2018届石家庄市一模文科数学答案
2018届河北省石家庄市中考数学一模试卷(含解析)
2018年河北省石家庄市中考数学一模试卷一、选择题(本大题共16小题,共42.0分)1.计算:A. B. 8 C. D. 15【答案】D【解析】解:,故选:D.根据有理数的乘法法则计算可得.本题主要考查有理数的乘法,解题的关键是掌握有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.2016年上半年,天津市生产总值亿元,按可比价格计算,同步增长,将“”用科学记数法可表示为A. B. C. D.【答案】A【解析】解:将用科学记数法表示为:.故选:A.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由相同的正方体木块粘在一起的几何体,它的主视图是A.B.C.D.第1页,共18页【答案】B【解析】解:该几何体的主视图为:故选:B.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.使二次根式有意义的x的取值范围是A. B. C. D.【答案】D【解析】解:由题意得,,解得,故选:D.根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.一副三角板按如图所示的位置摆放,则图中与相等的角有A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:,即与相等的角有,共1个,故选:A.先求出的度数,即可得出选项.本题考查了余角与补角,能求出各个角的度数是解此题的关键.6.若,则中的式子是第3页,共18页A. bB.C.D.【答案】D【解析】解:由题意可知:故选:D .根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.7. 已知关于x 的方程 有实数根,则k 的取值范围是A.B. C. D.【答案】B【解析】解: , . 故选:B .根据方程有实根得出 ,求出不等式的解集即可.本题主要考查对根的判别式,解一元一次不等式等知识点的理解和掌握,理解方程 有实数根的含义是解此题的关键.8. 把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是A.B. C. D.【答案】D【解析】解:阴影部分的小正方形 ,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形. 故选:D .直接利用轴对称图形以及中心对称图形的性质分别分析得出答案.此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.9. 如图, 与 是位似图形,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则 与 的面积比是A. 1:6B. 1:5C. 1:4D. 1:2【答案】C【解析】解:与是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,两图形的位似之比为1:2,则与的面积比是1:4.故选:C.根据两三角形为位似图形,且点O是位似中心,D、E、F分别是OA、OB、OC的中点,求出两三角形的位似比,根据面积之比等于位似比的平方即可求出面积之比.此题考查了位似变换,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10.在调查收集数据时,下列做法正确的是A. 抽样调查选取样本时,所选样本可按自己的喜好选取B. 在医院里调查老年人的健康状况C. 电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人D. 检测某城市的空气质量,采用抽样调查的方式【答案】D【解析】解:A、抽样调查选取样本时,所选样本可按自己的喜好选取,错误;B、在医院里调查老年人的健康状况,错误;C、电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人,错误;D、检测某城市的空气质量,采用抽样调查的方式,正确.故选:D.直接利用全面调查与抽样调查的意义分别分析得出答案.此题主要考查了全面调查与抽样调查,正确理解抽样调查的意义是解题关键.11.如图,已知直线l及直线外一点P,观察图中的尺规作图痕迹,则下列结论不一定成立的是A. PQ为直线l的垂线B.C.D.【答案】C【解析】解:由作图方法可得出PQ是线段AB的垂直平分线,则PQ为直线l的垂线,故选项A正确,不合题意;垂直平分线上的点到线段两端点距离相等,故选项B正确,不合题意;无法得出,故选项C错误,符合题意;可得,,则,故选项D正确,不合题意;故选:C.直接利用线段垂直平分线的性质以及其基本作图,进而分析得出答案.此题主要考查了基本作图,正确掌握线段垂直平分线的性质是解题关键.12.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了,而从A地到B地的时间缩短了若设原来的平均车速为,则根据题意可列方程为A. B.C. D.【答案】A【解析】解:设原来的平均车速为,则根据题意可列方程为:.故选:A.直接利用在A,B两地间行驶的长途客车平均车速提高了,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.13.我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度祖冲之继承并发展了“割圆术”,将的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积,则的值为A. B. C. D.【答案】C单位圆的半径为1,则其内接正六边形ABCDEF中,是边长为1的正三角形,所以正六边形ABCDEF的面积为.故选:C.根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.14.如图,码头A在码头B的正西方向,甲,乙两船分别从A,B两个码头同时出发,且甲的速度是乙的速度的2倍,乙的航向是正北方向,为了使甲乙两船能够相遇,则甲的航向应该是第5页,共18页A. 北偏东B. 北偏东C. 北偏东D. 北偏西【答案】B【解析】解:作,如图,由题意,得,,甲的航向应该是北偏东,故选:B.根据直角三角形的性质,可得,根据余角的定义,可得,根据方向角的表示方法,可得答案.本题考查了方向角,利用直角三角形的性质是解题关键,又利用了方向角.15.二次函数的图象如图所示,则直线不经过的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:由图象可知抛物线开口向下,,对称轴在y轴右侧,对称轴,;抛物线与y轴的交点为在y轴的正半轴上,;,,,第7页,共18页一次函数的图象不经过第三象限. 故选:C .先由二次函数的图象确定a 、b 、c 字母系数的正负,再求出一次函数的图象所过的象限即可.本题考查了二次函数的图象与系数的关系,一次函数的性质,根据二次函数的图象确定二次函数的字母系数的取值范围是解题的关键.16. 如图,已知点 , ,且点B 在双曲线上,在AB 的延长线上取一点C ,过点C 的直线交双曲线于点D ,交x 轴正半轴于点E ,且 ,则线段CE 长度的取值范围是A.B. C. D.【答案】D【解析】解:过D 作 于F , 点 , ,轴, , , , ,点B 在双曲线上,,反比例函数的解析式为:,过点C 的直线交双曲线于点D , 点的纵坐标为3,代入得,,解得 , ,当O 与E 重合时,如图2, , , ,, 当 轴时, , ,故选:D.过D作于F,得到DF是梯形的中位线,根据反比例函数图形上点的坐标特征求出D的坐标,当O与E重合时,如图2,由,根据三角形的中位线的性质得到AC,根据勾股定理求得CE,当轴时,,于是求得结果.本题考查了在平面直角坐标系中确定点的坐标,梯形和三角形的中位线的性质,正确的作出辅助线是解题的关键.二、填空题(本大题共3小题,共10.0分)17.计算:______.【答案】【解析】解:原式.故答案为:.直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是______结果保留【答案】【解析】解:由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:.故答案为:.直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.此题主要考查了弧长的计算以及菱形的性质,正确得出圆心角是解题关键.19.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径半径半径”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是______,的坐标是______第9页,共18页【答案】【解析】解:设第n 秒运动到 为自然数 点,观察,发现规律:, ,, ,, ,, ,, ., 为 .故答案为:.设第n 秒运动到 为自然数 点,根据点K 的运动规律找出部分 点的坐标,根据坐标的变化找出变化规律“, ,, ”,依此规律即可得出结论.本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,难度不大,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.三、计算题(本大题共1小题,共8.0分) 20. 已知:求代数式 值;若代数式 的值等于17,求 的值. 【答案】解: 原式 , 当 时,原式 ;, , , 则 或 .【解析】 将原式展开、合并同类项化简得 ,再代入计算可得; 由原式 可得 ,据此进一步计算可得. 本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则、因式分解的能力及整体思想的运用.四、解答题(本大题共6小题,共60.0分)21. 为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:根据图表中的信息,解答下列问题:这次获得“刘徽奖”的人数是______,并将条形统计图补充完整;获得“祖冲之奖”的学生成绩的中位数是______分,众数是______分;在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“”,“”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点用列表法或树状图法求这个点在第二象限的概率.【答案】40 90 90【解析】解:获奖的学生人数为人,赵爽奖的人数为人,杨辉奖的人数为人,则刘徽奖的人数为,补全统计图如下:故答案为:40;获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分,故答案为:90、90;列表法:第11页,共18页第二象限的点有 和 点在第二象限.先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得; 根据中位数和众数的定义求解可得;列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力 利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.22. 如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离 小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离 ,点A 到地面的距离 ;当他从A 处摆动到 处时,有.求 到BD 的距离; 求 到地面的距离.【答案】解:如图2,作,垂足为F.,;在中,;图2又,,;在和中,≌;且,,;,,即到BD的距离是.由知:≌,作,垂足为H.,,,即到地面的距离是1m.【解析】作,垂足为F,根据全等三角形的判定和性质解答即可;根据全等三角形的性质解答即可.本题考查全等三角形的应用,解题的关键是正确寻找全等三角形全等的条件,灵活运用所学知识解决问题,属于中考常考题型.23.如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点与动点的直线MP记做l.若1的解析式为,判断此时点A是否在直线l上,并说明理由;当直线1与AD边有公共点时,求t的取值范围.【答案】解:此时点A在直线l上;,点O为BC中点,点,,把点A的横坐标代入解析式,得,等于点A的纵坐标2,此时点A在直线l上.由题意可得,点,及点,当直线l经过点D时,设l的解析式为,,解得当直线l与AD边有公共点时,,所以t的取值范围是.【解析】把点A代入解析式,进而解答即可;把点,及点代入解析式解答即可.本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF.的长为______;求AE的长;在BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由.【答案】5【解析】解:矩形ABCD,,,在中,,故答案为:5;第13页,共18页设,,,在矩形ABCD中,根据折叠的性质知:≌,,,,在中,根据勾股定理,得,即,解得:,的长为;存在,如图3,延长CB到点G,使,连接FG,交BE于点P,连接PC,则点P即为所求,此时有:,.过点F作,交BC于点H,则有,∽,,即,,,在中,根据勾股定理,得,即的最小值为.根据勾股定理解答即可;设,根据全等三角形的性质和勾股定理解答即可;延长CB到点G,使,连接FG,交BE于点P,连接PC,利用相似三角形的判定和性质解答即可.本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.25.某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:已知按物价部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本【答案】解:设b为常数且,当时,,当时,,代入解析式得,,解得:,与x的函数关系式为:;当产量小于或等于市场需求量时,有,,解得:,又,;当产量大于市场需求量时,可得,由题意得,厂家获得的利润是:;第15页,共18页当时,y随x的增加而增加,又产量大于市场需求量时,有,当时,厂家获得的利润y随销售价格x的上涨而增加.【解析】直接利用待定系数法求出一次函数解析式进而得出答案;由题意可得:,进而得出x的取值范围;利用顶点式求出函数最值得出答案;利用二次函数的增减性得出答案即可.此题主要考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题关键.26.已知:如图,在中,,,以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点为圆心,PA长为半径画圆,与x轴的另一交点为N,点M在上,且满足以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题【发现】的长度为______;当时,求扇形阴影部分与重叠部分的面积.【探究】当和的边所在的直线相切时,求点P的坐标.【拓展】当与的边有两个交点时,请你直接写出t的取值范围.【答案】【解析】解:【发现】,,,,的长度为,故答案为;设半径为r,则有,当时,如图1,点N与点A重合,,第17页,共18页设MP 与AB 相交于点Q ,在 中, , , .,重叠部分即重叠部分的面积为;【探究】:如图2,当 与直线AB 相切于点C 时, 连接PC ,则有 , , , ,; 点P 的坐标为 ;如图3,当 与直线OB 相切于点D 时, 连接PD ,则有 , , ,,,, 点P 的坐标为;如图4,当 与直线OB 相切于点E 时,连接PE ,则有 , 同 可得:; 点P 的坐标为, 【拓展】t 的取值范围是 , ,理由:如图5,当点N 运动到与点A 重合时, 与 的边有一个公共点, 此时 ;当,直到运动到与AB相切时,由探究得,,,与的边有两个公共点,.如图6,当运动到PM与OB重合时,与的边有两个公共点,此时;直到运动到点N与点O重合时,与的边有一个公共点,此时;,即:t的取值范围是,,发现:先确定出扇形半径,进而用弧长公式即可得出结论;先求出,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论.此题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解本题的关键.。
河北省石家庄市2017-2018学年高考数学一模试卷(文科) Word版含解析
河北省石家庄市2017-2018学年高考数学一模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.已知i为虚数单位,则复数=( )A.2+i B.2﹣i C.﹣1﹣2i D.﹣1+2i2.已知集合P={0,1,2},Q={y|y=3x},则P∩Q=( )A.{0,1,2} B.{0,1} C.{1,2} D.∅3.p:若sinx>siny,则x>y;q:x2+y2≥2xy,下列为假的是( )A.p或q B.p且q C.q D.¬p4.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(﹣)=( ) A.﹣B.C.2 D.﹣25.已知cosα=k,k∈R,α∈(,π),则sin(π+α)=( )A.﹣B.C.±D.﹣k6.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线y=2所得线段长为,则f()的值是( )A.﹣B.C.1 D.7.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S为( )A.2 B.2C.4 D.68.在棱长为3的正方体ABCD﹣A1B1C1D1中,P在线段BD1上,且,M为线段B1C1上的动点,则三棱锥M﹣PBC的体积为( )A.1 B.C.D.与M点的位置有关9.已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是( )A.1﹣B.C.1﹣D.10.已知抛物线y2=2px(p>0)的焦点F恰好是双曲线﹣=1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为( )A.B.C.1+D.1+11.一个几何体的三视图如图所示,则该几何体的体积是( )A.64 B.72 C.80 D.11212.已知函数f(x)=,若关于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8个不同的实数根,则b+c的取值范围为( )A.(﹣∞,3)B.(0,3]C.[0,3]D.(0,3)二、填空题(共4小题,每小题5分,满分20分)13.已知平面向量,的夹角为,||=2,||=1,则|+|=__________.14.已知等差数列{a n}是递增数列,S n是{a n}的前n项和,若a2,a4是方程x2﹣6x+5=0的两个根,则S6的值为__________.15.若不等式组表示的区域为一个锐角三角形及其内部,则实数k的范围是__________.16.设过曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为__________.三、解答题(共8小题,满分70分)17.设数列{a n}的前n项和为S n,a1=1,a n+1=λS n+1(n∈N*,λ≠﹣1),且a1、2a2、a3+3为等差数列{b n}的前三项.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{a n b n}的前n项和.18.某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润50元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利润30元(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式(2)商店记录了50天该商品的日需求量n(单位:件)整理得表:日需求量8 9 10 11 12频数9 11 15 10 5若商店一天购进10件该商品,以50天记录的各需求量发生的概率,求当天的利润在区间[400,500]的概率.19.如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,BC=2,AP=AD=AB=,∠PAB=∠PAD=α.(1)试在棱PA上确定一个点E,使得PC∥平面BDE,并求出此时的值;(2)当α=60°时,求证:CD⊥平面PBD.20.在平面直角坐标系xOy中,以动圆经过点(1,0)且与直线x=﹣1相切,若该动圆圆心的轨迹为曲线E.(1)求曲线E的方程;(2)已知点A(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且与曲线E交于M、N两点,求△AMN面积的最大值,及此时直线l的方程.21.已知函数f(x)=2(a+1)lnx﹣ax,g(x)=x2﹣x.(1)若函数f(x)在定义域内为单调函数,求实数a的取值范围;(2)证明:若﹣1<a<7,则对于任意x1、x2∈(1,+∞),x1≠x2,有>﹣1.22.如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.(1)求证:AG•EF=CE•GD;(2)求证:.23.已知曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2.(Ⅰ)分别写出C1的普通方程,C2的直角坐标方程.(Ⅱ)已知M、N分别为曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值.24.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.河北省石家庄市2015届高考数学一模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.已知i为虚数单位,则复数=( )A.2+i B.2﹣i C.﹣1﹣2i D.﹣1+2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简求值.解答:解:=,故选:C.