中考数学总复习 专题提升三 列方程组解应用题(含答案)
中考数学总复习《方程(组)及其应用》专项提升练习题(附答案)
中考数学总复习《方程(组)及其应用》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________命题点1一次方程(组)的解法及解的应用 1(2022百色)方程3x=2x+7的解是( )A.x=4B.x=-4C.x=7D.x=-72(2022株洲)对于二元一次方程组{y =x -1,①x +2y =7,②将①式代入②式,消去y 可以得到( )A.x+2x-1=7B.x+2x-2=7C.x+x-1=7D.x+2x+2=73(2022随州)已知二元一次方程组{x +2y =4,2x +y =5,则x-y 的值为 .4(2022呼和浩特)解方程组{4x +y =5,x -12+y 3=2.5(2022荆州)已知方程组{x +y =3,①x -y =1②的解满足2kx-3y<5,求k 的取值范围.命题点2解分式方程6(2022北京)方程2x+5=1x 的解为 .7(2022成都)分式方程3−xx -4+14−x =1的解是 . 8(2022常德)方程 2x +1x (x -2)=52x的解为 .9(2022苏州)解方程:xx+1+3x =1.10(2022青海)解方程:x x -2-1=4x 2-4x+4.命题点3分式方程的解的应用 11(2022德阳)如果关于x 的方程2x+m x -1=1的解是正数,那么m 的取值范围是 ( )A.m>-1B.m>-1且m ≠0C.m<-1D.m<-1且m ≠-2 12(2021达州)若分式方程2x -ax -1-4=-2x+a x+1的解为整数,则整数a= .命题点4一元二次方程的解法及解的应用 13(2022天津)方程x 2+4x+3=0的两个根为 ( ) A.x 1=1,x 2=3 B.x 1=-1,x 2=3 C.x 1=1,x 2=-3 D.x 1=-1,x 2=-314(2022临沂)方程x 2-2x-24=0的根是( )A.x 1=6,x 2=4B.x 1=6,x 2=-4C.x 1=-6,x 2=4D.x 1=-6,x 2=-415(2022宜宾)已知m ,n 是一元二次方程x 2+2x-5=0的两个根,则m 2+mn+2m 的值为( )A.0B.-10C.3D.1016(2022广东)若x=1是方程x 2-2x+a=0的根,则a= .17(2022黄冈)若一元二次方程x 2-4x+3=0的两个根是x 1,x 2,则x 1·x 2的值是 .18(2022鄂州)若实数a ,b 分别满足a 2-4a+3=0, b 2-4b+3=0,且a ≠b ,则1a +1b 的值为 .19(2022无锡)解方程:x 2-2x-5=0.20(2022齐齐哈尔)解方程:(2x+3)2=(3x+2)2.命题点5一元二次方程根的判别式21(2022北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m 的值为()A.-4B.-14C.14D.422(2022抚顺)下列一元二次方程无实数根的是() A.x2+x-2=0 B.x2-2x=0 C.x2+x+5=0 D.x2-2x+1=023(2022滨州)一元二次方程2x2-5x+6=0的根的情况为()A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定24(2022随州)已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等的实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.25(2022南充)已知关于x的一元二次方程x2+3x+k-2=0有实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=-1,求k的值.