2019-2020学年浙江省温州市瑞安市六校联盟八年级(下)期中数学试卷
浙江省温州市2019-2020学年八年级下学期期中数学试题(word无答案)
浙江省温州市2019-2020学年八年级下学期期中数学试题(word无答案)一、单选题(★) 1 . 在实数范围内有意义,则的取值范围是()A.B.C.D.(★) 2 . 一元二次方程配方后可变形为().A.B.C.D.(★★) 3 . 下列运算中,正确的是()A.B.C.D.(★★) 4 . 某超市一月份的营业额为300万元,第一季度的营业额共为1500万元,如果平均每月增长率为,则由题意可列方程为( )A.B.C.D.(★) 5 . 四边形的对角线与相交于点,下列四组条件中,一定能判定四边形为平行四边形的是( )A.B.,C.,D.(★) 6 . 若,则代数式的值为()A.7B.6C.D.(★★) 7 . 已知数据的平均数是2,方差是0.1,则的平均数和标准差分别为()A.2,1.6B.2, C.6,0.4D.6,(★) 8 . 如果关于 x的一元二次方程( m+1) x 2+ x+ m 2﹣2 m﹣3=0有一个根为0,则 m的值()A.﹣1B.3C.﹣1或3D.以上答案都不对(★) 9 . 如果一个三角形的三边长分别为则化简的结果是()A.B.C.D.(★★) 10 . 若是方程的一个根,则的值为()A.2020B.C.2019D.二、填空题(★) 11 . 化简:___________.(★★) 12 . 化简的结果为_________.(★★) 13 . 已知:,那么__________.(★★) 14 . 如图,已知正六边形,连接,则_________°.(★) 15 . 设的小数部分为 a,则(4+ a) a的值是__________.(★★)16 . 若一元二次方程有两个实数根,则实数的取值范围___________.(★) 17 . 关于的 x一元二次方程的一个根是-1,则 m的值是________,方程的另一个根是________.(★★) 18 . 如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为,而中间那个小平行四边形(阴影部分)的面积为20平方厘米,则四边形的面积是________.三、解答题(★★) 19 . 计算:(1)(2)(★★) 20 . 解下列方程:(1)(2)(★★) 21 . 下表是某校九年级(1)班20名学生某次数学测验的成绩统计表:成绩(分)60708090100人数(人)15x y2(1)若这20名学生的平均分是84分,求x和y的值;(2)这20名学生的本次测验成绩的众数和中位数分别是多少?(★) 22 . 如图,在中,过点作,交于点,交于点,过点作,交于点,交于点.(1)求证:四边形是平行四边形;(2)已知,求的长.(★★) 23 . (2016春•新昌县校级期中)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.天气渐热,为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱饮料每降价1元,每天可多售出2箱.针对这种饮料的销售情况,请解答以下问题:(1)当每箱饮料降价20元时,这种饮料每天销售获利多少元?(2)在要求每箱饮料获利大于80元的情况下,要使每天销售饮料获利14400元,问每箱应降价多少元?(★) 24 . (本题9分)把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法叫做配方法.配方法在代数式求值,解方程,最值问题等都有着广泛的应用.例如:①用配方法因式分解:a 2+6a+8原式=a 2+6a+9-1=(a+3) 2 –1=(a+3-1)(a+3+1)=(a+2)(a+4)②若M=a 2-2ab+2b 2-2b+2,利用配方法求M的最小值:a 2-2ab+2b 2-2b+2=a 2-2ab+b 2+b 2-2b+1+1=(a-b)2+(b-1) 2 +1∵(a-b)2≥0,(b-1) 2 ≥0∴当a=b=1时,M有最小值1请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a+ .(2)用配方法因式分解: a 2-24a+143(3)若M= a 2+2a +1,求M的最小值.(4)已知a 2+b 2+c 2-ab-3b-4c+7=0,求a+b+c的值.。
2019-2020学年浙江省温州实验中学八年级(下)期中数学试卷 解析版
2019-2020学年浙江省温州实验中学八年级(下)期中数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列四个图形中,是中心对称图形的是()A.B.C.D.2.若式子有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=33.用配方法解一元二次方程x2﹣8x+3=0,此方程可化为()A.(x﹣4)2=13B.(x+4)2=13C.(x﹣4)2=19D.(x+4)2=19 4.如图,在▱ABCD中,若∠A+∠C=110°,则∠B的度数是()A.70°B.105°C.125°D.135°5.下面计算正确的是()A.=±5B.(﹣)2=﹣5C.3﹣2=D.÷=4 6.表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差,要选择一名发挥稳定的同学参加数学竞赛,应该选择()甲乙丙丁平均数(分)94949494方差 5.8 3.27.4 6.6A.甲B.乙C.丙D.丁7.已知关于x的方程x2+4x+a=0有两个不相等的实数根,则a的值可能为()A.3B.4C.5D.68.如图,以正五边形ABCDE的边CD为边作正方形CDGF,使点F,G在其内部,则∠BCF 的度数是()A.12°B.18°C.24°D.30°9.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x,则x满足的方程是()A.5000(1+x)=6050B.5000(1+2x)=6050C.5000(1﹣x)2=6050D.5000(1+x)2=605010.已知▱ABCD,点E是边BC上的动点,以AE为边构造▱AEFG,使点D在边FG上,当点E由B往C运动的过程中,▱AEFG面积变化情况是()A.一直增大B.保持不变C.先增大后减小D.先减小后增大二、填空题(本题有6小题,每小题4分,共24分)11.(4分)方程x2﹣25=0的解为.12.(4分)当x=﹣14时,二次根式的值是.13.(4分)如图,直线AB、CD被直线EF所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB与CD不平行.用反证法证明这个命题时,应先假设:.14.(4分)如图,在▱ABCD中,P为AB上的一点,E、F分别是DP、CP的中点,G、H为CD上的点,连接EG、FH,若▱ABCD的面积为24cm,GH=AB,则图中阴影部分的面积为.15.(4分)如图,世纪广场有一块长方形绿地,AB=18m,AD=15m,在绿地中开辟三条宽为xm的道路后,剩余绿地的面积为144m2,则x=.16.(4分)如图,在▱ABCD中,AD=,E,F分别为CD,AB上的动点,DE=BF,分别以AE,CF为对称轴翻折△ADE,△BCF,点D,B的对称点分别为G,H.若E、G、H、F恰好在同一直线上,∠GAF=45°,且GH=5.5,则AB的长是.三、解答题(本题有6小题,共46分)17.(6分)(1)计算:.(2)解一元二次方程:x2﹣4x﹣5=0.18.(6分)如图,在10×10的正方形方格之中,△ABC的顶点都在格点上(1)在图1中画出△ABC关于格点O成中心对称的△A'B'C'.(2)在图2中画出格点▱ABEF,使得S▱ABEF=S△ABC.19.(8分)疫情期间,实验中学启动“抗疫在家体有运动打卡”活动.线上学习期间,为了解同学的打卡情况,某社会实践小组随机抽取某一周的部分打卡次数数据,通过分析与整理,绘制了如下统计图.(1)m=,a=.(2)这组数据的众数是次,中位数是次.(3)返校后,线上体育打卡1次记为1分,将线上体育打卡和体能测试成绩分别按照30%和70%的比例计算出平均成绩并评选出体育达人,小方与他的PK对手小锋的成绩分别如表所示,请通过计算说明最终谁赢得了这场PK.体育打卡次数(次)体能测试成绩(分)小方4910小锋50920.(8分)如图,在▱ABCD中,点E,点F在对角线AC上且AE=EF=FC.(1)求证:四边形DEBF是平行四边形;(2)若∠CDE=90°,DC=8,DE=6,求▱DEBF的周长.21.(8分)返校复学之际,某班家委会出于对学生卫生安全的考虑,为每位学生准备了便携式免洗抑菌洗手液.去市场购天时发现当购买量不超过100瓶时,免洗抑菌洗手液的单价为8元;超过100瓶时,每增加10瓶,单价就降低0.2元,但最低价格不能低于每瓶5元,设家委会共买了x瓶免洗抑菌洗手液.(1)当x=80时,每瓶洗手液的价格是元;当x=150时,每瓶洗手液的价格是元.(2)若家委会购买洗手液共花费1200元,问一共购买了多少瓶洗手液?22.(10分)如图1,在平面直角坐标系中,点A的坐标是(0,8),点B的坐标是(6,0),点C为AB的中点,动点P从点A出发,沿AO方向以每秒1个单位的速度向终点O运动,同时动点Q从点O出发,以每秒2个单位的速度沿射线OB方向运动;当点P到达点O时,点Q也停止运动.以CP,CQ为邻边构造▱CPDQ,设点P运动的时间为t秒.(1)点C的坐标为,直线AB的解析式为.(2)当点Q运动至点B时,连结CD,求证:CD∥AP.(3)如图2,连结OC,当点D恰好落在△OBC的边所在的直线上时,求所有满足要求的t的值.23.(5分)已知﹣|7﹣x|+=3y﹣2,则2x﹣18y2=.24.(5分)已知a2+1=3a,b2+1=3b,且a≠b,则+=.25.(10分)如图1,在▱ABCD中,BD=6,∠ABC=45°,∠DBC=30°,动点E在边上,CE=x,动点F在射线BD上,BF=5x.(1)若点P是BC边上一点,在点E,F运动过程中,是否存在x的值,使得以P,D,E,F顶点的四边形是平行四边形?若存在,求出x的值;若不存在,请说明理由.(2)如图2,过点D作DG⊥BC交BC的延长线于点G.过点E作EH∥BC交DG的于点E连接FH,把△DHF沿FH翻折得到△D'HF,当D'F与△DBG的一边平行时,HG 的长.(直接写出答案)2019-2020学年浙江省温州实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.下列四个图形中,是中心对称图形的是()A.B.C.D.【分析】利用中心对称图形的定义进行解答即可.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不合题意;故选:C.2.若式子有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3【分析】根据二次根式有意义的条件即可求解.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故选:A.3.用配方法解一元二次方程x2﹣8x+3=0,此方程可化为()A.(x﹣4)2=13B.(x+4)2=13C.(x﹣4)2=19D.(x+4)2=19【分析】依据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方求解可得.【解答】解:∵x2﹣8x+3=0,∴x2﹣8x=﹣3,则x2﹣8x+16=﹣3+16,即(x﹣4)2=13,故选:A.4.如图,在▱ABCD中,若∠A+∠C=110°,则∠B的度数是()A.70°B.105°C.125°D.135°【分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【解答】解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=110°,∴∠A=∠C=55°,∴∠B=125°.故选:C.5.下面计算正确的是()A.=±5B.(﹣)2=﹣5C.3﹣2=D.÷=4【分析】利用二次函数的性质对A、B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=5,所以A选项错误;B、原式=5,所以B选项错误;C、原式=,所以C选项正确;D、原式==2,所以D选项错误.故选:C.6.表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差,要选择一名发挥稳定的同学参加数学竞赛,应该选择()甲乙丙丁平均数(分)94949494方差 5.8 3.27.4 6.6A.甲B.乙C.丙D.丁【分析】根据方差的定义,方差越小数据越稳定即可解答.【解答】解:从平均数看,四名同学成绩相同,从方差看,乙方差最小,发挥最稳定,所以要选择一名发挥稳定的同学参加数学竞赛,应该选择乙,故选:B.7.已知关于x的方程x2+4x+a=0有两个不相等的实数根,则a的值可能为()A.3B.4C.5D.6【分析】根据判别式的意义得到△=42﹣4×1×a>0,然后解不等式即可.【解答】解:∵关于x的方程x2+4x+a=0有两个不相等的实数根,∴△=42﹣4×1×a>0,解得a<4.观察选项,只有A选项符合题意.故选:A.8.如图,以正五边形ABCDE的边CD为边作正方形CDGF,使点F,G在其内部,则∠BCF 的度数是()A.12°B.18°C.24°D.30°【分析】根据多边形的内角和公式可得∠BCD的度数,根据正方形的性质可得∠DCF=90°,再根据角的和差关系计算即可.【解答】解:∠BCD=(5﹣2)×180°÷5=108°,∠DCF=90°,∴∠BCF=∠BCD﹣∠DCF=108°﹣90°=18°.故选:B.9.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x,则x满足的方程是()A.5000(1+x)=6050B.5000(1+2x)=6050C.5000(1﹣x)2=6050D.5000(1+x)2=6050【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【解答】解:设每天的增长率为x,依题意,得:5000(1+x)2=6050.故选:D.10.已知▱ABCD,点E是边BC上的动点,以AE为边构造▱AEFG,使点D在边FG上,当点E由B往C运动的过程中,▱AEFG面积变化情况是()A.一直增大B.保持不变C.先增大后减小D.先减小后增大【分析】延长BE,与GF的延长线交于点P,先证明四边形ADPE是平行四边形,再证明△AGD≌△EFP,得出平行四边形AGFE的面积等于平行四边形ADPE的面积,又AD ∥BP,根据两平行线之间的距离处处相等得出平行四边形ABCD的面积等于平行四边形ADPE的面积,进而得出平行四边形ABCD的面积等于平行四边形AEFG面积.所以根据图示进行判断即可.【解答】解:设△ABE,△ECH,△HFD,△DGA的面积分别为S1、S2、S3、S4,延长BE,与GF的延长线交于点P.∵四边形ABCD是平行四边形,∴AD∥BP,∠ADG=∠P.∵四边形AEFG是平行四边形,∴AG∥EF,AE∥DP,AG=EF,∴∠G=∠EFP.∵AD∥BP,AE∥DP,∴四边形ADPE是平行四边形.在△AGD与△EFP中,,∴△AGD≌△EFP(AAS),∴S4=S△EFP,∴S4+S四边形AEFD=S△EFP+S四边形AEFD,即S▱AEFG=S▱ADPE,又∵▱ADPE与▱ADCB的一条边AD重合,且AD边上的高相等,∴S▱ABCD=S▱ADPE,∴平行四边形ABCD的面积=平行四边形AEFG的面积.故▱AEFG面积不变,故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)方程x2﹣25=0的解为x=±5.【分析】移项得x2=25,然后采用直接开平方法即可得到方程的解.【解答】解:∵x2﹣25=0,移项,得x2=25,∴x=±5.故答案为:x=±5.12.(4分)当x=﹣14时,二次根式的值是3.【分析】把x=﹣14代入,再进行化简即可.【解答】解:当x=﹣14时,==3,故答案为:3.13.(4分)如图,直线AB、CD被直线EF所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB与CD不平行.用反证法证明这个命题时,应先假设:AB∥CD.【分析】在反证法的步骤中,第一步是假设结论不成立,可据此进行填空.【解答】解:根据反证法的步骤,则可假设AB∥CD,故答案为:AB∥CD.14.(4分)如图,在▱ABCD中,P为AB上的一点,E、F分别是DP、CP的中点,G、H 为CD上的点,连接EG、FH,若▱ABCD的面积为24cm,GH=AB,则图中阴影部分的面积为6.【分析】设EG,FH交于点O,根据平行四边形的性质可得求解S△PCD=12cm,利用三角形的中位线可求解S△PEF=3,由平行线的性质可求解S△OEF=S△OGH=S△PEF=1.5cm,进而可求解.【解答】解:如图,设EG,FH交于点O,∵四边形ABCD为平行四边形,且▱ABCD的面积为24cm,∴S△PCD=S▱ABCD=12cm,AB=CD,AB∥CD,∵E、F分别是DP、CP的中点,∴EF为△PCD的中位线,∴CD=2EF,EF∥CD∥AB,∴S△PEF:S△PCD=1:4,∴S△PEF=3,∵GH=AB,∴EF=GH,EF∥GH,∴S△OEF=S△OGH=S△PEF=1.5cm,∴S阴影=3+2×1.5=6,故答案为6.15.(4分)如图,世纪广场有一块长方形绿地,AB=18m,AD=15m,在绿地中开辟三条宽为xm的道路后,剩余绿地的面积为144m2,则x=3.【分析】由在绿地中开辟三条宽为xm的道路后,剩余绿地的面积为144m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设道路的宽为xm,根据题意得:(18﹣2x)(15﹣x)=144,解得:x=21或3,x=21不合题意,舍去,答:道路的宽为3m.故答案为:3.16.(4分)如图,在▱ABCD中,AD=,E,F分别为CD,AB上的动点,DE=BF,分别以AE,CF为对称轴翻折△ADE,△BCF,点D,B的对称点分别为G,H.若E、G、H、F恰好在同一直线上,∠GAF=45°,且GH=5.5,则AB的长是14.5.【分析】过G点作GM⊥AF于点M,设DE=BF=x,由勾股定理求得AM与GM,再证明AF=EF,用x表示AF,FG,FM,由勾股定理列出x的方程,求得x的值,便可求得AB.【解答】解:过G点作GM⊥AF于点M,由折叠知AG=AD=4,∵∠GAF=45°,∴∠AGM=45°,∴AM=GM==4,∵DE=BF,∴设DE=BF=x,则由折叠性质知,EG=DE=BF=FH=x,∵GH=5,5,∴EF=2x+5.5,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠AED=∠BAE,∵∠AED=∠AEG,∴∠F AE=∠FEA,∴AF=EF=2x+5.5,∴AB=AF+BF=3x+5.5,MF=AF﹣AM=2x+1.5,由勾股定理得,FG2﹣FM2=MG2,即(x+5.5)2﹣(2x+1.5)2=42,解得,x=3,或x=﹣(舍),∴AB=3x+5.5=14.5,故答案为:14.5.三、解答题(本题有6小题,共46分)17.(6分)(1)计算:.(2)解一元二次方程:x2﹣4x﹣5=0.【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【解答】解:(1)=3+2﹣=2﹣.(2)x2﹣4x﹣5=0,(x﹣5)(x+1)=0,∴x﹣5=0或x+1=0,∴x1=5,x2=﹣1.18.(6分)如图,在10×10的正方形方格之中,△ABC的顶点都在格点上(1)在图1中画出△ABC关于格点O成中心对称的△A'B'C'.(2)在图2中画出格点▱ABEF,使得S▱ABEF=S△ABC.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)取AC的中点E.作平行四边形ABEF即可.【解答】解:(1)如图,△A′B′C′即为所求.(2)如图,平行四边形ABEF即为所求.19.(8分)疫情期间,实验中学启动“抗疫在家体有运动打卡”活动.线上学习期间,为了解同学的打卡情况,某社会实践小组随机抽取某一周的部分打卡次数数据,通过分析与整理,绘制了如下统计图.(1)m=4,a=126°.(2)这组数据的众数是6次,中位数是5次.(3)返校后,线上体育打卡1次记为1分,将线上体育打卡和体能测试成绩分别按照30%和70%的比例计算出平均成绩并评选出体育达人,小方与他的PK对手小锋的成绩分别如表所示,请通过计算说明最终谁赢得了这场PK.体育打卡次数(次)体能测试成绩(分)小方4910小锋509【分析】(1)根据打卡4次数及其所占的百分比求出打卡总数,根据各组打卡次数之和等于总次数得到m的值,用360°乘以打卡6次所占的百分比求出α;(2)根据众数与中位数的定义求解;(3)分别求出两人的加权平均数,分数较高者赢得这场PK.【解答】解:(1)抽取的打卡总次数为:2÷10%=20(次),m=20﹣(3+4+2+7)=4,α=360°×=126°.故答案为:4,126°;(2)打卡6次的次数为7,次数最多,所以众数是6次;把20个数据按从小到大的顺序排列,位于第10,11个的数据都是5,所以中位数是5次.故答案为:6,5;(3)小方的成绩为:49×30%+10×70%=21.7(分),小锋的成绩为:50×30%+9×70%=21.3(分),∵21.7>21.3,∴小方赢得了这场PK.20.(8分)如图,在▱ABCD中,点E,点F在对角线AC上且AE=EF=FC.(1)求证:四边形DEBF是平行四边形;(2)若∠CDE=90°,DC=8,DE=6,求▱DEBF的周长.【分析】(1)连接BD交AC于O,根据平行四边形的性质得到AO=CO,DO=BO,根据平行四边形的判定定理即可得到结论;(2)根据勾股定理和平行四边形的周长公式即可得到结论.【解答】(1)证明:连接BD交AC于O,∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,∵AE=CF,∴AO﹣AE=CO﹣CF,即EO=FO,∴四边形DEBF是平行四边形;(2)解:∵∠CDE=90°,DC=8,ED=6,∴CE===10,∵EF=CF,∴DF=CE=5,∴▱DEBF的周长=2(DF+DE)=2×(5+6)=22.21.(8分)返校复学之际,某班家委会出于对学生卫生安全的考虑,为每位学生准备了便携式免洗抑菌洗手液.去市场购天时发现当购买量不超过100瓶时,免洗抑菌洗手液的单价为8元;超过100瓶时,每增加10瓶,单价就降低0.2元,但最低价格不能低于每瓶5元,设家委会共买了x瓶免洗抑菌洗手液.(1)当x=80时,每瓶洗手液的价格是8元;当x=150时,每瓶洗手液的价格是7元.(2)若家委会购买洗手液共花费1200元,问一共购买了多少瓶洗手液?【分析】(1)根据商家所给出条件进行判断,即可求得结论;(2)根据题意确定x的取值范围,再列方程求解即可.【解答】解:(1)∵80<100,∴每瓶洗手液的价格是8元;当x=150时,每瓶洗手液的价格是:8﹣(150﹣100)÷10×0.2=8﹣1=7(元),故答案为:8,7;(2)①0≤x≤100时,8×100=800<1200(舍去);②∵,解得,x=250,∴当100<x≤250时,.