15-5 测不准关系
测不准关系
南京师范大学泰州学院毕业论文(设计)( 2012 届)题目:院(系、部):专业:姓名:学号指导教师:南京师范大学泰州学院教务处制目录1.引言 (5)2、测不准关系的理论背景 (5)2.1 粒子的波动性 (5)2.2波的粒子性 (6)3.测不准关系式的简要导出 (7)3.1 由电子的单缝衍射导出测不准关系 (7)3.2由量子力学中的特例导出测不准关系式 (7)3.3由量子力学中的算符的对易关系导出测不准关系式 (7)3.4、由量子理论的基本假定直接导出测不准关系式。
(7)4 对测不准关系的认同与争议 (9)4.1对测不准关系的争议 (9)4.1.1统计解释与非统计解释 (9)4.1.2某些力学量测不准的原因是什么 (9)4.1.3关于名称和译名的争议 (10)4.2对有争议问题的讨论 (10)4.2.1关于统计解释和非统计解释 (10)4.2.2某些力学量测不准的原因 (11)4.2.3关于uncertainty和indeteminacy的译名问题 (11)5 测不准关系的应用 (11)5.1无限深势阱问题 (12)5.2 线性谐振子问题 (13)5.3 氢原子问题 (15)结语 (16)谢辞 (17)参考文献 (17)摘要测不准关系是量子力学的一个基本原理,表明一个微观粒子的某些成对的物理量不可能同时具有确定的数值,例如位置与动量、时间和能量。
它反映了自然界的客观规律, 反映了微观粒子的波粒二象性的基本属性。
本文主要介绍了测不准关系的理论背景,导出模式以及对测不准关系的认同与争议,重点讨论了测不准关系在量子力学上的应用。
通过无限深势阱、线性谐振子、氢原子等几个模型问题的基态能量的求解,证明了测不准关系在物理量大小估算问题上具有的应用意义和价值.关键词:测不准关系;量子力学;估算AbstractThe uncertainty relation is a fundamental principle of quantum mechanics. It showed that the value of a microscopic particle having certain pairs of physical quantities is not possible to determine, such as position and momentum, time and energy. It reflects the objective laws of nature, reflecting the basic properties of micro-particle wave-particle duality.This paper focuses on the application of uncertainty relation on quantum mechanics. Firstly, we make a detailed investigation regarding the theoretical background, export mode, and the recognition and controversy of uncertainty relation. Basing on the solution of several model problems such as the infinite potential well, linear harmonic oscillator, hydrogen atom ground state energy, it is necessary to be figured out that Uncertainty relation in the meaning and value on the physical size of the estimation problem.Keywords: Uncertainty relation ;quantum mechanics;estimation1.引 言测不准关系又名“测不准原理”、“不确定关系”,由海森伯在1927 年率先提出, 经历了大半个世纪争论,近30年来才逐渐取得一致, 成为量子力学的重要内容。
不确定关系
海森堡认为,微观粒子既不是经典的粒子,也不是经典 的波;当人们用宏观仪器观测微观粒子时,就会发生观测 仪器对微观粒子行为的干扰,使人们无法准确掌握微观粒 子的原来面貌;而这种干扰是无法控制和避免的,就像盲 人想知道雪花的形状和构造。通过仔细分析,海森堡得出 电子坐标的不确定程度Δx和动量的不确定程度Δp遵从: Δx·Δp~h;同样,能量和时间这种正则共轭物理量也遵从 测不准关系,海森堡认为“这种不确定性,正是量子力学 中出现统计关系的根本原因”。
3.2 不确定关系
一、不确定关系的表达式 二、不确定关系的含义 三、不确定关系应用举例
1
一、不确定关系的表达式
1927年,海森堡在论文《量子论中运动学和动力学的 可观测内容》中,提出了著名的“测不准原理”。为了 说明他的测不准原理,海森堡设计了一个理想实验:用 一个γ射线显微镜观测一个电子。由于显微镜的分辨率 受光波波长的限制,为了精确确定电子的位置,应该使 用波长短的光,而波长越短,光子的动量越大,根据康 普顿散射,引起电子动量的变化就越大。因此电子的位 置愈准确,就愈难确定电子的动量。反之亦然。
14
*微观粒子和宏观物体特性之比较
动规律用牛顿力学描述
连续可测的运动轨道 有运动轨迹可以分辨
可处于任意能量状态, 即能量可以连续变化
测不准关系不表现出实际意义
解:电子的动量为
p mv 9.11031 200 1.81028 kg.m.s1
动量的不确定范围为
p 0.01% p 1.81032 kg.m.s1
由不确定关系,得电子位置的不确定范围
x
h
4px
6.63 1034
4 1.81032
s m
1010 m / s
算符对易关系_第三章
13
●
测不准关系的严格推导
ˆ ˆ ˆ ˆ ˆ 设 F 和 G 的对易关系为 [F, G] ik
ˆ ˆˆ ˆˆ FG GF ik
ˆ ˆ ˆ ˆ F F F , G G G ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ FG GF (F F )(G G ) (G G )(F F ) ˆ ˆˆ ˆ ˆˆ ˆ ˆ (FG FG FG FG) (GF GF GF GF)
12
3.7 算符对易关系 两力学量同时可测的条件
测不准关系(续12 )
4.测不准关系 引言 由前面讨论表明,两对易力学量算符则同 时有确定值;不对易两力学量算符,一般 来说,不存在共同本征函数,不同时具有 确定值。 两个不对易算符所对应的力学量在某一状 态中究竟不确定到什么程度?即不确定度 是多少? 测量值 Fn 与平均值 < F > 的偏差的 大小。
ˆ ˆ ˆ ˆ 若 [ F , G] 0 , 则 F 与 G 对易
ˆ ˆ ˆ ˆ 若 [ F , G] 0 ,则 F 与 G 不对易
1
3.7 算符对易关系 两力学量同时可测的条件
测不准关系(续1)
(1)力学量算符的基本对易关系 ˆ ˆ x, y 0 [x , x ] 0 , 1, 2, 3 ˆ ˆ y, z 0 x1 x, x2 y, x3 z ˆ 0 ˆ z, x
测不准关系(续6)
2.力学量同时有确定值的条件(对易的物理意义)
ˆ ˆ 若算符F 和 G 具有共同的本征函数完全 定 理 ˆ ˆ 系,则 F 和 G 必对易。 ˆ ˆ prove: 设 n 是 F 和 G 的共同本征函数完全系,则
原子物理3
