2018广东广州市高三数学复习专项检测试题:15含解析
2018届广州市高三年级调研测试(文科数学)答案
数学(文科)试题A 第 1 页 共 8 页2018届广州市高三年级调研测试 文科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一.选择题二.填空题13.10 14.21- 15.1ln 2+ 16.1三、解答题17. 解:(1)当1n =时,114a =.………………………………………………………………………1分 因为221*123-144+44,4n n n n n a a a a a n --++++=∈N L , ①所以22123-1-1444,24n n n a a a a n -++++=≥L . ②……………………………………3分①-②得1144n n a -=.……………………………………………………………………………………4分所以()*1=2,4n n a n n ≥∈N .……………………………………………………………………………5分由于114a =也满足上式,故*1=()4n n a n ∈N .…………………………………………………………6分(2)由(1)得421n n n a b n =+=121n +.………………………………………………………………………7分所以()()11111=212322123n n b b n n n n +⎛⎫=- ⎪++++⎝⎭.………………………………………………9分数学(文科)试题A 第 2 页 共 8 页故1111111235572123n T n n ⎛⎫=-+-++- ⎪++⎝⎭L ……………………………………………………10分 1112323n ⎛⎫=- ⎪+⎝⎭…………………………………………………………………………………11分 69nn +=.…………………………………………………………………………………………12分18.(1)证明:连接 BD ,交 AC 于点O ,设PC 中点为F , 连接OF ,EF .因为O ,F 分别为AC ,PC 的中点, 所以OF PA P ,且12OF PA =, 因为DE PA P ,且12DE PA =, 所以OF DE P ,且OF DE =.…………………………………………………………………………1分 所以四边形OFED 为平行四边形,所以OD EF P ,即BD EF P .………………………………2分 因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥. 因为ABCD 是菱形,所以BD AC ⊥.因为PA AC A =I ,所以BD ⊥平面PAC .…………………………………………………………4分 因为BD EF P ,所以EF ⊥平面PAC .………………………………………………………………5分 因为FE ⊂平面PCE ,所以平面PAC ⊥平面PCE . ………………………………………………6分 (2)解法1:因为60ABC ∠=o ,所以△ABC 是等边三角形,所以2AC =.………………………7分又因为PA ⊥平面ABCD ,AC ⊂平面ABCD ,所以PA AC ⊥.所以122PAC S PA AC ∆=⨯=.……………………………………………………………………………8分 因为EF ⊥面PAC ,所以EF 是三棱锥E PAC -的高. ……………………………………………9分因为EF DO BO ===……………………………………………………………………………10分 所以13P ACE E PACPAC V VS EF --∆==⨯…………………………………………………………………11分1233=⨯=.………………………………………………………………………12分 解法2:因为底面ABCD 为菱形,且︒=∠60ABC ,所以△ACD 为等边三角形.………………7分 取AD 的中点M ,连CM ,则AD CM ⊥,且3=CM .………………………………………8分数学(文科)试题A 第 3 页 共 8 页因为⊥PA 平面ABCD ,所以CM PA ⊥,又A AD PA =I ,所以CM ⊥平面PADE ,所以CM 是三棱锥C PAE -的高.………………………………………9分因为122PAE S PA AD ∆=⨯=.…………………………………………………………………………10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯……………………………………11分1233=⨯=.…………………………………………12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.…………………1分因为51()()(3)(1)000316ii i xx y y =--=-⨯-++++⨯=∑, ………………………………………2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ………………………………………………3分==……………………………………………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系. …………………………………………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行,周总利润Y =1×3000-2×1000=1000元. …………………………………………………………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行,周总利润Y =2×3000-1×1000=5000元. …………………………………………………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行,周总利润Y =3×3000=9000元. …………………………………………………………………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元. ………………………………………………12分数学(文科)试题A 第 4 页 共 8 页20. 解:(1)抛物线的准线方程为2p x =-, 所以点E ()2t ,到焦点的距离为232p+=.…………………………………………………………1分解得2p =.所以抛物线C 的方程为24y x =.………………………………………………………………………2分(2)解法1:设直线l 的方程为()10x my m =->.………………………………………………………3分将1x my =-代入24y x =并整理得2440y my -+=,………………………………………………4分 由()24160m ∆=->,解得1m >.……………………………………………………………………5分 设()11,A x y , ()22,B x y , ()11,D x y -,则124y y m +=, 124y y =,……………………………………………………………………………6分因为()()()2212121212·11(1)2484FA FB x x y y m y m y m y y =--+=+-++=-u u u r u u u r ,………………7分因为FA FB ⊥,所以0FA FB =u u u r u u u rg .即2840m -=,又0m >,解得m =.…………………………………………………………8分所以直线l的方程为10x -+=. 设AB 的中点为()00,x y , ,0013x my =-=,……………………………………………………9分 所以直线AB的中垂线方程为)3y x -=-. 因为AD 的中垂线方程为0y =,所以△ABD 的外接圆圆心坐标为()5,0.……………………………………………………………10分因为圆心()5,0到直线l 的距离为AB ==……………………………………………………………11分 所以△ABD 的外接圆的方程为()22524x y -+=.…………………………………………………12分数学(文科)试题A 第 5 页 共 8 页解法2:依题意可设直线()():10l y k x k =+>.……………………………………………………3分 将直线l 与抛物线C 联立整理得0)42(2222=+-+k x k x k .………………………………………4分 由04)42(422>--=∆k k ,解得10<<k .………………………………………………………5分 设),,(),,(2211y x B y x A 则1,4221221=+-=+x x k x x .…………………………………………………………………………6分 所以4)1(2121221=+++=x x x x k y y ,因为12121224()18FA FB x x x x y y k⋅=-+++=-u u u r u u u r ,…………………………………………………7分因为FA FB ⊥,所以0FA FB =u u u r u u u rg .所以2480k-=,又0k > ,解得22=k .…………………………………………………………8分 以下同解法1.21.解:(1)函数()f x 的定义域为()0,+∞.当2b =时,()2ln f x a x x =+,所以()222a x af x x x x+'=+=.………………………………1分① 当0a >时,()0f x '>,所以函数()f x 在()0,+∞上单调递增.………………………………2分 ② 当0a <时,令()0f x '=,解得x =当0x <<()0f x '<,所以函数()f x在⎛ ⎝上单调递减;当x >()0f x '>,所以函数()f x在⎫+∞⎪⎪⎭上单调递增.………………………3分 综上所述,当2b =,0a >时,函数()f x 在()0,+∞上单调递增;当2b =,0a <时,函数()f x在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.………4分(2)因为对任意1,e ex ⎡⎤∈⎢⎥⎣⎦,有()e 1f x ≤-成立,所以()max e 1f x ≤-.……………………………5分数学(文科)试题A 第 6 页 共 8 页当0a b +=即a b =-时,()ln b f x b x x =-+,()()11bb b x b f x bx x x---'=+=. 令()0f x '<,得01x <<;令()0f x '>,得1x >.所以函数()f x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,…………………………………………7分()max f x 为1e e b f b -⎛⎫=+ ⎪⎝⎭与()e e b f b =-+中的较大者.…………………………………………8分设()()1e e e 2e b b g b f f b -⎛⎫=-=-- ⎪⎝⎭()0b >, 则()e e220bbg b -'=+->=,所以()g b 在()0,+∞上单调递增,故()()00g b g >=所以()1e e f f ⎛⎫> ⎪⎝⎭,从而()max f x =⎡⎤⎣⎦()e e bf b =-+.………………………………………………………………………9分所以e e 1bb -+≤-即e e 10b b --+≤.设()=e e 1bb b ϕ--+()0b >,则()=e 10bb ϕ'->.…………………………………………………10分所以()b ϕ在()0,+∞上单调递增.又()10ϕ=,所以e e 10b b --+≤的解为1b ≤.……………………………………………………11分 因为0b >,所以b 的取值范围为(]0,1.………………………………………………………………12分22.解:(1)因为曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩(α为参数),因为2.x x y y '=⎧⎨'=⎩,,则曲线2C 的参数方程2cos 2sin .x y αα'=⎧⎨'=⎩,.………………………………………………2分所以2C 的普通方程为224x y ''+=.……………………………………………………………………3分 所以2C 为圆心在原点,半径为2的圆.…………………………………………………………………4分所以2C 的极坐标方程为24ρ=,即2ρ=.…………………………………………………………5分数学(文科)试题A 第 7 页 共 8 页(2)解法1:直线l 的普通方程为100x y --=.…………………………………………………………6分曲线2C 上的点M 到直线l的距离+)10|d απ-==.…………8分 当cos +=14απ⎛⎫⎪⎝⎭即()=24k k αππ-∈Z 时,d2-.……………9分 当cos +=14απ⎛⎫- ⎪⎝⎭即()3=24k k απ+π∈Z 时,d+10分 解法2:直线l 的普通方程为100x y --=.…………………………………………………………6分 因为圆2C 的半径为2,且圆心到直线l 的距离252|1000|=--=d ,…………………………7分因为225>,所以圆2C 与直线l 相离.………………………………………………………………8分 所以圆2C 上的点M 到直线l 的距离最大值为225+=+r d ,最小值为225-=-r d .…10分23.解:(1)当1=a 时,()|1|=+f x x .…………………………………………………………………1分①当1x ≤-时,原不等式可化为122x x --≤--,解得1≤-x .…………………………………2分 ②当112x -<<-时,原不等式可化为122+≤--x x ,解得1≤-x ,此时原不等式无解.……3分 ③当12x ≥-时,原不等式可化为12+≤x x ,解得1≥x .…………………………………………4分 综上可知,原不等式的解集为{1x x ≤-或}1≥x .…………………………………………………5分(2)解法1:①当3a ≤时,()3,3,23,3,3,.a x g x x a x a a x a -≤-⎧⎪=----<<-⎨⎪-≥-⎩………………………………………6分所以函数()g x 的值域[]3,3A a a =--, 因为[2,1]-⊆A ,所以3231a a -≤-⎧⎨-≥⎩,,解得1a ≤.………………………………………………………7分②当3a >时,()3,,23,3,3, 3.a x a g x x a a x a x -≤-⎧⎪=++-<<-⎨⎪-≥-⎩…………………………………………………8分数学(文科)试题A 第 8 页 共 8 页所以函数()g x 的值域[]3,3A a a =--, 因为[2,1]-⊆A ,所以3231a a -≤-⎧⎨-≥⎩,,解得5a ≥.………………………………………………………9分综上可知,a 的取值范围是(][),15,-∞+∞U .………………………………………………………10分 解法2:因为|+||+3|x a x -≤()+(+3)3x a x a -=-,……………………………………………7分 所以()g x =()|+3||+||+3|[|3|,|3|]-=-∈---f x x x a x a a .所以函数()g x 的值域[|3|,|3|]A a a =---.…………………………………………………………8分因为[2,1]-⊆A ,所以|3|2|3|1a a --≤-⎧⎨-≥⎩,,解得1a ≤或5a ≥.所以a 的取值范围是(][),15,-∞+∞U .………………………………………………………………10分。
高三数学-2018广东广州质检 精品
高三数学训练题2018年2月12日15:00—17:00本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.共150分.考试时间120分钟.第 I 卷 (选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考生号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人员将本试卷和答题卡一并收回. 参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率k n kk n n P P C k P --=)1()(一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若U ={1,2,3,4,5},M ={1,2,4},N ={3,4,5},则U (M ∩N )=(A ){4} (B ){1,2,3} (C ){1,3,4} (D ){1,2,3,5}(2)2211lim 21x x x x →-=--(A )12 (B )23(C )0 (D )2(3)不等式 |x |≤|x +2| 的解集是 (A ){x |x ≥-1} (B ){x |x ≤-1} (C ){x |-1≤x <1} (D ){x |x ≥1} (4)直线y =m 与圆x 2+(y -2)2=1相切,则m 的值是(A )1 (B )3 (C )1或3 (D )2或4(5)在△ABC 中,“A =3π”是“sinA 2(A )充分而不必要条件 (B )充分且必要条件(C )必要而不充分条件 (D )既不充分也不必要条件(6)在等差数列{a n }中,a 1+a 2+a 3=3,a 28+a 29+a 30=165,则此数列前30项和等于(A )810 (B )840 (C )870 (D )900 (7)椭圆2291x y +=的两个焦点为F 1、F 2,过F 1作PF 1⊥x 轴,交椭圆于点P ,则|PF 2|=(A )173 (B )53 (C )13 (D )83(8)39(x-的展开式中常数项是(A )84 (B )-84 (C )36 (D )-36(9)已知球的表面积为4π,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为 (A(B(C(D(10)函数22()sin 3cos f x x x =+的最小正周期是(A )4π (B )2π(C )π (D )2π (11)将4名医生分配到3间医院,每间医院至少1名医生,则不同的分配方案共有(A )48种 (B )12种 (C )24种 (D )36种(12)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在棱AB 上,且AM =13,点P 是平面ABCD 上的动点,且动点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则动点P 的轨迹是 (A )圆 (B )抛物线 (C )双曲线 (D )直线_ B _1_ A _1_ D _1 _ C _1 _ C _ B_ A _ D_ P _ M高三数学训练题第 Ⅱ 卷 (非选择题 共90分)注意事项:⒈ 第Ⅱ卷共4页,用钢笔或圆珠笔直接答在试题卷中. ⒉ 答卷前将密封线内的项目填写清楚.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)设复数12z =-+,则2z z += (14)某单位业务人员、管理人员、后勤服务人员人数之比依次为15∶3∶2.为了了解该单位职员的某种情况,采用分层抽样方法抽出一个容量为n 的样本,样本中业务人员人数为30,则此样本的容量n =:______ ___________班别:___________姓名:_______ _______学号:_________封 线 内 答 题(15)设x ,y 满足约束条件10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则z =3x +y 的最大值是(16)已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是①两条平行直线 ②两条互相垂直的直线 ③同一条直线 ④一条直线及其外一点在上面结论中,正确结论的编号是 (写出所有正确结论的编号). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本题满分12分)如图,在一段线路中并联着3个自动控制的常开开关J A 、J B 、J C ,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内开关J A 、J B 、J C 能够闭合的概率分别是45、35、25,计算:(Ⅰ)在这段时间内恰好3个开关都闭合的概率;(Ⅱ)在这段时间内线路正常工作的概率.