点评:本题考查了复数代数形式的乘除运算考查了复数的基本概念,是基础题.2.已知集合P={0,1,2},Q={y|y=3x},则P∩Q=( )A.{0,1,2} B.{0,1} C.{1,2} D.∅考点:交集及其运算.专题:集合.分析:求出Q中y的范围确定出Q,找出P与Q的交集即可.解答:解:∵集合P={0,1,2},Q={y|y=3x}={y|y>0},∴P∩Q={1,2},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.p:若sinx>siny,则x>y;q:x2+y2≥2xy,下列为假的是( )A.p或q B.p且q C.q D.¬p考点:复合的真假.专题:三角函数的图像与性质;简易逻辑.分析:根据正弦函数的图象即可判断出sinx>siny时,不一定得到x>y,所以说p是假,而根据基本不等式即可判断出q为真,然后根据¬p,p或q,p且q的真假和p,q真假的关系即可找出正确选项.解答:解:x=,y=π,满足sinx>siny,但x<y;∴p是假;x2+y2≥2xy,这是基本不等式;∴q是真;∴p或q为真,p且q为假,q是真,¬p是真;∴是假的是B.故选B.点评:考查正弦函数的图象,能够取特殊角以说明p是假,熟悉基本不等式:a2+b2≥2ab,a=b时取“=”,以及¬p,p或q,p且q的真假和p,q真假的关系.4.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(﹣)=( ) A.﹣B.C.2 D.﹣2考点:函数奇偶性的性质;函数的值.专题:函数的性质及应用.分析:根据f(x)为偶函数,以及x>0时f(x)的解析式即可得到f(﹣)=.解答:解:f(x)为偶函数;∴f()=f()又x>0时,f(x)=log2x;∴=;即f(﹣)=.故选B.点评:考查偶函数的定义:f(﹣x)=f(x),以及对数的运算.5.已知cosα=k,k∈R,α∈(,π),则sin(π+α)=( )A.﹣B.C.±D.﹣k考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈(,π),∴sinα==,∴sin(π+α)=﹣sinα=﹣.故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.6.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线y=2所得线段长为,则f()的值是( )A.﹣B.C.1 D.考点:正切函数的图象.专题:三角函数的图像与性质.分析:根据条件求出函数的周期和ω,即可得到结论.解答:解:∵f(x)=tanωx(ω>0)的图象的相邻两支截直线y=2所得线段长为,∴函数的周期T=,即=,则ω=2,则f(x)=tan2x则f()=tan(2×)=tan=,故选:D点评:本题主要考查三角函数值的求解,根据条件求出函数的周期和ω是解决本题的关键.7.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S为( )A.2 B.2C.4 D.6考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=5时,不满足条件i≤4,退出循环,输出S的值为2.解答:解:模拟执行程序框图,可得S=1,i=1满足条件i≤4,S=1,i=2满足条件i≤4,S=,i=3满足条件i≤4,S=2,i=4满足条件i≤4,S=2,i=5不满足条件i≤4,退出循环,输出S的值为2.故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的S的值是解题的关键,属于基本知识的考查.8.在棱长为3的正方体ABCD﹣A1B1C1D1中,P在线段BD1上,且,M为线段B1C1上的动点,则三棱锥M﹣PBC的体积为( )A.1 B.C.D.与M点的位置有关考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:如图所示,连接BC1,取=,可得PN∥D1C1,=1,由于D1C1⊥平面BCC1B1,可得PN⊥平面BCC1B1,利用三棱锥M﹣PBC的体积=V三棱锥P﹣BCM=即可得出.解答:解:如图所示,连接BC1,取=,则PN∥D1C1,,PN=1,∵D1C1⊥平面BCC1B1,∴PN⊥平面BCC1B1,即PN是三棱锥P﹣BCM的高.∴V三棱锥M﹣PBC=V三棱锥P﹣BCM===.故选:B.点评:本题考查了正方体的性质、线面垂直的判定与性质定理、三角形中平行线分线段成比例定理的逆定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.9.已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是( )A.1﹣B.C.1﹣D.考点:解三角形的实际应用.专题:应用题;概率与统计.分析:作出图形,以长度为测度,即可求出概率.解答:解:由题意,△AOB是直角三角形,OA=OB=2,所以AB=2,O地为一磁场,距离其不超过km的范围为个圆,与AB相交于C,D两点,作OE⊥AB,则OE=,所以CD=2,所以该测绘队员能够得到准确数据的概率是1﹣=1﹣.故选:A.点评:本题考查利用数学知识解决实际问题,考查概率的计算,正确确定CD是关键.10.已知抛物线y2=2px(p>0)的焦点F恰好是双曲线﹣=1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为( )A.B.C.1+D.1+考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线,把=c代入整理得c4﹣6a2c2+a4=0等式两边同除以a4,得到关于离心率e的方程,进而可求得e.解答:解:由题意,∵两条曲线交点的连线过点F∴两条曲线交点为(,p),代入双曲线方程得,又=c代入化简得c4﹣6a2c2+a4=0∴e4﹣6e2+1=0∴e2=3+2=(1+)2∴e=+1故选:C.点评:本题考查由圆锥曲线的方程求焦点、考查双曲线的三参数的关系:c2=a2+b2注意与椭圆的区别.11.一个几何体的三视图如图所示,则该几何体的体积是( )A.64 B.72 C.80 D.112考点:由三视图求面积、体积.专题:计算题.分析:由几何体的三视图可知,该几何体下部为正方体,边长为4,上部为三棱锥(以正方体上底面为底面),高为3.分别求体积,再相加即可解答:解:由几何体的三视图可知,该几何体下部为正方体,边长为4,体积为43=64上部为三棱锥,以正方体上底面为底面,高为3.体积×故该几何体的体积是64+8=72故选B点评:本题考查由三视图求几何体的体积,考查由三视图还原几何体直观图,考查与锥体积公式,本题是一个基础题.12.已知函数f(x)=,若关于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8个不同的实数根,则b+c的取值范围为( )A.(﹣∞,3)B.(0,3]C.[0,3]D.(0,3)考点:分段函数的应用.专题:综合题;函数的性质及应用.分析:题中原方程f2(x)﹣bf(x)+c=0有8个不同实数解,即要求对应于f(x)=某个常数K,有2个不同的K,再根据函数对应法则,每一个常数可以找到4个x与之对应,就出现了8个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有满足条件的K在开区间(0,1)时符合题意.再根据一元二次方程根的分布理论可以得出答案.解答:解:根据题意作出f(x)的简图:由图象可得当f(x)∈(0,1]时,有四个不同的x与f(x)对应.再结合题中“方程f2(x)﹣bf(x)+c=0有8个不同实数解”,可以分解为形如关于k的方程k2﹣bk+c=0有两个不同的实数根K1、K2,且K1和K2均为大于0且小于等于1的实数.列式如下:,化简得,此不等式组表示的区域如图:令z=b+c,则z=b+c在(2,1)处z=3,在(0,0)处z=0,所以b+c的取值范围为(0,3),故选:D.点评:本题考查了函数的图象与一元二次方程根的分布的知识,同时考查线性规划等知识,较为综合;采用数形结合的方法解决,使本题变得易于理解.二、填空题(共4小题,每小题5分,满分20分)13.已知平面向量,的夹角为,||=2,||=1,则|+|=.考点:平面向量数量积的运算.专题:平面向量及应用.分析:运用数量积的定义求解得出=||•||cos,结合向量的运算,与模的运算转化:|+|2=()2=||2+||2+2,代入数据求解即可.解答:解:∵平面向量,的夹角为,||=2,||=1,∴=||•||cos=2×=﹣1,∴|+|2=()2=||2+||2+2=4+1﹣2=3,即|+|=.故答案为:.点评:本题考查了平面向量的数量积的运用,应用求解向量的模,计算简单,属于容易题.14.已知等差数列{a n}是递增数列,S n是{a n}的前n项和,若a2,a4是方程x2﹣6x+5=0的两个根,则S6的值为24.考点:等差数列的性质.专题:等差数列与等比数列.分析:由一元二次方程的根与系数关系求得a2,a4,进一步求出公差和首项,则答案可求.解答:解:由a2,a4是方程x2﹣6x+5=0的两个根,得,由已知得a4>a2,∴解得a2=1,a4=5,∴d=,则a1=a2﹣d=1﹣2=﹣1,∴.故答案为:24.点评:本题考查了一元二次方程的根与系数关系,考查了等差数列的通项公式和前n项和,是基础的计算题.15.若不等式组表示的区域为一个锐角三角形及其内部,则实数k的范围是(0,1).考点:简单线性规划.专题:计算题;作图题;不等式的解法及应用.分析:由题意作出其平面区域,求出k的临界值,从而结合图象写出实数k的取值范围.解答:解:由题意作出其平面区域,当直线y=kx+3与AB重合时,k=0,是直角三角形,当直线y=kx+3与AD重合时,k=1,是直角三角形;故若区域为一个锐角三角形及其内部,则0<k<1;故答案为:(0,1).点评:本题考查了简单线性规划,作图要细致认真,利用临界值求取值范围,属于中档题.16.设过曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为[﹣1,2].考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用;不等式的解法及应用;直线与圆.分析:求出函数f(x)=﹣e x﹣x的导函数,进一步求得∈(0,1),再求出g(x)的导函数的范围,然后把过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解.解答:解:由f(x)=﹣e x﹣x,得f′(x)=﹣e x﹣1,∵e x+1>1,∴∈(0,1),由g(x)=ax+2cosx,得g′(x)=a﹣2sinx,又﹣2sinx∈[﹣2,2],∴a﹣2sinx∈[﹣2+a,2+a],要使过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则,解得﹣1≤a≤2.即a的取值范围为﹣1≤a≤2.故答案为:[﹣1,2].点评:本题考查了利用导数研究过曲线上的某点的切线方程,考查了数学转化思想方法,解答此题的关键是把问题转化为集合间的关系求解,是中档题.三、解答题(共8小题,满分70分)17.设数列{a n}的前n项和为S n,a1=1,a n+1=λS n+1(n∈N*,λ≠﹣1),且a1、2a2、a3+3为等差数列{b n}的前三项.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{a n b n}的前n项和.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)由a n+1=λS n+1(n∈N*,λ≠﹣1),当n≥2时,a n=λS n﹣1+1,可得a n+1=(1+λ)a n,利用等比数列的通项公式可得a3,再利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n项和公式即可得出.解答:解:(1)∵a n+1=λS n+1(n∈N*,λ≠﹣1),∴当n≥2时,a n=λS n﹣1+1,∴a n+1﹣a n=λa n,即a n+1=(1+λ)a n,又a1=1,a2=λa1+1=λ+1,∴数列{a n}为以1为首项,公比为λ+1的等比数列,∴a3=(λ+1)2,∵a1、2a2、a3+3为等差数列{b n}的前三项.∴4(λ+1)=1+(λ+1)2+3,整理得(λ﹣1)2=0,解得λ=1.∴a n=2n﹣1,b n=1+3(n﹣1)=3n﹣2.(2)a n b n=(3n﹣2)•2n﹣1,∴数列{a n b n}的前n项和T n=1+4×2+7×22+…+(3n﹣2)•2n﹣1,2T n=2+4×22+7×23+…+(3n﹣5)×2n﹣1+(3n﹣2)×2n,∴﹣T n=1+3×2+3×22+…+3×2n﹣1﹣(3n﹣2)×2n=﹣(3n﹣2)×2n=(5﹣3n)×2n﹣5,∴T n=(3n﹣5)×2n+5.点评:本题考查了递推式的应用、“错位相减法”、等差数列与等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.18.某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润50元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利润30元(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式(2)商店记录了50天该商品的日需求量n(单位:件)整理得表:日需求量8 9 10 11 12频数9 11 15 10 5若商店一天购进10件该商品,以50天记录的各需求量发生的概率,求当天的利润在区间[400,500]的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布表.专题:概率与统计.分析:(1)根据题意分段求解得出当1≤n≤10时,y利润,当n>10时,y利润,(2)运用表格的数据求解:频数9天,380;频数11天,440;频数9,500;频数5,560,得出当天的利润在区间[400,500]有20天,即可求解概率.解答:解:(1)当1≤n≤10时,y利润=50n+(10﹣n)×(﹣10)=60n﹣100,当n>10时,y利润=50×10+(10﹣n)×30=800﹣30n,所以函数解析式y利润=,(2)∵日需求量为8,频数9天,利润为50×8﹣10×2=380,日需求量为9,频数11天,利润为50×9﹣10×=440,日需求量为10,频数9,利润为50×10=500,日需求量为12,频数5,利润为50×10+30×2=560,∴当天的利润在区间[400,500]有11+9=20天,故当天的利润在区间[400,500]的概率为=.点评:本题考查了运用概率知识求解实际问题的利润问题,仔细阅读题意,得出有用的数据,理清关系,正确代入数据即可.19.如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,BC=2,AP=AD=AB=,∠PAB=∠PAD=α.(1)试在棱PA上确定一个点E,使得PC∥平面BDE,并求出此时的值;(2)当α=60°时,求证:CD⊥平面PBD.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)连接AC,BD,相交于O,过O作OE∥PC,与PA交于E,如图1,则PC∥平面BDE;(2)当α=60°时,△PAD和△PAB都是等边三角形,PB=PD,过A作AF⊥BD,则F为BD的中点,利用勾股定理可以判断线线垂直,进一步判断线面垂直.解答:解:(1)连接AC,BD,相交于O,过O作OE∥PC,与PA交于E,如图1,则PC∥平面BDE,此时AE:EP=AO:OC=AD:BC=:=1:2;(2)当α=60°时,△PAD和△PAB都是等边三角形,PB=PD,过A作AF⊥BD,则F为BD的中点,所以PF⊥BD,BD=2,所以AF=PF=BD=1,所以PF2+AF2=PA2,所以PF⊥AF,所以PF⊥平面ABCD,所以PF⊥CD,过D作DH⊥BC,则DH=AB=,HC=,所以CD=2,所以CD2+BD2=BC2,所以CD⊥BD,BD∩PF=F,所以CD⊥平面PBD.点评:本题考查了线面平行的判定以及线面垂直的判定定理和性质定理的运用;关键是适当作辅助线,将问题转化为线线关系解答.20.在平面直角坐标系xOy中,以动圆经过点(1,0)且与直线x=﹣1相切,若该动圆圆心的轨迹为曲线E.(1)求曲线E的方程;(2)已知点A(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且与曲线E交于M、N两点,求△AMN面积的最大值,及此时直线l的方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由抛物线的定义求得抛物线方程.(2)直线和圆锥曲线联立方程组,构造关于m的函数,利用导数求得最大值.解答:解:(1)由题意得圆心到(1,0)的距离等于直线x=﹣1的距离,由抛物线的定义可知,圆心的轨迹方程为:y2=4x.(2)由题意,可设l的方程为y=x﹣m,其中,0<m<5.由方程组,消去y,得x2﹣(2m+4)x+m2=0,①当0<m<5时,方程①的判别式△=(2m+4)2﹣4m2=16(1+m)>0成立.设M(x1,y1),N(x2,y2),则,∴又∵点A到直线l的距离为∴令f(m)=m3﹣9m2+15m+25,(0<m<5)f'(m)=3m2﹣18m+15=3(m﹣1)(m﹣5),(0<m<5)∴函数f(m)在(0,1)上单调递增,在(1,5)上单调递减.当m=1时,f(m)有最大值32,故当直线l的方程为y=x﹣1时,△AMN的最大面积为点评:本题主要考查抛物线定义的应用以及直线与抛物线的综合应用,属中档题,在2015届高考中属于常考题型.21.已知函数f(x)=2(a+1)lnx﹣ax,g(x)=x2﹣x.(1)若函数f(x)在定义域内为单调函数,求实数a的取值范围;(2)证明:若﹣1<a<7,则对于任意x1、x2∈(1,+∞),x1≠x2,有>﹣1.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:计算题;证明题;导数的综合应用.分析:(1)先求f(x)=2(a+1)lnx﹣ax的定义域,再求导f′(x)=2(a+1)﹣a=,从而由题意知f′(x)=≥0在(0,+∞)上恒成立,从而化为最值问题;(2)由二次函数的性质易知g(x)=x2﹣x在(1,+∞)上是增函数,从而不妨设x1>x2,从而可得g(x1)>g(x2);故>﹣1可化为f(x1)﹣f(x2)>﹣(g(x1)﹣g(x2)),即证f(x1)+g(x1)>f(x2)+g(x2),令H(x)=f(x)+g(x)=2(a+1)lnx﹣ax+x2﹣x,从而利用导数证明H(x)=f(x)+g (x)=2(a+1)lnx﹣ax+x2﹣x在(1,+∞)上是增函数即可.解答:解:(1)f(x)=2(a+1)lnx﹣ax的定义域为(0,+∞),f′(x)=2(a+1)﹣a=,∵f′(2)=1,又∵函数f(x)在定义域内为单调函数,∴f′(x)=≥0在(0,+∞)上恒成立,∴a(2﹣x)+2≥0在(0,+∞)上恒成立,即﹣ax+2a+2≥0在(0,+∞)上恒成立,故,解得,﹣1≤a≤0;(2)证明:∵g(x)=x2﹣x在(1,+∞)上是增函数,∴对于任意x1、x2∈(1,+∞),x1≠x2,不妨设x1>x2,则g(x1)>g(x2);则>﹣1可化为f(x1)﹣f(x2)>﹣(g(x1)﹣g(x2)),即证f(x1)+g(x1)>f(x2)+g(x2),令H(x)=f(x)+g(x)=2(a+1)lnx﹣ax+x2﹣x,H′(x)=2(a+1)﹣a+x﹣1=,令M(x)=x2﹣(a+1)x+2(a+1),①﹣1<a≤1时,0<a+1≤2,故M(x)=x2﹣(a+1)x+2(a+1)在(1,+∞)上是增函数,故M(x)>M(1)=1﹣a﹣1+2a+2=a+2>0,②1<a<7时,M(x)=x2﹣(a+1)x+2(a+1)的对称轴x=∈(1,+∞),故M(x)≥()2﹣(a+1)+2(a+1)=(a+1)(7﹣a)>0,故﹣1<a<7时,M(x)>0在(1,+∞)上恒成立,即H′(x)>0在(1,+∞)上恒成立,故H(x)=f(x)+g(x)=2(a+1)lnx﹣ax+x2﹣x在(1,+∞)上是增函数,故f(x1)+g(x1)>f(x2)+g(x2),故原式成立.点评:本题考查了导数的综合应用及恒成立问题,同时考查了二次函数的性质应用及分类讨论的思想应用,属于难题.22.如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.(1)求证:AG•EF=CE•GD;(2)求证:.考点:圆的切线的性质定理的证明;与圆有关的比例线段.专题:证明题;压轴题.分析:(1)要证明AG•EF=CE•GD我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题.(2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG•GF,结合(1)的结论,不难得到要证明的结论.解答:证明:(1)连接AB,AC,∵AD为⊙M的直径,∴∠ABD=90°,∴AC为⊙O的直径,∴∠CEF=∠AGD,∵∠DFG=∠CFE,∴∠ECF=∠GDF,∵G为弧BD中点,∴∠DAG=∠GDF,∵∠ECB=∠BAG,∴∠DAG=∠ECF,∴△CEF∽△AGD,∴,∴AG•EF=CE•GD(2)由(1)知∠DAG=∠GDF,∠G=∠G,∴△DFG∽△AGD,∴DG2=AG•GF,由(1)知,∴.点评:证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程.23.已知曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2.(Ⅰ)分别写出C1的普通方程,C2的直角坐标方程.(Ⅱ)已知M、N分别为曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)根据题意和平方关系求出曲线C1的普通方程,由ρ2=x2+y2和题意求出C2的直角坐标方程;(2)法一:求出曲线C2参数方程,设P点的参数坐标,求出点M、N的坐标,利用两点间的距离公式求出|PM|+|PN|并化简,再化简(|PM|+|PN|)2,利用正弦函数的最值求出(|PM|+|PN|)2的最值,即可求出|PM|+|PN|的最大值;法二:设P点坐标为(x,y),则x2+y2=4,求出点M、N的坐标,利用两点间的距离公式求出|PM|+|PN|并化简,再化简(|PM|+|PN|)2,再求出(|PM|+|PN|)2的最值,即可求出|PM|+|PN|的最大值.解答:解:(1)因为曲线C1的参数方程为(θ为参数),所以曲线C1的普通方程为,…由曲线C2的极坐标方程为ρ=2得,曲线C2的普通方程为x2+y2=4;…(2)法一:由曲线C2:x2+y2=4,可得其参数方程为,所以P点坐标为(2cosα,2sinα),由题意可知M(0,),N(0,).因此|PM|+|PN|==+…则(|PM|+|PN|)2=14+2.所以当sinα=0时,(|PM|+|PN|)2有最大值28,…因此|PM|+|PN|的最大值为.…法二:设P点坐标为(x,y),则x2+y2=4,由题意可知M(0,),N(0,).因此|PM|+|PN|=+=+…则(|PM|+|PN|)2=14+2.所以当y=0时,(|PM|+|PN|)2有最大值28,…因此|PM|+|PN|的最大值为.…点评:本题考查参数方程、极坐标方程与普通方程的转化,两点间的距离公式,以及求最值问题,考查化简、计算能力.24.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.考点:基本不等式;函数的定义域及其求法.专题:不等式的解法及应用.分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.解答:解:(1)∵函数定义域为R,∴|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,则m不大于函数g(x)的最小值,又|x+1|+|x﹣3|≥|(x+1)﹣(x﹣3)|=4,即g(x)的最小值为4,∴m≤4.(2)由(1)知n=4,∴7a+4b===,当且仅当a+2b=3a+b,即b=2a=时取等号.∴7a+4b的最小值为.点评:本题考查了函数的定义域、绝对值不等式的性质、基本不等式的性质、“乘1法”,考查了推理能力与计算能力,属于中档题.。
