吉林省2017-2018学年高一数学上学期期末考试试题

合集下载

吉林省梅河口市第五中学2017-2018学年高一上学期期中考试数学试题 -

吉林省梅河口市第五中学2017-2018学年高一上学期期中考试数学试题 -

吉林省梅河口市第五中学2017-2018学年高一上学期中期考试数学试题1.已知集合,集合,则()A. B. C. D.【答案】B【解析】【详解】因为,,所以,故选B.2.已知函数,若,则()A. B. C. D.【答案】D【解析】当时,,则,解得,当时,,则,解得,综上,故选D.3.设为两条直线,为两个平面,则下列结论成立的是( )A. 若且,则B. 若且,则C. 若,则D. 若则【答案】D【解析】选项不正确,两个平面中的两条直线平行两平面平行或者两平面相交;选项不正确,两个平面中的两垂直平面中的两条直线可以平行、相交,异面;选项不正确,一个直线与一个平面内的直线平行,则直线与平面平行或直线在平面内;选项正确,根据线面垂直的性质定理可得,垂直于同一平面的两条直线平行,故选D.4. 某四棱锥的三视图如图所示,该四棱锥的表面积是A. 32B. 16+C. 48D.【答案】B【解析】试题分析:由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+。

故选B.考点:三视图;棱锥的体积公式。

点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度。

5.已知函数是定义在区间上的函数,且在该区间上单调递增,则满足的的取值范围是()A. B.C. D.【答案】D【解析】因为定义在R上的偶函数在区间单调递增,则满足<,那么利用对称性可知,,得到解集为(,),选A6.已知函数的值域为,则函数的值域为()A. B. C. D.【答案】D【解析】函数的图象由的图象向右平移2个单位得到,故值域相同,故选D. 7.某四面体的三视图如下图所示,该四面体的六条棱中棱长最长的长度是()A. B. C. D.【答案】B【解析】由三视图可知原几何体为三棱锥,其中底面△ABC为俯视图中的钝角三角形,∠BCA为钝角,其中BC=2,BC边上的高为2,PC⊥底面ABC,且PC=2,由以上条件可知,∠PCA为直角,最长的棱为PA或AB,在直角三角形PAC中,由勾股定理得,PA===2,又在钝角三角形ABC中,AB===2.故四面体的六条棱中,最大长度是2 .故选:B.8.已知函数在上是增函数,则的取值范围是()A. B. C. D.【答案】D【解析】由题意:函数f(x)=在(﹣∞,+∞)上是增函数,∴二次函数﹣x2﹣ax﹣5,开口向下,∴是增函函,故得对称轴x=﹣≥1,解得:a≤﹣2.反比例函数在(1,+∞)必然是增函数,则:a<0;又∵函数f(x)是增函数,则有:,解得:a≥﹣3.所以:a的取值范围[﹣3,﹣2].故选D.9.已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且,则此棱锥的体积为()A. B. C. D.【答案】A【解析】试题分析:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1=,∴,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.10.若,且函数,则下列各式中成立的是()A. B.C. D.【答案】B【解析】∵0<a<1,∴f(2)=|log a2|=|﹣log a||=log af()=|log a|=log a,f()=|log a|=log a,∵0<a<1,函数f(x)=log a x,在(0,+∞)上是减函数,∴f()>f()>f(2),故选B.点睛:本题主要考查对数函数的图象分布及其单调性的应用,要注意:对数函数值的正负由“1”来划分,其单调性由底数来确定,另外,在解题时要充分利用数形结合的思想和方法.11.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A. 1B.C.D. 2【答案】C【解析】试题分析:设两圆的圆心分别为、,球心为,公共弦为,其中点为,则为矩形,于是对角线,而,∴,故选C.考点:球的表面积和体积.12.如图,正方体的棱线长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C. 三棱锥的体积为定值D.【答案】D【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。