19世纪末的三大发现 揭开了近代物理的序幕
1895年的X射线 1896年放射性元素 1897年的电子的发现
早期量子论 量子力学
相对论量子力学
普朗克能量量子化假说 爱因斯坦光子假说 康普顿效应 玻尔的氢原子理论
德布罗意实物粒子波粒二象性 薛定谔方程 波恩的物质波统计解释 海森伯的测不准关系
狄拉克把量子力学与狭义 相对论相结合
四、德布罗意波和量子态
v 质量为 m 的粒子以速度 匀速运动时,具有能
量 E 和动量 p ;从波动性方面来看,它具有波长
和频率 ,这些量之间的关系遵从下述公式:
E mc2 h
p mv h
具有静止质量 m0 的实物粒子以速度 v 运动,
则和该粒子相联系的平面单色波的波长为:
的精密度的极限。还表明
px 0 x 位置不确定
x 0 px 动量不确定
pyqy 2
pzqz 2
pxqx 2
这就是著名的海森伯测不准关系式
二、测不准关系式的理解 1、 用经典物理学量——动量、坐标来描写微 观粒子行为时将会受到一定的限制 。 2、 可以用来判别对于实物粒子其行为究竟应 该用经典力学来描写还是用量子力学来描写。
电子的动量是不确定的,应该用量子力学来处理。
例3 电视显象管中电子的加速度电压为10kV,电子 枪的枪口的直径为0.01cm。试求电子射出电子枪后 的横向速度的不确定量。
解: 电子横向位置的不确定量 x 0.01cm
vx 2mx 0.58m s
v 2eU 6 107 m/s m
pdp m
E vp
Et vpt pq
2
mv
应化所量子化学考试题库及其答案详解
Principles Of Quantum Chemistry——Kwong.S.T名词解释1.测不准关系:()()41M L 22≥∆⋅∆{∫ψ*i[L ,M ]ψdx}22.酉矩阵:S +=S -13.厄米算符:算符L 满足∫u 1*(x)L u 2(x)dx=∫u 2(x)L *u 1*(x)dx,其中u 1(x)和u 2(x)是任意两个平方可积函数,积分遍于自变量全部区域。
则称L 是厄米算符。
4.等价表示:矩阵群M 和M’所包含的每一个对应矩阵之间只差一个同样的相似变换,就说M’和M 是等价表示。
5.可约表示:如果一个矩阵表示可以表示成子矩阵的直和,那么这个矩阵表示是可约表示。
6.不可约表示特征标:不可约表示矩阵群的对角元素之和称为这个不可约表示的特征标。
7.投影算符:P R R hl k j Rj j k*∑Γ=λλ)()()(,其中R 为群元素,*Γk j R λ)()(是第j 个不可约表示操作R 的第λ行第k 列的矩阵元,l j 是第j 个不可约表示的维数,h 为群的阶。
8.轨道近似:认为各个电子的运动是彼此独立的,每个电子都在核与其它电子所形成的稳定的平均场中运动,从而每个电子的状态可以用一个单电子波函数来描写。
9.定域分子轨道:认为成键电子只是集中在相邻两原子间的键轴区域内。
10.正则分子轨道:由HFR 方程解出的分子轨道。
11.Slater 行列式:描述多电子体系满足保里原理的波函数。
12.ab initio :严格的按HFR 方程进行计算称为从头计算。
13.NDO :假设原子轨道在空间任何地方都不重叠。
DO :对所有不同原子轨道的乘积都采用忽略微分重叠近似。
15.NDDO :对属于同一原子各对轨道重叠的排斥积分全部予以保留。
16.INDO :只保留单中心积分中同一原子对各轨道的微分重叠。
17.EHMO :整个分子不在一个平面上,则σ,π分离就不可能,于是就必须对分子中所有原子的所有价电子进行计算,若这种计算不是基于自洽场分子轨道理论,就称之为推广的休克尔分子轨道法。
量子力学补充习题集1
河北科技师范学院物理专业试用量子力学补充习题集数理系物理教研室二OO五年八月第一章 量子力学的实验基础1-1 求证:﹙1﹚当波长较短(频率较高)。
温度较低时,普朗克公式简化为维恩公式;﹙2﹚当波长较长(频率较低),温度较高时,普朗克公式简化为瑞利—金斯公式。
1-2 单位时间内太阳辐射到地球上每单位面积的能量为1324J.m -2.s -1,假设太阳平均辐射波长是5500A,问这相当于多少光子?1-3 一个质点弹性系统,质量m=1.0kg ,弹性系数k=20N.m -1。
这系统的振幅为0.01m 。
若此系统遵从普朗克量子化条件,问量子数n 为何?若n 变为n+1,则能量改变的百分比有多大?1-4 用波长为2790A和2450A 的光照射某金属的表面,遏止电势差分别为0.66v 与1.26v 。
设电子电荷及光速均已知,试确定普朗克常数的数值和此金属的脱出功。
1-5 从铝中移出一个电子需要4.2ev 能量,今有波长为2000A 的光投射到铝表面,试问:(1)由此发射出来的光电子的最大动能是多少?(2)铝的红限波长是多少?1-6 康普顿实验得到,当x 光被氢元素中的电子散射后,其波长要发生改变,令λ为x 光原来的波长,λ'为散射后的波长。
试用光量子假说推出其波长改变量与散射角的关系为2sin42θπλλλmc=-'=∆ 其中m 为电子质量,θ为散射光子动量与入射方向的夹角(散射角)1-7 根据相对论,能量守恒定律及动量守恒定律,讨论光子与电子之间的碰撞:(1)证明处于静止的自由电子是不能吸收光子的;(2)证明处于运动状态的自由电子也是不能吸收光子的。
1-8 能量为15ev 的光子被氢原子中处于第一玻尔轨道的电子吸收而形成一光电子。
问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?1-9 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化光子的波长最大是多少?1-10 试证明在椭圆轨道情况下,德布罗意波长在电子轨道上波长的数目等于整数。
3.7算符的对易关系两力学量同时有确定值的条件
1/26
Quantum mechanics
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
Commutation relation of operators Conditions of two mechanical quantities simultaneously with determine value Uncertainty relation 一、算符间的对易关系 (Commutation relation of operators)
ˆ ,L ˆ ]i L ˆ [ L x y z ˆ ˆ ]i L ˆ [ Ly , L z x ˆ ˆ ]i L ˆ [ L , L z x y
ˆ ˆ ˆ [ L , L ] i L , 123 1 εαβγ—列维--斯维塔(j (j=1,2,…) 分别将gj代入前式可得对应于每个gj的一组解
第三章 量子力学中的力学量
11/26
Quantum mechanics
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
所以相应的波函数
n j ai jni ( j 1, 2,
ˆ y (i p ˆz ) i p ˆz p ˆy p ˆ z (i p ˆy) i p ˆy p ˆz 0 00 p
ˆ ,p ˆ ,p ˆ 2 ] 0,[ L ˆ 2] 0 [L y z
第三章 量子力学中的力学量
6/26
Quantum mechanics
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
技能认证工程测量考试(习题卷19)