(18)(本题满分12分)已知向量(cos ,sin )a θθ=,向量(3,1)b =.(Ⅰ)当a b ⊥时,求tan 2θ; (Ⅱ)求|a b +|的最大值.(19)(本题满分12分)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =12AA 1,点G 为CC 1上的点, 且114CG CC . (Ⅰ)求证:C D 1⊥平面ADG ;(Ⅱ)求二面角C -AG -D 的大小(结果用反余弦表示):_________________班别:____________姓名:______________学号:______________ D(20)(本题满分12分)已知数列{a n }的前n 项和为S n ,3(1)2n n S a =-(n ∈N *)(Ⅰ)求数列{a n }的通项公式;(Ⅱ)求1lim n n n SS →∞+.(21)(本题满分12分)已知抛物线C 的顶点在原点,以双曲线22115y x -=的左准线为准线.(Ⅰ)求抛物线C 的方程;(Ⅱ)若直线:1(1)l y k x -=-(k ≠0)垂直平分抛物线C 的弦,求实数k 的取值范围._______班别:____________姓名:________ ______学号:_________不 要 在 密 封 线 内 答 题(22)(本题满分14分)f x a x(a∈R)设()ln(Ⅰ)求f(x)的单调区间;(Ⅱ)证明ln x<高三数学训练题参考答案一、DBACA BAADC DB 二、(13)-1 (14)40 (15)3 (16)①、②、④ 三、(17)解:(Ⅰ)记这段时间内开关J A 能够闭合为事件A ,开关J B 能够闭合为事件B ,开关J C 能够闭合为事件C ,则4()5P A =,3()5P B =,2()5P C = … … … … … 3分根据相互独立事件同时发生的概率公式,在这段时间内恰好3个开关都闭合的概率是43224()()()()555125P A B C P A P B P C ⋅⋅=⋅⋅=⨯⨯=… … … … … 5分 答:在这段时间内恰好3个开关都闭合的概率是24125… … … … 6分(Ⅱ)依题意在这段时间内线路正常工作,就是指3个开关中至少有1个能够闭合. 这段时间内3个开关都不能闭合的概率是1236()()()()[1()][1()][1()]555125P A B C P A P B P C P A P B P C ⋅⋅=⋅⋅=---=⨯⨯=… 9分 因此,这段时间内线路正常工作的概率是1191()125P A B C -⋅⋅= … … … …11分答:在这段时间内线路正常工作的概率是119125… … … … … 12分(18)解:(Ⅰ)3cos sin 0a b θθ⊥⇔+= … … … … … 2分tan 0tan θθ+=⇔= … … 4分∴22tan tan 21tan θθθ==- … … … … … 6分(Ⅱ)(cos ,sin ))(cos 1)a b θθθθ+=+=+ … … … … 7分 |a b +| … … 8分== … … … … … 9分2= … … 10分当0sin(60)1θ+=时,max ||53a b += … … 12分 (19)解法1(空间向量法)设AB =1,11,,2DA i DC j DD k ===,以i 、j 、k 为坐标向量建立空间直角坐标系D -xyz … … … … … 1分则D (0,0,0),A (1,0,0),C (0,1,0),D 1(0,0,2),B (1,1,0),G (0,1,12)…… 2分(Ⅰ)∵DA =(1,0,0),DG =(0,1,12), 1CD =(0,-1,2)∴DA ·1CD =0, 10DG CD ⋅= ∴1CD DA ⊥,1CD DG ⊥ … … … … 4分 由线面垂直判定定理知CD 1⊥平面ADG(Ⅱ)∵BD =(-1,-1,0),AG =(-1,1,12),CG =(0,0,12) ∴BD ·AG =0,BD ·CG =0 ∴BD ⊥AG ,BD ⊥CG∴BD ⊥平面CAG ,即BD 为平面CAG 的法向量… … … … 8分 又C D 1⊥平面ADG ,即1CD 为平面AGD 的法向量∴〈BD ,1CD 〉是二面角C -AG -D 的平面角 … … … … 9分 且cos 〈BD ,1CD〉11||||2BD CD BD CD ⋅===…… … 11分 故二面角C -AG -D 的大小为 … … … … 12分 解法2(综合推理法)(Ⅰ)在正方体ABCD -A 1B 1C 1D 1中AD ⊥平面CDD 1,D 1C ⊂平面CDD 1 ∴CD 1⊥AD … … … … 1分在Rt △CDD 1与Rt △GCD 中,1112CD AB DD AA ==,11142CC GC CD AB ==∴1CD GC DD CD= ∴Rt △CDD 1∽Rt △GCD … … … … 3分 ∴∠CD 1D =∠GDC ,∠CDG +∠DCD 1=900 ∴CD 1⊥DG … … … … 4分又AD ∩DG =D ,AD ⊂平面ADG ,DG ⊂平面ADG , ∴CD 1⊥平面ADG … … … … 6分(Ⅱ)记DG ∩CD 1=E ,在平面ACG 中,作CH ⊥AG ,交AG 于H ,连结HE . …7分 又CD ⊥平面ADG ,由三垂线定理的逆定理知,EH ⊥AG∴∠CHE 是二面角C -AG -D 的平面角 … … … 9分设CG =1,则CC 1=4CG =4,AB =AD =12AA 1=12CC 1=2在Rt △GCD 中,CD CG CE DG ⋅===在Rt △ACG 中,AC CG CH AG ⋅=在Rt △CEH 中,EH∴cosEH CHE CH ∠==CHE ∠=为所求 … … … 12分 (20)解(Ⅰ)方法1.由113(1)2S a =-,得113(1)2a a =-,∴13a = … … … 1分当n ≥2时,1133(1)(1)22n n n n n a S S a a --=-=---13n n a a -= … … … … … … 4分 ∴数列{a n }是首项为3,公比为3的等比数列 … … … … 6分 ∴a n =3n … … … … … … 8分方法2.由1113(1)2a S a ==-,得13a = … … … … … … 1分由21223(1)2S a a a =+=-,得29a = … … … … … … 2分猜想a n =3n(n ∈N *) … … … … … … 3分 用数学归纳法证明之(略) … … … … … … 8分(Ⅱ)∵a n =3n ,∴33(1)(31)22n n n S a =-=- … … … … … … 9分∴1111()311013lim lim lim1313313()3nnn n n n n nn S S +→∞→∞→∞+---====--- … … … … 12分 (21)解(Ⅰ)双曲线22115yx -=的左准线方程是14x =- … 2分故抛物线C 的方程为2y x = … 4分(Ⅱ)设抛物线C 被直线l 垂直平分的弦PQ 的方程为0x ky c ++= … 5分 2200y x y ky c x ky c ⎧=⇒++=⎨++=⎩ … … 6分 ∴△=240k c -> … … ① … … 7分 设1122(,),(,)P x y Q x y , 则2121212,()()2y y k x x ky c ky c k c +=-+=-+-+=-又PQ 中点G 22(,)22k c k--在直线1(1)y k x -=-上∴221(1)22k k c k ---=- 即 322k k c k -+=… … … … 9分 代入①得322(2)0k k k k-+-> … … … … 10分即 32240,(2)(22)0k k k k k k k-+<+-+<解之得 20k -<<. 故k 的取值范围是(-2,0). … … … … 12分(22) 解(Ⅰ)函数f (x )的定义域为(0,+∞) … … … … 1分()af x x' (x >0) … … … … 3分①若0a ≤,则()a f x x'=->0对一切x ∈(0,+∞)恒成立 … … 4分 ②若a >0,则当x >0时,()0af x x'>⇔> 2x ⇔>222440x a x a ⇔--> … … … … 5分∴ 222x a >+ … … … … 6分222()0440f x x a x a '<⇔--<∴ 2022x a <<+ … … … … 7分 综上所述,当0a ≤时,f (x )在(0,+∞)内单调递增;当a >0时,f (x )在(0,222a +)内单调递减,在(222a +,+∞)内单调递增. … … … 8分(Ⅱ)由(Ⅰ)知g (x )=ln x 在(0,2+)内单调递减,在(2+,+∞)内单调递增. … … … 9分min ()(2ln(2g x g =+=+1ln(2=+ … … … 10分∴ln 1ln(2x ≥+. … … … 11分又 2+5<2e ,∴ 21ln(21ln 10e +>=> … … … 13分∴ ln x > … … … 14分。
2018届广州市高三年级调研测试(文科数学)试题及答案
2021届广州市高三年级调研测试文科数学2021. 12本试卷共5页,23小题,总分值150分.测试用时120分钟.考前须知:1.本试卷分第I 卷〔选择题〕和第H 卷〔非选择题〕两局部.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在做题卡上,并用 2B 铅笔在做题卡的相应位置填涂考生号.2 .作答第I 卷时,选出每题答案后,用2B 铅笔把做题卡上对应题目选项的答案信息点涂黑; 如需改动,用橡皮擦干净后,再选涂其他答案.写在本试卷上无效.3 .第n 卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在做题卡各题目指定区域内的相 应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答无效. 4 .考生必须保持做题卡的整洁.测试结束后,将试卷和做题卡一并交回.一、选择题:此题共 12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.6.如下图,四个相同的直角三角形与中间的小正方形拼成一个边长为秘密★启用前试卷类型:A设集合 A 1,0,1,2,33x那么AI B2. 3. 4. 5. A.B.1,0C .1,3D.1,0,3假设复数z 满足1 B.C.10 2D.、.6 2A. 设命题为锐角, cosB.C .D.变量x,1, B.2x命题q :x 00,2x 0 XO,那么以下命题中是真命题的是y 满足x 2y y 0,B. 4p) qC .p ( q)D . ( p) ( q)0,3 0,那么 z 2x y 的最大值为C. 6D. 02的大正方形,直角三角形中较7.8.9.小的锐角一.假设在该大正方形区域内随机地取一点,那么该点落在中间小正方形内的概率是6△ ABC的内角A, B , C所对的边分别为4,的面积等于3、7B. -^―2C. 9D.在如图的程序框图中,输出的结果是A. sinxC. sinxf i(x)为f i(x)的导函数,假设f o(x) sinx,那么D. cosx正方体ABCD AB i C i D i的棱长为2 ,点M为CG的中点,点N为线段DD i上靠近D i的三等分点,平面BMN交AA于点Q ,那么AQ的长为B.1C.一6D.10,将函数y 2sin x —cos 3 的图象向左平移0个单位, 所得图象对应的函数恰为奇函数,那么的最小值为A . 一12B. C.11.在直角坐标系xOy中,设F为双曲线2x""2a2yb21(a 0,b 0)的右焦点,P为双曲线C的右支上一点,且△ OPF为正三角形,那么双曲线C的离心率为12.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,那么该三棱锥的外接球的外表积为11A .—2B.C. 11D.二、填空题:此题共4小题,每题5分, 共20分.13.向量 a x, x 2 , b 3,4 , 假设a//b,那么向量a的模为14.函数一、2x一—f(x) —— a为奇函数, 2x 1 那么实数a15.直线kx 2与曲线y xlnx相切,那么实数k的值为16.在直角坐标系_ _ 2xOy中,直线x J2y 272 0与椭圆C: 3 a 2 yb71 a b 0相切,且椭圆C的右焦点cF c,0关于直线y —x的对称点E在椭圆C上,那么^ OEF的面积为b三、解做题:共70分.解容许写出文字说明、证实过程和演算步骤. 第17〜21题为必考题,每个试题考生都必须做答. 第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17. (本小题总分值12分)18. PA 数列a n满足a〔4a242a3L 4n1a n ?4(1)求数列(2)设b n(本小题总分值a n的通项公式;4n a n,,士工,求数列2n 112分)如图,多面体PABCDEb n b n 1的底面底面ABCD , ED P PA ,且PA(1)证实:平面PAC 平面PCE的前n项和T n .ABCD是边长为2ED 2.2的菱形,〔2〕假设ABC 60o,求三棱锥P ACE的体积.19.〔本小题总分值12分〕某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜. 过去50周的资料显示,该地周光照量X 〔小时〕者B在30小时以上,其中缺乏50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y 〔百斤〕与使用某种液体肥料x 〔千克〕之间对应数据为如下图的折线图.〔1〕依据数据的折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明〔精确到0. 01〕.〔假设|r| 0.75,那么线性相关程度很高,可用线性回归模型拟合〕〔2〕蔬菜大棚对光照要求较大,某光照限制仪商家为该基地提供了局部光照限制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如下关系:周光照量X 〔单位:小时〕30 X 5050 X 70X 70光照限制仪最多可运行台数321假设某台光照限制仪运行,那么该台光照限制仪周利润为3000元;假设某台光照限制仪未运行,那么该台光照限制仪周亏损1000元.假设商家安装了3台光照限制仪,求商家在过去50周周总利润的平均值.n _ _(x x)(y i y)附:相关系数公式r , i 1」 ________ ^参考数据J0.3 0.55, V0.9 0.95.20 .〔本小题总分值12分〕2抛物线C : y 2 Pxp 0的焦点为F ,抛物线C上存在一点E 2,t到焦点F的距离等于3 .〔1〕求抛物线C的方程;〔2〕过点K 1,0的直线l与抛物线C相交于A, B两点〔A, B两点在x轴上方〕,点A关于x 轴的对称点为D ,且FA FB ,求^ ABD的外接圆的方程.21 .〔本小题总分值12分〕函数f x alnx x b a 0 .(1)当b 2时,讨论函数f x的单调性;1(2)当a b 0, b 0时,对任意x 1,e ,有f x e 1成立,求实数b的取值范围. e(二)选考题:共10分.请考生在第22、23题中任选一题做答,如果多做,那么按所做的第一题计分.22 .(本小题总分值10分)选修4 — 4:坐标系与参数方程,一... ................................. x cos , ..... ..... ............. .. ........在直角坐标系xOy中,曲线C1的参数方程为( 为参数),将曲线C1经过伸缩变换y 2sinx 2x后得到曲线C2 .在以原点为极点, x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为y ycos sin 10 0.(1)说明曲线C2是哪一种曲线,并将曲线C2的方程化为极坐标方程;(2)点M是曲线C2上的任意一点,求点M到直线l的距离的最大值和最小值.23.(本小题总分值10分)选修4—5:不等式选讲函数f(x) | x a |,(1)当a 1时,求不等式f(x) 2x 1 1的解集;(2)假设函数g(x) f (x) x 3的值域为A,且2,1 A ,求a的取值范围.2021届广州市高三年级调研测试文科数学试题答案及评分参考评分说明:1 .本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细那么.2 .对计算题,当考生的解答在某一步出现错误时,如果后继局部的解答未改变该题的内容和难度, 可视影响的程度决定后继局部的给分,但不得超过该局部正确解容许得分数的一半;如果后继局部的解答有较严重的错误,就不再给分.3 .解答右端所注分数,表示考生正确做到这一步应得的累加分数.4 .只给整数分数.选择题不给中间分.・选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DCABBABCDBAC二.填空题三、解做题1 1 _J_23 2n 36n 918. (1)证实:连接BD ,交AC 于点O,设PC 中点为F , 连接OF , EF .由于O , F 分别为AC , PC 的中点,1 所以 OF P PA,且 OF -PA , 213. 1014. 15.1 ln216.117.解:(1〕当由于a 1 4a 242 a 3 +4n 2ann 14 an所以&4a 2a 34n 2 an-1n-1,n 4①一②得 4na n所以a n 2,n1“一也满足上式, 41 ,故r 〔nN〕.〔2〕由〔1〕得 b nn4 a n 2n 1 2n所以b n b n2n2n 2 2n 1 2n 3故T n11111 1 2n 1 2n 310分11分12分BCD1由于 DE P PA ,且 DE -PA , 2所以 OF P DE ,且 OF DE . ......................................................................................... 1 分 所以四边形OFED 为平行四边形,所以 OD P EF ,即BD P EF . ............................................ 2分 由于PA 平面ABCD , BD 平面ABCD ,所以PA BD . 由于ABCD 是菱形,所以BD AC.由于PAI AC A,所以BD 平面PAC . ............................................................................. 4分 由于BD P EF ,所以EF 平面PAC . .............................................................................. 5分 由于FE 平面PCE ,所以平面PAC 平面PCE . .................................................................... 6分 解法1:由于 ABC 60°,所以△ ABC 是等边三角形,所以 AC 2 . .............................................. 7分 又由于PA 平面ABCD, AC 平面ABCD,所以PA AC .~ 「 1 ~ ——所以 S PAC -PA AC 2 . ......................................................................................................... 8 分2由于EF 面PAC ,所以EF 是三棱锥E PAC 的高. .......................................... 9分 由于EF DO BO 乖, . (10)分所以 V P ACE V E PAC 二 S PAC EF ....................................................................................................................................................................................... 