解得,x1=200,x2=300(舍去),③当x>250时,1200÷5=240(舍去).答:一共购买了200瓶洗手液.22.(10分)如图1,在平面直角坐标系中,点A的坐标是(0,8),点B的坐标是(6,0),点C为AB的中点,动点P从点A出发,沿AO方向以每秒1个单位的速度向终点O运动,同时动点Q从点O出发,以每秒2个单位的速度沿射线OB方向运动;当点P到达点O时,点Q也停止运动.以CP,CQ为邻边构造▱CPDQ,设点P运动的时间为t秒.(1)点C的坐标为(3,4),直线AB的解析式为y=﹣x+8.(2)当点Q运动至点B时,连结CD,求证:CD∥AP.(3)如图2,连结OC,当点D恰好落在△OBC的边所在的直线上时,求所有满足要求的t的值.【分析】(1)由中点坐标公式可求点C坐标,利用待定系数法可求解析式;(2)通过证明四边形ACDP是平行四边形,可得结论;(3)分三种情况讨论,利用平行四边形的性质可求解.【解答】解:(1)∵点A的坐标是(0,8),点B的坐标是(6,0),点C为AB的中点,∴点C(3,4),设直线AB的解析式为:y=kx+b,由题意可得:,解得:,∴直线AB的解析式为:y=﹣x+8;故答案为:(3,4),y=﹣x+8;(2)如图1,连接CD,∵四边形CBDP是平行四边形,∴CB∥PD,BC=PD,∵点C为AB的中点,∴AC=BC,∴PD=AC,∴四边形ACDP是平行四边形,∴CD∥AP;(3)如图2,过点D作DF⊥AO于F,过点C作CE⊥BO于E,∵四边形PCQD是平行四边形,∴CQ=PD,PD∥CQ,∴∠QCP+∠DPC=180°,∵AO∥CE,∴∠OPC+∠PCE=180°,∴∠FPD=∠ECQ,又∵∠PFD=∠CEQ=90°,∴△PDF≌△CQE(AAS),∴DF=EQ,PF=CE,∵点C(3,4),点P(0,8﹣t),点Q(2t,0),∴CE=PF=4,EQ=DF=2t﹣3,∴FO=8﹣t﹣4=4﹣t,∴点D(2t﹣3,4﹣t),当点D落在直线OB上时,则4﹣t=0,即t=4,当点D落在直线OC上时,∵点C(3,4),∴直线OC解析式为:y=x,∴4﹣t=(2t﹣3),∴t=,当点D落在AB上时,∵四边形PCQD是平行四边形,∴CD与PQ互相平分,∴线段PQ的中点(t,)在CD上,∴=﹣t+8,∴t=;综上所述:t=4或或.23.(5分)已知﹣|7﹣x|+=3y﹣2,则2x﹣18y2=22.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【解答】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣11=9y2,则2x﹣18y2=2x﹣2(x﹣11)=22.故答案为:22.24.(5分)已知a2+1=3a,b2+1=3b,且a≠b,则+=3.【分析】根据题意可得a,b是一元二次方程x2﹣3x+1=0的两个根,根据韦达定理可得出a+b=3,ab=1,再将要求的式子通分计算即可.【解答】解:∵a2+1=3a,b2+1=3b,∴a,b是一元二次方程x2﹣3x+1=0的两个根,∴由韦达定理得:a+b=3,ab=1,∴+==3.故答案为:3.25.(10分)如图1,在▱ABCD中,BD=6,∠ABC=45°,∠DBC=30°,动点E在边上,CE=x,动点F在射线BD上,BF=5x.(1)若点P是BC边上一点,在点E,F运动过程中,是否存在x的值,使得以P,D,E,F顶点的四边形是平行四边形?若存在,求出x的值;若不存在,请说明理由.(2)如图2,过点D作DG⊥BC交BC的延长线于点G.过点E作EH∥BC交DG的于点E连接FH,把△DHF沿FH翻折得到△D'HF,当D'F与△DBG的一边平行时,HG 的长或或.(直接写出答案)【分析】(1)分两种情形:如图1﹣1中,当点F在线段BD上时,即0≤x≤1.2时,四边形PEDF是平行四边形,如图1﹣2中,当点F在BD的延长线上时,即x>1.2时,四边形DPEF是平行四边形,分别构建方程求解即可.(2)分三种情形:如图2﹣1中,当D′F∥DG时,如图2﹣2中,当FD′∥BC时,设HD′交BD于R.如图2﹣3中,当FD′∥DG时,四边形FDHD′是菱形,分别构建方程求解即可.【解答】解:(1)如图1﹣1中,当点F在线段BD上时,即0≤x≤1.2时,四边形PEDF 是平行四边形,过点E作EJ⊥CG于J.由题意,DF=PE=6﹣5x,CE=x,∵AB∥CD,∴∠ECJ=∠ABC=45°,∴EJ=CJ=x,∵PE∥BD,∴∠EPJ=∠DBC=30°,∴PE=2EJ,∴6﹣5x=2x,∴x=.如图1﹣2中,当点F在BD的延长线上时,即x>1.2时,四边形DPEF是平行四边形,同法可得,DF=PE=2EJ,∴5x﹣6=2x,∴x=2,综上所述,满足条件的x的值为或2.(2)如图2﹣1中,当D′F∥DG时,过点E作ET⊥BG于T.∵∠ECT=45°,EC=x,∠ETC=90°,∴ET=CT=x,∵EH⊥DG,DG⊥BG,∴∠ETG=∠EHG=∠HGT=90°,∴四边形ETGH是矩形,∴HG=ET=x,由题意,四边形DFD′H是菱形,∴DF=DH=3﹣x,∴6﹣5x=3﹣x,∴x=.如图2﹣2中,当FD′∥BC时,设HD′交BD于R.∵FD′∥BC,∴∠D′FR=∠DBC=30°,∵∠D′=∠BDC=60°,∴∠DRH=90°,∴DR=DH=(3﹣x).RH=DR=(3﹣x),∵RD′=D′H﹣RH=3﹣x﹣(3﹣x),∴FR=D′R=[3﹣x﹣(3﹣x)],∵FR+DF=DR,∴[3﹣x﹣(3﹣x)]+6﹣5x=(3﹣x),∴x=.如图2﹣3中,当FD′∥DG时,四边形FDHD′是菱形,∴DH=DF,∴3﹣x=5x﹣6,∴x=,综上所述,满足条件的GH的值为或或.。
2019-2020学年度第二学期八年级期中数学试题
2019~2020学年度下学期八年级期中测试数 学 试 题一、选择题(本大题共16个小题,1~10题每小题3分,11~16题每2题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1x 的取值范围是( ) A .x ≥1且x ≠2 B .x ≤1 C .x >1且x ≠2 D .x <1 2.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,23 3.在□ABCD 中,∠A =70°,则∠B 的度数为( )A .110°B .100°C .70°D .20°4)A .﹣4B .4C .±4D .25.在平行四边形ABCD 中,已知AB =5,BC =3,则它的周长为( )A .8B .10C .14D .16 6.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分 7.下列式子中,为最简二次根式的是( )ABCD8.已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是( )A .2.5B .3 C2 D39.如图1,在□ABCD 中,已知AD =12cm ,AB =8cm ,AE 平分∠BAD 交BC 边于点E ,则CE 的长等于( ) A .8cm B .6cm C .4cm D .2cm 10.如图2,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为( ) AB .3CD .511.等腰三角形腰长为13,底边长为10,则它的面积高为( ) A .90 B .60 C .30 D .25 12.如图3,在△ABC 中,∠C =90°,AC =2,点D 在BC∠ADC =2∠B ,AD BC 的长为( )A .3﹣1B .3 +1C .5﹣1D .5 +1图3 DABE2 1 图2A B E CD 图113.如图4,将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度h cm,则h的取值范围是()A.h≤17cm B.h≥8cmC.7cm≤h≤16cm D.15cm≤h≤16cm14.如图5,把一个长方形的纸片对折两次,然后剪下一个角.要得到一个正方形,剪口与折痕所成锐角的大小为()A.30°B.45°C.60°D.90°15.如图6,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,-5)B.(0,-6)C.(0,-7)D.(0,-8)16.如图7所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC的中点,若EF=1,则AB=(A.6 B.4C.2 D二、填空题(本大题共4个小题;每小题3分,共12分.把正确答案填在横线上)17.18.如图8,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积和为19.在平面直角坐标系xOy中,若A的坐标为(1OA为边长的菱形的周长为.20.如图9,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.三.解答题(本大题共6个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)21.(每小题6分,满分12分)(1)计算:2122⎛⎫-⎪⎝⎭.图5A BFCM图7 EA BCDF图9E(2)已知2x =2y =+22x xy y ++的值. 22.(每小题满分8分)已知a 、b 、c 是△ABC 的三边,且满足422422a b c b a c +=+,试判断△ABC 的形状.阅读下面解题过程:解:由422422a b c b a c +=+得:442222a b a c b c -=-①2222222()()()a b a b c a b +-=-②即222a b c +=③∴△ABC 为Rt △.④试问:以上解题过程是否正确: .若不正确,请指出错在哪一步? (填代号) 错误原因是 . 本题的结论应为 .23.(每题满分10分) 如图10,□ABCD 中,以B 为圆心,BA 的长为半径画弧,交BC 于点F ,作∠BAC的角平分线,交AD 于点E ,连接EF . (1)求证:四边形ABFE 是菱形;(2)若AB =4,∠ABC =60°,求四边形ABFE 的面积.A B C F图10 E24.(本题满分10分)如图11,在△ABC 中,AB =AC ,△ABC 的高BD ,CE 交于点F . (1)求证:FB =FC .(2)若FB =5,FD =3,求AB .A BCD F 图11 E如图12,点E 在□ABCD 内部,AF ∥BE ,DF ∥CE . (1)求证:△BCE ≌△ADF ; (2)设□ABCD 的面积为S ,四边形AEDF 的面积为T ,求ST 的值.ABCF图12E已知:如图13,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.图13AB C备用图1AB C备用图2。
2019-2020学年浙江省温州市瑞安市六校联盟八年级下学期期中数学试卷 (解析版)
2019-2020学年浙江省温州市瑞安市六校联盟八年级第二学期期中数学试卷一、选择题1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣34.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.45.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12 8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.49.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣110.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是岁、岁.13.(3分)化简:=.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.解:四个交通标志图案中,只有第2个为中心对称图形.故选:B.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=解:A、x+1=0是一元一次方程,故此选项不合题意;B、x2=2x﹣1是一元二次方程,故此选项符合题意;C、含有2个未知数,2y﹣x=1不是一元二次方程,故此选项不合题意;D、含有分式,x2+3=不是一元二次方程;故此选项不合题意.故选:B.3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣3解:依题意得x+3≥0,解得x≥﹣3.故选:A.4.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.4解:∵5,7,6,x,7的平均数是6,∴(5+7+6+x+7)=6,解得:x=5;故选:C.5.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°解:∵在▱ABCD中,∠B+∠D=130°,∠B=∠D,∴∠B=∠D=65°,又∵∠A+∠B=180°,∴∠A=180°﹣65°=115°.故选:D.6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°解:用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.故选:C.7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12解:A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项错误;D、原式=2×3=12,所以D选项正确.故选:D.8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.4解:∵四边形ABCD是平行四边形,四边形ABCD的周长是24,∴AB=CD,AD=BC,OB=OD,AD+AB=CD+BC=12,∵△COD的周长比△BOC的周长多4,∴(CD+OD+OC)﹣(CB+OB+OC)=4,即CD﹣BC=4,,解得,CD=8,BC=4,∴AB=CD=8,∵BD⊥AD,E是AB中点,∴DE=AB=4,故选:C.9.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣1解:∵一元二次方程x(kx+1)﹣x2+3=0,即(k﹣1)x2+x+3=0无实数根,∴△=b2﹣4ac=1﹣4×(k﹣1)×3<0且k﹣1≠0,解得k>且k≠1.k最小整数=2.故选:A.10.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.解:连接AC、BC,由题意得,AB1=×6=3,AA1=×8=4,由勾股定理得,A1B1==5,∵四边形ABCD为矩形,∴AC=BD,∵顺次连接四边形ABCD各边中点得到四边形A1B1C1D1,∴A1B1=BD,A1B1∥BD,C1B1=AC,C1B1∥AC,A1D1=AC,A1D1∥AC,∴A1B1=C1D1,A1B1∥C1D1,A1B1∥B1C1,∴四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,同理,四边形A3B3C3D3是菱形,且菱形的周长=20×=10,……四边形A9B9C9D9是菱形,且菱形的周长=20×=,故选:B.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是6.解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是15岁、16岁.解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故填16,15.13.(3分)化简:=π﹣3.解:==π﹣3.故答案是:π﹣3.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=2020.解:把x=﹣1代入一元二次方程ax2﹣bx﹣2020=0得:a+b﹣2020=0,即a+b=2020.故答案是:2020.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=20.解:设矩形花园BC的长为x米,则其宽为(54﹣x+2)米,依题意列方程得:(54﹣x+2)x=320,x2﹣56x+640=0,解这个方程得:x1=16,x2=40,∵28<40,∴x2=40(不合题意,舍去),∴x=16,∴AB=(54﹣x+2)=20.答:当矩形的长AB为16米时,矩形花园的面积为320平方米;故答案为:20.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为3或.解:如图1,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,∴∠BFE=∠B'FE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠B'EF,∴∠FEB=∠BFE,∴BF=BE,∵BE=BC﹣EC=9﹣4=5,∴BF=5,在Rt△ABF中,AF===3;如图2,当点B'落在CD边上时,由折叠知,△BEF≌△B'EF,△ABF≌△A'B'F,∴EB'=EB=5,A'B'=AB=CD=4,∵四边形ABCD是矩形,∴∠D=∠C=90°,在Rt△ECB'中,CB'===3,∴DB'=CD﹣CB'=4﹣3=1,设AF=A'F=x,在Rt△FA'B'中,FB'2=FA'2+A'B'2=x2+42,在Rt△FDB'中,FB'2=FD2+DB'2=(9﹣x)2+12,∴x2+42=(9﹣x)2+12,解得,x=,∴AF=;故答案为:3或.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.解:(1)∵x2=4x,∴x2﹣4x=0,∴x(x﹣4)=0,则x=0或x﹣4=0,解得x1=0,x2=4;(2)∵2x2﹣7x﹣4=0,∴(x﹣4)(2x+1)=0,则x﹣4=0或2x+1=0,解得x1=4,x2=﹣0.5.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.解:(1)如图,△A1B1C1为所作;(2)如图,△ABC2为所作.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?解:(1)小张的期末评价成绩为=80(分);(2)①小张的期末评价成绩为=80(分);②设小王期末考试成绩为x分,根据题意,得:≥80,解得x≥84.2,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.【解答】证明:(1)∵AB=BE,∴∠E=∠BAE,∵AF平分∠BAD,∴∠DAF=∠BAE,∴∠DAF=∠E,∴AD∥BE,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵AB=BE,∠E=60°,∴△ABE是等边三角形,∴BA=AE=6,∠BAE=60°,又∵BF⊥AE,∴AF=EF=3,∴BF===3,∴S△ABF=AF×BF=×3×3=,∴▱ABCD的面积=2×S△ABF=9.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)解:(1)设三、四这两个月的月平均增长率为x.由题意得:192(1+x)2=300,解得:x1=,x2=﹣(不合题意,舍去),答:三、四这两个月的月平均增长率为25%.(2)设当农产品每袋降价m元时,该淘宝网店五月份获利3250元.根据题意可得:(40﹣25﹣m)(300+5m)=3250,解得:m1=5,m2=﹣50(不合题意,舍去).答:当农产品每袋降价5元时,该淘宝网店五月份获利3250元.23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=3;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,∴ON的解析式是y=x.根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).。
最新2019-2020年浙江省八年级下学期数学期中考试试卷(解析版)
浙江省八年级下学期数学期中考试试卷一、选择题:本大题有10个小题,每小题3分,共30分.1.下列交通标志中是中心对称图形的是( )A. B. C. D.【答案】A【考点】中心对称及中心对称图形【解析】【解答】解:A.中心对称图形,A符合题意;B.轴对称图形,B不符合题意;C.不是中心对称图形,C不符合题意;D.轴对称图形,D不符合题意;故答案为:A.【分析】中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,由此即可得出答案.2.下列计算正确的是( )A. B. C. D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:A.∵=3,故正,A符合题意;B.∵(-)2=3,故错误,B不符合题意;C.∵=6,故错误,C不符合题意;D.∵()2=7,故错误,D不符合题意;故答案为:A.【分析】根据二次根式性质=,()2=a(a≥0)逐一计算即可得出答案.3.二次根式有意义的x的范围是( )A. x=1B. x≠1C. x≥1D. x≤1【答案】 D【考点】二次根式有意义的条件【解析】【解答】解:依题可得:1-x≥0,解得:x≤1.故答案为:D.【分析】根据二次根式有意义的条件:根号里面的数应大于或等于0,列出不等式,解之即可得出答案.4.若多边形的边数由3增加到n(n为大于3的正整数),则其外角和的度数( )A. 增加B. 减少C. 不变D. 不能确定【答案】C【考点】多边形内角与外角【解析】【解答】解:依题可得:任何一个多边形的外角和为360°,∴其外角和的度数不变.故答案为:C.【分析】多边形外角和的度数为360°,由此即可得出答案.5.下列二次根式中能与2 合并的是()A. B. C. D.【答案】B【考点】同类二次根式【解析】【解答】A、=2 ,不能与2 合并,故不符合题意;B、能与2 合并,故符合题意;C、=3 不能与2 合并,故不符合题意;D、=3不能与2 合并,不符合题意;故答案为:B.【分析】根据二次根式的性质,将各个二次根式分别化为最简二次根式,如果被开方数是3的就能与合并。
2019-2020学年度第二学期浙教版八年级数学期中试题卷-附详细答案