2018届河北省石家庄市高三第一次模拟考试卷 数学(文)
2018届河北省石家庄市高三第一次模拟考试卷数学(文)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( ) A . B .C .D .2.复数( ) A . B . C .D .3.已知四个命题:①如果向量与共线,则或;②是的必要不充分条件;③命题:,的否定:,;④“指数函数是增函数,而是指数函数,所以是增函数”此三段论大前提错误,但推理形式是正确的. 以上命题正确的个数为( ) A .0B .1C .2D .34.若数列满足,,则的值为( ) A .2 B .-3 C . D .5.函数,其值域为,在区间上随机取一个数,则的概率是( ) A .B .C .D .6.程序框图如图所示,该程序运行的结果为,则判断框中可填写的关于的条件是( )A .B .C .D .{}1,2,3,4,5,6,7U ={}3,A x x x =≥∈N U A =ð{}1,2{}3,4,5,6,7{}1,3,4,7{}1,4,712i1i-=+i i -13i2--33i2-a b =a b =-a b 3x ≤3x ≤p 0(0,2)x ∃∈200230x x --<p ⌝(0,2)x ∀∈2230x x --≥x y a =12x y ⎛⎫= ⎪⎝⎭12xy ⎛⎫= ⎪⎝⎭{}n a 12a =111nn na a a ++=-2018a 12-13()()20x f x x =<D ()1,2-x x D ∈1213142325s =i i 4?≤i 4?≥i 5?≤i 5?≥此卷只装订不密封 班 姓名 准考证号 考场号 座位号7.南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:,),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( ) A .84平方里B .108平方里C .126平方里D .254平方里8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .B .C .D .9.已知是定义在上的偶函数,且在上为增函数,则的解集为( ) A . B .C .D .10.抛物线:的焦点为,其准线与轴交于点,点在抛物线上,当的面积为( )A .1B .2C .D .411.在中,,,则的最大值为( ) AB .C .D .12.已知,分别为双曲线的左焦点和右焦点,过的直线与双曲线的右支交于,两点,的内切圆半径为,的内切圆半径为,若,则直线的斜率为( ) A .1BC .2D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.设向量,,若,则 .14.,满足约束条件:,则的最大值为 .15.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 .16.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知是公差不为零的等差数列,满足,且、、成等比数列.S =a b c >>23π43π2π83π()f x []2,3b b -+[]2,0b -()()13f x f -≥[]3,3-[]2,4-[]1,5-[]0,6C 214y x =F l y A M C MA MF=AMF △ABC △2AB =6C π=AC 1F 2F ()222210,0x y a b a b-=>>2F l A B 12AF F ∆1r 12BF F △2r 122r r =l ()1,2m =a ()1,1m =+b ⊥a b m =x y 11y x x y y ≤⎧⎪-≤⎨⎪≥-⎩2z x y =+{}n a 37a =2a 4a 9a(1)求数列的通项公式;(2)设数列满足,求数列的前项和.18.(12分)四棱锥的底面为直角梯形,,,,为正三角形.(1)点为棱上一点,若平面,,求实数的值; (2)若,求点到平面的距离.19.(12分)小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下表格:①根据以上数据,设每名派送员的日薪为(单位:元),这100天中甲、乙两种方案的日薪平均数及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.{}n a {}n b 1n n n b a a +=⋅1n b ⎧⎫⎨⎬⎩⎭n n S S ABCD -ABCD AB CD ∥AB BC ⊥222AB BC CD ===SAD △M AB BC ∥SDM AM AB λ=λBC SD ⊥B SAD y n X X(参考数据:,,,,,,,,)20.(12分)已知椭圆:的左、右焦点分别为,,且离心率为,为椭圆上任意一点,当时,的面积为1. (1)求椭圆的方程;(2)已知点是椭圆上异于椭圆顶点的一点,延长直线,分别与椭圆交于点,,设直线的斜率为,直线的斜率为,求证:为定值.20.60.36=21.4 1.96=22.6 6.76=23.411.56=23.612.96=24.621.16=215.6243.36=220.4416.16=244.41971.36=C 22221(0)x y a b a b +=>>1F 2F 2M 1290F MF ∠=︒12F MF △C A C 1AF 2AF B D BD 1k OA 2k 12k k ⋅21.(12分)已知函数,,在处的切线方程为. (1)求,;(2)若,证明:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;(1)求曲线的极坐标方程;(2)在曲线上取两点,与原点构成,且满足,求面积的最大值.()()()e x f x x b a =+-()0b >()()1,1f --()e 1e e 10x y -++-=a b 0m ≤()2f x mx x ≥+xOyC cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩0r >ϕO x l sin 13ρθπ⎛⎫-= ⎪⎝⎭l C C C M N O MON △6MON π∠=MON △23.(10分)【选修4-5:不等式选讲】已知函数; (1)求实数的取值范围;(2)设实数为的最大值,若实数,,满足,求的最小值.()f x =R m t m a b c 2222a b c t ++=222111123a b c +++++2018届河北省石家庄市高三第一次模拟考试卷数学(文) 答 案一、选择题. 1-5:ACDBB 6-10:CABBB 11、12:DD二、填空题.13. 14.3 15.乙 16.三、解答题.17.【答案】(1);(2). 【解析】(1)设数列的公差为,且由题意得,即,解得, ∴数列的通项公式. (2)由(1)得,13-32n a n =-31n nS n =+{}n a d 0d ≠242937a a a a ⎧=⎪⎨=⎪⎩()()()21777627d d d a d ⎧+=-+⎪⎨+=⎪⎩13,1d a =={}n a 32n a n =-()()13231n n n b a a n n +=⋅=-+111133231n b n n ⎛⎫∴=- ⎪-+⎝⎭12111111111134473231n n S b b b n n ⎛⎫=+++=-+-++- ⎪-+⎝⎭. 18.【答案】(1);(2【解析】(1)∵平面SDM ,平面ABCD , 平面平面,∴,∵,∴四边形BCDM 为平行四边形, 又,∴M 为AB 的中点. ∵,.(2)∵, , ∴平面, 又∵平面,∴平面平面,平面平面,在平面内过点作直线于点,则平面, 在和中,11133131nn n ⎛⎫=-= ⎪++⎝⎭12BC ∥BC ⊂SDMABCD DM =BC DM ∥DC AB //CD AB 2=AB AM λ=12λ∴=BC ⊥SD BC ⊥CD BC ⊥SCD BC ⊂ABCD SCD ⊥ABCD SCDABCD CD =SCD S SE ⊥CD E SE ⊥ABCD Rt SEA Rt SED∵,∴, 又由题知,∴, 由已知求得,∴,连接BD ,则,又求得∴由点B 到平面的距离为. 19.【答案】(1)见解析;(2)①见解析;②见解析.【解析】(1)甲方案中派送员日薪(单位:元)与送单数的函数关系式为:,乙方案中派送员日薪(单位:元)与送单数的函数关系式为:, (2)①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则, SA SD =AE DE =45EDA ∠=AE ED ⊥AD 1AE ED SE ===111133S ABD V -=⨯⨯=三棱锥SAD B ASD S ABD V V --=三棱锥三棱锥SAD y n 100,y n n =+∈N y n ()()140,55,12520,55,n n y n n n ≤∈⎧⎪=⎨->∈⎪⎩N N ()1=15220+15430+15620+15820+16010=155.4100x ⨯⨯⨯⨯⨯甲,乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则, , ②、答案一:由以上的计算可知,虽然,但两者相差不大,且远小于,即甲方案日薪收入波动相对较小,∴小明应选择甲方案. 答案二:由以上的计算结果可以看出,,即甲方案日薪平均数小于乙方案日薪平均数,∴小明应选择乙方案.20.【答案】(1);(2)见解析.【解析】(1)设,,由题得, 解得,则,()()()()222221=20152155.4+30154155.4+20156155.4+20158155.4100S ⎡⨯-⨯-⨯-⨯-⎣甲()210160155.4 6.44⎤+⨯-=⎦()1=14050+15220+17620+20010155.6100x ⨯⨯⨯⨯乙=()()()()222221=50140155.6+20152155.6+20176155.6+10200155.6100S ⎡⎤⨯-⨯-⨯-⨯-⎣⎦乙404.64=x x <乙甲2S 甲2S 乙x x <乙甲2212x y +=11MF r =22MF r =12222121224112c e a r r ar r c r r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩a =1c =21b =椭圆的方程为.(2)设,,,当直线的斜率不存在时,设,则,直线的方程为代入,可得,直线的斜率为,直线的斜率为, 当直线的斜率不存在时,同理可得.当直线、的斜率存在时,设直线的方程为,则由消去可得:,又,则,代入上述方程可得 ∴C 2212x y +=()()0000,0A x y x y ⋅≠()11,B x y ()22,C x y 1AF 1,2A ⎛- ⎝⎭1,2B ⎛-- ⎝⎭2AF )1y x =-2212x y +=25270x x --=275x ∴=2y =7,510D ⎛- ⎝⎭∴BD ()1715k ⎛- ⎝⎭==--OA 2k =121626k k ⎛∴⋅=-=- ⎝⎭2AF 1216k k ⋅=-1AF 2AF 10±≠x 1AF ()0011y y x x =++()00221112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩x ()()222222000001242210x y x y x y x ⎡⎤++++-+=⎣⎦220012x y +=220022y x =-,,则 ,设直线的方程为,同理可得, 直线的斜率为, 直线的斜率为, . ∴直线与的斜率之积为定值,即.21.【答案】(1),;(2)见解析.【解析】(1)由题意,∴,又,∴, 若,则,与矛盾,故,.()()22200003222340x x x x x x ++---=2000101003434,3232x x x x x x x x ----∴⋅=∴=++000100034113232y x y y x x x ⎛⎫--=+=-⎪+++⎝⎭000034,2323x y B x x ⎛⎫+∴-- ⎪++⎝⎭2AF ()0011y y x x =--000034,2323x y D x x ⎛⎫- ⎪--⎝⎭∴BD 00000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+OA 020y k x =∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----BD OA 16-1216k k ⋅=-1a =1b =()10f -=()()1110e f b a ⎛⎫-=-+-= ⎪⎝⎭()()1e x f x x b a '=++-()111e eb f a '-=-=-+1ea =2e 0b =-<0b >1a =1b =(2)由(1)可知,, 由,可得,令, , 当时,, 当时,设, , 故函数在上单调递增,又,∴当时,,当时,, ∴函数在区间上单调递减,在区间上单调递增, 故 故.22.【答案】(1);(2)【解析】(1)由题意可知直线的直角坐标方程为,曲线是圆心为,半径为的圆,直线与曲线相切,可得;可知曲线C 的方程为,∴曲线C 的极坐标方程为,()()()1e 1x f x x=+-()()00,10f f =-=0m ≤2x mx x ≥+()()()1e 1x g xx x =+--()()2e 2x g x x '=+-2x ≤-()()2e 220x g x x '=+-<-<2x >-()()()2e 2x h x g x x '==+-()()3e 0x h x x '=+>()g x '()2,-+∞()00g '=(),0x ∈-∞()0g x '<()0,x ∈+∞()0g x '>()g x (),0-∞()0,+∞()()()()2001e 1x g x g x x mx x ≥=⇒+-≥≥+()2f x mx x ≥+4sin 3ρθπ⎛⎫=+ ⎪⎝⎭2+l 2y =+C )r l C 2r ==(()2214x y +-=2cos 2sin 0ρθρθ--=即.(2)由(1)不妨设,,当时,∴面积的最大值为23.【答案】(1);(2).【解析】(1)由题意可知恒成立,令,去绝对值可得,画图可知的最小值为,∴实数的取值范围为; (2)由(1)可知,∴,4sin 3ρθπ⎛⎫=+ ⎪⎝⎭()1,M ρθ2,6N ρθπ⎛⎫+ ⎪⎝⎭()120,0ρρ>>121sin 4sin sin 231462MON S OM ON ρρθθπππ⎛⎫⎛⎫=⋅=+⋅+ ⎪ ⎪⎝⎭⎝⎭△22sin cos sin 2θθθθθ=+=sin 32θπ⎛⎫++ ⎪⎝⎭=12θπ=2MON S ≤△MON △23m ≤-3532x x m --≥()32x g x x -=-()()()()36,3263,036,0x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩()g x 3-m 3m ≤-2229a b c ++=22212315a b c +++++=()22222222211112311112312315a b c a b c a b c ⎛⎫++⋅+++++ ⎪+++⎝⎭++=+++, 当且仅当,即等号成立, ∴的最小值为.22222222222221313239312132315155b a c a c b a b a c b c ++++++++++++++++++=≥=2221235a b c +=+=+=2224,3,2a b c ===222111123a b c +++++35。
【新】河北省石家庄市2018届高三数学下学期4月一模考试试题文
河北省石家庄市2018届高三数学下学期4月一模考试试题 文一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5,6,7}U =,{|3,}A x x x N =≥∈,则U C A =( ) A .{1,2} B .{3,4,5,6,7} C .{1,3,4,7} D .{1,4,7}2.复数121ii-=+( ) A .i B .i - C .132i -- D .332i- 3.已知四个命题:①如果向量a 与b 共线,则a b = 或a b =-;②3x ≤是3x ≤的必要不充分条件;③命题p :0(0,2)x ∃∈,200230x x --<的否定p ⌝:(0,2)x ∀∈,2230x x --≥;④“指数函数xy a =是增函数,而1()2xy =是指数函数,所以1()2xy =是增函数”此三段论大前提错误,但推理形式是正确的. 以上命题正确的个数为( )A .0B .1C .2D .3 4.若数列{}n a 满足12a =,111nn na a a ++=-,则2018a 的值为( ) A .2 B .-3 C .12-D .135.函数()2(0)xf x x =<,其值域为D ,在区间(1,2)-上随机取一个数x ,则x D ∈的概率是( ) A .12 B .13 C .14 D .236. 程序框图如图所示,该程序运行的结果为25s =,则判断框中可填写的关于i 的条件是( )A .4?i ≤B .4?i ≥C .5?i ≤D .5?i ≥ 7. 南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S =a b c >>),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A .84平方里B .108平方里C .126平方里D .254平方里 8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .23π B .43π C .2π D .83π9.设()f x 是定义在[2,3]b b -+上的偶函数,且在[2,0]b -上为增函数,则(1)(3)f x f -≥的解集为( )A .[3,3]-B .[2,4]-C .[1,5]-D .[0,6] 10.抛物线C :214y x =的焦点为F ,其准线l 与y 轴交于点A ,点M 在抛物线C 上,当MA MF=AMF ∆的面积为( )A .1B .2 C..4 11.在ABC ∆中,2AB =,6C π=,则AC +的最大值为( )A...12.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,若122r r =,则直线l 的斜率为( )A .1 B.2 D.二、填空题:本大题共4小题,每题5分,共20分.13.设向量(1,2)a m = ,(1,1)b m =+,若a b ⊥ ,则m = .14.x ,y 满足约束条件:11y x x y y ≤⎧⎪-≤⎨⎪≥-⎩,则2z x y =+的最大值为 .15.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 . 16.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知{}n a 是公差不为零的等差数列,满足37a =,且2a 、4a 、9a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足1n n n b a a +=⋅,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 18.四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,222AB BC CD ===,SAD ∆为正三角形.(Ⅰ)点M 为棱AB 上一点,若//BC 平面SDM ,AM AB λ=,求实数λ的值;(Ⅱ)若BC SD ⊥,求点B 到平面SAD 的距离.19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式; (Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:回答下列问题:①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出这100天中甲、乙两种方案的日薪X 平均数及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:20.60.36=,21.4 1.96=,22.6 6.76=,23.411.56=,23.612.96=,24.621.16=,215.6243.36=,220.4416.16=,244.41971.36=)20.