高一数学第一次月考试题与答案

高一数学第一次月考试题与答案

2017-2018学年度高一数学9月月考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。

学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.已知集合M ={x ∈N +|2x ≥x 2},N ={-1,0,1,2},则(∁R M )∩N 等于( ) A . ∅ B . {-1} C . {1,2} D . {-1,0}2.已知集合P ={4,5,6},Q ={1,2,3},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为( )A . 32B . 31C . 30D . 以上都不对3.定义A -B ={x |x ∈A ,且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B 等于( ) A . {4,8} B . {1,2,6,10} C . {1} D . {2,6,10}4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=和g (x )=5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )A .B .C .D .6.下列三个函数:①y =3-x ;②y =;③y =x 2+2x -10.其中值域为R 的函数有( ) A .0个 B .1个 C .2个 D .3个 7.一次函数g (x )满足g [g (x )]=9x +8,则g (x )是( ) A .g (x )=9x +8 B .g (x )=3x +8C .g (x )=-3x -4D .g (x )=3x +2或g (x )=-3x -4 8.下列函数中,在[1,+∞)上为增函数的是( ) A .y =(x -2)2 B .y =|x -1| C .y =D .y =-(x +1)2 9.若非空数集A ={x |2a + ≤x ≤3a -5},B ={x |3≤x ≤ },则能使A ⊆B 成立的所有a 的集合是( ) A . {a | ≤a ≤9} B . {a |6≤a ≤9} C . {a |a ≤9} D . ∅10.若函数f (x )= ,, , ,φ(x )=, , , ,则当x <0时,f (φ(x ))为( ) A . -x B . -x 2C .XD .x 2 11.若函数f (x )=的最小值为f (0),则实数m 的取值范围是( )A . [-1,2]B . [-1,0]C . [1,2]D . [0,2]12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )A. [160,+∞) B. (-∞,40]C. (-∞,4 ]∪[ 6 ,+∞) D. (-∞, ]∪[8 ,+∞)分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知M={2,a,b},N={2a,2,b2},且M=N,则有序实数对(a,b)的值为________.14.已知函数y=f(x2-1)的定义域为{x|-2<x<3},则函数y=f(3x-1)的定义域为____________.15.设函数f(x)=, ,, ,若f(f(a))=2,则a=_________.16.已知函数y=f(x)的定义域为{1,2,3},值域为{1,2,3}的子集,且满足f[f(x)]=f(x),则这样的函数有________个.三、解答题(共6小题,,共70分)17.(10分)用单调性的定义证明函数f(x)=2x2+4x在[-1,+∞)上是增函数.18(12分).根据下列函数解析式求f(x).(1)已知f(x+1)=2x2+5x+2;(2)已知f=x3+3-1;(3)已知af(x)+f(-x)=bx,其中a≠± 19(12分).已知集合A={x| ≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.20(12分).经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t( ≤t≤ )的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21(12分).已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R).(1)求g(a)和h(a);(2)作出g (a )和h (a )的图像,并分别指出g (a )的最小值和h (a )的最大值各为多少?22(12分).已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ). (1)求f (1)的值;(2)证明:f (x )在定义域上是增函数;(3)如果f (3)=-1,求满足不等式f (x )-f (x - )≥ 的x 的取值范围.2017-2018学年度高一数学9月月考试卷答案解析1.【答案】D【解析】因为M ={1,2},所以(∁R M )∩N ={-1,0},故正确答案为D. 2.【答案】B【解析】由所定义的运算可知P ⊕Q ={1,2,3,4,5}, ∴P ⊕Q 的所有真子集的个数为25-1=31.故选B. 3.【答案】D【解析】A -B 是由所有属于A 但不属于B 的元素组成,所以A -B ={2,6,10}.故选D. 4.【答案】D【解析】A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D. 5.【答案】C【解析】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图像一定是下降的,由此排除A ;再由小明骑车上学,开始时匀速行驶,可得出图像开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图像与x轴平行,由此排除D,后为了赶时间加快速度行驶,此一段时间段内函数图像下降的比较快,由此可确定C正确,B不正确.故选C.6.【答案】B【解析】7.【答案】D【解析】∵g(x)为一次函数,∴设g(x)=kx+b,∴g[g(x)]=k(kx+b)+b=k2x+kx+b,又∵g[g(x)]=9x+8,∴9,8,解得3,或3,4,∴g(x)=3x+2或g(x)=-3x-4.故选D.8.【答案】B【解析】y=(x-2)2在[2,+∞)上为增函数,在(-∞,2]为减函数;y=|x-1|= , ,,在[1,+∞)上为增函数,故选B.9.【答案】B 10.【答案】B【解析】x<0时,φ(x)=-x2<0,∴f(φ(x))=-x2.11.【答案】D【解析】当x≤ 时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥ .当x>0时,f(x)=x++m≥ +m=2+m,当且仅当x=,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m2≤ +m,所以 ≤m≤ .12.【答案】C【解析】由于二次函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,因此函数f(x)=4x2-kx-8在区间(5,20)上是单调函数.二次函数f(x)=4x2-kx-8图像的对称轴方程为x=8,因此8≤5或8≥ ,所以k≤4 或k≥ 6 .13.【答案】(0,1)或(4,)【解析】∵M={2,a,b},N={2a,2,b2},且M=N,∴或即或或4当a=0,b=0时,集合M={2,0,0}不成立,∴有序实数对(a,b)的值为(0,1)或(4,),故答案为(0,1)或(4,).14.【答案】{x| ≤x<3}【解析】∵函数y=f(x2-1)的定义域为{x|-2<x<3},∴-2<x<3.令g(x)=x2-1,则- ≤g(x)<8,故- ≤3x-1<8,即 ≤x<3,∴函数y=f(3x-1)的定义域为{x| ≤x<3}.15.【答案】【解析】若a≤ ,则f(a)=a2+2a+2=(a+1)2+1>0,所以-(a2+2a+2)2=2,无解;若a>0,则f(a)=-a2<0,所以(-a2)2+2(-a2)+2=2,解得a=.故a=.16.【答案】10【解析】∵f[f(x)]=f(x),∴f(x)=x,①若f:{ , ,3}→{ , ,3},可以有f(1)=1,f(2)=2,f(3)=3,此时只有1个函数;②若f:{ , ,3}→{ },此时满足f(1)=1;同理有f:{ , ,3}→{ };f:{ , ,3}→{3},共有3类不同的映射,因此有3个函数;③首先任选两个元素作为值域,则有3种情况.例如选出1,2,且对应关系f:{ , ,3}→{ , },此时满足f(1)=1,f(2)=2.则3可以对应1或2,又有2种情况,所以共有3× =6个函数.综上所述,一共有1+3+6=10个函数.17.【答案】设x1,x2是区间[-1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=(2+4x1)-(2+4x2)=2(-)+4(x1-x2)=2(x1-x2)(x1+x2+2).∵- ≤x1<x2,∴x1-x2<0,x1+x2+2>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,+∞)上是增函数.18.【答案】(1)方法一(换元法)设x+1=t,则x=t-1,∴f(t)=2(t-1)2+5(t-1)+2=2t2+t-1,∴f(x)=2x2+x-1.方法二(整体代入法)∵f(x+1)=2x2+5x+2=2(x+1)2+(x+1)-1,∴f(x)=2x2+x-1.(2)(整体代入法)∵f=x3+3-1=3-3x2·-3x·-1=3-3-1,∴f(x)=x3-3x-1(x≥ 或x≤-2).(3)在原式中以-x替换x,得af(-x)+f(x)=-bx,于是得+ - = ,- + =-消去f(-x),得f(x)=.故f(x)的解析式为f(x)=x(a≠± ).19.【答案】(1)因为A={x| ≤x<7},B={x|3<x<10},所以A∪B={x| ≤x<10}.因为A={x| ≤x<7},所以∁R A={x|x<2或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x| ≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.20.【答案】(1)y=g(t)·f(t)=(80-2t)·( -|t-10|)=(40-t)(40-|t-10|)=3 4 , ,4 5 ,(2)当 ≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值1 225;当 ≤t≤ 时,y的取值范围是[600,1 200],在t=20时,y取得最小值600.综上,第5天,日销售额y取得最大值1 225元;第20天,日销售额y取得最小值600元.21.【答案】( )∵f(x)=(x-a)2-(a2+1),又x∈[ , ],∴当a≤ 时,g(a)=f(2)=3-4a,h(a)=f(0)=-1;当0<a≤ 时,g(a)=f(2)=3-4a,h(a)=f(a)=-(a2+1);当1<a<2时,g(a)=f(0)=-1,h(a)=f(a)=-(a2+1);当a≥ 时,g(a)=f(0)=-1,h(a)=f(2)=3-4a.综上可知g(a)=3 4h(a)=3 4(2)g(a)和h(a)的图像分别为:由图像可知,函数y=g(a)的最小值为-1,函数y=h(a)的最大值为-1.【解析】22.【答案】(1)解令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈( ,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(3)解由于f(3)=-1,而f(3)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x- )≥f(9),∴f(x)≥f[9(x-2)],∴x≤94.又∴ <x≤94,∴x的取值范围是94.【解析】。

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷XXX2017-2018学年第一学期期末考试高一年级数学试卷第I卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知向量a=(2,1),b=(λ−1,2),若a+b与a−b共线,则λ=()A.−2B.−1C.1D.2改写:向量a=(2,1),向量b=(λ-1,2),若a+b和a-b共线,则λ=() A。

-2 B。

-1 C。

1 D。

22.已知3sinα+4cosα=2,则1-sinαcosα-cos2α的值是() A。

- B。

C。

-2 D。

2改写:已知3sinα+4cosα=2,求1-sinαcosα-cos2α的值,答案为() A。

- B。

C。

-2 D。

23.已知在△ABC中,AB=AC=1,BC=3,则AB·AC=() A。

1/33 B。

- C。

-2 D。

-改写:在△ABC中,AB=AC=1,BC=3,求XXX的值,答案为() A。

1/33 B。

- C。

-2 D。

-4.在△ABC中,若AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定改写:在△ABC中,如果AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定5.已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanA-tanB=3,则△ABC的面积为() A。

3/33 B。

- C。

3 D。

33/2改写:已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanB=3,求△ABC的面积,答案为() A。

3/33 B。

- C。

2017-2018高一数学上学期期末考试试题及答案

2017-2018高一数学上学期期末考试试题及答案

2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体的体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高 2.球的表面积公式24S R π=,球的体积公式343R V π=,其中R 为球的半径。

一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( )A .平行B .相交C .异面D .以上均有可能3.已知幂函数()αx x f =的图象经过点错误!,则()4f 的值等于 ( )A .16B 。

错误!C .2D 。

错误!4。

函数()lg(2)f x x =+的定义域为 ( )A 。

(—2,1)B 。

[-2,1]C 。

()+∞-,2 D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP |的最小值为 ( )AB .CD .26.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭的值域是 ( )A .RB .错误!C .(2,+∞)D 。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

