2011—2019年高考真题全国卷1理科数学分类汇编——4.三角函数、解三角形

合集下载

2011-2019高考数学三角函数与解三角分类汇编(理)

2011-2019高考数学三角函数与解三角分类汇编(理)

2011-2019新课标三角函数分类汇编一、选择题【2011新课标】5. 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( B ) (A )45-(B )35- (C )35 (D )45【2011新课标】11. 设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( A ) (A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【2011新课标】12. 函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于( D )(A )2 (B) 4 (C) 6 (D)8【2012新课标】9. 已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

则ω的取值范围是( A )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]【解析】592()[,]444x πππωω=⇒+∈ 不合题意 排除()D 351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C【2013新课标1】12、设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则( B )A 、{S n }为递减数列B 、{S n }为递增数列12C 、{S 2n -1}为递增数列,{S 2n }为递减数列D 、{S 2n -1}为递减数列,{S 2n }为递增数列【答案】1111111111202b a c c a c c a c =->>∴->∴>且b111111111120b a a c a a c b a c ∴-=--=->∴>>11111111111222a b c a a c c a c a c -<∴--<∴>∴>又111111112(2)22n n n n n n n n b c c a b c a b c a ++++++=+∴+-=+-由题意,b 1120222n n n n n n n n b c a b c a a b c a ∴+-=∴+==∴+=11111112(2)22n n n n n n n n nc b a b bb c b a b a b ++++----=∴--==-又由题意, 111111111()()()22n n n n b a a b b a b a -+∴-=-∴-=-- 11111111111()(),2()()22n n n n n b a b a c a b a b a --∴=+--=-=---21111111111111333311()()()()()222222n n n a a a a S a a b a a b a --⎡⎤⎡⎤∴=------+--⎢⎥⎢⎥⎣⎦⎣⎦ 222122*********()()()0)4444n a a a b a b a -⎡⎤⎡⎤=---->⎢⎥⎢⎥⎣⎦⎣⎦单调递增(可证当n=1时【2014新课标1】8.设α∈(0,),β∈(0,),且tanα=,则( C ) A. 3α﹣β=B. 3α+β=C. 2α﹣β=D. 2α+β=【答案】由tanα=,得:,即sinαcosβ=cosαsinβ+cosα, sin (α﹣β)=cosα.由等式右边为单角α,左边为角α与β的差,可知β与2α有关.排除选项A ,B 后验证C , 当时,sin (α﹣β)=sin ()=cosα成立。

全国卷历年高考三角函数真题归类分析(含答案)

全国卷历年高考三角函数真题归类分析(含答案)

全国卷历年高考三角函数真题归类分析
(含答案)
介绍
这份文档旨在对全国卷历年高考三角函数真题进行归类分析,
并提供相应的答案。

通过分析历年真题,可以帮助考生了解三角函
数的重要考点和解题技巧,为高考复提供指导。

归类分析
以下是对历年高考三角函数真题的归类分析:
三角函数的基本概念
- 考查正弦函数、余弦函数、正切函数等的定义和性质。

- 考查角度与弧度的转换。

- 考查三角函数的图像和性质。

三角函数的性质和公式
- 考查三角函数的周期性和对称性。

- 考查三角函数之间的关系和性质,如和差化积、倍角公式等。

三角函数的应用
- 考查三角函数在几何中的应用,如求直角三角形的边长和角度、解三角形等。

- 考查三角函数在物理和工程问题中的应用,如力的分解、振动问题等。

答案
以下是对每个归类的真题的答案:
三角函数的基本概念
三角函数的性质和公式
三角函数的应用
结论
通过分析历年高考三角函数真题并掌握相关的解题技巧,考生可以在高考中更好地应对三角函数相关的考题。

这份文档提供了归类分析和相应答案,希望能够对考生的复习有所帮助。

2011-2019年高考数学全国Ⅲ卷理科真题分类整理分析

2011-2019年高考数学全国Ⅲ卷理科真题分类整理分析

年份
题目
答案
2015 年 (3)设命题 P: ∃ n∈N, n2 > 2n ,则 ¬ P 为
C
全国 2
理 (A) ∀ n∈N, n2 > 2n (B) ∃ n∈N, n2 ≤ 2n
(C) ∀ n∈N, n2 ≤ 2n (D) ∃ n∈N, n2 = 2n
二、复数小题:4 年 4 考,每年 1 题,以四则运算为主,偶尔与其他知识交汇,难度较小.一般 涉及考查概念:实部、虚部、共轭复数、复数的模、对应复平面的点坐标等.
B
A.3
B.2
C.1
D.0
2016 年 (1)设集合 S = {x (x− 2)(x− 3) ≥ 0}, T = {x | x > 0} ,则 S I T=
D
(A) [2,3]
(C) [3,+ ∞ )
(B)(- ∞ ,2] U [3,+ ∞ ) (D)(0,2] U [3,+ ∞ )
2
2.简易逻辑小题:4 年 0 考.这个考点包含的小考点较多,并且容易与函数,不等式、数列、三 角函数、立体几何交汇,热点就是“充要条件”;难点:否定与否命题;冷点:全称与特称,思想: 逆否.要注意,这类题可以分为两大类,一类只涉及形式的变换,比较简单,另一类涉及命题真 假判断,比较复杂.下面举一个全国 1 卷的例子.
2011-2019 年高考数学全国Ⅲ卷理 科真题分类整理分析
全国卷类型
使用地区
甲卷(新课标 II 卷) 甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆
乙卷(新课标 I 卷) 福建、河南、河北、山西、江西、湖北、湖南、广东、安徽、山东
丙卷(新课标 III 卷) 云南、广西、贵州、四若 z = 1+ 2i ,则 4i = zz −1

2019高考数学真题(理)分类汇编三角函数及解三角形含答案解析

2019高考数学真题(理)分类汇编三角函数及解三角形含答案解析

三角函数及解三角形专题1.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 2.【2019年高考全国Ⅰ卷文数】tan255°=A .−2B .−C .2D .【答案】D【解析】tan 255tan(18075)tan 75tan(4530)︒=︒+︒=︒=︒+︒=tan 45tan 301tan 45tan 30︒+︒-︒︒12+==+故选D. 【名师点睛】本题主要考查三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式2sin cos ++x xx x计算求解.题目较易,注重了基础知识、基本计算能力的考查.3.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =−14,则b c=A .6B .5C .4D .3【答案】A【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,故选A . 【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果. 4.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .12【答案】A【解析】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,解得2ω=.故选A . 【名师点睛】本题考查三角函数的极值和周期,渗透了直观想象、逻辑推理和数学运算素养.利用周期公式,通过方程思想解题.5.【2019年高考全国Ⅱ卷文数】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD 【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.6.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点.7.【2019年高考北京卷文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,即()cos()sin()cos sin f x x b x x b x -=-+-=-,cos sin cos sin x b x x b x +=-,得sin 0b x =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【名师点睛】本题较易,注重基础知识、逻辑推理能力的考查.根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -恒成立进行判断.8.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B【解析】设圆心为O ,如图1,连接OA ,OB ,AB ,OP ,则22AOB APB ∠=∠=β,所以22242OABS ⨯==扇形ββ,因为ABP AOB OAB S S S S =+-△△阴影扇形,且AOB OAB S S △扇形,都已确定, 所以当ABP S △最大时,阴影部分面积最大.观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为ABP AOB OAB S S S S =+-△△阴影扇形=4β+S △POB + S △POA =4β+12|OP ||OB |sin (π−β)+12|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. 【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示.9.【2019年高考天津卷文数】已知函数()sin()(0,0,||π)f x A x A ωϕωϕ=+>><是奇函数,且()f x 的最小正周期为π,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若π4g ⎛⎫= ⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭A .−2B .C D .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; ∵()f x 的最小正周期为π,2ππ,T ∴==ω∴2ω=,∴1()sin sin ,2g x A x A x ==ω又π()4g =2A =,∴()2sin 2f x x =,3π()8f = 故选C.【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,结合函数性质逐步得出,,A ωϕ的值即可.10.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+ 23172(cos )48x =-++,1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x 的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视1cos 1x -≤≤的限制,而简单应用二次函数的性质,出现运算错误.11.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角.12.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 2410α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.13.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =.ππcos cos()cos cos sin sin 44ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 14.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=.因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 15.【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =12-. (1)求b ,c 的值; (2)求sin (B +C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得2221323()2b c c =+-⨯⨯⨯-.因为2b c =+,所以2221(2)323()2c c c +=+-⨯⨯⨯-. 解得5c =.所以7b =. (2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin 14a A Bb ==. 在ABC △中,B C A +=π-.所以sin()sin B C A +==【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.16.【2019年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26πB ⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)716+-. 【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.17.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)c =(2.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.18.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB , 所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==, 从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置. 由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,1CQ =此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+.解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3),所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=, 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.19.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[1-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π123x ⎛⎫=+ ⎪⎝⎭.因此,函数的值域是[1+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.20.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αAB .13C .13- D.3-【答案】B【解析】因为角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,所以cos3==-α, 因此21cos 22cos 13=-=αα.故选B. 【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点(1)P ,求出cos α,再由二倍角公式,即可得出结果.。