2019-2020学年第二学期期中考试八年级数学试题卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 13x -,则x 的取值范围是()A .3x >B .3x ≥C .3x <D .3x ≠2.一元二次方程2231x x -=的二次项系数a 、一次项系数b 和常数c 分别是()A .2,3,1a b c ===-B .2,1,3a b c ===-C .2,3,1a b c ==-=-D .2,3,1a b c ==-=3.下列图形,既是轴对称图形又是中心对称图形的是()A .平行四边形B .正五边形C .等边三角形D .矩形4.五边形的内角和是()A .360°B .540°C .720°D .900°5.在平行四边形ABCD 中,已知∠A :∠B =1:2,则∠B 的度数是() A .45°B .90°C .120°D .135°6.用反证法证明某一命题的结论“b a <”时,应假设() A .b a > B .b a ≥C .b a =D .b a ≤7.已知点M (-2,3)在双曲线xky =上,则下列一定在该双曲线上的是( ) A .(3,一2) B .(一2,一3) C . (2,3) D . (3,2) 8.正方形具有而矩形不一定具有的性质是()A. 对角线相等B. 对角互相垂直C. 对角线互相平分D. 对边线平分一组对角 9.关于x 的一元二次方程ax 2-2x +1=0有实数根,则整数a 的最大值是( )A .1B .1-C .2D .2-10.如图,在矩形ABCD 中,AB =6,BC =8,M 是AD 上任意一点,且ME ⊥AC 于E , MF ⊥BD 于F ,则ME +MF 为( )A .245B .125C .65D .不能确定二、填空题(本大题共有6小题,每小题4分,共24分)11.在菱形ABCD 中,对角线AC 、BD 长分别为8cm 、6cm ,则菱形的面积为 12.如图,A 、B 两点分别位于山脚的两端,小明想测量A 、B 两点间F EDC(第10题)的距离,于是想了个主意:先在地上取一个可以直接达到A 、B 两点的点C ,找到AC 、BC 的中点D 、E ,并且测出DE 的长为 15m ,则A 、B 两点间的距离为 _m . 13.点()1,A m ,()3,B n 是双曲线3y x=上的点,则m n (填“>”,“<”,“=”). 14.已知06)(5)(22222=-+++y x y x ,则22y x +的值为 .15.如图,已知矩形ABCD 的边长AB =4,BC =6,对角线AC 的垂直平分线分别交AC 、AD 、BC 于O 、E 、F ,连结AF 、CE ,则AEBF= .. 16.如图,已知函数y =2x 和函数y =的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则k = ,满足条件的P 点坐标是 .(第16题)三、解答题(本题有8小题,共66分) 17.(本题满分6分)计算(1)64)7()3(22--+-(2)2)32()31)(31(+--+18.(本题满分6分)解方程(1)240x x +=;(2)2670x x -+=.-19.(本题满分6分)已知关于x 的方程. x 2-2(m+1)x+m 2+2=0ODC(第15题)(1)若方程总有两个实数根,求m 的取值范围; (2) 若两实数根x 1,x 2满足(x 1+1)(x 2+1)=8,求m 的值。
2019-2020学年八年级第二学期期中考试数学试题(含答案)
2019-2020学年八年级第二学期期中考试数学试题一、精心选一选(10小题,每题3分,共30分).1、下列式子中,属于最简二次根式的是()A. B. C. D.2、下列计算中,结果错误的是()A. += B.5﹣2=3C.÷= D.(﹣)2=23、如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为()A.150cm2 B.200cm2 C.225cm2 D.无法计算4、三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A. a:b:c =13∶5∶12 B. a2-b2=c2C.a2=(b+c)(b-c) D.a:b:c=8∶16∶175、已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为 ( )A.5B.4.5C.4D.3.56、已知矩形ABCD中,AB=2﹣,BC=+1,则矩形ABCD的面积是()A.5 B.4﹣ C.5﹣4 D.5+47、如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为()A.14 B.15 C.16 D.188、已知﹣2<m <3,化简+|m+2|的结果是( ) A .5 B .1 C .2m ﹣1 D .2m ﹣59、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组的4位同学拟定的方案,其中正确的是( )A .测量对角线是否互相平分B .测量两组对边是否分别相等C .测量一组对角是否都为直角D .测量三个角是否为直角10、如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 最小,则这个最小值为( )A .B .2C .D .2二、耐心填一填(6小题,每题3分,共18分).11、计算:﹣= .﹣2= .12、如图,在正方形ABCD 中,E 是对角线BD 上任意一点,过E 作EF ⊥BC 于F ,作EG ⊥CD 于G ,若正方形ABCD 的周长为m ,则四边形EFCG 的周长为 。
2019-2020学年浙江省温州市瑞安市八年级下学期期中数学试卷 (解析版)
2019-2020学年浙江省温州市瑞安市八年级第二学期期中数学试卷一、选择题1.下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.42.下列化简结果正确的是()A.==B.+=C.==x D.3﹣2=13.一元二次方程3x2﹣2x+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实根数C.只有一个实数根D.没有实数根4.在平行四边形ABCD中,下列结论一定成立的是()A.AC⊥BD B.AB=AD C.∠A≠∠C D.∠A+∠B=180°5.下列选项,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是()A.a=3,b=﹣2B.a=2,b=1C.a=﹣3,b=2D.a=﹣2,b=3 6.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是()A.x2﹣7x+12=0B.x2+7x+12=0C.x2﹣9x+20=0D.x2+9x+20=0 7.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=1828.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是矩形9.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为()cm.A.14B.16C.12或14D.14或1610.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,F是对角线AC上的一个动点,则FE+FB的最小值是()A.1B.C.2D.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.要使二次根式有意义,那么x的取值范围是.12.若一个正多边形的每一个外角都是30°,则这个正多边形的边数为.13.已知菱形ABCD的两条对角线的长分别是x2﹣6x+8=0的两个根,则菱形ABCD的面积是.14.若一组数据2、3、x、4、5的平均数是4,则这组数据的方差为.15.如图,某小区规划在一个长30m、宽20m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成m.16.如图,在矩形ABCD中,AD=2,AB=4,点E是线段AD的中点,点F是线段AB内一点.连结EF,把△AEF沿EF折叠,当点A的对应点A′落在矩形ABCD 的对角线上时,AF的长为.三、解答题:共52分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)+×﹣;(2)﹣(2+)(2﹣).18.用适当的方法解下列方程:(1)x2﹣10x+16=0;(2)2x(x﹣1)=x﹣1.19.如图,在5×5的正方形网格中,每个小正方形的边长都是1,点A,B,C,D,E是五个格点,请在所给的网格中按下列要求画出图形.(1)从所给的五个格点中选出其中四个作为顶点做一个平行四边形.(2)过剩余一个点做一条直线l,使得直线l平分(1)小题中所做的平行四边形的面积.20.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况候选人A B C D E 模拟说题比赛成8375908590绩(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.C E平时成绩9585任课老师打分809021.如图,在▱ABCD中,点E,F分别在边BC和边AD上,且AF=CE,EF与对角线BD相交于点O.连接EF,BD.(1)求证:EF和BD互相平分.(2)若EF⊥BD,△ABF的周长为10,则▱ABCD的周长为多少?22.2019年12月以来,发现一种急性呼吸道病.感染者的临床表现为:以发热、乏力、干咳为主要表现.约半数患者多在一周后出现呼吸困难,严重者快速进展为急性呼吸窘迫综合征、脓毒症休克、难以纠正的代谢性酸中毒和出凝血功能障碍.(1)在初期,有1人感染了,经过两轮传染后共有144人感染了(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)后来举国上下众志成城,全都隔离在家.小玲的爷爷因为种的水果香梨遇到销滞难题而发愁,于是小玲想到了在微信朋友圈里帮爷爷销售香梨.香梨每斤成本为4元/斤,她发现当售价为6元/斤时,每天可以卖80斤.在销售过程中,她还发现一斤香梨每降价0.5元时,则每天可以多卖出10斤.为了最大幅度地增加销售量,而且每天要达到100元的利润,问小玲应该将售价定为多少元?23.如图,在平面直角坐标系中,把矩形OBCD沿对角线OC所在直线折叠,点B落在点B′处,OB′与CD相交于点E,BC=4,对角线OC所在直线的函数表达式为y=2x.(1)求证:△ODE≌△CB′E;(2)请写出CE的长和B′的坐标;(3)F是直线OC上一个动点,点G是矩形OBCD边上一点(包括顶点).是否存在点G使得G,F,B′,C所组成的四边形是平行四边形?如果不存在,请说明理由;如果存在,直接请求出F的坐标.参考答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.4【分析】结合车标图案,根据轴对称图形与中心对称图形的概念求解.解:第一个图形,既是中心对称图形,又是轴对称图形,故选项错误;第二个图形,是轴对称图形,不是中心对称图形,故选项错误;第三个图形,是轴对称图形,不是中心对称图形,故选项错误;第四、五个是中心对称图形而不是轴对称图形,故选项正确.故选:B.2.下列化简结果正确的是()A.==B.+=C.==x D.3﹣2=1【分析】直接利用二次根式的加减运算法则以及二次根式的性质分别化简得出答案.解:A、==,故此选项正确;B、+,不是同类二次根式,无法计算,故此选项错误;C、==,故此选项错误;D、3﹣2,不是同类二次根式,无法计算,故此选项错误.故选:A.3.一元二次方程3x2﹣2x+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实根数C.只有一个实数根D.没有实数根【分析】计算出判别式△=b2﹣4ac的值即可作出判断.解:∵a=3,b=﹣2,c=1,∴△=(﹣2)2﹣4×3×1=﹣4<0,∴方程没有实数根,故选:D.4.在平行四边形ABCD中,下列结论一定成立的是()A.AC⊥BD B.AB=AD C.∠A≠∠C D.∠A+∠B=180°【分析】由四边形ABCD是平行四边形,根据平行四边形的性质,可得对角相等,邻角互补,继而求得答案.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,AD∥BC,∠A=∠C,∴∠A+∠B=180°.故一定正确的是D.故选:D.5.下列选项,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是()A.a=3,b=﹣2B.a=2,b=1C.a=﹣3,b=2D.a=﹣2,b=3【分析】直接利用选项中数据代入求出答案.解:当a=3,b=﹣2时,a2>b2,则a>b,故原命题是真命题;当a=2,b=1时,a2>b2,则a>b,故原命题是真命题;当a=﹣3,b=2时,a2>b2,则a<b,故原命题是假命题,符合题意;当a=﹣2,b=3时,a2<b2,则a<b,故原命题是真命题.故选:C.6.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是()A.x2﹣7x+12=0B.x2+7x+12=0C.x2﹣9x+20=0D.x2+9x+20=0【分析】将已知数据从小到大顺序排列:2,3,4,4,5,5,5;根据众数和中位数的定义求出众数和中位数,再根据根与系数的关系造出方程即可.共7解:将已知数据从小到大顺序排列,得:2,3,4,4,5,5,5;共7个数据,处于中间的数据是第4个数据4,出现最多的数据是5,因此,这组数据的中位数是4,众数是5,以4,5为根的一元二次方程是x2﹣9x+20=0,故选:C.7.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选:B.8.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是矩形【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.解:A、对角线相等的四边形是矩形,是假命题,故此选项不合题意;B、对角线互相垂直的四边形是菱形,是假命题,故此选项不合题意;C、对角线互相平分的四边形是平行四边形,是真命题,故此选项符合题意;D、对角线互相垂直平分的四边形是矩形,是假命题,故此选项不合题意;故选:C.9.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为()cm.A.14B.16C.12或14D.14或16【分析】根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE 为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,BC=BE+CE=5cm,则平行四边形的周长=2(2+5)=14(cm);②当AB=BE=3cm时,CE=2cm,BC=BE+CE=5cm,则平行四边形的周长=2(3+5)=16(cm);故选:D.10.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,F是对角线AC上的一个动点,则FE+FB的最小值是()A.1B.C.2D.【分析】连接BD,则AC垂直平分BD,FD=FB,当D,F,E在同一直线上时,FE+FB 的最小值等于DE的长,再根据△ABD是等边三角形,即可得到AE的长,进而得到FE+FB的最小值是.解:如图所示,连接BD,则AC垂直平分BD,FD=FB,∴FE+FB=FE+FD,∴当D,F,E在同一直线上时,FE+FD的最小值等于DE的长,∵AD=AB,∠BAD=60°,∴△ABD是等边三角形,又∵E是AB的中点,∴DE⊥AB,AE=1,∴Rt△ADE中,DE===,∴FE+FB的最小值是,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.要使二次根式有意义,那么x的取值范围是x<2.【分析】根据使二次根式有意义的条件可得2﹣x≥0,使分式有意义的条件可得2﹣x≠0,故2﹣x>0,再解不等式即可.解:根据题意可得:2﹣x>0,解得:x<2,故答案为:x<2.12.若一个正多边形的每一个外角都是30°,则这个正多边形的边数为12.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷30°,计算即可求解.解:这个正多边形的边数:360°÷30°=12,故答案为:12.13.已知菱形ABCD的两条对角线的长分别是x2﹣6x+8=0的两个根,则菱形ABCD的面积是4.【分析】根据菱形的面积公式以及跟与系数的关系即可求出答案.解:设菱形的两条对角线长度为a、b,∴S菱形ABCD=ab,由根与系数的关系可知:ab=8,∴S菱形ABCD=4,故答案为:4.14.若一组数据2、3、x、4、5的平均数是4,则这组数据的方差为2.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.解:∵数据2、3、x、4、5的平均数是4,∴(2+3+x+4+5)÷5=4,∴x=6,∴这组数据的方差=[(2﹣4)2+(3﹣4)2+(6﹣4)2+(4﹣4)2+(5﹣4)2]=2;故答案为:2.15.如图,某小区规划在一个长30m、宽20m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成2m.【分析】设道路的宽为xm,将6块草地平移为一个长方形,长为(30﹣2x)m,宽为(20﹣x)m.根据长方形面积公式即可列方程(30﹣2x)(20﹣x)=6×78.解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,解得x=2或x=﹣33(舍去).答:通道应设计成2米.故答案为:2.16.如图,在矩形ABCD中,AD=2,AB=4,点E是线段AD的中点,点F是线段AB内一点.连结EF,把△AEF沿EF折叠,当点A的对应点A′落在矩形ABCD的对角线上时,AF的长为或.【分析】分点A′落在对角线BD上和点A′落在对角线AC上两种情况分别进行讨论,由折叠的性质即可得出AF的长.解:分两种情况:①当点A′落在对角线BD上时,连接AA′,如图1所示:∵将矩形沿EF折叠,点A的对应点为点A′,且点A'恰好落在矩形的对角线上,∴AA′⊥EF,∵点E为线段AD的中点,∴AE=ED=EA′,∴∠AA′D=90°,即AA′⊥BD,∴EF∥BD,∴点F是AB的中点,∵AB=4,∴AF=2.②当点A′落在对角线AC上时,如图2所示,同理可知AA'⊥EF,∴∠AHE=90°,∴∠AEH+∠EAH=90°,∵∠EAH+∠ACD=90°,∴∠AEH=∠ACD,∴tan∠AEF==tan∠ACD=,∴,∴AF=.∴综合以上可得AF的长为2或.故答案为:2或.三、解答题:共52分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)+×﹣;(2)﹣(2+)(2﹣).【分析】(1)先利用二次根式的乘法法则运算,然后化简后合并即可;(2)利用二次根式的性质和平方差公式计算.解:(1)原式=3+﹣=3+﹣=3;(2)原式=3﹣(4﹣3)=3﹣1=2.18.用适当的方法解下列方程:(1)x2﹣10x+16=0;(2)2x(x﹣1)=x﹣1.【分析】(1)根据因式分解法节即可求出答案.(2)根据因式分解法即可求出答案.解:(1)∵x2﹣10x+16=0,∴(x﹣2)(x﹣8)=0,∴x=2或x=8.(2)∵2x(x﹣1)=x﹣1,∴(x﹣1)(2x﹣1)=0,∴x=1或x=.19.如图,在5×5的正方形网格中,每个小正方形的边长都是1,点A,B,C,D,E是五个格点,请在所给的网格中按下列要求画出图形.(1)从所给的五个格点中选出其中四个作为顶点做一个平行四边形.(2)过剩余一个点做一条直线l,使得直线l平分(1)小题中所做的平行四边形的面积.【分析】(1)直接利用平行四边形性质得出顶点位置;(2)直接利用平行四边形对角线平分面积进而得出答案.解:(1)如图所示:四边形ABDE即为所求;(2)如图所示:直线l即为所求.20.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况候选人A B C D E 模拟说题比赛成8375908590绩(1)5名候选人模拟说题比赛成绩的中位数是85;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.C E平时成绩9585任课老师打分8090【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可得出答案.解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C的平均成绩是:=88(分),又∵E的平均成绩是:=89(分),∴88<89,∴最终候选人E将参加说题比赛.21.如图,在▱ABCD中,点E,F分别在边BC和边AD上,且AF=CE,EF与对角线BD相交于点O.连接EF,BD.(1)求证:EF和BD互相平分.(2)若EF⊥BD,△ABF的周长为10,则▱ABCD的周长为多少?【分析】(1)根据平行四边形的性质得到AD=BC,AD∥BC,求得DF=BE,DF∥BE,根据平行四边形的性质得到结论;(2)根据菱形的判定定理得到四边形FBED是菱形,求得BF=DF,于是得到结论.解:(1)在▱ABCD中,AD=BC,AD∥BC,∵AF=CE,∴AD﹣AF=BC﹣CE,∴DF=BE,DF∥BE,∴四边形FBED是平行四边形,∴EF和BD互相平分;(2)在▱FBED中,∵EF⊥BD,∴四边形FBED是菱形,∴BF=DF,∵△ABF的周长为10,∴AB+AF+BF=10,∴AB+AF+DF=10,即AB+AD=10,∴▱ABCD的周长为10×2=20.22.2019年12月以来,发现一种急性呼吸道病.感染者的临床表现为:以发热、乏力、干咳为主要表现.约半数患者多在一周后出现呼吸困难,严重者快速进展为急性呼吸窘迫综合征、脓毒症休克、难以纠正的代谢性酸中毒和出凝血功能障碍.(1)在初期,有1人感染了,经过两轮传染后共有144人感染了(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)后来举国上下众志成城,全都隔离在家.小玲的爷爷因为种的水果香梨遇到销滞难题而发愁,于是小玲想到了在微信朋友圈里帮爷爷销售香梨.香梨每斤成本为4元/斤,她发现当售价为6元/斤时,每天可以卖80斤.在销售过程中,她还发现一斤香梨每降价0.5元时,则每天可以多卖出10斤.为了最大幅度地增加销售量,而且每天要达到100元的利润,问小玲应该将售价定为多少元?【分析】(1)设每轮传染中平均一个人传染了x人,根据1人感染经过两轮传染后共有144人感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设小玲应该将售价定为y元,则每天可以卖出(80+10×)斤,根据总利润=每斤的利润×销售数量,即可得出关于y的一元二次方程,解之取其较小值即可得出结论.解:(1)设每轮传染中平均一个人传染了x人,依题意,得:1+x+x(1+x)=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮传染中平均一个人传染了11人.(2)设小玲应该将售价定为y元,则每天可以卖出(80+10×)斤,依题意,得:(y﹣4)(80+10×)=100,整理,得:y2﹣14y+45=0,解得:y1=5,y2=9(不合题意,舍去).答:小玲应该将售价定为5元.23.如图,在平面直角坐标系中,把矩形OBCD沿对角线OC所在直线折叠,点B落在点B′处,OB′与CD相交于点E,BC=4,对角线OC所在直线的函数表达式为y=2x.(1)求证:△ODE≌△CB′E;(2)请写出CE的长和B′的坐标;(3)F是直线OC上一个动点,点G是矩形OBCD边上一点(包括顶点).是否存在点G使得G,F,B′,C所组成的四边形是平行四边形?如果不存在,请说明理由;如果存在,直接请求出F的坐标.【分析】(1)得出BC=B'C;∠B=∠B'=90°,OD=B'C,根据AAS可证明结论;(2)设CE=x,可得OE=x,则DE=8﹣x;得出42+(8﹣x)2=x2,解方程得x=5,即求出CE,过点B'作B'H⊥CE,可求出B'H=2.4,HE=1.8,则答案可求出;(3)连接B'D,证明OC∥B'D,分三种情况画出图形:①如图2,若以CG为对角线,点G与点D重合,②如图3,若以CF为对角线,点G与点B重合,③如图4,若以CB'为对角线,点G与点D重合,由平移规律及平行四边形的性质分别求出点F的坐标即可.解:(1)∵四边形OBCD是矩形,∴BC=OD;∠B=∠D=90°,∵把矩形OBCD沿对角线OC所在直线折叠,点B落在点B′处,∴BC=B'C;∠B=∠B'=90°,∴OD=B'C,又∵∠OED=∠B'EC,∴△ODE≌△CB'E(AAS);(2)∵BC=4,对角线OC所在直线的函数表达式为y=2x.∴x=4,y=8,∴OD=BC=4,CD=OB=8,∵△ODE≌△CB'E,∴CE=OE,设CE=x,可得OE=x,则DE=8﹣x;∵∠ODE=90°,∴OD2+DE2=OE2,∴42+(8﹣x)2=x2,解得x=5,∴CE=5,∴DO=B'C=4,DE=B'E=3,过点B'作B'H⊥CE,∵S△CB'E=CE×B'H=CB'×B'E,∴B'H×5=3×4,∴B'H=2.4,HE=1.8,∴B'的坐标为(6.4,4.8).(3)连接B'D,∵CE=OE,B'E=DE,∴∠OCE=∠COE,∠EDB'=∠EB'D,又∵∠OEC=∠EDB',∴∠OCE=∠EDB',∴OC∥B'D,分三种情况画出图形:①如图2,若以CG为对角线,点G与点D重合,∵B'(6.4,4.8),C(4,8),D(4,0),∴F(4﹣2.4,0+3.2),即F(1.6,3.2).②如图3,若以CF为对角线,点G与点B重合,∵C(4,8),B'(6.4,4.8),B(0,8),∴F(0+2.4,8﹣3.2),即F(2.4,4.8).③如图4,若以CB'为对角线,点G与点D重合,∵D(4,0),B'(6.4,4.8),C(4,8),∴F(4+2.4,8+4.8),即F(6.4,12.8).。