技能认证工程测量考试(习题卷19)第1部分:单项选择题,共57题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]线路中线要素切曲差q等于:A)切线长减曲线总长B)切线长减圆曲线长C)切线长的两倍减曲线总长D)圆曲线长减切线长答案:C解析:2.[单选题]以下使用DJ6光学经纬仪观测某一水平方向,其中读数记录正确的是( )。
A)108°7′24″B)54°18′6″C)43°06′20″D)1°06′06″答案:D解析:3.[单选题]根据误差的性质和特点,测量误差可分为()。
A)粗大误差、系统误差、随机误差B)人为误差、量具误差、随机误差C)系统误差、人为误差、随机误差D)粗大误差、人为误差、量具误差答案:A解析:4.[单选题]有标准螺纹牙形,能反映被检内、外螺纹边界条件的测量器具称()。
A)螺纹校对规B)螺纹量规C)内螺纹量规D)塞规答案:B解析:5.[单选题]通常所说的海拔指的是点的( )。
A)相对高程B)高差C)高度D)绝对高程答案:D解析:6.[单选题]大比例尺测图中,不常用的图幅为( )。
D)40cm×50cm答案:B解析:7.[单选题]用标准(偏)差表示的测量不确定度称为()。
A)扩展不确定度B)均值不确定C)标准不确定度D)标准差不确定度答案:C解析:8.[单选题]适用于建筑设计总平面图布置比较简单的小型建筑场地的是( )A)建筑方格网B)建筑基线C)导线网D)水准网答案:B解析:9.[单选题]下列选项中,不属于仪器误差的是( )。
A)视准轴误差B)横轴误差C)竖轴误差D)目标偏心误差答案:D解析:10.[单选题]经纬仪盘左时,当视线水平,竖盘读数为90° 望远镜向上仰起,读数减小。
则该竖直度盘为顺时针注记,其盘左和盘右竖直角计算公式分别为( )。
A)90°-L,R-270°B)L-90°,270°-RC)L-90°,R-270°D)90°-L,270°-R答案:A解析:11.[单选题]关于施工测量,以下描述错误的是( )。
大物习题15
eU a = E k max =
1 2 mv m 2
Ua =
3.23 × 10 −19 = 2.0 V 1.6 × 10 −19
c
(3)红限频率 υ 0 ,∴ hυ 0 = A, 又υ 0 =
λ0
∴截止波长
λ0 =
hc 6.63 × 10 −34 × 3 × 10 8 = A 4.2 × 1.60 × 10 −19
ο
= 4.3 × 10 −12 m = 0.043 A
由康普顿散射公式
Δλ = λ − λ 0 =
可得 散射角为
ϕ ϕ 2h sin 2 = 2 × 0.0243 sin 2 m0 c 2 2
sin 2
ϕ
2
=
0.043 − 0.030 = 0.2675 2 × 0.0243
ϕ = 62ο17′
15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级? (2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1) − 13.6 eV + 12.75 eV = −0.85 eV = − 解得 或者
对太阳:
T1 =
b
λm
1
2.897 × 10 −3 = = 5.3 × 10 3 K −6 0.55 × 10 = 2.897 × 10 −3 = 8.3 × 10 3 K −6 0.35 × 10 2.897 × 10 −3 = 1.0 × 10 4 K −6 0.29 × 10
对北极星: T2 =
hv 0 + m0 c 2 = hυ + mc 2 E k = mc 2 − m0 c 2 = hυ 0 − hυ = h(υ 0 − υ )
算符的对易关系
2
,m
三、力学量完全集
1.要完全确定体系的状态,需要有互相对易的力学量, 通过他们的本征值,这一组完全确定体系状态的力学量, 称为力学量的完全集。其力学量数目一般等于自由度数。
px , p y , pz 氢原子中电子,3个自由度: 三个量子 ˆ ˆ 数 H , l , lz
x a, x px
2 2
2
4
, px
2
2
4a
T
px
2
2
2
8 a
例2)线性谐振子零点能是测不准关系所要求的最小 能量 p2 1 2 2 E x 2 2 2 2 x 2 而 x Nn e H n2 x xdx 0
2.力学量共同本征函数的例子:
a) px , p y , pz 互相对易:共同本征函数 p
1
i 3 2
同时具有确定值 px, py , pz ,
2
e
pr
ˆ ,角动量平方算符 L2 ,角动量子 b)氢原子的哈密顿 H nlm r , , , 分量 Lz 互相对易,共同本征函数:
又
(33)
(b) 算符的函数
设给定一函数 F x 存在各阶导数,幂级数张开收敛:
F x
n 0
F
n
0
n!
xn
(34)
d ax 如 F x e : F e dx
a
d dx
二、两个算符对易的条件
an d n n n ! dx n 0
2
0
(43)
ˆ 不对易, ˆ,G ˆ 的均方偏差不能同 ˆ,G 当 F k 0 ,则 F 时为0,而者乘积恒大于某一正数。
算符的对易关系 共同本征态函数 测不准关系
因此,
xpx
(n1) 22
不确定关系是量子力学中的基本关系,它反 映了微观粒子波粒二象性。
2021/8/17
23
例2:一维谐振子的不确定关系
【解】 振子的平均能量是 x 0 ,(见4.22式)
p 0 , (见4.32式)
2021/8/17 又(: 见4.23x式2 n)(n1 2)M
22
px2
n
(n1)M
2
,
(见4.33式)
x x2 x2 x2 (n1)
n
n
2M
p xp x 2np x2 p xp x 2n(n 1 2 )M
16
2. 不确定关系的严格证明 在量子力学中力学量的不确定关系 FG ?
证明: 第1步:设两任意厄米算符 Fˆ , Gˆ的对易关系为
F ˆ,G ˆ iK ˆ——
或厄米算符
F ˆG ˆG ˆF ˆiK ˆ ——Kˆ
为实数
构造态函数
对任意态函数 ,再构造出一个新的任意态 (Fˆ iGˆ) 函数(其中 是实参数),
G (G ˆG)2
所以
:
FG 1 2
K
这就是常见的不确定关系的一般表达式。
例1:坐标和动量的不确定关系
取 Fˆx,G ˆpˆx
xˆ,p ˆxi对比对易关系 F ˆ,G ˆ iK ˆ
2021/8/17
21
得 Kˆ 由公式 FG1 K
2
xpx 2 ,这正是大家所熟悉的不确定关系。具 体的 xpx ? 需要具体来求。
2021/8/17
17
第2步 ——计算态函数内积
I()(F ˆiG ˆ,F ˆiG ˆ)0(被积函数不小于零)
展开为 :
算符对易关系_第三章教材
测不准关系(续6)
2.力学量同时有确定值的条件(对易的物理意义)
ˆ 具有共同的本征函数完全 ˆ 和G 若算符F 定 理 ˆ 必对易。 ˆ 和G 系,则 F ˆ 和G ˆ 的共同本征函数完全系,则 prove: 设 n 是 F
ˆ ˆ , G F n n n n n n
11
Ex.5
可能同时有确定值。
3.7 算符对易关系 两力学量同时可测的条件
测不准关系(续11)
3. 力学量完全集合 (1)定义:为完全确定状态所需要的一组两两对易的 力学量算符的最小(数目)集合称为力学量完全集。 Ex.1 三维空间中自由粒子,完全确 ˆ ˆ ˆ p , p , p x y z. 定其状态需要三个两两对易的 力学量: ˆ ,L ˆ2 , L ˆ . Ex.2 氢原子,完全确定其状态也需 H z 要三个两两对易的力学量: 一维谐振子,只需要一个力学 ˆ Ex.3 H 量就可完全确定其状态: (2)力学量完全集中力学量的数目一般与体系自由度 数相同。 (3)由力学量完全集所确定的本征函数系,构成该体 系态空间的一组完备的本征函数,即体系的任何状态 均可用它展开。
