电磁场第1章资料重点
电磁场复习纲要
《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。
二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。
在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。
3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。
6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。
第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。
三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。
2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。
3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。
求任意点的电场强度及电位。
《电磁场与电磁波》第一章 矢量分析
ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。
S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。
㊀
㊉
二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey
Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos
大一电磁学知识点第一章
大一电磁学知识点第一章第一章电磁学基础知识电磁学是物理学的一个分支,研究电荷与电流所产生的电场和磁场现象以及它们之间的相互作用。
在大一的学习中,我们首先需要了解一些电磁学的基础知识。
本文将为大家介绍第一章中的几个关键知识点。
一、电荷与电场电荷是物质所具有的基本属性之一,分为正电荷和负电荷。
同性电荷相互排斥,异性电荷相互吸引。
电场是电荷周围的一种物理场,具有方向和强度的特点。
我们可以通过电场线来描述电场的性质,电场线由正电荷沿着电场方向指向负电荷。
二、库仑定律库仑定律是描述静电相互作用力的数学关系,它表明两个点电荷之间的力与它们之间的距离成反比,与它们之间的电荷量平方成正比。
库仑定律的公式为:F = k * (|q1| * |q2|) / r^2其中,F代表两个电荷之间的力,k是比例常数,q1和q2分别代表两个电荷的电荷量,r是两个电荷之间的距离。
三、电场强度电场强度是电场对单位正电荷的作用力大小,用E表示。
在电场中,可以通过电场强度来计算电荷所受的力。
电场强度的计算公式为:E =F / q其中,E表示电场强度,F表示电荷所受的力,q表示电荷量。
四、高斯定理高斯定理是描述电场的一个重要定律,它通过电场线的通量来描述电荷的分布情况。
高斯定理的公式为:∮E·dA = Q / ε0其中,∮E·dA表示电场线在闭合曲面上的通量,Q表示闭合曲面内的电荷量,ε0是真空介电常数。
五、电势差在电磁学中,电势差是描述电场能量转化的一个重要概念。
电势差是指电场中从一点移到另一点所需的功,单位为伏特(V)。
电势差的计算公式为:ΔV = W / q其中,ΔV表示电势差,W表示电场对电荷所做的功,q表示电荷量。
六、电容和电容器电容是描述电路元件存储电荷能力的物理量,单位为法拉(F)。
电容器是一种用于存储电荷的装置,由两个导体之间的绝缘介质隔开。
电容的计算公式为:C = Q / ΔV其中,C表示电容,Q表示存储的电荷量,ΔV表示电势差。
电磁场电磁波复习重点
电磁场电磁波复习重点(共13页) -本页仅作为预览文档封面,使用时请删除本页-电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。
2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。
4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积定义为矢量F穿过面元矢量dS的通量。
如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。
如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。
电流是磁场的旋涡源。
5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。
Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。
6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。
第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。
电磁场理论知识点总结