吉林省辽源市东辽县第一高级中学高一化学上学期期末考试试题

吉林省辽源市东辽县第一高级中学高一化学上学期期末考试试题

辽源市东辽一中2016-2017学年度上学期期末考试高一化学试题2017-01-02本试卷分选择题和表达题两部分,共26题,共4页,满分100分。

考试时间为90分钟。

考试结束后,只交答题卡。

可能用到的相对原子质量: H-1 O-16 C-12 N-14 Na-23 Mg-24 Al-27 S-32 Cl -35.5 Fe-56 Cu-64 Zn-65第Ⅰ卷 (选择题,共计50分)一、选择题(每题2分,共20分,每小题只有一个选项符合题意..........)1.某合金与铁的物理性质的比较如下表所示: (g/c 还知该合金耐腐蚀、强度大。

从以上性能看,该合金不适合做: ( )A .导线B .门窗框C .炉具D .飞机外壳2.新制氯水与久置的氯水相比较,下列结论不正确的是: ( )A .颜色相同B .前者能使有色布条褪色C .都含有H +D .加AgNO 3溶液都能生成白色沉淀3.同温同压下,已知O 2的密度为ρ g·L -1,则NH 3的密度为: ( )A. 17ρ32 g·L -1B. 3217 g·L -1C. 3217ρ g·L -1 D. 1732ρ g·L -14.下列装置能达到对应实验目的的是: ( )5.配制一定物质的量浓度的溶液,造成浓度偏高的操作是: ( )A. 洗涤后的容量瓶未干燥B. 移液后,未洗涤烧杯和玻璃棒C. 定容时,眼睛视线俯视刻度线D. 移液时,不慎将液体流到瓶外6.下列事实与胶体性质无关的是: ( )A. 水泥厂和冶金厂常用高压直流电除去大量烟尘,减少对空气的污染B. 将植物油倒入水中用力搅拌形成油水混合物C. 一束平行光线射入蛋白质溶液里,从侧面可以看到一条光亮的通路D. 氢氧化铁胶体中滴入稀硫酸,先看到红褐色沉淀生成而后沉淀溶解7.下列物品或设备:①水泥路桥②门窗玻璃③水晶镜片④石英钟表⑤玛瑙手镯⑥硅太阳能电池⑦光导纤维⑧计算机芯片所用材料为SiO2或要用到SiO2的是: ( )A.全部B. ①②③④⑤⑦C. ①②⑦⑧D.⑥⑧8.下列实验过程中,不会产生气体的是: ( )9.关于敞口放置于空气中的下列各组物质的描述不正确的是: ( ) A.金属Na和NaOH最终都会变成Na2CO3B.浓H2SO4、浓盐酸的浓度都会变小C.水玻璃和玻璃都很稳定,不会变质D.生石灰和碱石灰都会与空气中的CO2反应10.标准状况下,等体积的NH3和CH4两种气体,下列有关说法错误的是: ( )A. 所含分子数目相同B. 所含氢原子物质的量之比为3∶4C. 质量之比为16∶17D. 密度之比为17∶16二、选择题(每题3分,共30分,每小题只有一个选项符合题意..........)11.设N A 表示阿伏加德罗常数的值, 下列说法正确的是: ( )A. 标准状况下,N A 个CCl 4分子所占的体积为22.4 LB. 常温常压下,18 g H 2O 中含有的原子总数为3N AC. 标准状况下,2.24 L SO 3中含有的分子数目为0.1N AD. 常温常压下,2.24 L CO 和CO 2混合气体中含有的碳原子数目为0.1N A 12.由钠、镁、铝、锌四种金属单质中的两种组成的合金共12g ,跟足量的盐酸反应产生5.6L 氢气(标准状况),那么此合金中一定含有的金属是: ( )A .NaB .MgC .AlD .Zn13.等物质的量的N 2、O 2、CO 2混合气体通过Na 2O 2后,体积变为原体积的89(同温同压),这时混合气体中N 2、O 2、CO 2的物质的量之比为:( )A .3∶4∶1B .3∶3∶2C .6∶7∶3D .6∶9∶0 14.绿柱石又称绿宝石,其主要成分为Be n Al 2[Si 6O 18],也可以用二氧化硅和金属氧化物的形式表示,则n 为: ( )A .1B .2C .3D .415.CO 2与H 2的混合气体5g ,在150℃时和足量的氧气混合,用电火花充分引燃,在相同状况下再将反应后所得混合气体通入到足量的Na 2O 2中,测得Na 2O 2固体增重的质量为3.4g ,则原混合气体中CO 2的物质的量分数为: ( )A .75%B .25%C .88%D .32%16.氧化铜和氧化铁的混合物a g ,加入2 mol·L -1的硫酸溶液50 mL ,恰好完全溶解,若将a g 的该混合物在过量的CO 气流中加热充分反应,冷却后剩余固体的质量为:( )A .1.6a gB .(a -1.6) gC .(a -3.2) gD .无法计算 17.根据下列三个反应的化学方程式,判断有关物质的还原性由强到弱的顺序正确的是: ①I 2+SO 2+2H 2O===H 2SO 4+2HI ( )②2FeCl 2+Cl 2===2FeCl 3③2FeCl3+2HI===2FeCl2+2HCl+I2A.I->Fe2+>Cl->SO2B.SO2>I->Fe2+>Cl-C.Fe2+>I->Cl->SO2D.Cl->Fe2+>SO2>I-18.下列离子方程式正确的是:( )A.向碳酸氢钙溶液中滴入少量氢氧化钠溶液:OH-+HCO-3+Ca2+===CaCO3↓+H2OB.将一小块金属钠投入到硫酸铜溶液中:2Na+Cu2+===Cu+2Na+C.氢氧化钡溶液与硫酸反应:有白色沉淀生成Ba2++SO2-4===BaSO4↓D.氯气溶解于水:Cl2+H2==++Cl-+ClO-19.下列各组离子一定能大量共存的是: ( )A. 含有大量Ba2+的溶液中:Cl-、K+、SO2-4、CO2-3B. 含有大量H+的溶液中:Mg2+、Na+、CO2-3、SO2-4C. 含有大量OH-的溶液中:Cu2+、NO-3、SO2-4、CO2-3D. 含有大量Na+的溶液中:H+、K+、SO2-4、NO-320.下列各组物质的稀溶液相互反应,无论是前者滴入后者,还是后者滴入前者,反应现象都相同的是: ( )A. NaHSO4和Ba(OH)2B. AlCl3和NaOHC. NaAlO2和H2SO4D. Na2CO3和HCl第Ⅱ卷(非选择题,共计50分)三、填空题:(26分)21、(4分)(1) 0.5 mol SO2共约含有个原子,它与gSO3所含硫原子数相等。

2018-2019学年高一上学期期末考试化学试题 Word版含解析 (2)

2018-2019学年高一上学期期末考试化学试题 Word版含解析 (2)

吉林省白山市2018-2019学年高一上学期期末考试化学试卷一、选择题(本题包括12小题,每小题2分,共24分.每小题只有一个选项符合题意)1.泡的是山茶,品的是心性,茶的这一生,后来只凝结成一抹犹之未尽的留香于齿。