已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,且离心率为2,M 为椭圆上任意一点,当1290F MF ∠=时,12F MF ∆的面积为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知点A 是椭圆C 上异于椭圆顶点的一点,延长直线1AF ,2AF 分别与椭圆交于点B ,D ,设直线BD 的斜率为1k ,直线OA 的斜率为2k ,求证:12k k ⋅为定值.21.已知函数()()()x f x x b e a =+-,(0)b >,在(1,(1))f --处的切线方程为(1)10e x ey e -++-=.(Ⅰ)求a ,b ;(Ⅱ)若0m ≤,证明:2()f x mx x ≥+.(二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()13πρθ-=,若直线l 与曲线C 相切;(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)在曲线C 上取两点M ,N 与原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.23.选修4-5:不等式选讲已知函数()f x =R ;(Ⅰ)求实数m 的取值范围;(Ⅱ)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=,求222111123a b c +++++的最小值.答案一、选择题1-5: ACDBB 6-10: CABBB 11、12:DD 二、填空题 13. 13-14. 3 15. 乙16. 三、解答题17. 解:(1)设数列{}n a 的公差为d ,且0d ≠由题意得242937a a a a ⎧=⎪⎨=⎪⎩,即21(7)(7)(76)27d d d a d ⎧+=-+⎨+=⎩,解得13,1d a ==,所以数列{}n a 的通项公式32n a n =-. (2)由(1)得1(32)(31)n n n b a a n n +=⋅=-+1111()33231n b n n ∴=--+, 12111111111......(1)34473231n n S b b b n n =+++=-+-++--+11(1)33131n n n =-=++. 18.(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM 平面ABCD=DM , 所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形,又CD AB 2=,所以M 为AB 的中点. 因为λ=,12λ∴=.(2)因为BC ⊥SD , BC ⊥CD , 所以BC ⊥平面SCD , 又因为BC ⊂平面ABCD , 所以平面SCD ⊥平面ABCD , 平面SCD 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E ,则SE ⊥平面ABCD , 在Rt SEA 和Rt SED 中,因为SA SD =,所以AE DE ===,又由题知45EDA ∠=, 所以AE ED ⊥,由已知求得AD =,所以1AE ED SE ===,连接BD ,则111133S ABD V -=⨯⨯=三棱锥,又求得SAD 的面积为2,所以由B ASD S ABD V V --=三棱锥三棱锥点B 到平面SAD 19.解:(1)甲方案中派送员日薪y (单位:元)与送货单数n 的函数关系式为:N ,100∈+=n n y ,乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y ,(2)①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则1=15220+15430+15620+15820+16010100x ⨯⨯⨯⨯⨯甲()=155.4, ()()()()()2222221=[20152155.4+30154155.4+20156155.4+20158155.4+10010160155.4]=6.44S ⨯-⨯-⨯-⨯-⨯-甲,乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则1=14050+15220+17620+20010100x ⨯⨯⨯⨯乙()=155.6, ()()()()222221=[50140155.6+20152155.6+20176155.6+10200155.6]100=404.64S ⨯-⨯-⨯-⨯-乙,②、答案一:由以上的计算可知,虽然x x <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日薪收入波动相对较小,所以小明应选择甲方案. 答案二:由以上的计算结果可以看出,x x <乙甲,即甲方案日薪平均数小于乙方案日薪平均数,所以小明应选择乙方案. 20解:(1)设,,2211r MF r MF ==由题122221212224112c e a r r ar r c r r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩,解得1a c ==,则21b =,∴椭圆C 的方程为2212x y +=.(2)设0000(,)(0)A x y x y ⋅≠,1122(,),(,)B x y C x y , 当直线1AF的斜率不存在时,设(A -,则(1,B -, 直线2AF的方程为(1)4y x =--代入2212x y +=,可得25270x x --=,275x ∴=,210y =-7(,)510D -,∴直线BD的斜率为1(10276(1)5k -==--,直线OA的斜率为22k =-,121(626k k ∴⋅=-=-, 当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-. 当直线1AF 、2AF 的斜率存在时,10±≠x ,设直线1AF 的方程为00(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得:22222200000[(1)2]422(1)0x y x y x y x ++++-+=, 又220012x y +=,则220022y x =-,代入上述方程可得 2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则000100034(1)13232y x y y x x x --=+=-+++ 000034(,)2323x y B x x +∴--++,设直线2AF 的方程为00(1)1y y x x =--,同理可得000034(,)2323x y D x x ---,∴直线BD 的斜率为00000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+, 直线OA 的斜率为020y k x =, ∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----. 所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. 21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e⎛⎫-=-+-= ⎪⎝⎭,又()()1x f x x b e a '=++-,所以1(1)1b f a e e'-=-=-+, 若1a e=,则20b e =-<,与0b >矛盾,故1a =,1b =. (Ⅱ)由(Ⅰ)可知()()()11xf x x e =+-, (0)0,(1)0f f =-=,由0m ≤,可得2x mx x ≥+,令()()()11xg x x e x =+--,()()22x g x x e '=+-,当2x ≤-时,()()2220x g x x e '=+-<-<, 当2x >-时,设()()()22x h x g x x e '==+-, ()()30x h x x e '=+>,故函数()g x '在()2,-+∞上单调递增,又(0)0g '=,所以当(),0x ∈-∞时,()0g x '<,当()0,x ∈+∞时,()0g x '>,所以函数()g x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增, 故()()2()(0)011xg x g x e x mx x ≥=⇒+-≥≥+故2()f x mx x ≥+.法二:(Ⅱ)由(Ⅰ)可知()()()11xf x x e =+-, (0)0,(1)0f f =-=,由0m ≤,可得2x mx x ≥+, 令()()()11xg x x e x =+--,()()22x g x x e '=+-,令当时,,单调递减,且; 当时,,单调递增;且,所以在上当单调递减,在上单调递增,且,故()()2()(0)011xg x g x e x mx x ≥=⇒+-≥≥+,故2()f x mx x ≥+. 选作题22(1)由题意可知直线l 的直角坐标方程为2y +,曲线C 是圆心为,半径为r 的圆,直线l 与曲线C 相切,可得:2r ==;可知曲线C 的方程为22((1)4x y +-=,所以曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin()3ρθπ=+.(2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>),6πS MON =∆,,当12πθ=时, 32+≤∆MO N S , 所以△MON面积的最大值为223. 【解析】(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-,去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-; (2)由(1)可知2229a b c ++=,所以22212315a b c +++++=, 222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++ 22222222222221313239312132315155b ac a c b a b a c b c ++++++++++++++++++=≥=, 当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立, 所以222111123a b c +++++的最小值为35.答案一、选择题 (A 卷答案)1-5 ACDBB 6-10CABBB 11-12 DD (B 卷答案)1-5 BCDAA 6-10CBAAA 11-12 DD 二、填空题13. 13-14. 3 15. 乙16. 三、解答题(解答题仅提供一种解答,其他解答请参照此评分标准酌情给分)17. 解:(1)设数列{}n a 的公差为d ,且0d ≠由题意得242937a a a a ⎧=⎪⎨=⎪⎩,……………2分即21(7)(7)(76)27d d d a d ⎧+=-+⎨+=⎩,解得13,1d a ==,……………4分 所以数列{}n a 的通项公式32n a n =-,………………………………6分 (2)由(1)得1(32)(31)n n n b a a n n +=⋅=-+1111()33231n b n n ∴=--+,…………………………8分 12111111111......(1)34473231n n S b b b n n =+++=-+-++--+…………………10分11(1)33131n n n =-=++.………………………12分. 18.(1)因为//BC 平面SDM, BC ⊂平面ABCD,平面SDM 平面ABCD=DM,所以DM BC //……………………2分因为DC AB //,所以四边形BCDM 为平行四边形,又,CD AB 2=,所以M 为AB 的中点。
2018届河北省石家庄市高中毕业班第一次模拟考试文科数学试题及答案 精品
河北省石家庄市2018届高中毕业班第一次模拟考试文科数学试题(时间120分钟,满分150分)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,答卷前,考生务必将自己的 姓名、准考证号填写在答题卡上2. 回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如 需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3. 回答第II 卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题,共60分)—、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目 要求的.A.第一象限B.第二象限C.第三象跟D.第四象限2. 若集合}822|{2≤<∈=+x Z x A ,}02|{2>-∈=x x R x B ,则)(B C A R 所含的元素个数为A. OB. 1C. 2D. 33. 某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1、2、…、60,选取的这6名学生的编号可能是A. 1,2,3,4,5,6B. 6,16,26,36,46,56C. 1,2,4,8,16,32D. 3,9,13 ,27,36,544 已知双曲线的一个焦点与抛物线x 2=20y 的焦点重合,且其渐近线的方程为3x ±4y=0,则 该双曲线的标准方程为5.设l、m是两条不同的直线,a,β是两个不同的平面,有下列命题:①l//m,m⊂a,则l//a ② l//a,m//a 则 l//m③a丄β,l⊂a,则l丄β④l丄a,m丄a,则l//m其中正确的命题的个数是A. 1B. 2C. 3D. 46. 执行右面的程序框图,输出的S值为A. 1B. 9C. 17D. 207. 已知等比数列{a n},且a4+a8=-2,则a6(a2+2a6+a10)的值为A. 4B. 6C. 8D. -98. 现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4,次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该射击运动员射击4次至少击中3次的概率为A. 0.85B. 0.8 C, 0.75 D. 0.7是使得z=ax-y取得最大值的最优解,则实数a的取值范围为11. 已知正三棱锥P-ABC的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为A 4π B, 12π12. [x]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f(x)=x-[x](x ∈R),g(x)=log 4(x-1),则函数h(x)=f(x)-g(x)的零点个数是 A. 1 B. 2C. 3D. 4 第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作 答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分a13.已知向量 a =(1,2),b=(x,1),u=a+2b,v=2a-b,且 u//v ,则实数x 的值是______15. 已知点P(x,y)在直线x+2y=3上移动,当2x +4y 取得最小值时’过点P 引圆三、解答题:本大题共6小通,共70分.解答应写出文字说明,证明过程或演算步職‘17. (本小题满分12分)(I)求角A 的大小;18. (本小题满分12分)如图,在四棱锥P-ABCD 中,PA 丄平面ABCD ,ABC ∠=ADC ∠=90°BAD ∠=1200,AD=AB=1,AC 交 BD 于 O 点.(I)求证:平面PBD 丄平面PAC;(II )求三棱锥D-ABP 和三棱锥P-PCD 的体积之比.19. (本小题满分12分)为了调查某大学学生在周日上网的时间,随机对1OO 名男生和100名女生进行了不记 名的问卷调查.得到了如下的统计结果: 表1:男生上网时间与频数分布表表2:女生上网时间与频数分布表(I)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;(II)完成下面的2x2列联表,并回答能否有90%的把握认为“学生周日上网时间与性 别有关”?表3 :20. (本小題满分12分)的直线l交椭圆于A,B两点.(I)若ΔABF2为正三角形,求椭圆的离心率;21(本小题满分12分)已知函数f(x)=e x+ax-1(e为自然对数的底数).(I)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;(II)若f(x)≥x2在(0,1 )上恒成立,求实数a的取值范围.请考生在22〜24三题中任选一题做答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-l:几何证明选讲如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆 O于点A,B,C,D弦AD和BC交于Q点,割线PEF经过Q点交圆 O于点E、F,点M在EF 上,且BMF BAD ∠=∠:(I)求证:PA ·PB=PM ·PQ (II)求证:BOD BMD ∠=∠23. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系.x0y 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 C 的极坐标方程为: θθρcos sin 2=(I)求曲线l 的直角坐标方程;的值24. (本小题满分10分)选修4-5:不等式选讲 巳知函数f(x)=|x-2|+2|x-a|(a ∈R). (I)当a=1时,解不等式f(x)>3;(II)不等式1)(≥x f 在区间(-∞,+∞)上恒成立,求实数a 的取值范围2018年高中毕业班第一次模拟考试(数学文科答案)一、选择题 A 卷答案1-5 DCBCA 6-10 CACAB 11-12 DB B 卷答案1-5 DBCBA 6-10 BABAC 11-12 DC 二、填空题13.12 14.363515. 16 .3724二 解答题17.解:(Ⅰ)法一:由B a A b c cos cos )2(=-及正弦定理得: B A A B C cos sin cos )sin sin 2(=-……………2分 则B A A B A C cos sin cos sin cos sin 2+=sin()B A =+,sin()sin A B C A B C π++=∴+=C A C sin cos sin 2=由于sin 0C ≠,所以,22cos =A ……………… 4分又0A π<<,故4π=A . …………………… 6分或解:(Ⅰ)由B a A b c cos cos )2(=-及余弦定理得:ac b c a abc a c b b c 22)2(222222-+=-+- ……………………… 2分整理得:bc a c b 2222=-+222cos 222=-+=bc a c b A …………………… 4分又0A π<<,故4π=A . ……………………… 6分(Ⅱ) ABC ∆的面积S =1sin 2bc A=1,故bc =22 ① ………………… 8分根据余弦定理 2222cos a b c bc A =+- 和a可得22c b +=6…… ② ………………… 10分 解①②得2b c =⎧⎪⎨=⎪⎩2b c ⎧=⎪⎨=⎪⎩. …………………… 12分18.解:证明:(Ⅰ)90ABC ADC ∠=∠=,,AD AB =AC为公共边,Rt ABC Rt ADC ∴∆≅∆ ,………………… 2分则BO=DO,又在ABD ∆中,AB AD =,所以ABD ∆为等腰三角形.AC BD ∴⊥ ,…………………… 4分而⊥PA 面ABCD ,BD PA ⊥, 又⊥∴=BD A AC PA , 面PAC ,又⊂BD 面PBD ,∴平面⊥PAC 平面PBD .…………………… 6分 (Ⅱ) 在R t ABC ∆中,1AB =,60BAC ∠=,则BC =,01sin1202ABD S AB AD ∆=⋅1112=⨯⨯,……………………8分01sin 602BCD S BC CD ∆=⋅12=,…………………10分PA B DCO113=133ABD D ABP P ABDABD B PCD P BCDBCD BCD S PAV V S V V S S PA ∆--∆--∆∆⋅===⋅ . …………………12分19.解:(Ⅰ)设估计上网时间不少于60分钟的人数x ,依据题意有30750100x =,…………………4分解得:225x = ,所以估计其中上网时间不少于60分钟的人数是225人.………………… 6分 (Ⅱ)根据题目所给数据得到如下列联表:…………… 8分其中22200(60304070)200 2.198 2.7061001001307091K⨯-⨯==≈<⨯⨯⨯………………10分因此,没有90%的把握认为“学生周日上网时间与性别有关”.…………………12分 20. 解:(Ⅰ)由椭圆的定义知12122AF AF BF BF a +=+=,ABC ∴∆周长为4a , 因为2ABF ∆为正三角形,所以22AF BF =,11AF BF =,12F F 为边AB 上的高线,…………………………2分02cos3043ca ∴=,∴椭圆的离心率c e a ==.………………… 4分(Ⅱ)设11(,)A x y ,22(,)B x y因为0e <<,1c =,所以a >…………6分①当直线AB x 与轴垂直时,22211y a b +=,422b y a =,4121221b OA OB x x y y a ⋅=+=-, 42231a a a -+-=22235()24a a --+, 因为2532+>a ,所以0OA OB ⋅<, AOB ∴∠为钝角.………………………8分②当直线AB 不与x 轴垂直时,设直线AB 的方程为:(1)y k x =+,代入22221x y a b +=,整理得:2222222222()20b a k x k a x a k a b +++-=, 22122222a k x x b a k -+=+,222212222a k a b x x b a k -=+ 1212OA OB x x y y ⋅=+212121212(1)(1)x x y y x x k x x +=+++ 2221212(1)()x x k k x x k =++++22222242222222()(1)2()a k ab k a k k b a k b a k -+-++=+ 2222222222()k a b a b a b b a k +--=+24222222(31)k a a a b b a k -+--=+………………10分令42()31m a a a =-+-, 由 ①可知 ()0m a <, AOB ∴∠恒为钝角.