ˆ ˆ G ˆF ˆG ˆ ik F 2 ˆ ) d ˆ iG 考虑积分: I ( ) (F ˆ )* ][F ˆ ]d ˆ )* i (G ˆ iG [(F
* ˆ ) (G )* F ˆ ˆ )d i [(F ˆ )* (G ˆ ]d (F ) (F 2
(2 ) 为简单起见,先考虑非简并情况。由( 1 )、( 2 ) ˆ 都是 F ˆ 属于本征值 的本征函数,它 式知,n 和 G n n 们最多相差一个常数因子 n ,即
ˆ ˆ G ˆ ˆ ˆ GF FG n n n n
量子力学曾谨言习题解答第三章
第三章: 一维定态问题[1]对于无限深势阱中运动的粒子(见图3-1)证明2a x =)()(22226112πn ax x -=- 并证明当∞→n 时上述结果与经典结论一致。
[解]写出归一化波函数: ()ax n ax n πsin2=ψ (1)先计算坐标平均值:xdx axn axdx ax n axdx x aaa)(⎰⎰⎰-==ψ=222cos11sin2ππ 利用公式:2sin cos sin ppx p pxx pxdx x +-=⎰(2)得2c o s s i n c o s ppx ppxx pxdx x +-=⎰(3)22cos 22sin 221022a a x n n a a x n x n a xa x a=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=ππππ计算均方根值用()x x x x x ,)(222-=-以知,可计算2xdx axn x adx axn x adx x xaa)(⎰⎰⎰-==ψ=2222222cos11sin2ππ 利用公式px ppx x ppx x ppxdx x sin 1cos 2sin 1cos 3222-+=⎰(5)aa x n x n a a x n n a x n a x a x222222cos 222sin 22311πππππ⋅⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=222223πn aa-=()22222222223⎪⎭⎫ ⎝⎛--=-=-a n aaxx x x π)( 2222212πn aa-=(6)在经典力学的一维无限深势阱问题中,因粒子局限在(0,a )范围中运动,各点的几率密度看作相同,由于总几率是1,几率密度a1=ω。
210a xdx axdx x aa===⎰⎰ω31222adx x axa==⎰()22222222223⎪⎭⎫ ⎝⎛--=-=-a n aaxx x x π)( 故当∞→n 时二者相一致。
#[2]试求在不对称势力阱中粒子的能级。
量子力学第四版卷一(曾谨言著)习题集规范标准答案第3章-补充
补充3.5)设粒子处于半壁高的势场中⎪⎩⎪⎨⎧><<-<∞=ax a x V x V ,00,x ,)(0 (1) 求粒子的能量本征值。
求至少存在一条束缚能级的体积。
解:分区域写出eq s .:ax ,0)()(a x 0 ,0)()(22"212'"1>=-<<=+x k x x k x ψψψψ (2)其中 ()22022'2k ,2ηηE E V k μμ-=+=(3) 方程的解为kxkxx ik x ik DeCe x Be Ae x --+=+=)()(21''ψψ (4)根据对波函数的有限性要求,当∞→x 时,)(2x ψ有限,则0=C当0=x 时,0)(1=x ψ,则0=+B A 于是ax , )(x 0 ,sin )(2'1>=<<=-kxDe x a x k F x ψψ (5)在a x =处,波函数及其一级导数连续,得ka ka kDe a k F k De a k F ---=='''cos ,sin (6)上两方程相比,得 kk a k tg ''-= (7)即 ()E E V E V atg +--=⎥⎦⎤⎢⎣⎡+0022ημ(7’) 若令 ηξ==a a k k ,'(8)则由(7)和(3),我们将得到两个方程:⎪⎩⎪⎨⎧=+-=(10)9) ( 2220a V ctg ημηξξξη(10)式是以a V r 202ημ=为半径的圆。
对于束缚态来说,00<<-E V ,结合(3)、(8)式可知,ξ和η都大于零。
(10)式表达的圆与曲线ξξηctg -=在第一象限的交点可决定束缚态能级。
当2π≥r ,即222πμ≥a V η,亦即 82220ηπμ≥a V (11)时,至少存在一个束缚态能级。
第15章 量子物理基础------玻尔理论
px x h
经严格证明此式应为:
px x 2
py y 2
pz z 2
这就是著名的海森伯测不准关系式
测不准关系式的理解
1. 用经典物理学量——动量、坐标来描写微观粒子 行为时将会受到一定的限制 。 2. 可以用来判别对于实物粒子其行为究竟应该用经典 力学来描写还是用量子力学来描写。 3. 对于微观粒子的能量 E 及它在能态上停留的平均 时间Δt 之间也有下面的测不准关系:
e2 v2 m 2 2 4 0 rn rn 1
h L mvrn n 2
2 2
0h rn n ( ) 2 m e
0 0h r1 0.53 A 2 me 2
第一玻尔轨道半径
rn n r1
2
(2)能量量子化和原子能级
1 e 2 E n mv n 2 4 0 rn
32
o 1 ~ 6563 A 32
连 续
H
0
青H
0
深绿H
0
3645.7 A 4340.1 A 4860.7 A
二、玻尔理论的局限性
1. 把电子看作是一经典粒子,推导中应用了牛顿 定律,使用了轨道的概念, 所以玻尔理论不是彻 底的量子论。 2.角动量量子化的假设以及电子在稳定轨道上运动 时不辐射电磁波的是十分生硬的。 3. 无法解释光谱线的精细结构。 4. 不能预言光谱线的强度。
2、频率假设 原子从一较大能量En的定态向另一较低能量Ek的定 态跃迁时,辐射一个光子
h En Ek
跃迁频率条件
原子从较低能量Ek的定态向较大能量En的定态 跃迁时,吸收一个光子
算符对易关系_第三章
们最多相差一个常数因子n ,即
可见,
n
Gˆn nn
也是 Gˆ 的本征方程的解。因此,n
是
Gˆ 的本征函数完全系
8
3.7 算符对易关系 两力学量同时可测的条件 测不准关系(续8)
注
★ 为简单起见,以上定理和逆定理的证明是在非简 并情况下证明的;在简并的情况下,结论仍成立 (这里就不再证明了)
★ 两个算符有共同本征函数系的充要条件是这两个 算符彼此对易;在两个力学量算符的共同本征函数 所描写的状态中,这两个算符所表示的力学量同时 有确定值。或者说两个力学量算符所表示的力学量 同时有确定值的条件是这两个力学量算符相互对易。
2
* (Fˆ
2
)
d
i
*[FˆGˆ GˆFˆ ]d
*(Gˆ )2 d
2 (Fˆ )2 k (Gˆ )2 0
由代数中二次定理知,这个不等式成立的条件 是系数必须满足下列关系:
(Fˆ )2 (Gˆ )2 k 2 (称为测不准关系)
4
如果 k 不等于零,则 Fˆ 和 Gˆ 的均方偏差不会同时为 零,它们的乘积要大于一正数,这意味着 F 和 G 不能 同时测定。
★ 若两个力学量算符彼此不对易,则一般说来这两 个算符表示的两个力学量不能同时具有确定性,或 者说不能同时测定。
9
3.7 算符对易关系 两力学量同时可测的条件 测不准关系(续9)
Ex.1 动量算符 pˆx, pˆ y , pˆz彼此对易,它们有共同的
本征函数完备系