其中泡茶的过程(投茶、注水、出汤、斟茶)中属于过滤操作的是()A.投茶B.注水C.出汤D.斟茶2.高铁、移动支付、共享单车、网购,被称为中国“新四大发明”。

用于高铁和共享单车制造业的重要金属材料是()A.Na﹣K合金B.Cu﹣Sn合金C.Sn﹣Pb合金D.Mg﹣Al合金3.下列气体不会造成大气污染的是()A.二氧化碳B.二氧化硫C.一氧化碳D.氯气4.下列不属于传统无机非金属材料的是()A.碳化硅B.玻璃C.水泥D.陶瓷5.在自然界中既能以游离态存在又能以化合态存在的元素是()A.铝B.硅C.硫D.氯6.在物质的分离提纯实验中,不需要用到的实验装置是()A.B.C.D.7.下列物质中,不能电离出酸根离子的是()A.Na2O B.KMnO4C.NH4NO3D.CaCl28.从元素的化合价分析,下列物质中不能作还原剂的是()A.NH3B.S2﹣C.Na+D.Fe2+9.下列物质不属于电解质的是()A.空气B.氯化氢气体C.氢氧化钠固体D.氯化钠晶体10.具有漂白作用的物质:①臭氧;②二氧化硫;③活性炭;④过氧化钠.其中漂白原理相同的是()A.①③B.②③C.①④D.②④11.下列物质的主要成分及用途均对应正确的是()A.A B.B C.C D.D12.下列过程中水的作用与其他三种不同的是()A.NO2溶于水B.Cl2溶于水C.将Na2O2投入水中D.将Na投入水中二、选择题(本题包括10小题,每小题3分,共30分.每小题只有一个选项符合题意)13.用一定方法可除去下列物质中所含的少量杂质(括号内为杂质),其中所选试剂均足量且能达到除杂目的是()A.NaCl 溶液(I2):CCl4B.Na2CO3(NaHCO3):盐酸C.CO2(SO2):Na2CO3溶液D.FeCl2(FeCl3):Cl214.下列物质加入或通入CaCl2溶液中,有浑浊现象的是()A.SO2B.NaHCO3C.SO3D.CO215.化学概念在逻辑上存在如图所示关系:对下列概念的说法不正确的是()A.纯净物与混合物属于并列关系B.化合物与氧化物属于包含关系C.单质与化合物属于交叉关系D.氧化还原反应与化合反应属于交叉关系16.设N A为阿伏加德罗常数的数值,下列说法正确的是()A.等物质的量的FeCl2与FeCl3,前者比后者少N A个氯离子B.16g CH4和18g NH3所含质子数均为10N AC.1mol过氧化钠与足量水反应时,转移电子的数目为2N AD.常温常压下,相同体积的Cl2、HCl含有的分子数和原子数均相同17.新型纳米材料MFe2O x(3<x<4)中M表示+2价的金属元素,在反应中化合价不发生变化.常温下,MFe2O x能使工业废气中的SO2转化为S,流程如图,则下列判断正确的是()A.MFe2O x是氧化剂B.SO2是该反应的催化剂C.x<y D.MFe2O y是还原产物18.下列离子方程式正确的是()A.Al2O3+2OH﹣=AlO2﹣+H2OB.NH4++OH﹣NH3•H2OC.SO2+H2O+Ca2++2ClO﹣=CaSO3↓+2HClOD.2Na+2H2O+Cu2+=Cu(OH)2↓+2Na++H2↑19.将铝粉投入某无色澄清溶液中产生H2,则下列离子组在该溶液中可能大量共存的是()A.H+、Ca2+、Na+、HCO3﹣B.Na+、Fe2+、Al3+、NO3﹣C.K+、Cl﹣、OH﹣、SO42﹣D.Cu2+、Ba2+、Cl﹣、OH﹣20.下列根据实验操作和现象所得到的结论正确的是()A.A B.B C.C D.D21.标准状况下,分别将充满下列气体的容器倒扣于水槽中(设气体不发生扩散),充分反应后,瓶内溶液的物质的量浓度不等于mol•L﹣1(约0.045mol•L﹣1)的是()A.HCl B.NO2、O2C.SO2、N2D.NO222.常温下,发生下列反应:①16H++10Z﹣+2XO4﹣=2X2++5Z2+8H2O②2A2++B2=2A3++2B﹣③2B﹣+Z2=B2+2Z﹣根据上述反应,下列结论判断错误的是()A.A3+是A2+的氧化产物B.氧化性强弱的顺序为XO4﹣>B2C.反应Z2+2A2+=2A3++2Z﹣在溶液中可发生D.Z2在①③反应中均为还原剂二、非选择题(本题包括5小题,共46分)23.(10分)(1)在VL Al2(SO4)3溶液中,含Al3+的质量为a g,则Al2(SO4)3溶液的物质的量浓度为(2)有以下物质:①AgCl;②CCl4;③医用酒精;④液氧;⑤二氧化碳;⑥碳酸氢钠固体;⑦氢氧化钡溶液;⑧食醋;⑨氧化钠固体;⑩氯化氢气体。

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。

2017-2018学年高一下学期期末考试数学试题(A卷)

2017-2018学年高一下学期期末考试数学试题(A卷)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 以下程序中,输出时的值是输入时的值的()A. 1倍B. 2倍C. 3倍D. 4倍【答案】D【解析】令初始值A=a,则A=2(a+a)=4a.故选D.2. 已知数列是等比数列,,且,,成等差数列,则()A. 7B. 12C. 14D. 64【答案】C【解析】分析:先根据条件解出公比,再根据等比数列通项公式求结果.详解:因为,,成等差数列,所以所以,选C.点睛:本题考查等比数列与等差数列基本量,考查基本求解能力.3. 将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A. 0795B. 0780C. 0810D. 0815【答案】A【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为所以抽取的第40个数为选A.点睛:本题考查系统抽样概念,考查基本求解能力.4. 已知动点满足,则的最大值是()A. 50B. 60C. 70D. 90【答案】D【解析】分析:先作可行域,根据图像确定目标函数所代表直线取最大值时得最优解.详解:作可行域,根据图像知直线过点A(10,20)时取最大值90,选D,点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.5. 若干个人站成一排,其中为互斥事件的是()A. “甲站排头”与“乙站排头”B. “甲站排头”与“乙不站排头”C. “甲站排头”与“乙站排尾”D. “甲不站排头”与“乙不站排尾”【答案】A【解析】试题分析:事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。

2018届高三上学期期末联考数学(理)试题有答案-精品

2018届高三上学期期末联考数学(理)试题有答案-精品

2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。

吉林省吉林市2014-2015学年高一上学期期末考试 化学 Word版含答案

吉林省吉林市2014-2015学年高一上学期期末考试 化学 Word版含答案

吉林市普通高中2014—2015学年度高一年级学业水平检测化学说明:本试卷分Ⅰ卷、Ⅱ卷两部分。

考试时间90分钟,满分100分。

请将各试题答案写在答题卡上。

可能用到的相对原子质量:H—1 C-12 N-14 O-16 Na-23 Mg-24Al-27 Si-28 Cl—35.5 Cu—64 Fe—56第Ⅰ卷(共50分)一、选择题(每小题2分。

