磁共振实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近代物理实验题目磁共振技术

学院数理与信息工程学院

班级物理082班

学号08220204

姓名

同组实验者

指导教师

光磁共振实验报告

【摘要】本次实验在了解如光抽运原理,弛豫过程、塞曼分裂等基本知识点的基础上,合理进行操作,从而观察到光抽运信号,并顺利测量g因子。

【关键词】光磁共振光抽运效应塞曼能级分裂超精细结构

【引言】光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。

【正文】

一、基本知识

1、铷原子基态和最低激发态能级结构及塞曼分裂

本实验的研究对象为铷原子,天然铷有两种同位素;85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图1所示.在磁场中,铷原子的超精细结构能级产生塞曼分裂.标定这些分裂能级的磁量子数m F=F,F-1,…,-F,因而一个超精细能级分裂为2F+1个塞曼子能级.

设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为

E=-μF·B0=g F m FμF B0(1)

这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T-1 ,朗德因子g F= g J [F(F+1)+J(J+1)-I(I+1)] ⁄ 2F(F+1)(2)

图1

其中g J= 1+[J(J+1)-L(L+1)+S(S+1)] ⁄ 2J(J+1)(3)

上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(1)可知,相邻塞曼子能级之间的能量差

ΔE=g FμB B0(4)

式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.

2、光抽运效应

在热平衡状态下,各能级的粒子数遵从玻耳兹曼分布,其分布规律由式(2)表示.由于超精细塞曼子能级间的能量差ΔE很小,可近似地认为这些子能级上的粒子数是相等的.这就很不利于观测这些子能级之间的磁共振现象.为此,卡斯特勒提出光抽运方法,即用圆偏振光激发原子.使原子能级的粒子数分布产生重大改变.

由于光波中磁场对电子的作用远小于电场对电子的作用,故光对原子的激发,可看作是光波的电场分布起作用.设偏振光的传播方向跟产生塞曼分裂的磁场B0的方向相同,则左旋圆偏振的σ﹢光的电场E绕光传播方向作右手螺旋转动,其角动量为ħ;右旋圆偏振的σ-光的电场E绕光传播方向作左手螺旋转动,其角动量为-ħ;线偏振的π光可看作两个旋转方向相反的圆偏振光的叠加,其角动量为零.

现在以铷灯作光源.由图1可见,铷原子由5 2P1⁄2→5 2S1⁄2的跃迁产生D1线,波长为0.7948μm;由5 2P3⁄2→5 2S1⁄2的跃迁产生D2线,波长为0.7800μm.这两条谱线在铷灯光谱中特别强,用它们去激发铷原子时,铷原子将会吸收它们的能量而引起相反方向的跃迁过程.然而,频率一定而角动量不同的光所引起的塞曼子能级的跃迁是不同的,由理论推导可得跃迁的选择定则为

ΔL=±1 ,Δ F=0,±1,Δm F=±1 (5)

图2

所以,当入射光为D1σ+光,作用87Rb时,由于87Rb的5 2S1⁄2态和5 2P1⁄2态的磁量子数mF的最大值均为±2,而σ﹢光角动量为ħ只能引起Δm F=+1的跃迁,故D1σ﹢光只能把基态中除m F=+2以外各子能级上的原子激发到5 2P1⁄2的相应子能级上,如图2(a)所示.图2(b)表示跃迁到5 2P1/2上的原子经过大约10-8s后,通过自发辐射以及无辐射跃迁两种过程,以相等概率回到基态5 2S1⁄2各个子能级上.这样,经过多次循环之后,基态m F=+2子能级上的粒子数就会大大增加,即基态其他能级上大量的粒子被“抽运”到基态m F =+2子能级上.这就是光抽运效应.

同理,如果用D1σ-光照射,则大量粒子将被“抽运”到m F=-2子能级上.但是,π光照射是不可能发生光抽运效应的.

对于铷85Rb,若用D1σ+光照射,粒子将会“抽运”到m F=+3子能级上.

3、弛豫过程

光抽运使得原子系统能级分布偏极化而处于非平衡状态时,将全通过弛缘过程回复到热平衡分布状态.弛豫过程的机制比较复杂,但在光抽运的情况下,铷原子与容器壁碰撞是失去偏极化的主要原因.通常在铷样品泡内充入氮、氖等作为缓冲气体,其密度比样品泡中铷蒸气的原子密度约大6个数量级,可大大减少铷原子与容器壁碰撞的机会.缓冲气体的分子磁矩非常小,可认为它们与铷原子碰撞时不影响这些原子在磁能级上的分布,从而能保持铷原子系统有较高的偏极化程度.但缓冲气体不可能使铷原子能级之间的跃迁完全被抑制,故光抽运也就不可能把基态上的原子全部“抽运”到特定的子能级上.由实验得知.样品泡中充入缓冲气体后,弛豫时间为10-2s数量级.在一般情况下,光抽运造成塞曼子能级之间的粒子差数,比玻耳兹曼分布造成的差数大几个数量级.

4、磁共振与光检测

式(4)给出了铷原子在弱磁场B0作用下相邻塞曼子能级的能量差.要实现这些子能级的共振跃迁,还必须在垂直于恒定磁场B0的方向上施加一射频场B1作用于样品.当射频场的频率ν满足共振条件

h ν =ΔE =g FμB B0.(6)

时,便发生基态超精细塞曼子能级之间的共振跃迁现象.若作用在样品上的是D1σ+光,对于87Rb来说.是由m F=+2跃迁到m F=+1子能级.接着也相继有m F=+1的原子跃迁到m F=0,…….与此同时,光抽运又把基态中非m F=+2的原子抽运引m F=+2子能级上.因此,兴振跃迁与光抽运将会达到一个新的动态平衡.发生磁共振时,处于基态m F=+2子能级上的原子数小于未发生磁共振时的原子数.也就是说,发生磁共振时.能级分布布的偏极化程度降低了,从而必然会增大对D1σ+光的吸收。作用在样品上的D1σ+光,一方面起抽运作用.另一方面可用透过样品的光作为检测光,即一束光起了抽运和检测两重作用。

对磁共振信号进行光检测可大大提高检测的灵敏度.本来塞曼子能级的磁共振信号非常微弱,特别是密度很低的气体样品的信号就更加微弱,直接观察射频共振信号是很困难的.光检测充分利用磁共振时伴随着D1σ+光强的变化,可巧妙地将一个频率较低的射频量子(1~10MHz)转换成一个频率很高的光频量子(约108MHz)的变化,使观察信号的功率提高了7~8个数量级.这样,气体样品的微弱磁共振信号的观测,便可用很简便的光检测方法来实现。

二、实验仪器

由主体单元(铷光谱灯、准直透镜、吸收池、聚光镜、光电探测器及亥姆霍兹线圈)、电源、辅助源、射频信号发生器、示波器组成。

相关文档
最新文档