11 分312m 〞 (12)............................................................................................................................................... 分解法2:由于底面ABCD 为菱形,且 ABC 60 ,所以△ ACD 为等边三角形. .................. 7分 取AD 的中点M ,连CM ,那么CM AD ,且CM J 3 . ................................................................... 8分 由于PA 平面ABCD ,所以PA CM ,又PA AD A, 所以CM 平面PADE ,所以CM 是三棱锥C PAE 的高. 9分…一 1 _ 一 一由于 S PAE -PA AD 2 . ................................................................................................................. 10 分1所以二棱锥 P ACE 的体积 V PACE V C PAE -S PAE CM .................................................................. 11 分P AC 匚C PA 匚 _ PA 匚31 「 7 2-3 八-2 v 3 ----------------- . .............................................................. 12 ------------------------ 分332 4 5 6 8—1〕由数据可得x° 5,yI (为 X)2 & 3)2 ( 1)2 02 12 32 2 ....................................................................................19. 解:5__由于(X ix)( y i y)i 1(3) ( 1) 0 0 0 3 1 6,、...(1)2 02 02 02 12、. 2.(x x )( v' y)所以相关系数r——i 1n二(x X)21(y i才当X >70时,共有10周,此时只有1台光照限制仪运行, 周总利润 Y=1X3000-2X1000=1000 元. ........................................................ 8 ............................................................................................................................................................................... 分当50WXW70时,共有35周,此时有2台光照限制仪运行,周总利润 Y=2X3000-1X1000=5000 元. ........................................................ 9 ............................................................................................................................................................................... 分当X<50时,共有5周,此时3台光照限制仪都运行,周总利润 Y=3X3000=9000元. .......................................................... 10分 1000 10 5000 35 9000 5 一4600 兀,50所以商家在过去 50周周总利润的平均值为 4600元. ........................................ 12分20.解:(1)抛物线的准线方程为 X —,2 所以点E 2, t 到焦点的距离为2 K 3. ................................................................................ 1分 2解得p 2.所以抛物线C 的方程为y 2 4x. ............................................................................................... 2分 (2)解法1 :设直线l 的方程为 x my 1 m 0 . .......................................................................... 3分 将x my 1代入y 2 4x 并整理得y 2 4my 4 0 , .............................................................................. 4分2由 4m 16 0,解得m 1. .................................................................................................. 5分 设 A .y 1, B x 2, y 2 , D x 1,y 1, 那么 y 〔 y 4m, Y I Y 2 4 , . (6)分6 2、. 5 J2由于r 0.75,所以可用线性回归模型拟合 y 与x 的关系.(2)记商家周总利润为 Y 元,由条件可得在过去50周里:所以过去50周周总利润的平均值 Y2 2由于FA FB X I 1 x2 1 y1y2 (1 m )y〔y2 2m y〔y2 4 8 4m , ......................... 7 分uu uur c curn uuu由于FA FB ,所以FAgFB 0 .即8 4m 2 0,又m 0 ,解得m 72 . .................................................................................... 8分 所以直线l 的方程为x J 2y 1 0 . 设AB 的中点为 x 0,y 0 ,那么 y 0 士―y 2- 2m 2V 2, x 0 my 0 1 3, .......................................................................... 9 分2所以直线 AB 的中垂线方程为 y 2J2 J 2 x 3 . 由于AD 的中垂线方程为y 0,所以△ ABD 的外接圆圆心坐标为 5,0 . ........................................................................... 10分 由于圆心 5,0到直线l 的距离为d 273 ,且AB 7l m 2/y i y 2 2 4y l y 2 40 ,। ~所以圆的半径r 』d 2二巴 2瓜 ................................................................................................. 11分设 A(x 1,y)B(x 2,y 2),4 , -贝U x 1 x 22 ),x 1x 2 1 . ................................................................................................................ 6 分k 22所以 y 1y 2 k (x 1x 2 x 1 x 2 1) 4,uuri uuu4由于 FA FB x 1x 2 (x 1 x 2) 1 y 1y 2 8 , .................................................................... 7 分 k 2uuu uuu由于FA FB ,所以FAgFB 0 . 2 ....... .22所以△ ABD 的外接圆的方程为 x 5 2 y 2 24 ............................................................................ 12分 解法2:依题意可设直线l : y k x 1 k 0 . ........................................................................... 3分 将直线l 与抛物线C 联立整理得k 2x 2 (2k 2 4)x k 2 0. ..................................................................... 4分 由(2k 2 4)2 4k 4 0,解得 0 k 1. .......................................................................................... 5 分4.一所以8 f 0 ,又k 0 ,解得k k 2以下同解法1 .21 .解:(1)函数f X 的定义域为 0,①当a 0时, f x 0,所以函数f x 在0, 上单调递增.b =e b b e 1 b 0 ,那么 b=3 1 0.所以 b 在0,上单调递增.当 b 2 时,f x alnx x ,所以 f xc 2a 八 2x a—2x ................. . ....................................... x x②当a 0时,令f x上单调递增.上单调递增;0时,函数 上单调递增.(2)由于对任意x1一,e ,有 f x ee 1成立,所以xmaxb 时,f xbln x xb, fb 1bx0,1;令f 所以函数1,1e 上单调递减,1,e 上单调递增,maxb e b 中的较大者.所以2be b0,0,上单调递增,故1b g 00 所以 f e f -,e从而max所以b e b e 1 即 e b b e 1 0. 10分0,解得xa.0,所以函数 f x 在 0,上单调递减;综上所述,当b 2, a0时,函数f x 在0,f x 在0,a 上单调递减,在 a②当1 x3分又 10,所以e b b e 1 0的解为b 1 . .......................................................................... 11分由于b 0,所以b 的取值范围为 0,1 . ............................................................................... 12分x cos22 .解:(1)由于曲线G 的参数方程为(为参数),y 2sin x 2x,x2cos ,由于,那么曲线C 2的参数方程. .................................. 2分y y.y 2sin .所以C 2的普通方程为x 2 y 2 4. .............................................................................................. 3分 所以C 2为圆心在原点,半径为2的圆. ..................................................... 4分 所以C 2的极坐标方程为24 ,即 2 . ................................................................................... 5分23 .解:(1)当 a 1 时,f(x) |x 1| . ........................................................................................................... 1 分①当x 1时,原不等式可化为 x 1 2x 2,解得x 1 .1 ,一时,原不等式可化为 x 1 2x 2,解得x 1,此时原不等式无解. 2(2)解法1 :直线l 的普通方程为 x y 10 0 . .................................................................................... 6分2 2cos( + —) 10||2cos 2sin 10|4八 曲线C2上的点 M 到直线l 的距离d --------------------- 产 ------------- 1 ---------------- =-4 ------------ . ............... 8分22当 cos +— =1 即=2 k - k 4 4当 cos +— = 1 即=—2k 4 4 解法2:直线l 的普通方程为x y由于圆C 2的半径为2,且圆心到直线l 的距离d |0巴135石, .................................. 7分由于5V2 2 ,所以圆C 2与直线l 相离. .................................................... 8分 所以圆C 2上的点M 到直线l 的距离最大值为d r 5v2 2,最小值为d r 或2 2 .…10分时,d 取到最小值为 上101二502Z 时,d 取到最大值为 £2115=2 572 .10分10 0.1 ,③当x一时,原不等式可化为x 1 2x ,解得x 1.2综上可知,原不等式的解集为x x 1或x 1 . ................................................................. 5分3 a, x 3,(2)解法1:①当a 3 时,g x 2x a 3, 3 x a, .............................................................. 6 分a 3, x a.所以函数g x的值域A a 3,3 a ,a 3 2.由于[2,1] A,所以a '解得a 1 . ................................................................................................ 7分3 a 1,3 a, x a,②当a 3 时,g x 2x a 3, ax 3, ............................................................................................... 8 分a 3, x 3.所以函数g x的值域A 3 a,a 3 ,一, …3 a 2由于[2,1] A,所以解得a 5. ................................................................ 9分a 3 1,综上可知,a的取值范围是,1 U 5, . ............................................................. 10分解法2:由于|x+a| |x+3| x+a (x+3) a 3 , .............................................................................. 7 分所以g x f(x) |x+3| |x+a| | x+3| [ |a 3|,| a 3|].所以函数g(x)的值域A [ |a 3|,| a 3|] . ..................................................................................... 8分由于[2,1] A,所以1a 3| 2'解得a 1或a 5.|a 3| 1,所以a的取值范围是,1 U 5, . ....................................................................... 10分。
高三数学-【数学】2018年广州市高三年级调研测试-数学(文) 精品
试卷类型:A2018年广州市高三年级调研测试数学(文科)本试卷共4 页,共21 题,满分150 分。
考试用时120 分钟。
2018.01 注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上, 并用2B 铅笔在答题卡上的相应位置填涂考生号。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符 合题目要求的.1. 函数()g x =A .{3x x ≥-} B .{3x x >-} C .{3x x ≤-} D .{3x x <-}2.已知i 为虚数单位, 则复数z =i (1+i )在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.设向量(2,0)=a ,(1,1)=b ,则下列结论中正确的是A .||||=a b B . 12=a b C .//a b D .()-⊥a b b4.已知直线l 经过坐标原点,且与圆22430x y x +-+=相切,切点在第四象限,则直线l 的图2侧视图俯视图正视图方程为A.y = B.y C.3y x =-D.3y x = 5.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是 A .甲 B . 乙 C . 丙 D .丁6.如果执行图1的程序框图,若输入6,4n m ==,那么输出的p 等于A .720B .360C .240D .1207.“2>x ”是“0232>+-x x ”成立的 图1A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.定义3x y x y ⊗=-, 则()h h h ⊗⊗等于 A .h - B .0 C .h D .3h9. 一空间几何体的三视图如图2所示, 该几何体的体积为12π+,则正视图中x 的值为 A .5 B .4 C .3 D .2 10.若把函数()=y f x 的图象沿x 轴向左平移4π个单位, 沿y 轴向下平移1个单位,然后再把图象上每个点的 横坐标伸长到原来的2倍(纵坐标保持不变),得到函数 sin =y x 的图象,则()=y f x 的解析式为 A .sin 214⎛⎫=-+ ⎪⎝⎭y x π B .sin 212⎛⎫=-+ ⎪⎝⎭y x π图3NC .1sin 124⎛⎫=+- ⎪⎝⎭y x πD .1sin 122⎛⎫=+- ⎪⎝⎭y x π二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知等比数列{}n a 的公比是2,33a =,则5a 的值是 .12.△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知2,3a b ==,则sin sin()AA C =+ .13.设函数()()[)22,,1,,1,.x x f x x x -⎧∈-∞⎪=⎨∈+∞⎪⎩ 若()4f x >,则x 的取值范围是 .(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,四边形ABCD 内接于⊙O , BC 是直径,MN 与⊙O 相切, 切点为A ,MAB ∠35︒=,则D ∠= .15.(坐标系与参数方程选讲选做题)已知直线l 的参数方程为:2,14x t y t=⎧⎨=+⎩(t 为参数),圆C 的极坐标方程为ρθ=,则直线l 与圆C 的位置关系为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量a (sin ,2)θ=,b (cos ,1)θ=, 且a //b ,其中(0,)2πθ∈.(1)求θsin 和θcos 的值; (2)若3sin(), 052πθωω-=<<,求cos ω的值. 17.(本小题满分12分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数 分布)如下表:A B CPD(1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体, 从中任取2人, 求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x 、y 的值.18.(本小题满分14分)如图4,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知24BD AD ==,2AB DC ==(1)求证:BD ⊥平面PAD ;(2)求三棱锥A PCD -的体积.19.(本小题满分14分) 图4已知椭圆()222:133x y E a a+=>的离心率12e =. 直线x t =(0t >)与曲线E 交于 不同的两点,M N ,以线段MN 为直径作圆C ,圆心为C . (1)求椭圆E 的方程;(2)若圆C 与y 轴相交于不同的两点,A B ,求ABC ∆的面积的最大值.20.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,且满足1(n n S a n =-∈N *).各项为正数的数列}{n b 中,对于一切n ∈N *,有nk ==且1231,2,3b b b ===.(1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}n n a b 的前n 项和为n T ,求证:2n T <.21.(本小题满分14分) 已知函数()(af x x a x=+∈R ), ()ln g x x =. (1)求函数()()()F x f x g x =+的单调区间;(2)若关于x 的方程()()22g x f x e x=-(e 为自然对数的底数)只有一个实数根, 求a 的值.。