每小题只有一个选项符合题意)1.下列基本反应类型中,一定有电子转移的是A.化合反应B.分解反应C.置换反应D.复分解反应2. 下列方法中,不能用于物质分离的是A. 过滤B. 蒸馏C. 分液D. 丁达尔效应3.在常温常压下的各组气体中,不能共存的是A.O2与N2 B.NH3与O2C.SO2与O2D.HCl与NH34.0.2L 1mol/LFeCl3与0.3L 1mol/LMgCl2两溶液中,Cl—的物质的量浓度之比为A.3∶2 B.1∶1 C.2∶3 D.1∶35.下列说法中,正确的是A.硅胶的主要成分是硅酸钠B.明矾和氯化铁都可作净水剂C.发酵粉的主要成分是碳酸钠D.光导纤维的主要材料是晶体硅6.不能..用于区别FeCl3与AlCl3两种溶液的试剂是A. 氨水B. KSCN溶液C. 还原Fe粉D. AgNO3溶液7.下列化合物中,不能通过两种单质直接化合制取的是A.NH3B.SO2C.CuCl2D.FeCl28.按分散质微粒大小不同可将分散系分为胶体、溶液和浊液,胶体微粒大小为:A.0.01nm~1nm B.0.1nm~10nm C.1nm~100nm D.10nm~1000nm9. 暴露于空气中不易变质的是A. 水玻璃B. 苏打C. Na2O2D. 漂白液10.下列除去括号内杂质的方法错误的...是A. SiO2( Al2O3):加NaOH溶液后过滤B.Br2(CCl4):蒸馏C.FeCl2(FeCl3):加铁屑后过滤D.CO(CO2):用NaOH溶液洗气二、选择题(每小题3分。

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。

吉林省吉林市高一化学上学期期末考试题(含答案)

吉林省吉林市高一化学上学期期末考试题(含答案)

吉林省吉林市高一化学上学期期末考试题(含答案)一、单选题(本大题共16小题)1. 牛奶、豆腐等食物中富含钙,这里的“钙”应理解为 A .单质 B .元素C .原子D .分子...合金的是A .分解反应B .化合反应C .复分解反应D .置换反应6. 下列各组离子在给定条件下能大量共存的是 A .在强酸性溶液中:+4NH 、K +、2-3CO 、Cl -B .有2-4SO 存在的溶液中:Na +、Mg 2+、Ba 2+、Br - C .使酚酞溶液变红的溶液中:Na +、Cl -、2-4SO 、Fe 3+D .无色透明的水溶液中:K +、Ba 2+、Cl -、-3NO7. 我国“四大发明”在人类发展史上起到了非常重要的作用。

黑火药爆炸反应为3222S+2KNO +3C K S+3CO +N ↑↑点燃。

在该反应中,被还原的元素是 A .NB .CC .N 和SD .N 和C 8. 将适量钠投入下列溶液中,既能产生气体又能生成白色沉淀的是A .硫酸铜溶液B .稀硫酸C .氯化镁溶液D .氯化钠溶液9. 下列叙述中正确的是A .氯气不溶于水,因此可用排水法收集氯气B .新制氯水可以使干燥的有色布条褪色,说明氯气具有漂白性C .氯气通入冷的石灰乳中可以制得漂白粉D .氢气在氯气中燃烧产生淡蓝色火焰 10. 下列叙述中不正确的是A .铝的化学性质很活泼,在空气中极易锈蚀B .铝是比较活泼的金属,在化学反应中容易失去电子,表现出还原性C .铝条投入稀硫酸中生成无色气泡D .铝箔在空气中受热可以熔化,由于氧化膜的存在,熔化的铝并不滴落11. 屠呦呦因发现双氢青蒿素而获得诺贝尔医学奖。

双氢青蒿素的化学式为C 15H 24O 5,相对分子质量为284。

下列关于双氢青蒿素的说法正确的是( ) A .N A 个双氢青蒿素的质量为284g·mol -1B .个数均为N A 的C 、H 、O 三种原子的质量比为6∶1∶8 C .14.2g 双氢青蒿素中含有的原子总数为2.2N AD .含有N A 个碳原子的双氢青蒿素的物质的量为1mol12. 配制480mL0.100mol·L -1的NaCl 溶液,部分实验操作示意图如图:下列说法错误的是A .实验中用到的仪器有:托盘天平、500mL 容量瓶、烧杯、玻璃棒、胶头滴管等B .上述实验操作步骤的正确顺序为②①④③C .容量瓶需用自来水、蒸馏水洗涤,不需干燥即可使用D .定容时,仰视容量瓶的刻度线,使配得的NaCl 溶液浓度偏高 13. 下列离子方程式书写正确的是( )A .次氯酸钙溶液中通入过量的CO 2:Ca 2++2ClO -+H 2O +CO 2=CaCO 3↓+2HClO B .氢氧化钠溶液吸收氯气:2OH -+Cl 2=Cl -+ClO -+H 2OC.盐酸与硝酸银溶液反应:HCl+Ag+=AgCl↓+H+D.氯气通入水中:Cl2+H2O=2H++Cl-+ClO-14. 下列有关化学键的叙述正确的是A.离子化合物中一定含有离子键B.单质分子中均存在化学键C.由不同种非金属的原子形成的共价化合物一定只含极性键D.只含共价键的物质一定是共价化合物15. 已知:①在淀粉­KI溶液中滴入少量NaClO溶液,并加入少量硫酸,溶液立即变蓝;②在上述蓝色溶液中,滴加过量的Na2SO3溶液,蓝色逐渐消失;③取实验②生成的溶液滴加BaCl2溶液,有白色沉淀生成。

2017-2018学年度第一学期高一第一次月考成绩统计表

2017-2018学年度第一学期高一第一次月考成绩统计表

长中2017—018学年度第一学期高一第一次月考全级总排表
2017.10 名次 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 考号 170614 170104 170822 170712 170107 170834 170114 170115 170311 170708 171055 170318 170417 170815 170333 170519 170624 170217 170215 170308 170729 170514 170516 170617 170809 170811 170225 170711 170411 170610 170223 170406 170234 170108 170618 170211 170508 170616 姓名 班级 司梦晨 6 惠嘉康 1 胡叶叶 8 周逸飞 7 鱼朝阳 1 弥田 8 高金枝 1 尚甜甜 1 陈宝玲 3 李阳 7 杨广 10 杨扬 3 宇文雅 4 郭钾 8 黎佳昊 3 于莹莹 5 全宝婷 6 张晨 2 洪亦璇 2 李昭伟 3 解欣 7 陈雪彤 5 景凡 5 李一杰 6 党佳杰 8 尚国梁 8 罗睿青 2 剡心怡 7 梁娜 4 高星 6 曹亚鹏 2 曹锐洋 4 申岩 2 司帅 1 王帅 6 李煜 2 贾文丽 5 尚丁 6 语文 98 96 89 82 102 103 93 97 90 88 100 88 95 94 87 98 101 95 108 93 102 101 99 94 89 87 91 84 84 107 83 100 92 94 92 90 102 91 数学 117 126 117 119 101 126 112 109 107 120 118 101 103 119 113 115 124 92 97 108 120 116 111 113 138 118 114 123 118 125 123 98 111 102 133 113 112 110 英语 114 100 123.5 89.5 109 105.5 101.5 123 113 98.5 76 113 114.5 81.5 86.5 104 114.5 105.5 106.5 101.5 108 113 78 90.5 87 111.5 99 105 72 79.5 84.5 108.5 73 95.5 109.5 67.5 117 76 物理 57 60 67 67 70 48 66 50 58 65 64 61 63 62 80 59 42 69 47 45 56 42 62 55 44 57 65 56 74 50 62 69 80 68 56 70 52 67 化学 73 85 83 90 73 76 86 82 92 87 82 82 87 86 81 72 72 84 84 89 62 70 86 89 88 80 76 76 95 86 78 76 84 86 80 90 55 95 生物 77 68 54 86 78 74 74 71 71 72 89 83 64 84 79 78 72 79 79 85 72 78 84 78 73 65 72 73 73 68 84 62 73 67 42 82 74 73 总分 536 535 533.5 533.5 533 532.5 532.5 532 531 530.5 529 528 526.5 526.5 526.5 526 525.5 524.5 521.5 521.5 520 520 520 519.5 519 518.5 517 517 516 515.5 514.5 513.5 513 512.5 512.5 512.5 512 512

