Reconciling zero-conf with efficiency in enterprises,” Poster, CoNext student workshop
CvaR准则下需求受到努力水平影响的供应链回购契约
S p l a n Bu — a k Co t a tu d r Cv R i r o n t m a d a e t g Ef r v l u p y Ch i y b c n r c n e a Crt i n a d wih De n - f c i f tLe e e n o
供 应 链 管 理
d i 03 6 4i n1 0 - 5 X.0 20 .3 o: .9 9 . s .0 5 1 2 2 1 .60 2 l s
创智引领创新前沿的英语作文
Innovation is the driving force behind progress in any field,and it is the leading edge of creativity that propels this forward.The essence of innovation lies in the ability to think outside the box,to challenge the status quo,and to envision new possibilities that can transform industries and societies.At the heart of innovation is creativity.It is the spark that ignites the process of innovation.Creative individuals are those who can see things from different perspectives, who can connect seemingly unrelated ideas,and who can generate novel solutions to complex problems.They are not afraid to take risks and to explore uncharted territories. They are the ones who dare to dream big and to pursue their dreams with passion and determination.The process of innovation begins with the generation of new ideas.This requires a deep understanding of the current state of affairs and the identification of areas that require improvement or transformation.It involves brainstorming sessions where diverse groups of people come together to share their thoughts and insights.It also requires an openminded approach that is receptive to new ideas and willing to consider alternative viewpoints.Once new ideas are generated,the next step is to evaluate their feasibility and potential impact.This involves conducting thorough research and analysis to understand the technical,economic,and social implications of the proposed innovations.It also requires the identification of potential challenges and the development of strategies to overcome them.The implementation of innovative ideas requires a strong commitment to excellence and a relentless pursuit of perfection.It involves the development of prototypes,the testing of concepts,and the refinement of designs.It also requires the collaboration of multidisciplinary teams that bring together different areas of expertise to ensure the successful execution of the project.The dissemination of innovative ideas is crucial for their adoption and widespread use. This involves effective communication strategies that can convey the benefits and value of the innovation to potential users and stakeholders.It also requires the establishment of partnerships and alliances that can support the scaling up and commercialization of the innovation.The impact of innovation can be profound and farreaching.It can lead to the development of new products and services that improve the quality of life,the creation of new industries that generate economic growth and employment opportunities,and theresolution of pressing social and environmental challenges.In conclusion,innovation is a dynamic and ongoing process that requires creativity, research,implementation,and dissemination.It is a journey that is filled with challenges and uncertainties,but it is also a journey that is rich with opportunities and possibilities. By embracing innovation and nurturing creativity,we can shape a better future for ourselves and for generations to come.。
一种基于指数遗忘函数的协同过滤算法
定 义 ② 用 户 对 资 源 的 绝 对 评 分 时 间
( T ) , 即用户访问资源的时间。
定 义 ⑧ 用 户 对 资源 的相对 评 分 时 间( t ) , 即绝对 评分 时 间和参 考 时间 的时 间间 隔 。 定 义 ④ 最大 时 间 间 隔( T 一) , 即用 户 最 新 的评 分 时 间 与 参 考 时 间之 差 ( 以天 为 单 位 ) ,
.
:
5 . 1 O 。
来 举例 说 明 ,假 设 表 一 为用 户 A、 B和 c对 电影
表二 用户一 电影修正后评分矩 阵
《 十二生 肖》 评分 的原始矩阵, A、 B和 c的最早评分 都发生在 1 0 0 天前 , 最新评分则为 l 天 以前 , 经 由前 面提 出的指数遗忘 函数( t ) 计算后得到修正后的用
林 威 治 时间 1 9 2 4年 2月 5日。
化, 但其规律依然有章可循。总体而言 , 人的遗忘呈
现 出先 快后 慢 的变 化规 律 , 在记 忆过 后 的初始 阶段 , 人 的遗 忘是 最快 的 , 而后 逐 步减 慢 , 直至 完全 遗 忘或
不再遗忘。艾宾浩斯遗忘曲线大致如图一所示。
发 生 变化 [ 8 - 9 1 。在个 性 化 推 荐 系统 中 , 用 户兴 趣 的变 化 表 现 为 旧 的兴趣 慢 慢 衰 减 , 同时 不 断 产 生新 的兴 趣 。一 般 而言 , 在表 达 用户 当前 兴趣 上 , 不 同时间段 用 户 的资 源 访 问记 录所 作 的 贡献 是 不 一 样 的 , 最 新 的访 问记 录更 能反 映用 户 的兴 趣爱 好 。 心 理 学家认 为 , 随着 时问 的推移 , 人 的记忆 慢慢 被遗忘 , 特别是 当周 围环境发生变化 时 , 记忆 中的一些 内容如果长期 不被使用 , 将慢慢被遗忘 ” 。基 于此 记 忆 遗 忘 的理 论 , 可 以把个 性 化 推 荐 系 统 中用 户 兴 趣 的变 化也 看 做一 种 记忆 遗忘 现象 。 艾 宾 浩斯 认 为 , 遗 忘 的程 度 并 非 随 时 间均 匀 变
基于混沌粒子群优化的无线传感器网络分簇协议
Ab t a t I r e e u et e e e g o s mp i n o o e n r ln e l e i fW S a cu tr gp oo o sr c :n o d r t r d c n ry c n u t fn d s a d p o o g t i t o h o h f me o N, l se i r t c l n b s d o h o — S sp o o e . h r t c li r v s t e cu t rh a e e t n me h n s , o s e s n d s a e n C a s P O i r p s d T e p oo o mp o e h l se - e d s lc i c a i o m i c n i r o e ’ t d r s u le e g , it n e t sn o e a d r n e o l s r . t p i z scu t rh a ee t n b a sP O. h n e i a n r y d sa c o i k n d n a g fcu t s I o t d e mie l se — e d s l ci y Ch o - S T e o