p(r)
(2)
3
2
e
i
pr
在 pv (rv) 描述的状态中,px , py , pz 同时有确定值。
4.测不准关系
08大学物理习题解答(下)
单元十一 光的量子效应及光子理论一、选择题1.金属的光电效应的红限依赖于 [C](A)入射光的频率 (B)入射光的强度 (C)金属的逸出功 (D)入射光的频率和金属的逸出功 2. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是0U (使电子从金属逸出需做功0eU ),则此单色光的波长λ必须满足[A] (A) 0hc eU λ≤(B) 0hceU λ≥ (C) 0eU hc λ≤ (D) 0eU hcλ≥ 3. 在均匀磁场B 内放置一簿板的金属片,其红限波长为λ0。
今用单色光照射,发现有电子放出,放出的电子(质量为m ,电量的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那么此照射光光子的能量是 [B](A) 0λhc(B) 0λhcm eRB 2)(2+ (C) 0λhc meRB + (D) 0λhceRB 2+4. 用强度为I ,波长为λ的X 射线分别照射锂(3z =)和铁(26z =),若在同一散射角下测得康普顿散射的X 射线波长分别为λL 1和Fe λ,),(Fe 1L λλλ>它们对应的强度分别为I I Li Fe 和,则 [C](A)1L Fe λλ>,Li Fe I I < (B)1L Fe λλ=,Li Fe I I = (C)1L Fe λλ=,Li Fe I I > (D)1L Fe λλ<,Li Fe I I >5. 用频率为ν的单色光照射某种金属时,逸出光电子的最大动能为x E ;若改用频率为2ν的单色光照射此种金属时,则逸出光电子的最大动能为[D ] (A) 2x E (B) 2x h E - (C) x h E - (D) x h E +6. 相应于黑体辐射的最大单色辐出度的波长叫做峰值波长m λ,随着温度T 的增高,m λ将向短波方向移动,这一结果称为维恩位移定律。
若32.89710b mk -=⨯,则两者的关系经实验确定为 [A](A)b T m =λ (B) bT m =λ (C) 4bT m =λ (D) m b T λ=二、填空题7. 当波长为300nm 光照射在某金属表面时,光电子的能量范围从0到.J 100.419-⨯在作上述光电效应实验时遏止电压为V 5.2U a =,此金属的红限频率Hz 104140⨯=ν。
量子力学中测不准关系、方程和时空等基本问题的新探索
第37卷第3期2021 年3月商丘师范学院学报JOURNAL OF SHANGQIU NORMAL UNIVERSITYVol. 37 No. 3March,2021量子力学中测不准关系、方程和时空等基本问题的新探索张一方(云南大学物理系,云南昆明650091)摘要:量子力学中的某些问题仍应该探索.首先讨论了量子力学的基础和各种解释,并提出量子力学的非线 性混沌-孤子解释.其次研究了测不准关系,探讨了最普适的测不准关系及其数学形式.第三讨论不可逆性和统计 性,并提出熵的算符表示•第四研究了量子力学方程.最后探讨了量子理论中的二象性.关键词:量子力学;解释;量子场论;时空;对称性;测不准关系中图分类号:〇572.2 文献标识码:A文章编号:1672 - 3600(2021)03 - 0023 - 06New research of basic problems on uncertainty relation, equations and time - space,etc. ,in quantum mechanicsCHANG Yifang(Department of Physics,Yunnan University,Kunming650091 ,China)Abstract:Some problems of quantum mechanics should still be researched. First, the foundations and various interpretations of quantum mechanics are discussed, and the nonlinear chaos -soliton interpretation of quantum mechanics is proposed. Next,the uncertainty relations are investigated,and a very general uncertainty relation and its mathematical form are searched. Thirdly, the irreversibility and statistics are discussed, and an operator representation of entropy is proposed. Fourthly, the equations of quantum mechanics are investigated. Finally, the duality in quantum theory are searched.Key words :quantum mechanics ; interpretation ; quantum field theory ; space - time ; symmetry ; uncertainty relationDirac指出“哈密顿量对于量子理论才真正是十分重要的”“只能通过哈密顿量或其概念的某种推广”发展理论.其基本 程序是由相对论不变的作用量积分得到拉氏量,再导出哈密顿量,得到量子理论.而“将来的量子理论”“一定有某种东西与哈 密顿理论对应已知量子力学最初的两种形式:Schrodinger波动力学主要起源于波动性;而Heisenberg矩阵力学主要起源于不连续性.其 中能量体现粒子性,波函数体现波动性.经典波动方程就是质量为0的Klein-Gord〇n(K G)方程,而Dirac方程是K G方程的一 阶推广.基于对量子力学结构的逻辑分析,笔者认为它只有一个基本原理:波粒二象性.统计性是其相应的数学特性.而其他 原理都是由此导出的物理或数学结果量子场论只是把二象性推广到场.量子力学的发展是基于长、短波时分别是Rayleigh-Jeans公式和W i e n公式,这已经暗含其主要适用于中能,而高能(短 波)是Wien公式,8卩Maxwell- Boltzmann(MB)分布、G a m m a分布•量子力学必然联系于光子、电磁相互作用,例如黑体辐射、光 电效应、氢原子等.反之,目前量子力学、量子场论也主要适用于电磁相互作用[U,而对强、弱、引力相互作用则理论必须发展. 量子力学中波包瞬间塌缩是超光速的.笔者提出粒子物理中的基本原理是必须区分已经检验的实验事实和优美的理论假说.由此提出粒子理论中的7个重大问 题,并且讨论了相应的量子理论某些可能的发展本文对测不准关系、量子方程等量子力学和量子理论的基本问题进行了 某些新探索.1量子力学的基础和各种解释由于量子力学的基本性和复杂性,对其的解释和探索一直是理论物理议论纷纷的热点之一.Jammer对量子力学中的基本 问题和各种解释进行了全面的经典论述[5].量子力学最著名的解释是哥本哈根的几率解释,它的两个基本原理是定域(干涉)原理和波谱分解原理.在量子力学中几率守恒,几率密度(即粒子数平均密度)守恒及总几率都不变.