⎛⎫⎛⎫--⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的距离.而点3π3πcos ,sin 77x x ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的轨迹是圆221+=m n .又点(到圆心()0,0的距离为2,所以()f x 的最大值()()2max 219f x =+=,()f x 的最小值()()2min 211f x =-=.故答案为:9;1【点睛】将所给函数式展开必将陷入命题人的圈套,此时要整体把握目标,借助诱导公式将函数式转化,再利用两点间的距离公式将数转化为形,利用形的直观来求最值,既简单又节省时间.本题不仅要求学生具备扎实的基本功,具有整体把握目标的能力,还对学生分析问题和解决问题的能力、逻辑推理能力、运算求解能力等要求较高.48.(2024·四川绵阳·三模)已知π,π2θ⎛⎫∈ ⎪⎝⎭,()sin π3θ+=-,则tan θ=.【答案】【分析】根据诱导公式以及同角关系即可求解.【详解】由()sin π3θ+=-得sin 3θ=,由π,π2θ⎛⎫∈ ⎪⎝⎭可得cos θ=-,故sin tan cos θθθ==故答案为:2-49.(2024·山西阳泉·三模)已知πsin 6α⎛⎫+= ⎪⎝⎭ππ,44α⎛⎫∈- ⎪⎝⎭,则πsin 3α⎛⎫-=⎪⎝⎭.【分析】整体法诱导公式结合同角三角函数关系求出答案.【详解】因为ππ,44α⎛⎫∈- ⎪⎝⎭,所以ππ5π,61212α⎛⎫+∈- ⎪⎝⎭,故πcos 06α⎛⎫+> ⎪⎝⎭,所以πcos 6α⎛⎫+= ⎪⎝⎭ππππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦50.(2024·浙江温州·二模)已知tan x =,则23sin 2sin cos x x x -=.【分析】利用同角三角函数的关系化简23sin 2sin cos x x x -为齐次式,再代入tan x =.【详解】因为tan x =,所以2222223sin 2sin cos 3tan 2tan 3sin 2sin cos sin cos 1tan x x x x xx x x x x x---==++、()2231⨯-==+51.(2024·黑龙江哈尔滨·二模)已知tan 2θ=,则1sin 2cos 2θθ+的值是.【答案】5【分析】利用正弦、余弦的二倍角公式以及弦化切的公式先化简,在将tan 2θ=代入即可.【详解】因为tan 2θ=,所以2211sin 2cos 22sin cos cos sin θθθθθθ=++-2222cos sin 2sin cos cos sin θθθθθθ+=+-221tan 2tan 1tan θθθ+=+-221252212+==⨯+-,故答案为:5.52.(2024高三·全国·专题练习)已知()7sin cos 0π13ααα+=<<,则tan α=.【答案】125-【分析】由同角三角函数的平方关系和商数关系,并分析三角函数值的正负即可求解.【详解】解:已知7sin cos 13αα+=①,则()2sin cos 12sin cos 69491αααα+=+=,60sin cos 0169αα=-<,0πα<< ,sin 0α∴>,则cos 0α<,sin cos 0αα->,17sin cos13αα∴-===②,联立①②,得12sin 13α=,5cos 13α=-12tan 5α∴=-,故答案为:125-.53.(2024高三上·湖南衡阳·期中)已知sin cos 3αα-=-,则sin 2α=.【答案】79【分析】sin cos 3αα-=-平方,结合同角三角函数平方关系即正弦二倍角公式求解.【详解】sin cos αα-=两边平方得:()22sin cos 12sin cos 1sin 29ααααα-=-=-=,解得:7sin 29α=.故答案为:7954.(2024·全国·模拟预测)已知π1sin 35α⎛⎫-= ⎪⎝⎭,则cos 6α5π⎛⎫-=⎪⎝⎭.【答案】15/0.2【分析】由三角函数的诱导公式化简可得.【详解】由题可得5π5ππππ1cos cos cos sin 663235αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:1555.(2024高三上·内蒙古包头·阶段练习)若πtan 4θ⎛⎫+= ⎪⎝⎭πtan 4θ⎛⎫-=⎪⎝⎭.【答案】【分析】以π4θ+为整体,根据诱导公式运算求解.【详解】由题意可得:πππ1tan tanπ442tan 4θθθ⎡⎤⎛⎫⎛⎫-=+-=-=- ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪⎝⎭故答案为:56.(2024高一下·黑龙江佳木斯·开学考试)已知()1sin 535α︒-=,且27090α-︒<<-︒,则()sin 37α︒+=.【答案】【分析】设53βα︒=-,37γα︒=+,则90βγ︒+=,90γβ︒=-,从而将所求式子转化成求cos β的值,利用α的范围确定cos β的符号.【详解】设53βα︒=-,37γα︒=+,那么90βγ︒+=,从而90γβ︒=-.于是()sin sin 90cos γββ︒=-=.因为27090α︒︒-<<-,所以143323β︒︒<<.由1sin 05β=>,得143180β︒︒<<.所以cos β===所以()sin 37sin 5αγ︒+==-.故答案为:57.(2024高一上·新疆乌鲁木齐·期末)已知角α的终边与单位圆221x y +=交于点1,2⎛⎫⎪⎝⎭y P ,则3πsin 2α⎛⎫-= ⎪⎝⎭.【答案】12-/-0.5【分析】根据任意角三角比的定义和诱导公式求解.【详解】因为角α的终边与单位圆221x y +=交于点1,2⎛⎫⎪⎝⎭y P ,所以||1r OP ==13π12sin cos 212x r αα⎛⎫-=-=-=-=- ⎪⎝⎭,故答案为:12-.58.(2024高一·全国·课后作业)若角α的终边落在直线y x =上,则co 3si 22n s παπα⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭-.【分析】化简得到3sin cos cos sin 22ππαααα⎛⎫⎫⎪⎪-++=--⎝⎭⎝⎭,考虑角α为第一或第三象限角两种情况,计算得到答案.【详解】因为角α的终边落在直线y x =上,所以角α为第一或第三象限角,3sin cos cos sin 22ππαααα⎛⎫⎛⎫⎪ ⎪-++=--⎝⎭⎝⎭,当角α为第一象限角时,cos sin αα==,cos sin αα--==当角α为第三象限角时,cos sin αα==cos sin 22αα--=+=或.四、解答题59.(2024高三·全国·专题练习)已知角α的终边落在直线2y x =上.求(1)4sin 2cos 5sin 3cos αααα-+的值;(2)25sin 3sin cos 2ααα+-的值.【答案】(1)613(2)165【分析】由角α的终边落在直线2y x =上可得tan 2α=,再根据同角函数的关系求解即可.【详解】(1)由角α的终边落在直线2y x =上可得tan 2α=则原式=4tan 28265tan 310313αα--==++;(2)原式222225sin 3sin cos 5tan 3tan 20616222sin cos tan 155αααααααα+++=-=-=-=++.60.(2024高一下·安徽·期中)已知角θ的顶点为坐标原点O ,始边为x 轴的非负半轴,终边与单位圆相交于点P (),x y ,若点P 位于x 轴上方且12x y +=.(1)求sin cos θθ-的值;(2)求44sin cos θθ+的值.【答案】(2)2332【分析】(1)根据cos sin θθ+,cos sin θθ-,cos sin θθ三个直接的关系,可得sin cos θθ-.(2)由4422sin cos 12sin cos θθθθ+=-可得.【详解】(1)由三角函数的定义,1cos sin 2θθ+=,sin 0θ>,两边平方,得221cos sin 2sin cos 4θθθθ++=则32sin cos 04θθ=-<,sin 0θ>,cos 0θ<,所以sin cos 0θθ->,sin cos2θθ-=.(2)由(1)知,3sin cos 8θθ=-,4422222923sin cos (sin cos )2sin cos 126432θθθθθθ+=+-=-⨯=.。
中考数学核心考点强化突破函数的实际应用问题含解析
中考数学核心考点强化突破:函数的实际应用问题类型1 方案与最值问题1.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.解析:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:⎩⎪⎨⎪⎧x +3y =1.42x +5y =2.5,解得:⎩⎪⎨⎪⎧x =0.5y =0.3.答:略. (2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10-m)台,根据题意得:w =300×2m+200×2(10-m)=200m +4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴⎩⎪⎨⎪⎧2×0.5m+2×0.3(10-m )≥8200m +4000≤5400解得:5≤m≤7,∴有三种不同方案.∵w=200m +4000中,200>0,∴w 值随m 值的增大而增大,∴当m =5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.2.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室长为x(m ),占地面积为y(m 2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.解:(1)∵y =x ·50-x 2=-12(x -25)2+6252,∴当x =25时,占地面积最大,即饲养室长x 为25 m 时,占地面积y 最大;(2)∵y =x ·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积最大,即饲养室长x 为26 m 时,占地面积y 最大;∵26-25=1≠2,∴小敏的说法不正确.3.(2017·河南)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:⎩⎪⎨⎪⎧2x +6y =1303x =4y ,解得:⎩⎪⎨⎪⎧x =20y =15. 答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100-m)个,根据题意得:w 活动一=20m×0.8+15(100-m)×0.4=10m +600;w 活动二=20m +15(100-m -m)=-10m +1500.当w 活动一<w 活动二时,有10m +600<-10m +1500,解得:m <45;当w 活动一=w 活动二时,解得:m =45;当w 活动一>w 活动二时,解得:45<m≤50.综上所述:当45<m≤50时,选择活动一购买魔方更实惠;当m =45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.类型2 建立函数模型问题4.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12 c m ,洗手盆及水龙头的相关数据如图2所示,现用高10.2 cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E,则点E 到洗手盆内侧的距离EH 为__24-82__cm .解:建立如图的直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ =MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12-8=4,由BQ∥CG可得,△ABQ∽△ACG,∴BQCG=AQAG,即4CG=1236,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=-320x2+95x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=-320x2+95x+24,解得x1=6+82,x2=6-82(舍去),∴点E的横坐标为6+82,又∵ON=30,∴EH=30-(6+82)=24-8 2.5.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000 kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t 天后的质量为m(kg ),销售单价为y 元/ kg .根据以往经验可知:m 与t 的函数关系为m =⎩⎪⎨⎪⎧20000(0≤t≤50)100t +15000(50<t≤100);y 与t 的函数关系如图所示. ①分别求出当0≤t≤50和50<t≤100时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额-总成本)解:(1)由题意,得:⎩⎪⎨⎪⎧10a +b =30.420a +b =30.8,解得⎩⎪⎨⎪⎧a =0.04b =30. (2)①当0≤t≤50时,设y 与t 的函数解析式为y =k 1t +n 1,将(0,15)、(50,25)代入,可求得y 与t 的函数解析式为:y =15t +15;当50<t≤100时,设y 与t 的函数解析式为y =k 2t +n 2,将点(50,25)、(100,20)代入,可求得y 与t 的函数解析式为:y =-110t +30;②由题意,当0≤t≤50时,W =20000(15t +15)-(400t +300000)=3600t,∵3600>0,∴当t =50时,W 最大=180000(元);当50<t≤100时,W =(100t +15000)(-110t +30)-(400t +300000)=-10(t -55)2+180250,∵-10<0,∴当t =55时,W 最大=180250(元).综上所述,放养55天时,W 最大,最大值为180250元.。
三次函数图像与性质(解析版)
专题2-2三次函数图像与性质【题型1】求三次函数的解析式【题型2】三次函数的单调性问题【题型3】三次函数的图像【题型4】三次函数的最值、极值问题【题型5】三次函数的零点问题【题型6】三次函数图像,单调性,极值,最值综合问题【题型7】三次函数对称中心【题型8】三次函数的切线问题【题型9】三次函数根与系数的关系1/342/34【题型1】求三次函数的解析式(1)一般式:()³²f x ax bx cx d =+++(a ≠0)(2)交点式:()123()()()f x a x x x x x x =---(a ≠0)1.若三次函数()f x 满足()()()()00,11,03,19f f f f ''====,则()3f =()A .38B .171C .460D .965【解析】待定系数法,求函数解析式设()³²f x ax bx cx d =+++,则()232f x ax bx c '=++,由题意可得:()()()()0011031329f d f a b c d f c f a b c ⎧==⎪=+++=⎪⎨==⎪⎪=+'=⎩'+,解得101230a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩,则()3210123f x x x x =-+,所以()32310312333171f =⨯-⨯+⨯=.【题型2】三次函数的单调性问题三次函数是高中数学中的一个重要内容,其考点广泛且深入,主要涉及函数的性质、图像、最值、零点以及与其他函数的综合应用等方面。
以下是对三次函数常见考点的详细分析:1.三次函数的定义与形式∙定义:形如f (x )=ax 3+bx 2+cx +d (其中a ≠=0)的函数称为三次函数。
∙形式:注意系数a ,b ,c ,d 的作用,特别是a 的正负决定了函数的开口方向(a >0开口向上,a <0开口向下)。
高考总复习优化设计二轮用书数学考点突破练1 三角函数的图象与性质
π
π
因为-2<φ<2,所以 φ=-6,
π
所以 f(x)=Acos(2x-6).
π
π
7π
令 2kπ≤2x-6≤2kπ+π,解得12+kπ≤x≤12+kπ,k∈Z.
π
7π
π 7π
当 k=0 时,可得 ≤x≤ ,所以函数 f(x)在区间( , )内单调递减,故
12
12
12 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
D.sin 5+cos 5
解析 由题得, 1 + sin10 = sin2 5 + 2sin5cos5 + cos2 5
=
(sin5 + cos5)2 =|sin 5+cos 5|.
3π
7π
又 <5< ,则
2
4
cos 5>0>sin 5,且|cos 5|<|sin 5|,
所以 1 + sin10=-(sin 5+cos 5)=-sin 5-cos 5.
π
C.6
5π
D.12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
解析 如图所示,区域①和区域③面积相等,故阴影部分的面积即为矩形
ABCD的面积.由题可得AB=3,
设函数 f(x)的最小正周期为 T,则 AD=T,
由题意可得 3T=6π,解得
即
1
f(x)=tan(2x+φ).