2019-2020学年浙江省温州市八年级(下)期中数学试卷(附答案详解)
2019-2020学年浙江省温州市八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.二次根式√x−3中x的取值范围是()A. x≥0B. 3C. x≥3D. x≤−32.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.方程x2=9x的解为()A. x=0B. x=9C. x1=0,x2=9D. x1=3,x2=−34.下列二次根式中,是最简二次根式的是()A. √8B. √10C. √16D. √275.甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.27m.方差分别是S甲2=0.60,S乙2=0.62,S丙2=0.57,S丁2=0.49,则这四名同学跳高成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图2中,∠BAC的大小是()A. 72°B. 36°C. 30°D. 54°7.如图,▱ABCD的对角线相交于点O,下列条件中能判定这个平行四边形是矩形的是()A. AC=BDB. AB=BCC. ∠BAC=∠CADD. AC⊥BD8.用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设()A. √a2≠aB. a≤0C. a<0D. a>09.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A. 500(1+x)2=740B. 500(1+2x)=740C. 500(1+x)=740D. 500(1−x)2=74010.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF 的最小值为()A. 4B. 4.8C. 5D. 6二、填空题(本大题共8小题,共24.0分)11.计算:√6÷√2=______.12.已知x=1是方程x2+ax+2=0的一个根,则a的值为______ .13.在某市举办的垂钓比赛上,7名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10,7,9,则这组数据的众数是______ .14.若关于x的一元二次方程kx2−5x+4=0有两个相等的实数根,则k的值为______ .15.如图,河坝横断面迎水坡AB的坡比是1:√3(坡比是斜坡AB两点之间的高度差BC与水平距离AC之比),坝高BC=2m,则坡面AB的长度是______m.16.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=4,BC=7,则EF的长为______ .17.七巧板又称“智慧板”,是我们古代祖先的一项卓越创造.小华利用七巧板(如图1)拼出一个房子模型(如图2),已知图1中正方形ABCD的边长为4cm,则图2中六边形EFGHIJ的周长是______ cm.18.如图1,在菱形ABCD中,动点P从点C出发,沿C−A−D运动至终点D.设点P的运动路程为x(cm),△BCP的面积为y(cm2).若y与x的函数图象如图2所示,则图中a的值为______ .三、解答题(本大题共6小题,共46.0分)19.计算与解方程:(1)计算(4+√32)×2−8;(2)解方程x2−4x+1=0.20.如图,在所给的8×8方格纸中,点A,B均为格点,请画出符合要求的格点四边形.(1)在图1中画出一个以AB为边的矩形.(2)在图2中画出一个以AB为对角线的正方形.21.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,某高校为了解本校学生出行使用共享单车的情况,随机调查了某天50名出行学生使用共享单车的情况,并整理成如下统计表.使用次数(012345次)人数(名)12144884(1)这50名出行学生使用共享单车次数的中位数是______ 次.(2)这50名出行学生平均每人使用共享单车多少次?(3)若该校某天有1100名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?22.在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,AE=CF,连接BF、AF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,DE=4.则AF长为______ .23.瑞安城市规划展览馆位于瑞样新区瑞祥公园内,是温州目前规模最大的城市规划展览馆.为了让参观的人方便停车,城市规划展览馆利用一块矩形空地建了一个停车场,其布局如图所示,已知停车场的长为58米,宽为22米,阴影部分为停车位,其余部分是等宽的通道,已知停车位的面积为700平方米.(1)求通道的宽是多少米?(2)该停车场共有车位70个,据调查分析,当每个车位的月租金为300元时,可全部租出:当每个车位的月租金每上涨10元,就会少租出1个车位,那么停车场的月租金收入最大为______ 元?(请直接写出答案)24.如图1,在平面直角坐标系中,正方形OABC的边OA,OC分别在x轴,y轴的正半轴上,直线y=2x−4经过线段OA的中点D,与y轴交于点G,E是射线CG上一点,作点E关于直线DG的对称点F,连接BE,BF,FG.设点E的坐标为(0,m).(1)求点B的坐标是(______ ,______ ).(2)如图2,当点F落在线段BA的延长线上时,求证:四边形BEGF为菱形.(3)在点E的整个运动过程中,①当S△BEG=58S正方形OABC时,求线段CE的长.②N为平面内任意一点,当B,E,F,N四点构成的四边形为矩形时,则m的值为______ .(请直接写出答案)答案和解析1.【答案】C【解析】解:由题意知x−3≥0,解得:x≥3,故选:C.根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.本题考查的知识点为:二次根式的被开方数是非负数.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、不是轴对称图形,是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】C【解析】解:移项,得x2−9x=0,x(x−9)=0,即x=0或x−9=0∴x1=0,x2=9.故选:C.方程x2=9x移项,得x2−9x=0,再运用因式分解法求出方程的解,选出正确的答案.此类问题也可以根据方程的解的定义,把四个选项分别代入原方程进行检验得出正确的解.4.【答案】B【解析】解:A 、√8=√4×2=2√2,被开方数中含能开得尽方的因数,不是最简二次根式;B 、√10是最简二次根式;C 、√16=4,被开方数中含能开得尽方的因数,不是最简二次根式;D 、√27=√9×3=3√3,被开方数中含能开得尽方的因数,不是最简二次根式; 故选:B .根据最简二次根式的概念判断.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.5.【答案】D【解析】解:∵S 甲2=0.60,S 乙2=0.62,S 丙2=0.57,S 丁2=0.49, ∴S 丁2<S 丙2<S 甲2<S 乙2,∴这四名同学跳高成绩最稳定的是丁, 故选:D .根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.【答案】B【解析】解:∵∠ABC =(5−2)×180°5=108°,△ABC 是等腰三角形,∴∠BAC =∠BCA =36°. 故选:B .利用多边形的内角和定理和等腰三角形的性质即可解决问题.本题主要考查了多边形的内角和定理和等腰三角形的性质.n 边形的内角和为:180°(n −2).7.【答案】A【解析】解:A、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形;故选项A符合题意;B、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴AB//CD,∴∠BAC=∠ACD,∵∠BAC=∠CAD,∴∠ACD=∠CAD,∴AD=CD,∴平行四边形ABCD是菱形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D不符合题意;故选:A.根据矩形的判定方法和菱形的判定方法分别对各个选项进行判断,即可得出结论.本题考查矩形的判定、菱形的判定、平行四边形的性质、等腰三角形的判定等知识;熟练掌握矩形和菱形的判定方法是解题的关键,属于中考常考题型.8.【答案】C【解析】解:用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设a<0.故选:C.用反证法证明命题的真假,先假设命题的结论不成立,从这个结论出发,经过推理论证,得出矛盾;由矛盾判定假设不正确,从而肯定命题的结论正确.考查了反证法,反证法是指“证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、定理、法则、公式等)相矛盾的结果.这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立.”9.【答案】A【解析】解:设快递量平均每年增长率为x,依题意,得:500(1+x)2=740.故选:A.设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】B【解析】解:连接OP,∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=12BD=8,OC=12AC=6,∴BC=√OB2+OC2=√64+36=10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=12OB×OC=12BC×OP,∴OP=6×810=4.8,∴EF的最小值为4.8,故选:B.由菱形的性质可得AC⊥BD,BO=12BD=8,OC=12AC=6,由勾股定理可求BC的长,可证四边形OEPF是矩形,可得EF=OP,OP⊥BC时,OP有最小值,由面积法可求解.本题考查了菱形的性质,矩形的判定和性质,勾股定理,掌握菱形的性质是本题的关键.11.【答案】√3【解析】解:√6÷√2=√6÷2=√3,故答案为:√3.根据二次根式的除法法则:√a√b =√ab(a≥0,b>0)进行计算即可.此题主要考查了二次根式的除法,关键是掌握计算法则.12.【答案】−3【解析】解:∵x=1是方程x2+ax+2=0的一个根,∴1+a+2=0,∴a=−3.故答案为:−3.把x=1代入方程得到关于a的方程,解方程即可.本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.【答案】10【解析】解:这组数据中数字10出现2次,次数最多,所以这组数据的众数是10,故答案为:10.根据众数的概念求解可得.本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.14.【答案】2516【解析】解:根据题意得k≠0且△=(−5)2−4k×4=0,.解得k=2516.故答案为2516根据判别式的意义得到△=(−5)2−4k×4=0,本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.【答案】4【解析】解:∵坡AB的坡比是1:√3,坝高BC=2m,∴AC=2√3,由勾股定理得,AB=√BC2+AC2=4(m),故答案为:4.根据坡度的概念求出AC,根据勾股定理求出AB.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度的概念是解题的关键.16.【答案】1.5【解析】解:∵DE为△ABC的中位线,BC=3.5,∴DE=12在Rt△AFB中,∠AFB=90°,D是AB的中点,∴DF=1AB=2,2∴EF=DE−DF=1.5,故答案为:1.5.根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,结合图形计算,得到答案.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【答案】8√2+4.【解析】解:在图2中加上节点K:观察图1和图2可知:EK=EF=FL=HG=12BD,JI=KH=LG=12EK=14BD,EJ=IH,∵正方形ABCD的边长为4CM,∴BD=√42+42=4√2,FL=EF=HG=12×4√2=2√2,JI=KH=LG=12EK=14×4√2=√2,则EJ=IH=2,∴六边形EFGKIJ的周长为:EJ+JI+IH+HG+(LG+FL)+EF,=2+√2+2+2√2+√2+2√2+2√2,=8√2+4,故答案为:8√2+4.七巧板由正方形分割成七小块(其中:五块等腰直角三角形,一块正方形和一块平行四边形组成),再根据图形的特点,由正方形的性质和勾股定理求出各板块的边长,即可求出图2中六边形的周长.本题考查七巧板的识图以及正方形的性质和勾股定理,数形结合是解决本题的关键.18.【答案】2512【解析】解:从图2知,AC=5,AD=2a,当点P在点A时,此时,y=4a=S△BCP=S△ABC,此时,AB=BC=AD=2a,即△ABC为等腰三角形,过点B作BH⊥AC于点H,则CH=AH=12AC=52,在△ABC中,S△ABC=12AC×BH=12×5×BH=4a,解得BH=8a5,在Rt△HBC中,BC2=BH2+CH2,即(2a)2=(8a5)2+(52)2,解得a=±2512(舍去负值),故答案为2512.从图2知,AC=5,AD=2a,在△ABC中利用S△ABC=12AC×BH=12×5×BH=4a,求得BH=8a5,最后在Rt△HBC中,利用勾股定理即可求解.本题考查的是动点图象问题,涉及到三角形的面积公式、菱形和等腰三角形的性质,勾股定理的运用等,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.19.【答案】解:(1)原式=(4+4√2)×2−8=8+8√2−8=8√2;(2)∵x2−4x=−1,∴x2−4x+4=−1+4,即(x−2)2=3,则x−2=±√3,∴x=2±√3,即x1=2+√3,x2=2−√3.【解析】(1)先化简二次根式,再计算乘法,最后计算加减可得;(2)利用配方法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【答案】解:(1)如图,矩形ABCD即为所求.(2)如图,正方形ADBC即为所求.【解析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计,矩形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】1=1(次),【解析】解:(1)这50名出行学生使用共享单车次数的中位数是1+12故答案为:1;×(0×12+1×14+2×4+3×8+ (2)这50名出行学生平均每人使用共享单车1504×8+5×4)=1.96(次);=440(人).(3)估计这天使用共享单车次数在3次以上(含3次)的学生有1100×8+8+450(1)根据中位数的概念求解可得;(2)利用加权平均数的概念列式计算可得;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生人数占被调查人数的比例.本题考查了中位数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.22.【答案】4√5【解析】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴DF//BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)解:∵AB//CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD=√32+42=5,∴DF=5,∵四边形DEBF是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴AF=√AB2+BF2=√82+42=4√5;故答案为:4√5.(1)根据有一个角是90度的平行四边形是矩形即可判定.(2)首先证明AD=DF,求出AD=5,由矩形的性质得BE=DF=5,BF=DE=4,则AB=AE+BE=8,由勾股定理即可解决问题.本题考查了平行四边形的判定和性质,矩形的判定和性质、角平分线的定义、等腰三角形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.23.【答案】25000【解析】解:(1)设通道的宽为x米,根据题意得:(58−2x)(22−2x)=700,解得:x=36(舍去)或x=4,答:甬道的宽为4米;(2)设月租金上涨a元,设停车场的月租金收入为w元,根据题意得:w=(300+a)(70−110a)=−110(a−700)(a+300),∵−110<0,故w有最大值,当a=12(700−300)=200(元)时,w的最大值为25000(元),故答案为25000.(1)设通道的宽为x米,根据矩形的面积公式列出方程并解答.(2)设车位的月租金上涨a元,则租出的车位数量是(70−110a)个,根据“月租金=每个车位的月租金×车位数”列出函数表达式,进而求解.本题考查了二次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,进而求解.24.【答案】4 4 83【解析】解:(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即正方形的边长为4,故点B(4,4),故答案为4,4;(2)如题干图2,∵点E、点F关于直线DG对称,∴BE=BF,EG=GF,而BG=BG,∴△BGE≌△BGF(SSS),∴∠EBG=∠FBG,∵BF//EG,∴∠GBF=∠EGB,∴∠EBG=∠EGB,∴BE=GE,∵BE=BF,EG=GF,∴EB=BF=FG=GE,∴四边形BEGF为菱形;(3)①∵S△BEG=58S正方形OABC,∴12×GE×BC=58×4×4,即12×|m+4|×4=10,解得m=1或−9,故CE=3或13;②如下图,当B,E,F,N四点构成的四边形为矩形时,∵BE=BF,则该矩形为正方形,则∠EBF为直角,故点F作x轴的平行线交BA的延长线于点T,∵∠CBE+∠EBA=90°,∠EBA+∠FBA=90°,∴∠CBE=∠FBA,∵∠BCE=∠BTF=90°,BE=BF,∴△BCE≌△BTF(AAS),∴CE=TF=4−m,BT=BC,故点A、T重合,则点F在x轴上,则AF=CE=4−m,故点F(8−m,0),∵GE=GF,∴(m+4)2=(8−m)2+(−4)2,解得:m=83,故答案为83.(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即可求解;(2)证明△BGE≌△BGF(SSS),则可证∠EBG=∠EGB,则BE=GE,进而求解;(3)①S△BEG=58S正方形OABC,即12×GE×BC=58×4×4,则12×|m+4|×4=10,即可求解;②当B,E,F,N四点构成的四边形为矩形时,则该矩形为正方形,然后证明△BCE≌△BGF(AAS),得到F(8−m,0),再利用GE=GF,即可求解.本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、三角形全等等,其中(3)①,要注意分类求解,避免遗漏.。
2019-2020学年浙教版八年级(下)期中数学试卷(含答案解析)