法对簇头选举进行优 化。确定 簇头后 。 它节点通 过比较簇 头当选信 息 的信 号强度 与设定 强度 阀值 的大小 来决定是 否成为 其 簇成员 . 从而约束 了簇 的范 围。仿真结果表 明 , 与传统 的 L A H协议 相比 , EC 新协议能够有效地节省 能量 , 长网络的寿命 。 延
t t c mp r d wih L ha , o a e t EACH ,he n w r tc lc n efc e ty s v ne g n r lng t e lftme o S t e p o o o a fiin l a e e r a d p oo h iei fW N. y
高斯朴素贝叶斯训练集精确度的英语
高斯朴素贝叶斯训练集精确度的英语Gaussian Naive Bayes (GNB) is a popular machine learning algorithm used for classification tasks. It is particularly well-suited for text classification, spam filtering, and recommendation systems. However, like any other machine learning algorithm, GNB's performance heavily relies on the quality of the training data. In this essay, we will delve into the factors that affect the training set accuracy of Gaussian Naive Bayes and explore potential solutions to improve its performance.One of the key factors that influence the training set accuracy of GNB is the quality and quantity of the training data. In order for the algorithm to make accurate predictions, it needs to be trained on a diverse and representative dataset. If the training set is too small or biased, the model may not generalize well to new, unseen data. This can result in low training set accuracy and poor performance in real-world applications. Therefore, it is crucial to ensure that the training data is comprehensive and well-balanced across different classes.Another factor that can impact the training set accuracy of GNB is the presence of irrelevant or noisy features in the dataset. When the input features contain irrelevant information or noise, it can hinder the algorithm's ability to identify meaningful patterns and make accurate predictions. To address this issue, feature selection and feature engineering techniques can be employed to filter out irrelevant features and enhance the discriminative power of the model. Byselecting the most informative features and transforming them appropriately, we can improve the training set accuracy of GNB.Furthermore, the assumption of feature independence in Gaussian Naive Bayes can also affect its training set accuracy. Although the 'naive' assumption of feature independence simplifies the model and makes it computationally efficient, it may not hold true in real-world datasets where features are often correlated. When features are not independent, it can lead to biased probability estimates and suboptimal performance. To mitigate this issue, techniques such as feature extraction and dimensionality reduction can be employed to decorrelate the input features and improve the training set accuracy of GNB.In addition to the aforementioned factors, the choice of hyperparameters and model tuning can also impact the training set accuracy of GNB. Hyperparameters such as the smoothing parameter (alpha) and the covariance type in the Gaussian distribution can significantly influence the model's performance. Therefore, it is important to carefully tune these hyperparameters through cross-validation andgrid search to optimize the training set accuracy of GNB. By selecting the appropriate hyperparameters, we can ensure that the model is well-calibrated and achieves high accuracy on the training set.Despite the challenges and limitations associated with GNB, there are several strategies that can be employed to improve its training set accuracy. By curating a high-quality training dataset, performing feature selection and engineering, addressing feature independence assumptions, and tuning model hyperparameters, we can enhance the performance of GNB and achieve higher training set accuracy. Furthermore, it is important to continuously evaluate and validate the model on unseen data to ensure that it generalizes well and performs robustly in real-world scenarios. By addressing these factors and adopting best practices in model training and evaluation, we can maximize the training set accuracy of Gaussian Naive Bayes and unleash its full potential in various applications.。
考虑损失厌恶-对多型供应链的收益共享契约
( 1 . 华南理工大学工商管理学院 , 广州 5 1 0 6 4 1 ; 2 . 浙江师范大学行知学院 , 金华 3 2 1 0 0 4 )
摘 要 :以一个 两阶段 的供 应链 系统 为研 究背 景 , 建 立 了下游 损 失厌 恶型 零 售 商之 间存 在 竞 争 的 收益 共享 契约 协调模 型. 研 究发 现 , 竞争性 的 多零 售 商之 间存 在唯 一 的纳什 均衡 总订 货量使 其期 望 效 用 实现 最 大化 , 且 总订货 量 随零 售商数 目的增加 而 增加 、 随零 售 商风 险厌 恶程 度 的增
应链 的总 利 润 水 平 会 提 高 1 0 % 左 右. C a c h o n和
L a r i v e r e 提 出 了收益共 享契 约 的一 般 性框 架 , 对
其适用范 围和性能进行了深入地讨论 , 并证 明了
量折扣( q u a n t i t y . d i s c o u n t ) 契约等 J .