2018广东广州市第十八中学高三数学一轮复习专项检测试题 (4)
集合与常用逻辑用语、函数及不等式 0320.若函数 y A. a 1 【答案】 B1 1 在 2, 上单调递增,那么 a 的取值范围是( x ax a 22)B. 4 a 1 2C. 1 a 1 2D. a 1 2a 1 1 2 2 【解析】若令 f ( x) x 2 ax a 只要 1 a 1 2 f ( ) f (2) 0 2 【规律解读】已知函数单调性求参数范围的问题,解法是根据单调性的概念得到恒成立的不等式,还要注意定义域的限制,并挖掘题目的隐含条件。
讨论函数的单调性时要注意:必须在定义 域内进行,即函数的单调区间是定义域的子集。
21.设 f x 是定义在 x R 上以 2 为周期的偶函数,已知 x (0,1) , f x log 1 1 x ,则函数2f x 在 (1, 2) 上() B.是增函数且 f x 0 D.是减函数且 f x 0A.是增函数且 f x 0 C.是减函数且 f x 0 【答案】D.【解析】已知 x (0,1) , f x log 1 1 x 单调递增;因为函数 f x 是偶函数所以函数 f x 在2(1, 0) 上单调递减;又因为 f x 是以 2 为周期的函数,所以函数 f x 在 (1, 2) 上单调递减,选择 D.1 22.函数 f ( x ) log 2 x 的零点所在区间为( ) x 1 1 A. (0, ) B. ( ,1) C. (1, 2) D. (2,3) 2 2 【答案】C【解析】函数的定义域是 (0, ) , y log2 x 是增函数, y 1 1 是减函数所以 f ( x ) log 2 x 为 x x1 1 其定义域上的增函数, f ( ) 3 0 , f (1) 1 0 , f (2) 0 ,所以 f (3) 0 ,由函数零点存 2 2在条件知零点所在区间为 (1, 2) .选择 C。
2018年高三最新 广州市2018年高三数学综合测试(一) 精品
广州市2018年高三数学综合测试(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分为150分.考试时间 120分钟.第Ⅰ卷(选择题 共60分)参考公式:三角函数和差化积公式2sin 2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos 2sin 2sin sin ϕθϕθϕθϕθϕθϕθϕθϕθϕθϕθϕθϕθ-+-=--+=+-+=--+=+正棱台、圆台的侧面积公式:S 台侧=l c c )'(21+,其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式V 台体=h S S S S )''(31++,其中S '、S 分别表示上、下底面积,h 表示高一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足条件M ⊂{0,1,2}的集合M 共有A .3个B .6个C .7个D .8个(2)在等比数列{a n }中,a 1=31,公比q =31,前n 项和为S n ,则∞→n lim S n 的值为 A .0 B .31 C .21 D .1 (3)(x 2+x1)12的展开式的常数项是 A .第四项 B .第五项 C .第八项 D .第九项(4)与圆 (x -2)2+y 2=2相切,且在x 轴与y 轴上的截距相等的直线有A .1条B .2条C .3条D .4条(5)复数z 1、z 2在复平面上对应的点分别是A 、B ,O 为坐标原点,若z 1=2 (cos60°+i sin60°)·z 2,|z 2|=2,则△AOB 的面积为A .43B .23C .3D .2(6)函数y =lg11-x 的图象大致是A B C D(7)已知直线l ⊥平面α,直线m ⊂平面β,则下列命题中正确的是A .α∥β⇒l ⊥mB .α⊥β⇒l ∥mC .l ∥β⇒m ⊥αD .l ⊥m ⇒α∥β(8)在极坐标系中,已知等边三角形ABC 的两个顶点A (2,4π)、B (2,45π),顶点C 在直线32)43cos(=-πθρ上,那么顶点C 的极坐标是 A .(4732π,) B .(2,47π) C .(2,43π) D .(23,43π) (9)设函数f (x )的定义域为(-∞,+∞),对于任意x 、y ∈(-∞,+∞),都有f (x +y )= f (x )+f (y ),当x >0时,f (x ) <0,则函数f (x ) 为A .奇函数,且在(-∞,+∞)上为增函数B .奇函数,且在(-∞,+∞)上为减函数C .偶函数,且在(-∞,0)上为增函数,在(0,+∞)上为减函数D .偶函数,且在(-∞,0)上为减函数,在(0,+∞)上为增函数(10)函数y =sin 2x +2cos x (3π≤x ≤34π)的最大值和最小值分别是 A .最大值为47,最小值为-41 B .最大值为47,最小值为-2C .最大值为2,最小值为-41 D .最大值为2,最小值为-2(11)如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =13,BB 1=BC =6,E 、F 为侧棱AA 1上的两点,且EF =3,则多面体BB 1C 1CEF 的体积为A .30B .18C .15D .12(12)三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有A .6种B .8种C .10种D .16种第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.(13)已知函数f (x )=1+(21)1-x ,则f -1(5)= . (14)已知圆台的轴截面面积为Q ,母线与底面成30°的角,则该圆台的侧面积为 .(15)某校有一个由18名学生组成的社区服务小组,其中女生多于男生.现从这个小组内推选二女一男共3名学生参加某街道的科普宣传活动,不同的推选方法的总数恰为该组内女生人数的33倍,则这个小组内女生人数为 (用数字作答).(16)长度为a 的线段AB 的两个端点A 、B 都在抛物线y 2=2px (p >0,且a >2p )上滑动,则线段AB 的中点M 到y 轴的最短距离为 .三、解答题:本大题共6小题,满分74分.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分10分)解不等式 1+log 21(x +4)< 2log 21(x -2) .(18)(本小题满分12分)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 22C B -cos2A =27. (Ⅰ)求角A 的度数;(Ⅱ)若a =3,b +c =3,求b 和c 的值.(19)(本小题满分12分)正方形ABCD 的边长为a ,E 、F 分别为边AD 、BC 的中点(如图甲所示).现将该正方形沿其对角线BD 折成直二面角,并连结AC 、EF ,得到如图乙所示的棱锥A -BCD .在棱锥A -BCD 中,(Ⅰ)求线段AC 的长;(Ⅱ)求异面直线EF 和AB 所成角的大小.图 甲 图 乙(20)(本小题满分12分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率e =21,且经过点M (-1,23). (Ⅰ)求椭圆C 的方程.(Ⅱ)若椭圆C 上有两个不同的点P 、Q 关于直线y =4x +m 对称,求m 的取值范围.(21)(本小题满分14分)流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感.据资料统计,11月1日,该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制.从某天起,每天的新感染者平均比前一天的新感染者减少30人.到11月30日止,该市在这30日内感染该病毒的患者总共有8670人.问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.(22)(本小题满分14分)已知函数f (x )=12 a a(a x -a -x ),其中a >0,a ≠1. (Ⅰ)判断函数f (x )在 (-∞,+∞) 上的单调性,并根据函数单调性的定义加以证明; (Ⅱ)若n ∈N ,且n ≥2,证明f (n )>n .。
2018届广州市高三年级调研测试(理科数学)试题及答案
秘密 ★ 启用前 试卷类型: A2018届广州市高三年级调研测试理科数学2017.12 本试卷共5页,23小题, 满分150分。
考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔在答题卡的相应位置填涂考生号。
2.作答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
写在本试卷上无效。
3.第Ⅱ卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =->,则A B =IA .{}1-B .{}1,0-C .{}1,3-D .{}1,0,3-2.若复数z 满足()12i 1i z +=-,则z =A .25B .35CD3.在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =A .2B .3C .2-D .3-4.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为A .0B .4C .5D .65.912x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为A .212-B .92-C .92D .2126.在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是 A .sin x -B .cos xC .sin xD .cos x -7.正方体1111ABCD A B C D -的棱长为2,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的长为 A .23B .12C .16D .138.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为A .ln 2B .1C .1ln 2-D .1ln 2+9.某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有 A .36种B .24种C .22种D .20种10()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为 A .6πB .12πC .4π D .3π 11.在直角坐标系xOy 中,设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,P 为双曲线C 的右支上一点,且△OPF 为正三角形,则双曲线C 的离心率为 ABC.1 D.2+12.对于定义域为R 的函数()f x ,若满足① ()00f =;② 当x ∈R ,且0x ≠时,都有()0xf x '>;③ 当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+;()2e 1xf x x =--;()()3ln 1,0,0;2,x x f x x x ⎧-+≤⎪= ⎨>⎪⎩()411,0,2120,0.xx x f x x ⎛⎫+≠ ⎪-⎝⎭=⎧⎪=⎨⎪⎩则其中是“偏对称函数”的函数个数为A .0B .1C .2D .3二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(),2x x =-a ,()3,4=b ,若a b P ,则向量a 的模为________. 14.在各项都为正数的等比数列{}n a 中,若20182a =,则2017201912a a +的最小值为________. 15.过抛物线C :22(0)y px p => 的焦点F 的直线交抛物线C 于A ,B 两点.若6AF =,3BF =,则p 的值为________.16.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分.17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a =,cos (2)cos a B c b A =-. (1)求角A 的大小;(2)求△ABC 周长的最大值.18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,EDBCA PPA ⊥底面ABCD ,ED PA P ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ;(2)若直线 PC 与平面ABCD 所成的角为o45,求二面角D CE P --的余弦值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:周光照量X (单位:小时) 3050X << 5070X ≤≤ 70X >光照控制仪最多可运行台数321若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)如图,在直角坐标系xOy 中,椭圆C :22221y x a b+=()0a b >>的上焦点x y (百斤)54386542(千克)O为1F ,椭圆C 的离心率为12,且过点1,3⎛ ⎝⎭. (1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若110F B F H •=u u u r u u u u r ,且MO MA =,求直线l 的方程.21.(本小题满分12分)已知函数()ln bf x a x x=+()0a ≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,e e x x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,求实数b 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩,(α为参数),将曲线1C 经过伸缩变换2x x y y'=⎧⎨'=⎩,后得到曲线2C .在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos sin 100ρθρθ--=.(1)说明曲线2C 是哪一种曲线,并将曲线2C 的方程化为极坐标方程;(2)已知点M 是曲线2C 上的任意一点,求点M 到直线l 的距离的最大值和最小值. 23.(本小题满分10分)选修4-5:不等式选讲已知函数()||f x x a =+. (1)当1=a 时,求不等式()211f x x ≤+-的解集;(2)若函数()()3g x f x x =-+的值域为A ,且[]2,1A -⊆,求a 的取值范围.2018届广州市高三年级调研测试 理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一.选择题二.填空题13.10 14.4 15.4 16.11π三、解答题17.(1)解法1:由已知,得cos cos 2cos a B b A c A +=.错误!未找到引用源。
广东省广州市备战2018高三数学文科第一轮复习测试试题及答案01 含答案