2024
高考总复习优化设计
GAO KAO ZONG FU XI YOU HUA SHE JI
2019高考数学考点突破——三角函数与解三角形:两角和与差的正弦、余弦和正切公式+Word版含解析
两角和与差的正弦、余弦和正切公式【考点梳理】1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin_αcos_β±cos_αsin_β;(2)cos(α±β)=cos_αcos_β?sin_αsin_β;(3)tan(α±β)=tan α±tan β1?tan αtan β. 2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)tan 2α=2tan α1-tan 2α. 3.有关公式的变形和逆用(1)公式T (α±β)的变形:①tan α+tan β=tan(α+β)(1-tan_αtan_β);②tan α-tan β=tan(α-β)(1+tan_αtan_β).(2)公式C 2α的变形:①sin 2α=12(1-cos 2α);②cos 2α=12(1+cos 2α).(3)公式的逆用:①1±sin 2α=(sin α±cos α)2;②sin α±cos α=2sin α±π4. 4.辅助角公式asin α+bcos α=a 2+b 2sin(α+φ)其中tan φ=b a . 【考点突破】考点一、三角函数式的化简求值【例1】sin 10°1-3tan 10°=()A .14B .12C .32D .1 [答案]A [解析]sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°412cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14. 【类题通法】“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.【对点训练】2cos 10°-sin 20°sin 70°=() A .12B .32C .3D . 2[答案]C [解析]原式=2cos 30°-20°-sin 20°sin 70°=2cos 30°·cos 20°+sin 30°·sin 20°-sin 20°sin 70°=3cos 20°cos 20°= 3. 【例2】若sin π3-α=14,则cos π3+2α=________. [答案]-78[解析]依题意得cos π3+2α=-cos π-π3+2α=-cos 2π3-α=2sin 2π3-α-1=2×142-1=-78. 【类题通法】“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.【对点训练】若cos π4-α=35,则sin 2α=() A .725B .15C .-15D .-725[答案]D [解析]∵cos π4-α=35,∴sin 2α=cos π2-2α=cos 2π4-α=2cos 2π4-α-1=2×925-1=-725.【例3】若sin 2α=55,sin(β-α)=1010,且α∈π4,π,β∈π,3π2,则α+β的值是() A .7π4B .9π4C .5π4或7π4D .5π4或9π4[答案]A [解析]因为α∈π4,π,所以2α∈π2,2π.又sin 2α=55,所以2α∈π2,π,即α∈π4,π2,∴cos 2α=-255.又因为β∈π,3π2,所以β-α∈π2,5π4,于是cos(β-α)=-31010,∴cos(α+β)=cos[2α+(β-α)]=cos 2αcos(β-α)-sin 2αsin(β-α)=-255×-31010-55×1010=22,且α+β∈5π4,2π,故α+β=7π4. 【类题通法】“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,最后确定角.【对点训练】已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于()。
中考数学考点跟踪突破3二次函数及其图象试题
考点跟踪突破13 二次函数及其图象一、选择题1.(2021·上海)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是( C )A.y=(x-1)2+2 B.y=(x+1)2+2C.y=x2+1 D.y=x2+32.(2021·张家界)在同一平面直角坐标系中,函数y=ax+b及y=ax2-bx的图象可能是( C )3.(2021·宁波)函数y=ax2-2ax-1(a是常数,a≠0),以下结论正确的选项是( D )A.当a=1时,函数图象过点(-1,1)B.当a=-2时,函数图象及x轴没有交点C.假设a>0,那么当x≥1时,y随x的增大而减小D.假设a<0,那么当x≤1时,y随x的增大而增大4.(2021·天津)二次函数y=(x-h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,及其对应的函数值y的最小值为5,那么h的值为( B )A.1或-5 B.-1或5C.1或-3 D.1或35.(2021·长沙)抛物线y=ax2+bx+c(b>a>0)及x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a-b+c≥0;④a+b+cb-a的最小值为3.其中,正确结论的个数为( D )A.1个B.2个C.3个D.4个二、填空题6.(2021·河南)A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是__(1,4)__.7.(2021·宁夏)假设二次函数y =x 2-2x +m 的图象及x 轴有两个交点,那么m 的取值范围是__m <1__. 8.(2021·大连)如图,抛物线y =ax 2+bx +c 及x 轴相交于点A ,B(m+2,0),及y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),那么点A 的坐标是__(-2,0)__.,第8题图) ,第10题图)9.(2021·泸州)假设二次函数y =2x 2-4x -1的图象及x 轴交于A(x 1,0),B(x 2,0)两点,那么1x 1+1x 2的值为__-4__. 10.(2021·内江)二次函数y =ax 2+bx +c 的图象如下图,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,那么P ,Q 的大小关系是__P >Q__.三、解答题11.(2021·黑龙江)如图,二次函数y =(x +2)2+m 的图象及y 轴交于点C ,点B 在抛物线上,且及点C 关于抛物线的对称轴对称,一次函数y =kx +b 的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数及一次函数的解析式;(2)根据图象,写出满足(x +2)2+m≥kx+b 的x 的取值范围.解:(1)∵抛物线y =(x +2)2+m 经过点A(-1,0),∴0=1+m ,∴m =-1,∴抛物线解析式为y =(x +2)2-1=x 2+4x +3,∴点C 坐标(0,3),∵对称轴x =-2,B ,C 关于对称轴对称,∴点B 坐标(-4,3),∵y=kx+b 经过点A ,B ,∴⎩⎨⎧-4k +b =3,-k +b =0,解得⎩⎨⎧k =-1,b =-1,∴一次函数解析式为y =-x -1(2)由图象可知,写出满足(x +2)2+m≥kx+b 的x 的取值范围为x≤-4或x≥-112.(2021·齐齐哈尔)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 及x 轴交于点A 和点B ,及y 轴交于点C ,且点A 的坐标为(-1,0).(1)求抛物线的解析式;(2)直接写出B ,C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)解:(1)由A(-1,0),对称轴为x =2,可得⎩⎨⎧-b 2=2,1-b +c =0,解得⎩⎨⎧b =-4,c =-5,∴抛物线解析式为y =x 2-4x -5 (2)由A 点坐标为(-1,0),且对称轴方程为x =2,可知AB =6,∴OB =5,∴B 点坐标为(5,0),∵y=x 2-4x -5,∴C 点坐标为(0,-5)(3)如图,连接BC ,那么△OBC 是直角三角形, ∴过O ,B ,C 三点的圆的直径是线段BC 的长度,在Rt △OBC 中,OB =OC =5,∴BC=52,∴圆的半径为522,∴圆的面积为π(522)2=252π 13.(2021·陕西)如图,在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +5经过点M(1,3)和N(3,5).(1)试判断该抛物线及x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(-2,0),且及y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.解:(1)由抛物线过M ,N 两点,把M ,N 坐标代入抛物线解析式可得⎩⎨⎧a +b +5=3,9a +3b +5=5,解得 ⎩⎨⎧a =1,b =-3,∴抛物线解析式为y =x 2-3x +5,令y =0可得x 2-3x +5=0,该方程的判别式为Δ=(-3)2-4×1×5=9-20=-11<0,∴抛物线及x 轴没有交点(2)∵△AOB 是等腰直角三角形,A(-2,0),点B 在y 轴上,∴B 点坐标为(0,2)或(0,-2),可设平移后的抛物线解析式为y =x 2+mx +n ,①当抛物线过点A(-2,0),B(0,2)时,代入可得⎩⎨⎧n =2,4-2m +n =0,解得⎩⎨⎧m =3,n =2,∴平移后的抛物线为y =x 2+3x +2,∴该抛物线的顶点坐标为(-32,-14),而原抛物线顶点坐标为(32,114),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(-2,0),B(0,-2)时,代入可得⎩⎨⎧n =-2,4-2m +n =0,解得⎩⎨⎧m =1,n =-2,∴平移后的抛物线为y =x 2+x -2,∴该抛物线的顶点坐标为(-12,-94),而原抛物线顶点坐标为(32,114),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.14.(2021·上海)如图,抛物线y =ax 2+bx -5(a≠0)经过点A(4,-5),及x 轴的负半轴交于点B ,及y 轴交于点C ,且OC =5OB ,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连接AB ,BC ,CD ,DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且∠BEO=∠ABC,求点E 的坐标.解:(1)∵抛物线y =ax 2+bx -5及y 轴交于点C ,∴C(0,-5),∴OC =5.∵OC=5OB ,∴OB=1,又点B 在x 轴的负半轴上,∴B(-1,0).∵抛物线经过点A(4,-5)和点B(-1,0),∴⎩⎨⎧16a +4b -5=-5,a -b -5=0,解得⎩⎨⎧a =1,b =-4,∴这条抛物线的表达式为y =x 2-4x -5(2)由y =x 2-4x -5,得顶点D 的坐标为(2,-9).连接AC ,∵点A 的坐标是(4,-5),点C 的坐标是(0,-5),又S △ABC =12×4×5=10,S △ACD =12×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18 (3)过点C 作CH⊥AB,垂足为点H.∵S △ABC =12×AB×CH=10,AB =52,∴CH=22,在Rt △BCH 中,∠BHC=90°,BC =26,BH =BC 2-CH 2=32,∴tan ∠CBH=CH BH =23.∵在Rt △BOE 中,∠BOE=90°,tan ∠BEO=BO EO,∵∠BEO=∠ABC,∴BO EO =23,得EO =32,∴点E 的坐标为(0,32)。
广东专用2024版高考数学总复习:三角函数与解三角形的综合问题课件
(1) 证明: ;
解:证明:因为 ,所以 ,所以 ,即 ,所以 .
(2) 若 , ,求 的周长.
[答案] 因为 ,所以由(1)得 .由余弦定理可得 ,则 ,所以 ,故 ,所以 ,所以 的周长为 .
考点三 解三角形与恒等变换的综合问题
例3 (2023届辽宁大连滨城联盟高三期中) 的内角 , , 的对边分别为 , , ,已知 .
由余弦定理得 ,解得 .综上,可得 .
【点拨】在含有边角关系的等式中,利用正弦定理的变形 , , ,可直接将等式两边的边化为角;也能角的范围的限制.
变式3 在 中,角 , , 的对边分别为 , , ,满足 .
(1) 求 的值;
解:因为 ,所以由正弦定理得 ,所以 ,故 ,所以 ,即 ,所以 .因为 ,所以 ,可得 .
(2) 若 的面积为 ,且 ,求 的值.
[答案] 由(1)知 ,又 ,所以 .因为 ,所以 .因为 ,即 ,所以 ,整理得 .①当 时, ,又 ,所以 .易知在 中, ,又 ,可知 , ,可得 .②当 时, ,由正弦定理得 ,又 ,解得 , .
考点四 开放探索问题
例4 (2020年新高考Ⅰ卷Ⅱ卷)在① ,② ,③ 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求 的值;若问题中的三角形不存在,说明理由. 问题:是否存在 ,它的内角 , , 的对边分别为 , , ,且 , ,__? 注:如果选择多个条件分别解答,按第一个解答计分.
第11讲:三角函数的图像与性质期末高频考点突破
第11讲:三角函数的图像与性质期末高频考点突破高频考点梳理考点一.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).考点二.正弦函数、余弦函数、正切函数的图象与性质π高频题型归纳题型一:正弦函数图象的应用1.(2022·湖南·高一期末)函数()()0.2sin log 02f x x x x π⎛⎫=->⎪⎝⎭的零点个数为( ) A .1 B .2 C .3 D .42.(2022·福建漳州·高一期末)已知函数()sin (0)f x x ωω=>在()0,π上恰有三个零点,则ω的取值范围为( )A .()2,3B .(]2,3C .()3,4D .(]3,43.(2021·江苏·常州高级中学高一期末)已知函数()21sin sin 4f x x a x =++在区间[]0,π上有4个不同的零点,则实数a 的取值范围是( ) A .514a -<<-B .21a -<<-C .2a <-或1a >-D .514a -<<-或1a >题型二:正弦三角函数的周期和奇偶性问题4.(2022·福建南平·高一期末)将函数π()sin(2)3f x x =+的图象向左平移(0)m m >个单位后得到的图象关于y轴对称,则正数m 的最小值是( )A .π12 B .π3C .5π12 D .5π6 5.(2022·广东揭阳·高一期末)函数()sin 2cos 1xf x x =-的部分图象大致为( )A .B .C .D .6.(2022·广东汕头·高一期末)关于函数()f x x =,下列说法正确的是( )A .()f x 最小值为0B .函数()f x 为奇函数C .函数()f x 是周期为π周期函数D .函数()f x 在区间173(,)72ππ--上单调递减 题型三:求正弦函数的单调区间7.(2022·江西·景德镇一中高一期末)以下四个函数中,在(0)π2,上为减函数,且以π为周期的偶函数为( )A .sin y x =B .cos 2y x =C .|tan |y x =D .cos y x =8.(2022·江西·横峰中学高一期末)函数()2sin 3f x x π⎛⎫=-- ⎪⎝⎭在区间( )上单调递增.A .0,2π⎛⎫⎪⎝⎭B .5,3ππ⎛⎫ ⎪⎝⎭C .23,32ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭9.(2022·广西柳州·高一期末)将函数()()2sin 203f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移6πω个单位,得到函数()y g x =的图象,若()y g x =在0,4⎡⎤⎢⎥⎣⎦π上为增函数,则ω的最大值为( )A .1B .2C .3D .4题型四:余弦函数图象的应用10.(2022·黑龙江·大庆外国语学校高一期末)函数()cos lg f x x x =-零点的个数为( ) A .4B .3C .2D .011.(2021·山西·高一期末)若定义在R 上的奇函数()f x 在()0,∞+上单调递减,且π02f ⎛⎫-= ⎪⎝⎭,则下列取值范围中的每个x 都能使不等式πcos 02f x x ⎛⎫+⋅≥ ⎪⎝⎭成立的是( )A .[]π2π,--B .[]π,0-C .[]0,πD .π,2k x x k Z ⎧⎫=∈⎨⎬⎩⎭12.(2021·湖南·高一期末)函数||2()cos x x f x x⋅=,,22x ππ⎛⎫∈- ⎪⎝⎭的部分图象大致是( )A .B .C .D .题型五:余弦三角函数的周期和奇偶性问题13.(2022·河南开封·高一期末)将函数()cos f x A x ω=图象向右平移6π个单位得到函数()g x 的图象,已知()g x 的图象关于原点对称,则ω的最小正值为( )A .2B .3C .4D .614.(2022·山西运城·高一期末)下列函数中,同时满足:①在0,4π⎛⎫⎪⎝⎭上是增函数,①为奇函数,①最小正周期为π的函数是( ) A .tan 2y x =B .cos 2y x =C .sin y x =D .sin 2y x =15.(2022·河南·商丘市第一高级中学高一期末)将函数()πsin 2f x x ω⎛⎫=+ ⎪⎝⎭,0ω>且()01f =,下列说法错误的是( ) A .()f x 为偶函数B .π02f ⎛⎫-= ⎪⎝⎭C .若()f x 在π0,5⎡⎤⎢⎥⎣⎦上单调递减,则ω的最大值为9D .当5ω=时,()f x 在π0,2⎡⎤⎢⎥⎣⎦上有3个零点题型六:求余弦函数的单调区间16.(2022·广西桂林·高一期末)函数2cos 6y x π⎛⎫=+ ⎪⎝⎭的单调增区间为( )A .()2ππ,2π,Z k k k -∈B .()2π,2ππ,Z k k k +∈C .7ππ(2π,2π),Z 66k k k --∈ D .π5π(2π,2π),Z 66k k k -+∈17.(2022·陕西·宝鸡市陈仓区教育体育局教学研究室高一期末)已知函数()()sin 22f x x x R π⎛⎫=-∈ ⎪⎝⎭,下列结论错误的是( ) A .函数()f x 是偶函数 B .函数()f x 的最小正周期为π C .函数()f x 在区间π02⎡⎤⎢⎥⎣⎦,上单调递增D .函数()f x 的图象关于直线π4x =对称18.(2022·贵州·六盘水市第五中学高一期末)满足不等式2cos 10x +>成立的x 的取值集合为( )A .2222,33x k x k k ππππ⎧⎫-<<+∈⎨⎬⎩⎭Z B .22,33x k x k k ππππ⎧⎫-<<+∈⎨⎬⎩⎭ZC .422,33x k x k k ππππ⎧⎫+<<+∈⎨⎬⎩⎭ZD .522,66x k x k k ππππ⎧⎫-<<+∈⎨⎬⎩⎭Z题型七:正弦、余弦函数的最值(值域)19.(2022·北京平谷·高一期末)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围( )A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤020.(2022·新疆伊犁·高一期末)已知函数()sin cos sin cos f x x x x x =-++,下列结论中错误的是( ) A .函数图像关于直线34x π=对称 B .在区间3,44ππ⎡⎤-⎢⎥⎣⎦上是增函数C .函数是周期函数,最小正周期是2πD .函数的值域是⎡⎤⎣⎦21.(2022·河南·信阳高中高一期末(文))已知函数()2sin 4sin 9sin 2x x f x x -+=-,则函数()f x ( )A .有最小值B .有最大值-C .有最大值92-D .没有最值题型八:正切函数的图像和性质22.(2022·广西梧州·高一期末)在(0,π)内,使tan x >x 的取值范围为( ) A .(3π,2π) B .20,,23πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C .20,,223πππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .20,3π⎛⎫⎪⎝⎭23.(2022·陕西西安·高一期末)下列关于函数tan 23y x π⎛⎫=-+ ⎪⎝⎭的说法正确的是( )A .最小正周期为πB .图像关于点5,012π⎛⎫⎪⎝⎭成中心对称C .在区间,312ππ⎛⎫-- ⎪⎝⎭上单调递增D .图像关于直线12x π=-成轴对称24.(2022·陕西汉中·高一期末)已知函数()tan 24f x x π⎛⎫=- ⎪⎝⎭,下列说法正确的有( )①函数()f x 最小正周期为2π;①定义域为|R,,Z 28k x x x k ππ⎧⎫∈≠+∈⎨⎬⎩⎭①()f x 图象的所有对称中心为,0,Z 48k k ππ⎛⎫+∈ ⎪⎝⎭;①函数()f x 的单调递增区间为3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭. A .1个 B .2个 C .3个D .4个25.(2022·贵州六盘水·高一期末)已知函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数y x =图象上所有点的横坐标缩短到原来的12,纵坐标不变,再向右平移π3个单位长度,得到函数()h x 的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,求函数()()()F x f x h x =-的最值.26.(2022·安徽·涡阳县第九中学高一期末)已知函数()222cos sin 2f x x x =-+.(1)求函数()f x 的最大值;(2)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求函数()g x 的单调递减区间27.(2022·四川泸州·高一期末)已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)设函数()2π2cos 6g x x x ⎛⎫=-+ ⎪⎝⎭,求使()2g x ≥成立的x 的取值集合.