制包 括 : 回购 ( b u y b a c k ) 契约、 收益共享 ( r e v e n u e - s h a r i n g ) 契约、 数 量柔 性 ( q u a n t i t y f l e x i b i l i t y ) 契约 、
上. M o r t i m e r 采用计量经 济学 的方法分 析 了收 益分享契约对音像租赁行业 的影响 , 结果发现供
最早 出现在音像租赁行业 , 随后得到企业界 和学 术界 的广泛关注. 收益 的分配是供应链企业 问合 作与纷争的焦点问题 . 在一个 由多个参与主体组 成的供应链系统 中, 只有对他们 的合作收益进行 合理分配 , 才能建立并保持 良好 的供应链合作关
损失厌恶供应链应对突变风险的收益共享契约
i c e s s A u rc le a l s u e o v rf h e ul b a n d i h sp p r n rae . n me ia x mp e i s d t e y t e r s t o t i e n t i a e . i s Ke r s:s p l h i o r nain;l s -v rin;dir t n;r v n e s rng c n r c y wo d u p y c an c o di to o s a e so sup i o e e u ha i o ta t
2 col f ui s , at gU i rt, atn 20 9 C ia .Sh o o s es N no nvs y N nog 6 1 , h ) B n n ei 2 n
Ab t a t sr c :A wo sa e s p l h i o o e fa rs — e ta u pl ra d a ls — v min rt ie sd s t —tg u p y c an c mp s d o k n u r ls p i n o s a e o e alri i— i e c se i hi a e . W i e e u h rn o ta ta o r i ai n me n u sd n t sp p r t r v n e s a i g c n r c s c o d n t a s,t e s p l h i o r i ae h o h u p y c an c d n t p o l m n e u d n ds u to s i t d e r b e u d r s d e ir p in ssu id. By u i g t e l s - v re mo e o d s rb h o sa e so sn h o sa es d lt e c e t e l s — v ri n i l v lo h ea lr hep o to e s p l han i n lz d u de oh d c n r lz d a d c n r lz d c n e e ft e rt i ,t r f ft u p y c i sa ay e n rb t e e ta ie n e taie o — e i h to d s r lmo e .Re u t h w h t y u i g r v n e s a i g c n r c ,s c u p y c a n c n bec o di td. s lss o t a ,b sn e e u h rn o ta t u h a s p l h i a o r nae
植物逆境胁迫下的分子响应机制
植物逆境胁迫下的分子响应机制Introduction植物的长期生存离不开逆境环境中的谨慎应对,其中逆境胁迫是最常遇到的典型案例。
植物感知范围内的逆境胁迫,并启动分子层面的响应机制以抵抗挑战和尽可能地维持生长发育。
这篇文章将重点介绍植物逆境胁迫下的分子响应机制,其中包括植物模式识别受体、激素调控网络、次生代谢物品类、基因表达和蛋白质翻译调节等方面。
植物模式识别受体植物模式识别受体(PRRs)是植物防御响应的第一道屏障,它们可针对微生物致病分子通路中的共生分子(例如Flagellin,Chitin等)而产生响应,启动植物免疫机能。
由此可见,PRRs是植物维持自身稳态和适应不良环境的关键分子。
在逆境胁迫的背景下,PRRs可促进细胞外和细胞内的免疫反应。
例如,在病原体致病后,PRR调控局部酶催化,从而启动微生物降解机制。
在盐胁迫环境中,PRRs还可以介导盐胁迫适应过程中的肾上腺素和ATP信号转导,促进水分利用率和植物水分代谢能力的提高。
因此,PRRs是植物适应性的重要分子基础。
激素调控网络植物逆境胁迫中的激素调控网络是植物应对逆境的重要分子机制之一。
植物体内的激素调控网络包括乙烯(ethylene)、赤霉素(gibberellin)、脱落酸(abscisic acid)、生长素(auxin)和脯氨酸(proline)等,这些激素在不同的逆境环境中发挥着不同的生物学功能。
其中,乙烯和赤霉素能调节植物生长和发育,并在逆境胁迫后发挥重要作用。
例如,在盐胁迫环境中,乙烯可以促进盐胁迫适应的前期响应,从而增加植物的生物质生产和水分利用效率。
相反,在水胁迫环境中,赤霉素抑制植物根系的伸长,降低水分利用和土壤探测能力,并在逆境胁迫长期作用下,使植物处于萎蔫状态,失去活力。
次生代谢物品类植物紫外线、水胁迫和盐胁迫等逆境胁迫条件下,可激发植物次生代谢物品类的生产。
次生代谢物品类是由酚、醛、酮、生物碱、三萜类、酸类、内酯类等不同类型的化合物组成的,这些化合物在植物逆境响应中起到重要的生物学功能。
选择与坚持:跨期选择与延迟满足之比较
第2期
任天虹等 : 选择与坚持:跨期选择与延迟满足之比较
305
会通过预实验选择一对较为恰当的 SS 与 LL, 以 保证 SS 与 LL 之间的差异既要大到足以使被试愿 意选择后者 , 又要小到使 SS 对儿童有足够的诱惑 , 从而避免等待时间的天花板效应与地板效应 (Mischel & Underwood, 1974)。 动物实验在跨期选择与延迟满足的研究中都 有 所 涉 及 , 这 些动 物研 究 的 实验 范式 直 观 易 懂 , 对儿童被试的研究也颇有启示意义。随着研究内 容的扩展与研究范式的改进 , 跨期选择与延迟满 足在研究对象上有融合的趋势。 3.2 研究内容 跨期选择关注被试的时间折扣 (time discounting), 而延迟满足则更关注被试在等待时间上的 个 体 差 异 、 自 我 控 制 策 略 及 其 有 效 性 (Ainslie, 1975; Mischel et al., 1989)。如果说跨期选择的研 究者将其研究重点放在了计算、分析、推理、权 衡等较为高级的认知过程上 , 那么延迟满足的研 究者则将其重点放在了情绪、意志力、动机强度 等更为基础的本能反应上。 时间折扣是跨期选择研究的基本假设 , 也是 其研究的重要内容 , 它是指在跨期选择中 , 个体 首先会对延迟结果的价值根据其延迟的时间进行 一定的折扣, 然后再对两个结果进行比较(Frederick et al., 2002; Scholten & Read, 2010)。经济学家力 图找到某一通用的公式来描述折扣程度与结果及 延 迟 时 间 之间 的 关 系 , 表 现 为 数 理 模 型 的 优化 ; 心理学家则更关注外界因素对个体时间折扣程度 的影响 , 表现为认知神经机制的揭示。 延迟满足的研究者并不关注折扣程度 , 他们 更加关注等待时间上的个体差异 , 并在实验中细 致地检验被试自我控制策略的选择与使用状况 , 这些研究者热衷于以追踪研究揭示儿童在实验中 的表现与其个性及行为特征之间的关系 (Mischel et al., 1989)。 3.3 研究范式 跨期选择的研究关注被试的选择过程 , 它要 求被试做出一系列选择 ; 延迟满足则更关注被试 的坚持过程 , 要求被试坚持完成选择后的等待过 程。尽管在跨期选择的部分任务中也涉及到等待 过程 , 但是它与延迟满足有本质的区别。被试在 延迟满足任务中能够自主选择中止等待 , 而在跨 期选择任务中则只能消极等待延时结束 (Evans & Beran, 2007)。
增强采样方法 计算化学公社
增强采样方法计算化学公社下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!增强采样方法在计算化学领域中扮演着至关重要的角色,它是一种通过提高采样频率和效率来改善模拟系统的方法。
阿瑞匹坦中间体的生物催化高效高选择性反-Prelog 还原
阿瑞匹坦中间体的生物催化高效高选择性反-Prelog还原刘艳,裴小琼,汤脱险,张超,吴中柳中国科学院环境与应用微生物重点实验室,中国科学院成都生物研究所,四川省环境微生物重点实验室,成都610041,liuyan@光学活性(R)-1-[3,5-bis (trifluoromethyl) phenyl] ethanol(中文名称为(R)-1-3,5-双三氟甲基苯乙醇)是Merck公司研发生产的手性药物Aprepitant(阿瑞匹坦,商品名 Emend)的中间体。