XXX2017-2018学年第一学期高一期末数学试卷

XXX2017-2018学年第一学期高一期末数学试卷

XXX2017-2018学年第一学期高一期末数学试卷XXX2017-2018学年第一学期高一期末数学试卷一、填空题(每题3分,共36分)1、已知全集$U=\mathbb{R}$,集合$A=\{x|y=\pi x\}$,则$C_UA=$ $\{x|x\notin A\}$2、函数$f(x)=x^{-1}$在$(-\infty,0)$内的零点为$x=-1$3、关于$x$的方程$2^x=3$的解集为$\{\log_2 3\}$4、函数$f(x)=\dfrac{1}{x+a}$为奇函数,则实数$a$的值为$0$5、集合$A=\{x|x<a\},B=\{x|x<1\}$,若$A\subseteq B$,则实数$a$的取值范围为$a\leq 1$6、比较两数大小: $2^{e^{5031}}$ $>$ $e^{2^{5031}}$7、函数$y=f(x)$的定义域为$(0,1)$,则函数$y=f(2x)$的定义域为$(0,\dfrac{1}{2})$8、幂函数$y=x^{-2}$的单调递减区间为$(0,+\infty)$9、函数$y=f(x)$过定点$(0,2)$,则函数$y=f(x-2)$过定点$(2,2)$10、不等式$|x|-a\geq 0$ 对任意$x\in[-1,2]$恒成立,则实数$a$的最大值为$a=2$11、若函数$f(x)=\dfrac{x^2-3x+2}{x-2}$,则$f(x)-f(2-x)=\dfrac{4x-10}{x-2}$12、方程$f(x+2018)+f(\dfrac{e-|2-x|}{x-2x-1})-a=0$在$(-\infty,5)$内有两个零点,则实数$a$的取值范围为$a\in(-\infty,4)$二、选择题(每题3分,共12分)13.四个说法中,与“不经冬寒,不知春暖”意义相同的是() C.若知春暖,必经冬寒14、已知实数$x>y$,下列不等式中一定成立的是() B。