2018广州市高考数学(文科)一轮复习测试题01本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 为虚数单位,则复数i2i+等于 A .12i 55+ B . 12i 55-+ C .12i 55- D .12i 55--2.命题“2,11x x ∀∈+≥R ”的否定是A .2,11x x ∀∈+<RB .2,11x x ∃∈+≤RC .2,11x x ∃∈+<RD .2,11x x ∃∈+≥R 3.某程序框图如图所示,该程序运行后,输出s 的值是 A .10 B .15 C .20 D .304.已知(1,2)=a ,(0,1)=b ,(,2)k =-c ,若(2)+⊥a b c ,则k =A .2B . 2-C .8D .8-5.已知实数,x y 满足11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值为A .3-B .12C .5D .6 6.已知集合{}2log (1)2M x x =-<,{}6N x a x =<< ,且()2,M N b =,则a b +=A .4B .5C .6D .77.函数2()2xf x e x =+-在区间()2,1-内零点的个数为.A . 1B .2C .3D . 48.已知双曲线的顶点与焦点分别是椭圆的22221y x a b+=(0a b >>)焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为A .13 B .12 C D9.一个长方体被一个平面截去一部分后所剩几何体的正视图和俯视图如图所示,则该几何体的侧视图可以为10.设二次函数2()4()f x ax x c x=-+∈R的值域为[0,)+∞,则19c a+的最小值为A.3B.92C.5D.7二、填空题:本大共5小题.考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市的个数分别为4、12、8.若用分层抽样的方法抽取6个城市,则丙组中应抽取的城市数为.12.函数sin sin3y x xπ⎛⎫=+-⎪⎝⎭的最小正周期为,最大值是.13.观察下列不等式:1<<<;…则第5个不等式为.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,直线l过点(1,0)且与直线3πθ=(ρ∈R)垂直,则直线l极坐标方程为.15.(几何证明选讲)如图,M是平行四边形ABCD的边AB的中点,直线l过点M分别交,AD AC于点,E F.若3AD AE=,则:AF FC=..三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分)如图,在△ABC中,45C∠=,D为BC中点,2BC=.记锐角ADBα∠=.且满足7cos225α=-.(1)求cosα;(2)求BC边上高的值.第15题图FA BCDEMlC BDA17.(本题满分12分)城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:min ):(1)求这15名乘客的平均候车时间;(2)估计这60名乘客中候车时间少于10分钟的人数;(3)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.18.(本题满分14分)如图所示,已知圆O 的直径AB 长度为4,点D 为 线段AB 上一点,且13AD DB =,点C 为圆O 上一点, 且BC =.点P 在圆O 所在平面上的正投影为 点D ,PD BD =.(1)求证:CD ⊥平面PAB ; (2)求点D 到平面PBC 的距离. 19.(本题满分14分)数列{}n a 的前n 项和为22n n S a =-,数列{}n b 是首项为1a ,公差不为零的等差数列,且1311,,b b b 成等比数列. (1)求123,,a a a 的值;(2)求数列{}n a 与{}n b 的通项公式; (3)求证:3121235nnb b b b a a a a ++++<.. 20.(本题满分14分)已知(2,0)A -,(2,0)B ,(,)C m n .(1)若1m =,n =ABC ∆的外接圆的方程;(2)若以线段AB 为直径的圆O 过点C (异于点,A B ),直线2x =交直线AC 于点R ,线段BR 的中点为D ,试判断直线CD 与圆O 的位置关系,并证明你的结论. 21.(本题满分14分)设函数1()x e f x x-=,0x ≠.(1)判断函数()f x 在()0,+∞上的单调性;(2)证明:对任意正数a ,存在正数x ,使不等式()1f x a -<成立.参考答案一、选择题:本大题共10小题,每小题5分,满分50分.11.2 12.2π(2分)(3分) 13++< 14.2sin()16πρθ+=(或2cos()13πρθ-=、cos sin 1ρθθ=)15.1:4三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分) 解析:(1)∵27cos 22cos 125αα=-=-,∴29cos 25α=, ∵(0,)2πα∈,∴3cos 5α=. - . -----------5分(2)方法一、由(1)得4sin 5α==,∵45CAD ADB C α∠=∠-∠=-,∴sin sin()sin cos cos sin 44410CAD πππααα∠=-=-=,-----------------9分在ACD ∆中,由正弦定理得:sin sin CD AD CAD C=∠∠,∴1sin 5sin CD CAD CAD⋅∠===∠,-----------------11分则高4sin 545h AD ADB =⋅∠=⨯=.方法二、如图,作BC 边上的高为AH在直角△ADH 中,由(1)可得3cos 5DB AD α==, 则不妨设5,AD m = 则3,4DH m AH m == -------8分 注意到=45C ∠,则AHC ∆为等腰直角三角形,所以CD DH AH += ,则134m m += -----10分 所以1m =,即4AH = -----12分 17.(本题满分12分) 解析:(1)1(2.527.5612.5417.5222.51)15⨯+⨯+⨯+⨯+⨯1157.5=10.515=⨯min .-----------------3分(2)候车时间少于10分钟的概率为3681515+=, -----------------4分所以候车时间少于10分钟的人数为8603215⨯=人. -----------------6分(3)将第三组乘客编号为1234,,,a a a a ,第四组乘客编号为12,b b .从6人中任选两人有包含以下基本事件:1213141112(,),(,),(,),(,),(,)a a a a a a a b a b ,23242122(,),(,),(,),(,)a a a a a b a b , 343132(,),(,),(,)a a a b a b , 4142(,),(,)a b a b ,12(,)b b , - . --------10分其中两人恰好来自不同组包含8个基本事件,所以,所求概率为815. -----------------12分 18.(本题满分14分) 解析:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO 的中点,又∵AB 为圆O 的直径,∴AC CB ⊥, BC =知,60CAB ∠=,∴ACO ∆为等边三角形,从而CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB .-----------------6分(注:证明CD ⊥平面PAB 时,也可以由平面PAB ⊥平面ACB 得到,酌情给分.) 法2:∵AB 为圆O 的直径,∴AC CB ⊥, ∵在Rt ABC ∆中,4AB =,∴由3AD DB =BC =得,3DB =,4AB =,BC =∴2BD BC BC AB ==,则BDC BCA ∆∆∽, ∴BCA BDC ∠=∠,即CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB .-----------------6分法3:∵AB 为圆O 的直径,∴AC CB ⊥, 在Rt ABC ∆BC =得,30ABC ∠=, ∵4AB =,由3AD DB =得,3DB =,BC = 由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=,∴222CD DB BC +=,即CD AO ⊥.-----------------3分∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB .----- . ---6分(Ⅱ)法1:由(Ⅰ)可知CD ,3PD DB ==,--------7分(注:在第(Ⅰ)问中使用方法1时,此处需要求出线段的长度,酌情给分.)∴111113333232P BDC BDC V S PD DB DC PD -∆=⋅=⋅⋅⋅=⨯⨯=--------10分又PB ==PC ==BC =∴PBC ∆为等腰三角形,则122PBC S ∆=⨯.--------12分 设点D 到平面PBC 的距离为d , 由P BDC D PBC V V --=得,132PBC S d ∆⋅=,解得5d =.--------14分 法2:由(Ⅰ)可知CD =,3PD DB ==,过点D 作DE CB ⊥,垂足为E ,连接PE ,再过点D 作DF PE ⊥,垂足为F分∵PD ⊥平面ABC ,又CB ⊂平面ABC , ∴PD CB ⊥,又PD DE D =, ∴CB ⊥平面PDE ,又DF ⊂平面PDE , ∴CB DF ⊥,又CB PE E =,∴DF ⊥平面PBC ,故DF 为点D 到平面PBC 的距离.--------10分 在Rt DEB ∆中,3sin 302DE DB =⋅=,PE == 在Rt PDE ∆中,335PD DE DF PE ⨯⋅===,即点D 到平面PBC.-------14分 19.(本题满分14分) 解析:(1)∵22n n S a =-,.∴当1n =时,1122a a =-,解得12a =;当2n =时,212222S a a a =+=-,解得24a =; 当3n =时,3123322S a a a a =++=-,解得38a =. -----------------3分 (2)当2n ≥时,111(22)(22)22n n n n n n n a S S a a a a ---=-=---=-, . -----5分 得12n n a a -=又11122a S a ==-,12a =,∴数列{n a }是以2为首项,公比为2的等比数列, 所以数列{n a }的通项公式为2n n a =. -----------------7分112b a ==,设公差为d ,则由1311,,b b b 成等比数列,得2(22)2(210)d d +=⨯+, -----------------8分 解得0d =(舍去)或3d =, ----------------9分 所以数列}{n b 的通项公式为31n b n =-.-----------------10分 (3)令312123nn n b b b b T a a a a =++++123258312222nn -=++++, 121583122222n n n T --=++++,-----------------11分 两式式相减得12133********n n nn T --=++++-,∴131(1)3135222512212n n n n n n T ---+=+-=--,-----------------13分又3502nn +>,故5n T <.-----------------14分 20.(本题满分14分)解析:(1)法1:设所求圆的方程为220x y Dx Ey F ++++=,由题意可得420420130D F D F D F ⎧-+=⎪++=⎨⎪+++=⎩,解得0,4D E F ===-,∴ABC ∆的外接圆方程为2240x y +-=,即224x y +=.-----------------6分法2:线段AC的中点为1(2-,直线AC的斜率为1k =, ∴线段AC的中垂线的方程为1)2y x =+, 线段AB 的中垂线方程为0x =,∴ABC ∆的外接圆圆心为(0,0),半径为2r =, ∴ABC ∆的外接圆方程为224x y +=.-----------------6分 法3:||2OC ==,而||||2OA OB ==,∴ABC ∆的外接圆是以O 为圆心,2为半径的圆, ∴ABC ∆的外接圆方程为224x y +=.-----------------6分法4:直线AC 的斜率为1k =,直线BC 的斜率为2k = ∴121k k ⋅=-,即AC BC ⊥,.∴ABC ∆的外接圆是以线段AB 为直径的圆,∴ABC ∆的外接圆方程为224x y +=.-----------------6分.(2)由题意可知以线段AB 为直径的圆的方程为224x y +=,设点R 的坐标为(2,)t , ∵,,A C R 三点共线,∴//AC AR ,----------------8分而(2,)AC m n =+,(4,)AR t =,则4(2)n t m =+, ∴42nt m =+, ∴点R 的坐标为4(2,)2n m +,点D 的坐标为2(2,)2nm +,-----------------10分 ∴直线CD 的斜率为222(2)22244nn m n n mn m k m m m -+-+===---, 而224m n +=,∴224m n -=-, ∴2mn mk n n==--,-----------------12分 ∴直线CD 的方程为()my n x m n-=--,化简得40mx ny +-=, ∴圆心O 到直线CD的距离2d r ====, 所以直线CD 与圆O 相切. -----------------14分 21.(本题满分14分)解析:(1)22(1)(1)1()x x x xe e x e f x x x ---+'==,-----------------2分令()(1)1xh x x e =-+,则()(1)xxxh x e e x xe '=+-=, 当0x >时,()0x h x xe '=>,∴()h x 是()0,+∞上的增函数, ∴()(0)0h x h >=, 故2()()0h x f x x'=>,即函数()f x 是()0,+∞上的增函数. -----------------6分(2)11()11x x e e x f x x x----=-=, 当0x >时,令()1xg x e x =--,则()10xg x e '=->, --8分故()(0)0g x g >=,∴1()1x e x f x x---=,原不等式化为1x e x a x--<,即(1)10x e a x -+-<,---------10分 令()(1)1x x e a x ϕ=-+-,则()(1)x x e a ϕ'=-+,由()0x ϕ'=得:1x e a =+,解得ln(1)x a =+,当0ln(1)x a <<+时,()0x ϕ'<;当ln(1)x a >+时,()0x ϕ'>.故当ln(1)x a =+时,()x ϕ取最小值[ln(1)](1)ln(1)a a a a ϕ+=-++, -----12分 令()ln(1),01a s a a a a =-+>+,则2211()0(1)1(1)a s a a a a '=-=-<+++. 故()(0)0s a s <=,即[ln(1)](1)ln(1)0a a a a ϕ+=-++<..因此,存在正数ln(1)x a =+,使原不等式成立.----------------14分。
广东省广州市备战2018高三数学文科第一轮复习测试试题
DCBA 2018广州市高考数学(文科)一轮复习测试题18(满分150分,考试时间 120分钟) 第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)复数21ii-的虚部是A. 1-B. 1C. i -D. i【答案】B 【.解析】22(1)(1)11(1)(1)i i i i i i i i i +==+=-+--+,所以虚部为1,选B. (2) “2a =”是“直线214ay ax y x =-+=-与垂直”的 A. 充分不必要条件 B 必要不充分条件C. 充要条件D.既不充分也不必要条件 【答案】A【.解析】若直线214a y ax y x =-+=-与垂直,则有=14aa -⨯-,即24a =,所以2a =±。
所以“2a =”是“直线214ay ax y x =-+=-与垂直”的充分不必要条件,选A.(3)在数列{}n a 中 ,111,,)2n n a a a y x +==点(在直线上,则4a 的值为A .7B .8C .9D .16【答案】B【.解析】因为点1,)2n n a a y x +=(在直线上,生意12n n a a +=,即数列{}n a 是公比为2的等比数列,所以334128a a q ===,选B.(4)如图,在,2.=ABC BD DC AB ,AC ,AD ∆==中若则a =b【答案】C 【.解析】因为2BD DC=,所以23B DB C =。
因为2212()3333AD AB BD a BC a b a a b =+=+=+-=+,选C. (5)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积为A. 4 B .8 C. 12 D. 24 【答案】A【.解析】根据三视图复原的几何体是底面为直角梯形,一条侧棱垂直直角梯形的直角顶点的四棱锥 其中ABCD 是直角梯形,AB ⊥AD , AB=AD=2,BC=4,即PA ⊥平面ABCD ,PA=2。
2018广东广州市第十八中学高三数学一轮复习专项检测试题 (3)
集合与常用逻辑用语、函数及不等式029.若集合A 具有以下性质:①0A ∈,1A ∈;②若,x y A ∈,则x y A -∈,且0x ≠时,1A x∈ .则称集合A 是“好集”.(1)集合{}1,0,1B =-是好集;(2)有理数集Q 是“好集”;(3)设集合A 是“好集”,若,x y A ∈,则x y A +∈;(4)设集合A 是“好集”,若,x y A ∈,则必有xy A ∈;(5)对任意的一个“好集A ,若,x y A ∈,且0x ≠,则必有yA x∈.则上述命题正确的个数有( )A .2个B .3个C .4个D .5个【答案】C【规律解读】以集合为背景的新定义问题,是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托,考查的是考生创造性解决问题的能力。
紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义形集合问题的的基本方法。
10.已知条件p :x≤1,条件,则是q 的( )1:1q x<p ⌝ A .充分不必要条件 B .必要不充分条件 C .充要条件 D .即非充分也非必要条件【答案】A【解析】已知条件p :x≤1则是,条件的充要条件是p ⌝1x >1:1q x<,所以是q 的充分不必要条件,选A.01x x <>、、p ⌝11.设集合( )2{5,log (3)},{,},A a B a b =+= 集合若A B ={2},则b-a=A .1B .2C .3D .4【答案】A【解析】因为所以,故,又,所以,{}2A B ⋂=2A ∈2log (3)2,1a a +==2B ∈,则,选A 。
2b =1b a -=12. 已知函数,分别由下表给出()f x ()g x 则的值为 ;满足的的值是 。
广东省广州市执信中学2018届高三11月月考数学(理)试题(解析版)
2017-2018学年度第一学期高三级理科数学11月考试试卷一、选择.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,,且,则实数有()个不同取值.A. B. C. D.【答案】B【解析】试题分析:因为,所以或,解得:或或,所以实数的不同取值个数为,故选B.考点:1、集合间的关系;2、一元二次方程.2.复数的共轭复数是().A. B. C. D.【答案】C【解析】【分析】分式上下同乘,化简整理可得,进而可得。
【详解】,共轭复数.故选.【点睛】本题考查复数的除法计算,共轭复数的概念,属基础题。
3.在中,则“”是“”的().A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】B【解析】试题分析:在中,由得:,因为“”“”,“”“”,所以“”是“”的必要而不充分条件,故选B.考点:1、三角函数的性质;2、充分条件与必要条件.4.下列命题中,错误的是().A. 平行于同一平面的两个不同平面平行B. 一条直线与两个平行平面中的一个相交,则必与另一个平面相交C. 若两个平面不垂直,则其中一个平面内一定不存在直线与另一个平面垂直D. 若直线不平行于平面,则此直线与这个平面内的直线都不平行【答案】D【解析】试题分析:平行于同一平面的两个不同平面平行,所以选项A正确;一条直线与两个平行平面中的一个相交,则必与另一平面相交,所以选项B正确;如果两个平面不垂直,那么其中一个平面内一定不存在直线与另一个平面垂直,所以选项C正确;若直线不平行于平面,则此直线与这个平面内的直线有可能平行,所以选项D错误.故选D.考点:空间点、线、面的位置关系.5.为得到函数的图象,只需把函数的图象上所有的点().A. 向右平行移动个单位长度B. 向右平行移动个单位长度C. 向左平行移动个单位长度D. 向左平行移动个单位长度【答案】D【解析】【分析】由诱导公式,可将变形为,根据平移变换的方法即可得结果。
广东广州市普通高中学校2018届高考高三数学12月月考试题 06 Word版含答案