命题点6方程的实际应用角度1变化率问题26(2022重庆A卷)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是() A.200(1+x)2=242 B.200(1-x)2=242C.200(1+2x)=242D.200(1-2x)=24227(2022哈尔滨)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是() A.150(1-x2)=96 B.150(1-x)=96C.150(1-x)2=96D.150(1-2x)=96角度2购买、销售问题28(2022牡丹江)某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.29(2022重庆A卷)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5∶6∶7,需香樟数量之比为4∶3∶9,并且甲、乙两山需红枫数量之比为2∶3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.30(2022广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价分别是多少.角度3分配问题31(2021北京)某企业有A,B两条加工相同原材料的生产线.在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.第一天,该企业将5吨原材料分配到A,B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A生产线的原材料的质量与分配到B生产线的原材料的质量的比为.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则mn 的值为 . 角度4生产、工程问题32(2022云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需的时间与原计划植树300棵所需的时间相同.设实际每天植树x 棵,则下列方程正确的是 ( )A .400x -50=300x B .300x -50=400xC .400x+50=300xD .300x+50=400x33(2022宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨. (1)求4月份再生纸的产量.(2)若4月份每吨再生纸的利润为1 000元,5月份再生纸产量比上月增加m%,5月份每吨再生纸的利润比上月增加m2%,则5月份再生纸项目月利润达到66万元,求m 的值.(3)若4月份每吨再生纸的利润为1 200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元.角度5行程问题34(2022济宁)一辆汽车开往距出发地420 km 的目的地,若这辆汽车比原计划每小时多行10 km,则提前1 h 到达目的地.设这辆汽车原计划的速度是x km/h,根据题意所列方程是 ( )A.420x =420x -10+1B.420x +1=420x+10 C.420x=420x+10+1 D.420x+1=420x -1035(2022重庆A 卷)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A 地30千米的B 地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A 地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A 地出发,则甲、乙恰好同时到达B 地,求甲骑行的速度.角度6几何问题36(2022泰州)如图,在长为50 m 、宽为38 m 的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1 260 m 2,道路的宽应为多少?角度7其他问题37(2022宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为 ( )A.30B.26C.24D.2238(2022安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020 x y5202021 1.25x1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元.分类训练4方程(组)及其应用1.C2.B【解析】将①代入②,得x+2(x-1)=7,去括号,得x+2x-2=7.3.1【解析】{x+2y=4,①2x+y=5,②②-①,得x-y=5-4=1.4.【参考答案】{4x+y=5,①x-12+y3=2,②由②,得3x+2y=15,③①×2-③,得5x=-5解得x=-1.把x=-1代入①,得y=9故方程组的解为{x=−1, y=9.5.【参考答案】①+②,得2x=4,∴x=2.