2019-2020学年浙教版八年级(下)期中数学试卷一、选择题(本大题共10小题,共20.0分) 1. 关于x 的一元二次方程(a +b)x 2+(a −c)x −c−a 4=0有两个相等的实数根,那么以a 、b 、c 为三边的三角形是( )A. 以a 为斜边的直角三角形B. 以c 为斜边的直角三角形C. 以b 底边的等腰三角形D. 以c 底边的等腰三角形2. 下列各式中,运算正确的是( )A. √2+√3=√5B. √3√5=√155C. √(−7)2=−7D. 6√5−√5=63. 如图,将△ABC 纸片沿DE 进行折叠,使点A 落在四边形BCED的外部点A′的位置,若∠A =35°,则∠1−∠2的度数为( )A. 35°B. 70°C. 55°D. 40°4. 二元一次方程组{x −y =1x +y =3的解是( )A. {x =2y =1B. {x =−1y =−2C. {x =3y =2D. {x =1y =25. 下列四边形的四个顶点一定在同一个圆上的是( )A. 直角梯形B. 正方形C. 平行四边形D. 菱形6. 下列说法正确的是( )A. 了解飞行员视力的达标率应使用抽样调查B. 一组数据3,6,6,7,8,9的中位数是6C. 从2000名学生中选出200名学生进行抽样调查,样本容量为2000D. 一组数据1,2,3,4,5的方差是27. 如果α、β是一元二次方程x 2+3x −1=0的两根,则α2+2α−β的值是( )A. 3B. 4C. 5D. 68. 下列方程是关于x 的一元二次方程的是( )A. ax2+bx+c=0B. 1x2+4x=6C. x2−3x=x2−2D. (x+1)(x−1)=2x9.某镇2011年投入教育经费3600万元,为了发展教育事业,该镇每年教育经费的年增长率均为x,现决定2013年投入6000万元,则下列方程正确的是()A. 3600x2=6000B. 3600(1+x)2=6000C. 3600(1+x)=6000D. 3600+3600(1+x)+3600(1+x)2=600010.如图,已知直线l1:y=23x+83与直线l2:y=−2x+16相交于点C,直线l1,l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=()A. 1:3B. 8:9C. 9:16D. 32:35二、填空题(本大题共6小题,共18.0分)11.某一段时间,小芳测得连续五天的日最低气温后,整理得出下表:由于不小心被墨迹污染了两个数据,这两个数据分别是,____________.12.如图,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的正午时刻阳光刚好不能射入窗户,则AB的长度是______米.(假设夏至正午时的阳光与地平面的夹角是60°)13.如图,在等腰梯形ABCD中,AD//BC,若AD=2,BC=8,梯形的高是3,则∠B的度数是______ .14.如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为______.15.在△ABC中,∠B=45°,点D在BC边上,连接AD,CF⊥AD于E,交AB于点E,AD=CF,BF=√2,AC=√10,则AF的长为______.16.如图,四边形ABCD内接于圆O,四边形ABCO是平行四边形,则∠ADC=______.三、计算题(本大题共2小题,共16.0分)17.(1)(4√2−2√6)÷2√2(2)√9a+√25a−2a√4a18.解下列方程3(x−2)2=x(x−2).四、解答题(本大题共6小题,共46.0分)19.已知:如图,四边形ABCD是平行四边形,AE//CF,且分别交对角线BD于点E,F.求证:AE=CF.20.如图,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.21.2019年3月15日,我国“两会”落下帷幕.13天时间里,来自各地的5000余名代表、委员聚于国家政治中心,共议国家发展大计.某校初三(3)班张老师为了了解同学们对“两会”知识的知晓情况,进行了一次小测试,测试满分100分.其中A组同学的测试成绩分别为:91918693858989888791B组同学的测试成绩分别为:88978885869484839887根据以上数据,回答下列问题:(1)完成下表:组别平均数中位数众数方差A组8989b cB组89a8826.2其中a=______,b=______,c=______,(2)张老师将B组同学的测试成绩分成四组并绘制成如图所示频数分布直方图(不完整),请补全;(3)根据以上分析,你认为______组(填“A”或“B”)的同学对今年“两会”知识的知晓情况更好一些,请写出你这样判断的理由(至少写两条):①______②______.22.某汽车销售公司8月份销售某厂家的汽车.在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该辆汽车的进价为27万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆.月底厂家一次性返利给销售公司,每辆返还0.5万元.(1)若该公司当月售出5辆汽车,则每辆汽车的进价为______ 万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利24万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)23.在平行四边形ABCD中,BE⊥AD,F为CD边上一点,满足BF=BC=BE.(1)如图1,若BC=12,CD=13,求DE的长;(2)如图2,过点G作DG//BE交BF于点G.求证:BG=AE+DG.24.在综合实践课上,小明要用如图所示的矩形硬纸板做一个装垃圾的无盖纸盒.已知这张矩形硬纸板ABCD边AB的长是40cm,边AD的长是20cm,裁去角上四个小正方形之后,就可以折成一个无盖纸盒.设这个无盖纸盒的底面矩形EFMN的面积是y(单位:cm2),纸盒的高是x(单位:cm).(1)求出y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)根据老师要求,小明做的无盖纸盒的高x不能超过宽EF,且纸盒的底面矩形EFMN的面积y等于300cm2,求纸盒高x是多少cm?【答案与解析】1.答案:C解析:解:据题意得(a−c)2−4(a+b)⋅[−c−a4]=0(a−c)[a−c−(a+b)]=0(a−c)(−c−b)=0∴−c−b≠0∴a−c=0∴a=c所以三角形是以b为底边的等腰三角形故选:C.根据判别式的意义得到b2−4(a+c)×a−c4=0,再整理得到(a−c)(−c−b)=0,然后得a=c.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.答案:B解析:解:A、√2+√3,不是同类二次根式,无法合并,故此选项错误;B、√3√5=√155,正确;C、√(−7)2=7,故此选项错误;D、6√5−√5=5√5,故此选项错误;故选:B.直接利用二次根式的性质分别化简得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.3.答案:B解析:解:如下图所示,∵△ABC 纸片沿DE 进行折叠,点A 落在四边形BCED 的外部点A′的位置, ∴∠4=∠5,∠3=∠2+∠DEC , ∵∠1+∠4+∠5=180°, ∴∠1+2∠4=180°, ∴∠1=180°−2∠4, ∵∠3+∠DEC =180°,∴∠2=∠3−∠DEC =2∠3−180°,∴∠1−∠2=180°−2∠4−2∠3+180°=360°−2∠4−2∠3=2∠A , ∴∠1−∠2=2×35°=70°, 故选:B .根据多边形内角与外角的性质和三角形内角和定理即可求解.本题考查了多边形内角与外角的性质和三角形内角和定理,解题的关键是根据折叠的性质找出图中角度之间的关系.4.答案:A解析:解:{x −y =1①x +y =3②,①+②得:2x =4, 解得:x =2,把x =2代入①得:2−y =1, 解得:y =1,则方程组的解为{x =2y =1,故选:A .直接利用加减消元法解方程得出答案.此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.5.答案:B解析:解:A、直角梯形的四个顶点不一定在同一个圆上;B、正方形的四个顶点在以对角线的交点为圆心、对角线的一半为半径的同一个圆上;C、平行四边形的四个顶点不一定在同一个圆上;D、菱形的四个顶点不一定在同一个圆上;故选:B.根据直角梯形、正方形、平行四边形、菱形的性质判断即可.本题考查的是圆内接四边形的概念和性质,掌握直角梯形、正方形、平行四边形、菱形的性质是解题的关键.6.答案:D解析:解:A、了解飞行员视力的达标率,人数不多,应使用全面调查,故原题说法错误;B、一组数据3,6,6,7,8,9的中位数是6.5,故原题说法错误;C、从2000名学生中选出200名学生进行抽样调查,样本容量为200,故原题说法错误;D、一组数据1,2,3,4,5的平均数为3,方差是2,故原题说法正确;故选:D.根据全面调查和抽样调查的区别;中位数定义、样本容量定义和方差公式分别分析即可.此题主要考查了方差、全面调查、中位数和样本容量定义,关键是掌握方差的计算公式:一般地设[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2].n个数据,x1,x2,…x n的平均数为x−,则方差S2=1n7.答案:B解析:解:∵α、β是一元二次方程x2+3x−1=0的两根∴α2+3α−1=0,α+β=−3∴α2+2α−β=α2+3α−α−β=α2+3α−(α+β)=1+3=4.故选:B.把α代入方程可得α2+3α−1=0,利用根与系数的关系可得α+β=−3,而α2+2α−β=α2+ 3α−α−β=α2+3α−(α+β)代入即可求解.本题考查了一元二次方程根的意义和根与系数的关系.把方程的两个根分别代入原方程等式仍然成立,根据此得到需要的等量关系是常用的方法之一.8.答案:D解析:解:A、当a≠0时,是关于x的一元二次方程,故此选项错误;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、是一元二次方程,故此选项正确;故选:D.根据一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件进行解答.此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.9.答案:B解析:解:设教育经费的年平均增长率为x,则2012的教育经费为:3600×(1+x)万元,2013的教育经费为:3600×(1+x)2万元,那么可得方程:3600×(1+x)2=6000.故选B.增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2011年投入3600万元,决定预计2013年投入6000万元即可得出方程.本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.10.答案:B解析:解:由y=23x+83,得当y=0时,x=−4.∴A点坐标为(−4,0),由−2x+16=0,得x=8.∴B 点坐标为(8,0),∴AB =8−(−4)=12,由{y =23x +83y =−2x +6,解得{x =5y =6, ∴C 点的坐标为(5,6),∴S △ABC =12×12×6=36. ∵点D 在l 1上且x D =x B =8,∴y D =23×8+83=8,∴D 点坐标为(8,8),又∵点E 在l 2上且y E =y D =8,∴−2x E +16=8,∴x E =4,∴E 点坐标为(4,8),∴DE =8−4=4,EF =8.∴矩形面积为:4×8=32,∴S 矩形DEFG :S △ABC =32:36=8:9.答:S 矩形DEFG 与S △ABC 的比值是8:9.故选:B .把y =0代入l 1解析式求出x 的值便可求出点A 的坐标.令x =0代入l 2的解析式求出点B 的坐标.然后可求出AB 的长.联立方程组可求出交点C 的坐标,继而求出三角形ABC 的面积,再利用x D =x B =8易求D 点坐标.又已知y E =y D =8可求出E 点坐标.故可求出DE ,EF 的长,即可得出矩形面积.此题主要考查了一次函数交点坐标求法以及图象上点的坐标性质等知识,根据题意分别求出C ,D 两点的坐标是解决问题的关键. 11.答案:4;2解析:试题分析:设第五天的气温为x ,则根据平均数的计算方法即可求得x 的值;根据方差的计算公式:S 2=1n [(x 1−x)2+(x 2−x)2+⋯+(x n −x)2求得方差.设第五天的气温为x ,则有(1+3+2+5+x)÷5=3,解得x=4;则方差S2=[(1−3)2+(3−3)2+(2−3)2+(5−3)2+(4−3)2]÷5=2.故填4;2.12.答案:√3解析:解:直角△ABD中,已知AD=3米,∠ABD=60°.∵tan∠ABD=ADAB,∴AB=ADtan60∘=3√3=√3(米).当阳光正好射到D处时,阳光刚好不能射入窗户.则在直角△ABD中,已知AD=3米,∠ABD=60°,根据三角函数求解.考查把实际问题转化为数学题的能力,正确理解正午时刻阳光刚好不能射入窗户的条件,是解决本题的关键.13.答案:45°解析:解:过点A作AE⊥BC交BC于E,过点D作DF⊥BC交BC于F,∵AD//BC,∴四边形AEFD是长方形,∴EF=AD=2,∵四边形ABCD是等腰梯形,∴BE=(8−2)÷2=3,∵梯形的高是3,∴△ABE是等腰直角三角形,∴∠B=45°.故答案为:45°.首先过点A作AE⊥BC交BC于E,过点D作DF⊥BC交BC于F,易得四边形AEFD是长方形,易证得△ABE是等腰直角三角形,即可得∠B的度数.此题考查了等腰梯形的性质以及等腰直角三角形的判定与性质.此题注意掌握辅助线的作法,注意掌握数形结合思想的应用.14.答案:94√3解析:解:∵△CDE为等边三角形,∴DE=DC=EC,∠D=60°,根据折叠的性质,∠BCA=∠B′CA,∵四边形ABCD是平行四边形,∴AD//BC,AD=BC=6,AB=CD=3,∴∠EAC=∠BCA,∴∠EAC=∠ECA,∴EA=EC,∴∠DAC=30°,∴∠ACD=90°,∵CD=3,∠ACD=90°,∠DAC=30°,∴AC=3√3,∴S△ACE=12S△ACD=12×AC×CD×12=94√3.故答案为:94√3.先根据等边三角形的性质可得DF=DC=EC,∠D=60°,根据折叠的性质,∠BCA=∠B′CA,再利用平行四边形的性质证明∠DAC=30°,∠ACD=90°,利用三角函数值计算出AC,然后根据三角形的中线平分三角形的面积可得S△ACE=12S△ACD,进而可得答案.此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握:平行四边形的对边平行且相等,直角三角形30°角所对的边等于斜边的一半.15.答案:2√2解析:本题主要考查了全等三角形的判定和性质以及勾股定理,解题的关键是正确作出辅助线,构造全等三角形.过A点作AN⊥BC交FC于O点,交BC于N点,过F点作FM⊥BC于M点.证明△ADN≌△CFM,得到MC=AN,依据∠B=45°得到等腰直角三角形,推导出NC=BM=1,在Rt△ANC中,利用勾股定理可得AN长度,则在等腰Rt△ANB中可求AB,最后用AF=AB−BF求解.解:过A点作AN⊥BC交FC于O点,交BC于N点,过F点作FM⊥BC于M点.∵∠FCM+∠NOC=90°,∠DAN+∠AOE=90°,且∠NOC=∠AOE,∴∠DAN=∠FCM.又∠AND=∠CMF=90°,AD=CF.∴△ADN≌△CFM(AAS).∴MC=AN.∵∠B=45°,BF=√2,∴BM=FM=1.AN=BN.∴BN=MC,∴NC=BM=1.在Rt△ANC中,利用勾股定理可得AN=√AC2−NC2=3.则在等腰Rt△ANB中,AB=√AN2+BN2=3√2,∴AF=3√2−√2=2√2.故答案为2√2.16.答案:60°解析:解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=12β,∠AOC=α;而α+β=180°,∴{α+β=180°α=12β,解得:β=120°,α=60°,∠ADC=60°,故答案为:60°.设∠ADC的度数=α,∠ABC的度数=β,由题意可得{α+β=180°α=12β,求出β即可解决问题.该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.17.答案:解:(1)原式=2−√3;(2)原式=3√a+5√a−4√a=4√a.解析:(1)根据二次根式的除法法则运算;(2)先把二次根式化为最简二次根式,然后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.答案:解:3(x−2)2−x(x−2)=0(x−2)[3(x−2)−x]=0(x−2)(2x−6)=0x−2=0或2x−6=0∴x1=2,x2=3.解析:把右边的项移到左边,用提公因式法因式分解求出方程的根.本题考查的是用因式分解法解一元二次方程,用提公因式法因式分解可以求出方程的根.19.答案:解:∵四边形ABCD为平行四边形,∴AD//BC,AD=BC,∴∠ADE=∠CBF,∵AE//CF,∴∠AEF=∠CFE,∴∠AED=∠CFB,∴△ADE≌△CBF,∴AE=CF.解析:由AE与CF平行,得到一对内错角相等,可得出领补角相等,由四边形ABCD为平行四边形,得到AD与BC平行且相等,利用AAS得到三角形ADE与三角形CBF全等,利用全等三角形的对应边相等即可得证.此题考查了平行四边形的性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.20.答案:解:(1)∵AB是⊙O的一条弦,OD⊥AB,∴AD⏜=BD⏜,∴∠DEB=12∠AOD=12×52°=26°;(2)根据勾股定理得,AC=√OA2−OC2=√52−32=4,∵AB是⊙O的一条弦,OD⊥AB,∴AB=2AC=2×4=8.解析:本题考查了圆周角定理,垂径定理,考查分析和计算能力.(1)根据垂径定理可得AD⏜=BD⏜,再根据同弧或等弧所对的圆周角等于圆心角的一半求解即可;(2)利用勾股定理列式求出AC,再根据垂径定理可得AB=2AC.21.答案:87.591 5.8A A组的中位数大于B组在两组平均数相同的情况下,A组的方差小于B 组,A组波动小,成绩稳定解析:解:(1)A组同学的测试成绩按照从小到大排列是:85,86,87,88,89,89,91,91,91,93,B组同学的测试成绩按照从小到大排列是:83,84,85,86,87,88,88,94,97,98,则a=(87+88)÷2=87.5,b=91,c=(85−89)2+(86−89)2+(87−89)2+⋯+(93−89)210=5.8,故答案为:87.5,91,5.8;(2)∵B组同学的测试成绩按照从小到大排列是:83,84,85,86,87,88,88,94,97,98,∴90.5≤x<94.5的有1人,94.5≤x<98.5的有2人,补全的频数分布直方图如右图所示;(3)根据以上分析,你认为A组的同学对今年“两会”知识的知晓情况更好一些,理由:①A组的中位数大于B组;②在两组平均数相同的情况下,A组的方差小于B组,A组波动小,成绩稳定;故答案为:A;A组的中位数大于B组;在两组平均数相同的情况下,A组的方差小于B组,A组波动小,成绩稳定.(1)根据题目中的数据可以将A组和B组的成绩按照从小到大排列,从而可以的到a、b、c的值;(2)根据题意和B组的数据,可以将频数分布直方图补充完整;(3)根据表格中的数据可以解答本题,注意写理由时,主要合理即可,本题答案不唯一.本题考查频数分布直方图、用样本估计总体、中位数、众数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.22.答案:(1)26.5;(2)设需要售出x辆汽车,由题意可知,每辆汽车的销售利润为:[28−(27−0.1x)x]+0.5x=24(万元),整理,得x2+6x−240=0,解这个方程,得x1=−16(不合题意,舍去),x2=15.答:需要售出15辆汽车.解析:解:(1)∵若当月仅售出1辆汽车,则该辆汽车的进价为27万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出5辆汽车,则每辆汽车的进价为:27−0.1×5=26.5,故答案为:26.5;(2)见答案.(1)根据若当月仅售出1辆汽车,则该辆汽车的进价为27万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,得出该公司当月售出5辆汽车时,则每辆汽车的进价为:27−0.1×5,即可得出答案;(2)利用设需要售出x辆汽车,由题意可知,每辆汽车的销售利润,列出一元二次方程.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系并进行分段讨论是解题关键.23.答案:解:(1)如图1中,作DM⊥BC于M.∵四边形ABCD是平行四边形,∴AD//BC,AD=BC=12,∵BC=BE,∴BE=12,∵BE⊥AD,AD//BC,DM⊥BC,∴四边形DMBE是矩形,∴DE=BM=BC−MC,DM=BE=12,在Rt△DCM中,MC=√CD2−DM2=√132−122=5,∴BM=BC−CM=12−5=7,∴DE=BM=7;(2)如图2中,延长GD到N,使得DN=AE,则GN=GD+DN=AE+DG.连接BN,AN.∵BE=AD,∠AEB=∠ADN=90°,AE=DN,∴△AEB≌△NDA(SAS),∴AN=AB,∠BAE=∠AND,∵BF=BC,∴∠C=∠BFC,∵四边形ABCD是平行四边形,∴AB//CD,∠BAE=∠C,∴∠ABF=∠BFC,∴∠ABF=∠AND,∵AN=AB,∴∠ANB=∠ABN,∴∠GNB=∠GBN,∴BG=NG=AE+DG.解析:本题属于四边形综合题,考查了平行四边形的性质,勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.(1)如图1中,作DM⊥BC于M.在Rt△DCM中,易知CD=13,DM=BE=BC=12,推出CM=5即可解决问题;(2)如图2中,延长GD到N,使得DN=AE,则GN=GD+DN=AE+DG.连接BN,AN.想办法证明GB=GN即可解决问题.24.答案:解:(1)在矩形EFMN中,NE=AB−2x=40−2x,EF=BC−2x=20−2x,y=(40−2x)(20−2x)即y=4x2−120x+800;(2)依题意得,4x2−120x+800=300,解得,x1=5,x2=25,∵x≤EF,∴x<20−2x,即x<20,3∴x=5即纸盒的高x是5cm.解析:(1)根据已知得出NE=AB−2x=40−2x,EF=BC−2x=20−2x,即可得出y与x之间的函数关系式;(2)根据纸盒的底面矩形EFMN的面积y等于300cm2,求出x即可得出答案.此题主要考查了二次函数的应用以及一元二次方程的应用,根据已知得出NE=AB−2x=40−2x,EF=BC−2x=20−2x,是解题关键.。
温州地区第二学期期中联考八年级数学试卷
二.细心填一填(每题3分,共24分) 11、3, 12、a=b, 13、如果两个角成对顶角,那么这两个角相等。14、 k 2 , 15、10 16、-1 17、10或 2 7 (必须化简,错一个扣1分) 18、 3
三、解答题(46分)
19.(本题8分)
8
1
18
解:原式 =
2
2 21 23 2
=
2
浙江省温州地区第二学期期中联考 八年级数学试卷
(考试时间:90分钟 满分:100分 2020年4月 )
温馨提醒:禁止使用计算器 一、选择题(本大题有10个小题,每小题3分,共30分)
1.要使二次根式 a 2 有意义,则字母 a 的取值范围是(
A. a 2
B. a 2
2.下列计算正确的是( )
C. a 2
5.有一句地方民谣“早穿皮袄午穿纱”,说明此地气温的特征数是下列哪个数( ) A.极差 B.平均数 C.众数 D.中位数
6.将50个数据分成五组,编成组号为①~⑤的五个组,频数颁布如下表:
组号
①
②
③
④
⑤
频数
8
10
14பைடு நூலகம்
11
那么第③组的频率为( )
A.14
B.7
C.0.14 D.0.7
7.用配分法解一元二次方程 x 2 4x 3 0 时,可配方得( )
. 15.一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 组.
16.若关于 x 的一元二次方程 a 1x 2 x a 2 1 0 的一个根是0,则 a 的值是
.