2018高考高三数学12月月考试题06(满分150分,完卷时间120分钟)一、填空题 (本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.223lim 2n n nn n→∞+=- .2.已知集合{}0,A a =,{}21,B a =,若{}0,1,4,16A B = ,则a = .3.若行列式,021421=-x 则=x . 4.若函数()23x f x =+的图像与()g x 的图像关于直线y x =对称,则(5)g = . 5.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为 .6.己知(1,2sin )a θ=,cos 1b θ=- (,),且b a ⊥,则tan θ= . 7.抛物线的焦点为椭圆14522=+y x 的右焦点,顶点在椭圆中心,则抛物线方程为 . 8.已知lg lg 1x y +=,则25x y+的最小值为 . 9.现有20个数,它们构成一个以1为首项,-2为公比的等比数列,若从这20个数中随机抽取一个数,则它大于8的概率是 .10.在△ABC 中,角A ,B ,C 所对的边分别是,,a b c ,若222b c a bc +=+,且8bc =,则△ABC 的面积等于 .11.若二项式7()+x a 展开式中5x 项的系数是7,则)(lim 242nn aa a +++∞→ = .12.给出四个函数:①xx x f 1)(+=,②x x x g -+=33)(,③3)(x x u =,④x x v sin )(=,其中满足条件:对任意实数x 及任意正数m ,都有()()0f x f x -+=及()()f x m f x +>的函数为 .(写出所有满足条件的函数的序号)13.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为11(,)P x y ,22(,)Q x y 两点之间的“折线距离”.则原点)0,0(O 与直线05=-+y x 上一点),(y x P 的“折线距离”的最小值是 .14.某同学对函数x x x f sin )(=进行研究后,得出以下结论: ①函数)(x f y =的图像是轴对称图形; ②对任意实数x ,x x f ≤)(均成立;③函数)(x f y =的图像与直线x y =有无穷多个公共点,且任意相邻两点的距离相等;④当常数k 满足1>k 时,函数()y f x =的图像与直线kx y =有且仅有一个公共点. 其中所有正确结论的序号是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.过点(1,0)且与直线220x y --=平行的直线方程是 A .210x y +-= B .210x y -+= C .220x y +-= D .210x y --=16.对于原命题:“已知a b c R ∈、、,若a b > ,则22ac bc >”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为 A .0个 B .1个 C .2个 D .4个17.右图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,则这样的x 值有 A .1个 B .2个 C .3个 D .4个 18.设()f x 是定义在R 上的偶函数,对任意x R ∈,都有(2)(2),f x f x -=+且当[2,0]x ∈-时,1()()12xf x =-.若在区间(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>恰有3个不同的实数根,则实数a 的取值范围是A .(1,2)B .(2,)+∞C .D .三.解答题 (本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)已知(2cos ,1)a x = ,(cos )b x x = ,其中x R ∈.设函数()f x a b =⋅,求()f x 的最小正周期、最大值和最小值.20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分已知z C ∈,且满足2()52z z z i i ++=+. (1)求z ;(2)若m R ∈,w zi m =+,求证:1w ≥.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4(尾/立方米)时,v 的值为2(千克/年);当420x ≤≤时,v 是x 的一次函数;当x 达到20(尾/立方米)时,因缺氧等原因,v 的值为0(千克/年).(1)当020x <≤时,求函数()v x 的表达式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大,并求出最大值.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分对于双曲线:C 22221(0,0)x y a b a b -=>>,定义1:C 22221x y a b+=为其伴随曲线,记双曲线C 的左、右顶点为A 、B .(1)当a b >时,记双曲线C 的半焦距为c ,其伴随椭圆1C 的半焦距为1c ,若12c c =,求双曲线C 的渐近线方程;(2)若双曲线C 的方程为221x y -=,过点(M 且与C 的伴随曲线相切的直线l 交曲线C 于1N 、2N 两点,求12ON N ∆的面积(O 为坐标原点)(3)若双曲线C 的方程为22142x y -=,弦PQ ⊥x 轴,记直线PA 与直线QB 的交点为M ,求动点M 的轨迹方程.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分已知递增的等差数列{}n a 的首项11a =,且1a 、2a 、4a 成等比数列. (1) 求数列{}n a 的通项公式n a ;(2) 设数列}{n c 对任意*n N ∈,都有1212222n n n c c c a ++++= 成立,求122012c c c +++ 的值.(3)在数列{}n d 中,11d =,且满足11nn n d a d ++=*()n N ∈,求下表中前n 行所有数的和n S . 112d d d 123d d d 213d d d……11n n d d d + 211n n d d d -+...... 11k n k n d d d -++ (11)n n d dd +参考答案1.212. 4 3. 2 4. 1 5. 20 6.217. 24y x = 8.29.25 10. 11.2112.③13.14. ①②④15.D 16. C 17.C 18.D19.解:由题意知2()2cos 2f x a b x x =⋅=……………………… 3分cos 21222x x +=⋅+cos221x x =+2sin 216x π⎛⎫=++ ⎪⎝⎭ ………………………………… 6分∴最小正周期 22T ππ== ………………………… 8分 当2262x k πππ+=+,即(),Z 6x k k ππ=+∈时,max ()213f x =+=…………………10分当32262x k πππ+=+,即()2,Z 3x k k ππ=+∈时,()min 211f x =-+=-…………12分 20.解:(1)设(,)z a bi a b R =+∈,则222z a b =+,()2z z i ai += ………… 2分由22252a b ai i ++=+得22522a b a ⎧+=⎨=⎩ ……………………………4分 解得12a b =⎧⎨=⎩ 或 12a b =⎧⎨=-⎩……………………………… 5分∴12z i =+或12z i =-……………………………… 7分 (2)当12z i =+时,(12)2w zi m i i m i m =+=++=-++=1≥…………………… 10分当12z i =-时,(12)2w zi m i i m i m =+=-+=++=1≥……………………… 13分∴w 1≥ ……………………………… 14分 21.解:(1)由题意:当04x <≤时,()2v x =; …………………………2分 当420x <≤时,设()b ax x v +=,显然()b ax x v +=在[4,20]是减函数,由已知得20042a b a b +=⎧⎨+=⎩,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩ …………………………4分故函数()x v =**2,04,15,420,82x x N x x x N⎧<≤∈⎪⎨-+≤≤∈⎪⎩ …………………………6分(2)依题意并由(1)可得()=x f *2*2,04,15,420,.82x x x N x x x x N ⎧<≤∈⎪⎨-+≤≤∈⎪⎩ ……8分 当04x ≤≤时,()x f 为增函数,故()max (4)f x f ==428⨯=; ……………10分当420x ≤≤时,()22221511100(20)(10)82888f x x x x x x =-+=--=--+,()max (10)12.5f x f ==. ……………………………12分所以,当020x <≤时,()x f 的最大值为12.5.当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值约为12.5千克/立方米.……………………………14分22.解:(1)∵c =1c =………………………1分由12c c ==,即22224()a b a b +=-可得 2235b a = ………………………3分∴C的渐近线方程为y x = ………………………4分(2)双曲线C 的伴随曲线的方程为221x y +=,设直线l的方程为(y k x =,由l 与圆1= 即 2231k k =+解得2k =± ……………………………6分当2k =时,设1N 、2N 的坐标分别为111(,)N x y 、222(,)N x y由221y x x y ⎧=⎪⎨⎪-=⎩得221(12x x -+=,即250x --=,∵24(5)320∆=-⋅-=>,2x =∴12x x -=∴1212N N x =-==………………………8分∴1212112ON N S N N ∆=⨯⨯=由对称性知,当2k =-时,也有12ON N S ∆=…………………………10分(3)设00(,)P x y ,00(,)Q x y -,又(2,0)A -、(2,0)B ,∴直线PA 的方程为00(2)2y y x x =++…………①直线QB 的方程为00(2)2y y x x -=--…………② …………………………12分由①②得0042x xy y x ⎧=⎪⎪⎨⎪=⎪⎩……………………………………14分∵ 00(,)P x y 在双曲线22142x y -=上 ∴222244142y x x -= ∴22142x y += ……………………………………16分23.解:(1)∵{}n a 是递增的等差数列,设公差为d (0)d >……………………1分1a 、2a 、4a 成等比数列,∴2214=a a a ……………………2分由 2(1)1(13)d d +=⨯+ 及0d >得 1d = ……………………………3分 ∴(*)n a n n N =∈ ……………………………4分(2)∵11n a n +=+,1221222n n c c c n +++=+ 对*n N ∈都成立 当1n =时,122c =得14c = ……………………………5分 当2n ≥时,由1221222n n c c c n +++=+ ①,及11221222n n c c c n --+++= ② ①-②得12n n c=,得2n n c = …………………7分 ∴4(1)2(2)n nn c n =⎧=⎨≥⎩ …………………8分 ∴2201123201220131220122(12)42224212c c c -+++=++++=+=- ……………10分(3)∵111n n n d a n d ++==+ ∴3122341234(1)n n dd d d n d d d d +⋅⋅⋅=⋅⋅⋅⋅+ 又∵11d = ∴1!n d n = ………………………………13分∵111(1)!(1,2,)!(1)!kk n k n k n d d n C k n d k n k -+-+++===-+ ………………………………14分 ∴第n 行各数之和 121121111111122(1,2)n n n n n n n n n n n d d d d d d C C C n d d d +-+++++++++=++⋅+=-= …………16分 ∴表中前n 行所有数的和231231(22)(22)(22)2222n n n S n ++=-+-++-=+++-222(21)222421n n n n +-=-=--- ……………………………18分。
2018广东广州市第十八中学高三数学一轮复习专项检测试题 (15)
概率、算法及复数与推理证明 012 1.二项式 1 的展开式中第四项的系数为 x5.【答案】 802 3 【解析】第四项 T4 C5 80 x 3 ,系数为 80 x31 2. ( x ) 6 的展开式中,系数最大的项为第______项. x【答案】3 或 51 【解析】 ( x ) 6 的展开式中系数与二项式系数只有符号差异,又中间项的二项式系数最大,中 x间项为第 4 项其系数为负,则第 3,5 项系数最大.3. 我国第一艘航母“辽宁舰”在某次舰截机起降飞行训练中,有 5 架歼 15 飞机准备着舰如果 甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法 A. 12 【答案】C2 【解析】分三步:把甲、乙捆绑为一个元素 A ,有 A2 种方法; A 与戊机形成三个“空” ,把丙、 2 丁 两 机 插 入 空 中 有 A32 种 方 法 ; 考 虑 A 与 戊 机 的 排 法 有 A2 种方法。
由乘法原理可知共有 2 2 24 种不同的着舰方法。
A2 A32 A2B. 18C. 24D. 484. 2012 年 10 月 18 日全国第二届绿色运动会在池洲隆垦开幕。
本次 的主题是“绿色、低碳、环保”,为大力宣传这一主题,主办方 个字做成灯笼悬挂在主会场(如图所示) ,大会结束后,要将这 6 笼撤下来,每次撤其中一列最下面的一个,则不同的撤法种数为( A.36 【答案】D B.54 C.72 D.90 )大 会 将这 6 个 灯【解析】5. 已知 Sn {A A (a1 ,a2 ,a 3 ,,an ), ai 2012 或 2013 , i 1, 2,n} (n 2) ,对于 U , V Sn ,d (U ,V ) 表示 U 和 V 中相对应的元素不同的个数.(Ⅰ) 令 U (2013, 2013, 2013, 2013, 2013) , 存在 m 个 V S5 , 使得 d (U ,V ) 2 , 则 m= (Ⅱ)令 U (a1 , a2 , a3 ,2 【解析】 : (Ⅰ) C5 10 ;r (Ⅱ)根据(Ⅰ)知使 d (u, vk ) r 的 vk 共有 Cn 个;, an ) ,若 V Sn ,则所有 d (U ,V ) 之和为.0 1 2 ∴ d (u, vk ) = 0 Cn 1 Cn 2 Cn k 12nn n Cn d (u, v ) = n Ck 1 k2nn nn1 n 2 (n 1) Cn (n 2) Cn 0 0 Cn两式相加得 d (u, v ) = n 2k 1 k2nn 16.从 0,1,2,3 中任取三个数字,组成无重复数字的三位数中,偶数的个数是 答). 【答案】10 【解析】考虑三位数“没 0”和“有 0”两种情况。
广东省广州市2018届高三综合测试(一)数学(理)试卷(含答案)
秘密 ★ 启用前 试卷类型: A2018年广州市普通高中毕业班综合测试(一)理科数学2018.3本试卷共5页,23小题, 满分150分。
考试用时120分钟。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足()21i 4i z -=,则复数z 的共轭复数z = A .2- B .2 C .2i - D .2i2.设集合301x A x x ⎧+⎫=<⎨⎬-⎩⎭,{}3B x x =-≤,则集合{}1x x =≥ A .A B IB .A B UC .()()A B R R U 痧D .()()A B R R I 痧 3.若A ,B ,C ,D ,E 五位同学站成一排照相,则A ,B 两位同学不相邻的概率为 A .45 B .35 C .25 D .154.执行如图所示的程序框图,则输出的S = A .920 B .49 C .29 D .940 5.已知3sin 45x π⎛⎫-= ⎪⎝⎭,则cos 4x π⎛⎫+= ⎪⎝⎭ A .45 B .35C .45-D .35- 6.已知二项式212n x x ⎛⎫- ⎪⎝⎭的所有二项式系数之和等于128,那么其展开式中含1x 项的系数是 A .84- B .14- C .14 D .847.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表 面积为A .44223++B .1442+C .104223++D .4 8.若x ,y 满足约束条件20,210,10,x y y x -+⎧⎪-⎨⎪-⎩≥≥≤ 则222z x x y =++的最小值为 A .12 B .14 C .12- D .34-9.已知函数()sin 6f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>在区间43π2π⎡⎤-⎢⎥⎣⎦,上单调递增,则ω的取值范围为A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦ 10.已知函数()322f x x ax bx a =+++在1x =处的极值为10,则数对(),a b 为 A .()3,3- B .()11,4- C .()4,11- D .()3,3-或()4,11-11.如图,在梯形ABCD 中,已知2AB CD =,25AE AC =uu u r uuu r ,双曲线 过C ,D ,E 三点,且以A ,B 为焦点,则双曲线的离心率为A .7B .22C .3D .1012.设函数()f x 在R 上存在导函数()f x ',对于任意的实数x ,都有()()22f x f x x +-=,当0x <时,()12f x x '+<,若()()121f a f a a +-++≤,则实数a 的最小值为 A .12- B .1- C .32- D .2-二、填空题:本题共4小题,每小题5分,共20分.D CA B E13.已知向量(),2m=a,()1,1=b,若+=+a b a b,则实数m=.14.已知三棱锥P ABC-的底面ABC是等腰三角形,AB AC⊥,PA⊥底面ABC,1==ABPA,则这个三棱锥内切球的半径为.15.△ABC的内角A,B,C的对边分别为a,b,c,若()()2cos2cos0a Bb A cθθ-+++=,则cosθ的值为.16.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为n S,如11S=,22S=,32S=,44S=,……,则126S=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(本小题满分12分)已知数列{}na的前n项和为nS,数列nSn⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列.(1)求数列{}na的通项公式;(2)设数列{}nb满足()121215452nnnaa anb b b⎛⎫+++=-+ ⎪⎝⎭L,求数列{}nb的前n项和nT.图②图①18.(本小题满分12分)某地1~10岁男童年龄i x (岁)与身高的中位数i y ()cm ()1,2,,10i =L 如下表: x (岁) 12 3 4 5 6 7 8 9 10 y ()cm 76.5 88.5 96.8 104.1 111.3 117.7 124.0 130.0 135.4 140.2对上表的数据作初步处理,得到下面的散点图及一些统计量的值.x y ()1021x x i i ∑-= ()1021y y i i ∑-= ()()101x x y y i i i ∑--=5.5 112.45 82.50 3947.71 566.85(1)求y 关于x 的线性回归方程(回归方程系数精确到0.01);(2)某同学认为,2y px qx r =++更适宜作为y 关于x 的回归方程类型,他求得的回归方程是20.3010.1768.07y x x =-++.经调查,该地11岁男童身高的中位数为145.3cm .与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y a bx =+$$$中的斜率和截距的最小二乘估计公式分别为: ,a y bx =-$$.19.(本小题满分12分)如图,四棱锥S ABCD -中,△ABD 为正三角形,︒=∠120BCD , 2CB CD CS ===,︒=∠90BSD .(1)求证:AC ⊥平面SBD ;(2)若BD SC ⊥,求二面角C SB A --的余弦值.()()()121n x x y y i i i b n x x i i =--∑=-∑=$D C BS20.(本小题满分12分)已知圆(2216x y +=的圆心为M ,点P 是圆M 上的动点,点)N ,点G 在线段MP 上,且满足()()GN GP GN GP +⊥-uuu r uu u r uuu r uu u r .(1)求点G 的轨迹C 的方程;(2)过点()4,0T 作斜率不为0的直线l 与(1)中的轨迹C 交于A ,B 两点,点A 关于 x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.21.(本小题满分12分)已知函数()ln 1f x ax x =++.(1)讨论函数()x f 零点的个数;(2)对任意的0>x ,()2e x f x x ≤恒成立,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知过点(),0P m 的直线l的参数方程是,1,2x m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,且2PA PB ⋅=,求实数m 的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()f x =23x a x b ++-.(1)当1a =,0b =时,求不等式()31f x x +≥的解集; (2)若0a >,0b >,且函数()f x 的最小值为2,求3a b +的值.参考答案1-5:ADBDD6-10:ACDBC11-12:AA13、214、3315、-1216、6417、18、(2)。