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

吉林省吉林市2020-2021学年高一上学期期末考试数学试题及答案

吉林省吉林市2020-2021学年高一上学期期末考试数学试题及答案

吉林市普通中学2020—2021学年度高一年级上学期期末调研测试数学试题一、单项选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合要求.1. 设集合R U =,2{|20}A x x x =--<,则=A C U A .2]1[,-B .2)1(,-C .-∞-+∞(1)(2),,D .-∞-+∞(1][2),,2. 已知角α的终边经过点(34),-,则=cos αA. 53-B.53C. 54-D. 543.“4πα=”是“sin 2α=”的 A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4. 已知0.52021=a ,20210.5=b ,0.5log 2021=c ,则A. a b c >>B. b a c >>C. c b a >>D. b c a >>5. 在日常生活中有这样一种现象,向糖水中不断加入糖,糖水会变得越来越甜. 已知a 克糖水中含有b 克糖(0>>b a ),再添加m 克糖(0>m )(假设全部溶解),可将糖水变甜这一事实表示为下列哪一个不等式A .m a m b a b ++>B .m a m b a b ++<C .mb ma b a ++> D .mb ma b a ++<6. 下列四个函数中以π为最小正周期,且在区间(0)2,π上为增函数的是A . sin2y x =B .cos2y x =C .tan y x =D .1sin2y x = 7. 若不等式08322<-+kx kx 对一切实数x 都成立,则k 的取值范围是 A. (30),-B .(30],-C .(3)(0),,-∞-⋃+∞D .(3)[0),,-∞-⋃+∞8. 函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数)(x f 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数)(x g 的解析式为 A. ()sin 21g x x =- B. ()sin 21g x x =+ C. ()sin(2)13g x x π=-- D. ()sin(2)13g x x π=-+9. 已知函数0)(4)(22>+-=a a ax x x f 的两个零点分别为21x ,x ,则2121x x ax x ++的最小值为 A. 8B . 6C .4D . 210.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(52)()1t K I t e--=+其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln193)≈A. 60B. 65C. 66D. 69二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.11.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB 上取一点C ,使得,AC a BC b ==,过点C 作CD AB ⊥ 交以AB 为直径,O 为圆心的半圆周于点D ,连接OD .下 面不能由OD CD ≥直接证明的不等式为A.0)0(2>>+≤b a ba ab ,B. 0)0(>>+≥b a ba 2abab , C. 0)0(222>>≥+b a ab b a ,D. 0)0(2222>>+≤+b a b a b a , 12.如图,摩天轮的半径为40米,摩天轮的轴O 点距离地面的高度为45米,摩天轮匀速逆时针旋转,每6分钟转一圈,摩天轮上 点P 的起始位置在最高点处,下面的有关结论正确的有 A .经过3分钟,点P 首次到达最低点 B .第4分钟和第8分钟点P 距离地面一样高C .从第7分钟至第10分钟摩天轮上的点P 距离地面的高度一直在降低D .摩天轮在旋转一周的过程中有2分钟距离地面不低于65米三、填空题:本大题共4个小题,每小题5分,共20分.其中第16题的第一个空填对得3分,第二个空填对得2分.13.已知312a b +=,则3a ba = .14.某市在创建全国文明城市活动中,需要在某老旧小区内建立一个扇形绿化区域.若设计该区域的半径为20米,圆心角为45,则这块绿化区域占地 平方米. 15.已知βα,都是锐角,71=cos α,1411)(-=+βαcos ,则=β . 16.已知函数2||,()24,x x m f x x mx m x m≤⎧=⎨-+>⎩,其中0m >.若()f x 在区间(0),+∞上单调递增,则m 的取值范围是 ;若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是 .四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)如图,在平面直角坐标系xoy 中,第二象限角α的终边与 单位圆交于点A ,且点A 的纵坐标为45. (Ⅰ)求sin ,cos ,tan ααα的值;(Ⅱ)先化简再求值:sin()sin()cos(4)2tan()ππααπαπα++-+--.18.(本小题满分12分)已知0,0x y >>,且440x y +=. (Ⅰ)求xy 的最大值;(Ⅱ)求11x y+的最小值.19.(本小题满分12分)已知函数21()cos cos 2222x x x f x =++.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)将函数()y f x =的图象上的各点________;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x 的取值集合. 你需要在①、②中选择一个,补在(Ⅱ)中的横线上,并加以解答. ①向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半; ②纵坐标保持不变,横坐标缩短到原来的一半,再向右平移4π个单位. 20.(本小题满分12分)已知函数()f x 是定义在R 上的减函数,对于任意的12,x x R ∈都有1212()()()f x x f x f x +=+,(Ⅰ)求(0)f ,并证明()f x 为R 上的奇函数;(Ⅱ)若(1)2f -=,解关于x 的不等式()(3)4f x f x --<.21.(本小题满分12分) 某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x 台机器人的总成本21()150600p x x x =++万元. (Ⅰ)若使每台机器人的平均成本最低,问应买多少台?(Ⅱ)现按(Ⅰ)中的数量购买机器人,需要安排m 人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量8(60),130()15480,30m m m q m m ⎧-≤≤⎪=⎨⎪>⎩(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少多少?22.(理科)(本小题满分12分)已知函数2()2xxm f x n -=+是定义在R 上的奇函数.(Ⅰ)求实数,m n 的值;(Ⅱ)函数()g x 满足()()22xx f x g x -⋅=-,若对任意x R ∈且0x ≠,不等式(2)[()2]16g x t g x ≥--恒成立,求实数t 的取值范围.22.(文科)(本小题满分12分)已知函数()ln(1)xf x e mx =+-是定义在R 上的偶函数. (Ⅰ)求m 的值; (Ⅱ)设1()()2h x f x x =+, ①若()ln(21)h x a ≥-对于[0],x e ∀∈恒成立,求a 的取值集合; ②若[22e],a ∃∈,使得不等式()ln(21)h x a ≥-有解,求x 的取值集合.吉林市普通中学2020—2021学年度高一年级上学期期末调研测试数学参考答案一、选择题:本大题共12个小题,每小题5分. 其中,11题、 12题全部选对的得5分,有选错的得0分,部分选对的得3分.二、填空题:本大题共4个小题,每小题5分. 其中,16题第一空3分,第二空2分 .13.3 14. 50π 15.3π16. (0,3] (3分), (3,+∞) (2分) 三、解答题:共70分,本大题共6小题. 解答应写出文字说明、证明过程或演算步骤. 17.【解析】(1)由题知:4sin 5α=..........................................2分 因为sin 2α+cos 2α=1,所以3cos 5α=±.............................3分 又因为α为第二象限角,所以3cos 5α=-..............................4分 所以,sin 4tan cos 3ααα==-...........................................5分 (2)原式=(sin )cos cos tan αααα-++- .................................7分 43()2()55=4()3-+⨯---.......................................9分 32=- ................................................10分18.【解析】(1)因为0,0x y >>,404x y ∴=+≥=分(当且仅当4x y =,即=205,x y =时等号成立).................3分 所以100xy ≤,..............................................4分 因此xy 的最大值为100......................................5分(2) 因为440x y +=,即1(4)140x y +=...........................6分 所以11111=(x 4y)()40x y x y+++ 14149(5)(52)404040y x y x x y x y =++≥+⋅=........9分 (当且仅当2x y =,即4020=33,x y =时等号成立)...............11分 所以11x y +的最小值为940....................................12分 19.【解析】(1)∵函数31cos 1()sin 222x f x x +=++ ..........................2分 sin()16x π=++ .......................................4分∴函数的周期为2π............................................6分(2)<选择①> 依题意:()cos(2)16g x x π=-++ ........................8分令2=26x k πππ++,即5=()12x k k Z ππ+∈................9分 使函数()g x 取得最大值2,即 max ()2g x = ................10分 使函数()g x 取得最大值的集合为5{|=,}12x x k k Z ππ+∈.........12分<选择②> 依题意:()cos(2)16g x x π=-++ .........................8分令2=26x k πππ++,即5=()12x k k Z ππ+∈ ...............9分 使函数()g x 取得最大值2,即 max ()2g x = ................10分 使函数()g x 取得最大值的集合为5{|=,}12x x k k Z ππ+∈...................12分19.【解析】(1)令120x x ==,则有(0)2(0)(0)0,f f f =∴=...................1分令12,x x x x ==-,则有()()()(0)f x f x f x x f +-=-=.............2分 所以()()0,f x f x +-=即()()f x f x -=-............................3分 因此()f x 为R 上的奇函数...........................................4分 (2)令121x x ==-,则有(2)2(1)224f f -=-=⨯=....................6分所以不等式()(3)4f x f x --<化为()(3)(2)f x f x f --<-...........7分 由于()f x 为R 上的奇函数,所以(3)(3)f x f x --=-.................8分 所以()(3)()(3)(23)f x f x f x f x f x --=+-=-...................9分 因此不等式进一步化为(23)(2)f x f -<-.............................10分 已知函数()f x 是定义在R 上的减函数 所以有232x ->-,解得12x >......................................11分 因此不等式的解集为1()2,+∞........................................12分21.【解析】(1)由总成本21()150600P x x x =++, 可得每台机器人的平均成本21150()11506001600x x P x y x x x x++===++ ...2分因为1150112600y x x =++≥= ...........................4分 当且仅当150=600x x,即300x =时,等号成立.............................5分 ∴若使每台机器人的平均成本最低,则应买300台............................6分 (2)引进机器人后,每台机器人的日平均分拣量为:当130m ≤≤时,300台机器人的日平均分拣量为2160(60)1609600m m m m -=-+∴当30m =时,日平均分拣量有最大值144000..............8分当30m >时,日平均分拣量为480300144000⨯=...........................9分∴300台机器人的日平均分拣量的最大值为144000件..................10分 若传统人工分拣144000件,则需要人数为144000=1201200(人)................11分 ∴日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少1203090-=(人)...... ..12分 22(理科)【解析】(1)方法一、因为()f x 是定义在R 上的奇函数,所以(0)0f =,...............1分即1(0)01m f n -==+,所以1m =,这样12()2xxf x n -=+,...................2分 由(1)(1)f f -=-得11121222n n ----=-++,解得1n =.........................3分把1m n ==代入解析式得12()12xx f x -=+1221()()1221x x x x f x f x -----===-++满足题意..............................4分方法二、因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-即22212221x x x x x x m m m n n n ----⋅-=-=-++⋅+,....................................1分 化简得1()(14)(1)20x x m n mn +--+-=..................................2分由于x R ∈,所以有010m n mn -=⎧⎨-=⎩..........................................3分解得1m n ==.........................................................4分(2)因为12()12xxf x -=+,..................................................5分 所以221212(12)g()2222122x x x x x x x x x --++=⨯==++-......................7分设22x x u -=+,因为x R ∈且0x ≠,222x x -+>=所以2u >.............................................................8分 因为2222(2)222(22)x x x x g x u --=++=+=.............................9分所以不等式可化为216u tu ≥-,即16t u u≤+在2u >时恒成立.............10分由基本不等式得168u u +≥=,当且仅当4u =时等号成立.........11分 所以实数t 的取值范围是(,8]-∞.........................................12分 22(文科)【解析】(1)根据题意()f x 的定义域是R ...........................1分()ln(1)x f x e mx =+-()ln(1)ln(1)(1)x x f x e mx e m x -∴-=++=++-.......................2分又()f x 是偶函数,()()f x f x ∴-=...................................3分 因此(1)mx m x -=-恒成立,故12m =..................................4分 (2) 1()()=ln(e 1)2x h x f x x =++.........................................5分 不等式()ln(21)h x a ≥-等价于1210x e a +≥->对于[0],x e ∀∈恒成立..6分因为1x y e =+在[0],x e ∈时是增函数,所以min (1)2x e +=所以..........7分 因此2210a ≥->,解得1322a <≤.....................................8分所以a 的取值集合为13|22a a ⎧⎫<≤⎨⎬⎩⎭....................................9分不等式ln(e 1)ln(21)x a +≥-在22a e ≤≤时有解 等价于1210x e a +≥->在22a e ≤≤时有解.............................10分因为21y a =-在[22],a e ∈时是增函数,所以min (21)3a -=所以13xe +≥,解得ln2x ≥...........................................11分所以x 的取值集合为{}|ln2x x ≥......................................12分。