电磁场理论知识点总结电磁场与电磁波总结第1章场论初步⼀、⽮量代数A ?B =AB cos θA B ?=AB e AB sin θA ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) ⼆、三种正交坐标系 1. 直⾓坐标系⽮量线元 x y z =++l e e e d x y z⽮量⾯元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位⽮量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系⽮量线元 =++l e e e z d d d dz ρ?ρρ?l ⽮量⾯元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位⽮量的关系 ?=?? =e e e e e =e e e e zz z ρ??ρρ?3. 球坐标系⽮量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? ⽮量⾯元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位⽮量的关系 ?=??=e e e e e =e e e e r r r θ?θ??θcos sin 0sin cos 0 001x r y z z A A A A A A ??=-sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A=--θ?θ?θ?θθ?θ?θ??sin 0cos cos 0sin 010r r z A A A A A A=-θ??θθθθ三、⽮量场的散度和旋度1. 通量与散度=??A S Sd Φ 0lim→?=??=??A S A A Sv d div v2. 环流量与旋度=??A l ?ld Γ maxnrot =lim→A l A e ?lS d S3. 计算公式=++A y x zA A A x y z11()=++A zA A A z ?ρρρρρ? 22111()(sin )sin sin =++A r A r A A r r r r ?θθθθθ?x y z ?=e e e A x y z x y z A A A=?e e e A z z z A A A ρ?ρρρ?ρ sin sin=?e e e A r r zr r r A r A r A ρθθθ?θ 4. ⽮量场的⾼斯定理与斯托克斯定理=A S A SVd dV ?=A l A S ?l四、标量场的梯度 1. ⽅向导数与梯度00()()lim→-?=??l P u M u M u llcos cos cos =++P uu u ulx y zαβγ cos ??=?e l u u θ grad = =+e e e +e n x y zu u u uu n x y z2. 计算公式=++???e e e xy zu u uu x y z1=++???e e e z u u u u z ρρρ? 11sin =++???e e e r u u u u r r r zθ?θθ五、⽆散场与⽆旋场1. ⽆散场 ()0=A =??F A2. ⽆旋场 ()0=u =?F u六、拉普拉斯运算算⼦ 1. 直⾓坐标系222222222222222222222222222222=++?=?+?+??=++?=++?=++A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212=++ =?--+?-++? ? ??????A e e e z z u u uu zA A A A A A A ?ρρρρρρρρρ?ρρ?ρρ?3. 球坐标系22222222111sin sin sin =++ ? ??????????u u uu r r r r r r θθθ?θ? ???+-??+?+???--??+?+???----=θθθ?θ?θθθθ?θθθθθθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2 22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果⽮量场F 在⽆限区域中处处是单值的,且其导数连续有界,则当⽮量场的散度、旋度和边界条件(即⽮量场在有限区域V ’边界上的分布)给定后,该⽮量场F 唯⼀确定为()()()=-?+??F r r A r φ其中 1()()4''??'='-?F r r r r V dV φπ1()()4''??'='-?F r A r r r V dV π第2章电磁学基本规律⼀、麦克斯韦⽅程组 1. 静电场基本规律真空中⽅程: 0d ?=SE S ?qεd 0?=?lE l ? 0=E ρε 0??=E 场位关系:3''()(')'4'-=-?r r E r r r r V q dV ρπε =-?E φ 01()()d 4π''='-?r r |r r |V V ρφε介质中⽅程: d ?=?D S ?S qd 0?=?lE l ? ??=D ρ 0??=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε极化电荷:==?P e PS n n P ρ =-??P P ρ 2. 恒定电场基本规律电荷守恒定律:0+=?J tρ传导电流: =J E σ与运流电流:ρ=J v恒定电场⽅程: d 0?=?J S ?Sd 0l=E l 0=J 0E =3. 恒定磁场基本规律真空中⽅程:0 d ?=?B l ?lI µd 0?=?SB S ? 