专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。

2011—2018年新课标全国卷1理科数学分类汇编——4.三角函数、解三角形

2011—2018年新课标全国卷1理科数学分类汇编——4.三角函数、解三角形

4.三角函数、解三角形一、选择题【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z 错误!未找到引用源。

B .13(2,2),44k k k ππ-+∈Z 错误!未找到引用源。

C .13(,),44k k k -+∈ZD .13(2,2),44k k k -+∈Z【2015,2】sin 20cos10cos160sin10-=( )A .BC .12-D .12【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2]【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 二、填空题【2018,16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. 【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . 【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.【2011,16】在ABC V 中,60,B AC ==2AB BC +的最大值为 .三、解答题【2018,17】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ; (Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长.【2013,17】如图,在△ABC中,∠ABC=90°,AB BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=12,求P A;(2)若∠APB=150°,求tan∠PBA.【2012,17】已知a,b,c分别为△ABC三个内角A,B,C的对边,cos sin0a C Cb c--=.(1)求A;(2)若2a=,△ABC,求b,c.4.三角函数、解三角形(解析版)一、选择题【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】1:cos C y x =,22π:sin 23⎛⎫=+⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x .注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ; 【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为 )(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【解析】:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()s i n 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫ ⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z 错误!未找到引用源。

2011年—2019年高考全国卷(1卷、2卷、3卷)理科数学试题分类汇编——3.程序框图

2011年—2019年高考全国卷(1卷、2卷、3卷)理科数学试题分类汇编——3.程序框图
(2013·新课标Ⅰ,5)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于().
A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]
【答案】A解析:.若t∈[-1,1),则执行s=3t,故s∈[-3,3).
若t∈[1,3],则执行s=4t-t2,其对称轴为t=2.
故当t=2时,s取得最大值4.当t=1或3时,s取得最小值3,则s∈[3,4].
, ,裂项相消可得 ;执行第一次循环: ﹑ ﹑ ,当 时, 即可终止, ,即 ,故输出值为3.
(2017·新课标Ⅲ,7).执行下面的程序框图,为使输出 的值小于 ,则输入的正整数 的最小值为().
A.5B.4
C.3D.2
【答案】D解析:程序运行过程如下表所示:
初始状态
0
100
1
第1次循环结束
100
2
A.A>1000和n=n+1B.A>1000和n=n+2C.A 1000和n=n+1D.A 1000和n=n+2
(2017·新课标Ⅱ,8)执行右面的程序框图,如果输入的 ,则输出的 ()
A.2 B.3 C.4 D.5
(2017·新课标Ⅲ,7).执行下面的程序框图,为使输出 的值小于 ,则输入的正整数 的最小值为()
A.4B.5C.6D.7
(2013·新课标Ⅰ,5)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于().
A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]
(2013··新课标Ⅱ,6)执行右面的程序框图,如果输入的 ,那么输出的 ()
A. B.
C. D.
(2012·新课标Ⅰ,6)如果执行右边和程序框图,输入正整数 ( )和

2011年—2019年高考全国卷(1卷、2卷、3卷)理科数学试题分类汇编——4.简易逻辑、推理

2011年—2019年高考全国卷(1卷、2卷、3卷)理科数学试题分类汇编——4.简易逻辑、推理

2011年—2019年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编 4.简易逻辑、推理与证明、数学文化 一、选择题 (2019·全国卷Ⅰ,理4)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(51-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm(2019·全国卷Ⅱ,理4)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为1M ,月球质量为2M ,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++. 设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( ) A .21M R M B .212M R M C .2313M R M D .2313M R M (2017,新课标Ⅱ,7)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩(2015,新课标Ⅰ,3)设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n =(2011·新课标Ⅱ,10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈ ⎥⎝⎦a b3:10,3Pπθ⎡⎫->⇔∈⎪⎢⎣⎭a b4:1,3Pπθπ⎛⎤->⇔∈ ⎥⎝⎦a bA.P1,P4B.P1,P3C.P2,P3D.P2,P4二、填空题(2016·新课标Ⅱ,15)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_______. (2014,新课标Ⅰ,14)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为.2011年—2019年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编 4.简易逻辑、推理与证明、数学文化(解析版) 一、选择题 (2019·全国卷Ⅰ,理4)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm【答案】B【基本解法】设头顶、咽喉、肚脐、足底分别为,,,A B C D ,故可得512AB BC -=,512AC CD -=,设身高为x ,可得51CD x -=,35AC x -=,735AB x -=,由题意可得73526,51105AB x CD x ⎧-=<⎪⎪⎨-⎪=>⎪⎩化简可得13(735),105(51)2x x ⎧<+⎪⎨+>⎪⎩即169.9178.2x <<,故选B 。

2011年-2019年全国二卷理科数学三角函数与解三角形分类汇编

2011年-2019年全国二卷理科数学三角函数与解三角形分类汇编

2011年—2019年新课标全国卷Ⅱ理科数学试题分类汇编10.三角函数一、选择题(2019·9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A .f (x )=│cos2x │B .f (x )=│sin2x │C .f (x )=cos│x │D .f (x )=sin │x │ (2019·10)已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15 B .5 C .3 D .5(2018·6)在ABC △中,cos2C =1BC =,5AC =,则AB =A .BCD .(2018·10)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π(2016·7)若将函数y=2sin2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为 A .()Z k k x ∈-=62ππ B .()Z k k x ∈+=62ππ B .()Z k k x ∈-=122ππ D .()Z k k x ∈+=122ππ (2016·9)若cos(απ-4)=53,则sin α2= ( ) A .257 B .51 C .51- D .257- (2014·4)钝角三角形ABC 的面积是21,AB=1,BC=2,则AC = ( ) A .5 B. 5 C. 2 D. 1(2012·7)已知α为第二象限角,33cos sin =+αα,则α2cos = ( ) A .35- B .95- C .95 D .35-(2012·9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( ) A .π4 B .π3 C .π2D .3π4 (2011·7)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y = 2x 上,则cos2θ =( )A .45-B .35-C .35D .45(2011·11)设函数()sin(2)cos(2)44f x x x ππ=+++,则( ) A .y = f (x )在(0)2,π单调递增,其图像关于直线4x π=对称 B .y = f (x )在(0)2,π单调递增,其图像关于直线2x π=对称 C .y = f (x )在(0)2,π单调递减,其图像关于直线4x π=对称 D .y = f (x )在(0)2,π单调递减,其图像关于直线2x π=对称 二、填空题(2019·15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b a c B ===,则ABC △的面积为_________.(2018·15)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.(2016·13)ABC ∆的内角C B A ,,的对边分别为c b a ,,.若54cos =A ,135cos =C ,1=a ,则=b _________.(2014·14)函数()()()ϕϕϕ+-+=x x x f cos sin 22sin 的最大值为_________.(2012·14)当函数()π20cos 3sin ≤≤-=x x x y 取得最大值时,=x ___________. (2011·15)在△ABC 中B=120°,AC=7,AB=5,则△ABC 的面积为_________.三、解答题(2015·17)在ΔABC 中,D 是BC 上的点,AD 平分△BAC ,BD=2DC. (Ⅰ)求sin sin BC ∠∠;(Ⅱ)若△BAC=60°,求△B.(2014·17)四边形ABCD 的内角A 与C 互补,AB=1,BC=3,CD=DA=2.(△)求C 和BD ;(△)求四边形ABCD 的面积.(2012·17)ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知()1cos cos =+-B C A ,c a 2=,求C .。