参考答案:1.C【分析】由()0f x =得0.2sin =log 2x x π⎛⎫⎪⎝⎭,再在同一坐标系下画出函数0.2sin log 2y x y x π⎛⎫== ⎪⎝⎭,的图像,观察函数的图像即得解.【详解】解:令()0f x =得0.2sin =log 2x x π⎛⎫⎪⎝⎭, 在同一直角坐标系内画出函数sin 2y x π⎛⎫=⎪⎝⎭和()0.2log 0y x x =>的图象,由图象知,两函数的图象恰有3个交点,即函数()f x 有3个零点, 故选:C.2.D【分析】根据题意,将原问题转化为函数sin y x =在区间()0,ωπ上恰有三个零点,根据正弦函数的性质,即可求出结果.【详解】因为(),00,x πω>∈,所以()0,x ωπω∈,又函数()sin (0)f x x ωω=>在()0,π上恰有三个零点,等价于函数sin y x =在区间()0,ωπ上恰有三个零点, 由正弦函数的性质可知,34πωππ<≤, 所以34ω<≤,即ω的取值范围为(]3,4. 故选:D. 3.A【分析】令sin t x =,分析可知函数()214g t t at =++在[)0,1上有两个不同的零点,根据二次函数的零点分布可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】①()21sin sin 4f x x a =++,令sin t x =,[]0,1t ∈,令()214g t t at =++,如下图所示:要使得函数()f x 在[]0,π上有4个零点,则函数()214g t t at =++在[)0,1t ∈上有2个不同的零点,显然()1004g =≠,所以,()2Δ100125104a a g a ⎧⎪=->⎪⎪<-<⎨⎪⎪=+>⎪⎩,解得514a -<<-.故选:A. 4.A【分析】图象关于y 轴对称,则其为偶函数,根据三角函数的奇偶性即可求解.【详解】将()sin 23f x x π⎛⎫ ⎪⎝⎭=+的图象向左平移()0m m >个单位后得到()sin 2sin 2233y x m x m ππ⎡⎤⎛⎫ ⎪⎢⎥⎣⎦⎝⎭=++=++,此时图象关于y 轴对称,则232m k k Z πππ∈+=+,,则212k m ππ=+,0m ∴>,当0k =时,m 取得最小值12π, 故选:A. 5.A【分析】先判断奇偶性,再取特殊点得出答案.【详解】①()sin 2cos 1xf x x =-,由cos 10x -≠,所以()f x 的定义域为{|2,Z}x x k k π≠∈, 函数()f x 的定义域关于原点对称,且sin 2()()cos 1xf x f x x --==--,故函数()f x 是奇函数,则排除B ,又()sin 210cos11f =<-,则排除CD. 故选:A. 6.D【分析】根据三角函数的性质,得到()f x的最小值为,可判定A 不正确;根据奇偶性的定义和三角函数的奇偶性,可判定C 不正确;举例可判定C 不正确;根据三角函数的单调性,可判定D 正确. 【详解】由题意,函数(),0,0x x f x x x x ≥==<⎪⎩, 当0x ≥时,可得1sin 1x -≤≤,所以x ≤ 当0x <时,可得1sin 1x -≤≤,所以x ≤≤ 所以函数()f x的最小值为A 不正确;又由()()f x x x f x --==,所以函数()f x 为偶函数,所以B 不正确;因为()144f ππ==,())144f ππππ++=-,所以()()44f f πππ≠+,所以π不是()f x 的周期,所以C 不正确;当0x <时,()f x x =,22,22k x k k Z ππππ-+≤≤+∈,当1k =-时,5322x ππ-≤≤-,即函数()f x 在区间53[,]22ππ--上单调递减, 又因为17353(,)[,]7222ππππ--⊆--,所以函数()f x 在区间173(,)72ππ--上单调递减, 所以D 正确.故选:D. 7.B【分析】根据常见函数的奇偶性,单调性以及周期即可求解.【详解】对A ,最小正周期为2π,且在(0)π2,上为增函数,并为奇函数,不满足要求;对B ,在(0)π2,上为减函数,且以π为周期的偶函数,符合要求;对C ,在(0)π2,上为增函数,且为偶函数,不符合要求;对D,在(0)π2,上为减函数,但是以2π为周期的偶函数,不符合要求;故选:B 8.B【分析】根据正弦函数的单调性逐一代入检验即可得出答案.【详解】解:对于A ,当0,2x π⎛⎫∈ ⎪⎝⎭时,,336x πππ⎛⎫-∈- ⎪⎝⎭,函数()f x 单调递减,故A 不符题意;对于B ,当5,3x ππ⎛⎫∈ ⎪⎝⎭时,24,333x πππ⎛⎫-∈ ⎪⎝⎭,函数()f x 单调递增,故B 符合题意; 对于C ,当23,32x ππ⎛⎫∈ ⎪⎝⎭时,7,336x πππ⎛⎫-∈ ⎪⎝⎭,函数()f x 在23,32x ππ⎛⎫∈ ⎪⎝⎭不是单调函数,故C 不符合题意; 对于D ,当3,22x ππ⎛⎫∈ ⎪⎝⎭时,75,363x πππ⎛⎫-∈⎪⎝⎭,函数()f x 在3,22x ππ⎛⎫∈ ⎪⎝⎭上不是单调函数,故D 不符题意. 故选:B. 9.A【分析】函数()()2sin 203f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移6πω个单位,得到函数yg x 的表达式,然后利用在0,4π⎡⎤⎢⎥⎣⎦上为增函数,得到ω的最大值.【详解】函数()()2sin 203f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移6πω个单位,得到函数()2sin 22sin 263y g x x x πωωπω⎡⎤⎛⎫==+-= ⎪⎢⎥⎝⎭⎣⎦,若0,4x π⎡⎤∈⎢⎥⎣⎦,则022,πx ωω⎡⎤∈⎢⎥⎣⎦,所以π22ωπ≤,即1ω≤, 所以ω的最大值为1.故选:A. 10.A【分析】由()cos lg 0f x x x =-=,得cos lg x x =,则将函数()f x 零点的个数转化为cos ,lg y x y x ==图象的交点的个数,画出两函数的图象求解即可 【详解】由()cos lg 0f x x x =-=,得cos lg x x =,所以函数()f x 零点的个数等于cos ,lg y x y x ==图象的交点的个数, 函数cos ,lg y x y x ==的图象如图所示,由图象可知两函数图象有4个交点, 所以()f x 有4个零点, 故选:A 11.B【分析】先根据奇函数性质判断函数的单调性和值的正负分布,得到()f x 草图,结合平移得到函数π2f x ⎛⎫+ ⎪⎝⎭的大致草图,再结合余弦函数图象逐一判断四个选项是否恒成立即可. 【详解】由题意可知,奇函数()f x 在()0,∞+上单调递减,且π02f ⎛⎫-= ⎪⎝⎭,则()f x 在(),0∞-上单调递减,且π02f ⎛⎫= ⎪⎝⎭, ()00f =,所以可画出大致草图,而π2f x ⎛⎫+ ⎪⎝⎭可看作()f x 的图象向左平移π2个单位,所以可在同一坐标系中作出π2f x ⎛⎫+ ⎪⎝⎭草图和余弦函数的图象,当3π,2πx ⎡⎤∈--⎢⎥⎣⎦时,满足π0,cos 02f x x ⎛⎫+≥≤ ⎪⎝⎭,即πcos 02f x x ⎛⎫+⋅≤ ⎪⎝⎭,A 不正确; 当ππ,2x ⎡⎤∈--⎢⎥⎣⎦时,满足π0,cos 02f x x ⎛⎫+≤≤ ⎪⎝⎭,即πcos 02f x x ⎛⎫+⋅≥ ⎪⎝⎭, 当π,02x ⎛⎤∈- ⎥⎝⎦时,满足π0,cos 02f x x ⎛⎫+≥> ⎪⎝⎭,即πcos 02f x x ⎛⎫+⋅≥ ⎪⎝⎭, 即当[]π,0x ∈-时,满足πcos 02f x x ⎛⎫+⋅≥ ⎪⎝⎭恒成立,即B 正确; 当π0,2x ⎡⎤∈⎢⎥⎣⎦时,满足π0,cos 02f x x ⎛⎫+≤≥ ⎪⎝⎭,即πcos 02f x x ⎛⎫+⋅≤ ⎪⎝⎭,C 不正确; 当2πx =时,满足π0,cos 12f x x ⎛⎫+<= ⎪⎝⎭,即πcos 02f x x ⎛⎫+⋅< ⎪⎝⎭,D 不正确. 故选:B.12.A【分析】由解析式知()f x 是奇函数且0,2π⎛⎫ ⎪⎝⎭上单调增,即可判断函数图象. 【详解】由于()()()||||22()()cos cos x x x x f x f x x x-⋅-⋅--===-- 所以()f x 为奇函数,故排除B ,D ,而cos y x =,2x y =,y x =在(0,)2π上分别为减函数、增函数、增函数, 且函数值均为正数,所以()f x 在(0,)2π上为增函数, 故选:A13.B【分析】根据图象平移求出g (x )解析式,g (x )为奇函数,则g (0)=0,据此即可计算ω的取值.【详解】根据已知,可得()cos cos 66g x A x A x ππωωω⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭, ①()g x 的图象关于原点对称,所以()00g =,从而62k πωππ-=+,k ∈Z , 所以36k ω=--,其最小正值为3,此时1k =-.故选:B .14.D【分析】根据三角函数的图像和性质逐项分析即可求解.【详解】A 中tan 2y x =的最小正周期为2π,不满足;B 中cos 2y x =是偶函数,不满足;C 中sin y x =的最小正周期为2π,不满足;D 中sin 2y x =是奇函数﹐且周期22T ππ==,令22222k x k ππππ-+≤≤+,①44k x k ππππ-+≤≤+,①函数sin 2y x =的递增区间为,44k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z ,①函数sin 2y x =在0,4π⎛⎫ ⎪⎝⎭上是增函数,故D 正确. 故选:D.15.C【分析】先求得ω,然后结合函数的奇偶性、单调性、零点对选项进行分析,从而确定正确选项.【详解】()πππ0sin 1,2π,41,Z 222f k k k ωωω===+=+∈, ()()()ππsin 41sin 412π22f x k x k x k ⎡⎤⎛⎫⎡⎤=++=+++ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦ ()()πsin 41cos 412k x k x ⎡⎤=++=+⎡⎤⎣⎦⎢⎥⎣⎦, 所以()()f x f x -=,()f x 为偶函数,A 选项正确.()ππππcos 41cos 2π02222f f k k ⎛⎫⎛⎫⎡⎤⎛⎫-==+⨯=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭,B 选项正确. ()()ππ0,0414155x k x k ≤≤≤+≤+⋅,若()f x 在π0,5⎡⎤⎢⎥⎣⎦上单调递减, 则()π41π5k +⋅≤,1k ≤, 由于410k ω=+>,所以1014k k >-⇒≤≤, 所以k 的最大值为1,ω的最大值为415+=,C 选项错误.当5ω=时,()cos5f x x =,π5π0,0522x x ≤≤≤≤,当π3π5π5,,222x =时,()0f x =,所以D 选项正确. 故选:C 16.C【分析】根据给定函数,利用余弦函数的单调性直接列式,求解作答. 【详解】由2ππ2π,Z 6k x k k π-≤+≤∈,解得2π2π,Z 66k x k k 7ππ-≤≤-∈, 所以所求函数的增区间为7ππ(2π,2π),Z 66k k k --∈. 故选:C 17.D 【分析】函数π()sin 2cos 22f x x x ⎛⎫=-=- ⎪⎝⎭,利用余弦函数的周期、奇偶性、对称轴,单调性求解. 【详解】对于函数π()sin 2cos 22f x x x ⎛⎫=-=- ⎪⎝⎭, 由于()cos(2)cos2()f x x x f x -=--=-=,故函数()f x 是偶函数,故A 正确;由()cos2f x x =-知,它的周期等于2ππ2=,故B 正确; 当π02x ⎡⎤∈⎢⎥⎣⎦,时,2[0,π]x ∈,所以()cos2f x x =-单调递增,故C 正确; 令π4x =,则ππ()cos 042f =-=,则π4x =不是()f x 的对称轴,故D 错误. 故选:D18.A【分析】先求出一个周期内不等式的解集,再结合余弦函数的周期性即可求解.【详解】解:由2cos 10x +>得:1cos 2x >- 当[],x ππ∈-时,2233x ππ-<< 因为cos y x =的周期为2π 所以不等式的解集为2222,33x k x k k ππππ⎧⎫-<<+∈⎨⎬⎩⎭Z 故选:A.19.C【分析】可得22sin sin 1a x x =+-在02π⎛⎤ ⎥⎝⎦,内有解,令sin t x =,利用二次函数的性质即可求出. 【详解】方程2cos sin 20x x a -+=在02π⎛⎤ ⎥⎝⎦,内有解,即222cos sin sin sin 1a x x x x =-+=+-在02π⎛⎤ ⎥⎝⎦,内有解, 令sin t x =,(]0,1t ∈,则(]22215sin sin 111,124y x x t t t ⎛⎫=+-=+-=+-∈- ⎪⎝⎭, 所以121a -<≤,解得1122a-<. 故选:C.20.B 【分析】先讨论sin cos y x x =+的正负值去绝对值,可将()f x 表达为分段函数,对A ,计算()32f x f x π⎛⎫-= ⎪⎝⎭即可判断;对BCD ,根据()f x的解析式判断即可 【详解】由题意,当sin cos 04y x x x π⎛⎫=+=+≥ ⎪⎝⎭,即()22Z 4k x k k ππππ≤+≤+∈,()322Z 44k x k k ππππ-≤≤+∈时,()sin cos sin cos 2sin f x x x x x x =-++=;当sin cos 04y x x x π⎛⎫=+=+< ⎪⎝⎭,即()3722Z 44k x k k ππππ+<<+∈时,()sin cos sin cos 2cos f x x x x x x =---=-.即()()()32sin ,22Z 44372cos ,22Z 44x k x k k f x x k x k k ππππππππ⎧-≤≤+∈⎪⎪=⎨⎪-+<<+∈⎪⎩ 对A ,因为33333sin cos sin cos 22222f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=---+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()cos sin cos sin x x x x f x =-++--=,故函数图像关于直线34x π=对称,故A 正确; 对B ,当3,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()2sin f x x =,在,42x ππ⎡⎤∈-⎢⎥⎣⎦上为增函数,在3,42x ππ⎡⎤∈⎢⎥⎣⎦上为减函数,故B 错误;对C ,由()f x 的解析式可得,最小正周期为7244πππ⎛⎫--= ⎪⎝⎭,故C 正确; 对D ,根据()f x 的解析式可得,当22x k ππ=+与2x k ππ=+时,()f x 取得最大值2,当24x k ππ=-时,()f x取得最小值, 故D 正确;故选:B21.B【分析】换元法后用基本不等式进行求解.【详解】令[]sin 1,1t x =∈-,则()()()22254952222t t t f x g t t t t t -+-+====-+---,因为20t ->,502t >-,故()()522g t t t ⎡⎤=--+≤-=-⎢⎥-⎣⎦当且仅当522t t-=-,即2t =()f x 有最大值- 由对勾函数的性质可得函数()()min 16g t g ==-,即()f x 有最小值6-.故选:B22.B【分析】画出(0π)y tanx x =<<和直线y =.【详解】画出(0π)y tanx x =<<和直线y =由图象可得tanx >,在()0,π上解集为20,,23πππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 故选B. 【点睛】本题考查利用正切函数的图象解不等式,关键是掌握正切函数的图像和性质,利用数形结合思想求解.23.B【分析】根据函数tan(2)tan(2)33y x x ππ=-+=--,结合正切函数的图象与性质,对选项中的命题判断正误即可.【详解】解:函数tan(2)tan(2)33y x x ππ=-+=--, 当512x π=时,521232πππ⨯-=,所以图象关于点5,012π⎛⎫ ⎪⎝⎭成中心对称,选项B 正确; 函数的最小正周期为2T π=,所以A 错误; 当,312x ππ⎛-∈⎫- ⎪⎝⎭时,2,32x πππ⎛⎫-∈-- ⎪⎝⎭,所以函数在,312ππ⎛⎫-- ⎪⎝⎭上单调递减,所以C 错误; 正切函数不是轴对称函数,所以D 错误.故选:B .24.C【分析】根据正切函数的图象与性质,代入周期、定义域、对称中心和单调递增期间的公式即可求解.【详解】对①,函数()tan 24f x x π⎛⎫=- ⎪⎝⎭,可得()f x 的最小正周期为2T π=,所以①正确; 对①,令2,Z 42x k k πππ-≠+∈,解得3,Z 82k x k ππ≠+∈, 即函数()f x 的定义域为3{|,Z}82k x x k ππ≠+∈,所以①错误; 对①,令2,Z 42k x k ππ-=∈,解得,Z 84k x k ππ=+∈,所以函数()f x 的图象关于点,0,Z 48k k ππ⎛⎫+∈ ⎪⎝⎭对称,所以①正确;对①,令2,Z 242k x k k πππππ-<-<+∈,解得3,Z 2828k k x k ππππ-<<+∈,故函数()f x 的单调递增区间为3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭,所以①正确; 故①①①正确;故选:C50.(1)()πsin 23f x x ⎛⎫=+ ⎪⎝⎭ (2)2-【分析】(1)根据图象依次求得,,A ωϕ的值.(2)根据图象变换的知识求得()h x ,化简()F x 的解析式,根据三角函数最值的求法求得正确答案.【详解】(1)由图可知1A =,7πππ2π,π,241234T T ωω=-====,()()sin 2f x x ϕ=+,7π7πsin 1126f ϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, ππ2π7π5π,22363ϕϕ-<<<+<,所以7π3ππ,623ϕϕ+==, 所以()πsin 23f x x ⎛⎫=+ ⎪⎝⎭.(2)函数y x =图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到2y x =,再向右平移π3个单位长度,得到()π2π2233h x x x ⎡⎤⎛⎫⎛⎫=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, π2π()()()sin 2233F x f x h x x x ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭ ππsin 22π33x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭ ππsin 2233x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭ ππ2π2sin 22sin 2333x x ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭, π0,2x ⎡⎤∈⎢⎥⎣⎦,2π2π5π2,333x ⎡⎤+∈⎢⎥⎣⎦,所以2π2πsin 2,2sin 233x x ⎡⎛⎫⎛⎫⎡+∈-+∈-⎢ ⎪ ⎪⎣⎝⎭⎝⎭⎣⎦, 所以()f x 在区间π0,2⎡⎤⎢⎥⎣⎦2-. 51.(1)4; (2)π2π2π,2π33k k ⎛⎫-+ ⎪⎝⎭,k ∈Z .【分析】(1)根据降幂公式,结合余弦函数的最值性质进行求解即可; (2)根据余弦型函数图象的变换性质,结合余弦型函数的单调性进行求解即可.【详解】(1)()221cos 2352cos sin 21cos 22cos 2222x f x x x x x -=-+=+-+=+ ①当cos21x =时()f x 取得最大值4;(2)因为把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象, 所以()3π5cos 232g x x ⎛⎫=++ ⎪⎝⎭, 令π2π2ππ(Z)3k x k k ≤+≤+∈,可得函数()g x 的单调递减区间为π2π2π,2π33k k ⎛⎫-+ ⎪⎝⎭,Z k ∈. 52.(1)()πsin 23f x x ⎛⎫=+ ⎪⎝⎭;(2)()ππ,π3k k k ⎡⎤+∈⎢⎥⎣⎦Z .【分析】(1)根据图象先求出周期可得ω,再由特殊点可得ϕ; (2)由三角恒等变换化简出()g x ,解正弦型三角不等式即可得解.(1) 由已知得3π5π3π43124T ⎛⎫=--= ⎪⎝⎭, 所以πT =,所以2π2Tω==, 又因为πππ55sin 1,0126f ϕϕ⎛⎫⎛⎫-=-+=-<< ⎪ ⎪⎝⎭⎝⎭, 所以π3ϕ=,因此()πsin 23f x x ⎛⎫=+ ⎪⎝⎭. (2)因为函数()22cos 6g x x x π⎛⎫=-+ ⎪⎝⎭,222cos 63x x ππ⎡⎤⎛⎫=-++ ⎪⎢⎥⎝⎭⎣⎦cos212sin 216x x x π⎛⎫=++=++ ⎪⎝⎭, 因为()2g x ≥,则1sin 262x π⎛⎫+≥ ⎪⎝⎭, 所以ππ5π2π22π666k x k +≤+≤+, 故πππ,Z 3k x k k ≤≤+∈, 所以符合条件的x 的取值集合为()ππ,π3k k k ⎡⎤+∈⎢⎥⎣⎦Z .。
第1部分 板块2 核心考点突破拿高分 专题6 第1讲 函数的图象与性质(小题)