0=B J µ 0=B场位关系:03()( )()d 4π ''?-'='-?J r r r B r r r VV µ =??B A 0 ()()d 4π'''='-?J r A r r r V V µ 介质中⽅程:d ?=?H l ?l Id 0?=?SB S ? ??=H J 0??=B磁化:0=-BH M µ m 00(1)=+B H =H =H r χµµµµ 磁化电流:m =??J M ms n =?J M e4. 电磁感应定律d d ?=-SE l B S ?lddt =-BE t5. 全电流定律和位移电流全电流定律:d ()d ??=+D H l J S ?lSt =+DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0=+?=-??==D H J S B E S D S B Sl S l S SV S l t l t V d ρ 0=+???=-?==?D H J B E D B t t ρ ()() ()()0=+???=-?==?E H E H E E H t t εσµερµ ⼆、电与磁的对偶性e m e m e m e e m m e e m mm e 00=-??==+??=--?=?=?????=?=??B D E H D B H J E J D B D B t t &t t ρρ m e e m ??=--?=+==B E J D H J D B tt ρρ三、边界条件 1. ⼀般形式12121212()0()()()0-=-=-=-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界⾯和理想介质界⾯111100?=??===e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0-=-=-=-=e E E e H H e D D e B B n n n n 第3章静态场分析⼀、静电场分析1. 位函数⽅程与边界条件位函数⽅程: 220?=-电位的边界条件:121212=??-=-?s nn φφφφεερ 111=??=-?s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解⽅法:2211===D SE S E lE l蜒SS d d q C U d d ε3. 静电场的能量N 个导体: 112==∑ne i i i W q φ连续分布: 12=?e V W dV φρ电场能量密度:12D E ω=?e⼆、恒定电场分析1. 位函数微分⽅程与边界条件位函数微分⽅程:20?=φ边界条件:121212=??=?nn φφφφεε 12()0?-=e J J n 1212[]0?-=J J e n σσ 2. 欧姆定律与焦⽿定律欧姆定律的微分形式: =J E σ焦⽿定律的微分形式: =??E J V3. 任意电阻的计算2211d d 1??====E l E l J SE SSSUR G Id d σ(L R =σS )4. 静电⽐拟法:C —— G ,ε —— σ2211===D SE S E lE l蜒SS d d q C U d d ε 2211d d d ??===J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分⽅程与边界条件⽮量位:2?=-A J µ 12121211A A e A A J n s µµ()=?-=标量位:20m φ?= 211221??==??m m m m n nφφφφµµ 2. 电感定义:d d ??===??B S A l ?SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =??V W V 磁场能量密度:m 12H B ω=? 第4章静电场边值问题的解⼀、边值问题的类型●狄利克利问题:给定整个场域边界上的位函数值()=f s φ●纽曼问题:给定待求位函数在边界上的法向导数值()?=?f s nφ●混合问题:给定边界上的位函数及其向导数的线性组合:2112()()?==?f s f s nφφ●⾃然边界:lim r r φ→∞=有限值⼆、唯⼀性定理静电场的惟⼀性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表⾯电荷分布)下,空间静电场被唯⼀确定。
电磁场与电磁波基础知识总结
电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
电磁场 第1章 物理基础习
F21=q2E1
结论:电场力符合矢量叠加原理
第一章电磁场的物理基础
14
1.2.2 电场强度
定义:
E(x, y, z, t) lim F (x, y, z, t)
q0
q
电场强度(Electric Field Intensity ) E 表示单位正电荷
在电场中所受到的力(F ), 它是空间坐标的矢量函数, 定义
dv 1 V r 2 er 4 0
ds
S r 2 er
1
4
0
l
dl
r2
e
r
1
4
0
qk r2
e
r
实际工程问题并不知道电荷密度的分布函数,因此很难用上 式计算电场分布。
第一章电磁场的物理基础
18
例1-1
已知在x=0无限大平面均匀分布面电荷密
度,求其两侧真空中的电场强度。
•
无限大真空情况
(式中
0
109
36
8.85 1012
F/m)
