2012高教社杯全国大学生数学建模竞赛D题机器人避障评阅要点

合集下载

机器人避障问题的解题分析(建模集训)

机器人避障问题的解题分析(建模集训)

v1.0 可编辑可修改机器人避障问题的解题分析摘要:本文对2012年全国大学生数学建模竞赛D题机器人避障问题进行了全面分析,对最短路的设计进行了理论分析和证明,建立了机器人避障最短路径的几何模型,对最短时间路径问题通过建立非线性规划模型,有效地解决了转弯半径、圆弧圆心位置和行走时间等问题。

关键词:机器人避障;最短路径;Dijkstra算法;几何模型;非线性规划模型1 引言随着科学技术的进步和计算机技术的发展,机器人的应用越来越广泛,在机器人的应用中如何使机器人在其工作范围内为完成一项特定的任务寻找一条安全高效的行走路径,是人工智能领域的一个重要问题。

本文主要针对在一个场景中的各种静态障碍物,研究机器人绕过障碍物到达指定目的地的最短路径问题和最短时间问题。

本文以2012年“高教社”杯全国大学生数学建模竞赛D题“机器人避障问题”为例进行研究。

假设机器人的工作范围为800×800的平面正方形区域(如图1),其中有12个不同形状的静态障碍物,障碍物的数学描述(如表1):图1 800×800平面场景图表1在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动,机器人不能与障碍物发生碰撞,障碍物外指定一点为机器人要到达的目标点。

规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。

机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。

为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。

机器人直线行走的最大速度为50=v 个单位/秒。

机器人转弯时,最大转弯速度为21.0100e1)(ρρ-+==v v v (ρ是转弯半径)。

如果超过该速度,机器人将发生侧翻,无法完成行走。

场景图中有4个目标点O(0, 0),A(300, 300),B(100, 700),C(700, 640),下面我们将研究机器人从O(0, 0)出发,求O→A、O→B、O→C和O→A→B→C→O的最短路径,以及机器人从O(0, 0)出发,到达A的最短时间路径问题。

高教社杯全国大学生数学建模竞赛D题评阅要点

高教社杯全国大学生数学建模竞赛D题评阅要点

2010高教社杯全国大学生数学建模竞赛C 题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

(1) 如图1,设P 的坐标为(x , y ) (x ≥ 0,y ≥ 0),共用管道的费用为非共用管道的k 倍,模型可归结为2222)()()(),(min y b x c y a x ky y x f -+-+-++=图1只需考虑21<≤k 的情形。

对上述二元费用函数求最小值可得(不妨假设b a ≤)(a) 当 )(42a b kk c --≤时,),0(*a P =,ka c a b f ++-=22min )( ; (b) 当)(4)(422a b k k c a b kk +-<<--时,⎪⎪⎭⎫ ⎝⎛--++--=)4(21,2)(2422*c k k b a c b a k k P ,()c k k b a f 2min 4)(21-++=; (c) 当)(42a b k k c +-≥时,)0,(*ba ac P +=,22min )(cb a f ++=。

对共用管道费用与非共用管道费用相同的情形只需在上式中令k = 1。

本小题的评阅应注意模型的正确性,结果推导的合理性及结果的完整性。

(2) 对于出现城乡差别的复杂情况,模型将做以下变更:(a) 首先考虑城区拆迁和工程补偿等附加费用。

根据三家评估公司的资质,用加权平均的方法得出费用的估计值。

注意:公司一的权值应大于公司二和公司三的权值,公司二和公司三的权值应相等。

(b) 假设管线布置在城乡结合处的点为Q ,Q 到铁路线的距离为z (参见图2)。

图2一般情况下,连接炼油厂A 和点Q 到铁路线的输油管最优布置应取上述(1)(b)的结果,因此管道总费用最省的数学模型成为22)()()3(21)(min c l z b t c z a z g -+-⋅+++=其中t 表示城乡建设费用的比值。

武亚杰 童永会 李济明 2012年数学建模B题解析

武亚杰 童永会 李济明  2012年数学建模B题解析

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):河西学院参赛队员(打印并签名) :1. 武亚杰2. 童永会3. 李济明指导教师或指导教师组负责人(打印并签名):张飞羽魏瑛源日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):太阳能小屋的设计摘要随着当今社会资源的匮乏,合理利用能源显得越来越重,其中太阳能做为一种新能源,给人们的生活和生产带来了很多帮助。

在设计太阳能小屋时,需在建筑物表面(屋顶及外墙)铺设光伏电池,不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。

因此,在太阳能小屋的设计中,研究光伏电池在小屋表面的优化铺设是很重要的问题。

首先,运用EXCEL,对附件2-附件5的数据进行处理,特别是得到了给出电池组件分组阵列容量及选配逆变器规格列表,详细结果见附件2;其次,建立了线性规划模型,运用EXCEL,对三个问题,分别给出小屋外表面光伏电池的优化铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益及投资的回收年限。