①-②,得2y=2,∴y=1.将x=2,y=1代入2kx-3y<5,得4k-3<5解得k<2.6.x=5 【解析】 方程两边同时乘x (x+5),得2x=x+5,解得x=5.检验:当x=5时,x (x+5)≠0.故x=5是原分式方程的解.7.x=3 【解析】 去分母,得3-x-1=x-4,移项、合并同类项,得-2x=-6,系数化为1,得x=3.经检验,x=3是分式方程的解.8.x=4 【解析】 方程两边同乘2x (x-2),得2×2(x-2)+2=5(x-2),解得x=4.检验:当x=4时,2x (x-2)=16≠0,∴x=4是原方程的解.9.【参考答案】 方程两边同乘以x (x+1),得x 2+3(x+1)=x (x+1). 解方程,得x=-32.经检验,x=-32是原方程的解. 10.【参考答案】 x x -2-1=4(x -2)2x (x-2)-(x-2)2=4 解得x=4检验:当x=4时,(x-2)2≠0 故x=4是原方程的解.11.D 【解析】 方程两边同时乘(x-1),得2x+m=x-1,解得x=-1-m.∵方程的解是正数,∴x>0,且x ≠1,∴-1-m>0,且-1-m ≠1,∴m<-1且m ≠-2. 12.±1 【解析】2x -a x -1-4=-2x+a x+1可变形为2x -2+2-a x -1-4=-2x -2+2+a x+1,即2+2−a x -1-4=-2+2+a x+1,∴2−a x -1=2+ax+1,∴(2-a )(x+1)=(2+a )(x-1),∴x=2a .又∵x 为整数,且x ≠±1,∴整数a=±1. 13.D 【解析】 方法一:∵x 2+4x+3=0,∴x 2+4x=-3,∴x 2+4x+4=-3+4,∴(x+2)2=1,∴x+2=±1,∴x 1=-1,x 2=-3.方法二:x 2+4x+3=0可化为(x+1)(x+3)=0,∴x 1=-1,x 2=-3. 14.B 【解析】 移项,得x 2-2x=24,配方,得x 2-2x+1=25,即(x-1)2=25,∴x-1=±5,∴x 1=6,x 2=-4.15.A 【解析】 ∵m ,n 是一元二次方程x 2+2x-5=0的两个根,∴m 2+2m-5=0,mn=-5,∴m 2+2m=5,∴m 2+mn+2m=m 2+2m+mn=5-5=0.故选A . 16.1 【解析】 将x=1代入x 2-2x+a=0,得1-2+a=0,∴a=1.17.3 【解析】 ∵x 1,x 2是一元二次方程x 2-4x+3=0的两个根,∴x 1·x 2=c a =31=3. 18.43 【解析】 由题意得a ,b 是方程x 2-4x+3=0的两个不相等的实数根,∴a+b=4,ab=3,∴1a +1b =a+b ab =43. 19.【参考答案】 移项,得x 2-2x=5 配方,得x 2-2x+1=5+1,即(x-1)2=6开方,得x-1=±√6解得x1=1+√6,x2=1-√6.20.【参考答案】等号两边同时开方,得2x+3=3x+2或2x+3=-3x-2 解得x=1或x=-1.21.C【解析】由题意可知Δ=1-4m=0,解得m=14.22.C【解析】逐项分析如下:选项分析是否符合题意A Δ=1+8=9>0,方程有两个不相等的实数根.否B Δ=4>0,方程有两个不相等的实数根.否C Δ=1-20=-19<0,方程没有实数根.是D Δ=4-4=0,方程有两个相等的实数根.否23.A【解析】∵Δ=(-5)2-4×2×6=25-48=-23<0,∴一元二次方程2x2-5x+6=0无实数根.24.【参考答案】(1)依题意可得Δ=(2k+1)2-4(k2+1)>0化简,得4k-3>0解得k>34.(2)依题意得x1x2=k2+1=5解得k1=2,k2=-2.由(1)知k>34,故k=2.25.【参考答案】(1)∵一元二次方程x2+3x+k-2=0有实数根,∴Δ≥0即32-4(k-2)=-4k+17≥0解得k≤174.(2)∵方程的两个实数根分别为x1,x2∴x1+x2=-3,x1x2=k-2.∵(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1 ∴k-2-3+1=-1,解得k=3.26.A 【解析】 根据题意,得第二天揽件200(1+x )件,第三天揽件200(1+x )(1+x )=200(1+x )2(件),故200(1+x )2=242,故选A .27.C 【解析】 第一次降价后,该种商品每件售价为150(1-x )元,第二次降价后,该种商品每件售价为150(1-x )2元,故150(1-x )2=96.28.15 【解析】 设该商品的标价为每件x 元,由题意得80%x-10=2,解得x=15. 