17.已知 a 6 b 8 0 ,那么以 a, b 为边长的直角三角形的第三边长为
瑞安市五校联考八年级下册期中数学试卷(浙教版)及答案【精编】.doc
2019-2020学年浙江省温州市瑞安市五校联考八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.化简后的结果是()A. B. 5 C.± D.﹣52.数据2,1,1,5,1,4,3的众数和中位数分别是()A. 1,2 B. 2,1 C. 1,4 D. 1,53.方程x2=4x的根是()A. 4 B.﹣4 C. 4或﹣4 D. 4或04.在五边形ABCDE中,已知∠A与∠C互补,∠B+∠D=270°,则∠E的度数为() A.80° B.90° C.100° D.110°5.若=x+2,则下列x的取值范围正确的是()A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣26.把方程x2﹣6x+3=0化成(x﹣m)2=n的形式,则m、n的值是()A. 3,12 B.﹣3,12 C. 3,6 D.﹣3,67.在直角三角形中,已知有两边长分别为3,4,则该直角三形的斜边长为() A. 5 B. 4 C. D. 5或48.如图,平行四边形ABCD中,P是边AD上间任意一点(除点A,D外),△ABP,△BCP,△CDP的面积分别为S1,S2,S3,则一定成立的是()A. S1+S3<S2 B. S1+S3>S2 C. S1+S3=S2 D. S1+S2=S39.某市2019年投入教育经费2亿元,为了发展教育事业,该市每年教育经费的年增长率均为x,从2019年到2015年共投入教育经费9.5亿元,则下列方程正确的是() A. 2x2=9.5 B. 2(1+x)=9.5C. 2(1+x)2=9.5 D. 2+2(1+x)+2(1+x)2=9.510.如图,在△ABC中,AB=AC,点D在边BC上,过点D作DF∥AC交AB于点F,过点C作CE∥AB 交FD的延长线于点E.则下列结论正确的是()A. DC+DF=AB B. BD+DC=DF C. CE+DF=AB D. CE+DC=BD二、填空题(每小题3分,共24分)11.化简:﹣= .12.已知平行四边形ABCD的周长是18cm,边AD=5cm,则边AB的长是cm.13.如表是某所学校一个学习小组一次数学测验的成绩统计表,已知该小组本次数学测验的平均分是86分,那么表中的x的值是.分数 70 80 90 100人数 1 3 x 114.若3<m<7,那么+化简的结果是.15.某种商品原售价400元,由于产品换代,现连续两次降价处理,按324元的售价销售.已知两次降价的百分率均为x,则x= .16.已知a2+a﹣3=0,那么4﹣a2﹣a的值是.17.已知x1,x2是方程x2+6x﹣2=0的两个根,则+= .18.如图,在▱ABCD中,点E在BC上,AE平分∠BAD,且AB=AE,连接DE并延长与AB的延长线交于点F,连接CF,若AB=2cm,则△CEF面积是cm.三、解答题(共46分)19.化简(1)+(﹣)2﹣(2)(1+)(1﹣)﹣(2+)2.20.解下列一元二次方程:(1)x2﹣6x=1(2)2x2+x﹣5=0.21.如图,在▱ABCD中,E是AD边上的中点,连接BE并延长与CD的延长线交于点F.证明:AB=DF.22.为了了解业余射击队队员的射击成绩,对某次射击比赛中每一名队员的平均成绩(单位:环,环数为整数)进行了统计.分别绘制了统计表和成绩分布直方图,请你根据统计表和成绩分布直方图回答下列问题:平均成绩 1 2 3 4 5 6 7 8 9 10人数 1 a 3 3 b 4 c 6 1 0(1)求出a,b,c的值;(2)写出这次射击比赛成绩的众数与中位数.23.如图,在长方形ABCD中,AB=5cm,AD=3cm.点E从点A出发,以每秒2cm的速度沿折线ABC 方向运动,点F从点C出发,以每秒1cm的速度沿线段CD方向向点D运动.已知动点E、F同时发,当点E运动到点C时,E、F停止运动,设运动时间为t.(1)当E运动到B点时,求出t的值;(2)在点E、点F的运动过程中,是否存在某一时刻,使得EF=3cm?若存在,请求出t的值;若不存在,请说明理由.24.(10分)(2015春•瑞安市期中)某校八年级(1)(2)班准备集体购买T恤衫,了解到某商店有促销活动,当购买10件时每件140元,购买数量每增加1件单价减少1元.当购买数量为60件(含60件)以上时,一律每件80元.(1)若购买x件(10<x<60),每件的单价为y元,请写出y关于x的函数关系式.(2)若八(1)(2)班共购买100件,由于某种原因需分两批购买T恤衫,且第一批购买数量多于30件且少于70件.已知购买两批T恤衫一共花了9200元.求第一批T恤衫购买数量.2019-2020学年浙江省温州市瑞安市五校联考八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.化简后的结果是()A. B. 5 C.± D.﹣5考点:二次根式的性质与化简.分析:根据二次根式的性质解答即可.解答:解:=|﹣5|=5.点评:本题考查了二次根式的性质与化简,熟练掌握=|a|是解题的关键.2.数据2,1,1,5,1,4,3的众数和中位数分别是()A. 1,2 B. 2,1 C. 1,4 D. 1,5考点:众数;中位数.分析:根据众数和中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:1,1,1,2,3,4,5,则众数为:1,中位数为:2.故选A.点评:本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.方程x2=4x的根是()A. 4 B.﹣4 C. 4或﹣4 D. 4或0考点:解一元二次方程-因式分解法.专题:计算题.分析:先移项得到x2﹣4x=0,然后利用因式分解法解方程.解答:解:x2﹣4x=0,x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4.故选D.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).4.在五边形ABCDE中,已知∠A与∠C互补,∠B+∠D=270°,则∠E的度数为() A.80° B.90° C.100° D.110°考点:多边形内角与外角.分析:根据五边形的内角和解答即可.解答:解:因为五边形ABCDE,∠A+∠B+∠C+∠D+∠E=540°,∠A与∠C互补,∠B+∠D=270°,可得:∠E=540°﹣270°﹣180°=90°.故选B.点评:此题考查多边形的内角和外角,关键是根据五边形的内角和是540°解答.5.若=x+2,则下列x的取值范围正确的是()A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣2考点:二次根式的性质与化简.分析:根据二次根式的性质,即可解答.解答:解:∵=x+2,∴x+2≥0,∴x≥﹣2.故选:D.点评:本题考查二次根式的性质,解决本题的关键是熟记二次根式的性质.6.把方程x2﹣6x+3=0化成(x﹣m)2=n的形式,则m、n的值是()A. 3,12 B.﹣3,12 C. 3,6 D.﹣3,6考点:解一元二次方程-配方法.专题:计算题.分析:方程移项变形后,配方得到结果,即可确定出m与n的值.解答:解:方程x2﹣6x+3=0,变形得:x2﹣6x=﹣3,配方得:x2﹣6x+9=6,即(x﹣3)2=6,可得m=3,n=6,故选C.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.在直角三角形中,已知有两边长分别为3,4,则该直角三形的斜边长为() A. 5 B. 4 C. D. 5或4考点:勾股定理.专题:分类讨论.分析:分两种情况:①当3和4都为直角边时,由勾股定理求出斜边即可;②当4为斜边时,斜边=4;即可得出结果.解答:解:分两种情况:①当3和4都为直角边时,由勾股定理得斜边长为:=5;②当4为斜边时,斜边=4;综上所述:该直角三形的斜边长为5或4.故选:D.点评:本题考查了勾股定理、分类讨论的思想方法;熟练掌握勾股定理,并能进行推理计算和分类讨论是解决问题的关键.8.如图,平行四边形ABCD中,P是边AD上间任意一点(除点A,D外),△ABP,△BCP,△CDP的面积分别为S1,S2,S3,则一定成立的是()A. S1+S3<S2 B. S1+S3>S2 C. S1+S3=S2 D. S1+S2=S3考点:平行四边形的性质.分析:设平行四边形的高为h,然后分别表示出s1、s2和s3,即可得出三者的关系.解答:解:设平行四边形的高为h,则S1=×AP×h,S3=PD×h,S2=BC×h,又∵四边形ABCD是平行四边形,∴AD=BC,∴AP+PD=AD=BC,∴S2=S1+S3.故选:C.点评:本题考查平行四边形的知识,难度不大,注意掌握平行四边形的底边相等及高相同的三角形的面积正比于其底边是解题关键.9.某市2019年投入教育经费2亿元,为了发展教育事业,该市每年教育经费的年增长率均为x,从2019年到2015年共投入教育经费9.5亿元,则下列方程正确的是() A. 2x2=9.5 B. 2(1+x)=9.5C. 2(1+x)2=9.5 D. 2+2(1+x)+2(1+x)2=9.5考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据从2019年到2015年共投入教育经费9.5亿元即可得出方程.解答:解:设教育经费的年平均增长率为x,则2014的教育经费为:2(1+x)万元,2015的教育经费为:2(1+x)2万元,那么可得方程:2+2(1+x)+2(1+x)2=9.5.故选D.点评:本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.10.如图,在△ABC中,AB=AC,点D在边BC上,过点D作DF∥AC交AB于点F,过点C作CE∥AB 交FD的延长线于点E.则下列结论正确的是()A. DC+DF=AB B. BD+DC=DF C. CE+DF=AB D. CE+DC=BD考点:平行四边形的判定与性质;等腰三角形的判定与性质.分析:根据DF∥AC,CE∥AB,得到四边形AFEC为平行四边形,所以AC=EF,由AB=AC,所以EF=AB,再证明ED=EC,即可解答.解答:解:∵DF∥AC,CE∥AB,∴四边形AFEC为平行四边形,∴AC=EF,∵AB=AC,∴EF=AB,∵CE∥AB,∴∠B=∠BCE,∵DF∥AC,∴∠ACB=∠FDB,∵AB=AC,∴∠B=∠ACB,∴∠FDB=∠BCE,∵∠FDB=∠CDE,∴∠BCE=∠CDE,∴ED=EC,∵EF=DE+DF,∴AB=EC+DF,故选:C.点评:本题考查了平行四边形的性质与判定,解决本题的关键是证明四边形AFEC为平行四边形,ED=EC.二、填空题(每小题3分,共24分)11.化简:﹣= .考点:二次根式的加减法.分析:先将二次根式化为最简,然后合并同类二次根式即可.解答:解:原式=3﹣2=.故答案为:.点评:本题考查了二次根式的加减运算,解答本题得关键是掌握二次根式的化简及同类二次根式的合并.12.已知平行四边形ABCD的周长是18cm,边AD=5cm,则边AB的长是 4 cm.考点:平行四边形的性质.分析:由平行四边形的性质得出对边相等,再由平行四边形的周长得出一组邻边的和,即可得出结果.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD=5cm,∵平行四边形ABCD的周长是18cm,∴AB+AD=×18=9(cm),∴AB=9﹣5=4(cm).故答案为:4.点评:本题考查了平行四边形的性质、平行四边形的周长;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.13.如表是某所学校一个学习小组一次数学测验的成绩统计表,已知该小组本次数学测验的平均分是86分,那么表中的x的值是 5 .分数 70 80 90 100人数 1 3 x 1考点:加权平均数.分析:利用加权平均数列出方程求解即可.解答:解:由题意和图表我们可列出方程70+80×3+90x+100=86×(1+3+x+1)解得x=5.故答案为:5.点评:本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.14.若3<m<7,那么+化简的结果是 4 .考点:二次根式的性质与化简.分析:先由二次根式的性质=|a|,将原式化简为|7﹣m|+|m﹣3|,再根据绝对值的定义化简即可.解答:解:+=|7﹣m|+|m﹣3|∵3<m<7,∴原式=7﹣m+m﹣3=4.故答案为:4.点评:本题考查了二次根式的性质与化简,绝对值的定义,牢记定义与性质是解题的关键.15.某种商品原售价400元,由于产品换代,现连续两次降价处理,按324元的售价销售.已知两次降价的百分率均为x,则x= 10% .考点:一元二次方程的应用.专题:增长率问题.分析:增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设降价的百分率为x,根据“原售价400元,按324元的售价销售”,即可得出方程求解即可.解答:解:第一次降价后的价格为:400(1﹣x),第二次降价后的价格为:400(1﹣x)2;则可列方程:400(1﹣x)2=324,解得x1=0.1=10%,x2=1.9(舍去).故答案为:10%.点评:本题考查一元二次方程的应用中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.16.已知a2+a﹣3=0,那么4﹣a2﹣a的值是 1 .考点:代数式求值.分析:由已知条件可知:a2+a=3,然后将4﹣a2﹣a变形为4﹣(a2+a)从而可求得代数式的值.解答:解:由已知可知:a2+a=3,原式=4﹣(a2+a)=4﹣3=1.故答案为:1.点评:本题主要考查的是求代数式的值,整体代入是解题的关键.17.已知x1,x2是方程x2+6x﹣2=0的两个根,则+= ﹣20 .考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到x1+x2=﹣6,x1x2=﹣2,再把原式通分后利用完全平方公式变形得到,然后利用整体代入的方法计算.解答:解:根据题意得x1+x2=﹣6,x1x2=﹣2,所以原式====﹣20.故答案为﹣20.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.18.如图,在▱ABCD中,点E在BC上,AE平分∠BAD,且AB=AE,连接DE并延长与AB的延长线交于点F,连接CF,若AB=2cm,则△CEF面积是cm.考点:平行四边形的性质.分析:由平行四边形的性质和角平分线的定义得出∠BAE=∠BEA,得出AB=BE=AE,所以△ABE是等边三角形,由AB的长,可求出△ABE的面积,再根据△FCD与△ABC等底(AB=CD)等高(AB与CD 间的距离相等),可得S△FCD=S△ABC,又因为△AEC与△DEC同底等高,所以S△AEC=S△DEC,即S△ABE=S△CEF 问题得解.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形,∵AB=2cm,∴△ABE的面积=×2×=cm2,∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF=cm2,故答案为:点评:此题考查了平行四边形的性质、等边三角形的判定与性质、三角形的面积关系,解题的关键是首先证明△ABE是等边三角形,求△CEF的面积转化为求△ABE的面积.三、解答题(共46分)19.化简(1)+(﹣)2﹣(2)(1+)(1﹣)﹣(2+)2.考点:二次根式的混合运算.分析:(1)先进行二次根式的化简、乘方等运算,然后合并;(2)先进行平方差公式和完全平方公式的运算,然后合并.解答:解;(1)原3+7﹣8=2;(2)原式=1﹣3﹣4﹣4﹣3=﹣9﹣4.点评:本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的化简、平方差公式以及完全平方公式等运算法则.20.解下列一元二次方程:(1)x2﹣6x=1(2)2x2+x﹣5=0.考点:解一元二次方程-公式法;解一元二次方程-配方法.专题:计算题.分析:(1)方程利用配方法求出解即可;(2)方程利用公式法求出解即可.解答:解:(1)配方得:x2﹣6x+9=10,即(x﹣3)2=10,开方得:x﹣3=±,解得:x1=3+,x2=3﹣;(2)这里a=2,b=,c=﹣5,∵△=5+40=45,∴x=,解得:x1=,x2=﹣.点评:此题考查了解一元二次方程﹣配方法,以及公式法,熟练掌握各种解法是解本题的关键.21.如图,在▱ABCD中,E是AD边上的中点,连接BE并延长与CD的延长线交于点F.证明:AB=DF.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:利用已知得出△ABE≌△DFE(AAS),由全等三角形的性质即可得到AB=DF.解答:证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠F,∵E是AD边上的中点,∴AE=ED,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴AB=DF.点评:本题考查了全等三角形的判定,平行四边形的性质,平行线的性质的应用,解此题的关键是推出∠ABE=∠F,注意:平行四边形的对边互相平行.22.为了了解业余射击队队员的射击成绩,对某次射击比赛中每一名队员的平均成绩(单位:环,环数为整数)进行了统计.分别绘制了统计表和成绩分布直方图,请你根据统计表和成绩分布直方图回答下列问题:平均成绩 1 2 3 4 5 6 7 8 9 10人数 1 a 3 3 b 4 c 6 1 0(1)求出a,b,c的值;(2)写出这次射击比赛成绩的众数与中位数.考点:频数(率)分布直方图;中位数;众数.分析:(1)结合两个统计图和直方表得到每一个分数段的人数,然后求得a、b、c的值即可;(2)利用众数与中位数的定义分别求解即可.解答:解:(1)观察统计表和直方图知:平均成绩在0.5﹣2.5之间的有4人,故a=4﹣1=3;成绩在4.5﹣6.5之间的有7人,故b=7﹣4=3;成绩在6.5﹣8.5之间的有15人,故c=15﹣6=9人;(2)∵平均成绩为7的有9人,最多,∴众数为7,∵共有33人,∴中位数的成绩应该为第17人,∴中位数为6.点评:本题考查了频数分布直方图及中位数、众数的定义,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.各频数相加即为总数.23.如图,在长方形ABCD中,AB=5cm,AD=3cm.点E从点A出发,以每秒2cm的速度沿折线ABC 方向运动,点F从点C出发,以每秒1cm的速度沿线段CD方向向点D运动.已知动点E、F同时发,当点E运动到点C时,E、F停止运动,设运动时间为t.(1)当E运动到B点时,求出t的值;(2)在点E、点F的运动过程中,是否存在某一时刻,使得EF=3cm?若存在,请求出t的值;若不存在,请说明理由.考点:矩形的性质;勾股定理.专题:动点型.分析:(1)根据题意得出方程2t=5,求出方程的解即可;(2)画出符合条件的两种情况,根据勾股定理得出方程,求出方程的解即可.解答:解:(1)∵AB=5cm,∴2t=5,解得:t=2.5,即当E运动到B点时,t的值是2.5秒;(2)当0<t≤2.5时,如图1,过E作EM⊥DC于,则EM=BC=3cm,由勾股定理得:(3t﹣5)+32=32,解得:t=;当2.5<t≤4时,如图2,由勾股定理得:(8﹣2t)2+t2=32,此方程无解;即在点E、点F的运动过程中,存在某一时刻,使得EF=3cm,此时t的值是秒.点评:本题考查了矩形的性质,勾股定理的应用,能得出关于t的方程是解此题的关键,注意:矩形的对边相等,矩形的每一个角都是直角.24.(10分)(2015春•瑞安市期中)某校八年级(1)(2)班准备集体购买T恤衫,了解到某商店有促销活动,当购买10件时每件140元,购买数量每增加1件单价减少1元.当购买数量为60件(含60件)以上时,一律每件80元.(1)若购买x件(10<x<60),每件的单价为y元,请写出y关于x的函数关系式.(2)若八(1)(2)班共购买100件,由于某种原因需分两批购买T恤衫,且第一批购买数量多于30件且少于70件.已知购买两批T恤衫一共花了9200元.求第一批T恤衫购买数量.考点:一元二次方程的应用;根据实际问题列一次函数关系式.专题:销售问题.分析:(1)若购买x件(10<x<60),每件的单价=140﹣(购买数量﹣10),依此可得y关于x 的函数关系式;(2)设第一批购买x件,则第二批购买(100﹣x)件,分三种情况:①当30<x≤40时,则60≤100﹣x<100;②当40<x<60时,则40<100﹣x<60;③当60≤x<70时,则30<100﹣x≤40;根据购买两批T恤衫一共花了9200元列出方程求解即可.解答:解:(1)购买x件(10<x<60)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)设第一批购买x件,则第二批购买(100﹣x)件①当30<x≤40时,则60≤100﹣x<100,则x(150﹣x)+80(100﹣x)=9200,解得x1=30(舍去),x2=40;②当40<x<60时,则40<100﹣x<60,则100(150﹣x)=9200,解得x=58;③当60≤x<70时,则30<100﹣x≤40,则80x+(100﹣x)[150﹣(100﹣x)]=9200,解得x1=70(舍去),x2=60.答:第一批购买数量为40件或58件或60件.点评:考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。
2019-2020学年度第二学期浙教版八年级数学期中试题卷-附答案(精校版)
(第12题)2019-2020学年第二学期期中考试八年级数学试题卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1,则x 的取值范围是()A .3x >B .3x ≥C .3x <D .3x ≠2.一元二次方程2231x x -=的二次项系数a 、一次项系数b 和常数c 分别是()A .2,3,1a b c ===-B .2,1,3a b c ===-C .2,3,1a b c ==-=-D .2,3,1a b c ==-=3.下列图形,既是轴对称图形又是中心对称图形的是()A .平行四边形B .正五边形C .等边三角形D .矩形4.五边形的内角和是()A .360°B .540°C .720°D .900°5.在平行四边形ABCD 中,已知∠A :∠B =1:2,则∠B 的度数是()A .45°B .90°C .120°D .135°6.用反证法证明某一命题的结论“b a <”时,应假设() A .b a >B .b a ≥C .b a =D .b a ≤7.已知点M (-2,3)在双曲线xky =上,则下列一定在该双曲线上的是( ) A .(3,一2) B .(一2,一3) C . (2,3) D . (3,2) 8.正方形具有而矩形不一定具有的性质是()A. 对角线相等B. 对角互相垂直C. 对角线互相平分D. 对边线平分一组对角 9.关于x 的一元二次方程ax 2-2x +1=0有实数根,则整数a 的最大值是( )A .1B .1-C .2D .2-10.如图,在矩形ABCD 中,AB =6,BC =8,M 是AD 上任意一点,且ME ⊥AC 于E , MF ⊥BD 于F ,则ME +MF 为( ) A .245B .125C .65D .不能确定二、填空题(本大题共有6小题,每小题4分,共24分)11.在菱形ABCD 中,对角线AC 、BD 长分别为8cm 、6cm ,则菱形的面积为 12.如图,A 、B 两点分别位于山脚的两端,小明想测量A 、B 两点间的距离,于是想了个主意:先在地上取一个可以直接达到A 、B 两点的点C ,找到AC 、BC 的中点D 、E ,并且测出DE 的长为 15m ,则A 、B 两点间的距离为 _m . 13.点()1,A m ,()3,B n 是双曲线3y x=上的点,则m n (填“>”,“<”,“=”). 14.已知06)(5)(22222=-+++y x y x ,则22y x +的值为 .(第10题)15.如图,已知矩形ABCD 的边长AB =4,BC =6,对角线AC 的垂直平分线分别交AC 、AD 、BC 于O 、E 、F ,连结AF 、CE ,则AEBF= .. 16.如图,已知函数y =2x 和函数y =的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则k = ,满足条件的P 点坐标是 .(第16题)三、解答题(本题有8小题,共66分) 17.(本题满分6分)计算(1)64)7()3(22--+-(2)2)32()31)(31(+--+18.(本题满分6分)解方程 (1)240x x +=; (2)2670x x -+=. -19.(本题满分6分)已知关于x 的方程. x 2-2(m+1)x+m 2+2=0 (1)若方程总有两个实数根,求m 的取值范围; (2) 若两实数根x 1,x 2满足(x 1+1)(x 2+1)=8,求m 的值。