可推广到无限大各向同性均匀介质中 (0 )
当真空中引入第三个点电荷 q3
时,试问
q1
与
q
相互间的
2
作用力改变吗? 为什么?
而是电通荷过之“间电的场力”不间是接超作距用作的用。,F12=q1E2
电E场1 E2
图1-8
抽象为“表面电流”。可看为密度为的面电荷,以速度v 运动
K=v 面电流密度是矢量,单位A/m
工程意义:
db
b
K n
• 同轴电缆的外导体可视为电流线密度分布 • 媒质表面产生磁化电流可用电流线密度表示
电磁波与电磁场第一章
矢量,标量与矢量相乘。
A (BC) 标量,标量三重积。
A (B C) 矢量,矢量三重积。
A (B C) B (C A) C ( A B)
注意:先后轮换次序。
A (B C) B( A C) C( A B)
电磁场与电磁波
第1章 矢量分析
+ 2q
q
电磁场与电磁波
第1章 矢量分析
2、矢量场的通量
通过矢量场中某一曲面的矢量线数称为通过该面的 通量。用表示。 n 从图可以看出,通过面元 dS的通量和通过投影面dS⊥的 通量是一样的。因此通过dS的 F ds 通量为 ds d =F dS⊥= F ds cos 上式可以写为
•结论: 两矢量点积等于对应分量的乘积之和。
电磁场与电磁波
第1章 矢量分析
b.矢量积(叉积):
A B ec | A || B | sin
ec
B
A 两矢量叉积,结果得一新矢量,其大小为这两个矢量 组成的平行四边形的面积,方向为该面的法线方向,且三 者符合右手螺旋法则。
推论1:不服从交换律:A B B A,
电磁场与电磁波
第1章 矢量分析
同理:在 y方向上,穿过 S 3 和
S 4 面的总通量:
Ay y xyz
S3
A dS3 A dS4
S4
在 z 方向上,穿过 S 5 和
S 6 面的总通量:
S6
S5
A dS5 A dS6
AZ xyz z
整个封闭曲面的总通量:
Ax Ay Az xyz S A dS y z x
1、矢量线 概念:矢量线是这样的曲线,其上每一 点的切线方向代表了该点矢量场 的方向。
电磁场与电磁波-第1章
z o x
v v ˆ ˆ ˆ ˆ ˆ ˆ A × B = ( Ax ax + Ay a y + Az az ) × ( Bx ax + By a y + Bz az )
y
ˆ ˆ ˆ = ( Ay Bz − Az By )ax + ( Az Bx − Ax Bz )a y + ( Ax By − Ay Bx )az
第1章 矢量分析
主要内容 矢量代数、常用坐标系、 梯度、散度、旋度、亥姆量
标量:只有大小而没有方向的物理量。如温度、高度、时间等。 标量:只有大小而没有方向的物理量。如温度、高度、时间等。 矢量:不但有大小而且有方向的物理量。如力、速度、电场强度等。 矢量:不但有大小而且有方向的物理量。如力、速度、电场强度等。 矢量的数学符号用黑斜体字母表示,如A、B、E,或斜体字母上 矢量的数学符号用黑斜体字母表示, 黑斜体字母表示
两矢量的叉积又可表示为: 两矢量的叉积又可表示为:
ˆ ax v v A × B = Ax Bx
ˆ ay Ay By
ˆ az Az Bz
2、矢量运算法则
(3)乘法: 乘法: 乘法 ③ 三重积 三个矢量相乘有以下几种形式: 三个矢量相乘有以下几种形式:
v v v ( A ⋅ B)C
矢量,标量与矢量相乘。 矢量,标量与矢量相乘。
v v v v v v v v b.满足结合律 满足结合律: b.满足结合律: ( A + B ) + (C + D) = ( A + C ) + ( B + D)
矢量加法是几个矢量合成问题,反之, 矢量加法是几个矢量合成问题,反之,一个矢量也可分解为几个矢量
2、矢量运算法则
电磁场与电磁波理论第1章
1-2
《电磁场与电磁波理论》
基本要求
第1章 矢量分析与场论
◘ 掌握矢量和场的基本概念; ◘ 掌握矢量的代数运算和场量的梯度、散度、旋度
以及拉普拉斯运算; ◘ 了解矢量分析过程中所需的恒等式和基本定理.
1-3
《电磁场与电磁波理论》
三种常用的正交坐标系
第1章 矢量分析与场论
直角坐标系 圆柱坐标系 球面坐标系 几点说明
第1章 矢量分析与场论
矢量与矢量的表示法 矢量的代数运算
1-10
《电磁场与电磁波理论》
矢量与矢量的表示法
第1章 矢量分析与场论
1. 矢量与单位矢量 2. 矢量表示法 3. 位置矢量与距离矢量
1-11
《电磁场与电磁波理论》
1.矢量与单位矢量
第1章 矢量分析与场论
♥ 矢量——在三维空间中的一根有方向的线段. ♥ 该线段的长度 代表该矢量的模, ♥ 该线段的方向 代表该矢量的方向
《电磁场与电磁波理论》
第1章 矢量分析与场论
第1章 矢量分析与场论
主要内容
基本要求
三种常用的正交坐标系
物理量的分类
1.1 矢量的代数运算 1.2 场的微分运算 1.3 矢量的恒等式和基本定理 1.4 常用正交曲线坐标系
1-1
《电磁场与电磁波理论》
主要内容
第1章 矢量分析与场论
电磁理论的一个重要的概念就是关于场的概念.此外, 有很多物理量都是矢量,一些用来描述电磁现象基本规律 的方程也都是矢量函数的微分方程或积分方程.因此,矢 量分析和场论是电磁理论的重要的数学基础.本章仅讨论 在电磁理论中所需要的矢量分析与场论中的基本内容,包 括矢量的基本代数运算和场量的梯度、散度、旋度和拉 普拉斯运算以及矢量场的恒等式和基本定理.最后,还给 出了三种常用坐标系及其梯度、散度、旋度等算子在这 三种坐标系中的表示式.