第1讲 函数的图象与性质(小题)热点一 函数的概念与表示 1.高考常考定义域易失分点:(1)若f (x )的定义域为[m ,n ],则在f [g (x )]中,m ≤g (x )≤n ,从中解得x 的范围即为f [g (x )]的定义域;(2)若f [g (x )]的定义域为[m ,n ],则由m ≤x ≤n 确定的g (x )的范围即为f (x )的定义域. 2.高考常考分段函数易失分点:(1)注意分段求解不等式时自变量的取值范围的大前提;(2)利用函数性质转化时,首先判断已知分段函数的性质,利用性质将所求问题简单化. 例1 (1)(2019·宣城联考)函数y =-x 2+2x +3lg (x +1)的定义域为( )A.(-1,3]B.(-1,0)∪(0,3]C.[-1,3]D.[-1,0)∪(0,3](2)设函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,4x ,x >0,则满足f (x )+f (x -1)≥2的x 的取值范围是________.跟踪演练1 (1)(2019·黄冈调研)已知函数f (x +1)的定义域为(-2,0),则f (2x -1)的定义域为( )A.(-1,0)B.⎝⎛⎭⎫-12,12C.(0,1)D.⎝⎛⎭⎫-12,0 (2)(2019·内江、眉山等六市联考)设函数f (x )=⎩⎪⎨⎪⎧log 2(1-x ),x <0,22x -1,x ≥0,则f (-3)+f (log 23)等于( )A.112B.132C.152D.10热点二 函数的性质及应用 高考常考函数四个性质的应用:(1)奇偶性,具有奇偶性的函数在关于原点对称的区间上,其图象、函数值、解析式和单调性联系密切,研究问题时可以转化到部分(一般取一半)区间上,注意偶函数常用结论f (x )=f (|x |); (2)单调性,可以比较大小、求函数最值、解不等式、证明方程根的唯一性;(3)周期性,利用周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题转化到已知区间上求解;(4)对称性,常围绕图象的对称中心设置试题背景,利用图象对称中心的性质简化所求问题. 例2 (1)设函数f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e 2的最大值为M ,最小值为N ,则(M +N -1)2 019的值为( )A.1B.2C.22 019D.32 019(2)已知定义在R 上的函数f (x )满足:函数y =f (x -1)的图象关于点(1,0)对称,且x ≥0时恒有f (x +2)=f (x ),当x ∈[0,1]时,f (x )=e x -1,则f (2 018)+f (-2 019)=________.跟踪演练2 (1)定义在R 上的函数f (x )满足f (-x )=f (x ),且当x ≥0时,f (x )=⎩⎪⎨⎪⎧-x 2+1,0≤x <1,2-2x ,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1-x )≤f (x +m )恒成立,则实数m 的最大值为( ) A.-1 B.-12C.-13D.13(2)(2018·全国Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于( ) A.-50 B.0 C.2 D.50 热点三 函数的图象及应用 高考常考函数图象问题的注意点:(1)图象平移与整体放缩不改变图象的对称性,求解较复杂函数图象的对称点或对称轴时可先平移;(2)函数图象的应用主要体现为数形结合思想,通常用来解决求最值、方程的根、交点的个数等问题.注意求解两个函数图象在什么区间满足交点个数多少的问题,可以先画出已知函数的图象,再观测结果.例3 (1)(2019·全国Ⅲ)函数y =2x 32x +2-x在[-6,6]的图象大致为( )(2)(2019·淄博诊断)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≤0,ln (x +1),x >0,若存在x 0∈R 使得f (x 0)≤ax 0-1,则实数a 的取值范围是( ) A.(0,+∞)B.[-3,0]C.(-∞,-3]∪[3,+∞)D.(-∞,-3]∪(0,+∞)跟踪演练3 (1)函数f (x )=sin ⎝ ⎛⎭⎪⎫ln x -1x +1的图象大致为( )(2)(2019·沧州模拟)已知函数f (x )=⎩⎪⎨⎪⎧-ln |x |,x ∈(-∞,0),-6x 2+20x -13,x ∈[0,2],6x ,x ∈(2,+∞),g (x )=ax -2(a ∈R )满足:①当x <0时,方程f (x )=g (x )无解;②当x >0时,至少存在一个整数x 0使f (x 0)≥g (x 0).则实数a 的取值范围为________.真题体验1.(2019·全国Ⅰ,理,5)函数f (x )=sin x +xcos x +x 2在[-π,π]上的图象大致为( )2.(2019·全国Ⅲ,理,11)设f (x )是定义域为R 的偶函数,且在(0,+∞)上单调递减,则( )A.f ⎝⎛⎭⎫log 314>322f -⎛⎫ ⎪⎝⎭>232f -⎛⎫ ⎪⎝⎭B.f ⎝⎛⎭⎫log 314>232f -⎛⎫ ⎪⎝⎭>322f -⎛⎫⎪⎝⎭C.322f -⎛⎫ ⎪⎝⎭>232f -⎛⎫ ⎪⎝⎭>f ⎝⎛⎭⎫log 314 D.232f -⎛⎫ ⎪⎝⎭>322f -⎛⎫ ⎪⎝⎭>f ⎝⎛⎭⎫log 314 3.(2019·全国Ⅱ,理,14)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =________. 押题预测1.已知函数f (x )=⎩⎪⎨⎪⎧log 2(8-x ),x ≤5,f (x -5),x >5,则f (2 019)等于( )A.2B.log 26C.log 27D.32.已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )3.设函数y =f (x )(x ∈R )为偶函数,且∀x ∈R ,满足f ⎝⎛⎭⎫x -32=f ⎝⎛⎭⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )等于( ) A.|x +4| B.|2-x | C.2+|x +1|D.3-|x +1|A 组 专题通关1.设函数f (x )=log 2(x -1)+2-x ,则函数f ⎝⎛⎭⎫x 2的定义域为( ) A.(1,2] B.(2,4] C.[1,2) D.[2,4)2.(2019·汉中联考)下列函数中,既是奇函数又在区间(0,1)上递减的函数是( ) A.y =tan x B.y =x -3 C.y =cos xD.y =⎝⎛⎭⎫13|x |3.如图①,在矩形MNPO 中,动点R 从点N 出发,沿N →P →O →M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y ,若y 关于x 的函数图象如图②所示,则当x =9时,点R 应运动到点( )A.N 处B.P 处C.O 处D.M 处4.若函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥1,-x 2+ax +1,x <1在R 上是增函数,则a 的取值范围为( )A.[2,3]B.[2,+∞)C.[1,3]D.[1,+∞)5.(2019·内江、眉山等六市联考)若f (x )是R 上的奇函数,且x 1,x 2∈R ,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(2019·甘肃、青海、宁夏联考)若函数f (x )=⎩⎪⎨⎪⎧2x+2+a ,x ≤1,12log (x +1),x >1有最大值,则a 的取值范围为( ) A.(-5,+∞) B.[-5,+∞) C.(-∞,-5)D.(-∞,-5]7.(2019·济南模拟)已知函数f (x )=cos ⎝⎛⎭⎫2x -π2+x x 2+1+1,则f (x )的最大值与最小值的和为( )A.0B.1C.2D.48.(2019·福建适应性练习)下列四个函数:①y =x sin x ;②y =x cos x ;③y =x |cos x |;④y =x ·2x 的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A.④①②③B.①④②③C.③④②①D.①④③②9.已知函数f (x )=1-2x1+2x ,实数a ,b 满足不等式f (2a +b )+f (4-3b )>0,则下列不等式恒成立的是( ) A.b -a <2 B.a +2b >2 C.b -a >2D.a +2b <210.函数y =1-ln|x |1+ln|x |·sin x 的部分图象大致为( )11.(2019·广东省六校联考)已知f (x )=log a (a -x +1)+bx (a >0,a ≠1)是偶函数,则一定有( )A.b =12且f (a )>f ⎝⎛⎭⎫1a B.b =-12且f (a )<f ⎝⎛⎭⎫1a C.b =12且f ⎝⎛⎭⎫a +1a >f ⎝⎛⎭⎫1b D.b =-12且f ⎝⎛⎭⎫a +1a <f ⎝⎛⎭⎫1b 12.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=-2x +1,设函数g (x )=⎝⎛⎭⎫12|x -1|(-1<x <3),则函数f (x )与g (x )的图象所有交点的横坐标之和为( ) A.2 B.4 C.6 D.813.函数f (x )=ln(x 2-2x -8)的单调递增区间是________.14.(2018·全国Ⅲ)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.15.(2017·全国Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是____. 16.已知函数f (x )是奇函数,当x <0时,f (x )=-x 2+x .若不等式f (x )-x ≤2log a x (a >0且a ≠1)对∀x ∈⎝⎛⎦⎤0,22恒成立,则实数a 的取值范围是________. B 组 能力提高17.(2019·焦作模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+ax ,x ≤1,a 2x -7a +14,x >1,若∃x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2),则实数a 的取值范围是( ) A.[2,3]∪(-∞,-5] B.(-∞,2)∪(3,5) C.[2,3]D.[5,+∞)18.(2018·天津)已知a ∈R ,函数f (x )=⎩⎪⎨⎪⎧x 2+2x +a -2,x ≤0,-x 2+2x -2a ,x >0.若对任意x ∈[-3,+∞),f (x )≤|x |恒成立,则a 的取值范围是________.。
高职单招单考复习用书《数学点对点精准突破》考点47:三角函数的概念
考点47 三角函数的概念【考点分析】1.考试要求理解任意角的三角函数的概念,记住三角函数在各象限的符号和特殊角的三角函数值.2.考情分析三角函数的概念为高频考点,以选择题、填空题形式为主,分值约为分,主要考查任意角三角函数的定义,各象限角的三角函数值的符号以及特殊角三角函数值.3.知识清单(1)定义:设是角终边上(除端点)的任意一点,,则, ,. (2)三角函数在各象限的符号(3)特殊角的三角函数值【精确诊断】1.已知角终边过点,求角的正弦、余弦、正切值. 【答案】;;.提示:,由定义得,,,2.(年第题)已知角为第二象限角且终边在直线上,则角的余弦值23-P (x,y)αr OP ==sin yrα=cos x r α=()tan 0yx xα=≠α()3,4A α4sin =5α3cos 5α=4tan =3α5r =4sin =5y r α=3cos =5x r α=4tan =3y x α=201020αy x =-α为 .【答案】.3.计算:.【答案】.【精准突破】题型1 已知角终边上点的坐标求三角函数值例1(年第题)已知角终边上一点,则=( ) A. B. C. D.【思路点拨】考查任意角三角函数的定义,应明确题目中的,根据定义先求出,再利用角的余弦定义求解.【问题解答】,,故答案为.【变式1】已知角的终边经过点,求的值. 【答案】. 提示:若,,,,; 若,,,,.【变式2】计算:(1); (2). 【答案】(1);(2).题型2 已知角终边所在直线方程求三角函数值例2(年第题)若角的终边是一次函数所表示的曲线,求的值.【思路点拨】在射线上任取一点作为角的终边上的一点,再利用任意角三角函数定义求解.【问题解答】在射线上任取一点,则,3sin 4tan 5cos043πππ-+12-201410α(4,3)P -cos α35-4534-54,,x y r x α245r =+4cos =5x r α∴=B α()()4,30P a a a -≠2sin cos αα+25±0a >5r a =3sin 5α∴=-4cos 5α=22sin cos 5αα∴+=-0a <5r a =-3sin 5α∴=4cos 5α=-22sin cos 5αα∴+=2sin 905cos 07tan180︒︒︒-+32sin3cos 4sin5tan 224ππππ+-+3-8201330α()20y x x =≥2sin cos αα()20y x x =≥()12P ,α()20y x x =≥()12P,r =,,故.【变式1】已知角终边上一点M 在射线上,则=__________..【变式2】直线是角的终边,求角的正弦、余弦、正切值. 【答案】当时,角的正弦、余弦、正切值分别是;当时,角. 题型3 已知角判断三角函数值的符号例3 不求值,确定下列各三角函数值的符号:①; ②; ③; ④.【思路点拨】先确定角所在象限,再根据各象限角三角函数值的符号法则进行判断. 【问题解答】①因是第四象限角,故;②因是第二象限角,故;③因与同终边,是第三象限角,故;④因与终边相同,是第三象限角,故. 【变式1】下列各式的结果是正值的是( )A. B. C. D.【答案】.【变式2】(年题)乘积的最后结果为( ) A.正数 B.负数 C.正数或负数 D.零 【答案】.题型4 已知三角函数值符号确定角的位置例4 在平面直角坐标系中,已知点在第四象限,则角是第 __ 象限角.【思路点拔】点是第四象限的点,故横坐标,纵坐标,结合象限角的sin α==cos α=42sin cos 5αα=α()0y x <tan sin αα-y x =-ββ0x >β1-0x <β1-sin()3π-cos135︒tan 570︒21cos 4π3π-sin()03π-<135︒cos1350︒<570=210+360︒︒︒210︒tan 5700︒>21=(+)+444ππππ+4ππ21cos 04π<cos3sin 320︒tan 320︒()tan 179︒-D 201313()()sin 110cos320tan 700︒︒︒-⋅⋅-B ()sin ,cos P αααP sin 0α>cos 0α<三角函数符号可得.【问题解答】在第四象限,,角是第二象限角.【变式1】在平面直角坐标系中,点在第________象限. 【答案】三.【变式2】根据下列条件,判定角所在象限:(1); (2) 且; (3).【答案】(1)由,得角终边在第三或第四象限或在轴负半轴上;(2)由且,得为第四象限角;(3)由,得为第二或第四象限角. 【反思提升】1.思想方法(1)利用定义求三角函数值的一般步骤:取点,确定的值,求出的值,根据定义求的值.(2)三角函数值的符号判定方法:第一象限角的正弦、余弦、正切都为正;第二象限角,只有正弦正,其余都为负;第三象限角,只有正切正,其余都为负;第四象限角,只有余弦正,其余都为负.2.误区指津(1)已知角的终边如果是直线方程,那么要看是否对象限有限制条件.若有,可直接根据条件取点求值;若没有,要对象限进行分类讨论;(2)由三角函数值符号确定角的位置时,要注意界限角的可能性.如,则角终边可能在第一象限、第二象限,还可能在轴正半轴上.()sin ,cos P ααsin 0cos 0αα>⎧∴⎨<⎩∴α()sin 240,cos120P ︒︒αsin 0α<cos 0α>tan 0α<sin cos 0αα⋅<sin 0α<αy cos 0α>tan 0α<αsin cos 0αα⋅<α,x y r sin ,cos ,tan ααααsin 0α>αy考点47 三角函数的概念【精细训练】A 基础训练一、选择题1.(年第题)已知角终边上一点,则=( ) A.B. C. D. 【答案】. 提示:由得,故选. 2. 若点在第二象限,则角所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限 【答案】.3. 已知为角终边上一点,,且,则=( ) A. B. C. D.【答案】.提示:由得,又由得,故4.若,则角为( )A.第一或第二象限B.第一或第三象限C.第二或第三象限D.第二或第四象限 【答案】.提示:必须同号5.已知角的终边在直线上,则的值为( ) A. B. C. D. 【答案】. 二、填空题1.点是角终边上的一点,且,则的值是_________.201116β(5,12)P -sin cos tan βββ++471312165-4713-12165B 5,12,13x y r =-==12512121sin cos tan =+1313565βββ⎛⎫⎛⎫++-+-=- ⎪ ⎪⎝⎭⎝⎭B ()2sin ,3cos P αα-αA (4,)P y -α5OP =tan 0α<sin α35-453545-C 40tan 0x α=-<⎧⎨<⎩0y >5OP =3y =3sin 5α=sin cos 0αα⋅>αB sin ,cos ααα2y x =cos α2±12±C ()3M y -,α3sin 5α=-y【答案】.提示:由,得.2.角终边上有一点,则________..提示: 3.判定的符号_________.(填“正”,“负”,“零”)【答案】正. 三、解答题1.已知点为第四象限角终边上一点,且横坐标,,求角的正弦、余弦、正切值. 【答案】,,.2. 计算:(1); (2).【答案】(1);(2.B 提升训练1.若角终边过点,且,求的值. 【答案】.2.求函数的值域. 【答案】.3.已知角终边上一点,求的取值范围.【答案】.提示:时,,当时,,综上所述的取值范围为.94y =-3sin 5α-94y =-θ()(),20M a a a -<cos θ=r =sin1cos 2tan 3(),P x y α5x ==13OP α12sin 13α=-5cos 13α=12tan 5α=-21costan 0tan cos 23πππ-++sin costan+sincos4462πππππ+--1-θ()()0M m m ≠sin θ=cos θsin tan cos sin cos tan x xx y xx x=++{}1,3y ∈-α()()2,10P t t t +≠tan αR 0t >[)tan 2,α∈+∞0t <(]tan ,2α∈-∞tan α-,-2]U[2,+)∞∞(。
高三一轮复习-三角函数、三角恒等变换、解三角形讲义(带答案)
个性化辅导授课教案【重点知识梳理】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β. cos(α∓β)=cos αcos β±sin αsin β. tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α. 3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β). (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎪⎫其中tan φ=b a或f (α)=a 2+b 2·cos(α-φ)⎝⎛⎭⎪⎫其中tan φ=a b . 【高频考点突破】考点一 三角函数式的化简与给角求值 【例1】 (1)已知α∈(0,π),化简: (1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°=______.【答案】(1)cos α (2) 6 【规律方法】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【变式探究】 (1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)化简:sin 2αsin 2β+cos 2αcos 2β-12cos 2αcos 2β=________.【解析】(1)原式=4sin 40°-sin 40°cos 40°=4cos 40°sin 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (120°-40°)-sin 40°cos 40°=3cos 40°+sin 40°-sin 40°cos 40°=3cos 40°cos 40°=3,故选C.法三 (从“幂”入手,利用降幂公式先降次)原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β=14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12cos 2α·cos 2β=14+14=12.【答案】(1)C (2)12考点二 三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.(2)∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,又α∈(0,π).∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.【规律方法】(1)解题中注意变角,如本题中α+β2=⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【变式探究】 已知cos α=17,cos(α-β)=1314,且0<β<α<π2,(1)求tan 2α的值; (2)求β.【解析】(1)∵cos α=17,0<α<π2,∴sin α=437,∴tan α=43,∴tan 2α=2tan α1-tan 2α=2×431-48=-8347. (2)∵0<β<α<π2,∴0<α-β<π2,∴sin(α-β)=3314,∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.考点三 三角变换的简单应用【例3】 (2014·广东卷)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π4,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=32.(1)求A 的值;(2)若f (θ)-f (-θ)=32,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫3π4-θ.【规律方法】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【变式探究】 已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z .