二维机器人避障问题的案例教学内容设计

二维机器人避障问题的案例教学内容设计

九 江 职 业 技 术 学 院 学 报 Journal of Jiujiang Vocational & Technical College
220. 1394) 和 ( 300 , 300)。 路径图如下图 3 :
2012. 4
类似地 , 另一个切点 D 坐标也满足如下方程组 : ( m - x) +(n - y) = p (x - 300) (x - m)+( y - 300) ( y - n)= 0 同理可求得切点 D 坐标 。 三 、 参考解答 考虑到模型建立 、 精度选取的不同 , 下面仅给出一种参 考解答 。 案 例教学时对学生实际完成的有创新性的模型和方 法 , 哪怕结果有出入 , 也要予以特别的关注和科学的引导 。 1 .场景图及预处理场景如下图 2 :
2 2 2 | OQ | + | AQ | | OA | ; 2 | OQ | | AQ | ρ ρ ∠ OQC = arcos ; ∠ AQD = arcos ; |OQ | | AQ | θ= ∠ CQD = 2 π - ∠ OQA - ∠ OQC - ∠ AQD 。 最小目标函数 ( 含路程最短 和时间最少) 为 :
2012. 4
法完成行走 。
九 江 职 业 技 术 学 院 学 报 ( 陈晓江 : 二维机器人避障问题的案例教学内容设计)
21
参数 m , n 可依据动圆半径 ρ最大为 14 , 得 到两个参数 的取 值范围 。
2 .问题提出 针对机器人在案例背景中给出的场景中行走 , 既要避障 又要达到目标位置的要求 , 请分析并完成如下四个任务 : ( 1) 画 出该二维场景图 , 及预处理场景图 。 ( 2) 计算 出 机 器 人从 O (0 , 0) 出 发 , 到 达 A ( 300 , 300) 最短路径的距离 。 ( 3) 计算 出 机 器 人从 O (0 , 0) 出 发 , 到 达 A ( 300 , 300) 最短时间路径的 时间 、 距 离 、 各路段 起始 点坐标 以及 圆弧圆心坐标和转弯半径 , 并画出路径图 。 ( 4) 自 行设计若干拓展问题 , 并提出解决思路 。 二 、 模型分析 、 建立和解算 1 .模型分析 因为机 器人圆弧行走 的最小半 径为 10 个 单位 , 直 线行 走避障距离最小为 10 个单位 , 因 此需要 考虑在 场景中 设置 机器人行走的 “ 危险区域” 进行预处理 , 该区域为按照最小 距离单位覆盖所有障碍物 的包络 图 。 用 M A T LAB 软 件编程 将二维场景图和预处理场景图绘图在一个平面图形中 。 由于最短路径和最短时间路径的区别在于机器人走圆弧 的转弯速度 , 而转弯速 度又取 决于圆 弧半径 。 第 ( 2) 问行 走速度固定 , 为达到最短路径要求圆弧半径始终设定为 ρ= 10 个单位 , 第 ( 3) 问则根据问 题所给要求 , 直线行 走速度 在保 持 最 大 速 度 的条 件 下 , 适 当增 加 转 弯 半 径 ( 即 ρ> 10 ) , 用以 增 大圆 弧 距离 , 从而 提 高 走圆 弧 的速 度 。 因 为 v0 ρ )≈ li m 2 = 5 , 事 实上 , 当 ρ 取 14 时 , v( 1ρ ρ ※∞ 1 + e10-0. 4. 9997 已非常接 近最 大直行 速度 , 于是 搜索 最短 时间 路径 时可以考虑条件 : 10 < ρ≤ 14 。 2 .建立模型 考虑机 器人行走规则 , 可 以建立 一个统 一的数 学模 型 , 模型准备如下 : ( 1) 以 圆心在第 5 个障 碍物左 上顶点 , 半径为 10 的圆 为一个定圆 。 ( 2) 以圆心为动点 Q( m , n )、 半径 为 ρ的 圆为一 个动 圆 , 保持动圆始终跟定圆内切 ( 定圆始终在动圆内) 。 ( 3) 最短路径采 用 “ 拉绳 法” 〔3〕 , 即用 连接 O 、 A 之间 的一根绳子 , 以障碍物上的定圆为支撑拉紧绳子 , 则绳子长 度就是从 O 到 A 点 之间 的最短 路径 。 此 时 , 最 短路径 为两 个直线段和一个圆弧段组成 , 定圆圆心坐标为 ( 80 , 210)。 ( 4) 最 短时间路径采用 “ 拉绳法” 和 “ 自然下垂法” 相 结合的办法 , 其中 “ 拉绳法” 原理同上 , 只是支撑圆弧替换 为动圆 , 而 “ 自 然下 垂 法” 是 指 :当 绳 子 两端 O 、 A 拉 紧 时 , 动圆可以绕着定圆自然下垂摆动 , 并保持定圆始终在动 圆的上半圆 内 切 ( 如图 1), 以 实 现最 短 时 间 路径 。 此 时 , 在机器人沿着由上述最短路径的基础上 , 以行走时间最短为 目标函数编程 搜索 出最 佳位 置的 动圆 参数 :动 圆圆 心 坐标 (m , n ) 、 动圆半径 ρ。 搜索算法模 型的优化 条件可 以根据 平面几何中 “ 两个内切圆的圆心距离等于动圆半径与定圆半 径的差” 的定理可优化减少一个参数 , 比如 ρ;剩下的两个

高教社杯全国大学生数学建模竞赛D题评阅要点

高教社杯全国大学生数学建模竞赛D题评阅要点

2010高教社杯全国大学生数学建模竞赛C 题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

(1) 如图1,设P 的坐标为(x , y ) (x ≥ 0,y ≥ 0),共用管道的费用为非共用管道的k 倍,模型可归结为2222)()()(),(min y b x c y a x ky y x f -+-+-++=图1只需考虑21<≤k 的情形。