电磁波与电磁场——第一章
• 令
为矢量G的三个坐标分量,即
• 矢量l的单位矢量 • 标量场 在 P 点沿 l 方向上的方向导数 定义为
• 矢量G称为标量场Φ的梯度
• • • •
标量场Φ的梯度是一个矢量场 由 可知,当 的方向与梯度方向 一致时,方向导数 取最大值。 标量场在某点梯度的大小等于该点的最大 方向导数,梯度的方向为该点具有最大方 向导数的方向。
1-2 矢量的代数运算
• • • • 矢量A=B:矢量A、B的大小及方向均相同时 矢量加法:平行四边形法则 矢量减法:三角形法则 在直角坐标系中两矢量的加法和减法:
• 矢量的加法运算,结合律和交换率 • 结合律:(A+B)+C=A+(B+C) • 交换律:A+B=B+A
1-3 矢量的标积和矢积
• 标积(点积或内积),以点号“•”表示
直角坐标系下散度表达式的推导
• 不失一般性,令包围P点的微体积V 为一 直平行六面体,如图所示。则
由此可知,穿出前、后两侧面
的净通量值为
• 同理,分析穿出另两组侧面的净通量,并 合成之,即得由点P 穿出该六面体的净通量 为
• 根据定义,则得到直角坐标系中的散 度 表式为
• 散度运算规则
例: 已知点电荷q所产生的电场强度
• 标量场的等值线(面)
• 等值面的特点: • 常数C 取一系列不同的值,就得到一系列 不同的等值面,形成等值面族; • 标量场的等值面充满场所在的整个空间; • 标量场的等值面互不相交。
• 方向导数:标量场在某点的方向导数表示标 量场自该点沿某一方向上的变化率
• 例如标量场 在 P 点沿 l 方向上的方向导 数 定义为
——拉普拉斯算符
电磁学第一章总结
电磁学第一章总结§1 -1 电场 电场强度 一.基本电现象1、电荷 表示物体所带电荷多少的物理量叫作电荷量,简称电荷,用q 或Q 表示,单位是库仑(C)。
基本电荷:电子电量的绝对值C e 1910602.1-⨯=2、电荷守恒定律3、电荷相对论不变性 在相对运动的参考系中测得带电体的电量相等,即电荷的电量与它的运动状态无关。
二.库仑定律 1、点电荷当带电体的大小、形状 与带电体间的距离相比可以忽略时,就可把带电体视为一个带电的几何点。
2、库仑定律三、 电场力的叠加静电力的叠加原理 作用于某电荷上的总静电力等于其它点电荷单独存在时作用于该电荷的静电力的矢量和。
四、电场(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动,电场力要作功——电场具有能量 五、 电场强度试验电荷带正电,满足 线度足够地小——场点确定;电量充分地小——不至于使源电荷重新分布。
场强是矢量,其大小等于单位电荷所受电场力,方向为正电荷的受力方向。
是反映电场强弱和方向性的物理量,是场点位置的函数。
单位:N/C 或 V/m六、电场强度叠加原理及场强的计算 1. 点电荷的电场2. 电场叠加原理与点电荷系的电场设真空中有n 个点电荷q1,q2,…qn,则P 点的总场强为3.电偶极子延长线和中垂线上一点的场强 如图已知:q 、-q 、 r >>l ,电偶极矩3.连续分布带电体的场强①无限长均匀带电直线的场强如图E E y,0,0>>λE E y,0,0<<λ②均匀带电圆环轴线上任一点 x 已知: q、a 、 x 。
PE⎰=Fd F 0204r r qdq F d πε=连续分1o2211221r rq q k F F =-=2290100.941-⋅⨯≈=C m N k πεq F E =定义:q PE 0202141i i i i i i n r r q E E E E E πε∑=∑=+++=lq p =求:当R>>x 时,即P 点接近O 点时(无限大均匀带电平面的场强)当R<<x§1 -2 高斯定理 一.电通量 1.电场线 电场线性质①、起于正电荷(或来自无穷远处)、止于负电 荷(或伸向无穷远处),不会在没有电荷的 地方中断;②、电场线不能形成闭合曲线;③、在没有电荷的空间里,任何两条电场线不相交。
电磁学教学资料 电磁学第一章
(1)当 x << R,圆盘 “无限大”带电平 板
E 2 0
(2)当x>>R,圆盘点电荷
E q
40 x2 33
§1.5 电通量 高斯定理
面元法向单位矢量
一、电通量(Flux)
n
1、通过面元 S 的电通量
q
定义 面E 元S 矢c量o qS s E Sn S n ,则有Scoqsq S
• 在正方形的四个顶点分别有电量为Q的固 定点电荷,在正方形对角线交点上放置 一个质量为m、电量为q的自由点电荷。 将q沿某一对角线移动一个很小的距离, 证明q将作简谐振动, 并求振动周期。
§1.3 电场和电场强度
惯性系,点 p(x,y,z)
q0
检验电荷
(静止)
任意电荷分布 静止或运动
F
测受力
S
4 r
r
2
2
4
S
dS
d
dS
Or
41
(2)通过包围点电荷 q 的任意闭合曲面的电通
量为 q/0
d E dS
S
q 4
0
dS r2
E
E S
通过面元的电通量的符号,与面元矢量方
向的定义有关。
34
2、通过曲面 S 的电通量
面元Si可定义两个指向
Si E i
lim S 0
Ei
i
Si
S
EdS
S
的正负依赖于面元指向的定义
3、通过闭 合曲面S的电通量
dS E
规定dS的方向指向外为正
光子静质量上限为10-48 kg.