阿瑞匹坦的主要用于预防和治疗化疗引起的急性或延迟性呕吐。
目前制备该关键手性中间体的主流工艺是化学催化不对称还原,目前研究者们正积极探索利用生物催化的方法获得该中间体,以期开发出绿色生产工艺。
近年来羰基还原酶已广泛应用于手性醇生产,但从环境中筛选的酶绝大部分遵循Prelog规则,而(R)-1-3,5-双三氟甲基苯乙醇的制备则需要符合反-Prelog规则的生物催化剂。
本研究通过建立较为快速的菌株筛选方法,采集各种生境中的土壤样品,以潜手性酮3,5-双三氟甲基苯乙酮为底物对富集菌株进行筛选,获得了选择性高的菌株。
其中金黄杆菌Chryseobacterium sp.CA49所产羰基还原酶的活力最高,其生长细胞可完全转化50 g/l底物,催化生成单一(R)-异构体(>99%ee)。
但是该菌生长细胞转化时自身会将底物作为营养物质利用,从而导致最终产物量远低于理论产量。
采用休止细胞转化又存在菌体松散,离心收集菌体很困难的问题。
为解决这些不足和进一步研究关键酶的酶学性能,拟将功能基因构建重组菌异源表达。
根据该菌全基因组测序框架图调取出40余个具有羰基还原酶功能的基因,经功能验证确定了关键基因Ch KRED20,长度为249氨基酸,与GeneBank 中所公布序列相似度最高为76%,且大部分为短链脱氢酶家族。
将重组酶用于生物转化,初步结果表明:粗酶粉浓度10g/l时,24h可转化200g/l底物,转化率高达98%,ee值99%以上;降低酶浓度至2g/l,仍可获得94%的转化率并保持ee值不变,具备很强的工业应用潜力。
有限个一致李普希兹渐近拟非扩张映像强收敛定理
有限个一致李普希兹渐近拟非扩张映像强收敛定理有限个一致李普希兹渐近拟非扩张映像强收敛定理(TheFinitely Consistent Lipschitz Near Non-expansive Mapping Strongly Convergence Theorem)是一种重要的定理,主要用于特定问题的有限和紧张条件下的迭代解决方案。
它是由在1960年发表的一篇著名的理论文章“Finiteness, Lipshitz Nearness Non-Expansiveness, and a Strong Convergence Condition forIterative Processes”中首次提出的。
因此,有限性李普希兹渐近拟非扩张映射强收敛定理可以使我们对特定事件进行更有效的解决方案,以改善算法的性能。
该定理也被称为Lipschitz迭代定理,它有助于揭示一致过程和计算在某一特定情况下去获得有效结果。
该定理表明,当使用一致李普希兹渐近拟非扩张映像时,可以得到强收敛,即使存在具有有限规模的条件也是如此。
因此,该定理有助于根据特定的条件及其对应的参数,以有效的方式找到解决方案。
在有限一致李普希兹渐近拟非扩张映像强收敛定理的研究中,已经发现了多种应用,其中包括图像分析、图像处理、模式识别、计算机视觉和机器学习等。
此外,它在统计学中也被用于估计参数和分析非线性模型。
有限性李普希兹渐近拟非扩张映射强收敛定理是一种有用的定理,它可以帮助我们更好地理解一致过程,提供更有效解决方案,为特定问题提供有效的计算方法。
它还有助于推导出复杂问题的解决方案,并在多个域被广泛应用。
强化学习
2020/4/14
强化学习 史忠植
3
引言
强化学习技术是从控制理论、统计学、心理学等 相关学科发展而来,最早可以追溯到巴甫洛夫的条件 反射实验。
但直到上世纪八十年代末、九十年代初强化学习 技术才在人工智能、机器学习和自动控制等领域中得 到广泛研究和应用,并被认为是设计智能系统的核心 技术之一。特别是随着强化学习的数学基础研究取得 突破性进展后,对强化学习的研究和应用日益开展起 来,成为目前机器学习领域的研究热点之一。
1989年Watkins提出了Q-学习[Watkins 1989],也把强化学习的三条主 线扭在了一起。
1992年,Tesauro用强化学习成功了应用到西洋双陆棋
(backgammon)中,称为TD-Gammon 。
2020/4/14
强化学习 史忠植
6
内容提要
引言 强化学习模型
动态规划 蒙特卡罗方法 时序差分学习 Q学习 强化学习中的函数估计
2020/4/14
强化学习 史忠植
4
引言
强化思想最先来源于心理学的研究。1911年Thorndike提出了效 果律(Law of Effect):一定情景下让动物感到舒服的行为, 就会与此情景增强联系(强化),当此情景再现时,动物的这种 行为也更易再现;相反,让动物感觉不舒服的行为,会减弱与情 景的联系,此情景再现时,此行为将很难再现。换个说法,哪种 行为会“记住”,会与刺激建立联系,取决于行为产生的效果。
Inputs
RL System
Outputs (“actions”)
The most complex general class of environments are inaccessible, nondeterministic, non-episodic, dynamic, and continuous.
集成学习的不二法门bagging、boosting和三大法宝结合策略平均法,投票法和学习法。。。
集成学习的不⼆法门bagging、boosting和三⼤法宝结合策略平均法,投票法和学习法。
单个学习器要么容易⽋拟合要么容易过拟合,为了获得泛化性能优良的学习器,可以训练多个个体学习器,通过⼀定的结合策略,最终形成⼀个强学习器。
这种集成多个个体学习器的⽅法称为集成学习(ensemble learning)。
集成学习通过组合多种模型来改善机器学习的结果,与单⼀的模型相⽐,这种⽅法允许产⽣更好的预测性能。
集成学习属于元算法,即结合数个“好⽽不同”的机器学习技术,形成⼀个预测模型,以此来降⽅差(bagging),减偏差(boosting),提升预测准确性(stacking)。
1. 集成学习之个体学习器个体学习器(⼜称为“基学习器”)的选择有两种⽅式:集成中只包含同种类型的个体学习器,称为同质集成。
集成中包含不同类型的个体学习器,为异质集成。
⽬前同质集成的应⽤最⼴泛,⽽基学习器使⽤最多的模型是CART决策树和神经⽹络。
按照个体学习器之间是否存在依赖关系可以分为两类:个体学习器之间存在强依赖关系,⼀系列个体学习器基本必须串⾏⽣成,代表是boosting系列算法。
个体学习器之间不存在强依赖关系,⼀系列个体学习器可以并⾏⽣成,代表是bagging系列算法。
1.1 boosting算法原理boosting的算法原理如下所⽰:Boosting算法的⼯作机制是:(1)先从初始训练集训练出⼀个基学习器;(2)再根据基学习器的表现对样本权重进⾏调整,增加基学习器误分类样本的权重(⼜称重采样);(3)基于调整后的样本分布来训练下⼀个基学习器;(4)如此重复进⾏,直⾄基学习器数⽬达到事先指定的个数,将这个基学习器通过集合策略进⾏整合,得到最终的强学习器。
Boosting系列算法⾥最著名算法主要有AdaBoost算法和提升树(boosting tree)系列算法。
提升树系列算法⾥⾯应⽤最⼴泛的是梯度提升树(Gradient Boosting Tree)<GDBT>。
合作协同进化算法
合作协同进化算法合作协同进化算法(Cooperative Coevolutionary Algorithm,CCA)是一种基于群体智能的进化算法,其主要思想是将复杂问题分解为多个子问题,并通过协同进化的方式来解决这些子问题,最终得到整体的优化结果。
相比传统的进化算法,CCA能够利用子问题之间的相互作用来提高效率,从而更好地适应复杂问题的求解。
CCA的基本框架可以分为两个阶段:子问题优化和协同优化。
在子问题优化阶段,CCA将原问题分解为多个相互独立的子问题,每个子问题对应一个个体。
每个子问题都有自己的目标函数和相应的求解算法。
这些子问题可以是相同的,也可以是不同的。
每个子问题都单独进行优化,得到自己的局部最优解。
这一阶段的目标是通过并行计算来提高效率,并得到每个子问题的局部最优解。
在协同优化阶段,CCA通过模拟子问题之间的相互作用来实现整体的优化。
这一阶段包括个体的交流和协作。
具体来说,每个个体会与其他个体进行合作,并交换信息、分享经验。
这种信息的交流可以通过各种方式进行,例如基于群体智能的算法中常用的粒子群算法、蚁群算法等。
通过合作和协同进化,CCA可以发现更好的解,并最终找到全局最优解。
CCA的优势在于其有效地利用了子问题之间的相互作用。
在优化复杂问题时,将问题分解为多个子问题可以降低问题的复杂度,使得问题更易于求解。
而通过合作和协同进化,CCA能够更好地问题的解空间,提高效率,并得到更好的解。
此外,CCA还具有良好的鲁棒性和可扩展性,能够适应不同类型的问题。
值得注意的是,CCA的成功应用需要合理的子问题分解和合适的协同机制。
子问题的划分需要考虑到问题的特点和求解要求,以确保每个子问题能够得到有效的求解。
而协同机制的选择需要根据问题的特点来确定,以保证个体之间信息交流的准确性和有效性。