对上述二元费用函数求最小值可得(不妨假设b a ≤)(a) 当 )(42a b kk c --≤时,),0(*a P =,ka c a b f ++-=22min )( ; (b) 当)(4)(422a b k k c a b kk +-<<--时,⎪⎪⎭⎫ ⎝⎛--++--=)4(21,2)(2422*c k k b a c b a k k P ,()c k k b a f 2min 4)(21-++=; (c) 当)(42a b k k c +-≥时,)0,(*ba ac P +=,22min )(cb a f ++=。

对共用管道费用与非共用管道费用相同的情形只需在上式中令k = 1。

本小题的评阅应注意模型的正确性,结果推导的合理性及结果的完整性。

(2) 对于出现城乡差别的复杂情况,模型将做以下变更:(a) 首先考虑城区拆迁和工程补偿等附加费用。

根据三家评估公司的资质,用加权平均的方法得出费用的估计值。

注意:公司一的权值应大于公司二和公司三的权值,公司二和公司三的权值应相等。

(b) 假设管线布置在城乡结合处的点为Q ,Q 到铁路线的距离为z (参见图2)。

图2一般情况下,连接炼油厂A 和点Q 到铁路线的输油管最优布置应取上述(1)(b)的结果,因此管道总费用最省的数学模型成为22)()()3(21)(min c l z b t c z a z g -+-⋅+++=其中t 表示城乡建设费用的比值。

全国大学生数学建模竞赛题评阅要点

全国大学生数学建模竞赛题评阅要点

全国大学生数学建模竞赛题评阅要点1、目标函数的构成成分主要包括销售额表达式(注意如果作者利用了附录数据说明中的假设,则赢利与销售额等价),可以以课程为单位,也可以以学科为单位;包括由市场信息产生的对于不同课程的调控因子(竞争力系数);由于数据说明中的提示,也应该包括每个课程的申报需求量的“计划准确性因子”(学生用词会不同)。

当然,前两点更重要些。

2、约束条件构成对于出版社来说,所谓产能主要是人力资源,即策划、编辑和版面设计人员的分布形成主要约束;此外,书号总量(500)也应该作为约束条件;同时,在数据说明中指出的“满足申请书号量的一半”也应该以约束方式表达。

3、规划变量可以以每个课程的书号数量,也可以以学科的书号数作为变量,但是得到的结果会有所不同。

实现以上三点,对于问题的理解是比较全面的,应该得到基本分值。

进一步提高的分值来源于实现上述三点的具体模型的考虑和建模水平。

1)如果注意到数据说明中提示的,同一课程的教材在价格和销售量的同一性,销售额表达式是比较容易表示的:构造每个课程的、用书号数表达的销售额,然后将所有书号的销售额的表达式累加,形成总社的销售额的基本表达式,这是目标函数的主体部分。

2)市场信息产生的对于不同课程的调控因子(也称竞争力系数)的表示,是一个信息不足情况下的决策模型。

主要是满意度和市场占有率的恰当表示和计算(由附件2),以及两个指标的联合形成竞争力系数问题,这里既可以使用拟合模型,也可以使用各种多因素分析模型等等,方法不同。

对这个问题解决的优劣,可以导致明显的评分差别。

其中应该特别注意需求信息是否重复使用的问题,也就是说,如果在构造销售额表达式时已经使用了课程的销售数据,则不同课程的支持强度的不同,主要由市场竞争力参数表达。

3)在优化问题中,应该恰当地表示“计划准确性因子”,数据给出的计划销量和实际销量之比应该是比较合适的表示。

4)加上前述约束条件构成适当的规划问题。

比较好的实现以上四点,应该得到80%的分值。

2012数学建模国赛评卷要点B题

2012数学建模国赛评卷要点B题

2012数学建模国赛评卷要点B题
2012高教社杯全国大学生数学建模竞赛B题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

本题评阅时请注意:建模的准备工作、数学模型的建立、求解方法及过程、结果的表述、图示及分析和第三问的创新性。

建模的准备工作:这部分是建模及解答的基础(集中或分散描述)
(1)倾斜面总辐射强度的计算。

这里涉及到:太阳时、时角、赤纬角、太阳高度角和太阳方位角等
概念,还需要了解斜面的阳光直射辐射强度与散射辐射强度的计算。

(2)附件4提供的辐射强度是离散数据,需要将数据连续化, 计算光照辐射量。

问题1:只考虑贴附安装方式建立数学模型及求解
(1)建立模型: 单目标模型或多目标模型,可考虑发电总量、单位发电费用、经济效益和投资回收年
限等。

希望学生能够全面地分析问题,建立相应的优化模型。

(2)模型求解: 要求给出求解方法的详细描述。

(3)结果表述: 结果的表述、分析要清楚明确:要求给出电池铺设图及所配用的逆变器列表。

例如,
一种可行的铺设方式是:顶面可铺设40多块A3电池,南面可铺设30多块C10电池,西面可铺设C1和C10电池各10多块,东、北两面可不铺设(此例只是可行方案之一)。