几率守恒是物质不灭定收稿日期:2020 - 01 -22;修回日期:2020 - 09 - 21基金项目:国家自然科学基金资助项目(11664044)作者简介:张一方(1947—),男,云南昆明人,云南大学教授,主要从事理论物理的研究24商丘师范学院学报2021 年律在微观世界的精确表现,它与幺正条件紧密联系.1970年Ballentine系统讨论了量子力学的统计解释[61.对几率解释提出不同观点的众多理论中最著名的是de Broglie- B o h m非线性理论和隐变量解释.基于Everett的多世界理 论[7’8],1971年Dewitt等提到多世界解释和隐变量理论[9]. 1972年Van Fraassen提出消除波包塌缩的模态解释(model interpretation).以后发展为著名的Kochen- Dieks- Healey理论.1986年Cramer提出量子力学的相互作用解释_l t l],其与Be丨丨不等式的检验和非局域性一致.1987年BaUentine提出量子力学的主要解释是:统计系综解释,新哥本哈根解释,R.B.G r i f f i t h s 一致性历史解释,多世界解释和量子势5种.1992年H o m e和Whitaker系统讨论了量子力学的现代系综解释[|2].从1954年起 nde集中批评波粒二象性,而提出一种被Born称为“唯粒子论”的解释方案,但Jammer认为这是“统计系综解释的一种特 殊版本”[51.此外,还有量子力学的去相干理论等.1992年Omn e s提出量子力学的新解释[131,并提出其认识论[13_141.其中的关键概念是“退相干”(de™herenCe).通过纠缠 态(entangled state)在受到环境的作用时,会发生退相干效应这种机制,从量子力学的基本原理出发,就可以统一描述宏观世 界和微观世界的物理学.1995年Rob Clifton及Bub.Goldstein理论的基本方法是区分为理论(动力学、数学)态(theoretical state)和事件(值、物理)态(sta t e of affairs).近年Jeffery B u b等提出量子力学信息解释.这联系于量子信息论.T h o m在《结构稳 定性与形态发生学》中提出波函数作为按一定频率改变拓扑类型的超曲面上的形态就是局域曲率[15].赵国求等具体提出相 互作用是在与量子力学的曲率解释[~7],其中波长联系于粒子环流半径,曲率波包取代质点,波函数是曲率波,曲率的大小表 示粒子性,曲率在时空中的变化表示波动性.并且特征曲率/; = 1/4* =p/77.T h o m和赵国求等的量子力学曲率解释是把波函 数理解为曲率函数.笔者认为这其实是量子力学和广义相对论结合的结果,其中质量大小决定曲率大小,就是广义相对论中 质量决定空间的弯曲程度.根据公式p =1 2 ,密度越大,几率越大,曲率越大.这样就可以联系于量子引力.结合黎曼几何,还可以结合笔者计算电子磁矩的方法[2].薛定谔猫的佯谬是微观不确定、统计性与宏观确定性的关系.这可以联系于非线性,可能发展出非线性量子理论 Monroe等[~用囚禁在Paul阱中的9B e+实现介观尺度上的猫态,质心运动相干态波包与内部态纠缠.观测结果肯定了量子态 叠加原理的正确性,展示了量子力学中的非定域性.量子性最早类比于波动性中的驻波.如波动性有所改变,量子性也许有所 不同.量子数h可能可变或者连续.这就联系于泛量子论12^251.猫态联系于宏观量子现象,对应2个或多个世界.这些世界不 能交流,则拓扑分离,是平行世界.这些世界互相纠缠,则可以包括生与死,阴和阳等不同状态.而状态变化可能与参量达到混 沌值等有关,出现幽灵.非线性理论的多次迭代导致混沌,但对应一种统计性及分布函数.这类似多个粒子、多次事件测不准,然而具有统计性及 分布函数.它联系于电子云的概率分布和相应的统计解释.由此可以提出量子力学的非线性混沌-孤子解释.笔者证明在各 种具有孤子解的非线性方程中都可以得到混沌,而只有某些具有混沌解的非线性方程有孤子解.两种解的条件是不同的,某 些参数是某个常数时得到孤子,而这些参数在一定区域变化时出现分岔-混沌.这种混沌-孤子双解可以对应于量子理论中 的波-粒二象性,由此联系于非线性波动力学的双重解,并且存在若干新的意义%’271.某些实验证明,改变测量方式完全可以 将实验结果从波动条纹改变为粒子行为.Yanhim Shih(1983)可以确定粒子性和(或)波动性.Mandel等测量在两点的两个光子 的联合几率作为分离函数,证明在信号干涉中存在非经典效应[281.在实验设置1中单个光子不出现干涉.在实验设置2的情 况1中光子也不出现干涉,但在情况2中光子出现干涉.所以不仅单个光子,而且作为一个整体的一对纠缠光子也不出现干 涉.并且由非线性解释可以联系于流体力学解释.通常/!—0时,量子力学化为经典力学,这即对应原理.如此量子场论应该化为经典场论.但这与大量子数;并不普遍 等效.Liboff对二者的不同作了明确区分例如在大原子中可能是形式对应原理,如G細m a分布.Blasone提出一个 量子系统近似等价于两个经典系统[301.这对应de Broglie-B o h m非线性量子力学的双重解.J.von Nemnami在《量子力学的数学基础》中指出Gilbert空间的点表示物理系统的状态,物理系统的可观测量由Hilbert 空间的线性算子表示,而能量算子的本征值和本征函数就是该系统的能级及相应的定态.结论必须在4条公理假定成立的条 件下.其中E(A + B + C + •••)= E(A) + E(B) + £(C)+ •••(1)五是线性算符,/I、S、C等无相互作用•而它们可以互相纠缠.因此,目前的量子理论本质上应该是线性的[U8].这一般可能对应于自由粒子,即无相互作用,如无引力相互作用时就是 欧氏空间.而电磁相互作用也是线性理论,只有附加流时才是非线性.但光子-光子相互作用时就是非线性光学.这应该联系 于电磁广义相对论^32].—般的电磁理论仅涉及单个光子.而其余的三种相互作用场必然产生非线性.张永德认为相互作用必定导致量子理论的非线性,相对论量子场论和考虑相互作用的非相对论量子力学的基本方程组 都是非线性的;量子理论的量子化条件是非齐次二次型非线性的i33],因此整体而言,量子理论本质上是非线性的.2测不准关系1934年K.R.Popper已经指出[34],从量子力学的基本原理可以导出测不准关系,因此它不是具有独立地位的原理. Margemni指出只应当限于在多次测量的统计意义上理解测不准关系M l.对于时间-能量的测不准关系,争论更大.1933年 Pauli就指出,不可能引进一个时间算符,因此根本不存在能量和时间的对易关系[36].粒子在运动,有速度^和动量p,其位置就不确定;反之j确定,则不运动.特别对于波.这似乎可以联系于布朗运动.测 不准应该基于无相互作用或某种特殊的波,如线性波等.前提改变,如是非线性波、孤波等时,测不准应该有所不同.基于此可 以具体推导.第3期张一方:量子力学中测不准关系、方程和时空等基本问题的新探索25H.Dehmelt开创了俘获单个电子和原子的研究,由此获得1989年诺贝尔物理奖.20世纪80年代中期Maryland大学和 Munich大学的实验发现,打开探测器时光表现为粒子,关闭探测器时单个光子也表现出波动.1990年艾戈勒用扫描隧道显微 镜(S T M)移动氙原子排列成IBM.氙原子固定,则土 = 10_s c m,Ap = mAv —h/A x.(2)氙质量^ = 131^^.=丨.229父1051\^¥/<:2,所以加=/1/^4*=48丨.33(;111/8.氙原子每秒运动4.81[11,此时测不准关系是 否成立?1993年I B M研究可以直接看到单个电子的波动性(波函数).