29.3∶5 【解析】 根据题意设未知数,列表如表(1)所示.由“甲、乙两山需红枫数量之比为2∶3”,可列方程5a -4b 6a -3b =23,∴a=2b ,可得表(2).设香樟原价为每棵m 元,红枫原价为每棵n 元,则16b (1-6.25%)·m (1-20%)+20b ·n (1+25%)=16bm+20bn ,∴12bm+25bn=16bm+20bn ,∴m=54n ,∴12bm 25bn =12×54n 25n =15n 25n =35.表(1) 甲 乙 丙 香樟 4b 3b 9b 红枫 5a-4b 6a-3b合计5a6a7a表(2)甲 乙 丙 合计 香樟 4b 3b 9b 16b 红枫6b9b 5b 20b 合计 10b12b 14b30.【参考答案】 设学生人数为x 根据题意,得8x-3=7x+4 解得x=7∴7x+4=53.答:学生人数为7,该书单价为53元.31.2∶3 12 【解析】 设第一天分配到A,B 两条生产线的原材料分别为x 吨、y 吨,根据题意,得{x +y =5,4x +1=2y +3,解得{x =2,y =3,故分配到A 生产线的原材料的质量与分配到B 生产线的原材料的质量的比为2∶3.由题意得4(2+m )+1=2(3+n )+3,整理,得2m=n ,故m n =12.32.B 【解析】 由实际每天植树x 棵,可知原计划每天植树(x-50)棵,根据“实际植树400棵所需的时间与原计划植树300棵所需的时间相同”,可列方程为400x =300x -50.33.【参考答案】 (1)设3月份再生纸产量为x 吨,则4月份再生纸产量为(2x-100)吨.由题意,得x+(2x-100)=800解得x=300∴2x-100=500.答:4月份再生纸的产量为500吨.(2)由题意,得500(1+m%)·1 000(1+m 2%)=660 000解得m 1=20,m 2=-320(不合题意,舍去) ∴m=20.(3)设4至6月每吨再生纸利润的月平均增长率为y , 5月份再生纸的产量为a 吨,根据题意得1 200(1+y )2·a (1+y )=(1+25%)×1 200(1+y )·a∴1 200(1+y )2=1 500.答:6月份每吨再生纸的利润是1 500元.34.C 【解析】 这辆汽车原计划的速度是 x km/h,则实际的速度是(x+10)km/h,原计划用时420x h,实际用时420x+10 h.由实际比原计划提前1 h 到达目的地,可列方程为420x =420x+10+1.35.【参考答案】 (1)设乙骑行的速度是x 千米/时,则甲骑行的速度是1.2x 千米/时由题意,得12×1.2x=12x+2 解得x=20则1.2x=24.答:甲骑行的速度是24千米/时.(2)设乙骑行的速度是y 千米/时,则甲骑行的速度是1.2y 千米/时.由题意,得301.2y +2060=30y解得y=15.经检验,y=15是原方程的解,且符合题意.则1.2y=18.答:甲骑行的速度为18千米/时. 名师点拨由实际问题抽象出一次方程(组)的主要步骤:(1)弄清题意;(2)找准题中的等量关系;(3)设未知数;(4)根据找到的等量关系列出方程(组).36.【参考答案】 设道路的宽应为x 米由题意,得(50-2x )(38-2x )=1 260解得x 1=4,x 2=40(舍去).答:道路的宽应为4米.37.B 【解析】 设1艘大船可满载x 人,1艘小船可满载y 人,根据题意,得{x +2y =32①,2x +y =46②,由①+②,得3x+3y=78,∴x+y=26,即1艘大船与1艘小船一次共可以满载游客的人数为26.38.【参考答案】 (1)1.25x+1.3y(2)由题意得{x +y =520,1.25x +1.3y =520+140,解得{x =320,y =200,∴1.25x=400,1.3y=260.答:2021年进口额为400亿元,出口额为260亿元.。
最新中考数学专题复习-三元一次方程组解法及应用(含解析)