2019年高考试题分类汇编(三角函数)

2019年高考试题分类汇编(三角函数)

2019年高考试题分类汇编(三角函数) 2019年高考试题分类汇编(三角函数)考法1 三角函数的图像及性质1.(2019·全国卷Ⅰ·文科)已知tan225= tan(180°+45°)=-tan45°=-1,故选A。

2.(2019·全国卷Ⅱ·文科)由f(x)的定义可知,当x=π/4时,f(x)=sin(πω/4),当x=3π/4时,f(x)=sin(3πω/4)。

因为x1和x2是相邻的极值点,所以f(x1)=f(x2)=0,即sin(πω/4)=sin(3πω/4)=0.因为ω>0,所以πω/4=0或π,3πω/4=π/2或5π/2.解得ω=8或16,故选B。

3.(2019·全国卷Ⅲ·文科)f(x)=2sinx-sin2x=2sinx-2sinxcosx=2sinx(1-cosx),所以f(x)的零点为x=0,π和2π。

故选B。

4.(2019·全国卷Ⅰ·文理科)由于cosx在[-π,π]上单调递减,所以cosx的最小值为cos(-π)=-1,最大值为cos(π)=1.因此,当x=-π或x=π时,f(x)的值最小,为-2/π;当x=0时,f(x)的值最大,为2.故选B。

5.(2019·全国卷Ⅰ·理科)①f(x)是偶函数,③f(x)在[-π,π]上有一个零点,故①和③正确。

当00,即f(x)在(0,π)单调递增,故②正确。

当x=π/2时,f(x)=2,又因为f(x)是偶函数,所以当x=-π/2时,f(x)也等于2,故④正确。

因此,选A。

6.(2019·全国卷Ⅱ·理科)由f(x)的定义可知,f(x+π/2)=cos2x,f(x+π)=cos(2x+π)=-cos2x,f(x+3π/2)=-cos2x,f(x+2π)=cos2x。

因此,f(x)的周期为π,而且f(x)在(0,π)单调递增,故选B。

2011—2020年新课标全国卷1理科数学分类汇编三角函数、解三角形(解析在下面)

2011—2020年新课标全国卷1理科数学分类汇编三角函数、解三角形(解析在下面)

2011-2020高考新课标1卷理科三角函数、解三角形一、选择题【2020,9】.已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=( )A .53 B .23 C .13 D .59【2020,7】.设函数()cos()6f x x πω=+在[,]ππ-的图像大致如下图,则()f x 的最小正周期为( )A.109πB.76πC.43πD.32π【2019,11】关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2 其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③ 【2019,5】函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A. B.C. D.解答: ∵()()()2sin ()cos x x f x x x ---=-+-=2sin cos x xx x+-+()f x =-, ∴()f x 为奇函数,排除A ,又22sin 4222()02cos22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C ,()22sin ()01cos f πππππππ+==>++,排除B ,故选D.【2018,16】已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________. 【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z【2015,2】sin 20cos10cos160sin10-=( )A .32-B .32C .12-D .12【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2]【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增二、填空题【2020,16】.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠= .【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 . 【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . 【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________. 【2011,16】在ABC 中,60,3B AC ==2AB BC +的最大值为 . 三、解答题【2019,17】.ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-. (1)求A ;(222a b c +=,求sin C .【2018,17】(12分)在平面四边形ABCD 中,90ADC =︒∠,45A =︒∠,2AB =,5BD =. ⑴求cos ADB ∠; ⑵若2DC =,求BC .【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2. (Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长.【2013,17】如图,在△ABC 中,∠ABC =90°,AB ,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABC b ,c .3.三角函数、解三角形(解析版)一、选择题【2020,9】.已知(0,)απ∈,且3cos28cos5αα-=,则sinα=()A.5B.23C.13D.5解答:由3cos28cos5αα-=,得23(2cos1)8cos5αα--=,得23cos4cos40αα--=,化为(3cos2)(cos2)0αα+-=,得2cos3α=-,那么5sinα=【2020,7】.设函数()cos()6f x xπω=+在[,]ππ-的图像大致如下图,则()f x的最小正周期为()A.109πB.76πC.43πD.32π解析:∵4cos()096ππω-+=,∴42()962k k Zπππωπ-+=-∈,∴9322kω=-+,根据图像可知2413||99ππππω<+=,2||ππω>,∴18||213ω<<,故取0k=,则32ω=,∴2243||32Tπππω===,故选C.【2019,11】关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2 其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③解答:因为()sin sin()sin sin ()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,①正确, 因为52,(,)632ππππ∈,而52()()63f f ππ<,所以②错误, 画出函数()f x 在[],ππ-上的图像,很容易知道()f x 有3零点,所以③错误, 结合函数图像,可知()f x 的最大值为2,④正确,故答案选C. 【2019,5】函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A. B.C. D.解答: ∵()()()2sin ()cos x x f x x x ---=-+-=2sin cos x xx x +-+()f x =-,∴()f x 为奇函数,排除A ,又22sin 4222()02cos22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C ,()22sin ()01cos f πππππππ+==>++,排除B ,故选D.【2018,16】已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-. ∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π= ∴5()3f π=()3f π=,(0)(2)0f f π==,()0f π=∴()f x 最小值为 【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x . 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ;【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【解析】:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈ZC .13(,),44k k k -+∈ZD .13(2,2),44k k k -+∈Z解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k πππππ<+<+∈Z ,解得124k -<x <324k +,k ∈Z ,故单调减区间为(124k -,324k +),k ∈Z ,故选D . 【2015,2】sin 20cos10cos160sin10-=( )A .3-B .3C .12-D .12解析:sin 20cos10cos160sin10sin 20cos10cos 20sin10sin30-=+=,选D .. 【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M到直线OP的距离表示为x的函数()f x,则y=()f x在[0,π]上的图像大致为()【解析】:如图:过M作MD⊥OP于D,则PM=sin x,OM=cos x,在Rt OMP∆中,MD=cos sin1x xOM PMOP=cos sinx x=1sin22x=,∴()f x1sin2(0)2x xπ=≤≤,选B.【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sintancosβαβ+=,则A.32παβ-=B.22παβ-=C.32παβ+=D.22παβ+=【解析】∵sin1sintancos cosαβααβ+==,∴sin cos cos cos sinαβααβ=+()sin cos sin2παβαα⎛⎫-==-⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B【2012,9】已知0ω>,函数()sin()4f x xπω=+在(2π,π)上单调递减,则ω的取值范围是()A.[12,54] B.[12,34] C.(0,12] D.(0,2]【解析】因为0ω>,2xππ<<,所以2444xππππωωωπ⋅+<+<⋅+,因为函数()sin()4f x xπω=+在(2π,π)上单调递减,所以242342πππωππωπ⎧⋅+≥⎪⎪⎨⎪⋅+≤⎪⎩,解得1524ω≤≤,故选择A.【2011,11】设函数()sin()cos()(0,)2f x x xπωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x-=,则()A.()f x在0,2π⎛⎫⎪⎝⎭单调递减B.()f x在3,44ππ⎛⎫⎪⎝⎭单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 解析:()2sin()4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,()2sin(2)2cos22f x x x π∴=+=,选A. 【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B. 二、填空题【2020,16】.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠= .解析:3AB =1AC =,AB AC ⊥,∴2BC =, 同理6DB =3AE DA ==30CAE ∠=︒,1AC =.∴2222cos EC AE AC AE AC EAC =+-⨯⨯⨯∠3312311=+-=.在BCF ∆中,2BC =,1FC EC ==,6FB DB ==∴2221461cos 22214FC BC FB FCB FC BC +-+-∠===-⨯⨯⨯⨯.【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .解析: 如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =,由正弦定理可得o osin 30sin 75BC BE=,解得BE =6+2;平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=,由正弦定理知o osin 30sin 75BF BC=,解得62BF =-,所以AB 的取值范围为(62,6+2)-.【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .【解析】:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 32ABC S bc A ∆=≤, 【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________. 解析:f (x )=sin x -2cos x =5sin cos 55x x ⎛⎫-⎪⎝⎭,令cos α=5,sin α=5-, 则f (x )=5sin(α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )有最大值5,即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=2555-=-. 【2011,16】在ABC 中,60,3B AC ==,则2AB BC +的最大值为 . 解析:0120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒= 022sin 2sin(120)3cos sin sin sin AB ACAB C A A A C B==⇒==-=+; 2AB BC ∴+=3cos 5sin 28sin()27sin()A A A A ϕϕ+=+=+,故最大值是27三、解答题【2019,17】.ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-. (3)求A ;(42b c +=,求sin C .解答:(1)由()22sin sin sin sin sin B C A B C -=-得222sin sin sin sin sin B C A B C +-=结合正弦定理得222b c a bc +-=∴2221cos =22b c a A b c +-=⋅⋅又(0,)A π∈,∴=3A π.(22b c +=sin 2sin A B C +=,()sin 2sin A A C C ++=sin()2sin 3C C π++=,1cos 2C C -=sin()6C π-=又203C π<<∴662C πππ-<-<又sin()06C π->∴062C ππ<-<∴cos 62C π⎛⎫-= ⎪⎝⎭∴sin sin()66C C ππ=-+=sin cos cos sin 6666C C ππππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭4+=.【2018,17】(12分)在平面四边形ABCD 中,90ADC =︒∠,45A =︒∠,2AB =,5BD =.⑴求cos ADB ∠; ⑵若DC =,求BC .解答:(1)在ABD ∆中,由正弦定理得:52sin 45sin ADB =∠,∴2sin ADB ∠=, ∵90ADB ∠<,∴223cos 1sin 5ADB ADB ∠=-∠=. (2)2ADB BDC π∠+∠=,∴cos cos()sin 2BDC ADB ADBπ∠=-∠=∠,∴cos cos()sin 2BDC ADB ADBπ∠=-∠=∠,∴222cos 2DC BD BC BDC BD DC+-∠=⋅⋅,∴2252522=⋅⋅.∴5BC =. 【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【解析】(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =,∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=, 又∵()0πA ∈,,∴60A =︒,3sin A ,1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=ABC △周长为3+【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长. 【解析】⑴ ()2cos cos cos C a B b A c +=,由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C ⋅+=,∵πA B C ++=,()0πA B C ∈、、,,∴()sin sin 0A B C +=> ∴2cos 1C =,1cos 2C =,∵()0πC ∈,,∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅,221722a b ab =+-⋅,()237a b ab +-=1sin 2S ab C =⋅,∴6ab =,∴()2187a b +-=,5a b +=∴ABC △周长为5a b c ++=【2013,17】如图,在△ABC 中,∠ABC =90°,AB ,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得P A 2=11732cos 30424+-︒=,故P A =2.(2)设∠PBA =α,由已知得PB =sin α,在△PBA sin sin(30)αα=︒-,α=4sin α,所以tan α,即tan ∠PBA【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABC b ,c . 【解析】(1)根据正弦定理R CcB b A a 2sin sin sin ===,得A R a sin 2=,B R b sin 2=,C R c sin 2=,因为cos sin 0a C C b c +--=,所以0sin 2sin 2sin )sin 2(3cos )sin 2(=--+C R B R C A R C A R , 即0sin sin sin sin 3cos sin =--+C B C A C A ,(1)由三角形内角和定理,得C A C A C A B sin cos cos sin )sin(sin +=+=,代入(1)式得0sin sin cos cos sin sin sin 3cos sin =---+C C A C A C A C A , 化简得C C A C A sin sin cos sin sin 3=-, 因为0sin ≠C ,所以1cos sin 3=-A A ,即21)6sin(=-πA , 而π<<A 0,6566πππ<-<-A ,从而66ππ=-A ,解得3π=A .(2)若2a =,△ABC1)得3π=A ,则⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ,化简得⎩⎨⎧=+=8422c b bc , 从而解得2=b ,2=c .。