总之,合作协同进化算法是一种有效的进化算法,适用于复杂问题的求解。
通过将问题分解为多个子问题,并通过协同进化的方式进行优化,CCA能够更好地问题的解空间,提高效率,并找到更好的解。
双碳 伪概念
双碳伪概念【中英文实用版】Title: Double Carbon - A False ConceptDouble carbon, a term that has been heating up the global discourse, is a pseudo concept created by netizens to describe a situation where a person duplicates their carbon footprint by engaging in environmentally irresponsible behavior.While the idea behind the term may be amusing, it masks a serious issue - the need for accurate and informed discussions about climate change and carbon neutrality.伪概念“双碳”最近在全球讨论中越来越热。
这个由网民创造的概念,用来描述一个人通过从事环境不负责任的行为,复制了自己的碳排放。
虽然这个想法可能很有趣,但它掩盖了一个严重的问题——我们需要对气候变化和碳中和进行准确和有根据的讨论。
The double carbon concept has gained traction, especially in China, as the country accelerates its efforts to achieve carbon neutrality by 2060.However, the term has been criticized for its simplistic view of the complex issue of climate change.It fails to recognize the importance of reducing carbon emissions at the source and the need for a comprehensive approach to tackling climate change.“双碳”概念在中国尤其流行,因为该国正在加快实现2060年碳中和的目标。
多策略融合的改进萤火虫算法
多策略融合的改进萤火虫算法
雍欣;高岳林;赫亚华;王惠敏
【期刊名称】《计算机应用》
【年(卷),期】2022(42)12
【摘要】针对传统萤火虫算法(FA)中存在的易陷入局部最优及收敛速度慢等问题,把莱维飞行和精英参与的交叉算子及精英反向学习机制融入到萤火虫优化算法中,提出了一种多策略融合的改进萤火虫算法——LEEFA。
首先,在传统萤火虫算法的基础上引入莱维飞行,从而提升算法的全局搜索能力;其次,提出精英参与的交叉算子以提升算法的收敛速度和精度,并增强算法迭代过程中解的多样性和质量;最后,结合精英反向学习机制进行最优解的搜索,从而提高FA跳出局部最优的能力和收敛性能,并实现对于解搜索空间的迅速勘探。
为验证所提出的算法的有效性,在基准测试函数上进行了仿真实验,结果表明相较于粒子群优化(PSO)算法、传统FA、莱维飞行萤火虫算法(LFFA)、基于莱维飞行和变异算子的萤火虫算法(LMFA)和自适应对数螺旋-莱维飞行萤火虫优化算法(ADIFA)等算法,所提算法在收敛速度和精度上均表现得更为优异。
【总页数】9页(P3847-3855)
【作者】雍欣;高岳林;赫亚华;王惠敏
【作者单位】北方民族大学计算机科学与工程学院;宁夏智能信息与大数据处理重点实验室(北方民族大学)
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.融合模拟退火策略的萤火虫优化算法
2.融合改进二元萤火虫算法和互补性测度的集成剪枝方法
3.融合改进二元萤火虫算法和边界最小化测度的集成剪枝方法
4.基于改进萤火虫算法的虚拟机迁移策略研究
5.多策略融合学习萤火虫算法在年径流预测中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Reconciling Zero-conf with Efficiency in EnterprisesChang Kim and Jennifer RexfordPrinceton University{chkim, jrex}@ABSTRACTA conventional enterprise or campus network comprises Ethernet-based IP subnets interconnected by routers. Although each subnet runs with minimal (or zero) configuration by virtue of Ethernet’s flat-addressing and self-learning capability, interconnecting subnets at the IP-level introduces significant amount of configuration overhead on both end-hosts and routers. The configuration problem becomes more serious as an enterprise network grows by merging multiple remote sites and by supporting more number of portable end-hosts. Deploying enterprise-wide Ethernet, however, cannot solve this problem because Ethernet bridging does not scale. As an alternative, we propose a scalable and efficient zero-conf architecture (SEIZE) for enterprise networks. SEIZE provides “plug-and-play” capability via flat addressing and allows for scalability and efficiency through a combination of enhanced information dissemination schemes, such as link-state protocols and consistent hashing. SEIZE also supports backward compatibility and partial deployment.Categories and Subject DescriptorsC.2.1 [Computer-Communication Network]: Network Architecture and Design–Distributed NetworksGeneral TermsManagement, DesignKeywordsEnterprise Networking, Ethernet, IP, Zero-configuration1.INTRODUCTIONZero-configuration networking is especially beneficial to enterprise administrators because their resources (human, time, money, skill, etc.) are more limited than in commercial service providers. Considering the increase of volatility by incorporating portable hosts, and the increase of scale by natural growth or by combining multiple remote sites via VPNs, the importance of reducing configuration overhead and enhancing scalability becomes more prominent.At a first glance, deploying enterprise-wide Ethernet seems promising because of the benefits of self-learning [1] and flat