电磁场复习要点
电磁场复习要点第⼀章1、⽮量的点乘和叉乘公式、性质,特别是在直⾓坐标系下的计算公式2、三种常⽤正交坐标系的相互转换,各⽅向单位⽮量之间的⽅向关系。
3、场论的基础知识:(1)标量场的梯度的概念、性质、公式、与⽅向导数的关系(2)⽮量场的散度的概念、公式、与通量的关系、散度定理、通量源和⽮量线的特点(3)⽮量场的旋度的概念、公式、与环量的关系、斯托克斯定理、漩涡源和⽮量线的特点(4)两个恒等式(5)亥姆霍兹定理第⼆章1、三⼤实验定律:公式、含义、物理意义2、两个基本假设:有旋电场和位移电流3、麦克斯韦⽅程组微分形式、积分形式及其物理意义4、两种不同介质分界⾯上的边界条件(普通的、理想介质与理想介质、理想导体与理想介质)5、媒质的电磁特性:极化、磁化和传导。
6、三种介质的本构关系对以上公式要求理解,能够灵活运⽤公式进⾏解题。
重点例题:P80页例2.7.1,例2.7.3第三章1、电位函数:引⼊依据,与电场强度之间的关系(积分形式和微分形式),电位参考点的选取原则。
2、电容的定义及其求解3、静电场的能量和能量密度(各种公式)重点查看课本P96页双导体电容的计算步骤。
例3.1.4,例3.1.54、⽮量磁位:引⼊依据,与磁感应强度之间的关系(积分形式和微分形式),⽮量磁位的⽅向。
5、电感的定义,⾃感⼜分内⾃感和外⾃感。
圆截⾯长直导线单位长度的内⾃感是多少6、恒定磁场的能量和能量密度(各种公式)P125页例3.3.77、恒定电场的源量和场量,基本性质。
电阻的求解。
8、什么是边值问题,他的分类,唯⼀性定理及其意义9、边值问题的常⽤解法10、镜像法的原理、求解关键。
接地的⽆限⼤导体平⾯的镜像,具有⼀定夹⾓的接地导体平⾯的镜像。
接地和不接地导体球⾯的镜像。
主要能够求出镜像电荷的个数、位置、⼤⼩。
11、分离变量法的原理。
针对给出问题能够列出位函数满⾜的⽅程和边界条件。
12、有限差分法的主要思想,和主要公式。
第四章1、波动⽅程的意义2、位函数和场量的关系3、坡印廷⽮量的定义,物理意义。
(完整版)工程电磁场基本知识点
第一章矢量剖析与场论1 源点是指。
2 场点是指。
3 距离矢量是,表示其方向的单位矢量用表示。
4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。
5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。
6 方导游数与梯度的关系为。
7 梯度在直角坐标系中的表示为u 。
8 矢量 A 在曲面 S 上的通量表示为。
9 散度的物理含义是。
10 散度在直角坐标系中的表示为 A 。
11 高斯散度定理。
12 矢量 A 沿一闭合路径l的环量表示为。
13 旋度的物理含义是。
14 旋度在直角坐标系中的表示为 A 。
15 矢量场 A 在一点沿e l方向的环量面密度与该点处的旋度之间的关系为。
16 斯托克斯定理。
17 柱坐标系中沿三坐标方向 e r , e , e z的线元分别为,,。
18 柱坐标系中沿三坐标方向 e r , e , e 的线元分别为,,。
19 1 ' 1 12 e R12 e 'RR R R R20 1 'g 1 0 ( R 0)g '4 ( R) ( R 0)R R第二章静电场1 点电荷 q 在空间产生的电场强度计算公式为。
2 点电荷 q 在空间产生的电位计算公式为。
3 已知空间电位散布,则空间电场强度 E= 。
4 已知空间电场强度散布 E,电位参照点取在无量远处,则空间一点P 处的电位P = 。
5 一球面半径为 R,球心在座标原点处,电量Q 平均散布在球面上,则点R,R,R处的电位等于。
2 2 26 处于静电均衡状态的导体,导体表面电场强度的方向沿。
7 处于静电均衡状态的导体,导体内部电场强度等于。
8 处于静电均衡状态的导体,其内部电位和外面电位关系为。
9 处于静电均衡状态的导体,其内部电荷体密度为。
10 处于静电均衡状态的导体,电荷散布在导体的。