2019年高考数学试题分类汇编三角函数附答案详解

2019年高考数学试题分类汇编三角函数附答案详解

2019年高考数学试题分类汇编三角函数一、选择题.1、(2019年高考全国I 卷文理科5)函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .答案:D解析:因为)()(x f x f -=-,所以)(x f 为奇函数又01)(2>-=πππf ,124412)2(22>+=+=πππππf ,故选D 2、(2019年高考全国I 卷理科11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④C .①④D .①③答案:C解析:由)(|sin |||sin |)sin(|||sin )(x f x x x x x f =+=-+-=-,故①正确;),2(ππ∈x 时,x x x x f sin 2sin sin )(=+=,函数递减,故②错误;],0[π∈x 时,x x x x f sin 2sin sin )(=+=,函数有2个零点,0)()0(==πf f ,而],0[π∈x 时0)()0(=-=πf f ,所以函数有且只有3个零点,故③错误;函数为偶函数,只需讨论0>x ,N k k k x ∈+∈),2,2(πππ时,x x x x f sin 2sin sin )(=+=,最大值为2,N k k k x ∈++∈),22,2(ππππ时,0sin sin )(=-=x x x f ,故函数最大值为2,故④正确。

故选C3、(2019年高考全国I 卷文科7)tan255°= A .-2B .-C .2D .答案:D解析:32)4530tan(75tan )75180tan(255tan +=︒+︒=︒=︒+︒=︒故选D4、(2019年高考全国I 卷文科11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .3答案:A解析:由正弦定理C B b A a sin 4sin sin =-,角化边得2224c b a +=又412)4(cos 2222-=+-+=bc c b c b A ,联立求得6=c b 故选A5、(2019年高考全国II 卷理科4)019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD答案:D 解析:Rr=α则R r α=,代入121223()()M M M R r R r r R +=++得12322)1(1)1(M M ααα+-+=即3254322312)1(33)1(1)1(αααααααα≈+++=+-+=M M所以R M M r 3123=.故答案选D 6、(2019年高考全国II 卷理科9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │答案:A解析:将|2cos |)(x x f =的图像变换,“下翻上”,如图可知在区间)2,4(ππ上是增函数.故答案选A 7、(2019年高考全国II 卷理科10,文科11)已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B 5C 3D 5答案:B解析:ααα2cos 212cos 2sin 2=+=,与αααcos sin 22sin =联立求得21tan =α 又)2,0(πα∈,所以55sin =α故答案选B 8、(2019年高考全国II 卷文科8)若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .12答案:A 解析:πππ=-=T T ,4432,又ωπ2=T ,所以2=ω。

2011-2019高考数学三角函数与解三角分类汇编(文)

2011-2019高考数学三角函数与解三角分类汇编(文)