addressing. Ethernet, however, introduces non-negligible side effects from a scalability perspective. Ethernet bridging prohibits a network from employing back-up paths (a.k.a., loops) or, when back-up paths are needed for survivability, requires a spanning tree protocol [2]. Forwarding along a spanning tree does not scale because the entire traffic must share a single forwarding path, regardless of source-destination pairs [3]. Spanning tree based flooding also requires a conservative approach to failover because flooded traffic trapped in a transient loop would cause packet proliferation [4]. This forces a network to endure slow convergence [5].On the other hand, IP is more efficient in utilizing redundant resources and provides rapid failover, but its hierarchical addressing and routing requires subnet configurations1. Using administrative resources for configuring basic networking functions (i.e., reachability provisioning) should be avoided; scarce resources should rather be used for value-creating tasks, such as network design, performance management, etc. Hierarchical addressing is also inefficient because address blocks are not optimally utilized. Poor support for mobility is yet another matter.1Although DHCP can automate host configurations, operators still have to configure subnets on interfaces and routing instances. Moreover, configuring DHCP servers also carries configuration overhead.SEIZE is an Ethernet-based subnet interconnection architecture which minimizes the dependence on configuration, yet is efficient and scalable. In this paper, we motivate and describe the SEIZE architecture especially in comparison with related work. A short analysis of the architecture follows the description.2.Related WorkThere are a number of solutions proposed recently. Perlman introduced rbridges [2] which can extend Ethernet bridging to interconnect multiple subnets without being confined to a spanning tree. Since this extension employs an additional Ethernet header with a Time-To-Live (TTL) field, a transient loop does not swamp involved rbridges, making fast convergence attainable. An rbridge network delivers traffic along optimal paths because rbridges share a complete network topology using a link-state protocol. An end-host’s location and address are discovered by its immediate rbridge via its data traffic. For global synchronization, host information is then disseminated through link-state advertisements. Although pair-wise shortest paths employed by an rbridge network enables more efficient network resource utilization than conventional Ethernet bridging does, disseminating end-hosts’ information via link-state protocol introduces significant control overhead when the network grows. End-hosts’ volatility aggravates this problem.Myers et al. proposed a high-level framework for Ethernet to support a million end-hosts [5]. In order to ensure scalability, the architecture forbids flooding (both for unknown unicast destinations and known broadcast/multicast destinations) and requires end hosts to actively register themselves to immediate switches. Switches then disseminate hosts’ information via link-state advertisements. Since hosts’ information is ubiquitously disseminated, data traffic can be forwarded on a hop-by-hop basis. This scheme, however, requires each end-host’s information to be flooded across the network whenever it is discovered. Like an rbridge network, this can introduce unbearably high control overhead and huge forwarding tables. Meanwhile, the architecture requires a modification of the current Ethernet protocol implementations and service models (e.g., ARP and DHCP) as well. Table 1 summarizes the related work and our architecture.3.SEIZE Architecture and AnalysisWe summarize key design features of the SEIZE architecture.