………………12分21.解:(Ⅰ)当1a =时,e ()1xf x x =+-,(1)e f =,e ()1x f x '=+,e (1)1f '=+,函数()f x 在点(1,(1))f 处的切线方程为e (e 1)(1)y x -=+- 即(e 1)1y x =+- ……………… 2分 设切线与x 、y 轴的交点分别为A ,B . 令0x =得1y =-,令0y =得1e 1x =+,∴1(,0)e 1A +,(0,1)B -11112e 12(e 1)S =⨯⨯=++△OAB .在点(1,(1))f 处的切线与坐标轴围成的图形的面积为12(e 1)+ …………………4分(Ⅱ)由2()f x x ≥得2e 1xx a x +-≥, 令2e e 11()x xx h x x x x x +-==+-, 222e e (1)(1)(1)1()1x x x x x h x x x x --+-'=--=令e ()1xk x x =+-,…………………… 6分 e ()1x k x '=-,∵(0,1)x ∈,∴e ()10x k x '=-<,()k x 在(0,1)x ∈为减函数∴()(0)0k x k <= ,……………………8分又∵10x -<,20x > ∴2e (1)(1)()0x x x h x x -+-'=>∴()h x 在(0,1)x ∈为增函数,…………………………10分e ()(1)2h x h <=-,因此只需2e a -≥. …………………………………12分22.证明:(Ⅰ)∵∠BAD =∠BMF ,所以A,Q,M,B 四点共圆,……………3分所以PA PB PM PQ ⋅=⋅.………………5分(Ⅱ)∵PA PB PC PD ⋅=⋅ ,∴PC PD PM PQ ⋅=⋅ ,又 CPQ MPD ∠=∠ , 所以~CPQ MPD ∆∆,……………7分 ∴PMD PCQ ∠=∠ ,则DCB FMD ∠=∠,………………8分 ∵BAD BCD ∠=∠,∴2BMD BMF DMF BAD ∠=∠+∠=∠,2BOD BAD ∠=∠,所以BMD BOD ∠=∠.…………………10分23.解:(Ⅰ)依题意22sin cos ρθρθ=………………3分 得:x y =2 ∴曲线1C 直角坐标方程为:x y =2.…………………5分(Ⅱ)把⎪⎪⎩⎪⎪⎨⎧=-=t y t x 22222代入x y =2整理得:0422=-+t t ………………7分0>∆总成立,221-=+t t ,421-=t t23)4(4)2(221=-⨯--=-=t t AB ………………10分另解:(Ⅱ)直线l 的直角坐标方程为x y -=2,把x y -=2代入x y =2得: 0452=+-x x ………………7分0>∆总成立,521=+x x ,421=x x23)445(212212=⨯-=-+=x x k AB …………………10分24. 解:(Ⅰ)⎩⎨⎧>-+-≥32222x x x 解得37>x ⎩⎨⎧>-+-<<322221x x x 解得φ∈x ⎩⎨⎧>-+-≤32221x x x 解得13x <…………………3分 不等式的解集为17(,)(,)33-∞+∞………………5分(Ⅱ)时,2>a ⎪⎩⎪⎨⎧≥--<<-+-≤++-=a x a x ax a x x a x x f ,2232,222,223)(;时,2=a 36,2()36,2x x f x x x -+≤⎧=⎨->⎩;时,2<a ⎪⎩⎪⎨⎧≥--<<+-≤++-=2,2232,22,223)(x a x x a a x a x a x x f ;∴)(x f 的最小值为)()2(a f f 或;………………8分 则⎩⎨⎧≥≥1)2(1)(f a f ,解得1≤a 或3≥a .………………10分。
河北省石家庄市2018届高三第一次模拟考试文科数学试题
河北省石家庄市2018届高三第一次模拟考试文科数学试题一、单选题1.1.已知集合{}1,2,3,4,5,6,7U =,{|3,}A x x x N =≥∈,则U C A =() A. {}1,2 B. {}3,4,5,6,7 C. {}1,3,4,7 D. {}1,4,7 2.复数121ii-=+() A. i B. i - C. 132i -- D. 332i- 3.已知四个命题:①如果向量a 与b 共线,则a b = 或a b =-;②3x ≤是3x ≤的必要不充分条件;③命题p :()00,2x ∃∈,200230x x --<的否定p ⌝:()0,2x ∀∈,2230x x --≥;④“指数函数xy a =是增函数,而12x y ⎛⎫= ⎪⎝⎭是指数函数,所以12xy ⎛⎫= ⎪⎝⎭是增函数”此三段论大前提错误,但推理形式是正确的.以上命题正确的个数为() A. 0 B. 1 C. 2 D. 3 4.若数列{}n a 满足12a =,111nn na a a ++=-,则2018a 的值为() A. 2 B. -3 C. 12-D. 135.函数()2(0)xf x x =<,其值域为D ,在区间()1,2-上随机取一个数x ,则x D ∈的概率是() A.12 B. 13 C. 14 D. 236.程序框图如图所示,该程序运行的结果为25s =,则判断框中可填写的关于i 的条件是()A. 4?i ≤B. 4?i ≥C. 5?i ≤D. 5?i ≥大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S =a b c >>),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为()A. 84平方里B. 108平方里C. 126平方里D. 254平方里8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 23π B. 43π C. 2π D. 83π9.设()f x 是定义在[]2,3b b -+上的偶函数,且在[]2,0b -上为增函数,则()()13f x f -≥的解集为() A. []3,3- B. []2,4- C. []1,5- D. []0,610.抛物线C :214y x =的焦点为F ,其准线l 与y 轴交于点A ,点M 在抛物线C 上,当MA MF=AMF ∆的面积为()A. 1B. 2C.D. 411.在ABC ∆中,2AB =,6C π=,则AC 的最大值为()A.B. C. D. 12.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b -=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,若122rr =,则直线l 的斜率为()A. 1B.C. 2D.二、填空题13.13.设向量()1,2a m =,()1,1b m =+,若a b ⊥,则m =__________.14.x ,y 满足约束条件: y ≤xx −y ≤1y ≥1,则z =2x −y 的最大值为__________.15.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是__________.16.16.16.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为__________.三、解答题17.已知{}n a 是公差不为零的等差数列,满足37a =,且2a 、4a 、9a 成等比数列. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足1n n n b a a +=⋅,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S .18.四棱锥S −ABCD 的底面ABCD 为直角梯形,AB //CD ,AB ⊥BC ,AB =2BC =2CD =2,ΔSAD 为正三角形.(1)点M 为棱AB 上一点,若BC //平面SDM ,AM=λAB ,求实数λ的值; (2)求点B 到平面SAD 的距离. 19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(1)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式;(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:回答下列问题: ①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出这100天中甲、乙两种方案的日薪X 平均数及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:20.60.36=,21.4 1.96=,22.6 6.76=,23.411.56=,23.612.96=,24.621.16=,215.6243.36=,220.4416.16=,244.41971.36=)20.20.已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,且离心率为2,M 为椭圆上任意一点,当1290F MF ∠=时,12FMF ∆的面积为1. (1)求椭圆C 的方程;(2)已知点A 是椭圆C 上异于椭圆顶点的一点,延长直线1AF ,2AF 分别与椭圆交于点B ,D ,设直线BD 的斜率为1k ,直线OA 的斜率为2k ,求证:12k k ⋅为定值.21.已知函数()()()xf x x b e a =+-,(0)b >,在()()1,1f --处的切线方程为()110e x ey e -++-=.(1)求a ,b ;(2)若0m ≤,证明:()2f x mx x ≥+.22.在平面直角坐标系xOy 中,曲线C 的参数方程为{1x rcos y rsin ϕϕ==+(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 13πρθ⎛⎫-= ⎪⎝⎭,若直线l 与曲线C 相切;(1)求曲线C 的极坐标方程;(2)在曲线C 上取两点M ,N 与原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.23.已知函数()f x =的定义域为R ;(1)求实数m 的取值范围;(2)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=,求222111123a b c +++++的最小值.河北省石家庄市2018届高三第一次模拟考试文科数学试题参考答案1.A【解析】{}{}1,2,3,4,5,6,7,{|3,}3,4,5,6,7,U A x x x N ==≥∈={}1,2.U C A ∴=故选A. 2.C 【解析】()()()()12112131112i i i ii i i -----==++- . 故选C. 3.D【解析】①错,如果向量a 与b共线,则(),a b R λλ=∈ ;②3x ≤是3x ≤的必要不充分条件;正确,由3x ≤可以得到3x ≤,但由3x ≤不能得到3x ≤,如4x =-;③命题p :()00,2x ∃∈,200230x x --<的否定p ⌝:()0,2x ∀∈,2230x x --≥;正确④“指数函数x y a =是增函数,而12x y ⎛⎫= ⎪⎝⎭是指数函数,所以12xy ⎛⎫= ⎪⎝⎭是增函数”此三段论大前提错误,但推理形式是正确的.,正确.故选D. 4.B 【解析】12a =由题,111n n na a a ++=-,所以3124234512341111113,,,2112131a a a a a a a a a a a a ++++==-==-====---- 故数列{}n a 是以4 为周期的周期数列,故2018504422 3.a a a ⨯+===- 故选B. 5.B【解析】函数()2(0)xf x x =<的值域为01(,),即01D =(,),则在区间()1,2-上随机取一个数x x D ∈,的概率()101.213P -=--=.故选B .6.C【解析】第一次运行,1005195,2;s i =-⨯== 第二次运行,935285,3;s i =-⨯== 第三次运行,855370,4;s i =-⨯== 第四次运行,705450,5;s i =-⨯== 第五次运行,505525,6;s i =-⨯== 此时,输出25,故选C 7.A【解析】根据题意,13,14,15c b a ===,代入S =84.S = 故选A.8.B【解析】由三视图可知,该几何体为一个半圆柱中间挖去了一个半球,半圆柱的高为4,底面半径为1,半球的半径为1 ,故其体积为V =12×π×12×4−12×43×π×13=4π3.故选B. 9.B【解析】由题,()f x 是定义在[]2,3b b -+上的偶函数,则23,3b b b -=+∴=由函数()[]6,0f x - 为增函数,在[]06,上为减函数,故()()()()131313f x f f x f x -≥⇔-≥⇔-≤故2 4.x -≤≤选B. 10.B【解析】01,01F A -(,)(,)过M 作,MN l ⊥垂足为N ,则MN MF = ∴2MAMF=∴AMF ∆的高等于AN ,设2104Mm m m (,)(>) 则AMF ∆的面积12.2m m =⨯=又由MAMF=三角形AMN 为等腰直角三角形,211,4m m ∴+=所以2,m =,∴AMF ∆的面积211.D【解析】有正弦定理可得,254,sin sin sin6sin6AB AC BCA BC B Aππ====+=54s43n4s i n43s i n6A B C B B Bπ⎛⎫∴=+=+-⎪⎝⎭14sin cos10sin23B B B B B Bπ⎫⎛⎫=+=+=+⎪ ⎪⎪⎝⎭⎭故当6Bπ=时,AC的最大值为故选D.12.D【解析】设12AF F∆的内切圆圆心为1,I,12BF F∆的内切圆圆心为2,I,边1212AF AF F F、、上的切点分别为M N E、、,易见1I E、横坐标相等,则1122AM AN F M F E F N F E===,,,由122AF AF a-=,即122AM MF AN NF a+-+=(),得122MF NF a-=,即122F E F E a-=,记1I的横坐标为x,则0E x(,),于是002x c c x a+--=(),得x a=,同理内心2I的横坐标也为a,则有12I I x⊥轴,设直线的倾斜角为θ,则22129022OF I I F Oθθ∠=∠=︒-,,则211212221tan,tan tan90222tan2r rI F O r rF E F Eθθθ⎛⎫=∠=︒-===⎪⎝⎭,222tan12tan,tan tan2221tan2θθθθθ∴==∴==-故选D.13.13-【解析】()().1,21,1120a b a b m m m m⊥∴⋅=+=++=1.3m∴=-即答案为13-.【解析】画出可行域如图所示,由图可知当目标函数z =2x −y 经过点A 2,1 取到最大值。
河北省石家庄市2018届高中毕业班教学质量检测(一)(文数)
河北省石家庄市2018届高中毕业班教学质量检测(一)数学(文科)本试卷满分150分。
考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题的答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.在答题卡上与题号相对应的答题区域内答题。
写在试卷、草稿纸上或答题卡非题号对应的答题区域的答案一律无效。
不得用规定以外的笔和纸答题,不得在答题卡上做任何标记。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}42|{<<-=x x A ,}2|{≥=x x B ,则=)(B C A R I ( )A .)4,2(B . )4,2(-C .)2,2(-D .]2,2(-2.若复数z 满足i iz =-1,其中i 为虚数单位,则共轭复数=z ( ) A .i +1 B .i -1 C .i --1 D .i +-13.已知命题21:<<-x p ,1log :2<x q ,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D . 既不充分又不必要条件4.已知某厂的产品合格率为0.8,现抽出10件产品检查,则下列说法正确的是( )A .合格产品少于8件B .合格产品多于8件C .合格产品正好是8件D .合格产品可能是8件5.在ABC ∆中,点D 在边AB 上,且21=,设=,=,则= ( ) A . b a 3231+ B .b a 3132+ C .b a 5453+ D .b a 5354+ 6.当4=n 时,执行如图所示的程序框图,则输出的S 值为 ( )A . 9B . 15C .31D .637.若0>ω,函数)3cos(πω+=x y 的图像向右平移3π个单位长 度后与函数x y ωsin =图像重合,则ω的最小值为( )A . 211B .25C .21D .23 8.已知奇函数)(x f ,当0>x 时单调递增,且0)1(=f ,若0)1(>-x f ,则x 的取值范围为( )A .}210|{><<x x x 或B .}20|{><x x x 或C .}30|{><x x x 或D .}11|{>-<x x x 或9.如图,网格纸上的小正方形的边长为1,粗线条表示的是某三棱锥的三视图,则该三棱锥的四个面中面积最小是 ( )A . 32B .22 C. 2 D .310.双曲线22221x y a b-=(0,0)a b >> 的左、右焦点分别为21,F F ,过 1F 作倾斜角为060的直线与y 轴和双曲线的右支分别交于B A ,两点,若点A 平分线段B F 1,则该双曲线的离心率是( )A .3B . 32+C .2D .12+11.已知M 是函数)(sin 8|32|)(R x x x x f ∈--=π的所有零点之和,则M 的值为( )A .3B .6C .9D .1212.定义:如果函数)(x f y =在区间],[b a 上存在21,x x )(21b x x a <<<,满足a b a f b f x f --=)()()('1,ab a f b f x f --=)()()('2,则称函数)(x f y =是在区间],[b a 上的一个双中值函数,已知函数2356)(x x x f -=是区间],0[t 上的双中值函数,则实数t 的取值范围是 ( ) A . )56,53( B . )56,52( C. )53,52( D .)56,1(二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线y x 22=的准线方程是 .。
河北省石家庄市2018年中考一摸数学试卷及答案答案
2018年石家庄一模 数学试题参考答案说明:1.在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数. 一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.) 17.12-18. 6π 19.(23,23-),(1009,0),三、解答题(本大题有7个小题,共68分) 20.解:(1)原式=ab b a ab -+++1=1++b a …………………………………………………………(2分)∵4=+b a ,∴原式=4+1=5.……………………………………………………(4分) (2)∵b a b ab a 22222+++-=)(2)(2b a b a ++-, ………………………(6分) 由题意得,42)(2⨯+-b a =17,∴2)(b a -=9,∴b a -=±3.……………………………………………………………………(8分) 21.(1)40;………………………………………………………………………(1分)补全图形如图1所示:………………………………………………………(3分)奖项祖冲之奖刘徽奖赵爽奖 杨辉奖图1(2)90,90;……………………………………………………………………(5分) (3)列表法:……………………………………………………………………(7分)∵第二象限的点有(−2,2)和(−1,2)∴P (点在第二象限)=92……………………………………………………(9分)22.解:(1)如图2F ⊥BD ,垂足为F . ……………………………………(1分)∵AC ⊥BD , ∴∠ACB=FB=90°;在Rt △FB 中,∠1+∠3=90°; ⊥AB ,∴∠1+∠2=90°,∴∠2=∠3; ……………………………………………………………………(2分) 在△ACB 和△中,∴△ACB ≌△(AAS );F=BC ,……………………………………………………………………(4分)∵AC ∥DE 且CD ⊥AC ,AE ⊥DE ,∴CD=AE=1.8;…………………………………………………………………(5分) ∴BC=BD -CD=3-1.8=1.2, F=1.2,即到BD 的距离是1.2m .………………………………………(6分)(2)由(1)知:△ACB ≌△HD 图2∴BF=AC=2m,………………………………………………………………(7分)⊥DE,垂足为H.F∥DE,……………………………………………………(8分)H=BD-BF=3-2=1到地面的距离是1m.……………………(9分)23.解:(1)此时点A在直线l上;…………………………………………………(1分)∵BC=AB=2,点O为BC中点,∴点B(−1,0),A(−1,2),……………………………………………………(3分)把点A的横坐标x=−1代入解析式42+=xy,得4)1(2+-⨯=y=2,等于点A的纵坐标2,∴此时点A在直线l上.…………………………………………………………(5分)(2)由题意可得,点D(1,2),及点M(−2,0),当直线l经过点D时,设l的解析式为tkxy+=(k≠0),∴⎩⎨⎧=+=+-22tktk,解得⎪⎪⎩⎪⎪⎨⎧==3432tk,…………………………………………………(7分)∴当直线l与AD边有公共点时,t的取值范围是34≤t≤4.………………(9分)24.