【随堂练习】考点一 已知三角函数值求值例1、已知角A 、B 、C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON →=-15.(1)求tan2A 的值;(2)求22cos 3sin 122sin()4AA A π--+ 的值.【解析】 (1)∵OM →·ON →=(sin B +cos B )sin C +cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15.∴sin A +cos A =-15,①两边平方并整理得:2sin A cos A =-2425,∵-2425<0,∴A ∈(π2,π),∴sin A -cos A =1-2sin A cos A =75.②联立①②得:sin A =35,cos A =-45,∴tan A =-34,∴tan2A =2tan A 1-tan 2A=-321-916=-247. (2)∵tan A =-34,∴22cos 3sin 122sin()4AA A π--+=cos A -3sin A cos A +sin A =1-3tan A 1+tan A=3134314⎛⎫-⨯- ⎪⎝⎭⎛⎫+- ⎪⎝⎭=13. 【方法技巧】对于条件求值问题,即由给出的某些角的三角函数值,求另外一些角的三角函数值,关键在于“变角”即使“目标角”变换成“已知角”.若角所在象限没有确定,则应分情况讨论,应注意公式的正用、逆用、变形运用,掌握其结构特征,还要注意拆角、拼角等技巧的运用.【变式探究】已知α∈(π2,π),且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈(π2,π),求cos β的值.考点二 已知三角函数值求角例2、如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α、β,它们的终边分别与单位圆相交于A、B两点,已知A、B两点的横坐标分别为210,255.(1)求tan(α+β)的值;(2)求α+2β的值.【方法技巧】(1)已知某些相关条件,求角的解题步骤:①求出该角的范围;②结合该角的范围求出该角的三角函数值.(2)根据角的函数值求角时,选取的函数在这个范围内应是单调的. 【变式探究】已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈(0,π2).(1)求sin θ和cos θ的值; (2)若sin(θ-φ)=1010,0<φ<π2,求φ的值.三、三角函数的图像与性质【考情解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【重点知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数 y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且x ≠⎭⎬⎫k π+π2,k ∈Z值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数 奇函数递增 区间 ⎣⎡⎦⎤2k π-π2,2k π+π2[2k π-π,2k π]⎝⎛⎭⎫k π-π2,k π+π2递减 区间 ⎣⎡⎦⎤2k π+π2,2k π+3π2 [2k π,2k π+π]无对称中心 (k π,0)⎝⎛⎭⎫k π+π2,0⎝⎛⎭⎫k π2,0对称轴 方程x =k π+π2x =k π无【高频考点突破】考点一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1- 3【答案】(1){x |x ≠π4+k π且x ≠π2+k π,k ∈Z } (2)A【规律方法】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【变式探究】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin x cos x 的值域为________.【解析】(1)法一 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).∴定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .【答案】(1)⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z (2)⎣⎡⎦⎤-12-2,1 考点二 三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=( )A.π4B.π3 C.π2 D.3π4(2)函数y =2cos 2⎝⎛⎭⎫x -π4-1是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数【答案】(1)A (2)A 【规律方法】(1)求f (x )=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.(2)求最小正周期时可先把所给三角函数式化为y =A sin(ωx +φ)或y =A cos( ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =A sin ωx 或y =A cos ωx +b 的形式.【变式探究】 (1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2 (2)若函数f (x )=sinx +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2 B.2π3 C.3π2 D.5π3【答案】(1)A (2)C 考点三 三角函数的单调性【例3】 (1)已知f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f (x )的单调递增区间为________. (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2]【答案】(1)⎣⎡⎦⎤0,π4 (2)A 【规律方法】(1)求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【变式探究】 (1)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A.23B.32C .2D .3 (2)函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______.【答案】(1)B (2)⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )四、函数)sin(ϕ+=wx A y 的图像【考情解读】1. 了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【重点知识梳理】1.“五点法”作函数y =A sin(ωx +φ)(A >0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x 轴相交的三个点,作图时的一般步骤为: (1)定点:如下表所示.X-φωπ2-φωπ-φω3π2-φω2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y =A sin(ωx +φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象.2.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径3.函数y =A sin(ωx +φ)的物理意义当函数y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时,A 叫做振幅,T =2πω叫做周期,f=1T叫做频率,ωx +φ叫做相位,φ叫做初相.【高频考点突破】考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到. 【解析】(1)f (x )=sin ωx +3cos ωx =2⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3, 又∵T =π,∴2πω=π,即ω=2.∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.∴函数f (x )=sin ωx +3cos ωx 的振幅为2,初相为π3.(3)法一 把y =sin x 的图象上所有的点向左平移π3个单位,得到y =sin ⎝ ⎛⎭⎪⎫x +π3的图象;再把y =sin ⎝ ⎛⎭⎪⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象;最后把y =sin ⎝ ⎛⎭⎪⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. 法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位,得到y =sin 2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长到原来的2倍,得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象.【规律方法】作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【变式探究】 设函数f (x )=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【解析】(1)∵T =2πω=π,ω=2,又f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=32,∴sin φ=-32,又-π2<φ<0,∴φ=-π3.(2)由(1)得f (x )=cos ⎝⎛⎭⎪⎫2x -π3,列表: 2x -π3-π30 π2 π 32π 53π x 0 π6 512π 23π 1112π π f (x )121-112图象如图.考点二 利用三角函数图象求其解析式【例2】 (1)已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)=( )A .-23B .-12 C.23 D.12(2)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.【解析】(1)由三角函数图象得T 2=11π12-7π12=π3,即T =2π3,所以ω=2πT=3.又x =7π12是函数单调增区间中的一个零点,所以3×7π12+φ=3π2+2k π,解得φ=-π4+2k π,k ∈Z ,所以f (x )=A cos ⎝ ⎛⎭⎪⎫3x -π4. 由f ⎝ ⎛⎭⎪⎫π2=-23,得A =223,所以f (x )=223cos ⎝ ⎛⎭⎪⎫3x -π4,所以f (0)=223·cos ⎝ ⎛⎭⎪⎫-π4=23.【答案】(1)C (2)f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 【规律方法】已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【训练2】 (1)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f (1)的值为( )A .-32 B .-62C. 3 D .- 3 (2)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝ ⎛⎭⎪⎫π3的值为______.(2)由三角函数图象可得A =2,34T =11π12-π6=34π,所以周期T =π=2πω,解得ω=2.又函数图象过点⎝ ⎛⎭⎪⎫π6,2所以f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6+φ=2,0<φ<π,解得φ=π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=1.【答案】(1)D (2)1考点三 函数y =A sin(ωx +φ)的性质应用【例3】 (2014·山东卷)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z . 【规律方法】解决三角函数图象与性质综合问题的方法:先将y =f (x )化为y =a sin x +b cos x 的形式,然后用辅助角公式化为y =A sin(ωx +φ)+b 的形式,再借助y =A sin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【变式探究】 已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为π2.(1)求f ⎝ ⎛⎭⎪⎫π8的值; (2)求函数y =f (x )+f ⎝⎛⎭⎪⎫x +π4的最大值及对应的x 的值.五、解三角形(正弦定理和余弦定理)【考情解读】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;【重点知识梳理】1.正、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容asin A=bsin B=csin C=2Ra2=b2+c22bc cos__A;b2=c2+a22ca cos__B;c2=a2+b2-2ab cos__C常见变形(1)a=2R sin A,b=2R sin__B,c=2R sin_C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin__A∶sin__B∶sin__C;cos A=b2+c2-a22bc;cos B=c2+a2-b22ac;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .【高频考点突破】考点一 利用正、余弦定理解三角形例1、(1)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( )A.1010 B.105C.31010D.55(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.【解析】(1)由余弦定理可得AC 2=9+2-2×3×2×22=5,所以AC = 5.再由正弦定理得AC sin B =BCsin A ,所以sin A =BC ·sin BAC =3×225=31010.【答案】 (1)C (2) 3【提分秘籍】利用正、余弦定理解三角形的关键是合理地选择正弦或余弦定理进行边角互化,解题过程中注意隐含条件的挖掘以确定解的个数.【变式探究】在△ABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a sin ⎝⎛⎭⎫B +π4=c . (1)求角A 的大小;(2)若△ABC 为锐角三角形,求sin B sin C 的取值范围.考点二 三角形形状的判断例2、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定【解析】依据题设条件的特点,由正弦定理,得sin B cos C +cos B sin C =sin 2A ,有sin(B +C )=sin 2A ,从而sin(B +C )=sin A =sin 2A ,解得sin A =1,∴A =π2,故选B.【答案】B 【提分秘籍】依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.注意:在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. 【变式探究】在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc . (1)求角A 的大小;(2)若sin B ·sin C =sin 2A ,试判断△ABC 的形状.考点三 三角形的面积问题例3、在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.【解析】(1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20.又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A=25+16-20=21,故a = 21.又由正弦定理得sin B sin C =b a sin A ·c a sin A =bc a 2sin 2A =2021×34=57.【方法技巧】三角形的面积求法最常用的是利用公式S =12ab sin C =12ac sin B =12bc sin A 去求.计算时注意整体运算及正、余弦定理的应用.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积.考点四 解三角形例4、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35. (1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.【解析】(1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,2分即cos(A -B )cos B -sin(A -B )sin B =-35.4分则cos(A -B +B )=-35,即cos A =-35.6分【提分秘籍】正弦定理、余弦定理及其在现实生活中的应用是高考的热点,主要利用正弦定理、余弦定理解决一些简单的三角形的度量问题以及几何计算的实际问题,常与三角变换、三角函数的性质交汇命题、多以解答题形式出现. 【随堂练习】考点三 正、余弦定理的应用例3、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab .(1)求sin Csin A的值; (2)若cos B =14,b =2,求△ABC 的面积S .【解析】 (1)由正弦定理,设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin Asin B, 所以cos A -2cos C cos B =2sin C -sin A sin B.即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π, 所以sin C =2sin A . 因此sin Csin A=2.【方法技巧】(1)利用正弦定理,实施角的正弦化为边时只能是用a 替换sin A ,用b 替换sin B ,用c 替换sin C . sin A ,sin B ,sin C 的次数要相等,各项要同时替换,反之,用角的正弦替换边时也要这样,不能只替换一部分;(2)以三角形为背景的题目,要注意三角形的内角和定理的使用.像本例中B +C =60°;(3)在求角的大小一定要有两个条件才能完成:①角的范围;②角的某一三角函数值.在由三角函数值来判断角的大小时,一定要注意角的范围及三角函数的单调性.【变式探究】在锐角△ABC 中,a 、b 、c 分别为A 、B 、C 所对的边,且3a =2c sin A .(1)确定角C 的大小;(2)若c =7,且△ABC 的面积为332,求a +b 的值. 【解析】(1)由3a =2c sin A ,根据正弦定理,sin C =c sin A a =32, 又0<C <π2,则C =π3. (2)由已知条件⎩⎨⎧ 12ab sin C =332a 2+b 2-c 22ab =cos C ,即⎩⎪⎨⎪⎧ab =6a 2+b 2-7=ab , (a +b )2=a 2+b 2+2ab =3ab +7=25,∴a +b =5.。
初中数学中考二轮复习重难突破专题03 动点函数图象(含答案)