2011-2019新课标(文科)三角函数分类汇编一、选择题【2011新课标】7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( B ) A .45- B .35- C .35 D .45[解析]:易知tan θ=2,cos θ=51±.由cos2θ=2,cos 2θ-1=35-,故选B.【2011新课标】11.设函数()sin(2)cos(2)44f x x x ππ=+++,则( D )A .y = f (x )在(0)2,π单调递增,其图像关于直线4x π=对称B .y = f (x )在(0)2,π单调递增,其图像关于直线2x π=对称C .y = f (x )在(0)2,π单调递减,其图像关于直线4x π=对称D .y = f (x )在(0)2,π单调递减,其图像关于直线2x π=对称[解析]:因为())2f x x x π+. 所以f (x ) 在(0)2,π单调递减,其图像关于直线2x π=对称. 故选D.【2012新课标】9.已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( A ) A .π4B .π3C .π2D .3π4[ 解析]:由题设知,πω=544ππ-,∴ω=1,∴4πϕ+=2k ππ+(k Z ∈),∴ϕ=4k ππ+(k Z ∈),∵0ϕπ<<,∴ϕ=4π,故选A.【2013新课标1】9.函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( C ).[解析]:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A ,当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C.【2013新课标1】10. 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( D ). A .10 B .9 C .8 D .5[解析]:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π0,2⎛⎫⎪⎝⎭,∴cos A =15. ∵cos A =2364926b b +-⨯,∴b =5或135b =-(舍). 故选D.【2013新课标2】4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,π6B =,π4C =,则△ABC 的面积为( B ).A. BC.2 D1 [解析]:A =π-(B +C)=ππ7ππ6412⎛⎫-+=⎪⎝⎭,由正弦定理得sin sin a b A B =,则7π2sinsin 12πsin sin 6b A a B ===S △ABC=11sin 21222ab C =⨯⨯⨯=. 【2013新课标2】6.已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( A ). A .16 B .13 C .12 D .23[解析]:由半角公式可得,2πcos 4α⎛⎫+ ⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===. 【2014新课标1】2. 若0tan >α,则 ( C )A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α [解析]:由可得k2π(k Z ),故2k kkZ ),正确的结论只有sin 2选C【2014新课标1】7. 在函数 ①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为 ( A )A. ①②③B. ①③④C. ②④D. ①③[解析]:由c o s y x =是偶函数可知cos 2cos2y x x == ,最小正周期为π, 即①正确;y x |的最小正周期也是,即②也正确;cos 26y x π⎛⎫=+⎪⎝⎭最小正周期为π,即③正确;tan(2)4y x π=-的最小正周期为2T π=,即④不正确.即正确答案为①②③,选A【2015新课标1】(8)函数f(x)= 的部分图像如图所示,则f(x)的单调递减区间为 ( D )(A )(k -, k -),k (B )(2k -, 2k -),k (C )(k -, k -),k (D )(2k -, 2k -),k【2016新课标1】(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b= ( D )(A(B(C)2(D )3【2016新课标1】(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为 ( D )(A )y =2sin(2x +π4) (B )y =2sin(2x +π3)(C )y =2sin(2x –π4) (D )y =2sin(2x –π3)【2016新课标2】3. 函数=sin()y A x ωϕ+ 的部分图像如图所示,则( A )(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=【2016新课标3】(6)若tanθ=13,则cos2θ= ( D ) (A )45- (B )15- (C )15 (D )45【2016新课标3】(9)在ABC ∆中,B=1,,sin 43BC BC A π=边上的高等于则( D )(A)310【2017新课标1】8. 函数 y =sin2x1-cos x的部分图像大致为( C )a =2c =2cos 3A =【2017新课标1】11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2011-2019高考文科数学全国卷真题分类汇编(含详细答案)专题:第5章 三角函数与解三角形