这些结果与测不准的关系值得研究.量子纠缠态和远距离移物已经被实验证实.其难点在于测不准原理.但该原理在一定条件下也可能被突破.波的测不准关系= 1表示波包长度和波长之间的测不准.这是波的性质,与量子理论无关.同时,粒子波动性及其方 程导致能量的分立态(即量子化).B o h m指出测不准原理是由三个基本假定:波粒二象性,几率,能量-动量的不可分性,互相 结合导出的[371.三者的统一体是整个量子论的基础.原子中的测不准关系4£…山=7J ,BPA{- ^j)A t = h ,(3)n所以<)=忐,(4)通常是K测不准,更一般是A(R^j)A t = 1 .(5)其中是Rydberg常数.对Z、n—定的原子,如Z= 1,n= 1的氢原子只能是山—》,或者厶K不等于0,其测不准.或者 测不准,公式不成立.这就是李兹组合原理与A t的关系,B PAvAt = 1. (7)则A—〇〇,必须承认其在时空中无法描述.而目前光谱已经相当精确.n大时更易精确检验.目前形式的波动性如果不成立[2],测不准原理就应该有所发展.例如对非线性理论[2_~.进一步,测不准关系可以推广到 各种测不准量卸,,4*,.的关系.卸相当于=(卸)2/2m,因为4£乂S九,所以(A p)2At &2mh ;(8)反之 Ap 多A/A c,则 = (4/>)2/2m 彡 /i2/2m(4*)2 ,所以AE(A x)2 3:h2/2m.(9)彡/i2除以式(8)可得(止〇2//^為/i/2m,或者多办/2m •(10)这与我们得到的光速测不准公式[3M9]是一致的.然而,测不准关系与守恒定律存在不一致之处.多A ,如果A是测量能量或能量变化4£所需的时间间隔,则光子稳 定山—0,光速不变.但如此一切稳定粒子运动速度都应该不变.场方程及其孤子解原则上可以描述粒子的轨道.它可能联系于de Broglie-Bohm的波导理论.这样孤子与测不准关系不 一致.更一般是非线性量子理论[2#]与测不准原理的关系.彼此算符化的量构成共轭量.不可对易的两个算符量不能同时测定,这就是最普适的测不准关系.在此讨论其一般的数 学形式,设[W,/V] =A f/V+順=iG.其特例是C=0时是反对易关系•C就是测不准度.彼此用算符表示:M表象中);(ID(12)反之,W(M表象中)_dM于是AMAN ^G.(13) 3量子理论、不可逆性和统计性量子理论的根本困难,Prigogine等认为在于无法处理不可逆过程.它应该结合广义熵(信息),引人微观熵、量子熵等.量 子力学是统计性的,而统计性可以描述不可逆性,所以量子力学应该描述不可逆性.量子力学方程和分子运动论的统计方程相似,所以其具有统计性.统计性又源于摩擦和信息缺失,因为经典和量子各是 任意值和离散值.布朗运动,基态能A/2,绝对零度不能达到等都表明微观领域的永动.布朗运动在一定条件下也许可以放大为宏观布朗运 动效应,虽然放大时可能已经输入能量•根据熵的定义dS = AE/T,(14)26商丘师范学院学报2021 年引入熵必然引人温度7\而根据S = - k\gP = - 2k\g f//,必变化导致S变化.熵增大对应于波包必然扩散.由式(14)得A/r;是组合常数.这类似屮 对定态dS- - 2k(p d* + p,dy+ p Az - £d() = 2i—lV VA e x p U p j/n).此时就是d S对应于四维动量.lV dt Eip ,(15)(16)(17)(18)贝!l dS =-2k—d t.(19)lVS和 <都可逆或都不可逆,二者变化成正比.封闭系统熵增大,能量守恒是定态,所以时间也有方向性.考虑时间箭头和统计性时,发展能量为熵.Prigogint■引人微观熵算符,这可以结合粒子物理中温度和熵的引人方法.他的 超算符导致不可逆性.这可能对应于非线性算符.更一般,可重整化的量子理论应该结合半群,引人温度等,导出不可逆性.假设熵与量K共轭,AS = 4£/r,4£也=(A S)(f4<),所以T不变时[=7!AF/AY = dF/TAt = [F,S]= [F,H]/T.(20)由此表示熵的算符为S _ izi AT dt •(21)设动童通量密度7^ =服2W的共扼量是X,如果L盖,则A T^AX ^v ,T^X - XT^= iv .(22)结合测不准关系P…V,X - XP^V U = y(23)所以X = X/^,T^=-l V d{x/v J.(24)而〜又是算符m dxv量子力学和统计力学都基于平均值.二者应该类比发展.密度p方程是刘维定理,其对应Heisenberg方程,而不是 Schrodinger方程.量子力学类似于统计力学发展为量子统计;统计力学类似于量子力学发展为动力学、方程.特别是量子统计 应该包括托马斯-费米方程.量子力学、量子场论和统计性都是对多个粒子事件,对系综成立.应该用统计学的方法全面整理、表述、修改量子力学、量 子场论,然后再推广、发展量子论.4量子力学方程的研究Dim e提出[w] “不应认为量子力学的现在形式是最后的形式”,它只是“迄今为止人们能够给出的最好的理论”,可能将来“会得到一个改进了的量子力学,使其回到决定论.”但这必须放弃某些现在认为没有问题的基本思想:4〇].笔者在探讨微观相 对论的基础上,提出对极小时空,光速应存在统计起伏.特别在高维柱形卷曲空间中光速是可变的和量子化的.由此讨论修 改、发展相对论和量子论的可能的某些方法,并且定量提出存在势和相互作用时几种新的量子力学方程4M2].Heisenberg方程只是Poisson括号变形的经典方程.Schrodinger方程(25)只是/>,的算符表示方程,而它都可以化为方程Pi= 4念(11^).(26)这和一般的算符方程a dP,= lV T~ ^dX i(27)又有所不同.如/(必)=_ :=〇,则 dj l i//)= + md^//= 〇,即~= 0 »(28)也就是Klein- Gord〇n(K G)方程•这是K G方程和Dime方程之间的又一种关系.对此再求导,= 〇,(29)第3期张一方:量子力学中测不准关系、方程和时空等基本问题的新探索27艮P( m2i/f) +m(m2i//)=0.(30)这是0'的D irac方程,是求导二次的结果.这是波函数的标度变换.广义函数类似算符,前者可用于多重产生,粒子理论等;后者已用于量子理论,并将用于多重产生等.Poisson括号都是对 易关系,应该可以推广为反对易关系等广义形式.5量子理论中的二象性问题衍射中运动的非全同性导致整体的统计性.量子理论的各种不足可能基于原来就无法完全一致的波粒二象性:2],因此波 尔才发展出互补原理.Y u tak a等的实验证明[431单个光子具有粒子性(在缝隙处不劈裂为两半)和波动性(具有隧穿效应,显示 出自干涉,最后反射和折射各占50% ,符合粒子波的几率性).单个光子在远处平板上看不到干涉条纹.二象性把连续、不连续统一起来.波动有周期性就会有一种不连续,对应着粒子.光子和粒子的衍射、折射、反射、色散等 反映连续性;而光子和粒子的发射、吸收等瞬时过程则是不连续的.最小能量、心是不连续的,而频率。
量子力学期末
A卷一、简答与证明:<共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
<4分)2、什么样的状态是定态,其性质是什么?<6分)3、全同费M子的波函数有什么特点?并写出两个费M子组成的全同粒子体系的波函数。
<4分)4、证明是厄密算符<5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。