三元一次方程组解法及应用(含解析)一、单选题1.在y=ax2+bx+c中,当x=1时,y=0;当x=﹣1时,y=6;当x=2时,y=3;则当x=﹣2时,y=()A. 13B. 14C. 15D. 162.若m1,m2,…m2016是从0,1,2这三个数中取值的一列数,且m1+m2+…+m2016=1546,(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…m2016中,取值为2的个数为()A. 505B. 510C. 520D. 5503.某兴趣小组决定去市场购买A,B,C三种仪器,其单价分别为3元,5元,7元,购买这批仪器需花62元;经过讨价还价,最后以每种单价各下降1元成交,结果只花50元就买下了这批仪器.那么A种仪器最多可买()A. 8件B. 7件C. 6件D. 5件4.有甲、乙、丙三种商品,如果购甲1件、乙2件、丙3件,共需136元;购甲3件、乙2件、丙1件,共需240元.则购进甲、乙、丙三种商品各1件共需()元.A. 94B. 92C. 91D. 905.有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A. 50B. 100C. 150D. 2006.已知a+b=16,b+c=12,c+a=10,则a+b+c等于( )A. 19B. 38C. 14D. 227.若(2x-4)2+(x+y)2+|4z-y|=0,则x+y+z等于()A. B.C. 2D. -28.三元一次方程组的解是( )A. B.C. D.9.以为解建立三元一次方程组,不正确的是()A. B.C. D.10.下列四组数值中,为方程组的解是()A. B.C. D.11.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A. 5个B. 4个C. 3个D. 2个12.)若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A. 0B. 1C. 2D. 不能求出13.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A. 3B. 5C. 7D. 914.若方程组的解x和y的值相等,则k的值为()A. 4B. 11C. 10D. 1215.在“六•一”儿童节那天,某商场推出A、B、C三种特价玩具.若购买A种2件、B种1件、C种3件,共需23元;若购买A种1件、B种4件、C种5件,共需36元.那么小明购买A种1件、B种2件、C种3件,共需付款()A. 21元B. 22元C. 23元D. 不能确定二、填空题16.由方程组,可以得到x+y+z的值是________.17.如果x,y互为相反数,且满足|a﹣2y﹣3|+(5x+9)2=0,那么a=________ .18.某商店中销售水果时采用了三种组合搭配的方式进行销售,甲种搭配是:2千克A水果,4千克B水果;乙种搭配是:3千克A水果,8千克B水果,1千克C水果;丙种搭配是:2千克A水果,6千克B水果,1千克C水果;如果A水果每千克售价为2元,B水果每千克售价为1.2元,C水果每千克售价为10元,某天,商店采用三种组合搭配的方式进行销售后共得销售额441.2元,并且A水果销售额116元,那么C水果的销售额是________元.19.三元一次方程组的解是________20.方程组的解是________21.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上客车;再过t分钟,货车追上了客车,则t=________ 22.某校初三在综合实践活动中举行了“应用数字”智能比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多________ 分.23.三元一次方程组的解是________三、计算题24.已知,xyz≠0,求的值.25.解方程组:.26.解方程组:四、解答题27.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元为单位)28.根据下面的等式,求出妈妈买回来的鱼、鸡、菜各花了多少钱?鸡+鸭+鱼+菜=35.4元鸡+鱼+菜=20.4元鸭+鱼+菜=21.4元鸭+菜=17元.29.若方程组的解x、y的和为﹣5,求k的值,并解此方程组.五、综合题30.已知方程组.(1)用含z的代数式表示x;(2)若x,y,z都不大于10,求方程组的正整数解;(3)若x=2y,z<m(m>0),且y>﹣1,求m的值.31.某学校计划用104 000元购置一批电脑(这批款项须恰好用完,不得剩余或追加).经过招标,其中平板电脑每台1600元,台式电脑每台4000元,笔记本电脑每台4600元.(1)若学校同时购进其中两种不同类型的电脑共50台,请你帮学校设计该如何购买;(2)若学校同时购进三种不同类型的电脑共26台(三种类型的电脑都有),并且要求笔记本电脑的购买量不少于15台.32.