11 无穷长直导线,电荷线密度为,则空间电场 E= 。
12 无穷大导电平面,电荷面密度为,则空间电场 E= 。
第1章 电磁场的基本定律
第一章 电磁场的基本定律§1.1、1.2电场与高斯定律1 库仑定律:A 平方反比。
B 介电系数2 电场强度E :电荷为q 的载流子受到的电场力为:E q F =点电荷限制的意义:A 不扰动被测对象,操作意义。
B 最小电荷量与最小载流子 量子电动力学与宏观电动力学研究对象的不同。
3 电场的计算:1) 点电荷:条件是线性媒质2) 多个点电荷;叠加原理成立,意味着求和3) 场点),,(z y x P 、r 与源点),,(z y x P '''、r':带撇与不带撇 从源点到场点的矢径:0R R r r R ='-= 其中222)()()(z z y y x x R '-+'-+'-=4) 连续分布电荷:A 概念:三种电荷密度、B 计算方法:求和变为积分3 电力线:及其重要。
静电场:始于正电荷或无穷远,终于负电荷或无穷远。
时变场:环,电力线环套着磁力线环,磁力线环套着电力线环。
4 高斯定律:1)通量:面积分与矢量点乘s d E d E ∙=ψs d 方向的定义:闭合曲面与非闭合曲面2)电通量密度:E D ε=:仅适用于线性、各向异性媒质3)高斯定律:A 关于E 与D两种:后者于媒质无关。
∑⎰==⋅n k k s q s d E 11ε ∑⎰==⋅n k k s q s d D 14)用高斯定律计算电场:对称性的要求,高斯面。
5.静电场的环路积分:0=⋅⎰Cl d E§1.3、1.4 磁场、毕澳-沙伐尔定律、安培环路定律1.磁感应强度:1)速度为v 的运动电荷在磁感应强度为B 的磁场中受到的磁场力F dB v dq F d ⨯=2)载流导体:l Id l d dtdq dt l d dq v dq === 2.毕澳-沙伐尔定律:24ra l Id B d r ⨯=πμ 其中r 为l d (源点)到场点的距离,r a 为l d (源点)到场点的单位矢量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.矢量线:描述矢量场在空间的分布情况
矢量场A 的矢量线(力线)方程为
dx dy dz Ax Ay Az
图 1-1 矢量场的矢量线
例1-1 求数量场φ =(x+y)2-z通过点M(1, 0, 1)的
等值面方程。
例1-2
求矢量场
A -yex
xey
的矢量线方程。
最大变化率的矢量G,称为标量场φ(M)在M点处的
பைடு நூலகம்
梯度。在直角坐标系中, 梯度的表达式为
grad
x
ex
y
ey
z
ez
grad
2、性质: A.梯度垂直于该等值面。即其方向是等值面的
法线方向且指向标量场增大方向。 B.梯度是矢量,其大小等于方向导数的最大值,
方向与最大方向导数的方向一致。 C.梯度在某方向上的投影即为该方向上的方向
定存在,且为
cos cos cos
l M0 x
y
z
1.2.2 标量场的梯度
1、定义:
在直角坐标l系 中c,os令ex
cosey
c osez
G
x
ex
y
ey
z
ez
Gl
G
cos(G,l )
l
在 标 量 场 φ(M) 中 的 一 点 M 处 , 其 方 向 为 函 数
φ(M)在M点处变化率最大的方向,其模又恰好等于
1.2 标量场的方向导数和梯度
1.2.1
图 1-2 方向导数的定义
(M ) (M 0 )
上式极限存在,则称此极限为函数φ(M)在点M0 处沿l方向的方向导数,记为
lim (M ) (M0)
l M0
M M0
若函数φ=φ(x, y, z)在点M0(x0, y0, z0) 处可微,cosα、cosβ、cosγ为l方向的方向 余弦,则函数φ在点M0处沿l方向的方向导数必
A Arer A e Ae
第一章 矢量分析
1.1 场的概念 1.2 标量场的方向导数和梯度 1.3 矢量场的通量和散度 1.4 1.5 亥姆霍兹定理
1.1 场的概念
1.1.1 矢性函数