问题2:考虑架空安装方式建立数学模型及求解
(1)重点考虑屋顶上架空的光伏电池平面的最佳倾角,约为30多度。

(2)其他要求同问题1.
问题3:小屋设计
(1)需要计算南墙的最佳朝向, 光伏电池板的最优铺设。

(2)根据计算结果,设计“最佳”小屋。

(3)本问题重点是考查学生的创造性。

2012年数学建模D题详解

2012年数学建模D题详解

2012年全国数学建模竞赛D题笔者解析以上四张图为第一问的解答,下面我在附亮相以上四个答案的各直线、圆弧端点的坐标值,看仔细了哦!!哈哈,我不是打酱油哦的,其实我是生产酱油滴,嘿嘿!再下来呢,再下来是第二问了,如果你还没有思路,一定要好好看看哦!!先说明一下,我只是从12个极限位置分析考虑,其实还至少两个极限位置给大家自己考虑,我给了十二个位置了,应该可有两个位置,但是有点累了,不想在弄了,那两个就留给你们自己捉摸吧。

不过我可以先说一下答案,答案就是:最短时间为:87.91892.如上图四张图片,以第一张图片为例,及0到A点之间的取舍。

首先大致的路径方案有两种,上线和下线。

我分别用粉红色和深蓝色表示。

通过查询信息可以知道,上线的路程要比下线的路程要近。

我选上线分析,当然这是折线路径。

看第四张图片。

第四张图片中,左边的是折线路径,右边的是支线+圆弧路径(我取的是其中的一种,不一定的最短的路径)。

假设从O点出发,起点坐标为(x,0),设一个路径的方程式,通过球的极限值的方式,计算得出x值的大小。

图片二和图片三中,我已分别给出了两种路径方案(折线路径),折线路径的确定,可以帮助确定直线路径的方向。

计算方法通上述说明。

2012年全国数学建模大赛D题第二问详解这一张是整体图,下面的图形,免得你们顺序弄的不对,给你们参考哦。

当然,这第二问,我只做了一半,也就是你们所看到的上线,即从障碍物5上面走的路线,从下面走的路线没有做,就留给你们自己做啦。

方法你们完全可以参照我做上线的方法。

当然,也许你们会问,为什么不用三段圆弧、四段圆弧,甚至更多段数。

我说,那不必了。

当你看到下面我的答案你会发现,一段圆弧的明显比两端圆弧的时间要短,那么三段四段呢,可想而知。

我也画过一个三段圆弧的,时间一百一十多,比两段圆弧的平均时间还要多,所以我就直接跳过不考虑了,但是你们在学论文说明时,可以简单的说明一下。

当然,这次坐标我没有弄,等你们选出哪个路径是耗时最短的,自己算一下就好了,反正也就是一个,几个点而已哈!还有一点哈,没个折点我都有用圆弧过渡的,你们可能的图片看不清楚的原因而误以为是折线,我没有用圆弧过渡,我不会犯这样错误。

全国大学生数学建模竞赛A、B题评阅要点

全国大学生数学建模竞赛A、B题评阅要点

全国大学生数学建模竞赛A题评阅要点1、目标函数的构成成分主要包括销售额表达式(注意如果作者利用了附录数据说明中的假设,则赢利与销售额等价),可以以课程为单位,也可以以学科为单位;包括由市场信息产生的对于不同课程的调控因子(竞争力系数);由于数据说明中的提示,也应该包括每个课程的申报需求量的“计划准确性因子”(学生用词会不同)。

当然,前两点更重要些。

2、约束条件构成对于出版社来说,所谓产能主要是人力资源,即策划、编辑和版面设计人员的分布形成主要约束;此外,书号总量(500)也应该作为约束条件;同时,在数据说明中指出的“满足申请书号量的一半”也应该以约束方式表达。

3、规划变量可以以每个课程的书号数量,也可以以学科的书号数作为变量,但是得到的结果会有所不同。

实现以上三点,对于问题的理解是比较全面的,应该得到基本分值。

进一步提高的分值来源于实现上述三点的具体模型的考虑和建模水平。

1)如果注意到数据说明中提示的,同一课程的教材在价格和销售量的同一性,销售额表达式是比较容易表示的:构造每个课程的、用书号数表达的销售额,然后将所有书号的销售额的表达式累加,形成总社的销售额的基本表达式,这是目标函数的主体部分。

2)市场信息产生的对于不同课程的调控因子(也称竞争力系数)的表示,是一个信息不足情况下的决策模型。

主要是满意度和市场占有率的恰当表示和计算(由附件2),以及两个指标的联合形成竞争力系数问题,这里既可以使用拟合模型,也可以使用各种多因素分析模型等等,方法不同。

对这个问题解决的优劣,可以导致明显的评分差别。

其中应该特别注意需求信息是否重复使用的问题,也就是说,如果在构造销售额表达式时已经使用了课程的销售数据,则不同课程的支持强度的不同,主。

2012高教社杯数模竞赛D题——机器人避障问题

2012高教社杯数模竞赛D题——机器人避障问题

机器人避障问题摘要本文研究了在已知区域障碍物分布的情况下,机器人从起点到目标点避障最短路径或最短时间路径的问题,路径必须是由圆弧和与之相切的直线段组成的线圆结构。

一开始先对模型预处理,将所有障碍物外扩10个单位长度,划定危险区域,得到障碍扩展图。

针对问题一,经过分析论证,无论起点到目标点间危险区域有多少,最短路径都应该是紧绕危险点的切线圆路径,且可根据需依次绕过的危险点情况划分为N条子路径(见图5.1.2)求解,圆弧段取允许最小转弯半径。