解下列方程组(1)(2)答案解析部分一、单选题1.在y=ax2+bx+c中,当x=1时,y=0;当x=﹣1时,y=6;当x=2时,y=3;则当x=﹣2时,y=()A. 13B. 14C. 15D. 16【答案】C【考点】解三元一次方程组【解析】【解答】解:根据题意得,解方程组得,所以y=2x2﹣3x+1,当x=﹣2时,y=2×4﹣3×(﹣2)+1=15.故选C.【分析】根据题意得到三元一次方程组得,再解方程组得,则y=2x2﹣3x+1,然后把x=﹣2代入计算.2.若m1,m2,…m2016是从0,1,2这三个数中取值的一列数,且m1+m2+…+m2016=1546,(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…m2016中,取值为2的个数为()A. 505B. 510C. 520D. 550【答案】C【考点】解三元一次方程组【解析】【解答】解:设0有a个,1有b个,2有c个,由题意得,列出方程组解得,故取值为2的个数为520个,故选C.【分析】解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可3.某兴趣小组决定去市场购买A,B,C三种仪器,其单价分别为3元,5元,7元,购买这批仪器需花62元;经过讨价还价,最后以每种单价各下降1元成交,结果只花50元就买下了这批仪器.那么A种仪器最多可买()A. 8件B. 7件C. 6件D. 5件【答案】D【考点】解三元一次方程组【解析】解:设分别购买A,B,C三种仪器x、y、z台,则有:,两式相减得:x+y+z=12 ①,又x+2y+3z=25 ②,∴②﹣①得:y+2z=13,当y=1,z=6时,x=5,此时x的值最大.故A种仪器最多可5台.故选D.【分析】设分别购买A,B,C三种仪器x、y、z台,根据“购买这批仪器需花62元,但经过讨价还价,最后以每种单价各下降1元成交,结果只花50元就买下了这批仪器”列方程组求解即可.4.有甲、乙、丙三种商品,如果购甲1件、乙2件、丙3件,共需136元;购甲3件、乙2件、丙1件,共需240元.则购进甲、乙、丙三种商品各1件共需()元.A. 94B. 92C. 91D. 90【答案】A【考点】解三元一次方程组【解析】【解答】解:设购甲、乙、丙三种商品各一件,分别需要x元、y元、z元,根据题意有:,把这两个方程相加得:4x+4y+4z=376,4(x+y+z)=376,∴x+y+z=94.∴三种商品各一件共需94元钱.故选:A.【分析】设出购甲、乙、丙三种商品各一件的未知数,建立方程组,整体求解.5.有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A. 50B. 100C. 150D. 200【答案】C【考点】解三元一次方程组【解析】解:设购甲,乙,丙三种商品各一件需要x元、y元、z元.根据题意,得,两方程相加,得4x+4y+4z=600,x+y+z=150.则购甲,乙,丙三种商品各一件共需150元.【分析】设购甲,乙,丙三种商品各一件需要x元、y元、z元.根据等量关系:①购甲3件,乙2件,丙1件共需315元钱;②购甲1件,乙2件,丙3件共需285元,列方程组,再进一步运用加减消元法即可求解.6.已知a+b=16,b+c=12,c+a=10,则a+b+c等于( )A. 19B. 38C. 14D. 22【答案】A【考点】三元一次方程组解法及应用【解析】【解答】,①+②+③得2a+2b+2c=38,所以a+b+c=19.故答案为:A.【分析】将已知的三个方程组成方程组,然后相加,可得2a+2b+2c=38,两边同时除以2,即可得a+b+c的值.7.若(2x-4)2+(x+y)2+|4z-y|=0,则x+y+z等于()A. B.C. 2D. -2【答案】A【考点】解三元一次方程组【解析】【解答】∵(2x-4)2+(x+y)2+|4z-y|=0,∴,解得:,则x+y+z=2-2-=-.故选:A【分析】利用非负数的性质列出关于x ,y及z的方程组,求出方程组的解即可得到x ,y ,z的值,确定出x+y+z的值.8.三元一次方程组的解是( )A. B.C. D.【答案】A【考点】三元一次方程组解法及应用【解析】【解答】①+②+③得:x+y+z=6④,④-②得:x=1,④-③得:y=0,④-①得:z=5. 故答案为:A.【分析】观察方程组的特点,可以让三个方程相加,得到x+y+z=6.然后记该方程与方程组中的各方程分别相减,即可求出未知数的值.9.