1.点P(x,y)在x轴上,y=0如图①中,点点出发沿运动到点的运动路程为,的面积为,与的函数图像如图②所示,则AB的长为(A. 10B. 12C. 14D. 16【答案】A【解析】由函数图像可知:当时,,面积最大时,可以求出,最后由勾股定理求出AB的值.【详解】当时,,面积最大时,∴,∴,解得或,∴,故选A.【点拨】本题考查函数图像与几何动点问题,需要分析清楚函数图像各个拐点的意义是解题关键.2.如图①,在矩形ABCD中,AB>AD,对角线A C.B D相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y关于x的函数关系图象,则AB边的长为( )A. 3B. 4C. 5D. 6【答案】B【解析】根据图形,分情况分析:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3,推出AB•BC=12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,可推出A B.【详解】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.∴AB•BC=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选B.【点拨】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.3.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )A. 2B.C.D.【答案】B【解析】通过分析图象,点F从点A到D用a s,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,B D=,应用两次勾股定理分别求B E和a.【详解】过点D作D E⊥B C于点E由图象可知,点F由点A到点D用时为a s,△F BC的面积为a cm2.∴A D=a∴D E•A D=a∴D E=2当点F从D到B时,用s∴BD=Rt△D BE中,B E=∵A BCD是菱形∴E C=a-1,D C=aRt△D EC中,a2=22+(a-1)2解得a=故选B.【点拨】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.4.如图甲所示,A,B是半径为2的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O以每秒一个单位长度度速度匀速运动,回到点A运动结束,设P点的运动时间为x(单位:s),弦BP的长为y,那么在图乙中可能表示y与x函数关系的是( )A. ①B. ②C. ②或④D. ①或③【答案】D【解析】分两种情形讨论当点顺时针旋转时,图象是③,当点逆时针旋转时,图象是①,由此即可解决问题.【详解】解:当点顺时针旋转,到达⊙O顶点时,运动过程中BP逐渐增大,从增大到4,据此可以判断,y与x函数图象是③,当点逆时针旋转,到达B点时,运动过程中BP逐渐减小,从减小到0,据此可以判断,y与x函数图象是①,故①③正确,故选:D.【点拨】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题.5. 如图1,四边形是轴对称图形,对角线,所在直线都是其对称轴,且,相交于点E.动点P从四边形的某个顶点出发,沿图1中的线段匀速运动.设点P运动的时间为x,线段的长为y,图2是y与x的函数关系的大致图象,则点P的运动路径可能是()A. B.C. D.【答案】D【解析】根据图像,以及点的运动变化情况,前两段是y关于x的一次函数图像,判断y随x的增减变化趋势,第一段的最高值与第二段的最高值不相等,即可排除A,B,C选项.【详解】根据图像,前端段是y关于x的一次函数图像,∴应在A C,B D两段活动,故A,B错误,第一段y随x的增大而减小,第二段y随x增大而增大,第一段的最高值与第二段的最高值不相等,∵A E=E C∴C错误故选:D【点拨】本题考查函数的图像,比较抽象,解题的关键是根据图像判断函数值随自变量的值的增减变化情况,以及理解分段函数的最值是解题的关键.6.如图,菱形ABCD的边长为5 cm,s in A=,点P从点A出发,以1 cm/s的速度沿折线AB﹣BC﹣CD运动,到达点D停止;点Q同时从点A出发,以1 cm/s的速度沿AD运动,到达点D停止设点P运动x(s)时,△APQ的面积为y(cm2),则能够反映y与x之间函数关系的图象是( )A. B.C. D.【答案】C【解析】根据题意可以分别得到各段y与x的函数解析式,从而可以解答本题.【详解】解:∵菱形ABCD的边长为5 cm,P,Q的速度都是1 cm/s,当时,,点都在运动,, 故选项A、\D错误,当时,点停止,点运动,高不变,,当时,点停止,点运动,,故选项B错误,选项C正确,故选:C.【点拨】本题考察了三角函数,菱形性质等知识点,讨论动点在不同边的情况,求出对应函数关系式,再去判断是解题关键.7.李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是()A. B. C. D.【答案】B【解析】根据“路程速度时间”可得与之间的函数关系式,再根据加完油后,加快了速度可得后面的一次函数的一次项系数更大,图象更陡,由此即可得.【详解】解:设最初的速度为千米/小时,加快了速度后的速度为千米/小时,则,由题意得:最初以某一速度匀速行驶时,,加油几分钟时,保持不变,加完油后,,,函数的图象比函数的图象更陡,观察四个选项可知,只有选项B符合,故选:B.【点拨】本题考查了一次函数的图象,熟练掌握一次函数图象的特征是解题关键.8..如图,在中,,,点从点沿边,匀速运动到点,过点作交于点,线段,,,则能够反映与之间函数关系的图象大致是()A. B. C. D.【答案】D【解析】分两种情况:①当P点在OA上时,即0≤x≤2时;②当P点在A B上时,即2<x≤4时,求出这两种情况下的P C长,则y=P C•OC的函数式可用x表示出来,对照选项即可判断.【详解】解:∵△AOB是等腰直角三角形,A B=,∴O B=4.①当P点在OA上时,即0≤x≤2时,P C=O C=x,S△P OC=y=PC•OC=x2,是开口向上的抛物线,当x=2时,y=2;O C=x,则B C=4-x,P C=B C=4-x,S△P OC=y=PC•OC=x(4-x)=-x2+2x,是开口向下的抛物线,当x=4时,y=0.综上所述,D答案符合运动过程中y与x的函数关系式.故选:D.【点拨】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.。
广东省八年级上册部编版历史专题突破专题三(含答案解析)124647
广东省八年级上册部编版历史专题突破专题三试卷考试总分:54 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 15 小题,每题 3 分,共计45分)1. 上海中共一大会址最恰当和形象的比喻为()A.“军旗升起的地方”B.“共产党人的精神家园”C.“共和国的摇篮”D.“转折之城,会议之都”2. 中国共产主义先驱李大钊在《新青年》上发表《庶民的胜利》《布尔什维主义的胜利》等文章使马克思主义得到广泛传播许多青年人接受了马克思主义。
1919年后,马克思主义与工人运动相结合促进中国共产主义小组建立。
这些直接促成了( )A.五四运动的爆发B.中国共产党的诞生C.新民主主义革命的开始D.第一次国共合作的实现3. 建筑是凝固的历史,从下图建筑中我们可以得到的历史信息是()A.是中国新民主主义革命的开端B.中国革命面貌焕然一新C.是党历史上生死攸关的转折点D.中华民国成立4. 识读地图是历史学习的基本能力。
与如图信息相符合的历史事件是( )A.甲午中日战争B.八国联军侵华战争C.护国战争D.北伐战争5. 小明说:我家乡有一位名人,他率领“铁军”在北伐中屡立战功,请问他是谁( )A.贺龙B.彭德怀C.周恩来D.叶挺6. 下列哪一次中国共产党领导的武装起义,打响了武装反抗国民党反动统治的第一枪()A.百色起义B.广州起义C.南昌起义D.秋收起义7. 开国大将粟裕曾写道:“两支铁流汇合到了一起,从此形成红军主力……对以后建立和扩大农村革命根据地,坚持走农村包围城市的革命道路,具有十分重大的意义。
”他回忆的是()A.井冈山会师B.湘南起义C.秋收起义D.平江起义8. “铁壁合围难突破,暮色苍茫别红都。
强渡湘江血如注,三军今日奔何处?娄山关前庭战急,遵义8. “铁壁合围难突破,暮色苍茫别红都。
强渡湘江血如注,三军今日奔何处?娄山关前庭战急,遵义城头赤帜竖。
2021新高考数学精选考点专项突破:三角函数的图像与性质
三角函数的图像与性质一、单选题1.(2020届山东省潍坊市高三上期中)sin 225︒= ( )A .12-B .2-C .D .1-【答案】B 【解析】因为2sin 225sin(18045)sin 452=+=-=-. 故选:B.2、(2020届北京市昌平区新学道临川学校高三上学期期中考试数学试题)sin 20cos10cos160sin10︒︒-︒︒=( )A .BC .12-D .12【答案】D【解析】sin 20cos10cos160sin10︒︒-︒︒sin 20cos10cos20sin10=︒︒+︒︒ sin30=︒12=. 故选:D.3、(2020年全国1卷)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A. 10π9 B.7π6 C. 4π3D. 3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω===故选:C4、(2020·浙江温州中学高三3月月考)函数()sin 2sin3f x x x =+的最小正周期为( ) A .π B .2πC .3πD .6π【答案】B 【解析】2y sin x =的最小正周期为:π;函数3y sin x =的最小正周期为:23π, π与23π的最小公倍数为:2π, 所以函数()23f x sin x sin x =+的最小正周期为:2π. 故选:B .5、(2020年天津卷)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论: ①()f x 的最小正周期为2π; ②2f π⎛⎫⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是 A. ① B. ①③C. ②③D. ①②③【答案】B【解析】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确;51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象,故③正确. 故选:B.6、(2020届山东省潍坊市高三上期末)已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A B C D 【答案】A 【解析】0,2πα⎛⎫∈ ⎪⎝⎭,,444πππα⎛⎫-∈- ⎪⎝⎭4cos 45πα⎛⎫-== ⎪⎝⎭,cos cos cos cos sin sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦4355=-=故选:A7、(2020届山东省济宁市高三上期末)函数22cos cos 1yx x ,,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .【答案】B【解析】∵22()2cos ()cos()12cos cos 1()f x x x x x f x -=--+-+=-++=, ∴函数()f x 为偶函数.故排除选项A ,D.2219()2cos cos 12(cos ),,4822f x x x x x ππ⎡⎤=-++=--+∈-⎢⎥⎣⎦,∵0cos 1x ≤≤, ∴当1cos 4x =时,()f x 取得最大值98;当cos 1x =时,()f x 取得最小值0.故排除C. 故选:B.8、(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位【答案】A【解析】不妨设函数2y sin x =的图象沿横轴所在直线平移ϕ个单位后得到函数23y sin x π⎛⎫=+⎪⎝⎭的图象.于是,函数2y sin x =平移ϕ个单位后得到函数,sin 2()y x ϕ=+,即sin(22)y x ϕ=+, 所以有223k πϕπ=+,6k πϕπ=+,取0k =,6π=ϕ.答案为A .9、(2020届山东实验中学高三上期中)已知函数()sin 2f x a x x =的图象关于直线12x π=-对称,若()()124f x f x ⋅=-,则12a x x -的最小值为( ) A .4πB .2π C .πD .2π【答案】B 【解析】()f x 的图象关于直线12x π=-对称,(0)()6f f π∴=-,即-1a =,则()sin 222sin 26f x x x x π⎛⎫=-=- ⎪⎝⎭,12()()4f x f x =-,1()2f x ∴=,2()2f x =-或1()2f x =-,2()2f x =,即1()f x ,2()f x 一个为最大值,一个为最小值, 则12||x x -的最小值为2T,T π=, 12||x x ∴-的最小值为2π,即12a x x -的最小值为2π.故选:B .10、(2020·武邑县教育局教研室高三上期末(理))已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为( ) A .-7 B .7C .1D .-1【答案】B 【解析】因为()cos 2cos 2παπα⎛⎫-=+⎪⎝⎭, 所以sin 2cos αα=-,即tan 2α,又()1tan 3αβ+=,则tan tan 11tan tan 3αβαβ+=-,解得tan β= 7, 故选B.11、(2020届山东省潍坊市高三上期中)已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为π B .()y f x =图象的一条对称轴方程为4x π=C .()f x 的最小值为2-D .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数 【答案】B【解析】()sin cos )4f x x x x π=+=+,对A ,()f x ∴的最小正周期为2π,故A 错误;对B ,()42f ππ==()y f x ∴=图象的一条对称轴方程为4x π=,故B 正确;对C ,()f x 的最小值为,故C 错误; 对D ,由[0,]2x π∈,得3[,]444x πππ+∈,则()f x 在[0,]2π上先增后减,故D 错误. 故选:B .12、(2020届山东省滨州市三校高三上学期联考)若π1sin 34α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭( ).A .78-B .14-C .14 D .78【答案】A 【解析】2π2π2πππcos 2cos π2cos 2cos 22sin 133333ααααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=--=--=--=--⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 1721168=⨯-=-. 故选A .13、(2020届山东省临沂市高三上期末)已知函数2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭(0)>ω的图象关于直线4x π=对称,则ω的最小值为( )A .13B .16C .43D .56【答案】A 【解析】2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭,()1cos 26f x x πω⎛⎫∴=+- ⎪⎝⎭,又因为2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭的图象关于4x π=对称,所以2()46k k Z ππωπ⨯-=∈,即12()3k k Z ω=+∈, 因为0>ω,所以ω的最小值为13.故选:A.14、(2020年全国3卷)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.15、(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象 B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1【答案】D【解析】因为函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫ ⎪⎝⎭, 所以2sin 23πϕ⎛⎫+= ⎪⎝⎭,因此2,32k k Z ππϕπ+=+∈,所以2,6k k Z πϕπ=+∈,因此()2sin(2)2sin 222sin 266f x x x k x ππϕπ⎛⎫⎛⎫=+=++=+ ⎪ ⎪⎝⎭⎝⎭; A 选项,把()y f x =的图象向右平移6π个单位得到函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象,故A 错; B 选项,由3222,262k x k k Z πππππ+≤+≤+∈得2,63k x k k Z ππππ+≤≤+∈,即函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是:2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故B 错;C 选项,由()2sin 206f x x π⎛⎫=+= ⎪⎝⎭得2,6x k k Z ππ+=∈,即,122k x k Z ππ=-+∈, 因此[]0,2x π∈,所以5111723,,,12121212x ππππ=,共四个零点,故C 错; D 选项,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,因此1sin 2,162x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以[]2sin 21,26x π⎛⎫+∈ ⎪⎝⎭,即()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的最小值为1,故D 正确;故选:D.二、多选题16、(2020年山东卷)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x -C. πcos(26x +)D. 5πcos(2)6x -【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC.17、(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( ) A .π-是()f x 的一个周期 B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称 【答案】ACD【解析】()sin 23f x x π⎛⎫=-⎪⎝⎭的最小正周期为π,故π-也是其周期,故A 正确; ()f x 的图像可由sin 2y x =的图像向右平移6π得到,故B 错误; ()77()()sin sin 066323f f ππππππ⎛⎫+==-== ⎪⎝⎭,故C 正确; sin sin 17175()1262sin 132f πππππ⎛⎫⎛⎫⎛⎫-=== ⎪ =⎪ ⎪⎝⎭⎝⎭⎝⎭,故D 正确. 故选:ACD18、(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称 【答案】ABD【解析】函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图像向右平移2π个单位长度得到()ππsin 223g x x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦2πsin 23x ⎛⎫=- ⎪⎝⎭.由于7π7π2ππsin sin 112632g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故7π12x =是()g x 的对称轴,B 选项正确. 由于π2π2πsin sin 00333g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故,03π⎛⎫ ⎪⎝⎭是()g x 的对称中心,D 选项正确. 由π2ππ2232x -≤-≤,解得π7π1212x ≤≤,即()g x 在区间π7π,1212⎡⎤⎢⎥⎣⎦上递增,故A 选项正确、C 选项错误. 故选:ABD.19、(2020届山东省济宁市高三上期末)将函数()sin 2f x x =的图象向右平移4π个单位后得到函数()g x 的图象,则函数()g x 具有性质( ) A .在0,4π⎛⎫⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=-对称 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称 【答案】ABD 【解析】()sin 2sin 2cos 242x x x g x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭0,4x π⎛⎫∈ ⎪⎝⎭则20,2x π⎛⎫∈ ⎪⎝⎭,()cos2g x x =-单调递增,为偶函数,A 正确C 错误;最大值为1,当32x π=-时23x π=-,为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确; 故选:ABD20、(2020届山东省烟台市高三上期末)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( )A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 【答案】AC【解析】因为直线4x π=是()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的对称轴,所以()342k k Z ππϕπ⨯+=+∈,则()4k k Z πϕπ=-+∈,当0k =时,4πϕ=-,则()sin 34f x x π⎛⎫=-⎪⎝⎭, 对于选项A,sin 3sin 312124f x x x πππ⎡⎤⎛⎫⎛⎫+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为()sin 3sin3x x -=-,所以12f x π⎛⎫+ ⎪⎝⎭为奇函数,故A 正确; 对于选项B,()232242k x k k Z πππππ-+<-<+∈,即()21212343k kx k Z ππππ-+<<+∈,当0k =时,()f x 在,124ππ⎡⎤-⎢⎥⎣⎦当单调递增,故B 错误;对于选项C,若()()122f x f x -=,则12x x -最小为半个周期,即21323ππ⨯=,故C 正确; 对于选项D,函数()f x 的图象向右平移4π个单位长度,即()sin 3sin 3sin 344x x x πππ⎡⎤⎛⎫--=-=- ⎪⎢⎥⎝⎭⎣⎦,故D错误 故选:AC21、(2020·山东省淄博实验中学高三上期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中正确的是( )A .函数()f x 的值域与()g x 的值域不相同B .把函数()f x 的图象向右平移2π个单位长度,就可以得到函数()g x 的图象 C .函数()f x 和()g x 在区间,44ππ⎛⎫-⎪⎝⎭上都是增函数 D .若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点 【答案】CD【解析】∵函数f (x )=sinx ﹣cosx =(x 4π-)∴g (x )=f '(x )=cosx +sinx =(x 4π+), 故函数函数f (x )的值域与g (x )的值域相同, 且把函数f (x )的图象向左平移2π个单位,就可以得到函数g (x )的图象, 存在x 0=+,4k k Z ππ-∈,使得函数f (x )在x 0处取得极值且0x 是函数()g x 的零点,函数f (x )在,44ππ⎛⎫- ⎪⎝⎭上为增函数,g (x )在,44ππ⎛⎫- ⎪⎝⎭上也为增函数,∴单调性一致, 故选:CD .三、填空题22、(2020年江苏卷)将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____. 【答案】524x π=-【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈当1k =-时524x π=- 故答案为:524x π=- 23、(2020年全国1卷).已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=______.