广东省广州市2018届高三综合测试(一)数学理
AC 5 ,双曲线
D
C
E
过 C , D , E 三点,且以 A , B 为焦点,则双曲线的离心率为
A
B
A. 7
B. 2 2
C. 3
D . 10
f
12.设函数
x 在 R 上存在导函数
f
x ,对于任意的实数 x ,都有 f x
f
x
2x2 ,当 x 0
时, f x 1 2x ,若 f a 1 ≤f a 2a 1,则实数 a 的最小值为
同学不相邻的概率为
4 A. 5
3 B. 5
2 C. 5
1 D. 5
4.执行如图所示的程序框图,则输出的
S
9 A . 20
4 B. 9
2
9
C. 9 D. 40
sin x
5.已知
4
3
cos x
5 ,则
4
n 2, S 0 y log x
1 S S+
nn 2
nn2
否 n≥19? 是
输出 S 结束
4 A. 5
3 B. 5
4
3
C. 5 D. 5
6.已知二项式
n
2x2 1 x 的所有二项式系数之和等于
1 128,那么其展开式中含 x 项的系数是
A . 84
B. 14
C. 14
D. 84
7.如图,网格纸上小正方形的边长为
1,粗线画出的是某个几何体的三
· 1·
视图,则该几何体的表
A. 4 4 2 2 3
面积为
1 0, B. 2
18 ,
C. 2 3
3 ,2
D. 8
10.已知函数 f x x3 ax2 bx a2 在 x 1 处的极值为 10 ,则数对 a, b 为
2018届广州市高三年级调研考(理科数学)
文案秘密★启用前试卷类型: A2018届市高三年级调研测试 理科数学2017.12本试卷共5 页,23 小题,满分150 分,考试用时120 分钟.注意事项:1.本试卷分第1卷(选择题)和第2卷(非选择题)两部分。
答卷前,考生务必将自己的和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔在答题卡的相应位置填涂考生号。
2.作答第1卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
写在本试卷上无效.3.第2卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =->,则AB =()A.{}1-B.{}1,0-C.{}1,3-D.{}1,0,3- 2.若复数z 满足()121i z i +=-,则z =() A.25B.35C.53.在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =() A.2 B.3 C.2- D.3-4.已知变量x 、y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最大值为()A.0B.4C.5D.65.912x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为()文案A.212-B.92-C.92D.2126.在如图所示的程序框图中,()i f x '是()i f x 的导函数,若()0sin f x x =,则输出的结果是() A.sin x - B.cos x C.sin x D.cos x -7.正方体1111ABCD A B C D -的棱长为2,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的长为() A.23 B.12 C.16 D.138.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为() A.ln 2 B.1 C.1ln2- D.1ln2+9.某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有() A.36种B.24种 C.22种 D.20种 10.将函数2sin sin 36y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为()文案A.6π B.12π C.4π D.3π11.在直角坐标系xOy 中,设F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,P 为双曲线C 右支上一点,且OPF ∆为正三角形,则双曲线C 的离心率为()B.3C.12 12.对于定义域为R 的函数()f x ,若满足①()00f =;②当x R ∈,且0x ≠时,都有()0xf x '>;③当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+;()21x f x e x =--;()()3ln 1,02,0x x f x x x -+≤⎧⎪=⎨>⎪⎩;()411,02120,0xx x f x x ⎧⎛⎫+≠⎪ ⎪=-⎝⎭⎨⎪=⎩.则其中是“偏对称函数”的函数个数为() A.0 B.1 C.2 D.3二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知向量(),2a x x =-,()3,4b =,若//a b ,则向量a 的模为. 14.在各项都为正数的等比数列{}n a中,若2018a =2017201912a a +的最小值为.15.过抛物线()2:20C y px p =>的焦点F 的直线交抛物线C 于A 、B 两点,若6AF =,3BF =,则p 的值为.16.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第 17~21 题为必考题,每个试题考生都必须做答.第 22、23 题为选考题,考生根据要求做答. (一)必考题:共 60 分.文案17.(本小题满分 12 分)ABC ∆的角A 、B 、C 的对边分别为a 、b 、c ,且满足2a =,()cos 2cos a B c b A =-.(1)求角A 的大小; (2)求ABC ∆周长的最大值.18.(本小题满分 12 分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,PA ⊥底面ABCD ,//ED PA ,且PA =22ED =.文案(1)证明:平面PAC ⊥平面PCE ;(2)若直线PC 与平面ABCD 所成的角为45,求二面角P CE D --的余弦值.19.(本小题满分 12 分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过EDCBAP文案70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数公式()()niix x y y r --=∑0.55≈0.95≈.20.(本小题满分 12 分)文案如图,在直角坐标系xOy 中,椭圆()2222:10y x C a b a b +=>>的上焦点为1F ,椭圆C 的离心率为12,且过点1,3⎛⎫⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若110F B F H ⋅=,且MO MA =,求直线l 的方程.21.(本小题满分 12 分)文案已知函数()()ln 0bf x a x xa =+≠.(1)当2b =时,若函数()f x 恰有一个零点,数a 的取值围;(2)当0a b +=,0b >时,对任意1x 、21,x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,数b 的取值围.(二)选考题:共 10 分.请考生在第 22、23 题中任选一题做答,如果多做,则按所做的第一题计分. 22.(本小题满分 10 分)选修 4-4:坐标系与参数方程文案在直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩(α为参数),将曲线1C 经过伸缩变换2x xy y'=⎧⎨'=⎩后得到曲线2C ,在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos ρθ-sin 100ρθ-=.(1)说明曲线2C 是哪一种曲线,并将曲线2C 的方程化为极坐标方程;(2)已知点M 是曲线2C 上任意一点,求点M 到直线l 的距离的最大值和最小值.23.(本小题满分 10 分)选修 4-5:不等式选讲 已知函数()f x x a =+.文案(1)当1a =时,求不等式()211f x x ≤+-的解集;(2)若函数()()3g x f x x =-+的值域为A ,[]2,1A -⊆,求a 的取值围.。
广东省广州市备战2018高三数学文科第一轮复习测试试题
2018广州市高考数学(文科)一轮复习测试题18本试卷共4页,21小题,满分150分.考试用时120分钟.一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数12,z z 在复平面内对应的点分别为(0,1),(1,3)A B -,则21z z = A .13i -+ B .3i-- C .3i + D .3i -2.已知集合2{|log (1)}A x y x ==+,集合1{|(),0}2xB y y x ==>,则A B I =A .(1,)+∞B .(1,1)-C .(0,)+∞D .(0,1)3.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为. A.15 B.20 C25. D.304.在四边形ABCD 中,“AB DC =uu u r uuu r ,且0AC BD ⋅=u u u r”是“四边形ABCD 是菱形”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 5.已知数列{}n a 的前n 项和22n S n n =-,则218a a +=A.36B.35C.34D.33 6.下列函数在其定义域内,既是奇函数又存在零点的是:A .()1x f x e =-B .1()f x x x -=+C .1()f x x x -=- D .()|sin |f x x =-7.已知βα、是两不同的平面,m 、n 是两不同直线,下列命题中不正确A .若m ∥n ,m ⊥α,则n ⊥α B .若m ∥α,α∩β= n ,则m C .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,m ∥β,则α⊥8.在图(1)的程序框图中,任意输入一次(01)x x ≤≤与(01)y y ≤≤则能输出数对(,)x y 的概率为A .18B . 38C . 78D .149.已知抛物线C :24x y =的焦点为F ,直线240x y -+=与C 交于A ,的值为 A.45B.35C.35-D.45-10.设2()f x x bx c =++,若方程()f x x =无实数根,则方程(())f f x x =A.有四个相异的实根B. 有两个相异的实根C.有一个实根D.无实根 二、填空题:本大题共6小题,考生作答5小题,每小题5分,满分20分.图(2)(一)必做题(11-13题)11.计算:1122log sin15log cos15+oo = .122cos4π=2cos8π=2cos16π=,……请从中归纳出第n2n 个 .13.某车间分批生产某种产品,每批的生产准备费用为400元.若每批生产x 件,则平均仓储时间为4x天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品 件. (二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线1C :2ρ=和曲线2C :cos()4πρθ+1C 上到2C 的点的个数为 .15.(几何证明选讲选做题)如图(2)所示,AB 是⊙O 的直径,过圆上一点E 作切线ED ⊥AF ,交AF 的延长线于点D ,交AB 的延长线于点C .若CB =2,CE =4,则⊙O 的半径长为 ;AD 的长 为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足sin a A =. (1)求角C 的大小;(2cos A B -的最大值,并求取得最大值时角,A B 的大小.17. (本小题满分12分) 一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌长x 与身高y进行测量,得到数据(单位均为cm )作为一个样本如上表示.(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程y bx a ∧=+;(2)若某人的脚掌长为26.5cm ,试估计此人的身高;(3)在样本中,从身高180cm 以上的4人中随机抽取2人作进一步的分析,求所抽取的DCBA E F M NPF EA BCD2人中至少有1人身高在190cm 以上的概率.(参考数据:101()()577.5iii x x y y =--=∑,1021()82.5ii x x =-=∑)18. (本小题满分14分)设}{n a 是各项都为正数的等比数列,{}n b 是等差数列,且111,a b ==,3513,a b +=5321.a b +=(1)求数列}{n a ,{}n b 的通项公式;(2)设数列}{n a 的前n 项和为n S ,求数列{}n n S b ⋅的前n 项和n T .19.(本小题满分14分)如图(3),在等腰梯形CDEF 中,CB 、DA 是梯形的高,2AE BF ==,AB =现将梯形沿CB 、DA 折起,使EF//AB 且2EF AB =,得一简单组合体ABCDEF 如图(4)示,已知,,M N P 分别为,,AF BD EF 的中点.(1)求证://MN 平面BCF ;(2)求证:AP ⊥平面DAE ; (3)若2AD =,求四棱锥F-ABCD 的体积. 图(3) 图(4) 20.(本小题满分14分) 如图(5),设点)0,(1c F -、)0,(2c F 分别是椭圆:22ax C 的左、右焦点,P 为椭圆C 上任意一点,且12PF PF ⋅uuu r uuu r(1)求椭圆C 的方程; (2)设直线12:,:l y kx m l y kx n =+=+,若1l 、2l C 相切,证明:0m n +=;(3)在(2)的条件下,试探究在x 轴上是否存在定点B ,点B 到12,l l 的距离之积恒为1?若存在,请求出点B 坐标;若不存在,请说明理由.121.(本小题满分14分)已知函数()ln f x x =,2()()g x f x ax bx =++,函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴.(1)确定a 与b 的关系; (2)若0a ≥,试讨论函数()g x 的单调性;(3)设斜率为k 的直线与函数()f x 的图象交于两点1122(,),(,)A x y B x y ,(12x x <) 证明:2111k x x <<.参考答案一.选择题:CDBCC CBADD 解析:8.结合右图易得所求概率为18,选A. 9.联立24240x y x y ⎧=⎨-+=⎩,消去y 得2280x x --=,解得122,x x =-不妨设A 在y 轴左侧,于是A ,B 的坐标分别为(-2,1),(4,4),解法1:由抛物线的定义可得:||1(1)2,AF =--=||4(1)BF =--,||AB =,由余弦定理2224cos 25AF BF AB AFB AF BF +-∠==-⨯.故选D. 解法2:由抛物线的定义可得:||1(1)2,AF =--=||4(1)5BF =--=,可求5,2AB AF BF ===,∵(2,0),(4,3)FA FB =-=u u r u u r∴||||cos 8FA FB FA FB AFB ⋅=⋅∠=-u u r u u r u u r u u u r ,∴84cos 2255AFB -∠==-⨯⨯10.因抛物线2()f x x bx c =++开口向上,由方程()f x x =无实数根知,对任意的x R ∈,()f x x >(())()f f x f x x ⇒>>,所以方程(())f f x x =没有实根,故选D.二.填空题: 11.2;12. 12cos2n π+;13.40;14.2;15.3 (2分);245(3分). 解析:13.设平均每件产品的生产准备费用与仓储费用之和为y ,则14004004204xx x y x x⋅⋅+==+≥,当且仅当4004x x =,即40x =时“=”成立, 故每批应生产产品40件.14.将方程2ρ=与cos()4πρθ+2222x y +=与20x y --=,知1C 为圆心在坐标原点,半径为2的圆,2C 为直线,因圆心到直线20x y --=15.设r 是⊙O 的半径.由2CE CA CB =⋅,解得r =3.由CO OE CA AD =解得245AD =. 三.解答题:16.解:(1)由条件结合正弦定理得,sin sin a cA C ==----2分 从而sin CC =,tan C =-----------------------------------------------4分 ∵0C π<<,∴3C π=;--------------------------------------------------------------6分(2)由(1)知23B A π=--------------------------------------------------------------7分 cosA B -2cos()3A A π=--22cos cos sin sin 33A A A ππ=--------9分1cos 22A A =+sin()6A π=+--------------10分∵203A π<<,∴5666A πππ<+< 当62A ππ+=sin()2A B π-+取得最大值1,------------------------------11分此时,33A B ππ==.-----------------------------------------------------------------------12分17.解:(1)记样本中10人的“脚掌长”为(1,2,10)i x i =L ,“身高”为(1,2,10)i y i =L ,则121()()577.5782.5()niii nii x x y y b x x ==--===-∑∑,------------------------------------------1分 ∵1210...10x x x x +++==24.5,1210...171.510y y y y +++==-----------------3分∴0a y bx =-= -----------------------------------------------------------------------------4分 ∴7y x ∧=---------------------------------------------------------5分 (2)由(20)知7y x ∧=,当26.5x =时,726.5185.5()y cm ∧=⨯=,--------6分 故估计此人的身高为185.5cm 。
2018 届广州市高三年级调研测试理科数学
黑;如需改动,用橡皮擦干净后,再选涂其他答案。写在本试卷上无效.