以为解建立三元一次方程组,不正确的是()A. B.C. D.【答案】D【考点】解三元一次方程组【解析】【解答】因为将未知数的值代入C项中为,所以选择C.【分析】将三个未知数的值代入选项中的三元一次方程中逐个验证即可.10.下列四组数值中,为方程组的解是()A. B.C. D.【答案】D【考点】解三元一次方程组【解析】【解答】解方程组,①+②得:3x+y=1④,①+③得:4x+y=2⑤,⑤﹣④得:x=1,将x=1代入④得:y=﹣2,将x=1,y=﹣2代入①得:z=3,则方程组的解为.故选D.【分析】根据题意得知,原题目要求用合适的方法解一个三元一次方程组.11.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A. 5个B. 4个C. 3个D. 2个【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:设“●”“■”“▲”分别为x、y、z,由图(1)(2)可知,,解得x=2y,z=3y,所以x+z=2y+3y=5y,即“■”的个数为5.故选A.【分析】设“●”“■”“▲”分别为x、y、z,由图列出方程组解答即可解决问题.12.)若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A. 0B. 1C. 2D. 不能求出【答案】A【考点】解三元一次方程组【解析】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选A.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.13.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A. 3B. 5C. 7D. 9【答案】C【考点】解三元一次方程组【解析】【解答】解:由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7 故答案为:C.【分析】先解得方程组的值x=2a,y=a,然后把它们代入到3x﹣5y﹣7=0中,求出a的值.14.若方程组的解x和y的值相等,则k的值为()A. 4B. 11C. 10D. 12【答案】B【考点】解三元一次方程组【解析】【解答】解:把y=x代入4x+3y=1得:7x=1,解得x=,∴y=x=.把y=x=得:k+(k﹣1)=3,解得:k=11故选B.【分析】x和y的值相等,把第一个式子中的y换成x,就可求出x与y的值,这两个值代入第二个方程就可得到一个关于k的方程,从而求得k的值.15.在“六•一”儿童节那天,某商场推出A、B、C三种特价玩具.若购买A种2件、B种1件、C种3件,共需23元;若购买A种1件、B种4件、C种5件,共需36元.那么小明购买A种1件、B种2件、C种3件,共需付款()A. 21元B. 22元C. 23元D. 不能确定【答案】B【考点】解三元一次方程组【解析】【解答】解:设A、B、C三种特价玩具单价分别为x、y、z元,由题意,得,设x+2y+3z=m(2x+y+3z)+n(x+4y+5z)∴,解得∴x+2y+3z=(2x+y+3z)+(x+4y+5z)=×23+×36=22.故选B.【分析】设A、B、C三种特价玩具单价分别为x、y、z元,列方程组,用待定系数法求解.二、填空题16.由方程组,可以得到x+y+z的值是________.【答案】3【考点】解三元一次方程组【解析】【解答】解:∵①+②+③,得2x+2y+2z=6,∴x+y+z=3,故答案为:3.【分析】先观察方程的系数特点,将三个方程的左右两边分别相加,可得2x+2y+2z=6,即可求得x+y+z的值.17.如果x,y互为相反数,且满足|a﹣2y﹣3|+(5x+9)2=0,那么a=________ .【答案】【考点】解三元一次方程组【解析】【解答】根据题意得:,解得:.即:a=.【分析】根据非负数的性质可得出两个关于x、y的方程,再联立x=﹣y组成方程组,可求得a的值.18.某商店中销售水果时采用了三种组合搭配的方式进行销售,甲种搭配是:2千克A水果,4千克B水果;乙种搭配是:3千克A水果,8千克B水果,1千克C水果;丙种搭配是:2千克A水果,6千克B水果,1千克C水果;如果A水果每千克售价为2元,B水果每千克售价为1.2元,C水果每千克售价为10元,某天,商店采用三种组合搭配的方式进行销售后共得销售额441.2元,并且A水果销售额116元,那么C水果的销售额是________元.【答案】150【考点】解三元一次方程组【解析】【解答】解:设该天卖出甲种、乙种、丙种水果分别是x、y、z,由题意得:,即,由②﹣①×11得:31(y+z)=465,即y+z=15,则共卖出C水果15千克,C水果的销售额为15×10=150(元).答:C水果的销售额为150元.【分析】根据题意找出相等关系,再根据三种组合搭配的方式进行销售后共得销售额441.2元和A水果销售额116元,建立方程组,利用整体思想求出x+y的值即可。