【解析】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin 3απα∈∴==24、(2020年浙江卷)已知tan 2θ=,则cos2θ=________;πtan()4θ-=______. 【答案】 (1).35 (2). 13【解析】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53-25、(2020年江苏卷)】已知2sin ()4πα+ =23,则sin 2α的值是____. 【答案】13【解析】221sin ()(cos )(1sin 2)4222παααα+=+=+121(1sin 2)sin 2233αα∴+=∴= 故答案为:1326、(2019年高考江苏卷)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+---+综上,πsin 2410α⎛⎫+= ⎪⎝⎭四、解答题27、(2020届山东省滨州市三校高三上学期联考)已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,(0,)ϕπ∈,x ∈R ,且()f x 的最小值为-2,()f x 的图象的相邻两条对称轴之间的距离为2π,()f x 的图象过点,03π⎛-⎫⎪⎝⎭. (1)求函数()f x 的解析式和单调递增区间; (2)若[0,2]x π函数()f x 的最大值和最小值.【解析】(1)∵函数()sin()f x A x ωϕ=+的最小值是-2,∴2A =, ∵()f x 的图象的相邻两条对称轴之间的距离为2π,∴24T ππω==,解得:12ω=又∵()f x 的图象过点,03π⎛-⎫⎪⎝⎭, ∴123k πϕπ⎛⎫⨯-+= ⎪⎝⎭,k ∈Z ﹐解得:6k πϕπ=+,k ∈Z ,又∵(0,)ϕπ∈,解得:6π=ϕ. 可得:1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭因为1222262k x k πππππ-+≤+≤+,k ∈Z∴424433k x k ππ-+π≤≤+π,k ∈Z 所以()f x 的递增区间为:424,433k k ππ⎡⎤-+π+π⎢⎥⎣⎦,k ∈Z .(2)∵[0,2]x π ∴17,2666x πππ⎡⎤+∈⎢⎥⎣⎦, ∴11sin 1226x π⎛⎫-≤+≤ ⎪⎝⎭ ∴1()2f x -≤≤所以()f x 的最大值为2,最小值为-1.28、(2020届山东师范大学附中高三月考)设函数5()2cos()cos 2sin()cos 122f x x x x x ππ=++++. (1)设方程()10f x -=在(0,)π内有两个零点12,x x ,求12x x +的值; (2)若把函数()y f x =的图象向左平移6π个单位,再向下平移2个单位,得函数()g x 图象,求函数()g x 在[,]33ππ-上的最值.【解析】(1)由题设知()sin 21cos 21224f x x x x π⎛⎫=-+++=++ ⎪⎝⎭,()10,221,cos 2442f x x x ππ⎛⎫⎛⎫-=++=∴+=-⎪ ⎪⎝⎭⎝⎭ 32244x k πππ+=+或522,44x k k Z πππ+=+∈ 得4x k ππ=+或2x k ππ=+,12123(0,),,,424x x x x x ππππ∈∴==∴+=(2)=()y f x 图像向左平移6π个单位,得222222643412y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+++=+++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦再向下平移2个单位得()212g x x π⎛⎫=+ ⎪⎝⎭当[,]33x ππ∈-时,73(2)[,]12124x πππ+∈-,sin(2)[1,1]12x π+∈- ()f x ∴在[,]33ππ-,最小值为.29、(2020届山东省济宁市高三上期末)已知()()2sin cos 2f x x x x ππ⎛⎫=-+-⎪⎝⎭. (1)若1210f α⎛⎫=⎪⎝⎭,求2cos 23πα⎛⎫+⎪⎝⎭的值; (2)在△ABC 中,角A ,B ,C 所对应的边分别,,a b c ,若有()2cos cos a c B b C -=,求角B 的大小以及()f A 的取值范围.【解析】 (1)()211cos cos 2cos 222f x x x x x x =-=--1sin 262x π⎛⎫=-- ⎪⎝⎭ 因为11sin 26210f απα⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,所以3sin 65πα⎛⎫-= ⎪⎝⎭所以2223cos 2cos 22sin 1213365πππααα⎛⎫⎛⎫⎛⎫⎛⎫+=--=--=⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭725=- (2)因为()2cos cos a c B b C -=,由正弦定理得:()2sin sin cos sin cos ,A C B B C -=所以2sin cos sin cos sin cos A B C B B C -=, 即()2sin cos sin sin A B B C A =+=,因为sin 0A >,1cos 23B B π=∴=,,所以22=033A C A ππ⎛⎫+∈ ⎪⎝⎭,,,72,666A πππ⎛⎫-∈- ⎪⎝⎭,所以1sin 2,162A π⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,所以()f A 的取值范围是11,2⎛⎤- ⎥⎝⎦30、(2020届山东实验中学高三上期中)己知函数()cos sin 244f x x x x a ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求实数a 的值;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【解析】(1)()cos sin 244f x x x x a ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭()2sin 22sin 22f x x x a x x a π⎛⎫∴=+++=++ ⎪⎝⎭2sin 23x a π⎛⎫=++ ⎪⎝⎭21a ∴+=,1a ∴=- (2)将()f x 的图象向左平移6π个单位,得到函数()g x 的图象, ()22sin 212sin 216633g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+=++-=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 0,2x π⎡⎤∈⎢⎥⎣⎦2252,333x πππ⎡⎤∴+∈⎢⎥⎣⎦∴当22233x ππ+=时,2sin 232x π⎛⎫+= ⎪⎝⎭,()g x 1, 当23232x ππ+=时,2sin 213x π⎛⎫+=- ⎪⎝⎭,()g x 取最小值3-.31、(2020·浙江温州中学3月高考模拟)已知()sin()f x A x ωφ=+(0,04,)2A πωφ><<<)过点1(0,)2,且当6x π=时,函数()f x 取得最大值1.(1)将函数()f x 的图象向右平移6π个单位得到函数()g x ,求函数()g x 的表达式; (2)在(1)的条件下,函数2()()()2cos 1h x f x g x x =++-,求()h x 在[0,]2π上的值域.【解析】 (1)由函数()f x 取得最大值1,可得1A =,函数过10,2⎛⎫ ⎪⎝⎭得12sin φ=,,26ππφφ<= 12,6662f k k Z ππππωπ⎛⎫=⇒+=+∈ ⎪⎝⎭,∵04ω<<,∴2ω=()26f x sin x π⎛⎫=+ ⎪⎝⎭,()266g x f x sin x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.(2) ()22226h x x cos x sin x π⎛⎫=+=+⎪⎝⎭, 710,,2,21266626x x sin x πππππ⎡⎤⎛⎫∈≤+≤-≤+≤ ⎪⎢⎥⎣⎦⎝⎭,12226sin x π⎛⎫-≤+≤ ⎪⎝⎭,值域为[]1,2-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【考点突破】函数安徽中考2017年中考 1.(2017•安徽9)已知抛物线y=ax 2+bx+c 与反比例函数y=bx 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac 的图象可能是( B ) A . B . C . D .2.(2017•安徽22)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表: 售价x (元/千克) 50 60 70 销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少? 【解答】解:(1)设y 与x 之间的函数解析式为y=kx+b ,⎩⎨⎧50k +b =10060k +b =80, 得⎩⎨⎧k =−2b =200, 即y 与x 之间的函数表达式是y=-2x+200; (2)由题意可得,W=(x-40)(-2x+200)=-2x 2+280x-8000,即W 与x 之间的函数表达式是W=-2x 2+280x-8000;(3)∵W=-2x 2+280x-8000=-2(x-70)2+1800,40≤x≤80, ∴当40≤x≤70时,W 随x 的增大而增大,当70≤x≤80时,W 随x 的增大而减小,当x=70时,W 取得最大值,此时W=1800, 答:当40≤x≤70时,W 随x 的增大而增大,当70≤x≤80时,W 随x 的增大而减小,售价为70元时获得最大利润,最大利润是1800元.2016年中考 1.(2016•安徽)一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米,甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C ,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (小时)函数关系的图象是( A )A .B .C .D .2.(2016•安徽)如图,一次函数y=kx+b 的图象分别与反比例函数y=ax 的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA=OB . (1)求函数y=kx+b 和y=ax的表达式;(2)已知点C (0,5),试在该一次函数图象上确定一点M ,使得MB=MC ,求此时点M 的坐标.【解答】解:(1)把点A (4,3)代入函数y=ax 得:a=3×4=12,∴y=12x. OA=32+42=5, ∵OA=OB , ∴OB=5,∴点B 的坐标为(0,-5),把B (0,-5),A (4,3)代入y=kx+b 得:⎩⎨⎧b =−54k+b =3 解得:⎩⎨⎧k =2b =–5∴y=2x-5.(2)∵B (0,-5),C (0,5)关于x 轴对称, 又MB=MC ,∴点M 在x 轴上,∵点M 在一次函数y=2x-5上,∴点M 是直线y=2x-5与x 轴的交点, 令y=0,得2x-5=0,x=2.5, ∴点M 的坐标为(2.5,0).3.(2016•安徽)如图,二次函数y=ax 2+bx 的图象经过点A (2,4)与B (6,0). (1)求a ,b 的值;(2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.【解答】解:(1)将A (2,4)与B (6,0)代入y=ax 2+bx ,得⎩⎨⎧4a +2b =436a +6b =0,解得:⎩⎪⎨⎪⎧a =−12b =3; (2)如图,过A 作x 轴的垂直,垂足为D (2,0),连接CD 、CB ,过C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F ,S △OAD =12OD•AD=12×2×4=4;S △ACD =12AD•CE=12×4×(x-2)=2x-4;S △BCD =12BD•CF=12×4×(-12x 2+3x )=-x 2+6x ,则S=S △OAD +S △ACD +S △BCD =4+2x-4-x 2+6x=-x 2+8x , ∴S 关于x 的函数表达式为S=-x 2+8x (2<x <6), ∵S=-x 2+8x=-(x-4)2+16,∴当x=4时,四边形OACB 的面积S 有最大值,最大值为16.2015年中考1.(2015•安徽)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,则函数y=ax 2+(b-1)x+c 的图象可能是( A )A .B .C .D .2.(2015•安徽)如图,已知反比例函数y=k 1x 与一次函数y=k 2x+b 的图象交于点A (1,8)、B (-4,m ). (1)求k 1、k 2、b 的值; (2)求△AOB 的面积;(3)若M (x 1,y 1)、N (x 2,y 2)是反比例函数y=k 1x 图象上的两点,且x 1<x 2,y 1<y 2,指出点M 、N 各位于哪个象限,并简要说明理由.【解答】解:(1)∵反比例函数y=k 1x 与一次函数y=k 2x+b的图象交于点A (1,8)、B (-4,m ), ∴k 1=8,B (-4,-2),解⎩⎨⎧8=k 2+b −2=−4k 2+b ,解得⎩⎨⎧k =2b =6; (2)由(1)知一次函数y=k 2x+b 的图象与y 轴的交点坐标为C (0,6),∴S △AOB =S △COB +S △AOC =12×6×4+12×6×1=15;(3)∵比例函数y=k 1x 的图象位于一、三象限,∴在每个象限内,y 随x 的增大而减小, ∵x 1<x 2,y 1<y 2,∴M ,N 在不同的象限,∴M (x 1,y 1)在第三象限,N (x 2,y 2)在第一象限. 3.(2015•安徽)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围;(2)x 为何值时,y 有最大值?最大值是多少?【解答】解:(1)∵三块矩形区域的面积相等, ∴矩形AEFD 面积是矩形BCFE面积的2倍, ∴AE=2BE ,设BE=FC=a ,则AE=HG=DF=2a ,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=-14x+10,3a=-34x+30,∴y=(-34x+30)x=-34x 2+30x ,∵a=-14x+10>0,∴x <40,则y=-34x 2+30x (0<x <40);(2)∵y=-34x 2+30x=-34(x-20)2+300(0<x <40),且二次项系数为-34<0,∴当x=20时,y 有最大值,最大值为300平方米.考点演练 一、平面直角坐标系 1.2.(2017•贵港)在平面直角坐标系中,点P (m-3,4-2m )不可能在( A )A .第一象限B .第二象限C .第三象限D .第四象限3.(2017•赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P'(-y+1,x+2),我们把点P'(-y+1,x+2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为 (2,0) .4.(2017•阿坝州)如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,-1),P 5(2,-1),P 6(2,0),…,则点P 2017的坐标是 (672,1) .5.(2017•安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为2n+1-2 .二、函数的图像与性质6.(2017•恩施州)函数y=1x–3+x–1的自变量x的取值范围是(B)A.x≥1 B.x≥1且x≠3C.x≠3D.1≤x≤3 7.(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是(C)A.B.C.D.8.(2017•丽水)在同一条道路上,甲车从A地到B 地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是(D)A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时9.(2017•天水)如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA-AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是(D)A.B.C.D.10.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为(A)A.B.C.D.三、一次函数11.(2017•德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是(A)A.L=10+0.5P B.L=10+5P C.L=80+0.5PD.L=80+5P12.(2017•毕节市)把直线y=2x-1向左平移1个单位,平移后直线的关系式为(B)A .y=2x-2B .y=2x+1C .y=2xD .y=2x+213.(2017•呼和浩特)一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( A )A .第一象限B .第二象限C .第三象限D .第四象限 14.(2017•福建)若直线y=kx+k+1经过点(m ,n+3)和(m+1,2n-1),且0<k <2,则n 的值可以是( C ) A .3 B .4 C .5 D .615.(2017•泰安)已知一次函数y=kx-m-2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是( A )A .k <2,m >0B .k <2,m <0C .k >2,m >0D .k <0,m <016.(2017•枣庄)如图,直线y=23x+4与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,当PC+PD 最小时,点P 的坐标为( C )A .(-3,0)B .(-6,0)C .(-32,0)D .(-52,0)17.(2017•温州)已知点(-1,y 1),(4,y 2)在一次函数y=3x-2的图象上,则y 1,y 2,0的大小关系是( B ) A .0<y 1<y 2 B .y 1<0<y 2 C .y 1<y 2<0 D .y 2<0<y 1 18.(2017•辽阳)甲、乙两人分别从A 、B 两地同时出发,相向而行,匀速前往B 地、A 地,两人相遇时停留了4min ,又各自按原速前往目的地,甲、乙两人之间的距离y (m )与甲所用时间x (min )之间的函数关系如图所示.有下列说法:①A 、B 之间的距离为1200m ;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有( D ) A .①② B .①②③ C .①③④ D .①②④19.(2017•陕西)如图,已知直线l 1:y=-2x+4与直线l 2:y=kx+b (k≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (-2,0),则k 的取值范围是( D ) A .-2<k <2 B .-2<k <0 C .0<k <4 D .0<k <220.(2017•孝感)如图,将直线y=-x 沿y 轴向下平移后的直线恰好经过点A (2,-4),且与y 轴交于点B ,在x 轴上存在一点P 使得PA+PB 的值最小,则点P 的坐标为 (23,0) .21.(2017•重庆)A 、B 两地之间的路程为2380米,甲、乙两人分别从A 、B 两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A 、B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示,则乙到达A 地时,甲与A 地相距的路程是 180 米.22.(2017•潍坊)某蔬菜加工公司先后两批次收购蒜薹(tái )共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?【解答】解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.由题意⎩⎨⎧x +y =1004000x +1000y =160000, 解得⎩⎨⎧x =20y =80,答:第一批购进蒜薹20吨,第二批购进蒜薹80吨. (2)设精加工m 吨,总利润为w 元,则粗加工(100-m )吨.由m≤3(100-m ),解得m≤75,利润w=1000m+400(100-m )=600m+40000, ∵600>0,∴w 随m 的增大而增大,∴m=75时,w 有最大值为85000元.四、反比例函数23.(2017•广东)如图,在同一平面直角坐标系中,直线y=k 1x (k 1≠0)与双曲线y=k 2x(k 2≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( A ) A .(-1,-2) B .(-2,-1)C .(-1,-1)D .(-2,-2)24.(2017•营口)如图,在菱形ABOC 中,∠A=60°,它的一个顶点C 在反比例函数y=kx 的图象上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则反比例函数解析式为( A )A .y=-33xB .y=-3xC .y=-3xD .y=3x25.(2017•娄底)如图,在同一平面直角坐标系中,反比例函数y=kx 与一次函数y=kx-1(k 为常数,且k >0)的图象可能是( B )A .B .C .D .26.(2017•镇江)a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=-2x 的图象上,则( A )A .a <b <0B .b <a <0C .a <0<bD .b <0<a27.(2017•海南)如图,△ABC 的三个顶点分别为A (1,2),B (4,2),C (4,4).若反比例函数y=kx在第一象限内的图象与△ABC 有交点,则k 的取值范围是( C ) A .1≤k≤4 B .2≤k≤8 C .2≤k≤16 D .8≤k≤1628.