解:(1)5 ………………………………(1分)(2)设AE=x,∵AB=4,∴BE=4﹣x,在矩形ABCD中,根据折叠的性质知:Rt△FDE≌Rt△ADE,∴FE=AE=x,FD=AD=BC=3,∴BF=BD﹣FD=5﹣3=2,在Rt△BEF中,根据勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x=32,∴AE的长为32. ……………………………………………(4分)(3)存在,……………………………………………(5分)如图3,延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,则点P即为所求(画出点P即可).………………………………(6分)AEBCDFGPH图3此时有:PC =PG ,∴PF +PC =GF .过点F 作FH ⊥BC ,交BC 于点H ,则有FH ∥DC , ∴△BFH ∽△BDC ,∴FH BF BH DC BD BC ==,即2453FH BH==,∴8655FH BH ==,, ………………………………………………………(8分)∴GH =BG +BH 6213,55=+=在Rt △GFH 中,根据勾股定理,得∴GF 5===即PF +PC 的最小值为5…………………………………………………(10分) 25.解:(1)设b kx q +=(k ,b 为常数且k ≠0),当x =2时,q =12,当x =4时,q =10,代入解析式得,⎩⎨⎧=+=+104122b k b k ,解得:⎩⎨⎧=-=141b k , …………………………………………………(2分) ∴14+-=x q . ……………………………………………………………………(3分) (2)当产量小于或等于市场需求量时,有p ≤q , ∴821+x ≤14+-x ,解得x ≤4, ………………………………………………(5分) 又2≤x ≤10,∴2≤x ≤4.…………………………………………………………(6分) (3)①当产量大于市场需求量时,可得4<x ≤10, 由题意得,厂家获得的利润是:p qx y 2-= ………………………………………………………………………(7分)=16132-+-x x=4105)213(2+--x .……………………………………………………………(9分) ②∵当x ≤213时,y 随x 的增加而增加,又∵产量大于市场需求量时,有4<x ≤10, ∴当4<x ≤213时,厂家获得的利润y 随销售价格x 的上涨而增加.……(11分)26.解:【发现】(1)3π.………………………………………………………………………(1分) (2)设⊙P 半径为r ,则有r =4-3=1,当t =2时,如图4,点N 与点A∴ P A =r =1,设MP 与AB 相交于点Q ,在Rt △∵∠OAB =30°,∠MPN =60°, ∵∠PQA =90°.∴11,22PQ PA ==∴cos30AQ PA =︒=∴111222PQASPQ AQ ==⨯= 即重叠部分的面积为83.………………………………………………(4分) 【探究】:① 如图5,当⊙P 与直线AB 相切于点C 连接PC ,则有PC ⊥AB ,PC =r =1, ∵∠OAB =30°,∴AP =2, ∴OP =OA -AP =3-2=1;∴点P 的坐标为(1,0); …………(② 如图6,当⊙P 与直线OB 相切于点D 连接PD ,则有PD ⊥OB ,PD =r =1, ∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD =PDOP ,OP =33230cos 1= ∴点P 的坐标为(332,0③ 如图7,当⊙P 与直线OB 相切于点E x图7连接PE,则有PE⊥OB,同②可得:OP=332;∴点P的坐标为(-332,0)……………………………………………(10分)【拓展】t的取值范围是2 <t≤3,4≤t<5 ………………………………………(12分)(提示:当点N运动到与点A重合时,MN与Rt△ABO的边有一个公共点,此时t=2 ;当t>2 直到⊙P运动到与AB相切时(t=3 ),MN与Rt△ABO的边有两个公共点,∴2 <t≦3 . 当⊙P运动到PM与OB重合时,MN与Rt△ABO的边有两个公共点,此时t=4 ;直到⊙P 运动到点N与点O重合时,MN与Rt△ABO的边有一个公共点,此时t=5;∴4 ≦t<5. )。
最新-河北省石家庄市2018届高三第一次模拟考试文科数
2018届石家庄市高中毕业班第一次模拟考试试卷数学(文科)A 卷第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}3,2,1,2|{--=x A ,}31|{<<-=x x B ,则=B A ( ) A .)3,2(- B .)3,1(- C .}2{ D .}3,2,1{-2. 若复数iiz -=12(i 是虚数单位),则=z ( ) A .i +-1 B .i --1 C .i +1 D .i -13. 已知双曲线)0(19222>=-a y a x 的渐近线为x y 43±=,则该双曲线的离心率为( )A .43 B .47 C .45 D .354.设变量y ,满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥+02202201y x y x x ,则目标函数y x z 43+=的最小值为( )A .1B .3C .526D .19- 5.函数)0,0)(sin()(>>+=ωϕωA x A x f 的部分图像如右图所示,则)2411(πf 的值为( ) A .26-B .23-C .22- D .1-6.已知函数)(x f y =的图象关于直线0=x 对称,且当),0(+∞∈x 时,x x f 2log )(=,若)3(-=f a ,)41(f b =,)2(f c =,则c b a ,,的大小关系是( )A .c b a >>B .c a b >>C .b a c >>D .b c a >> 7.程序框图如图,当输入x 为2016时,输出的y 的值为( ) A .81B .1C .2D .48.为比较甲乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月11时的平均气温低于乙地该月11时的平均气温 ②甲地该月11时的平均气温高于乙地该月11时的平均气温 ③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差 ④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差 其中根据茎叶图能得到的正确结论的编号为( ) A .①③ B .①④ C .②③ D .②④9. 如图所示的数阵中,用),(n m A 表示第m 行的第n 个数,则依此规律)2,8(A 为( ) A .451 B .861 C .1221 D .167110.某几何体的三视图如图所示,图中网格小正方形边长为1,则该几何体的体积是( ) A .4 B .316 C .320 D .1211.已知C B A ,,是圆O 上的不同的三点,线段CO 与线段AB 交于D ,若OB OA OC μλ+=(R R ∈∈μλ,),则μλ+的取值范围是( )A .)1,0(B .),1(+∞C .]2,1(D .)0,1(-12. 若函数),()(23R b a bx ax x x f ∈++=的图象与x 轴相切于一点)0)(0,(≠m m A ,且)(x f 的极大值为21,则m 的值为( ) A .32- B .23- C .32 D .23第Ⅱ卷(非选择题,共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知命题p :“0||,2000<+∈∃x x R x ”,则p ⌝为 .14.已知椭圆1222=+y ax 的左、右焦点为1F 、2F ,点1F 关于直线x y -=的对称点P 仍在椭圆上,则21F PF ∆的周长为 .15.已知ABC ∆中,BC AD BAC BC AC ⊥=∠==,60,72,4于D ,则CDBD的值为 . 16.在三棱锥ABC P -中,4==BC PA ,5==AC PB ,11==AB PC ,则三棱锥ABC P -的外接球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分12分)在平面四边形ACBD (图①)中,ABC ∆与ABD ∆均为直角三角形且有公共斜边AB ,设2=AB ,30=∠BAD , 45=∠BAC ,将ABC ∆沿AB 折起,构成如图②所示的三棱锥ABC C -'.(Ⅰ)当2'=D C 时,求证:平面⊥AB C '平面DAB ;(Ⅱ)当BD AC ⊥'时,求三棱锥ABD C -'的高.19.(本小题满分12分)某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数; (Ⅱ)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次.规定:这2次成绩均来自到篮筐中心的水平距离为4到5米的这一组,记1分,否则记0分.求该运动员得1分的概率. 20. (本小题满分12分)已知抛物线C :)0(22>=p px y 过点)2,(m M ,其焦点为F ,且2||=MF . (Ⅰ)求抛物线C 的方程;(Ⅱ)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆F :1)1(22=+-y x 相切,切点分别为B A ,,求证:A 、B 、F 三点共线.21. (本小题满分12分) A DCB①'CBA②已知函数a x e x f x33)(+-=(e 为自然对数的底数,R a ∈). (Ⅰ)求)(x f 的单调区间与极值;(Ⅱ)求证:当ea 3ln >,且0>x 时,a x x x e x 3123-+>.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1:几何证明选讲如图所示,过点P 分别做圆O 的切线PA 、PB 和割线PCD ,弦BE 交CD 于F ,满足P 、B 、F 、A 四点共圆.(Ⅰ)证明:CD AE //;(Ⅱ)若圆O 的半径为5,且3===FD CF PC ,求四边形PBFA 的外接圆的半径.23.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,已知曲线1C :θρcos 2=和曲线2C :3cos =θρ,以极点O 为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系.(Ⅰ)求曲线1C 和曲线2C 的直角坐标方程;(Ⅱ)若点P 是曲线1C 上一动点,过点P 作线段OP 的垂线交曲线2C 于点Q ,求线段PQ 长度的最小值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数|1|||)(-+=x x x f .(Ⅰ)若|1|)(-≥m x f 恒成立,求实数m 的最大值M ;(Ⅱ)在(Ⅰ)成立的条件下,正实数b a ,满足M b a =+22,证明:ab b a 2≥+.2018届高三数学一模文科答案一.选择题:A 卷答案:1-5 CBCBD 6-10 DACCB 11-12 BD B 卷答案:1-5 CACAD 6-10 DBCCA 11-12 AD二.填空题:13.. 0,2≥+∈∀x x R x 14. 222+ 15. 6 16. π26 三、解答题所以{}n a 的通项公式为52(3)21n a n n =+-=-,……………………6分 (II ))121121(21)12)(12(1+--=+-=n n n n b n ……………………8分∴)1211215131311(21+--++-+-=n n T n ……………10分 12)1211(21+=+-=n nn ……………………12分18. 解:(1)当C D '=时,取AB 的中点O ,连,C O DO ',在Rt ACB ∆,Rt ADB ∆,2AB =,则1C O DO '==,又C D '=,∴222C O DO C D ''+=,即C O OD '⊥,…………………………………………2分又C O AB '⊥,AB OD O =,,AB OD ⊂平面ABD ,C O '∴⊥平面ABD ,……………………4分 又C O '⊂平面ABC '∴平面C AB '⊥平面DAB . ……………………5分(2)当AC BD '⊥时,由已知AC BC ''⊥,∴AC '⊥平面BDC ',…………………7分 又C D '⊂平面BDC ',∴AC C D ''⊥,△AC D '为直角三角形,由勾股定理,1C D '===……………………9分而△BDC '中,BD=1,BC '=,∴△BDC '为直角三角形,111122BDC S'=⨯⨯=……………………10分 三棱锥C ABD '-的体积111332BDC V S AC ''=⨯⨯=⨯=.112ABDS=⨯= ,设三棱锥C ABD '-的高为h ,则由622331=⨯⨯h 解得36=h .……………………12分19.解:(I ) 设该运动员到篮筐的水平距离的中位数为x , ∵5.020.010.0205.0<++⨯,且5.06.01)20.040.0(>=⨯+, A BC'OD∴]5,4[∈x …………………2分 由5.0120.0)5(40.0=⨯+-⨯x ,解得425.x =∴该运动员到篮筐的水平距离的中位数是425.(米). …………………4分(II )由题意知,抽到的7次成绩中,有1次来自到篮筐的水平距离为2到3米的这一组,记作A 1;有2次来自到篮筐的水平距离为3到4米的这一组,记作B 1,B 2;有4次来自到篮筐的水平距离为4到5米的这一组,记作C 1,C 2,C 3,C 4 .从7次成绩中随机抽取2次的所有可能抽法如下:(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 1,C 2),(A 1,C 3),(A 1,C 4),(B 1,B 2),(B 1,C 1),(B 1,C 2),(B 1,C 3),(B 1,C 4),(B 2,C 1),(B 2,C 2),(B 2,C 3),(B 2,C 4),(C 1,C 2),(C 1,C 3),(C 1,C 4),(C 2,C 3),(C 2,C 4),(C 3,C 4)共21个基本事件. ……… 7分其中两次成绩均来自到篮筐的水平距离为4到5米的这一组的基本事件有6个.………… 10分所以该运动员得1分的概率P=62217=. ……………………… 12分 20.解:(I )抛物线C 的准线方程为:2px =-,||22p MF m ∴=+=,又42pm =,即42(2)2pp =-……………2分2440,2p p p ∴-+=∴=抛物线C 的方程为24y x =. ……………4分 (II )设E (0,)(0)t t ≠,已知切线不为y 轴,设:EA y kx t =+联立24y kx t y x=+⎧⎨=⎩,消去y ,可得222(24)0k x kt x t +-+=直线EA 与抛物线C 相切,222(24)40kt k t ∴∆=--=,即1kt = 代入222120x x t t-+=,2x t ∴=,即2(,2)A t t ……………………6分设切点00(,)B x y ,则由几何性质可以判断点,O B 关于直线:EF y tx t =-+对称,则0000010122y t x y x t t-⎧⨯=-⎪-⎪⎨⎪=-⋅+⎪⎩,解得:202022121t x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩,即22222(,)11t t B t t ++……………………8分直线AF 的斜率为22(1)1AF tk t t =≠±-, 直线BF 的斜率为22222021(1)2111BFttt k t t t t -+==≠±--+,AF BF k k ∴=,即,,A B F 三点共线. ……………………………………10分当1t =±时,(1,2),(1,1)A B ±±,此时,,A B F 共线.综上:,,A B F 三点共线. ……………………………………12分21. (I )解 由f (x )=e x -3x +3a ,x ∈R 知f ′(x )=e x -3,x ∈R . ………………………1分 令f ′(x )=0,得x =ln 3, ………………………………2分 于是当x 变化时,f ′(x ),f (x )的变化情况如下表.单调递增区间是[ln3,+∞),………………………………5分f (x )在x =ln 3处取得极小值,极小值为f (ln 3)=e ln3-3ln 3+3a =3(1-ln 3+a ).………6分 (II )证明:待证不等式等价于23312x e x ax >-+………………………………7分 设23()312x g x e x ax =-+-,x ∈R , 于是()33xg x e x a '=-+,x ∈R .由(I )及3ln ln 31a e>=-知:()g x '的最小值为g ′(ln 3)=3(1-ln 3+a )>0. ………9分 于是对任意x ∈R ,都有()g x '>0,所以g (x )在R 内单调递增. 于是当3ln ln 31a e>=-时,对任意x ∈(0,+∞),都有g (x )>g (0). ………………10分 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即23312xe x ax >-+,故3132x e x a x x >+- ……………………12分 22.解:(I )连接AB,P 、B 、F 、A 四点共圆,PAB PFB ∴∠=∠. ………………………………2分 又PA 与圆O 切于点A, PAB AEB ∴∠=∠, ………………………………4分PFB AEB ∴∠=∠//AE CD ∴. ………………………………5分(II )因为PA 、PB 是圆O 的切线,所以P 、B 、O 、A 四点共圆,由PAB ∆外接圆的唯一性可得P 、B 、F 、A 、O 共圆,四边形PBFA 的外接圆就是四边形PBOA 的外接圆,∴OP 是该外接圆的直径. ………………………………7分由切割线定理可得23927PA PC PD =⋅=⨯= ………………………………9分OP ∴===.∴四边形PBFA ………………………………10分23解:(I )1C 的直角坐标方程为()2211x y -+=, ………………………………2分 2C 的直角坐标方程为3x =;………………………………4分(II )设曲线1C 与x 轴异于原点的交点为A,PQ OP ⊥,PQ ∴过点A (2,0),设直线PQ 的参数方程为()2cos sin x t t y t θθ=+⎧⎨=⎩为参数,代入1C 可得22cos 0,t t θ+=解得1202cos t t θ==-或,可知2|||||2cos |AP t θ== ………………………………6分 代入2C 可得2cos 3,t θ+=解得/1cos t θ=, 可知/1||||||cos AQ t θ== ………………………………8分 所以PQ=1|||||2cos |||cos AP AQ θθ+=+≥当且仅当1|2cos |||cos θθ=时取等号, 所以线段PQ长度的最小值为 ………………………………10分24.解:(1)由已知可得12, 0()1, 0121, 1x x f x x x x -<⎧⎪=≤<⎨⎪-≥⎩,所以min ()1f x =, ………………………………3分 所以只需|1|1m -≤,解得111m -≤-≤,02m ∴≤≤,所以实数m 的最大值2M =. ………………………………5分(2)法一:综合法222a b ab +≥1ab ∴≤1≤,当且仅当a b =时取等号,① ………………………………7分又2a b ab +≤ 21≤+∴b a ab 2ab b a ab ≤+∴,当且仅当a b =时取等号,② ………………………………9分 由①②得,21≤+∴b a ab ,所以2a b ab +≥ ………………………………10分 法二:分析法因为0,0a b >>,所以要证2a b ab +≥,只需证222()4a b a b +≥,即证222224a b ab a b ++≥, 22a b M +=,所以只要证22224ab a b +≥,………………………………7分 即证22()10ab ab --≤,即证(21)(1)0ab ab +-≤,因为210ab +>,所以只需证1ab ≤,下证1ab ≤,因为ab b a 2222≥+=,所以1ab ≤成立,所以2a b ab +≥ ………………………………10分。
2018届河北省石家庄市高三第一次模拟考试A卷文科数学试题及答案