∙Ethernet addressing and frame formatEthernet addresses (IEEE 802 MAC-48 addresses) are used as unique identifiers of interfaces across an entire network. Since Ethernet addresses are flat and unique, no subnet configurations are required on network nodes2. Intra-enterprise mobility also does not require host reconfiguration. IP addresses are given to end-hosts only for external reachability and application-layer compatibility. Conceptually, an entire enterprise appears as a large single IP subnet carrying data end-to-end in the Ethernet format. This guarantees backward compatibility to end-hosts because they can use the same Ethernet interfaces and protocol implementations, whereas rbridges requires a new Ethernet header format. ∙Link-state protocol for distributing topology informationA link-state protocol allows network nodes to unanimously share acomplete view of the connectivity among themselves, except in transient periods. Using this topology information, each network node maintains2We intentionally use a generic term, “network node”, because the packet delivery entity in our architecture is different both from the conventional bridges and routers.Table 1. Ethernet Extension ArchitecturesInformation DisseminationPacket format and AddressingTopology -coreconnectivity End-hosts-location &address HostDiscoveryForwardingRbridge Ethernet with a new shim hdr,MAC-48Link-state protocol List-state advertisement Network discovers TunnelingMyer’s et al.Ethernet,MAC-48Link-state protocol Link-state advertisement Hosts registers Hop-by-hop SEIZEEthernet,MAC-48Link-state protocolConsistent HashNetwork discovers,or hosts registersTunneling,or address swappingshortest paths to all other nodes, making optimal use of topological richness. Unlike both rbridge and Myer’s architecture, the link-state protocol does NOT disseminate end-hosts’ information for the sake of scalability.∙Hash-based end-host location and address disseminationThis is the key idea that ensures scalability and efficiency for SEIZE. To maintain (i.e., to register, deregister, and look-up) end-hosts’ locations and addresses (MAC and layer-3 addresses), network nodes use consistent hash [6] with the end-host’s address as the key. That is, each network node maintains only a small portion of the entire end-hosts’ information, and the mapping is dictated by the consistent hash. This dissemination scheme ensures that, when an end-host’s information needs updating, only a small, constant number (usually two) of network nodes are involved in the process. Additionally, the overhead of dealing with unstable network nodes is also minimized. In order to guarantee availability, an end-host’s information should be mapped to more than one node (e.g., the first and the second successor node on a consistent hash ring). ARP requests are also substituted for hash-based look-up operations, since ARP requests result in significant flooding overhead. That is, a network node plays a role of an ARP proxy for the end-hosts residing in its own segment. In order to support this, SEIZE maintains another consistent hash ring for <IP addr, hash value> pairs.Figure 1 illustrates an example host information registration procedure.∙End-host discovery: Compatibility mode vs. Scalability modeFor backward compatibility, SEIZE can support the conventional “discovery-from-data” mechanism used by Ethernet. This mechanism intrinsically requires flooding to deliver data to an unknown destination, which is unscalable and dangerous 3 with a large number of hosts. As a supplement, upon discovering a new host, SEIZE stores the end-host’s3Some malicious attacks, such as MAC spoofing and ARP flooding, become more devastating as more end-hosts get involved.information using the hash-based dissemination scheme. This efficiently reduces redundant flooding attempts for unknown or forgotten hosts. On the other hand, when scalability and safety is more demanding a concern than backward compatibility, SEIZE can make use of DHCP as an active host registration scheme. By collocating DHCP servers at edge routers and periodically polling via ARP, SEIZE can effectively trace end-hosts’ up and down events. This obviates the need for flooding and significantly enhances the entire network’s efficiency and scalability.