在二维空间或三维空间内的任一点P, 它是 一个既存在大小(或称为模)又有方向特性的量,
故称为实数矢量,用黑体A表示,而白体A表示A 的大小(即A的模)。若在平时书写时,一般将矢
导数。
3.运算法则
gradc 0 或 c 0
grad(cu) cgradu 或 (cu) cu
2.场的分类:
a. 按场量与时间的关系分:
静态场:物理量与时间无关。
时变场:物理量与时间有关,或称为动态场。
b.按物理量的性质分:
标量场:代数变量(即标量函数)所确定的场。
矢量场:其状态不仅需要确定其大小,同时还需确 定它们的方向。
3.等值面(线):标量场场变量在空间逐点变化的
情况。标量场φ(x, y, z)的等值面方程为
矢性函数A(t)在直角坐标系中可用其坐标表示
为
A Ax (t)ex Ay (t)ey Az (t)ez
其中ex、ey、ez为x轴、y轴、z轴正向单位矢量。
1.1.2 标量场和矢量场
1.场的定义: 在某一空间区域中,物理量的无穷 集合表示一种场。场的一个重要的属性是它占有 一定空间,而且在该空间域内,除有限个点和表 面外,其物理量应是处处连续的。
• 之后的1887年, 德国人赫兹在实验室中成 功地证实了电磁波, 巩固了麦克斯韦的理 论. 1901年,意大利人马可尼实现了人类 历史上第一次垮大西洋无线通讯. 当他和 助手们在加拿大收到从英国传来的摩尔斯 码“S”时, 一个无线通讯的世纪终于露出 了曙光。
电磁波的应用
• 60年代以后,卫星通讯使无线电通信进 入了一个新的发展时期。
量写成A形式。矢量一旦被赋予物理单位,便成 为具有物理意义的矢量。
若某一矢量的模和方向都保持不变, 此矢 量称为常矢,而在实际问题中遇到的更多的是 模和方向或两者之一会发生变化的矢量,这种 矢量称为变矢。
设t是一数性变量,A为变矢,对于某 一区间G[a, b]内的每一个数值t, A都有一个
确定的矢量A (t)与之对 应, 则称A为数性变量t 的矢性函数。记为 A A(t)
美国“勘测者”系列探测器曾在月面着陆
航天员从太空拍摄高分辨率的北京天安门 广场,能分辨出路上行驶的车辆和行人
• 电磁波除了作传输信息的媒介和用于探 测、跟踪控制目标的用途外,还被用于 能源工程、资源开发、医疗卫生等领域, 如激光核聚变、等离子体射频加热以及 工业加热、激光和微波手术刀。美国等 国家正在研究太空太阳能电站,利用微 波将电力传输到地面。可望达到80%— 90%的功率转换效率。
网络课堂
8 学时 12 学时 14 学时 6 学时 8 学时 8 学时
/scr2006/
预备知识: 圆柱坐标系与球坐标系
一、圆柱坐标系
o o 2
z
e e ez
r e zez
二、 球面坐标系
or
o
0 2
er e e
• 1957年第一颗人造卫星上天至今, 航 天技术的飞速发展不仅给人类进步和文 明带来了巨大的影响,而且为人类从事 空间探测、 了解地球以外的无限宇宙 提供了行之有效的手段。迄今为止,已 发射的用于研究天文学目的的航天器有 300多种,观测波段几乎包括整个电磁 波谱。这些来自天外遥远星系的电磁波, 为人类传来了宇宙深处神密的信息。
电磁学发展史
• 1820年,由丹麦的科学家奥斯特在课堂 上的一次试验中,发现了电的磁效应, 从此将电和磁联系在一起 。
• 1831年,英国实验物理学家法拉第发现 了电磁感应定律 。并设计了世界上第一 台感应发电机。
• 奥斯特的电生磁和法拉第的磁生电奠定了 电磁学的基础。
• 电磁学理论的完成者——英国的物理学家 麦克斯韦(1831—1879)。麦克斯韦方程 组——用最完美的数学形式表达了宏观电 磁学的全部内容 。麦克斯韦从理论上证 明了电磁波的存在。
电磁场理论
主要参考书目:
1.王家礼等主编《电磁场与电磁波》,西 安电子科技大学出版社。
2.谢处方主编《电磁场与电磁波》,高等 教育出版社。
3.冯慈璋主编《工程电磁场导论》,高等 教育出版社。
学时安排(56学时)
1.矢量分析 2.静电场 3.恒定电流的电场和磁场 4.静态场的解 5.时变电磁场 6.平面电磁波