石家庄市高中毕业班第一次模拟考试试卷数学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,a R ∈ ,若(1)(1)a a i -++ 是纯虚数,则a 的值为A. -1或1B. 1C. -1D. 32. 设不等式20x x -≤的解集为M, 函数()lg(1)f x x =-的定义域为N ,则M ∩N=A. (-1, 0]B. [0, 1)C.(0,1)D. [0.1]3.函数()tan(2)3f x x π=-的单调递增区间是A. 5[,]()212212k k k Z ππππ-+∈ B.5(,)()212212k k k Z ππππ-+∈ C. 2(,)()63k k k Z ππππ++∈ D.5[,]()1212k k k Z ππππ-+∈4. 已知12123113,log ,log 23a b c === ,则A. a b c >>B. b c a >>C. c b a >>D. b a c >>SACB正视图5. 登山族为了了解某山高y(km)与气温x (°C )之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:A. -10B. -8C. -6D. -46.已知等差数列{}n a ,且35710133()2()48a a a a a ++++= ,则数列{}n a 的前13项之和为A. 24B. 39C. 52D. 1047. 执行右面的程序框图,若输出的结果为3,则可输入的实数x 值的个数为A. 1B. 2C. 3D. 48.三棱锥S-ABC 及其三视图中的正视图和侧视图如图所示,则棱SB 的长为A. 211B. 4 2C. 38D. 16 39. 在∆ABC 中,角A 、B 、C 所对的边长分别为,,a b c 且满足sin cos c A C =,则sinA+sinB 的最大值是10. 双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,渐近线分别为12,l l ,点P 在第一象限内且在1l 上,若2l ⊥PF 1,2l ∥PF 2,则该双曲线的离心率为A. 5B. 2C. 3D. 211. 已知()f x 是定义在R 上的以3为周期的偶函数,若(1)1,f <23(5)1a f a -=+ ,则实数a 的取值范围为 A. 14a -<< B. 21a -<< C. 10a -<<D. 12a -<<12.设直线l 与曲线3()21f x x x =++有三个不同的交点A 、B 、C, 且|AB|=|BC|=10 ,则直线l 的方程为D. 31y x =+二、填空题:本大题共4小题,每小题5分,共20分.14. 若,x y 满足约束条件⎩⎨⎧x ≥0x +2y ≥32x +y ≤3, 则z x y =-的最大值是15. 在三棱锥P-ABC 中,侧棱PA,PB,PC 两两垂直,PA=1,PB=2,PC=3,则三棱锥的外接球的表面积为______16. 已知O 为锐角∆ABC 的外心,AB=6,AC=10,AO xAB yAC =+,且2105x y +=,则边BC 的长为 _______三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知{}n a 是各项均为正数的等比数列,且12342,32.a a a a ⋅=⋅= (I)求数列{}n a 的通项公式;(II)设数列{}n b 的前n 项为2n S n =()n N *Î,求数列{}n n a b ×的前n 项和.18. (本小题满分12分)如图,在三棱柱ABC-A 1B 1C 1中,AB ⊥AC ,顶点1A 在底面ABC 上的射影恰为点B ,且AB=AC=A 1B=2.(Ⅰ)证明:平面1A AC ⊥平面1AB B ; (Ⅱ)若点P 为11B C 的中点,求三棱锥P ABC -与四棱锥111P AA B A -的体积之比.19.(本小题满分12分)某城市要建成宜商、宜居的国际化新城,该城市的东城区、西城区分别引进8个厂家,现对两个区域的16个厂家进行评估,综合得分情况如茎叶图所示.(Ⅰ)根据茎叶图判断哪个区域厂家的平均分较高;(Ⅱ)规定85分以上(含85分)为优秀厂家,若从该两个区域各选一个优秀厂家,求得分差距不超过5的概率.20. (本小题满分12分)椭圆C:22221(0)x y a b a b +=>> 的离心率为32,过其右焦点F 与长轴垂直的弦长为1.(I)求椭圆C 的方程;(II)设椭圆C 的左,右顶点分别为A ,B ,点P 是直线1x =上的动点,直线PA 与椭圆的另一交点为M ,直线PB 与椭圆的另一交点为N,求证:直线MN 经过一定点.21. (本小题满分12分)图①CEO 1O 2AO 2图②已知函数()ln (1)(1)()f x x x x ax a a R =---+∈ . (I)若a =0,判断函数()f x 的单调性;(II)若1x >时,()f x <0恒成立,求a 的取值范围.请考生在第22〜24三题中任选一题做答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1:几何证明选讲已知⊙O 1和⊙O 2相交于A ,B 两点,过A 点作⊙O 1的切线交⊙O 2于点E ,连接EB 并延长交⊙O 1于点C ,直线CA 交⊙O 2于点D. (Ⅰ) 当点D 与点A 不重合时(如图①),证明ED 2=EB ·EC ; (II) 当点D 与点A 重合时(如图②),若BC=2,BE=6,求⊙O 2的直径长.23. (本小题_分10分)选修4-4:坐标系与参数方程 在直角坐标系中,曲线C 1的参数方程为:2cos ,,x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2的极坐标方程为:cos ρθ=. (I)求曲线C 2的直角坐标方程;(II)若P ,Q 分别是曲线C 1和C 2上的任意一点,求|PQ|的最小值.24. (本小题满分10分)选修4-5:不等式选讲已知函数()2(0)f x ax ax a a =-+-> . (I)当a =1时,求()f x x ≥的解集;(II )若不存在实数x ,使()f x <3成立,求a 的取值范围.石家庄市高中毕业班第一次模拟考试数学(文科)答案一、选择题:A 卷答案:1-5 CBBAC 6-10 CCBDB 11-12AD B 卷答案:1-5 DBBAD 6-10 DDBCB 11-12AC 二、填空题:13.1(0,)16-14. 015.14π16. 三、解答题:(解答题按步骤给分,本答案只给出一或两种答案,学生除标准答案的其他解法,参照标准酌情设定,且只给整数分) 17解:(Ⅰ)设等比数列{}n a 的公比为q ,由已知得21251232a q a q ìï=ïíï=ïî,,……………2分又∵10a >,0q >,解得112a q ì=ïïíï=ïî,, ………………3分∴12n n a -=;…………………5分(Ⅱ)由2n S n =得,()211n S n -=-,∴当2n …时,121n n n b S S n -=-=-,………………7分当1n =时,11b =符合上式,∴21n b n =-,(n Î*N )……………8分,∴()1212n n na b n -?-?,()12113252212n n T n -=+??+-?L ,()()2312123252232212n nn T n n -=???+-?-?L ,………………10分两式相减得 ()()()21122222122323n nnn T n n --=++++--?--?L ,∴()2323n n T n =-+.……………………12分18.证明:(Ⅰ)由题意得:1A B ⊥面ABC , ∴1A B AC ⊥, ------2分 又AB AC ⊥,1AB A B B = ∴AC ⊥面1AB B,------3分∵AC ⊂面1A AC , ∴平面1A AC ⊥平面1AB B ; ------5分 (Ⅱ)在三棱锥ABC P -中,因为AB AC ⊥, 所以底面ABC 是等腰直角三角形,又因为点P 到底面的距离B A h 1==2,所以34213131=⋅⋅⋅=⋅=∆-h AB AC h S V ABC ABC P .------6分由(Ⅰ)可知AC ⊥面1AB B ,因为点P 在11B C 的中点,所以点P 到平面B B AA 11距离2h 等于点1C 到平面B B AA 11的距离的一半,即12=h .------8分341223131312121111=⋅⋅⋅=⋅⋅=⋅=-h B A AB h S V B B AA B B AA P 四边形, ------10分所以三棱锥ABC P - 与四棱锥111A B AA P -的体积之比为1:1.------12分19. 解:(Ⅰ)东城区的平均分较高. (结论正确即给分)……………………5分 (Ⅱ)从两个区域各选一个优秀厂家, 则所有的基本事件共15种,………………7分 满足得分差距不超过5的事件(88,85)(88,85(89,85)(89,94)(89,94)(93,94)(93,94)(94,,94)(94,,94)共9种.……………10分所以满足条件的概率为35.………………12分 20.解: (Ⅰ)依题意23==a c e , 过焦点F与长轴垂直的直线x=c与椭圆12222=+by a x联立解答弦长为a b 22=1,……………2分所以椭圆的方程1422=+y x .………………4分(Ⅱ)设P(1,t)3210t t k PA =+-=,直线)2(3:+=x ty l PA ,联立得:22(2),3 1.4t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩即()0361616942222=-+++t x t x t ,可知2216362,49M t x t --=+所以2218849M t x t -=+, 则222188,4912.49M M t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩……………………6分 同理得到22282,414.41N N t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩………………8分由椭圆的对称性可知这样的定点在x 轴, 不妨设这个定点为Q()0,m ,………………10-分 又m t t t t k MQ-+-+=948189412222 , m t t t t k NQ -+-+=1428144222 , NQMQ k k =,()28326240m t m --+=,4m =.……………12分21.解:(Ⅰ)若0a =,()ln 1f x x x x =-+,'()ln f x x ='(0,1),()0,()x f x f x ∈<为减函数,'(1,),()0,()x f x f x ∈+∞>为增函数.………………4分(Ⅱ)ln (1)(1)0,x x x ax a ---+<在()1,+∞恒成立.01若0a =, ()ln 1f x x x x =-+,'()ln f x x =,'(1,),()0,()x f x f x ∈+∞>∴为增函数.()(1)0f x f ∴>=,即()0f x <不成立;0a ∴=不成立 (6)分021x > ,(1)(1)ln 0,x ax a x x --+-<在()1,+∞恒成立, 不妨设(1)(1)()ln ,x ax a h x x x --+=-,()1,x ∈+∞()2'221(1)1()x ax a ax x a h x x x -+---+=-=-,()1,x ∈+∞………………8分'121()0,1,ah x x x a -===,若0a <,则211ax a -=<,1x >,'()0h x >,()h x 为增函数,()h x >(1)0h =(不合题意);若102a <<,1(1,)ax a -∈,'()0h x >,()h x 为增函数,()h x >(1)0h =(不合题意);若12a ≥,(1,)x ∈+∞,'()0h x <,()h x 为减函数,()h x <(1)0h =(符合题意).……………11分综上所述若1x >时,()0f x <恒成立,则12a ≥.………………12分22.解:(Ⅰ)连接AB ,在EA 的延长线上取点F ,如图①所示.∵AE 是⊙O 1的切线,切点为A , ∴∠FAC =∠ABC,.……………1分 ∵∠FAC =∠DAE ,∴∠ABC =∠DAE ,∵∠ABC 是⊙O 2内接四边形ABED 的外角, ∴∠ABC =∠ADE ,……………2分 ∴∠DAE =∠ADE .………………3分 ∴EA =ED ,∵EC EB EA ∙=2, ∴EC EB ED ∙=2.………………5分(Ⅱ)当点D 与点A 重合时,直线CA 与⊙O 2只有一个公共点, 所以直线CA 与⊙O 2相切.……………6分 如图②所示,由弦切角定理知:︒⨯=∠=∠∠=∠∠=∠∠=∠18021ABE ABC MAE PAC ABE MAE ABC PAC 因又∴AC 与AE 分别为⊙O 1和⊙O 2的直径.…………8分图(2)E∴由切割线定理知:EA 2=BE ·CE ,而CB =2,BE =6,CE=8 ∴EA 2=6×8=48,AE =34.故⊙O 2的直径为34.………………10分23.解: (Ⅰ)θρcos = ,…………………2分.…………………4分(Ⅱ)设P (ααsin 2,cos 2),)0,21(2C2PC ===…………………6分1cos ,2α∴=,2minPC =8分min PQ =……………………10分 24.解:(Ⅰ)当a=1时,()21f x x x x=-+-≥2x ≥当时,解得3x ≥; 当21<<x 时,解得1≤x ,∴无解1x ≤当时,解得1x ≤;……………………………3分综上可得到解集}31{≥≤x x x 或.……………………5分ϑρρcos 2=41212222=+⎪⎭⎫ ⎝⎛-=+y x x y x(Ⅱ)依题意, ,()3x f x ∀∈≥R 对都有,则()()3222)(≥-=---≥-+-=a a ax ax a ax ax x f ,……………8分232351(a a a a -≥-≤-∴≥≤-或或舍)5a ∴≥…………………10分。
2018石家庄市高三数学文科模拟考试题二带答案
记
分
22.
选
修
4-4
:
坐
标
系
与
参
数
方
程
在
平
面
直
角
坐
标
系
中
曲
线
的
方
程
为
直
线
的
参
数
方
程
(
为
参
数
),
若
将
曲
线
上
的
占
八、、
的
横
坐
标
不
变
纵
坐
标
变
为
原
来
的
倍
得
曲
线
-
(
1
)
写
出
曲
线
的
参
数
方
程
(
2
)
设
占
八、、
直
线
与
曲
线
的
两
个
交
占
八、、
分
别
为
求
的
值
.2
3.
选
修
4-5
:
不
等
式
选
讲
已
知
函
数
为
不
等
式
的
解
集
.
(
1
)
求
集
合
(
、
n
)
(
A
、
B
、
C
)
10
种
情
况
其
/、
中
3
人
高三数学-2018年石家庄市高中毕业班第一次模拟考试数学(文) 精品
2018年石家庄市高中毕业班第一次模拟考试试卷数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两分部.共150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合}1|||{>=x x A , }11|{<=xx B , 则 =A B C( ) A .)0,1(- B .),1[]1,(+∞--∞ C . )0,1[- D .),1()0,(+∞-∞2.已知cos(απ+4)=31,则sin(4πα-)的值等于 ( )A .31B . 31-C .322D .322-3.1-=m 是直线03=-+y mx 与直线02)1(2=+-+y m m x 垂直的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D . 既不充分也不必要条件 4.等比数列}a {n 是递减数列,其前n 项的积为T n ,若T 13 =4T 9,则a 8•a 15= ( ) A. 2± B. 4± C. 2 D. 45.曲线C :33x x y -=在点)2,2(-A 处的切线方程为 ( )A .022=-+y xB .0169=-+y xC .0106=-+y xD .043=-+y x6.下列条件中,能推出两个平面α与β平行的是 ( )A .两个全等△ABC, △A 1B 1C 1分别在平面α与平面β内,且AA 1//BB 1//CC 1 B .一条直线与平面α、平面β所成的角相等 C .直线a //α, a //βD .平面α、平面β分别与两条异面直线a 、b 都平行 7.已知向量 )3,1(,)2,2(,)0,2(--=== , 则与的夹角为 ( )A.4π B. 125π C. 3π D. 12π8.已知函数)(x f y =的定义域为,满足,其导函数为)(/x f 的图像如右图,则函数)(x f y =的图像是 ( )9.如图,已知直三棱柱111C B A ABC -的侧棱长是2,底面ABC ∆是等腰直角三角形,且090=∠ACB ,AC =2,E 是AB 的中点 , D 是AA 1的中点,则三棱锥E C BD 11-的体积是 ( ) A .1B .311BC .32D . 3210.P 是双曲线)0,0(,12222>>=-b a by a x 右支上一点,F 是右焦点,M 是右准线l 与x 轴的交点,若0045,60=∠=∠PFM PMF ,则双曲线的离心率为 ( )A .6B .33 C .36 D .26 11.在数列{}i a 中,{}20,3,2,1,1,0,1 =-∈i a i ,且820321=++++a a a a ,46)1()1()1(2202221=++++++a a a ,则)20,,2,1( =i a i 中1的个数是 ( )A .3B .5C .7D .912.已知定点)0,2(),0,2(B A -,动点P 与A ,B 连线的斜率之积满足m k k BP AP =∙, 当1-<m 时,则ABP ∆的形状是 ( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .不能确定第Ⅱ卷(非选择题,共90分)二、填空题:本大题共四小题,每小题4分,共16分,把答案填在题中横线上. 13.已知3010.02lg =,则=3010.110.14.圆4)1()(22=-++y a x 被直线03=-+y x 截得的劣弧长为34π,则 a = . 15.在某班举行的春节联欢晚会开幕前已排好有10个不同节目的节目单,如果保持原来的节目相对顺序不变,临时再插进去甲、乙、丙三个不同的新节目,且插进的三个新节目按甲、乙、丙顺序出场,那么共有__________种不同的插入方法(用数字作答).16.函数⎩⎨⎧+∞-∞∈-∈=),1()0,(,3]1,0[,1)( x x x x f ,若1)]([=x f f ,则x 的取值范围是_________.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)若函数)0(cos sin sin )(2>-=a ax ax ax x f 的图象上相邻的对称中心的横坐标相差4π. (Ⅰ)求实数a 的值; (Ⅱ)若函数)(x f y =图象按向量a = (0, c)平移后得到函数)(x g y =的图象,且对R x ∈ 恒有)(x g ≤2成立,求实数c 的取值范围. 18.(本小题满分12分)小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为54,43,32,且每个问题回答正确与否相互独立. (Ⅰ)求小王过第一关但未过第二关的概率;(Ⅱ)求小王所获奖品价值为3000元时的概率. 19.(本小题满分12分)已知不等式0232<+-t x x 的解集是R t m m ∈>,1),,1( . (Ⅰ)求m ,t 的值;(Ⅱ)若函数ax mx tx x f 2)(23-+=在区间),1(∞+ 是单调增函数,求a 的取值范围.20.(本小题满分12分) 如图, 正四棱柱ABCD —A 1B 1C 1D 1中,底面边长为侧棱长为2,动点P 在AA 1上运动,动点Q 在底面 ABCD 内运动,且PQ=2 . (Ⅰ)求证:BD ⊥AA 1C 1C 平面; (Ⅱ)求线段PQ 的中点M 所围成图形的面积;(Ⅲ)若2=PA ,当四面体1QDC B -的体积最小时,求二面角C Q C B --1的大小.21.(本小题满分12分)若在直角坐标平面第一象限内,点的坐标),(y x 满足n y x >+,并且x , y 都大于)(*∈N n n 的整点(横、纵坐标均为整数)的个数记为n a .(1)求543,,a a a 并写出数列{}n a 的通项公式)(n f a n =(不要求证明);(2)设数列{}n b 满足:n n n n n n n b b b b T a n b ++++=-=---122112222,2 ,求n T . 22.(本小题满分14分)设H 是ABC ∆的外心,)0,1(),0,1(-B A ,O 为坐标原点,动点G 满足:BC OA OG +=3,且 R AB GH ∈=λλ,(1)求顶点C 的轨迹E 的方程;(2)过点)2,0(F 作直线l 与曲线E 相交于M , N 两点,定点)3,0(- R ,若连接并延长RN RM ,分别交直线223=y 于T S ,两点,两点T S ,的横坐标之积是否为定值? 如果是,加以证明;如果不是,请说明理由.A 12018年石家庄市高中毕业班第一次模拟考试数学(理科)参考答案一、选择题: CBACB DACAA DB 二、填空题: 13.20; 14.22±-; 15. 286; 16.[][]3,21,0 ∈x .三、解答题: 17.(本小题满分12分)(Ⅰ)21)2cos 2(sin 212sin 21)2cos 1(21)(++-=--=ax ax ax ax x f 21)42sin(22++-=πax ………………………(3分)设最小正周期为T ,依题意知.2,42ππ== T T .∵0,2222>===a a T ππωπ 所以2=a …………………(6分)(Ⅱ)函数21)44sin(22)(++-=πx x f 的图象按向量a =(0, c)平移后得到函数)(x g y =图象,即c x x g y +++-==21)44sin(22)(π, ………(8分)若对R x ∈, )(x g ≤2恒成立,则需max )(x g ≤2. ………………(10分)即:2221++c ≤2, c ≤223-. ……………………(12分) 18.(本小题满分12分)(Ⅰ)设小王过第一关但未过第二关的概率为P 1, 则257]414341[)54(21=⨯+=P ………………………(6分) (Ⅱ)设小王所获奖品价值为3000元时的概率为P 2 则757]31)32()32(1[)43()54(2122222=⨯--=C P ………………………(12分)19.(本小题满分12分)(Ⅰ)因不等式0232<+-t x x 的解集是 m m ,1),,1(> 则1,m 是方程0232=+-t x x 的两根.由韦达定理⎩⎨⎧==+t m m 231,解得1,2==t m . ……………………(5分)(Ⅱ)函数ax x x x f 22)(23-+=的导数a x x x f 243)(2-+=' ………(7分)当 ),1(,0)(/∞+∈> x x f 时,)(x f 是增函数.∴02432>-+a x x ,对),1(+∞∈ x 恒成立,即x x a 4322+<成立.…(8分) 令x x x g 43)(2+=, ∴)(x g 在),1(+∞ 为增函数. ,7)1()(=>∴g x g ∴ a ≤27………………………(11分)当27>a 时,经检验)(x g 在),1(∞+ 上不是增函数.综上,a 的取值范围是]27,(-∞∈a . ………………………(12分)20.(本小题满分12分)(Ⅰ)∵ABCD —A 1B 1C 1D 1为正四棱柱.∴底面ABCD 为正方形 ∴BD ⊥AC又AA 1⊥底面ABCD. BD ⊂底面ABCD . ∴BD ⊥AA 1∴BD ⊥平面AA 1C 1C ; ………………(4(Ⅱ)∵AA 1⊥底面ABCD . ∴AA 1⊥AQ.又M 为PQ 的中点, ∴AM=1 ……(6分) ∴点M 在以为球心,半径为1的球面上. 故动点M 所形成图形的面积为2π=S .………………………(8分) (Ⅲ)若2=PA ,则2=AQ .∴Q 在以A 为圆心半径为2的圆弧上运动.∵Q D B C Q D C B V V --=11.又C 1到面BDQ 的距离为2,只要△BDQ 的面积最小即可,即Q 到BD 距离最小.∵AC ⊥BD, ∴Q 在AC 上.设O AC BD = , 由(Ⅰ)BD ⊥平面CC 1Q,过O 作OE ⊥C 1Q 交C 1Q 于E ,则BEO ∠为二面角C Q C B --1的平面角. ………………………(10分)OEQ Rt Q C QO CQ ∆===,22,2,231∽CQ C Rt 1∆.∴22arctan .22tan ,11112=∠==∠=BEO OEOBBEO OE ∴二面角C Q C B --1的大小为22arctan .………………………(12分)21.(本小题满分12分)(1) 满足条件的点),(y x ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>+>>ny n x n y x y x 00在,所表示的平面 区域内,如图阴影部分. 不难得出,3,2,1543===a a a …………………(3分)∴2)1)(2()2(210--=-++++=n n n a n …………………(5分)(2) ,2322-=-=n a n b n n ………………………(6分)31=-∴+n n b b ∴数列{}n b 是以1为首项,公差为3的等差数列.…(8分)∵n n n n n b b b b T ++++=---12211222∴)23()53(242221-+-+++=∙--n n T n n n ……………①)23(2)53(2422221-+-+++=∙-n n T n n n ……………②② - ①得)23()222(3221--++++=--n T n n n n)23(21)21(2321----⨯+=-n n n4322--=+n n∴4322--=+n T n n ………………………(12分)A 122.(本小题满分14分)(1)令),(11y x =, ),(y x =, 则),1(y x +=.由+=3得),2(),1()0,1(),(3311y x y x y x +=++==, ∴y y =13.又R ∈=λλ,, ∴AB GH //, ∴)3,0(yH ………………(3分)∵H 是ABC ∆的外心,∴HC HA =,∴)0(9491222≠+=+y y x y整理得,顶点C 的轨迹E 的方程为:)0(1322≠=+y y x . ………(6分) (2) 两点T S ,的横坐标之积是21-为定值. ………………………(7分)设直线l :2+=kx y ,代入)0(1322≠=+y y x 得0122)3(22=-++kx x k . 设),(),,(2211y x N y x M ,则22131kx x +-=. ………………………(8分) 同理可得03626)3(222=-+-+k y y k . ∴⎪⎪⎩⎪⎪⎨⎧+-=+=+∙2221221336326k k y y k y y 直线RM 的方程为3311-+=x x y y , 直线RN 的方程为3322-+=x x y y . ………………………(10分) ∴33223223331111+⎪⎪⎭⎫ ⎝⎛+=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∙y x x y x x y y s ,33223223332222+⎪⎪⎭⎫ ⎝⎛+=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∙y x x y x x y y r .………………………(12分)221213223)3)(3(⎪⎪⎭⎫⎝⎛+++=∴∙∙y y x x x x r s 213)(326615212121-=++++=∙y y y y x x 21-=∴∙r s x x 为定值. ………………………(14分)。