(2017•咸宁)在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为( C ) A .(32,0) B .(2,0) C .(52,0 D .(3,0)29.(2017•锦州)如图,矩形OABC 中,A (1,0),C (0,2),双曲线y=kx (0<k <2)的图象分别交AB ,CB 于点E ,F ,连接OE ,OF ,EF ,S △OEF =2S △BEF ,则k 值为( A )A .23B .1C .43D . 230.(2017•盘锦)如图,双曲线y=-32x (x <0)经过▱ABCO 的对角线交点D ,已知边OC 在y 轴上,且AC ⊥OC 于点C ,则▱OABC 的面积是( C ) A .32 B .94C .3D .631.(2017•鞍山)如图,在平面直角坐标系中,正方形ABOC 和正方形DOFE 的顶点B ,F 在x 轴上,顶点C ,D 在y 轴上,且S △ADF =4,反比例函数y=kx (x>0)的图象经过点E ,则k= 8 .32.(2017•贵阳)如图,直线y=2x+6与反比例函数y=kx (k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y=n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM . (1)求m 的值和反比例函数的表达式; (2)直线y=n 沿y 轴方向平移,当n 为何值时,△BMN 的面积最大?【解答】解:(1)∵直线y=2x+6经过点A (1,m ), ∴m=2×1+6=8, ∴A (1,8),∵反比例函数经过点A (1,8),∴8=k1,∴k=8,∴反比例函数的解析式为y=8x.(2)由题意,点M ,N 的坐标为M (8n ,n ),N (n –62,n ),∵0<n <6, ∴n –62<0, ∴S △BMN =12×(|n –62|+|8n |)×n=12×(-n –62+8n )×n=-14(n-3)2+254, ∴n=3时,△BMN 的面积最大.五、二次函数 33.(2017•丽水)将函数y=x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( D ) A .向左平移1个单位 B .向右平移3个单位 C .向上平移3个单位 D .向下平移1个单位 34.(2017•广州)a≠0,函数y=ax 与y=-ax 2+a 在同一直角坐标系中的大致图象可能是( D )A .B .C .D .35.(2017•鄂州)已知二次函数y=(x+m )2-n 的图象如图所示,则一次函数y=mx+n 与反比例函数y=mn x的图象可能是( C )A .B .C .D .36.(2017•泰安)如图,在△ABC 中,∠C=90°,AB=10cm ,BC=8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为( C ) A .19cm 2 B .16cm 2 C .15cm 2 D .12cm 237.(2017•乐山)已知二次函数y=x 2-2mx (m 为常数),当-1≤x≤2时,函数值y 的最小值为-2,则m 的值是( D )A .32B . 2C .32或 2D .−32或 238.(2017•陕西)已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( C )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)39.(2017•攀枝花)二次函数y=ax2+bx+c (a≠0)的图象如图所示,则下列命题中正确的是( S ) A .a >b >cB .一次函数y=ax+c 的图象不经第四象限C .m (am+b )+b <a (m 是任意实数)D .3b+2c >040.(2017•广安)如图所示,抛物线y=ax 2+bx+c 的顶点为B (-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间,以下结论:①b 2-4ac=0;②a+b+c >0;③2a-b=0;④c-a=3.其中正确的有( )A .1个B .2个C .3个D .4个41.(2017•临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线t=92;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m .其中正确结论的个数是( B ) A .1 B .2 C .3 D .442.(2017•恩施州)如图,在平面直角坐标系中2条直线为l 1:y=-3x+3,l 2:y=-3x+9,直线l 1交x 轴于点A ,交y 轴于点B ,直线l 2交x 轴于点D ,过点B 作x 轴的平行线交l 2于点C ,点A 、E 关于y 轴对称,抛物线y=ax 2+bx+c 过E 、B 、C 三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b ,c );⑤S 四边形ABCD =5,其中正确的个数有( C )A .5B .4C .3D . 243.(2017•资阳)如图,抛物线y=ax 2+bx+c (a≠0)的顶点和该抛物线与y 轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc <0,②a <-13,③a=-k ,④当0<x <1时,ax+b >k ,其中正确结论的个数是( A ) A .4 B .3 C .2 D .144.(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y 1(单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站AB C D E x (千米) 8 9 10 11.5 13 y 1(分钟)1820222528(1)求y 1关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用y 2=12x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【解答】解:(1)设y 1=kx+b ,将(8,18),(9,20),代入得:⎩⎨⎧8k +b =189k +b =20, 解得:⎩⎨⎧k =2b =2,故y 1关于x 的函数表达式为:y 1=2x+2;(2)设李华从文化宫回到家所需的时间为y ,则 y=y 1+y 2=2x+2+12x 2-11x+78=12x 2-9x+80,∴当x=9时,y 有最小值,y min =4×12×80−922×12=39.5,答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.中考预测一、选择题(每小题4分满分40分)1.(2017•赤峰)函数y=2–x+x –1的自变量x 的取值范围是( C )A .x≥1B .x≥2C .1≤x≤2D .x≤2 2.(2017•长沙)抛物线y=2(x-3)2+4顶点坐标是( A ) A .(3,4) B .(-3,4) C .(3,-4) D .(2,4)3.(2017•淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h 与注水时间t 之间的变化情况的是( D )A .B .C .D .4.(2017•菏泽)如图,函数y 1=-2x 与y 2=ax+3的图象相交于点A (m ,2),则关于x 的不等式-2x >ax+3的解集是( D )A .x >2B .x <2C .x >-1D .x <-15.(2017•德州)下列函数中,对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2的是( A )A .y=-3x+2B .y=2x+1C .y=2x 2+1D .y=-1x6.(2017•威海)如图,正方形ABCD 的边长为5,点A 的坐标为(-4,0),点B 在y 轴上,若反比例函数y=kx (k≠0)的图象过点C ,则该反比例函数的表达式为( A )A .y=3xB .y=4xC .y=5xD .y=6x7.(2017•黔西南州)如图,点A 是反比例函数y=1x (x>0)上的一个动点,连接OA ,过点O 作OB ⊥OA ,并且使OB=2OA ,连接AB ,当点A 在反比例函数图象上移动时,点B 也在某一反比例函数y=kx 图象上移动,则k 的值为( A )A .-4B .4C .-2D .28.(2017•菏泽)一次函数y=ax+b 和反比例函数y=cx 在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax 2+bx+c 的图象可能是( A )A .B .C .D .9.(2017•鄂州)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min 到家,再过5min 小东到达学校,小东始终以100m/min 的速度步行,小东和妈妈的距离y (单位:m )与小东打完电话后的步行时间t (单位:min )之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家速度为50m/min ;③小东打完电话后,经过27min 到达学校;④小东家离学校的距离为2900m .其中正确的个数是( D ) A .1个 B .2个 C .3个 D .4个10.(2017•济南)二次函数y=ax 2+bx+c (a≠0)的图象经过点(-2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b >0;②2a <b ;③2a-b-1<0;④2a+c <0.其中正确结论的个数是( C )A .1B .2C .3D .4二、填空题(每小题5分,满分20分)11.(2017•六盘水)已知A (-2,1),B (-6,0),若白棋A 飞挂后,黑棋C 尖顶,黑棋C 的坐标为 (-1,1) .12.(2017•衡阳)已知函数y=-(x-1)2图象上两点A (2,y 1),B (a ,y 2),其中a >2,则y 1与y 2的大小关系是y 1 > y 2(填“<”、“>”或“=”)13.(2017•十堰)如图,直线y=kx 和y=ax+4交于A (1,k ),则不等式kx-6<ax+4<kx 的解集为 1<x<52.14.(2017•玉林)已知抛物线:y=ax 2+bx+c (a >0)经过A (-1,1),B (2,4)两点,顶点坐标为(m ,n ),有下列结论:①b <1;②c <2;③0<m <12;④n≤1.则所有正确结论的序号是 ①②④ .三、计算题(每小题8分,满分16分)15.(2017•台州)如图,直线l 1:y=2x+1与直线l 2:y=mx+4相交于点P (1,b ). (1)求b ,m 的值;(2)垂直于x 轴的直线x=a 与直线l 1,l 2分别交于点C ,D ,若线段CD 长为2,求a 的值.【解答】解:(1)∵点P (1,b )在直线l 1:y=2x+1上, ∴b=2×1+1=3;∵点P (1,3)在直线l 2:y=mx+4上,∴3=m+4, ∴m=-1.(2)当x=a 时,y C =2a+1; 当x=a 时,y D =4-a . ∵CD=2,∴|2a+1-(4-a )|=2, 解得:a=13或a=53.∴a 的值为13或53.16.如图,在平面直角坐标系中,抛物线的顶点为A (1,-4),且与x 轴交于B 、C 两点,点B 的坐标为(3,0).(1)写出C 点的坐标,并求出抛物线的解析式; (2)观察图象直接写出函数值为正数时,自变量的取值范围.【解答】解:(1)∵顶点为A (1,-4),且与x 轴交于B 、C 两点,点B 的坐标为(3,0), ∴点C 的坐标为(-1,0),设抛物线的解析式为y=a (x-3)(x+1), 把A (1,-4)代入,可得 -4=a (1-3)(1+1), 解得a=1,∴抛物线的解析式为y=(x-3)(x+1), 即y=x 2-2x-3;(2)由图可得,当函数值为正数时,自变量的取值范围是x <-1或x >3.四、(每小题8分,满分16分)17.(2017•东营)如图,一次函数y=kx+b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y=nx 的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB=3,OD=6,△AOB 的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x >0时,kx+b-nx<0的解集.【解答】解:(1)∵S △AOB =3,OB=3, ∴OA=2,∴B (3,0),A (0,-2), 代入y=kx+b 得:⎩⎨⎧0=3k +b −2=b, 解得:k=23,b=-2,∴一次函数y=23x-2,∵OD=6,∴D (6,0),CD ⊥x 轴, 当x=6时,y=23×6-2=2∴C (6,2), ∴n=6×2=12,∴反比例函数的解析式是y=12x; (2)当x >0时,kx+b-nx<0的解集是0<x <6.18.(2017•丽水)如图,在平面直角坐标系xOy 中,直线y=-x+m 分别交x 轴,y 轴于A ,B 两点,已知点C (2,0). (1)当直线AB 经过点C 时,点O 到直线AB 的距离是 ;(2)设点P 为线段OB 的中点,连结PA ,PC ,若∠CPA=∠ABO ,求m 的值.【解答】解:(1)当直线AB 经过点C 时,点A 与点C 重合,当x=2时,y=-2+m=0,即m=2,所以直线AB 的解析式为y=-x+2,则B (0,2).∴OB=OA=2,AB=22.设点O 到直线AB 的距离为d , 由S △OAB =12OA 2=12AB•d ,得4=22d ,则d=2.(2)作OD=OC=2,连接CD .则∠PDC=45°,如图,由y=-x+m 可得A (m ,0),B (0,m ). 所以OA=OB ,则∠OBA=∠OAB=45°.当m <0时,∠APC >∠OBA=45°, 所以,此时∠CPA >45°,故不合题意. 所以m >0.因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP ,则△PCD ∽△APB , 所以PD AB =CD PB ,即12m+22m =2212m ,解得m=12.五、(每小题10分,满分20分)19.(2017•咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y (件)与销售时间x (天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是 330 件,日销售利润是 660 元.(2)求y 与x 之间的函数关系式,并写出x 的取值范围; (3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【解答】解:(1)340-(24-22)×5=330(件), 330×(8-6)=660(元). 故答案为:330;660.(2)设线段OD 所表示的y 与x 之间的函数关系式为y=kx ,将(17,340)代入y=kx 中, 340=17k ,解得:k=20,∴线段OD 所表示的y 与x 之间的函数关系式为y=20x .根据题意得:线段DE 所表示的y 与x 之间的函数关系式为y=340-5(x-22)=-5x+450.联立两线段所表示的函数关系式成方程组,得⎩⎨⎧y =20x y =−5x +450,解得:⎩⎨⎧x =18y =360, ∴交点D 的坐标为(18,360),∴y 与x 之间的函数关系式为y=⎩⎨⎧20x (0≤x ≤18)−5x +450(18<x ≤30).(3)当0≤x≤18时,根据题意得:(8-6)×20x≥640, 解得:x≥16; 当18<x≤30时,根据题意得:(8-6)×(-5x+450)≥640, 解得:x≤26. ∴16≤x≤26.26-16+1=11(天),∴日销售利润不低于640元的天数共有11天. ∵点D 的坐标为(18,360), ∴日最大销售量为360件, 360×2=720(元),∴试销售期间,日销售最大利润是720元.20.(2017•鄂尔多斯)一般情况下,中学生完成数学家庭作业时,注意力指数随时间x (分钟)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分).(1)分别求出线段AB 和双曲线CD 的函数关系式; (2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?【解】(1)设线段AB 所在的直线的解析式为y 1=k 1x+30,把B (10,50)代入得,k 1=2,∴AB 解析式为:y 1=2x+30(0≤x≤10). 设C 、D 所在双曲线的解析式为y 2=k 2x ,把C (44,50)代入得,k 2=2200, ∴曲线CD 的解析式为:y 2=2200x(x≥44); (2)将y=40代入y1=2x+30得:2x+30=40,解得:x=5,将y=40代入y 2=2200x得:x=55. 55-5=50.所以完成一份数学家庭作业的高效时间是50分钟.六、(本题满分12分)21.(2017•铁岭)铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x 天(1≤x≤15且x 为整数)时每盒成本为p 元,已知p 与x 之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每第x 天1≤x≤66<x≤15 每天的销售量y/盒 10x+6(1)求p 与x 的函数关系式;(2)若每天的销售利润为w 元,求w 与x 的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.【解】(1)设p=kx+b (k≠0),∵第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴⎩⎨⎧3k+b =217k+b =25, 解得⎩⎨⎧k =1b =18,所以,p=x+18;(2)1≤x≤6时,w=10[50-(x+18)]=-10x+320,6<x≤15时,w=[50-(x+18)](x+6)=-x2+26x+192, 所以,w 与x 的函数关系式为w=⎩⎨⎧−10x+320(1≤x≤6)−x 2+26x+192(6<x≤15), 1≤x≤6时,∵-10<0, ∴w 随x 的增大而减小,∴当x=1时,w 最大为-10+320=310,6<x≤15时,w=-x 2+26x+192=-(x-13)2+361, ∴当x=13时,w 最大为361,综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w=325时,-x2+26x+192=325, x2-26x+133=0, 解得x1=7,x2=19,所以,7≤x≤15时,即第7、8、9、10、11、12、13、14、15天共9天销售利润不低于325元.七、(本题满分12分)22.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商品每月销售该商品的利润是多少元? (2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元? (3)当这种商品售价定为多少元时,该商品所获的利润最大?最大利润是多少? 【解】(1)降价前每月销售该商品的利润为(360-280)×60=4800元;(2)设每件商品应降价x 元,由题意得 (360-x-280)(5x+60)=7200, 解得x 1=8,x 2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元. (3)y=(360-x-280)(60+5x ) =-5x 2+340x+4800y=-5( x-34)2+10580,∴当x=34时,y 取得最大值10580,即售价326元时,总利润最大为10580元.八、(本题满分14分)23.(2017•黄冈)月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y (万件)与销售价格x (元/件)的关系如图所示,其中AB 为反比例函数图象的一部分,BC 为一次函数图象的一部分.设公司销售这种电子产品的年利润为s (万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y (万件)与x (元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s (万元)与x (元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s (万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x (元)定在8元以上(x >8),当第二年的年利润不低于103万元时,请结合年利润s (万元)与销售价格x (元/件)的函数示意图,求销售价格x (元/件)的取值范围.【解答】解:(1)当4≤x≤8时,设y=kx ,将A (4,40)代入得k=4×40=160, ∴y 与x 之间的函数关系式为y=160x;当8<x≤28时,设y=k'x+b ,将B (8,20),C (28,0)代入得,⎩⎨⎧8k ′+b =2028k ′+b =0,解得⎩⎨⎧k ′=−1b =28, ∴y 与x 之间的函数关系式为y=-x+28,综上所述,y=⎩⎪⎨⎪⎧160x (4≤x ≤8)−x +28(8<x ≤28);(2)当4≤x≤8时,s=(x-4)y-160=(x-4)•640x -160=-640x ,∵当4≤x≤8时,s 随着x 的增大而增大, ∴当x=8时,s max =-6408=-80;当8<x≤28时,s=(x-4)y-160=(x-4)(-x+28)-160=-(x-16)2-16,∴当x=16时,s max =-16; ∵-16>-80,∴当每件的销售价格定为16元时,第一年年利润的最大值为-16万元.(3)∵第一年的年利润为-16万元, ∴16万元应作为第二年的成本, 又∵x >8,∴第二年的年利润s=(x-4)(-x+28)-16=-x 2+32x-128, 令s=103,则103=-x 2+32x-128, 解得x 1=11,x 2=21,在平面直角坐标系中,画出s 与x 的函数示意图可得:观察示意图可知,当s≥103时,11≤x≤21, ∴当11≤x≤21时,第二年的年利润s 不低于103万元.。