<6分)二、<15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。
三、<15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。
四、<15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。
五、<10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。
性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。
3、全同费M子的波函数是反对称波函数。
两个费M子组成的全同粒子体系的波函数为:。
4、=,因为是厄密算符,所以是厄密算符。
5、设和的对易关系,是一个算符或普通的数。
以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。
坐标和动量之间的测不准关系为:二、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:b5E2RGbCAP设在A表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,,令,其中为任意实常数,得在A表象中的矩阵表示式为:2、类似地,可求出在B表象中算符的矩阵表示为:在B表象中算符的本征方程为:,即和不同时为零的条件是上述方程的系数行列式为零,即对有:,对有:所以,在B表象中算符的本征值是,本征函数为和3、类似地,在A表象中算符的本征值是,本征函数为和从A表象到B表象的幺正变换矩阵就是将算符在A表象中的本征函数按列排成的矩阵,即三、解:已知氢原子的本征解为:,将向氢原子的本征态展开,1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为:,,<1)能量的取值几率,,平均值为:<2)取值几率只有:,平均值<3)的取值几率为:,,平均值2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.5 测不准关系
15章 第15章 量子物理基础
海森堡严格的理论给出光子坐标与动量的测不 准关系为
h ∆ x∆ p x ≥ 2
h ∆y∆p y ≥ 2
h ∆ z∆ p z ≥ 2
h h= = 1.0545887 × 10 −34 J ⋅ s 2π
或:
∆ x∆ p x ≥ h
∆ y∆ p y ≥ h ∆ z∆ p z ≥ h
15.5 测不准关系
15章 第15章 量子物理基础
例15.13 假定原子中的电子在某激发态的平均寿 τ = 10−8 s ,该激发态的能级宽度是多少? 该激发态的能级宽度是多少? 命 解:
1.05 ×10 ∆E ≥ = −8 τ 10 h
−34
= 1.05 × 10
−26
J = 6.6 × 10 eV
15.5 测不准关系 用电子衍射说明测不准关系 电子经过缝时的位置 电子经过缝时的位置 不确定 ∆x = b . 一级最小衍射角
15章 第15章 量子物理基础
x
b p=h λ
ϕ
sin ϕ = λ b
λ
b
y
o
电子经过缝后 x 方向 动量不确定
p=h λ
∆p x = p sin ϕ = p
h ∆ห้องสมุดไป่ตู้ x = b
−8
当原子从激发态向基态跃迁时, 当原子从激发态向基态跃迁时,由于能级有一 定的宽度,则光谱线也有一定的宽度, 定的宽度,则光谱线也有一定的宽度,称为自然宽 反过来, 度.反过来,根据谱线的自然宽度可以确定原子在激 发态的平均寿命. 发态的平均寿命.
15.5 测不准关系
15章 第15章 量子物理基础
h λ= p
电子的单缝衍射实验
∆ x∆ p x = h
考虑衍射次级有
∆ x∆ p x ≥ h
15.5 测不准关系
15章 第15章 量子物理基础
海森伯于 1927 年提出测不准关系 对于微观粒子不 同时用确定的位置和确定的 对于微观粒子不能同时用确定的位置和确定的 动量来描述 . 测不准关系
∆ x∆ p x ≥ h ∆ y∆ p y ≥ h ∆ z∆ p z ≥ h
p = mv = 9.1×10
p = 1 .8 × 10
动量的不确定范围
−31
× 200kg ⋅ m ⋅ s
−1
−1
− 28
kg ⋅ m ⋅ s
−32
∆p = 0.01% × p = 1.8 × 10
位置的不确定量范围
−34
kg ⋅ m ⋅ s
−1
h 6.63 × 10 ∆x ≥ = m = 3.7 × 10 −2 m ∆p 1.8 × 10 −32
15.5 测不准关系
15章 第15章 量子物理基础
3)对宏观粒子,因 h 很小,所以 ∆x∆px ) 宏观粒子, 很小, 粒子 能同时准确测量 可视为位置和动量能同时 可视为位置和动量能同时准确测量 .
→0
−1
一颗质量为10 的子弹, 例 1 一颗质量为 g 的子弹,具有 200m ⋅ s 的 速率 . 若其动量的不确定范围为动量的 0.01% (这在 这在 宏观范围是十分精确的 ) , 则该子弹位置的不确定量 范围为多大? 范围为多大 解 子弹的动量 动量的不确定范围
p = mv = 2kg ⋅ m ⋅ s
−4
−1
∆p = 0.01% × p = 2 × 10 kg ⋅ m ⋅ s
位置的不确定量范围
−1
h 6.63 × 10 −34 −30 ∆x ≥ = m = 3.3 × 10 m −4 ∆p 2 × 10
15.5 测不准关系
15章 第15章 量子物理基础
的速率, 例2 一电子具有 200m ⋅ s -1 的速率 动量的不确 这也是足够精确的了) 范围为动量的 0.01% (这也是足够精确的了 , 则该 这也是足够精确的了 电子的位置不确定范围有多大? 电子的位置不确定范围有多大 解 电子的动量
作业: 作业:P267 15.17、15.21 、
15.5 测不准关系 时间与能量的测不准关系: 时间与能量的测不准关系:
15章 第15章 量子物理基础
∆E ⋅ ∆t ≥ h 2
即:如果测量光子的时间精确到Δt ,则测得光 如果测量光子的时间精确到Δt 子能量的精度就不会好于Δ 子能量的精度就不会好于ΔE 。 能级宽度和能级寿命的关系: 能级宽度和能级寿命的关系:
物理意义 1) 微观粒子同一方向上的坐标与动量不可同 ) 微观粒子同一方向上的坐标与动量不可同 同一方向上的坐标与动量 准确测量 它们的精度存在一个终极的不可逾越的 时准确测量,它们的精度存在一个终极的不可逾越的 限制 . 2) 测不准的根源是“波粒二象性”这是自然 ) 测不准的根源是“波粒二象性” 界的根本属性 .
∆E ⋅ ∆t ≥ h
2
理论上,计算平均寿命→估计能量的范围; 理论上,计算平均寿命→估计能量的范围; 实验上,测量能级宽度→估计不稳态的寿命。 实验上,测量能级宽度→估计不稳态的寿命。
15.5 测不准关系
15章 第15章 量子物理基础
例15.12 原子的线度为10−10 m ,求原子中电子速度的不 确定量. 确定量. 电子在原子中” 解:“电子在原子中”就意味着电子的位置不确定 ∆x = 10−10 m .根据测不准关系可得 量为
h 1.05 ×10 −34 ∆v x = = m∆x 9.11×10 −31 ×10 −10 ∆x
= 1.2 ×10 m / s
6
按玻尔理论计算氢原子中轨道运动速度约 为106 m / s .它与上面计算的速度不确定量同数量 因此对于在原子中的电子, 级.因此对于在原子中的电子,说它的轨道与速度 是没有实际意义的. 是没有实际意义的.