数学答案
2018年石家庄一模 数学试题参考答案说明:1.在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数. 一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.) 17.12-18. 6π 19.(23,23-),(1009,0),三、解答题(本大题有7个小题,共68分) 20.解:(1)原式=ab b a ab -+++1=1++b a …………………………………………………………(2分)∵4=+b a ,∴原式=4+1=5.……………………………………………………(4分) (2)∵b a b ab a 22222+++-=)(2)(2b a b a ++-, ………………………(6分) 由题意得,42)(2⨯+-b a =17,∴2)(b a -=9,∴b a -=±3.……………………………………………………………………(8分) 21.(1)40;………………………………………………………………………(1分)补全图形如图1所示:………………………………………………………(3分)题号 1 2 3 4 5 6 7 8 答案 D A B C A D C D 题号 9 10 11 12 13 14 15 16 答案BDCACBCD奖项祖冲之奖刘徽奖赵爽奖 人数/人100 80 60 40 20 杨辉奖 0(2)90,90;……………………………………………………………………(5分)(3)列表法:……………………………………………………………………(7分)∵第二象限的点有(−2,2)和(−1,2)∴P(点在第二象限)=92……………………………………………………(9分)22.解:(1)如图2,作F⊥BD,垂足为F.……………………………………(1分)∵AC⊥BD,∴∠ACB=∠FB=90°;在Rt△FB中,∠1+∠3=90°;又∵B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;……………………………………………………………………(2分)在△ACB和△BF中,∴△ACB≌△BF(AAS);∴F=BC,……………………………………………………………………(4分)∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;…………………………………………………………………(5分)∴BC=BD-CD=3-1.8=1.2,∴F=1.2,即到BD的距离是1.2m.………………………………………(6分)(2)由(1)知:△ACB≌△BFyx−2 −1 2−2 (−2,−2)(−1,−2)(2,−2)−1 (−2,−1)(−1,−1)(2,−1)2 (−2,2)(−1,2)(2,2)213HFECABAD图2∴BF=AC=2m ,………………………………………………………………(7分)作H ⊥DE ,垂足为H .∵F ∥DE,∴H=FD ,……………………………………………………(8分)∴H=BD -BF=3-2=1,即到地面的距离是1m .……………………(9分)23.解:(1)此时点A 在直线l 上; …………………………………………………(1分)∵BC =AB =2,点O 为BC 中点,∴点B (−1,0),A (−1,2),……………………………………………………(3分) 把点A 的横坐标x=−1代入解析式42+=x y ,得4)1(2+-⨯=y =2,等于点A 的纵坐标2,∴此时点A 在直线l 上. …………………………………………………………(5分) (2)由题意可得,点D (1,2),及点M (−2,0), 当直线l 经过点D 时,设l 的解析式为t kx y +=(k ≠0),∴⎩⎨⎧=+=+-202t k t k ,解得⎪⎪⎩⎪⎪⎨⎧==3432t k ,…………………………………………………(7分)∴当直线l 与AD 边有公共点时,t 的取值范围是34≤t ≤4. ………………(9分) 24.解:(1)5 ………………………………(1分) (2)设AE =x ,∵AB =4,∴BE =4﹣x ,在矩形ABCD 中,根据折叠的性质知: Rt △FDE ≌Rt △ADE , ∴ FE =AE =x ,FD =AD =BC =3, ∴ BF =BD ﹣FD =5﹣3=2,在Rt △BEF 中,根据勾股定理,得FE 2+BF 2=BE 2,即x 2+4=(4﹣x )2,解得:x =32, ∴AE 的长为32. ……………………………………………(4分)(3)存在, ……………………………………………(5分)如图3,延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,则点P 即为所求(画出点P 即可). ………………………………(6分)AEBCD FGPH图3此时有:PC =PG ,∴PF +PC =GF .过点F 作FH ⊥BC ,交BC 于点H ,则有FH ∥DC , ∴△BFH ∽△BDC ,∴FH BF BH DC BD BC ==,即2453FH BH==,∴8655FH BH ==,, ………………………………………………………(8分)∴GH =BG +BH 6213,55=+= 在Rt △GFH 中,根据勾股定理,得 ∴GF 2222218505()(),555GH FH =+=+= 即PF +PC 的最小值为505.5…………………………………………………(10分) 25.解:(1)设b kx q +=(k ,b 为常数且k ≠0),当x =2时,q =12,当x =4时,q =10,代入解析式得,⎩⎨⎧=+=+104122b k b k ,解得:⎩⎨⎧=-=141b k , …………………………………………………(2分) ∴14+-=x q . ……………………………………………………………………(3分) (2)当产量小于或等于市场需求量时,有p ≤q , ∴821+x ≤14+-x ,解得x ≤4, ………………………………………………(5分) 又2≤x ≤10,∴2≤x ≤4.…………………………………………………………(6分) (3)①当产量大于市场需求量时,可得4<x ≤10, 由题意得,厂家获得的利润是:p qx y 2-= ………………………………………………………………………(7分)=16132-+-x x=4105)213(2+--x .……………………………………………………………(9分) ②∵当x ≤213时,y 随x 的增加而增加,又∵产量大于市场需求量时,有4<x ≤10, ∴当4<x ≤213时,厂家获得的利润y 随销售价格x 的上涨而增加.……(11分)26.解:【发现】(1)3π.………………………………………………………………………(1分) (2)设⊙P 半径为r ,则有r =4-3=1,当t =2时,如图4,点N 与点A 重合, ∴ P A =r =1,设MP 与AB 相交于点Q ,在Rt △ABO 中, ∵∠OAB =30°,∠MPN =60°, ∵∠PQA =90°.∴11,22PQ PA ==∴3cos30,2AQ PA =︒= ∴11133,22228PQASPQ AQ ==⨯⨯= 即重叠部分的面积为83.………………………………………………(4分) 【探究】:① 如图5,当⊙P 与直线AB 相切于点C 时, 连接PC ,则有PC ⊥AB ,PC =r =1, ∵∠OAB =30°,∴AP =2, ∴OP =OA -AP =3-2=1;∴点P 的坐标为(1,0); …………(6分) ② 如图6,当⊙P 与直线OB 相切于点D 时, 连接PD ,则有PD ⊥OB ,PD =r =1, ∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD =PD OP ,OP =33230cos 1= ,∴点P 的坐标为(332,0);………(8分)③ 如图7,当⊙P 与直线OB 相切于点E 时,xA BOxy4●●(N ) M PQ 图4P●ABOxy4●C图5ABO y4●EP●图7AB Oxy4●D P ●图6连接PE,则有PE⊥OB,同②可得:OP=332;∴点P的坐标为(-332,0)……………………………………………(10分)【拓展】t的取值范围是2 <t≤3,4≤t<5 ………………………………………(12分)(提示:当点N运动到与点A重合时,MN与Rt△ABO的边有一个公共点,此时t=2 ;当t>2 直到⊙P运动到与AB相切时(t=3 ),MN与Rt△ABO的边有两个公共点,∴2 <t≦3 . 当⊙P运动到PM与OB重合时,MN与Rt△ABO的边有两个公共点,此时t=4 ;直到⊙P 运动到点N与点O重合时,MN与Rt△ABO的边有一个公共点,此时t=5;∴4 ≦t<5. )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届石家庄市一模文科数学答案石家庄市2017-2018学年高中毕业班第一次模拟考试试题文科数学答案一、选择题 (A 卷答案)1-5 ACDBB 6-10CABBB 11-12 DD (B 卷答案)1-5 BCDAA 6-10CBAAA 11-12 DD 二、填空题13. 13- 14. 3 15. 乙 16. 3三、解答题(解答题仅提供一种解答,其他解答请参照此评分标准酌情给分)17. 解:(1)设数列{}na 的公差为d ,且0d ≠由题意得242937a a a a ⎧=⎪⎨=⎪⎩,……………2分即21(7)(7)(76)27d d d a d ⎧+=-+⎨+=⎩,解得13,1d a ==, (4)分 所以数列{}n a 的通项公式32n a n =-,………………………………6分(2)由(1)得1(32)(31)nn n ba a n n +=⋅=-+1111()33231n b n n ∴=--+,…………………………8分12111111111......(1)34473231n n S b b b n n =+++=-+-++--+L…………………10分11(1)33131n n n =-=++.………………………12分. 18.(1)因为//BC 平面SDM,BC ⊂平面ABCD,平面SDM I 平面ABCD=DM, 所以DM BC //……………………2分因为DC AB //,所以四边形BCDM 为平行四边形,又,CDAB 2=,所以M 为AB 的中点。
(4)分因为AB AM λ=12λ∴=…………………6分(2)因为BC ⊥SD , BC ⊥CD , 所以BC ⊥平面SCD , 又因为BC ⊂平面ABCD , 所以平面SCD ⊥平面ABCD ,平面SCD I 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E ,则SE ⊥平面ABCD ,……………………………7分 在Rt SEA V 和Rt SED V 中, 因为SA SD =,所以2222AE SA SE SD SE DE =--=,又由题知45EDA ∠=o,所以AE ED ⊥, 由已知求得2AD =,所以1AE ED SE ===……………………………9分 连接BD,则111133S ABD V -=⨯⨯=三棱锥,…………………………………10分 又求得SAD V 3所以由B ASDS ABDVV --=三棱锥三棱锥点B 到平面SAD 的距23……………12分19.解:(1)甲方案中派送员日薪y (单位:元)与送货单数n的函数关系式为:N,100∈+=n n y …………………………3分乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y ………………………6分(2)①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则1=15220+15430+15620+15820+16010100x ⨯⨯⨯⨯⨯甲()=155.4,()()()()()2222221=[20152155.4+30154155.4+20156155.4+20158155.4+10010160155.4]=6.44S ⨯-⨯-⨯-⨯-⨯-甲------------8分乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则1=14050+15220+17620+20010100x ⨯⨯⨯⨯乙()=155.6,()()()()222221=[50140155.6+20152155.6+20176155.6+10200155.6]100=404.64S ⨯-⨯-⨯-⨯-乙-------------10分②、答案一:由以上的计算可知,虽然x x <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日薪收入波动相对较小,所以小明应选择甲方案。
答案二:由以上的计算结果可以看出,x x <乙甲,即甲方案日薪平均数小于乙方案日薪平均数,所以小明应选择乙方案。
--------12分 20解:(1)设,,2211r MF r MF ==由题1222212122224112c e a r r a r r c r r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩,--------------------2分 解得2,1a c ==,则21b =,∴椭圆C的方程为2212x y +=.-------------------------------------------4分 (2)设0(,)(0)A x y x y⋅≠,1122(,),(,)B x y C x y ,当直线1AF 的斜率不存在时,设2(A -,则2(1,B -,直线2AF 的方程为2(1)4y x =--代入2212x y +=,可得25270x x --=275x ∴=,2210y=-,则72(,510D - ∴直线BD 的斜率为122(210276(1)5k---==--,直线OA 的斜率为222k=-12221()626k k ∴⋅=⋅-=-,当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-.----------------------------5分当直线1AF 、2AF 的斜率存在时,1±≠x设直线1AF 的方程为0(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得:22222200000[(1)2]422(1)0x y x y x y x ++++-+=,又220012x y +=,则220022yx =-,代入上述方程可得 2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则0134(1)13232y x yy x x x--=+=-+++000034(,)2323x y B x x +∴--++ 7分设直线2AF 的方程为0(1)1y y x x =--,同理可得000034(,)2323x y D x x --- ----------------------------9分∴直线BD的斜率为000000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+----------------11分Q直线OA 的斜率为02y kx =,∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----.所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. -----------------12分21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e⎛⎫-=-+-= ⎪⎝⎭, …………2分又()()1xf x x b e a'=++-,所以1(1)1b f a e e'-=-=-+,…………4分若1a e =,则20b e =-<,与0b >矛盾,故1a =,1b =…………5分(Ⅱ)由(Ⅰ)可知()()()11xf x x e =+-, (0)0,(1)0f f =-=,由0m ≤,可得2x mxx≥+……… 6分令()()()11xg x x e x =+--,()()22x g x x e '=+-,当2x ≤-时,()()2220xg x x e '=+-<-<……… 8分当2x >-时, 设()()()22xh x g x x e '==+-,()()30xh x x e'=+>,故函数()g x '在()2,-+∞上单调递增,又(0)0g '=, 所以当(),0x ∈-∞时,()0g x '<,当()0,x ∈+∞时,()0g x '>, 所以函数()g x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,………… 10分 故()()2()(0)011xg x g x e x mxx≥=⇒+-≥≥+故2()f x mxx≥+………… 12分法二:(Ⅱ)由(Ⅰ)可知()()()11x f x x e =+-,(0)0,(1)0f f =-=,由0m ≤,可得2x mxx≥+……… 6分令()()()11xg x x e x =+--,()()22x g x x e '=+-,令当时,,单调递减,且;…………8分当时,,单调递增;且所以在上当单调递减,在上单调递增,且…………10分故()()2()(0)011xg x g x e x mxx≥=⇒+-≥≥+故2()f x mx x≥+………… 12分选作题22(1)由题意可知直线l 的直角坐标方程为32y x =+,………… 2分曲线C 是圆心为(3,1),半径为r 的圆,直线l 与曲线C相切,可得:33122r ⋅-+==;可知曲线C 的方程为22(3)(1)4x y +-=,…………4分所以曲线C 的极坐标方程为223cos 2sin 0ρρθρθ--=, 即4sin()3ρθπ=+ …………5分(2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>)6sin 21πON OM S MON =∆ …………7分………………9分当12πθ=时, 32+≤∆MONS所以△MON面积的最大值为23. ………………10分23. 【解析】(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-,去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,………………3分画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-;………………5分(2)由(1)可知2229a b c ++=,所以222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++ ………………7分22222222222221313239312132315155b ac a c b a b a c b c ++++++++++++++++++=≥= (9)分当且仅当2221235a b c +=+=+=,即2224,3,2ab c ===等号成立,所以222111123a b c +++++的最小值为35. ………………10分。