2010-2023历年—吉林省长春十一中高一上学期期末考试化学试卷

2010-2023历年—吉林省长春十一中高一上学期期末考试化学试卷

2010-2023历年—吉林省长春十一中高一上学期期末考试化学试卷第1卷一.参考题库(共20题)1.将一定质量的Mg,Al合金全部溶解在500mL盐酸中(体积变化不计),取10m L反应后的溶液,用1mol/LNaOH溶液滴定得下图关系。

(1)原合金中Mg的质量为 g;Al的质量为 g(2)盐酸的物质的量浓度为 mol/L2.向200ml0.1mol/L的FeCl2溶液中加入适量的NaOH溶液,使Fe2+恰好完全沉淀,过滤,小心加热沉淀,直到水分蒸干,再灼烧到质量不再变化,此时固体的质量为A.1.14gB.1.6gC.2.82gD.4.36g3.将Wg木炭与agO2同时装入一个装有压力表体积不变的密闭容器中,压力表所示压强为P0,高温下容器中木炭与O2均完全反应后恢复到原温度,压力表的示数为P(P >P0),试求:(1)当W取值发生变化时,反应后压强P也发生变化,P的最大值(以P0表示)是______。

(2)以W表示满足题设条件的a的取值范围__________。

(3)在题设条件下,W、a、P、P0之间必须满足函数系W=f(a、P0、P),写出该函数表达式:__________________。

4.某学生课外活动小组模拟呼吸面具中的反应原理设计用下图所示的仪器来制取氧气并测量氧气的体积。

图中量气装置E由甲乙两根玻璃管组成,它们由橡皮管连通,并装入适量水。

甲管有刻度(0~50mL)供量气用,乙管可上下移动调节液面高低。

实验可供选用的药品还有:稀硫酸、盐酸、过氧化钠、碳酸钠、大理石、水。

试回答:(1)图中各装置接口连接顺序是______(填各接口的编号,其中连接胶管省略)。

(2)装置C中放入的反应物是______ 和______(3)装置A的作用是______ ,装置B的作用是______(4)装置组装完毕后应进行的操作是(5)为了较准确测量氧气的体积,除了必须检查整个装置的气密性之外,在读反应前后甲管中液面的读数求其差值的过程中应注意___________(填字母编号)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年(高一)年级上学期期末考试(数学)学科试卷
说明:1、此试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2、 满分150分,考试时间120分钟。

第I 卷(选择题)
一、选择题(本大题共12个小题,每小题5分,共60分,每小题只有一个....
正确选项) 1.向量()()
AB MB BO BC OM ++++uu u r uuu r uu u r uu u r uuu r
等于( )
A .AM uuu r
B .B
C uu u r
C .AB uu u r
D .AC uuu r
2.已知函数()2log 02 0
x x x f x x >⎧=⎨≤⎩,则1
(())4f f 的值是( )
A .14
B .1
4
- C .4 D .4-
3. 集合2{|60}M
x x x =--≥,集合{|31}N x x =-≤≤,则()R C M N 等于( )
A. (2,3)-
B. [2,1]-
C. (2,1]-
D. [3,3)- 4. 函数(
)f x =
1
( )
A .
[),+∞2 B .(),+∞2 C .(),02 D .(],02
5. 已知平面向量()(),,,,a b a b λ=-=-+1342r r r r 与a r
垂直,则λ=( )
A .2
B .-2
C .1
D .-1
6. tan
π
196
的值是( )
A.-
3
B.
C.
D.
3
7. 设112
2
30.3,0.4,log 0.6a b c ===,则( )
A .b a c <<
B .c b a <<
C .c a b <<
D .a b c <<
8. 函数x
y a =与log (0,1)a y x a a =->≠且在同一坐标系中的图象只可能是( )
A .
B .
C .
D .
9. 化简cos sin sin cos ︒︒
︒︒
-=22554040
( ) A. -1 B. 1 C. 2 D. 1
2
10.已知函数()sin()(,0)4
f x x x R π
ωω=+
∈>的最小正周期为π,将()y f x =的图象向
左平移ϕ个单位长度,所得函数为偶函数,则ϕ的一个值是( )
A.
8π B .4π C. 38π D. 2
π
11. 在△ABC 中,已知D 为AB 上一点,若,AD DB =2u u u r u u u r
则CD =u u u r ( )
A. CA CB +213
3
uu r uu r B. CA CB +123
3
uu r uu r
C. CA CB -2uu r uu r
D. CA CB -2u u r u u r
12. 若函数()y f x =满足()()f x f x +=2,且[],x ∈-11时,()cos
x
f x π=2
,函数
()lg ,,x x g x x x
>⎧⎪
=⎨-<⎪⎩0
1
0,则函数()()()h x f x g x =-在区间[],-55内零点的个数是( ) A. 8 B. 7 C. 6 D.5
第II 卷(非选择题)
二、填空题(本大题共4个小题,每小题5分,共20分)
13. 已知函数()()s i n ,,f x A x A πωϕωϕ⎛
⎫=+>>< ⎪⎝
⎭002的
一部分图象如图所示,则()f x 的解析式
为 . 14. 已知tan ,α=2则
sin cos sin cos αα
αα
+=+22__________ .
15.关于函数()4sin(2)()3
f x x x R π
=-∈,有以下命题:
(1)()6
y f x π
=+是奇函数;
(2)要得到()4sin 2g x x =的图象,只需将()f x 的图象向右平移
3
π
个单位;(3)()y f x =的图象关于直线12
x π
=-
对称;(4)()y f x =在5[0,
]12
π
上单调递增, 其中正确的个数为__________.
16.在梯形ABCD 中,AD ∥BC ,AD ⊥AB ,AD =1,BC =2,AB =3,P 是BC

的一个动点,当PD PA ⋅uu u r uu r 取得最小值时,CP
CB
的值为________.
三、解答题
17. (本题满分10
分)已知cos ,αβ=
=3
55
其中,αβ都是锐角. 求:(I )()sin αβ-的值; (Ⅱ)()tan αβ+的值.
18.(本题满分12
分)已知向量((),,.a b ==-120r r
(I )求a b -r r

(II )求向量a b -r r 与a r
的夹角;
(III )当[1,1]t ∈-时,求a tb -r r
的取值范围.
19. (本题满分12分)已知函数()log (12)log (12)a a f x x x =--+(0,1a a >≠). (I )求()f x 的定义域;
(II )判断()f x 的奇偶性并予以证明; (III )求使()0f x >的x 的取值范围.
20.(本题满分12分)设向量()(),,,,a x y b x y ==1122r r 定义运算:a r *b r (),.x x y y =1212已
知向量(),,m =22u r ,,n π⎛⎫
=- ⎪⎝⎭
13r 点P 在sin y x =的图象上运动,点Q 在函数()y f x =的
图象上运动,且满足*OQ m OP n =+
(其中O 为坐标原点),
(I )求()y f x =的解析式; (II )当,x ππ⎡⎤
∈-⎢⎥⎣⎦
533时,求函数()y f x =的值域.。

相关文档
最新文档