2011-2019高考文科数学全国卷真题分类汇编(含详细答案)专题:第5章 三角函数与解三角形

第5章 三角函数与解三角形1.(2014全国I 文2)若,则()A. B. C. D.2.(2011全国文11)设函数,则().A.在单调递增,其图象关于直线对称B.在单调递增,其图象关于直线对称C.在单调递减,其图象关于直线对称D.在单调递减,其图象关于直线对称3. .在函数①,②,③,④中,最小正周期为的所有函数为()A.①②③B. ①③④C. ②④D. ①③4.(2014新课标Ⅱ文14)函数的最大值为5.(2012全国文9)已知,直线和是函数图像的两条相邻的对称轴,则(). A.B. C. D.6.(2015全国I 文8) 函数的部分图像如图所示,则的单调递减区间为().A. B.C. D.tan 0α>sin 0α>cos 0α>sin 20α>cos20α>ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()f x π0,2⎛⎫⎪⎝⎭π4x =()f x π0,2⎛⎫⎪⎝⎭π2x =()f x π0,2⎛⎫⎪⎝⎭π4x =()f x π0,2⎛⎫⎪⎝⎭π2x =cos 2y x =cos y x =cos 26y x π⎛⎫=+ ⎪⎝⎭tan 24y x π⎛⎫=- ⎪⎝⎭π()sin()2sin cos f x x x ϕϕ=+-0ω>0ϕ<<π4x π=4x 5π=()()sin f x x ωϕ=+ϕ=4π3π2π43π()cos()f x x ωϕ=+()f x ()13π,π44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()132π,2π44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()13,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()132,244k k k ⎛⎫-+∈ ⎪⎝⎭Z7.(2013全国II 文16)函数的图象向右平移个单位后,与函数的图象重合,则_________.8.(2011全国1文7)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则().A. B. C. D.9.(2013全国II 文6)已知,则().A.B.C. D.10.(2013全国I 文9)函数在的图象大致为().11.(2013全国I 文16)设当时,函数取得最大值,则.12.(2015全国II 文11)如图所示,长方形的边,,是的中点,点沿着,与运动,记.将动点到,两点距离之和表示为的函数,则的图像大致为().cos(2)(ππ)y x ϕϕ=+-剟π2πsin 23y x ⎛⎫=+ ⎪⎝⎭ϕ=θx 2y x =cos2θ=45-35-35452sin 23α=2πcos 4α⎛⎫+= ⎪⎝⎭16131223()()1cos sin f x x x =-[]ππ-,D.C.B.A.x θ=()sin 2cos f x x x =-cos θ=ABCD 2AB =1=BC O AB PBC CD DA BOP x ∠=P A B x ()f x ()y f x =A. B. C. D.13.(2013全国II 文4)的内角的对边分别为,已知,,,则的面积为().A. B.C. D.14.(2015全国II 文17)中,是上的点,平分,.,求.15.(2011全国文15)中,,,,则的面积为.16.(2013全国I 文10)已知锐角的内角的对边分别为,,,,则().A. B. C. D.17.(2014新课标Ⅱ文17)(本小题满分12分)四边形的内角与互补,,,.(1)求和;(2)求四边形的面积.18.(2012全国文17)已知分别为△三个内角的对边,(1)求;(2)若,△.424424424424ABC △,,A B C ,,a b c 2b =π6B =π4C =ABC △2121ABC △D BC AD BAC ∠2BD DC =60BAC =B ∠ABC △120B =7AC =5AB =ABC △ABC △A B C ,,a b c ,,223cos cos20A A +=7a =6c =b =10985ABCD A C 1AB =3BC =2CD DA ==C BD ABCD ,,a b c ABC ,,A B C sin cos c C c A =-A 2a =ABC ,b c19.(2014新课标Ⅰ文16)如图所示,为测量山高,选择和另一座山的山顶为测量观测点.从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高20. (2015全国I 文17)已知分别为内角的对边,.(1)若,求; (2)设,且的面积.21. (2015全国I 文4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=( )22. (2016全国I 文6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为23. (2016全国I 文14)已知θ是第四象限角,且sin (θ+)=,则tan (θ–)= 24 (2017全国I 文8).函数sin21cosxy x=-的部分图像大致为A .B .C .D .MN A C A M 60MAN ∠=︒C 45CAB ∠=︒75MAC ∠=︒C 60MCA ∠=︒100m BC =MN =,,a b c ABC △,,A B C 2sin 2sin sin B A C =a b =cos B 90B ∠=a =ABC △a =2c =2cos 3A =π435π4AB C .2D .3A . y =2sin(2x +π4)B . y =2sin(2x +π3)C . y =2sin(2x –π4)D . y =2sin(2x –π3)25. (2017全国I 文15).已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.26.(2018全国I 文8).已知函数()222cos sin 2f x x x =-+,则 ( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为427.(2018全国I 文11).已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= ( ) A .15B.CD .128.(2018全国I 文16).△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.29.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .30.【2019年高考全国Ⅰ卷文数】tan255°=A .−2B .−C .2D .31.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =−14,则bc=A .6B .5C .4D .332.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .122sin cos ++x xx x33.【2019年高考全国Ⅱ卷文数】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD34.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为A .2B .3C .4D .535.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 36.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.37.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.高考真题试题详解1.解析由得是第一.三象限角,若是第三象限角,则A ,B 错; 由知,C 正确;取时,,D 错.故选C. 评注本题考查三角函数值的符号,判定时可运用基本知识.恒等变形及特殊值等多种方法,具有一定的灵活性.2.解析因为,当时,,故在单调递减.又当时,是的一条对称轴.故选D.3.解析①,最小正周期为;tan 0α>ααsin 22sin cos ααα=sin 20α>απ32211cos 22cos 121022αα⎛⎫=-=⨯-=-< ⎪⎝⎭ππππ()sin 2cos 2224444f x x x x x ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭π02x <<02πx <<()f x x =π0,2⎛⎫⎪⎝⎭π2x =π22⎛⎫⨯= ⎪⎝⎭π2x =()y f x =cos 2cos2y x x ==π②由图像知的最小正周期为;③的最小正周期;④的最小正周期.因此选A.评注本题考查三角函数的周期性,含有绝对值的函数可先变形再判断,或运用图像判断其最小正周期.4.解析,所以.5.分析利用三解函数的对称轴求得周期.解析由题意得周期,所以,即,所以,所以,.因为,所以. 所以,所以.故选A. 6.解析由图可知,得,.画出图中函数的一条对称轴,如图所示. 由图可知,则,可得,则,得.由,得的单调递减区间为. 故选D.7.分析先进行平移,得出的三角函数与所给的三角函数进行比较,求出的值.cos y x =ππcos 26y x ⎛⎫=+ ⎪⎝⎭2ππ2T ==πtan 24y x ⎛⎫=- ⎪⎝⎭π2T =()()sin 2sin cos sin cos cos sin 2sin cos f x x x x x x ϕϕϕϕϕ=+-=+-=()sin cos cos sin sin 1x x x ϕϕϕ-=-…()max 1f x =512ππ2π44T ⎛⎫=-=⎪⎝⎭2π2πω=1ω=()sin()f x x ϕ=+ππsin 144f ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭5π5πsin 144f ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭0πϕ<<ππ5π444ϕ<+<ππ42ϕ+=π4ϕ=511244T =-=2T =2ππTω==()f x 0x x =034x =3πcos 14ϕ⎛⎫+=- ⎪⎝⎭3π2ππ4k ϕ+=+()π2π4k k ϕ=+∈Z ()πcos π4f x x ⎛⎫=+ ⎪⎝⎭π2ππ2ππ4k x k ++剟()f x 132244k xk -+剟ϕ解析:的图象向右平移个单位得到的图象,整理得.因为其图象与的图象重合,所以,所以,即.又因为,所以. 8.解析设为角终边上任意一点,则. 当时,;当时,.因此.故选B.9.分析结合二倍角公式进行求解.解析:因为,所以故选A. 10.分析先利用函数的奇偶性排除B ,再利用特殊的函数值的符号排除A ,而最后答案的选择则利用了特定区间上的极值点.解析:在上,因为,所以是奇函数,所以的图象关于原点对称,排除B. 取,则,排除A.因为,所以令,则或. 结合,求得在上的极大值点为,靠近,故选C.11.分析先利用三角恒等变换求得函数的最大值,再利用方程思想求解.解析:, 则所以,所以,()cos 2y x ϕ=+2πcos 22y x ϕ⎡π⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦()cos 2y x ϕ=-π+sin 23y x π⎛⎫=+ ⎪⎝⎭2k ϕππ-π=-+π322k ϕππ=+π-+π322k ϕ5π=+π6ϕ-ππ≤<5ϕπ=6(,2)(0)P t t t ≠θcos θ=0t >cos 5θ=0t <cos 5θ=-223cos 22cos 1155θθ=-=-=-2sin 23α=221cos 211sin 213cos .42226αααπ⎛⎫++- ⎪π-2⎛⎫⎝⎭+==== ⎪⎝⎭[],-ππ()()()()()1cos sin 1cos sin f x x x x x -=---=--=⎡⎤⎣⎦()()1cos sin x x f x --=-()f x ()f x 2x π=1cos 10f ππ⎛⎫⎛⎫=-= ⎪ ⎪22⎝⎭⎝⎭>()()1cos sin f x x x =-()()sin sin 1cos cos f x x x x x '=⋅+-2221cos cos cos 2cos cos 1.x x x x x =-+-=-++()0f x '=cos 1x =1cos 2x =[],x ∈-ππ()f x (]0,π23ππsin 2cos y x x x x ⎫=-=⎪⎭cos sin αα=)()sin cos cossin .y x x ααα=-=-x ∈R x α-∈R所以又因为时,取得取大值,所以.又,所以即.12.解析由已知可得,当点在边上运动时,即时,; 当点在边上运动时,即,时,时,当点在边上运动时,即时,.从点的运动过程可以看出,轨迹关于直线对称,,且轨迹非直线型.故选B.评注本题以几何图形为背景考查了函数图像的识别与作法,特别是体现了分类讨论和数形结合的思想.13.分析先由正弦定理解出的值,再运用面积公左求解.解析:因为,,所以 由正弦定理,得,即所以.故选B. 14.分析 (1)根据题意,由正弦定理可得.(2)由诱导公式可得,由(1)可知,所以,. max y =x θ=()f x ()sin 2cos f θθθ=-=22sin cos 1θθ+=sin cos θθ⎧=⎪⎪⎨⎪=⎪⎩cos θ=P BC π04x剟PA PB +=tan x P CD π3π44x 剎?π2x ≠PA PB +=π2x =PA PB +=P AD 3ππ4x 剎?tan PA PB x +=P π2x =ππ42f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭c 6B π=4C π=7.A B C πππ=π--=π--=6412sin sin b c B C =2sin sin c =ππ64212=c =117sin 212212ABC S bc A π==⨯⨯=△sin 1sin 2B DC CBD∠==∠()1sin sin cos sin 22C BAC B B B ∠=∠+∠=∠+∠2sin B ∠=sin C ∠tan 3B ∠=30B ∠=解析 (1)由正弦定理得,,.因为平分,,所以. (2)因为,, 所以.由(1)知,所以,即. 评注三角是高中数学的重点内容,在高考中主要利用三角函数,三角恒等变换及解三角形的正弦定理及余弦定理,在求解时,注意角的转化及定理的使用. 15.解析由余弦定理知, 即,解得. 故. 16.分析先求出角的余弦值,再利用余弦定理求解.解析:由得,解得.因为是锐角,所以.又,所以,所以或.又因为,所以.故选D. 17.解析(1)由题设及余弦定理得,①. ②由①,②得,故,(2)四边形的面积sin sin AD BD B BAD =∠∠sin sin AD DCC CAD =∠∠AD BAC ∠2BD DC =sin 1sin 2B DC C BD ∠==∠()180C BAC B ∠=-∠+∠60BAC ∠=()1sin sin cos sin 22C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠tan 3B ∠=30B ∠=2222cos120AC AB BC AB BC =+-⋅249255BC BC =++3BC =11sin1205322ABC S AB BC =⋅=⨯⨯=△A 223cos cos 20A A +=2223cos 2cos 10A A +-=1cos 5A =±A 1cos 5A =2222cos a b c bc A =+-214936265b b =+-⨯⨯⨯5b =135b =-0b >5b >2222cos 1312cos BD BC CD BC CD C C =+-⋅=-2222cos 54cos BD AB DA AB DA A C =+-⋅=+1cos 2C =60C =BD =ABCD 1111sin sin 1232sin 60232222S AB DA A BC CD C ⎛⎫=⋅+⋅=⨯⨯+⨯⨯= ⎪⎝⎭评注本题考查余弦定理的应用和四边形面积的计算,考查运算求解能力和转化的思想,把四边形分割成两个三角形是求面积的常用方法.18.解析(1)由.由于,所以. 又,故.(2)的面积,故.而,故. 解得.19.解析在中,,,所以.在中,,,从而,由正弦定理得,,因此.在中,,,由得,故填. 20. 解析(1)由正弦定理得,.又,所以,即.则. (2)解法一:因为,所以, 即,亦即.又因为在中,,所以,则,得.所以为等腰直角三角形,得.解法二:由(1)可知,①因为,所以,②将代入得,则.sin cosc C c A=-sin A C -cos sin sin 0A C C -=sin 0C ≠π1sin 62A ⎛⎫-= ⎪⎝⎭0πA <<π3A =ABC △1sin 2S bc A ==4bc =2222cos a b c bc A =+-228b c +=2b c ==Rt ABC △45CAB ∠=100BC =m AC =m AMC △75MAC ∠=60MCA ∠=45AMC ∠=sin 45sin 60AC AM=AM =m Rt MNA △AM =m 60MAN ∠=sin 60MNAM=150MN ==m 15022b ac =a b =22a ac =2a c =22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅90B ∠=()2sin 12sin sin 2sin sin 90B A C A A ===-2sin cos 1A A =sin 21A =ABC △90B ∠=090A <∠<290A ∠=45A ∠=ABC △a c ==112ABC S ==△22b ac =90B ∠=222a c b +=②①()20a c -=a c ==112ABC S ==△21. (2015全国I 文4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=答案:D解析:本题考察余弦定理,根据题目条件画出图形可以列出等式,带入已知条件化简可得,解得.22. (2016全国I 文6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为答案:D解析:该函数的周期为,所以函数向右平移,得,化简可得y =2sin(2x –π3).23. (2016全国I 文14)已知θ是第四象限角,且sin (θ+)=,则tan (θ–)=.答案: 解析:本题考察同角的三角函数关系,三角函数的符号判断以及诱导公式的运用:,因为θ是第四象限角,且,所以也在第四象限,即,所以24 (2017全国I 文8).函数sin21cos xy x=-的部分图像大致为a =2c =2cos 3A =2222cos a b c bc A =+-23830b b --=3b =2T ππω==4π2sin(2())46y x ππ=-+π435π443-cos()4πθ-=3cos()sin()4245πππθθ+-=+=cos()4πθ-=354πθ-4sin()45πθ-=-sin()44tan()43cos()4πθπθπθ--=--ABC .2D .3A . y =2sin(2x +π4)B . y =2sin(2x +π3)C . y =2sin(2x –π4)D . y =2sin(2x –π3)A .B .C .D .【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C .25. (2017全国I 文15).已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.【答案】26.(2018全国I 文8).已知函数()222cos sin 2f x x x =-+,则 BA .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为427.(2018全国I 文11).已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= BA .15B.CD .128.(2018全国I 文16).△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为.29.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.30.【2019年高考全国Ⅰ卷文数】tan255°=A .−2B .−C .2D .2+【答案】D【解析】tan 255tan(18075)tan 75tan(4530)︒=︒+︒=︒=︒+︒=tan 45tan 301tan 45tan 30︒+︒-︒︒12+==+故选D. 【名师点睛】本题主要考查三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查.2sin cos ++x xx x31.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =−14,则bc=A .6B .5C .4D .3【答案】A【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,故选A . 【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果.32.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32 C .1D .12【答案】A【解析】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,解得2ω=.故选A . 【名师点睛】本题考查三角函数的极值和周期,渗透了直观想象、逻辑推理和数学运算素养.利用周期公式,通过方程思想解题.33.【2019年高考全国Ⅱ卷文数】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD 【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.34.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点.35.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+ 23172(cos )48x =-++,1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x 的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视1cos 1x -≤≤的限制,而简单应用二次函数的性质,出现运算错误.36.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角.37.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2)(82. 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题.。