模型求解分两步走:一、将实际障碍图转化为加权可视图,利用Dijstra算法搜索出在可视图下的最短路径,主要是找到必须绕过的若干危险点。

二、根据障碍扩展图将可视图中的路径修正为实际情况下的切线圆路径,求出最终结果。

在求解过程中运用MATLAB数学软件给出路径中每段直线段或圆弧的起点和终点坐标、圆弧的圆心连接两条切线,使机器人总的行走时间最短。

而圆弧可以有圆心坐标和半径唯一确定。

由此构建机器人行走总时间的目标函数,将机器人不与障碍物碰撞作为约束条件,将该问题转变为一个非线性规划问题,借助matlab求得最优解为:T=94.3314s。

关键词:路径规划最优化模型切线圆路径 Dijstra算法非线性规划matlab求解一、问题重述图1是一个800×800的平面场景图,在原点O(0,0)点处有一个机器人,它只能在该平面场景范围内活动。

图中有12个不同形状的区域是机器人不能与之发生碰标点与障碍物的距离至少超过10个单位)。

规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。

机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。

为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。

机器人直线行走的最大速度为50=v 个单位/秒。

2012_数学建模D题(国家二等奖论文)_高教杯关于机器人避障行走问题的研究

2012_数学建模D题(国家二等奖论文)_高教杯关于机器人避障行走问题的研究

关于机器人避障行走问题的研究摘要本课题主要研究机器人避障行走问题,机器人行走过程,需躲避障碍物区域且保证所经路径按直线段和圆弧进行行走。

依据题目要求最短路径和最短时间路径目标,运用穷举法,先绘制出可能是最短路径的行走路线。

然后,利用平面解析几何知识,求解各路线长度并进行比较,找出最短路径。

最后,引入机器人速度数据,建立数学模型,求解出最短时间路径。

问题一、根据题目限定的机器人和障碍物之间10个单位的距离要求,先绘制出机器人能够行走的活动区域。

然后,利用平面几何知识,列出线段与圆弧结构下的行走路程关于圆弧半径的函数关系式。

运用求导法则对所列函数关系式进行求导,得出结论:只有当圆弧半径最小时(最小半径为10),才能使线弧结构的路程达到最小。

依据所得结论,运用穷举法列出从原点出发到各个目标点的所有可能最短路径。

分别进行求解并互相比较,最终得出机器人行走到不同目标点的最短路径为:O→A:471.0372;O→B:853.702132;O→C:1053.140;O→A→B→C→O:2707.4379。

(注:路径中每段直线段或圆弧的起点和终点坐标、圆弧的圆心坐标,可通过将坐标点设定成未知量,列函数方程组编写LINGO程序进行求解得出。

起点、终点及圆弧圆心的具体坐标,见各路径模型求解部分所列坐标表格。

)问题二、路线制定过程中,引入机器人直线速度和转弯速度数据。

以行走到目标点A花费时间最短为目标建立优化模型。

根据模型,编写LINGO程序,求解出最短时间路径下,机器人过点A的圆弧圆心为(82.04274,210),圆弧半径为10.97436,花费的最短时间为94.34632。

关键词:穷举法求导法则平面几何优化模型最短时间路径1问题重述1.1问题背景进入科技时代以来,随着信息技术的不断发展,机器人自动化研究越来越成为人们关注的重点,机器人避障行走问题也成为机器人程序设定的一个常见问题。

而路线制定过程中,行走线路制定方法的研究和精确坐标数据的计算是必不可少的,且对今后机器人行进程序的设定具有很好的参考价值。

全国大学生数学建模竞赛论文D

全国大学生数学建模竞赛论文D

第九届“挑战杯”甘肃省大学生课外学术科技作品竞赛参赛人员:xxx xxxxxx指导老师:xxx xx定西师范高等专科学校数学系机器人避障问题的优化模型建立与分析(定西师范高等专科学校数学系,指导老师:xxx x x)【摘要】本文针对机器人避障布置问题,从不同角度出发,以最短路径和最短时间路径为目标函数,建立了多个优化模型。

做出了满足条件的机器人绕过障碍物行走的最短路径,并对A、B、C处各点所在圆弧的圆心的确定进行了详细的模型分析;通过建立方程模型,分析计算了机器人从O出发到达A点,机器人在圆弧路径上行走时对应的圆心位置,并研究了该圆心位置在一定的范围内变化对时间的影响,确定了机器人行走的最短时间路径。

针对问题一,先根据问题情况进行分类分析,一类是O-A,O-B,O-C两点之间用直线和圆弧光滑连接,可利用Autocad软件直接作图;另一类是经过中间点的连线O-A-B-C-O,需对各个中间点处的圆弧位置作分析推理,找出使路径最短的圆弧圆心。

然后根据已有数据,充分利用Autocad软件的切点捕捉及标注功能等进行切线和圆弧作图、各条路径的线性标注和圆弧标注,再根据标注值对各路径上切线长和弧长求和并比较大小,选择出避障的最短路径。