3.第 2 卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相
应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答无效。 4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
【解析】 B x x2 3x 0 x x 0或x 3 ,因此, A B 1 ,故选 A.
D. 1, 0, 3
2.若复数 z 满足 1 2i z 1 i ,则 z ( )
2
3
A.
B.
5
5
10
C.
5
【 答 案 】C
【解析】
z
1i 1 2i
B. cos x
C. sin x
D. cos x
数学(理科)试题 A 第 2 页 共 17 页
开始
输入f0 x
i0
i i 1
否
fi x fi1 x
i 2017 ?
是
输出fi x
结束
【 答 案 】A
【解析】第一次循环, i 0 1 1, f1 x sin x cos x , i 1 2017 不成立;
依此类推, fi x fi4 x ,而 2018 4504 2 ,
运行最后一次循环, i 2017 1 2018 , f2018 x f2 x sin x , i 2018 2017 成立,输出的结
果为 sin x ,故选 A.
广东省广州市实验中学、执信中学2018届高三10月联考数学(理)试题(解析版)
广东省实验中学2018届高三上学期10月段测试数学(理科)一、选择题(本大题共12小题,每小题5分,共60分,每小题的四个选项中,只有一项是符合题目要求的)1.复数()A. B. C. D.【答案】B【解析】由题可知.故本题答案选.2.等差数列中,,为等比数列,且,则的值为().A. B. C. D.【答案】A【解析】【分析】根据题意,利用等差数列的定义与性质,求出的值,再利用等比数列的性质求出的值.【详解】等差数列中,,又,所以,解得或(舍去),所以,所以.故选.【点睛】本题考查了等差与等比数列的性质与应用问题,考查了计算能力,是基础题目.3.已知,“函数有零点”是“函数在上是减函数”的().A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 即不充分也不必要条件【答案】B【解析】试题分析:由题意得,由函数有零点可得,,而由函数在上为减函数可得,因此是必要不充分条件,故选B.考点:1.指数函数的单调性;2.对数函数的单调性;3.充分必要条件.4.下面给出四种说法:①设、、分别表示数据、、、、、、、、、的平均数、中位数、众数,则;②在线性回归模型中,相关指数表示解释变量对于预报变量变化的贡献率,越接近于,表示回归的效果越好;③绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;④设随机变量服从正态分布,则.其中不正确的是().A. ①B. ②C. ③D. ④【答案】C【解析】【分析】对于A,根据数据求出的平均数,众数和中位数即可判断;对于B,相关指数R2越接近1,表示回归的效果越好;对于C,根据频率分布直方图判定;对于D,设随机变量ξ服从正态分布N(4,22),利用对称性可得结论;【详解】解:①将数据按从小到大的顺序排列为:、、、、、、、、、,中位数:;;这组数据的平均数是.因为此组数据中出现次数最多的数是,所以是此组数据的众数;则;②越接近于,表示回归的效果越好,正确;③根据频率分布直方图的意义,因为小矩形的面积之和等于,频率之和也为,所以有各小长方形的面积等于相应各组的频率;故③错;④∵随机变量服从正态分布,∴正态曲线的对称轴是,∴.故④正确.故选.【点睛】本题主要考查命题的真假判断,涉及统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题.5.如图,网格纸上小正方形的边长为,粗实线画出的是该几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为().A. B. C. D.【答案】C【解析】【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.【详解】由三视图可得,直观图为一个完整的圆柱减去一个高为的圆柱的一半,.故选.【点睛】本题考查了由三视图还原几何体,体积计算公式,考查了推理能力与计算能力,属于中档题.6.对于实数,若函数图象上存在点满足约束条件,则实数的最小值为().A. B. C. D.【答案】B【解析】【分析】作出不等式组表示的平面区域,观察图形可得函数的图象与直线x﹣y+3=0交于点(﹣1,2),当点A与该点重合时图象上存在点(x,y)满足不等式组,且此时m达到最小值,由此即可得到m的最小值.【详解】作出不等式组表示的平面区域,得到如图的三角形,其中,再作出指数函数的图象,可得该图象与直线交于点,因此,当点与重合时,图象上存在点满足不等式组,且此时达到最小值,即的最小值为.故选.【点睛】本题给出二元一次不等式组,求能使不等式成立的m的最小值,着重考查了二元一次不等式组表示的平面区域和函数图象的作法等知识,属于中档题.7.有一个球的内接圆锥,其底面圆周和顶点均在球面上,且底面积为.已知球的半径,则此圆锥的侧面积为().A. B. C. 或 D.【答案】C【解析】【分析】由题意列方程求出圆锥的高h,再求出圆锥的母线长l,即可求出圆锥的侧面积.【详解】圆锥,是底面圆心,为球心,,∴,①如图①,,[在上],∴,.②如图②,,∴,∴.故选.【点睛】本题考查了丁球内接圆锥的侧面积问题,求出圆锥的高是关键,考查空间想象能力与计算能力,属于中档题.8.已知双曲线,过点的直线与相交于,两点,且的中点为,则双曲线的离心率为().A. B. C. D.【答案】B【解析】【分析】由中点坐标公式,将A和B点代入双曲线的方程,两式相减即可求得直线的斜率,由直线AB的斜率k==1,即可求得=,根据双曲线的离心率公式,即可求得双曲线C的离心率.【详解】设A(x1,y1),B(x2,y2),由AB的中点为N(12,15),则x1+x2=24,y1+y2=30,由,两式相减得:=,则==,由直线AB的斜率k==1,∴=1,则=,双曲线的离心率e===,∴双曲线C的离心率为,故选:B.【点睛】本题考查双曲线的离心率公式,考查中点坐标公式,考查点差法的应用,考查直线的斜率,考查计算能力,属于中档题.9.在正方体中,,分别是棱,的中点,是与的交点,面与面相交于,面与面相交于,则直线,的夹角为().A. B. C. D.【答案】A【解析】【分析】画出图象,可得m即为CF,进而根据线面平行的判定定理和性质定理可得m∥n.【详解】如图所示:∵,分别是棱,的中点,故,则面即为平面与平面相交于,即直线,由,可得平面,故面与面相交于时,必有,即,即直线,的夹角为.故选.【点睛】本题考查的知识点是空间直线的夹角,线面平行的判定定理及性质定理,难度中档.10.已知函数,给出下列四个命题:①函数的图象关于直线对称;②函数在区间上单调递增;③函数的最小正周期为;④函数的值域为.其中真命题的个数是().A. B. C. D.【答案】C【解析】【分析】利用三角函数的周期性、单调性、值域以及它的图象的对称性,判断各个选项是否正确,从而得出结论.【详解】解:对于函数,由于,,∴,故的图象不关于直线对称,故排除①.在区间上,,,单调递增,故②正确.函数,,∴,故函数的最小正周期不是,故③错误.当时,,故它的最大值为,最小值为;当时,,综合可得,函数的最大值为,最小值为,故④正确.故选.【点睛】本题主要考查三角函数的周期性、单调性、值域以及它的图象的对称性,属于中档题.11.在抛物线与直线围成的封闭图形内任取一点,为坐标原点,则直线被该封闭图形解得的线段长小于的概率是().A. B. C. D.【答案】C【解析】如图圆的方程为,由圆方程,直线方程,抛物线方程知,.整个密闭区域的面积为,满足条件的区域面积为.由几何概型知所求概率为.故本题答案选.12.若函数在上存在两个极值点,则的取值范围为().A. B. C. D.【答案】D【解析】函数在(0,2)上存在两个极值点,等价于在(0,2)上有两个零点,令f′(x)=0,则,即,∴x−1=0或,∴x=1满足条件,且(其中x≠1且x∈(0,2);∴,其中x∈(0,1)∪(1,2);设t(x)=ex⋅x2,其中x∈(0,1)∪(1,2);则t′(x)=(x2+2x)e x>0,∴函数t(x)是单调增函数,∴t(x)∈(0,e)∪(e,4e2),∴a∈.本题选择D选项.点睛:2.求极值、最值时,要求步骤规范、表格齐全,区分极值点与导数为0的点;含参数时,要讨论参数的大小.3.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.一个函数在其定义域内最值是唯一的,可以在区间的端点取得.二、填空题(本大题共4小题,每小题5分,共20分)13.已知,,,则,,的大小是__________.【答案】【解析】【分析】根据指数函数与对数函数的单调性可得:a b,c log67.即可得出.【详解】解:a b,c log67.∴c<a<b.故答案为:c<a<b.【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.14.已知平面向量,的夹角为,且,.若平面向量满足,则__________.【答案】【解析】由题可设,,设,由题,解得,.15.展开式中,常数项是__________.【答案】60【解析】解:因为展开式中,通项公式为,令x的次数为零可知常数项为60.16.设数列满足,,且,若表示不超过的最大整数,则__________.【答案】【解析】构造,则由题意可得:故数列是为首项,为公差的等差数列,,,以上个式子相加可得解得,则点睛:本题考查了等差数列的通项公式及数列的递推式的应用,考查了累加求和的方法,裂项求和方法的应用,解答本题的关键是熟练掌握通项公式的求法,考查了学生的推理能力和计算能力,属于中档题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率、算法及复数与推理证明01
1.二项式5
21x ⎛⎫- ⎪⎝⎭的展开式中第四项的系数为 . 【答案】80- 【解析】第四项3
3
345280T C x x -⎛⎫=⋅-=- ⎪⎝⎭,系数为80-
2.
6)1(x x -的展开式中,系数最大的项为第______项. 【答案】3或5 【解析】6)1(x
x -的展开式中系数与二项式系数只有符号差异,又中间项的二项式系数最大,中间项为第4项其系数为负,则第3,5项系数最大.
3.我国第一艘航母“辽宁舰”在某次舰截机起降飞行训练中,有5架歼15-飞机准备着舰如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法
A.12
B.18
C.24
D. 48
【答案】C
【解析】分三步:把甲、乙捆绑为一个元素A ,有22A 种方法;A 与戊机形成
三个“空”,把丙、丁两机插入空中有23A 种方法;考虑A 与戊机的排法有22A 种方
法。
由乘法原理可知共有22A 23A 22
A 24=种不同的着舰方法。
4. 2012年10月18日全国第二届绿色运动会在池洲隆垦开
幕。
本次大会的主题是“绿色、低碳、环保”,为大力宣传这一
主题,主办方将这6个字做成灯笼悬挂在主会场(如图所示),
大会结束后,要将这6个灯笼撤下来,每次撤其中一列最下面的一个,则不同的撤法种数为( )
A .36
B .54
C .72
D .90
【答案】D 【解析】
5.已知123{(,,,,)n n S A A a a a a == , 2012i a =或2013,1,2,}i n = (2)n ≥,
对于,n U V S ∈,(,)d U V 表示U 和V 中相对应的元素不同的个数.
(Ⅰ)令(2013,2013,2013,2013,2013)U =,存在m 个5V S ∈,使得(,)2d U V =,则m= ;
(Ⅱ)令123(,,,,)n U a a a a = ,若n V S ∈,则所有(,)d U V 之和为 .
【解析】:(Ⅰ)2510C =;
(Ⅱ)根据(Ⅰ)知使(,)k d u v r =的k v 共有r n C 个
∴21
(,)n
k k d u v =∑=012012n n n n n
C C C n C ++++ 21(,)n k
k d u v =∑=120(1)(2)0n n n n n n n
n C n C n C C --+-+-++ 两式相加得 21(,)n
k k d u v =∑=12n n -
6.从0,1,2,3中任取三个数字,组成无重复数字的三位数中,偶数的个数是 (用数字回答).
【答案】10
【解析】考虑三位数“没0”和“有0”两种情况。
(1)没0:2必填个位,22A 种填法;
(2)有0:0填个位,23A 种填法;
0填十位,2必填个位,12A 种填法;
所以,偶数的个数一共有22A +23A +12A =10种填法。
7.
【答案】B.
8.已知()13n x +的展开式中,末三项的二项式系数的和等于121,则展开式中系数最大的项为 .。