近5年全国高考数学真题分类汇编:三角函数与解三角形(文理合卷)(..

近5年全国高考数学真题分类汇编:三角函数与解三角形(文理合卷)(..

近5年全国高考数学真题分类汇编:三角函数与解三角形(文理合卷)理科试题1.[2019年天津理科07】己知函数f(x)=ASin(ωx+φ)(A>0,ω>0,∣φ∣<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(X)的最小正周期为2ττ,且g(―)=V z2,则/"(—)=()48A.-2B.-√2C.√2D.22.[2019年新课标3理科12】设函数f(x)=Sin(sx+壹)(ω>0),已知f(x)在[0,2用有且仅有5个零点.下述四个结论:①/(x)在(O,2π)有且仅有3个极大值点@f(x)在(O,2π)有且仅有2个极小值点③/(X)在(O,ɪ)单调递增1229(4)ω的取值范围是[=,—)其中所有正确结论的编号是()A-①④ B.②③ C.①②③D.①③④3.[2019年新课标]理科Ill关于函数/(x)=SinlΛ-∣+∣sinx∣有下述四个结论:®f(x)是偶函数②T(X)在区间(?,π)单调递增®f(x)在[-n,ττ]有4个零点@f(x)的最大值为2其中所有正确结论的编号是()A-①②④B.②④ C.①④ D.①③4.[2018年北京理科07】在平面直角坐标系中,记[为点P(cosθ,sin。

)到直线χ-my~2=。

的距离.当。

、MJ变化时,H的最大值为()A.1B.2C.3D.45.[2017年天津理科07】设函数f(x)=2SirI(ω^+φ),XW R,其中ω>0,∣φ∣<π.若/(—)=2,f(---)88=0,且f Cr)的最小正周期大于2n,则()2L 12=(p 2-3A.W=Φ 2-3- ω B.C. ω= ɪ, (P=—4^-D. ω= ɪ, (P=云6. [2016 年新课标 1 理科 12】已知函数∕*(∙x) =Sin (ωx+φ) (ω>0, ∣φ∣≤p, X= Jf(X)的零点,X=为y=f (x)图象的对称轴,且f (x)在(三,—)上单调,则3的最大值为()18 36A. 11B. 9C. 7D. 57. [2013 年新课标 2 理科 12】已知点 A ( - 1, O), B (1, O), C (0, 1),直线 y=ax+b (tz>O)将ZkABC分割为面积相等的两部分,则8的取值范围是()A. (0, 1) B . (1 — ʌɪ z 5) C . (1 — ʒL ZD. [ɪ f §)8. [2011年新课标1理科11】设函数f (λ) =Sin (ωx+φ) +cos (ωx+φ) (ω>0, I(PI <y)的最小正周期为π,且/ ( - x) =f (x),贝!]()A. /(x)在(0,与)单调递减B. 了(X)在(二—)单调递减44C. f (x)在(0,:)单调递增D. f (%)在(:,?)单调递增9. [2010年浙江理科09】设函数/(x)=4sin(2x+l ) -扃则在下列区间中函数Hx)不存在零点的是()A. [-4, - 2]B. [-2, 0]C. [0, 2]D. [2, 4]10. [2010年上海理科18】某人要制作一个三角形,要求它的三条高的长度分别为上,~f则此人将13115( )A.不能作出这样的三角形B.作出一个锐角三角形C.作出一个直角三角形D.作出一个钝角三角形tana 2 Tr11. [2019年江苏13】已知------- =一一,则Sin (2α+≡)的值是____.tαn(α+-) 3 冬12.[2018年新课标1理科16】己知函数f(x)=2sin%+sin2jr,则f(x)的最小值是・13.[2017年浙江14】已知∕V1BC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结C D,则DC的面积是,CoSZBDC=.14.[2016年江苏14】在锐角三角形ABC中,若SinA=2sinBsinC,贝IJ IanAtanBtanC的最小值是.15.[2016年上海理科13】设S⅛∈R,c∈[0,2π),若对于任意实数工都有2sin(3尤一§)=asin(⅛x+c),则满足条件的有序实数组(S b,C)的组数为.16.[2015年新课标1理科16】在平面四边形ABCD中,ZA=ZB=ZC=75o.BC=2,则Ag的取值范围是.17.[2015年上海理科13】已知函数f(x)=Sin若存在由,尤2,…,λ⅛满足0WXlVx2<∙∙∙Vλ⅛W6h,且l/(ɪi)-f(、2)1+[/(互)-f危3)l+∙∙∙+l∕(∙x⅛τ)-f(切)I=12SN2,m∈N),则m的最小值为.18.[2014年江苏14】若ZkABC的内角满足SinA+√ΣsinB=2sinC,则COSC的最小值是・19.[2014年新课标1理科16】己知b,C分别为'λBC的三个内角A,B f C的对边,a=2且(2+人) (SinA-SinB)=(C-⅛)sinC,则Z∖A8C面积的最大值为.20.[2014年上海理科12】设常数。