并对路径的各点建立模型,运用Mathematica软件求解,确定过各点的圆弧的圆心坐标,求解满足给定条件的机器人绕过障碍物行走的最短路径。

针对问题二,在保证障碍物顶点离圆弧最近(10个单位)的前提下利用Mathematica 软件, 建模求解弧半径-时间函数,确定圆弧圆心和半径,并用Autocad作图、标注,通过计算推出机器人从O出发,到达A的行走最短时间路径。

【关键词】最短路径优化模型避障 Autocad软件 Mathematica软件一、问题重述图1是一个800×800的平面场景图,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动。

图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物,障碍物的数学描述如下表:在图1的平面场景中,障碍物外指定一点为机器人要到达的目标点(要求目标点与障碍物的距离至少超过10个单位)。

2012高教社杯全国大学生数学建模竞赛题目

2012高教社杯全国大学生数学建模竞赛题目

A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)B题太阳能小屋的设计在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。

不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。

因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。

附件1-7提供了相关信息。

请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh计算)及投资的回收年限。

在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式(串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表。

2012年全国大学生数学建模大赛B题--论文

2012年全国大学生数学建模大赛B题--论文

2012年全国大学生数学建模大赛B题--论文太阳能小屋的设计摘要:在太阳能小屋的设计中为实现太阳能光伏板最佳朝向、倾角及排布阵列设计及优化,通过建立倾斜放置的光伏板表面接收太阳辐射能模型,计算到达光伏板上的太阳辐射能量,推导出光伏板的最佳朝向及倾角。

为使光伏板最大限度地接收太阳辐射的能量,在选择合适的朝向及倾角的基础上,对光伏电池排布阵列,建立目标规划,并通过与实际逆变器的相互匹配,不断对目标进行优化,最终得到一组最优解。

通过上述研究,结合山西大同市本地情况,重新设计出一个更加适合当地地理及气象条件的太阳能光能房屋并为其选择最优的阵列排布方案。

针对问题一:电池板只是铺设房屋的表面,没有涉及到电池板放的角度问题,先求算出房屋的角度为10.62度,再根据角度,建立模型算出光伏板上太阳能辐射量。

并用目标规划阵列排列方案计算出电池的排布。

再通过排布计算出经济效益,最后得出35年之内无法收回成本。

针对问题二:通过对角度建立模型,计算得出最佳角度44.66度,通过排布计算出电池板排布最佳方案,建立模型计算出经济效益,在28.5年收回成本。

如考虑货币时间价值,35年的经济效益是亏损的。

针对问题三:要通过目标构建一个产电量尽量大,而成本尽量小的理想模型。

假设小屋无挑檐、挑雨棚(即房顶的边投影与房体的长宽投影相等),建立模型计算出最佳的图形,并画出模型图。

关键字:太阳能太阳能辐射模型最佳倾角电池模型目标规划一.阐述问题太阳能作为迄今人类所认识的最清洁的可再生能源,其与建筑一体化将在建筑节能中起到十分重要的作用。

屋顶在建筑外围结构中所接受的日照时间最长,接受的太阳辐射量也最大,具有利用太阳辐射的优越条件,同时,屋顶较开阔,便于大面积连续布置太阳能设备,因此,在城市中,建筑屋顶是太阳能利用的最佳场所。

目前,许多国家已纷纷实施和推广“太阳能屋顶计划”,如有德国十万屋顶计划、美国百万屋顶计划以及日本的新阳光计划等。

我国属于太阳能利用条件较好的地区,尤其是青藏高原地区太阳能。

机器人避障问题的解题分析建模集训资料全

机器人避障问题的解题分析建模集训资料全

机器人避障问题的解题分析摘要:本文对2012年全国大学生数学建模竞赛D题机器人避障问题进行了全面分析,对最短路的设计进行了理论分析和证明,建立了机器人避障最短路径的几何模型,对最短时间路径问题通过建立非线性规划模型,有效地解决了转弯半径、圆弧圆心位置和行走时间等问题。

关键词:机器人避障;最短路径;Dijkstra算法;几何模型;非线性规划模型1 引言随着科学技术的进步和计算机技术的发展,机器人的应用越来越广泛,在机器人的应用中如何使机器人在其工作围为完成一项特定的任务寻找一条安全高效的行走路径,是人工智能领域的一个重要问题。

本文主要针对在一个场景中的各种静态障碍物,研究机器人绕过障碍物到达指定目的地的最短路径问题和最短时间问题。

本文以2012年“高教社”杯全国大学生数学建模竞赛D题“机器人避障问题”为例进行研究。

假设机器人的工作围为800×800的平面正方形区域(如图1),其中有12个不同形状的静态障碍物,障碍物的数学描述(如表1):图1 800×800平面场景图表1在原点O(0, 0)点处有一个机器人,它只能在该平面场景围活动,机器人不能与障碍物发生碰撞,障碍物外指定一点为机器人要到达的目标点。

规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。

机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。

为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。

机器人直线行走的最大速度为50=v 个单位/秒。

机器人转弯时,最大转弯速度为21.0100e1)(ρρ-+==v v v (ρ是转弯半径)。

如果超过该速度,机器人将发生侧翻,无法完成行走。

场景图中有4个目标点O(0, 0),A(300, 300),B(100, 700),C(700, 640),下面我们将研究机器人从O(0, 0)出发,求O→A、O→B、O→C和O→A→B→C→O的最短路径,以及机器人从O(0, 0)出发,到达A 的最短时间路径问题。