2019-2020学年度第二学期浙教版八年级数学期中试题卷-附答案(已审阅)
(第12题)2019-2020学年第二学期期中考试八年级数学试题卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1,则x 的取值范围是()A .3x >B .3x ≥C .3x <D .3x ≠2.一元二次方程2231x x -=的二次项系数a 、一次项系数b 和常数c 分别是()A .2,3,1a b c ===-B .2,1,3a b c ===-C .2,3,1a b c ==-=-D .2,3,1a b c ==-=3.下列图形,既是轴对称图形又是中心对称图形的是()A .平行四边形B .正五边形C .等边三角形D .矩形4.五边形的内角和是()A .360°B .540°C .720°D .900°5.在平行四边形ABCD 中,已知∠A :∠B =1:2,则∠B 的度数是()A .45°B .90°C .120°D .135°6.用反证法证明某一命题的结论“b a <”时,应假设() A .b a >B .b a ≥C .b a =D .b a ≤7.已知点M (-2,3)在双曲线xky =上,则下列一定在该双曲线上的是( ) A .(3,一2) B .(一2,一3) C . (2,3) D . (3,2) 8.正方形具有而矩形不一定具有的性质是()A. 对角线相等B. 对角互相垂直C. 对角线互相平分D. 对边线平分一组对角 9.关于x 的一元二次方程ax 2-2x +1=0有实数根,则整数a 的最大值是( )A .1B .1-C .2D .2-10.如图,在矩形ABCD 中,AB =6,BC =8,M 是AD 上任意一点,且ME ⊥AC 于E , MF ⊥BD 于F ,则ME +MF 为( ) A .245B .125C .65D .不能确定二、填空题(本大题共有6小题,每小题4分,共24分)11.在菱形ABCD 中,对角线AC 、BD 长分别为8cm 、6cm ,则菱形的面积为 12.如图,A 、B 两点分别位于山脚的两端,小明想测量A 、B 两点间的距离,于是想了个主意:先在地上取一个可以直接达到A 、B 两点的点C ,找到AC 、BC 的中点D 、E ,并且测出DE 的长为 15m ,则A 、B 两点间的距离为 _m . 13.点()1,A m ,()3,B n 是双曲线3y x=上的点,则m n (填“>”,“<”,“=”). 14.已知06)(5)(22222=-+++y x y x ,则22y x +的值为 .(第10题)15.如图,已知矩形ABCD 的边长AB =4,BC =6,对角线AC 的垂直平分线分别交AC 、AD 、BC 于O 、E 、F ,连结AF 、CE ,则AEBF= .. 16.如图,已知函数y =2x 和函数y =的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则k = ,满足条件的P 点坐标是 .(第16题)三、解答题(本题有8小题,共66分) 17.(本题满分6分)计算(1)64)7()3(22--+-(2)2)32()31)(31(+--+18.(本题满分6分)解方程 (1)240x x +=; (2)2670x x -+=. -19.(本题满分6分)已知关于x 的方程. x 2-2(m+1)x+m 2+2=0 (1)若方程总有两个实数根,求m 的取值范围; (2) 若两实数根x 1,x 2满足(x 1+1)(x 2+1)=8,求m 的值。
2019-2020学年浙江省温州八年级(下)期中数学试卷(附答案详解)
2019-2020学年浙江省温州八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.二次根式√x−1中字母x的取值范围是()A. x<1B. x≥1C. x≤0D. x≥02.如图中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.如果一个多边形的内角和是720°,那么这个多边形是()A. 四边形B. 五边形C. 六边形D. 七边形4.下列方程是一元二次方程的是()A. 2xy−7=0B. x2−7=0C. −7x=0D. 5(x+1)=725.在▱ABCD中,∠A:∠B:∠C=1:2:1,则∠D等于()A. 0°B. 60°C. 120°D. 150°6.若点P(a,2)与Q(−1,b)关于坐标原点对称,则a,b分别为()A. −1,2B. 1,−2C. 1,2D. −1,−27.下列计算正确的是()A. √2⋅√3=√6B. √8−√2=√6C. √3+√2=√5D. √8÷√2=48.为了参加市中学生篮球运动会,一支校篮球队准备购买双运动鞋,各种尺码的统计如表所示,则这双运动鞋尺码的众数和中位数分别为()尺码(厘米)2525.52626.527购买量(双)14211A. 25.5cm 26 cmB. 26 cm25.5cmC. 25.5cm25.5cmD. 26 cm 26 cm9.如图,四边形ABCD中,∠ADC=90°,AE=BE,BF=CF,连接EF,AD=3,CD=1,则EF的长为()A. √104B. √102C. √10D. 2√1010.《代数学》中记载,形如x2+8x=33的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7−4=3.”小聪按此方法解关于x的方程x2+10x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为()C. 5√3−2D. 5√3−5A. 6B. 5√3−32二、填空题(本大题共8小题,共24.0分)11.当x=−2时,二次根式√2−7x的值是______.12.平行四边形ABCD的周长为30 cm,AB:BC=2:3,则AB=______ .13.一元二次方程x2=3x的解是:______.14.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是______.15.用反证法证明“三角形的三个内角中至少有一个角不小于60度”,第一步应假设______.16.如果关于x的方程kx2+4x+3=0有两个实数根,则非负整数k的值是______ .17.如图在平行四边形ABCD中,∠ABC=60°,AB=4,四条内角平分线围成四边形EFGH面积为√3,则平行四边形ABCD面积为______ .18.图1是小红在“淘宝⋅双11”活动中所购买的一张多档位可调节靠椅,档位调节示意图如图2所示.已知两支脚AB=AC,O为AC上固定连接点,靠背OD=10分米.档位为Ⅰ档时,OD//AB,档位为Ⅱ挡时,OD′⊥AC,过点O作OG//BC,则∠DOG+∠D′OG=______ °当靠椅由Ⅰ档调节为Ⅱ档时,靠背顶端D向后靠至D′,此时点D移动的水平距离是2分米,即ED′=2分米.DH⊥OG于点H,则D到直线OG的距离为______ 分米.三、解答题(本大题共6小题,共46.0分)19.(1)计算:3√13−√12+√12×√6(2)解方程:x(x−3)+x=320.如图,在5×5的方格纸中,每个小正方形的边长均为1,A,B两点均在小正方形的顶点上,请按下列要求,在图1,图2中各画一个四边形(所画四边形的顶点均在小正方形的顶点上)(1)在图1中画四边形ABCD,使其为中心对称图形.(2)在图2中画以A,B,E,F为顶点的平行四边形,且其中一条对角线长等于3.21.某政府部门进行公务员招聘考试,其中三人中录取一人,他们的成绩如下:人测试成绩题目甲乙丙文化课知识748769面试587470平时表现874365(1)按照平均成绩甲、乙、丙谁应被录取?(2)若按照文化课知识、面试、平时表现的成绩已4:3:1的比例录取,甲、乙、丙谁应被录取?22.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.23.某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是______袋;(用含x的代数式表示)(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?24.如图:在平面直角坐标系中,点A在x轴的正半轴,OA=8,点B在第一象限,∠AOB=60°,AB⊥OB垂足为B,点D、C分别在边OB、OA上,且OD=AC=t,以OD、OC为边作平行四边形OCED,DE交直线AB于F,CE交直线AB于点G.(1)当t=2时,则E的坐标为______ ;(2)若△DFC的面积为3√3,求t的值;2(3)当D、B、G、E四点为顶点的四边形为平行四边形时,在y轴上存在点M,过点M作FC的平行线交直线OB于点N,若以M、N、F、C为顶点的四边形也是平行四边形,则点M的坐标为______ .(直接写出答案)答案和解析1.【答案】B【解析】解:由题意得,x−1≥0,解得,x≥1,故选:B.根据二次根式的意义,被开方数是非负数,列出不等式,解不等式得到答案.本题考查的是二次根式有意义的条件,掌握二次根式的意义,被开方数是非负数是解题的关键.2.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.3.【答案】C【解析】解:这个正多边形的边数是n,则(n−2)⋅180°=720°,解得:n=6.则这个正多边形的边数是6.故选:C.n边形的内角和可以表示成(n−2)⋅180°,设这个正多边形的边数是n,就得到方程,从而求出边数.考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.4.【答案】B【解析】解:A、方程2xy−7=0是二元二次方程,故本选项错误;B、方程x2−7=0是一元二次方程,故本选项正确;C、方程−7x=0是一元一次方程,故本选项错误;D、方程5(x+1)=72是一元一次方程,故本选项错误.故选:B.根据一元二次方程的定义对各选项进行逐一分析即可.本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.5.【答案】C【解析】【分析】本题主要考查四边形的内角和定理及平行四边形的性质,属于基础题,难度低.在▱ABCD 中,∠A:∠B:∠C=1:2:1,而且四边形内角和是360°,由此得到∠A=∠C=60°,∠B=120°,那么▱ABCD的另一个内角就可以求出了.【解答】解:在▱ABCD中,∠A:∠B:∠C=1:2:1,而∠A+∠B+∠C+∠D=360°,∴∠A=∠C=60°,∠B=120°,∴▱ABCD的另一个内角∠D=∠B=120°.故选:C.6.【答案】B【解析】解:∵点P(a,2)与Q(−1,b)关于坐标原点对称,∴a,b分别为1,−2;故本题选B.平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),那么,即可求得a 与b的值.关于原点对称的点坐标的关系,是需要识记的基本问题.7.【答案】A【解析】解:A、原式=√2×3=√6,所以A选项正确;B、原式=2√2−√2=√2,所以B选项错误;C、√3与√2不能合并,所以C选项错误;D、原式=√8÷2=2,所以D选项错误.故选:A.根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B、C进行判断;根据二次根式的除法法则对D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.【答案】C【解析】解:由表可知25.5cm出现次数最多,故众数为25.5cm,一共有9个数,则其中位数为第5个数,即25.5cm,故选:C.根据众数和中位数的定义可得.本题主要考查众数、中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.【答案】B【解析】解:连接AC,∵∠ADC=90°,AD=3,CD=1,∴AC=√32+12=√10,∵AE=BE,BF=CF,∴EF=12AC=√102,故选:B.连接AC,根据勾股定理得到AC=√32+12=√10,由三角形的中位线的性质定理即可得到结论.本题考查了勾股定理,三角形中位线定理,正确的作出辅助线是解题的关键.10.【答案】D【解析】解:如图2,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构x的矩形,得到大正方形的面积为:造四个面积为52)2×4=50+25=75,50+(52×2=5√3−5.∴该方程的正数解为√75−52故选:D.,先计算出大正方形的面积等根据已知的数学模型,同理可得空白小正方形的边长为52于阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可得解.本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.11.【答案】4【解析】【分析】本题考查了二次根式的定义及性质,注意二次根式的结果是非负数是解答此题的关键.把x=−2代入已知二次根式,通过开平方求得答案.【解答】解:把x=−2代入√2−7x得,√2−7×(−2)=√16=4,故答案为:4.12.【答案】6【解析】【分析】本题考查的是平行四变形的性质:平行四边形的两组对边分别相等.根据平行四边形的两组对边分别相等及已知条件即可求解.【解答】解:∵▱ABCD∴AB=CD,AD=BC∵平行四边形ABCD的周长为30 cm∴AB+BC=15又∵AB:BC=2:3∴AB=6,BC=9.故答案为6.13.【答案】x1=0,x2=3【解析】解:(1)x2=3x,x2−3x=0,x(x−3)=0,解得:x1=0,x2=3.故答案为:x1=0,x2=3.利用因式分解法解方程.本题考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.14.【答案】2【解析】解:a=5×5−3−4−6−7=5,s2=15[(3−5)2+(5−5)2+(4−5)2+(6−5)2+(7−5)2]=2.故答案为:2.先由平均数的公式计算出a的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…,x n的平均数为x,x=1n (x1+x2+⋯+x n),则方差S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2].本题考查了方差的定义:一般地设n个数据,x1,x2,…,x n的平均数为x,x=1n(x1+x2+⋯+x n),则方差S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.【答案】三角形的三个内角都小于60°【解析】解:∵用反证法证明三角形中至少有一个角不小于60°,∴第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为:三角形的三个内角都小于60°.熟记反证法的步骤,从命题的反面出发假设出结论,直接填空即可.此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.16.【答案】1【解析】解:根据题意得△=42−4k×3≥0,解得k≤4,3所以非负整数k的值为1.故答案为1.利用判别式的意义得到42−4k×3≥0,然后解不等式求出k的范围,从而得到非负整数k的值.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.17.【答案】12√3【解析】解:∵四边形ABCD是平行四边形,∴AB//DC,∴∠DAB+∠ADC=180°;∵AF、DF平分∠DAB、∠ADC,∴∠FAD+∠FDA=90°,即∠APD=90°;同理可证得:∠BHC=∠HEF=∠HGF=90°;∴四边形EFGH是矩形;如图,延长AF交BC于点Q,连接EG,∵AF平分∠DAB,∴∠BAQ=∠DAQ,∵AD//BC,∴∠DAQ=∠AQB,∴∠BAQ=∠AQB,∴BQ=AB=4,∵∠ABC=60°,∴△ABQ是等边三角形,∴AQ=AB=4,∵BE⊥AQ,AQ=2,∴AE=EQ=12同理可得CG=2,∵CG//EQ,CG=EQ,∴四边形EQGC是平行四边形,∴EG//CQ,∴∠GEQ=∠BQE=60°,∵∠HEF=90°,∴∠HEG=30°,∴EG=2HG,EH=√3HG,=EH⋅HG=√3HG2=√3,∴S矩形EFGH∴HG=1,∴HC=HG+CG=1+2=3,在Rt△BHC中,∠HBC=30°,HC=3,∴BC=2CH=6,作AP⊥BC于点P,在Rt△ABP中,∠BAP=30°,AB=4,∴BP=2,∴AP=2√3,∴平行四边形ABCD面积为:BC⋅AP=6×2√3=12√3.故答案为:12√3.由于平行四边形的邻角互补,那么每两条相邻的内角平分线都互相垂直,则围成四边形就有4个直角,因此这个四边形一定是矩形.本题考查的是平行四边形的性质以及矩形的判定:四个角都是直角的四边形是矩形,牢记矩形的判定定理是解答本题的关键.18.【答案】90 8【解析】解:设AB与OH交于点N,作D′M⊥OG于M,∵OD//AB,OG//BC,∴∠DOG=∠ANO,∠ANO=∠ABC,∠ACB=∠COG,∵AB=AC,∴∠ABC=∠ACB,∴∠DOG=∠ABC=∠ACB=∠COG,∵OD′⊥AC,∴∠COD′=90°,∴∠DOG+∠D′OG=∠COD′=∠COG+∠D′OG=∠COD′=90°;∵DH⊥OG,D′M⊥OG,∴∠OHD=∠OMD′=90°,在Rt△OHD中∠DOG+∠ODH=90°,又∠DOG+∠D′OG=90°,∴∠ODH=∠D′OG,∵当靠椅由Ⅰ档调节为Ⅱ档时,靠背顶端D向后靠至D′,即OD旋转到OD′,在△ODH和△D′OM中∴{∠ODH=∠D′OM ∠OHD=∠D′MO OD=D′O,∵△ODH≌△D′OM,∴DH=OM,又∵HM=ED′=2,∴DH=OM=OH+HM=OH+2,设OH=x,则DH=x+2,在Rt△OHD中,OD=10,由勾股定理得:OH2+DH2=OD2,即x2+(x+2)2=102,解得:x1=6,x2=−8(舍去),∴点D到直线OG的距离为DH=x+2=8.故答案为:90,8.先利用平行线的性质与等腰三角形的性质证明∠DOG=∠COG,再利用等量代换计算出∠DOG+∠D′OG=∠COD′=90°;先构造Rt△OMD′,再利用全等的性质以及勾股定理计算DH的长即可.本题考查了全等三角形的性质和判定,勾股定理,等腰三角形的性质,解题的关键是构造全等三角形.19.【答案】解:(1)原式=√3−2√3+√3=0;(2)移项得:x(x−3)+x−3=0,(x−3)(x+1)=0,x−3=0,x+1=0,x1=3,x2=−1.【解析】(1)先算乘法,再合并同类二次根式即可;(2)先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程和二次根式的混合运算,能灵活运用知识点进行化简和计算是解此题的关键.20.【答案】解:(1)如图1,四边形ABCD为所作;(2)如图2,四边形ABEF为所作.【解析】(1)以AB为边画一个平时四边形即可;(2)先作对角线BF=3,然后以AB为边,BF为对角线画平行四边形即可.考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.21.【答案】解:(1)甲:13×(74+58+87)=13×219=73,乙:13×(87+74+43)=13×204=68,丙:13×(69+70+65)=13×204=68,∵73分最高,∴应该录取甲;(2)甲:18×(74×4+58×3+87×1)=18×557=69.625,乙:18×(87×4+74×3+43×1)=18×613=76.625,丙:18×(69×4+70×3+65×1)=18×551=68.875,∵76.625分最高,∴应该录取乙.【解析】本题考查的是加权平均数的求法与算术平均数的求法,是基础题,需熟练掌握.(1)根据算术平均数的计算方法分别求出三人的平均分,然后作出判断即可;(2)根据加权平均数的计算方法分别求出三人的平均分,然后作出判断即可.22.【答案】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC//DE又∵CE//AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD=√CE2−DE2=√42−22=2√3.∵D是BC的中点,∴BC=2CD=4√3.【解析】(1)先根据垂直于同一条直线的两直线平行,得AC//DE ,又CE//AD ,所以四边形ACED 是平行四边形;(2)四边形ACED 是平行四边形,可得DE =AC =2.由勾股定理和中线的定义得到结论. 本题考查了平行四边形的判定与性质,勾股定理和中线的定义,注意寻找求AB 和EB 的长的方法和途径是解题的关键.23.【答案】(50−5x)【解析】解:(1)∵这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋,∴在售价为18元的基础上,将这种口罩的售价每袋提高x 元,则日均销售量是(50−5x)袋.故答案为:(50−5x).(2)依题意,得:(18−12+x)(50−5x)=275,整理,得:x 2−4x −5=0,解得:x 1=−1,x 2=5.当x =−1时,18+x =17,符合题意;当x =5时,18+x =23>22,不符合题意,舍去.答:该商场每袋口罩的售价要定为17元.(1)根据日均销售量=50−5×提高的价格,即可得出结论;(2)根据每天的利润=每袋口罩的销售利润×日均销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.【答案】(7,√3) (0,−8√33)或(0,8√33)【解析】解:(1)如图1,过点D 作DQ ⊥OA 于点Q ,则∠DQO =90°,当t=2时,OD=AC=2,则OC=OA−AC=8−2=6,在平行四边形OCED中,DE=OC=6,在Rt△OQD中,∠AOB=60°,∠DQO=90°,∴∠ODQ=30°,∴OQ=1,DQ=√3,∴点E的横坐标为:1+6=7,纵坐标为:√3,故点E的坐标为:(7,√3);故答案为:(7,√3);(2)如图2,过点D作DQ⊥OA于点Q,Rt△ODQ中,∠ODQ=30°,OD=t,∴OQ=12t,DQ=√32t,∵AB⊥OB,∴∠ABO=90°,Rt△ABO中,∠BAO=30°,OA=8,∴OB=4,∴BD=4−t,∵DE//OA,∴∠BFD=∠BAO=30°,∴DF=2BD=8−2t,∵△DFC的面积为3√32,∴12DF⋅DQ=3√32,即12(8−2t)⋅√32t=3√32,解得:t1=1,t2=3;(3)分两种情况:①当M在y轴的负半轴上时,如图3,延长CF交直线OD于P,∵四边形BDGE是平行四边形,∴DF=FE,由(2)知:DF=8−2t,∴DE=OC=16−4t,∵OD=AC=t,OA=8,∴16−4t+t=8,解得:t=83,∴EF=8−2×83=83=EC,∵∠FEC=60°,∴△FEC是等边三角形,∴CF=CE=83,∵AC=OD=CF,∴∠CAF=∠AFC,∵四边形ODEC是平行四边形,∴DE//OC,∴∠EFC=∠FCO=60°,∴∠AFC=30°,∠ACF=120°,∵∠PFB=∠AFC=30°,∵∠FBP=90°,∴∠FPB=60°,∵四边形MNFC是平行四边形,∴MN =CF ,MN//CF ,∴∠MNO +∠FPB =180°,∴∠MNO =120°=∠ACF ,∵∠MON =30°,∠AFC =30°,∴∠AFC =∠MON ,∵AC =FC =MN ,∴△MNO≌△ACF(AAS),∴OM =AF ,∵CG//OB ,AB ⊥OB ,∴CG ⊥AB ,∵AC =CF ,∴AG =FG ,Rt △ACG 中,∠CAG =30°,∵AC =83, ∴CG =12AC =43,AG =4√33, ∴AF =2AG =8√33, ∴OM =AF =8√33, ∴M(0,−8√33); ②当M 在y 轴的正半轴上时,如图4,此时N 与D 重合,同理得:M(0,8√33), 综上,点M 的坐标为(0,−8√33)或(0,8√33). 