2019年全国各地高考数学试题分类三角函数及答案.doc

2019年全国各地高考数学试题分类三角函数及答案.doc

C 两点之间的距离是
千米。
17. (上海 8)、函数 y sin( x)cos( x) 的最大值为

2
6
18.上海 11、在正三角形 ABC 中,D 是 BC 上的点, AB 3, BD 1 ,则 AB AD

24.广东 16. (本小题满分 12分)
1 已知函数 f ( x) 2sin( x ), x R
所得的图像与原图像重合,则
的最小值等于
(A) 1
(B)3
(C)6 (D)9
3
5.天津 6.如图, 在△ ABC 中, D 是边 AC 上的点, 且, AB AD , 2AB 则 sin C 的值为
3BD , BC 2BD ,
3
A.
3
3
B.
6
6
C.
3
6
D.
6
6.浙江( 6)若 0

22
1
3
0 ,cos(
0 ,将 y f x 的图像向右平移 个单位长度后, 3
7. 安徽( 9)已知函数 f ( x) sin(2 x ),其中 为实数,若 f (x) f ( ) 对 x R 恒成立, 6
且 f ( ) f ( ) ,则 f ( x) 的单调递增区间是 2
( A) [k
,k
]( k Z )
3
6
(B)[k ,k
) 的最小正周期为 ,且 2
(A) f (x) 在 0, 单调递减 2
( B) f ( x) 在
3
,
单调递减
44
(C) f (x) 在 0, 单调递增 ( D) f (x) 在 , 3 单调递增
2
44
3.福建 3.若 tan
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011—2019年高考真题全国卷1理科数学分类汇编——4.三角函数、解三角形一、选择题 【2019,5】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .【2019,11关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2 其中所有正确结论的编号是( ) A.①②④ B.②④ C.①④ D.①③【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z 错误!未找到引用源。

B .13(2,2),44k k k ππ-+∈Z 错误!未找到引用源。

C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z 【2015,2】sin 20cos10cos160sin10-=( )A .32-B .32C .12-D .12【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2]【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 二、填空题【2018,16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 . 【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________. 【2011,16】在ABC 中,60,3B AC ==,则2AB BC +的最大值为 . 三、解答题【2019, 17】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .【2018,17】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若22DC =,求BC .【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2. (Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长.【2013,17】如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c +--=.(1)求A ;(2)若2a =,△ABC ,求b ,c .3.三角函数、解三角形(解析版)一、选择题 【2019,5】函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【2019,11关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2 其中所有正确结论的编号是( ) A.①②④ B.②④ C.①④ D.①③【解析】因为()sin sin()sin sin ()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,①正确,因为52,(,)632ππππ∈,而52()()63f f ππ<,所以②错误, 画出函数()f x 在[],ππ-上的图像,很容易知道()f x 有3零点,所以③错误, 结合函数图像,可知()f x 的最大值为2,④正确,故答案选C.【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x . 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ; 【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【解析】:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫ ⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z 错误!未找到引用源。

B .13(2,2),44k k k ππ-+∈Z 错误!未找到引用源。

C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k πππππ<+<+∈Z ,解得124k -<x <324k +,k ∈Z ,故单调减区间为(124k -,324k +),k ∈Z ,故选D .【2015,2】sin 20cos10cos160sin10-=( )A .32-B .32C .12-D .12解析:sin 20cos10cos160sin10sin 20cos10cos 20sin10sin30-=+=,选D .. 【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【解析】:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x x OM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. 【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【解析】∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12] D .(0,2]【解析】因为0ω>,2x ππ<<,所以2444x ππππωωωπ⋅+<+<⋅+,因为函数()sin()4f x x πω=+在(2π,π)上单调递减,所以242342πππωππωπ⎧⋅+≥⎪⎪⎨⎪⋅+≤⎪⎩,解得1524ω≤≤,故选择A.【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 解析:()2sin()4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,()2sin(2)2cos22f x x x π∴=+=,选A. 【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B.二、填空题【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .解析: 如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =,由正弦定理可得o osin 30sin 75BC BE=,解得BE =6+2;平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=,由正弦定理知o osin 30sin 75BF BC=,解得62BF =-,所以AB 的取值范围为.【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .【解析】:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.解析:f (x )=sin x -2cos xx x ⎫⎪⎭,令cos αsin α=-则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==.【2011,16】在ABC 中,60,B AC ==2AB BC +的最大值为 . 解析:0120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒=022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+;2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是三、解答题【2019, 17】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-()sin 1202sin A C C ︒+-=,即631cos sin 2sin 222C C C ++=,可得()2cos 602C ︒+=-. 由于0120C ︒︒<<,所以()2sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+624+=【2018,17】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若22DC =,求BC . 【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52,sin 45sin ADB=︒∠所以2sin 5ADB ∠=.由题设知,90ADB ∠<︒, 所以223cos 125ADB ∠=-(2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD △中,由余弦定理得2222cos 2258252225.BC BD DC BD DC BDC=+-⋅⋅⋅∠=+-⨯⨯=所以5BC =.【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【解析】(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =,∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=, 又∵()0πA ∈,,∴60A =︒,3sin A =1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ② 由①②得33b c +∴333a b c ++=+ABC △周长为333【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长. 【解析】⑴ ()2cos cos cos C a B b A c +=,由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅= ()2cos sin sin C A B C⋅+=,∵πA B C ++=,()0πA B C ∈、、,,∴()sin sin 0A B C +=> ∴2cos 1C =,1cos 2C =,∵()0πC ∈,,∴π3C = ⑵ 由余弦定理得:2222cos c a b ab C =+-⋅,221722a b ab =+-⋅,()237a b ab +-=1sin 2S ab C =⋅==,∴6ab =,∴()2187a b +-=,5a b +=∴ABC △周长为5a b c ++=【2013,17】如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得P A 2=11732cos 30424+-︒=,故P A =2.(2)设∠PBA =α,由已知得PB =sin α,在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,α=4sin α,所以tan αtan ∠PBA .【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c +--=.(1)求A ;(2)若2a =,△ABC ,求b ,c .【解析】(1)根据正弦定理R Cc B b A a 2sin sin sin ===,得A R a sin 2=,B R b sin 2=,C R c sin 2=,因为cos sin 0a C C b c --=, 所以0sin 2sin 2sin )sin 2(3cos )sin 2(=--+C R B R C A R C A R , 即0sin sin sin sin 3cos sin =--+C B C A C A ,(1)由三角形内角和定理,得C A C A C A B sin cos cos sin )sin(sin +=+=,代入(1)式得0sin sin cos cos sin sin sin 3cos sin =---+C C A C A C A C A ,化简得C C A C A sin sin cos sin sin 3=-, 因为0sin ≠C ,所以1cos sin 3=-A A ,即21)6sin(=-πA , 而π<<A 0,6566πππ<-<-A ,从而66ππ=-A ,解得3π=A . (2)若2a =,△ABC,又由(1)得3π=A , 则⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ,化简得⎩⎨⎧=+=8422c b bc , 从而解得2=b ,2=c .。

相关文档
最新文档