2012年数学建模C题,机器人避障

2012年数学建模C题,机器人避障

机器人障碍问题摘要本文研究了有若干障碍物的平面场景中,机器人避障行走的最短路径以及最短时间路径的问题。

针对问题一,首先给出简单证明了两个对称点绕过圆形障碍物的最短路径为两条与圆形障碍物相切的直线,加上两切点间的劣弧。

然后分了四种情况,分别给出了不同直线与圆相切时,根据各已知点坐标,求相应切点、直行路径及劣弧长度的方法。

然后在满足机器人从定点(0,0)O出发绕过障碍物,距离障碍物至少超过10个单位,不能折线转弯绕过障碍物的条件下,以前面的证明为依据,将机器人行走路径设计为由直线和圆弧组成。

针对不同的起点和终点,将总路径分解为上述四种情况,利用MATLAB6.5.1,分别求出相应的切点及各转弯圆的劣弧长,最后比较得到相对较短的行走路径。

并根据机器人在不同路径上的速度的不同,求出避障前进的最短路径时所需要的行走时间。

具体如下:→的最短路径为471.0375个单位,所需的时间为96.0177秒O A→的最短路径为812.7029个单位,所需的时间为170.5132秒O B→的最短路径为:1090.8个单位,所需的时间为222.9373秒O C→→→→的最短路径为:3137.8个单位,所需的时间为652秒。

O A B C O针对问题二,要求求出机器人从(0,0)O出发,到达A的最短时间路径。

因为机器人行走路径为直线时的速度为定值,弧线行走的速度与弧所在的圆半径有关,由此得到行走时间与圆弧半径ρ的关系式,利用高等数学的极值定理条件,估算出ρ=11.5052个单位时从O A→所需时间最短,为95.1328秒。

该模型简单、便于理解,理论性较强。

另外图形的使用,使问题更加清晰。

该模型还可用于求解设计最优路线问题。

关键词最短路径圆弧半径最短时间切点一 问题重述在一个800×800的平面场景图,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动。

平面场景中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物。

2012年高教社杯全国大学生数学建模竞赛国家二等奖文章

2012年高教社杯全国大学生数学建模竞赛国家二等奖文章

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):机器人避障问题摘要本文研究了处在原点O(0,0)的机器人在一个存在12个不同形状障碍物的800⨯800的平面区域内避障的最短路径及最短时间路径问题。

首先用距离障碍物10个单位的包络线(直线或圆弧)画出机器人行走的危险区域,找到了36个可用的凸顶点,得到了出发点、目标点及拐点间的所有连线(其中可用的线附权值1,不可用的线附权值0),利用图论中的Dijsktra 算法,获得了机器人避障的最佳路线,然后对最佳路线进行平滑处理,即在凸顶点处取以凸顶点为心、以10个单位为半径的圆与相邻两条包络线的切点间的部分,并通过maple 软件求最短路径、最短时间路径及切点的坐标。

对问题一,建立了最优化模型:∑∑==+=nj jm i i l d L 11min⎩⎨⎧≥≥=1010.k t s ρ。

2012高教社杯全国大学生数学建模竞赛a

2012高教社杯全国大学生数学建模竞赛a

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):哈尔滨商业大学参赛队员(打印并签名) :1.王羽2. 刘恺利3.王俊杰指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要随着生活水平的提高,葡萄酒已经走进了千家万户,葡萄酒的优劣已成为一个热点问题。

本文通过对已给附件1-2的葡萄酒品尝评分,葡萄和葡萄酒的理化指标,在基于一些合理简化假设的基础上,建立模型计算分析,并充分利用Excel、Spss软件简化计算,对相关问题进行了有针对性的解。

进而对酿酒葡萄,葡萄酒的质理化指标和葡萄酒的质量相关问题求解。

针对问题一,首先,我们对所给数据进行深入分析,借助Excel做出了两组评酒员对红葡萄酒和白葡萄酒评分的平均值,进而利用Spss分别对红葡萄酒和白葡萄酒的评分进行独立T检验,得出红葡萄酒两组的评分没有显著性差异,白葡萄酒两组的评价有显著差异,并且第二组更可信。

机器人壁障问题——数学建模讲解

机器人壁障问题——数学建模讲解

机器人避障问题摘要:当今科学技术日益发达,高科技产品尤其是机器人在我们日常生活中运用的越来越广泛,它能够代替人类完成许许多多的工作,但如何能让机器人自动化的完成人类交给的任务成为设计机器人的关键。

我们做此题就是为了更好的利用机器人为我们提供方便,提高生活质量,若机器人程序设计不当不仅不会给人类带来方便,还很有可能给我们的生活带来更多的麻烦。

本题中提出了如何让机器人能够自动识别障碍物,保证机器人能够在合理区域行走,并设计出如何能让机器人自动判断最短路程于最短时间下行走路线的问题。

所以解决好本题可以为我们的生活提供帮助。

本文通过运用两点之间直线最短理论,优化问题,最短路问题,图论,以及运用matlab软件编程及作图的方法,阐述了机器人避障问题的相对优化方案的解决办法,即“两点之间直线最好,转弯半径最小”的理论,通过计算中的比较与选择把四条最短路径都求出了相对最优解,论证了转弯速度不会随着r的增加一直增大或减小,而是有一个最小极点的思想。