∙Data traffic delivery: Scalability mode vs. Optimality modeSince each network node possesses partial knowledge about end-hosts, when SEIZE needs to deliver a packet to an unknown end-host, it transmits the packet to a “relay” network node that is in charge of maintaining the destination host’s location as per the consistent hash. This relay can be accomplished by tunneling or address swapping 4. For performance’s sake, SEIZE can optimize this detour path by letting the initiating network node keep the destination host’s location in its cache and use a direct tunnel to the destination. This exercise of trading scalability for optimality can be dynamically adjusted by controlling the number of cacheable paths at each node according to administrative goals. Figure 1 also shows an example case where data is delivered via a relay path or a direct path.∙Securing floodingFor the sake of service-level compatibility,SEIZE supports broadcast/multicast as well. Flooding, which is a conventional method to support broadcast, proliferates packets when it coincides with a transient loop. As the Ethernet frame format does not carry a TTL, packet proliferation can easily bog down involved network nodes. As a substitute of the conventional physical flooding, SEIZE makes use of pseudo-flooding which systematically replicates a unicast packet along a pre-determined cycle-free graph. Because pseudo-flooding is built on top of unicast, a loop does not proliferate packets. Further, with an intelligent loop detection scheme that does not resort on TTL, SEIZE can aggressively remove packets trapped in a transient loop, providing better loop-evasion performance than IP does.4.ConclusionConventional enterprise architectures require unnecessary configuration overhead, yet are unscalable and sub-optimal. We described and analyzed the SEIZE architecture, which works effectively with minimal configurations, and efficiently with unstable network nodes and a large number of volatile hosts.5.REFERENCES[1] IEEE Std 802.1D – 2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access Control (MAC) Bridges, IEEE Computer Society and ANSI.[2] R. Perlman, “Rbridges: Transparent Routing,” in Proceedings of Infocom 2004, Hong Kong, March 2004.[3] T. Rodeheffer, C. Thekkath, and D. Anderson, “SmartBridge: A Scalable Bridge Architecture,” in Proceedings of ACM SIGCOMM , pp. 205-216, August 2000.[4]R. Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking Protocols , Addison-Wesley Professional Computing Series, 1999.[5] A. Myers, T. S. Eugene Ng, and H. Zhang, “Rethinking the Service Model: Scaling Ethernet to a Million Nodes,” in Proceedings of HotNets III, November, 2004.[6] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy, “Consistent Hashing and Random Trees: Tools for Relieving Hot Spots on the World Wide Web,” in Proceedings of ACM Symposium on Theory of Computing , pp. 654-663, 1997.4For example in figure 1, when E handles a frame from Y, E can put A’s address in the frame’s destination field, saving x’s address in the source field. When the frame arrives at A, x’s address is restored into the destination field.Figure 1. Host information management and traffic deliveryProcedures with sequence number 1 denote the registration process of the end-host x’s location information. Procedures with sequence number 2 show the data delivery process from host y to x . Network nodes (A through E ) run a link-state routing protocol to maintain core connectivity amongst themselves.。