故答案为:(0,−8√33)或(0,8√33). (1)根据平行四边形的性质以及勾股定理计算即可;(2)根据三角形的面积公式,用含t的代数式分别表示出△DFC的底DF的长和高DQ的长,列方程解出即可;(3)先根据四边形BDGE是平行四边形计算出t的值;再根据四边形MNCF是平行四边形算出点M的坐标即可.本题考查的是四边形的综合运用,涉及到平行四边形的性质,三角形全等的性质和判定,勾股定理,含30度角的直角三角形的性质等,其中(3)是本题的难点,根据题意,确定点M的位置,分类讨论是解题的关键.第21页,共21页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年浙江省温州市瑞安市六校联盟八年级(下)期中数学试卷一、选择题(本大题有10个小题,每小题3分,共30分) 1.(3分)下列四个交通标志图案中,是中心对称图形的为( )A .B .C .D .2.(3分)下列方程中,属于一元二次方程的是( ) A .10x +=B .221x x =-C .21y x -=D .223x x+=3.(3分)二次根式3x +有意义时,x 的取值范围是( ) A .3x -B .3x >-C .3x -D .3x ≠-4.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x ,7.已知这组数据的平均数是6,则x 的值为( ) A .7B .6C .5D .45.(3分)已知ABCD 中,130B D ∠+∠=︒,则A ∠的度数是( ) A .125︒B .105︒C .135︒D .115︒6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90︒”时,应先假设( ) A .有一个内角小于90︒ B .有一个内角小于或等于90︒C .每一个内角都小于90︒D .每一个内角都大于90︒7.(3分)下列选项中,运算正确的是( ) A .3223-=B .2137÷=C .555+=D .81812⨯=8.(3分)如图,ABCD 的周长是24cm ,对角线AC 与BD 交于点O ,BD AD ⊥,E 是AB 中点,COD ∆的周长比BOC ∆的周长多4cm ,则DE 的长为( )A .5B .52C .4D .439.(3分)若一元二次方程2(1)30x kx x +-+=无实数根,则k 的最小整数值是( )A .2B .1C .0D .1-10.(3分)如图,在矩形ABCD 中,6AB =,8AD =,顺次连接各边中点得到四边形1111A B C D ,再顺次连接四边形1111A B C D 各边中点得到四边形2222A B C D ⋯依此类推,则四边形9999A B C D 的周长为( )A .74B .54C .72D .52二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720︒,这个多边形的边数是 . 12.(3分)某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数14322则这个队队员年龄的众数和中位数分别是 岁、 岁. 13.(3分)化简:2(3)π-= .14.(3分)若一元二次方程220200ax bx --=有一根为1x =-,则a b += .15.(3分)某公园准备围建一个矩形花园ABCD ,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF 长为28米,并且与墙平行的一面BC 上要预留2米宽的入口(如图MN 所示,不用围篱笆),若花园的面积为320平方米,则AB = .16.(3分)在矩形ABCD 中,4AB =,9AD =,点E 在BC 上,4CE =,点F 是AD 上的一个动点,连接BF ,若将四边形ABEF 沿EF 折叠,点A 、B 分别落在点A '、B '处,则当点B 恰好落在矩形ABCD 的一边上时,AF 的长为 . 三、解答题(本大题有7小题,共52分)17.(6分)计算: (1)2964(3)-+-; (2)183322÷-⨯. 18.(6分)解下列方程: (1)24x x =; (2)22740x x --=.19.(6分)如图,在76⨯的正方形网格中,点A ,B ,C ,D 都在格点上,请你按要求画出图形.(1)在图甲中作出△111A B C ,使△111A B C 和ABC ∆关于点D 成中心对称;(2)在图乙中以AB 为三角形一边画出2ABC ∆,使得2ABC ∆为轴对称图形,且23ABC ABC SS ∆=.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业 单元测试 期末考试 小张 70 90 80 小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩. ①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)如图,在四边形ABCD 中,//AB CD ,BAD ∠的平分线AE 交CD 于点F ,交BC 的延长线于点E ,且AB BE =.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF AE⊥,60E∠=︒,6AB=,求四边形ABCD的面积.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)23.(10分)如图,在平面直角坐标系中,直线34y x b=-+分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.2019-2020学年浙江省温州市瑞安市六校联盟八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分) 1.(3分)下列四个交通标志图案中,是中心对称图形的为( )A .B .C .D .【分析】根据中心对称图形的定义进行判断.【解答】解:四个交通标志图案中,只有第2个为中心对称图形. 故选:B .【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形. 2.(3分)下列方程中,属于一元二次方程的是( ) A .10x +=B .221x x =-C .21y x -=D .223x x+=【分析】利用一元二次方程的定义进行分析即可.【解答】解:A 、10x +=是一元一次方程,故此选项不合题意;B 、221x x =-是一元二次方程,故此选项符合题意;C 、含有2个未知数,21y x -=不是一元二次方程,故此选项不合题意;D 、含有分式,223x x+=不是一元二次方程;故此选项不合题意. 故选:B .【点评】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.3.(33x +有意义时,x 的取值范围是( ) A .3x -B .3x >-C .3x -D .3x ≠-【分析】二次根式的被开方数是非负数.【解答】解:依题意得30x+,解得3x-.故选:A.【点评】0)a叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.4【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【解答】解:5,7,6,x,7的平均数是6,∴1(5767)65x++++=,解得:5x=;故选:C.【点评】此题主要考查了算术平均数,解题的关键是熟练掌握算术平均数的计算公式.5.(3分)已知ABCD中,130B D∠+∠=︒,则A∠的度数是()A.125︒B.105︒C.135︒D.115︒【分析】根据平行四边形的对角相等、邻角互补,即可得出A∠的度数.【解答】解:在ABCD中,130B D∠+∠=︒,B D∠=∠,65B D∴∠=∠=︒,又180A B∠+∠=︒,18065115A∴∠=︒-︒=︒.故选:D.【点评】本题考查平行四边形的性质,解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90︒”时,应先假设() A.有一个内角小于90︒B.有一个内角小于或等于90︒C.每一个内角都小于90︒D.每一个内角都大于90︒【分析】至少有一个角不小于90︒的反面是每个角都小于90︒,据此即可假设.【解答】解:用反证法证明:在四边形中,至少有一个角不小于90︒,应先假设:四边形中的每个角都小于90︒. 故选:C .【点评】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.(3分)下列选项中,运算正确的是( ) A .3223-=B .2137÷=C .555+=D .81812⨯=【分析】利用二次根式的加减法对A 、C 进行判断;利用二次根式的除法法则对B 进行判断;利用二次根式的乘法法则对D 进行判断. 【解答】解:A 、原式22=,所以A 选项错误;B 、原式7=,所以B 选项错误;C 、原式25=,所以C 选项错误;D 、原式223212=⨯=,所以D 选项正确.故选:D .【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.(3分)如图,ABCD 的周长是24cm ,对角线AC 与BD 交于点O ,BD AD ⊥,E 是AB 中点,COD ∆的周长比BOC ∆的周长多4cm ,则DE 的长为( )A .5B .52C .4D .43【分析】根据平行四边形的性质得到OB OD =,12AD AB CD BC +=+=,根据三角形的周长公式得到4CD BC -=,解方程组求出CD ,得到AB 的长,根据直角三角形的性质解答即可.【解答】解:四边形ABCD 是平行四边形,四边形ABCD 的周长是24, AB CD ∴=,AD BC =,OB OD =,12AD AB CD BC +=+=,COD ∆的周长比BOC ∆的周长多4,()()4CD OD OC CB OB OC ∴++-++=,即4CD BC -=, 124CD BC CD BC +=⎧⎨-=⎩, 解得,8CD =,4BC =, 8AB CD ∴==,BD AD ⊥,E 是AB 中点,142DE AB ∴==, 故选:C .【点评】本题考查的是平行四边形的性质、直角三角形的性质,掌握平行四边形的对角线互相平分是解题的关键.9.(3分)若一元二次方程2(1)30x kx x +-+=无实数根,则k 的最小整数值是( ) A .2B .1C .0D .1-【分析】由根的判别式与方程根的情况,可得△0<,从而求出k 的取值范围,再确定k 的最小整数.要保证二次项系数不为0.【解答】解:一元二次方程2(1)30x kx x +-+=,即2(1)30k x x -++=无实数根,∴△2414(1)30b ac k =-=-⨯-⨯<且10k -≠,解得1312k >且1k ≠. 2k =最小整数. 故选:A .【点评】本题考查了由根的判别式确定根的情况:△0>,有两个不等实根;△0=,有两个相等实根;△0<,无实根.10.(3分)如图,在矩形ABCD 中,6AB =,8AD =,顺次连接各边中点得到四边形1111A B C D ,再顺次连接四边形1111A B C D 各边中点得到四边形2222A B C D ⋯依此类推,则四边形9999A B C D 的周长为( )A .74B .54C .72D .52【分析】连接AC 、BC ,根据勾股定理求出11A B ,根据三角形中位线定理、菱形的判定定理得到四边形1111A B C D 是菱形,且菱形的周长5420=⨯=,总结规律,根据规律解答. 【解答】解:连接AC 、BC ,由题意得,11632AB =⨯=,11842AA =⨯=,由勾股定理得,2211345A B =+=, 四边形ABCD 为矩形, AC BD ∴=,顺次连接四边形ABCD 各边中点得到四边形1111A B C D ,1112A B BD ∴=,11//A B BD ,1112C B AC =,11//C B AC ,1112D A AC =,11//A D AC ,1111A B C D ∴=,1111//A B C D ,1111//A B B C ,∴四边形1111A B C D 是菱形,且菱形的周长5420=⨯=,同理,四边形3333A B C D 是菱形,且菱形的周长120102=⨯=,⋯⋯四边形9999A B C D 是菱形,且菱形的周长1520164=⨯=, 故选:B .【点评】本题考查的是中点四边形,掌握矩形的性质、矩形和菱形的判定定理、三角形中位线定理是解题的关键.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720︒,这个多边形的边数是 6 . 【分析】根据内角和定理180(2)n ︒-即可求得. 【解答】解:多边形的内角和公式为(2)180n -︒, (2)180720n ∴-⨯︒=︒,解得6n =,∴这个多边形的边数是6.故答案为:6.【点评】本题主要考查了多边形的内角和定理即180(2)n ︒-,难度适中. 12.(3分)某中学篮球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数分别是 15 岁、 岁. 【分析】根据中位数和众数的定义求解.【解答】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数. 故填16,15.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.(3= 3π- .【分析】(0)a a =,根据性质可以对上式化简.【解答】3π=-. 故答案是:3π-.【点评】本题考查的是二次根式的性质和化简,根据二次根式的性质,对代数式进行化简. 14.(3分)若一元二次方程220200ax bx --=有一根为1x =-,则a b += 2020 . 【分析】由方程有一根为1-,将1x =-代入方程,整理后即可得到a b +的值.【解答】解:把1x =-代入一元二次方程220200ax bx --=得:20200a b +-=, 即2020a b +=. 故答案是:2020.【点评】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程.15.(3分)某公园准备围建一个矩形花园ABCD ,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF 长为28米,并且与墙平行的一面BC 上要预留2米宽的入口(如图MN 所示,不用围篱笆),若花园的面积为320平方米,则AB = 20 .【分析】根据54米的篱笆,即总长度是54m ,BC xm =,则1(542)2AB x m =-+,再根据矩形的面积公式列方程,解一元二次方程即可.【解答】解:设矩形花园BC 的长为x 米,则其宽为1(542)2x -+米,依题意列方程得:1(542)3202x x -+=, 2566400x x -+=,解这个方程得:116x =,240x =, 2840<,240x ∴=(不合题意,舍去), 16x ∴=,1(542)202AB x ∴=-+=.答:当矩形的长AB 为16米时,矩形花园的面积为320平方米; 故答案为:20.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解,注意围墙EF 最长可利用28m ,舍掉不符合题意的数据. 16.(3分)在矩形ABCD 中,4AB =,9AD =,点E 在BC 上,4CE =,点F 是AD 上的一个动点,连接BF ,若将四边形ABEF 沿EF 折叠,点A 、B 分别落在点A '、B '处,则当点B 恰好落在矩形ABCD 的一边上时,AF 的长为 3或113. 【分析】分两种情况讨论,当点B '落在AD 边上时,由折叠知,BEF ∆≅△B EF ',推出BFE B FE '∠=∠,进一步推5BF BE ==,在Rt ABF ∆中,通过勾股定理求出AF 的长;当点B '落在CD 边上时,在Rt ECB '∆中,利用勾股定理求出CB '的长,进一步求出DB '的长,分别在Rt △FA B ''和Rt FDB '∆中,利用勾股定理求出含x 的FB '的长度,联立构造方程,求出x 的值,即AF 的长度.【解答】解:如图1,当点B '落在AD 边上时, 由折叠知,BEF ∆≅△B EF ',BFE B FE '∴∠=∠,四边形ABCD 是矩形, //AD BC ∴,FEB B EF '∴∠=∠, FEB BFE ∴∠=∠, BF BE ∴=,945BE BC EC =-=-=, 5BF ∴=,在Rt ABF ∆中,3AF ==;如图2,当点B '落在CD 边上时,由折叠知,BEF ∆≅△B EF ',ABF ∆≅△A B F '', 5EB EB '∴==,4A B AB CD ''===,四边形ABCD 是矩形, 90D C ∴∠=∠=︒,在Rt ECB '∆中,3CB '=, 431DB CD CB ''∴=-=-=,设AF A F x '==, 在Rt △FA B ''中,222224FB FA A B x ''''=+=+,在Rt FDB '∆中,22222(9)1FB FD DB x ''=+=-+, 22224(9)1x x ∴+=-+, 解得,113x =, 113AF ∴=;故答案为:3或113.【点评】本题考查了矩形的性质,轴对称的性质,勾股定理等,解题关键是能够分情况讨论,并根据题意画出图形.三、解答题(本大题有7小题,共52分) 17.(6分)计算: (12964(3)- (2183322【分析】(1)利用二次根式的性质计算; (2)利用二次根式的乘除法则运算.【解答】解:(1)原式383=-+2=-;(2)原式==-=【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 18.(6分)解下列方程: (1)24x x =; (2)22740x x --=.【分析】利用因式分解法求解可得. 【解答】解:(1)24x x =,240x x ∴-=, (4)0x x ∴-=,则0x =或40x -=, 解得10x =,24x =; (2)22740x x --=, (4)(21)0x x ∴-+=,则40x -=或210x +=, 解得14x =,20.5x =-.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.(6分)如图,在76⨯的正方形网格中,点A ,B ,C ,D 都在格点上,请你按要求画出图形.(1)在图甲中作出△111A B C ,使△111A B C 和ABC ∆关于点D 成中心对称;(2)在图乙中以AB 为三角形一边画出2ABC ∆,使得2ABC ∆为轴对称图形,且23ABC ABC SS ∆=.【分析】(1)利用网格特点和中心对称的性质画出A 、B 、C 的对应点即可; (2)利用勾股定理作出25AC =,则2ABC ∆为等腰三角形,此三角形满足条件. 【解答】解:(1)如图,△111A B C 为所作; (2)如图,2ABC ∆为所作.【点评】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业 单元测试 期末考试 小张 70 90 80 小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩. ①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀? 【分析】(1)直接利用算术平均数的定义求解可得; (2)根据加权平均数的定义计算可得. 【解答】解:(1)小张的期末评价成绩为709080803++=(分); (2)①小张的期末评价成绩为70190280780127⨯+⨯+⨯=++(分);②设小王期末考试成绩为x 分, 根据题意,得:601752780127x⨯+⨯+++,解得84.2x ,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.21.(8分)如图,在四边形ABCD 中,//AB CD ,BAD ∠的平分线AE 交CD 于点F ,交BC 的延长线于点E ,且AB BE =.(1)求证:四边形ABCD 是平行四边形;(2)连结BF ,若BF AE ⊥,60E ∠=︒,6AB =,求四边形ABCD 的面积.【分析】(1)由角平分线的性质和等腰三角形的性质可得DAF E ∠=∠,可证//AD BE ,可得结论;(2)先证ABE ∆是等边三角形,可求ABF S ∆的面积,即可求解. 【解答】证明:(1)AB BE =,E BAE ∴∠=∠, AF 平分BAD ∠, DAF BAE ∴∠=∠, DAF E ∴∠=∠,//AD BE ∴,又//AB CD ,∴四边形ABCD 是平行四边形;(2)AB BE =,60E ∠=︒,ABE ∴∆是等边三角形,6BA AE ∴==,60BAE ∠=︒,又BF AE ⊥,3AF EF ∴==,BF ∴=11322ABF S AF BF ∆∴=⨯=⨯⨯=,ABCD ∴的面积2ABF S ∆=⨯=【点评】本题考查了平行四边形的判定和性质,等边三角形的判定和性质,灵活运用这些性质解决问题是本题的关键.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋. (1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)【分析】(1)直接利用二月销量2(1)x ⨯+=四月的销量进而求出答案.(2)首先设出未知数,再利用每袋的利润⨯销量=总利润列出方程,再解即可. 【解答】解:(1)设三、四这两个月的月平均增长率为x . 由题意得:2192(1)300x +=, 解得:114x =,294x =-(不合题意,舍去),答:三、四这两个月的月平均增长率为25%.(2)设当农产品每袋降价m 元时,该淘宝网店五月份获利3250元. 根据题意可得:(4025)(3005)3250m m --+=,解得:15m=,250m=-(不合题意,舍去).答:当农产品每袋降价5元时,该淘宝网店五月份获利3250元.【点评】此题主要考查了一元二次方程的应用,正确得出等量关系是解题关键.23.(10分)如图,在平面直角坐标系中,直线34y x b=-+分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=3;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.【分析】(1)把(4,0)代入34y x b=-+即可求得b的值;(2)过点D作DE x⊥轴于点E,证明OAB EDA∆≅∆,即可求得AE和DE的长,则D的坐标即可求得;(3)分当OM MB BN NO===时;当3OB BN NM MO====时两种情况进行讨论.【解答】解:(1)把(4,0)代入34y x b=-+,得:30b-+=,解得:3b=,故答案是:3;(2)如图1,过点D作DE x⊥轴于点E,正方形ABCD中,90BAD∠=︒,1290∴∠+∠=︒,又直角OAB∆中,1390∠+∠=︒,13∴∠=∠,在OAB∆和EDA∆中,13BAO DEA AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, OAB EDA ∴∆≅∆,3AE OB ∴==,4DE OA ==, 437OE ∴=+=,∴点D 的坐标为(7,4);(3)存在.①如图2,当OM MB BN NM ===时,四边形OMBN 为菱形. 则MN 在OB 的中垂线上,则M 的纵坐标是32,把32y =代入334y x =-+中,得2x =,即M 的坐标是3(2,)2, 则点N 的坐标为3(2,)2-.②如图3,当3OB BN NM MO ====时,四边形BOMN 为菱形. ON BM ⊥, ON ∴的解析式是43y x =. 根据题意得:33443y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得:36254825x y ⎧=⎪⎪⎨⎪=⎪⎩.则点N 的坐标为72(25,96)25. 综上所述,满足条件的点N 的坐标为3(2,)2-或72(25,96)25.【点评】本题考查了全等三角形的判定与性质以及菱形的判定,正确进行讨论是关键.。