从而求出了r,以及最短的时间。

问题一,通过对最短路问题的分析,我们很容易分解成线圆结构来求解,然后把可能路径的最短路径采用穷举法列举出来,最终得出最短路径:O →A 最短路径为:471.0372O →B 最短路径为:838.0466O →C 最短路径为:1085.7531O→A→B→C→O最短路径为:2834.6591问题二,通过建立时间t与r的关系式,得出r在11.504时,从O到A的时间相对最短,最短时间为98.606004。

我们可以利用此篇论文解决生活中实际的问题,在计算时可以节省大量的时间,使机器人又准确又完善的完成我们给定的任务,从而进行拓展,给定区域内任何两个点,我们都可求出其最短路径和走完全程的最快时间。

从而可以让机器人帮助我们给家里打扫卫生或设计自动吸尘器等,也可使机器人在最短的时间完成工作,提高效率,延长机器人的使用寿命。

关键字:最短路问题优化问题 matlab一 问题重述 随着现代科学技术日新月异的发展,机器人越来越多的出现在日常生活中,它既可以通过运行预先编排的程序为人类服务,根据人工智能程序自动处理一些生活中问题,进而协助或者相应地取代人类的工作,可以说机器人的创新与改进正一步步影响着人类的发展。

2012高教社杯全国大学生数学建模竞赛C题评阅要点

2012高教社杯全国大学生数学建模竞赛C题评阅要点

2021高教社杯全国大学生数学建模比赛C题评阅要点本题评阅时请注意: 建模的准备工作【包括缺失和误差数据的处理】, 模型的表达、求解和分析方法, 结果的表述、解释及图示, 注重模型的合理性分析及其模型的拓广。

本题的难点在于是否将脑卒中发病(人数) 与环境因素(年龄, 气温、气压、相对湿度等) 联系起来, 建立合适的数学模型, 并用于对高危人群进行预警和干预。

问题1.1. 1. 统计出发病人数在病人基本信息【包括性别, 年龄段, 职业: 1-8 及其他】中的分布规律【如: 百分比】, 应说明缺失和误差数据的处理。

1. 2. 分析发病率随年龄的变化规律【如: 近似偏正态分布】。

[注: 除了简单的统计描述或图形外, 应有统计规律(可分情况) 的提取及其理由的陈述或分析。

]问题2.2. 1. 将统计出的发病人数作为因变量, 气温(气温差) 、气压、相对湿度作为自变量建立统计回归模型【如: 全变量的多元线性回归模型】, 计算并报告模型中的参数估计、模型拟合误差、预测结果以及显著性变量等。

2. 2. 应在 2. 1获得. 的显著变量基础上 , 考虑建立单因子统计模型【如: 单因子线性、二次回归分析】、单因子方差分析等。

2. 3. 应考虑建立条件统计模型【如: 分别对男, 女, 农民, 60≤年龄≤80, 发病人数≥60的情况建立线性回归模型】并进行相应分析讨论。

2. 4. 应考虑异常值识别或剔除, 模型的合理性, 模型的检验或拓广。

[注: 2. 1中模型所用样本是按天的, 应有模型拟合误差和预测的结果或分析;除了2. 1外, 在2. 2, 2. 3, 2. 4中应有适当的工作, 尤其是2. 2, 2. 3。

]问题3.3. 1.查阅文献资料, 脑卒中的高危人群重要特征(危险因素) 【如: 高血压(最危险因素) 、心脏病、短暂性脑缺血发作、糖尿病、高血脂、超重与肥胖、吸烟、长期过度饮酒、高盐(偏咸) 饮食、缺少运动、性格(争强好胜的A型性格) 、不可改变因素(如性别、年龄、遗传等) 】以及诱发因素【如, 过度紧张、激动、兴奋、愤怒和疲劳等】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012高教社杯全国大学生数学建模竞赛D题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

问题常见于计算机图形处理和机器人自动行走,其中二维和三维避障问题是热点课题。

固定场景中的避障是其中较简单的情形,不涉及障碍物的移动和障碍物的识别。

本问题的数学模型和求解算法份量基本相当。

1.预处理:将原始障碍物作适当扩大,确保不发生碰撞。

在合理的假设下,要求预处理步骤清晰,说明适当,明确给出最后的处理结果。

2. 数学模型:必须明确建立路程最短和时间最少的优化模型,要给出明确的决策变量、目标函数和
约束条件,表述准确全面。

3. 求解方法:机器人路径规划求解方法较多,尽量选择合适的求解方法和相应的算法,给出求解方
法的思想,求解算法的步骤或流程图,并给出图形的预处理过程和描述。

4. 结果与分析:要有明确的数值结果和路线图,表达简明、清晰。

最优路径应由直线段与圆弧光滑
连接而成。

例如,第一问的圆弧半径为10,第二问的圆弧半径需通过优化模型计算得到。

例如,到B点距离最短的最优路径可参见图1,到A点时间最短的最优路径可参见图2。

5. 深入分析:本问题有较大的发挥空间,参赛者利用参考文献作深入分析时,可考虑适当加分。

(1)讨论不同算法对2种最优结果的影响;
(2)适当考虑直线行走与转弯之间时间延迟的影响;
(3)适当扩充,讨论障碍物变形或不规则障碍物对最优结果的影响等;
(4)适当扩充,定性讨论障碍物的适当移动或目标点的适当移动对结果的影响,或者定性讨论三维空间的情况等。

图1 图2。

相关文档
最新文档