苏科版数学中考复习专题练习—方程及其应用(含答案)
方程及其应用一、学习目标1.能够识别一次方程(组)、分式方程、一元二次方程,并熟练掌握各类方程(组)的解法;2.理解方程(组)的解的意义,探究含字母参数的方程的解的问题;3.会列方程(组)求解实际问题、数学问题.二、典型例题题型一、方程(组)有关的概念及解法例题1.关于x 的方程(m +1)x |m |+1+(m -3)x -1=0.(1)m 取何值时,方程是一元二次方程,并求出此方程的解;(2)m 取何值时,方程是一元一次方程.例题2.解方程:x x -1=4 x 2-1 +1借题发挥:1.用加减消元法解二元一次方程组 ⎩⎨⎧ x +3y =4 ①, 2x -y =1 ②,时,下列方法中无法消元....的是( ) A . ①×2-② B .②×(-3) -① C . ①×(-2)+② D .①-②×32.用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( )A .(x - 3 4 )2= 17 16B .(x - 3 4 )2= 1 2C .(x - 3 2 )2= 13 4D .(x - 3 2 )2= 11 4题型二、方程的解的意义例题3.已知关于x 、y 的方程组⎩⎨⎧ a x +23y =-103 x +y =4与⎩⎨⎧ x -y =2 x +b y =15 的解相同.求a 、b 的值.例题4.已知关x 的一元一次方程 1 2021 x +3=2x +m 的解为x =2, 那么关于y 的一元一次方程 1 2021(y +1)+3=2 (y +1)+m 的解为 . 借题发挥:1.学校计划用200元钱购买A 、B 两种奖品,A 种每个15元,B 种每个25元,在钱全部用完的情况下,有多少种购买方案( )A .2种B .3种C .4种D .5种2.甲、乙二人同时解方程组⎩⎨⎧ a x +y =3 2x -b y =1 ,甲看错了a ,解得⎩⎨⎧ x =1 y =-1 ;乙看错了b ,解得⎩⎨⎧ x =-1 y =3.求a 、b 的值.题型三、含字母参数的方程的解的问题例题5.若关于x 的分式方程3x x -2=m 2-x+5的解为正数,则m 的取值范围为( ) A .m <-10 B .m ≤-10C .m ≥-10且m ≠-6D .m >-10且m ≠-6例题6.等腰三角形的一边长是3,另两边的长是关于x 的方程x 2-4x +k =0的两个根,则k 的值为( )A .3B .4C .3或4D .7借题发挥:关于x 的方程kx 2﹣6x +9=0有实数根,k 的取值范围是( )A .k <1且k ≠0B .k <1C .k ≤1且k ≠0D .k ≤1题型四、用方程思想解决问题例题7.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?。
中考数学总复习 专题提升三 列方程组解应用题(含答案)
列方程(组)解应用题一、一元一次方程的应用1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是(A )A. 100元B. 90元C. 810元D. 819元2.某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问:一月份每辆电动车的售价是多少元?解:设一月份每辆电动车的售价是x 元,根据题意,得100x +12200=(x -80)×100×(1+10%),解得x =2100.答:一月份每辆电动车的售价是2100元.3.现有甲、乙两种金属的合金10 kg ,如果加入甲种金属若干,那么重新熔炼后的合金中乙种金属占2份,甲种金属占3份,如果加入的甲种金属是第一次加入的2倍,那么重新熔炼后的合金中乙种金属占3份,甲种金属占7份,第一次加入的甲种金属多少?原来这块合金中甲种金属的百分比是多少?解:设原来这块合金中甲种金属的百分比是x ,则甲种金属有10x (kg),乙种金属有(10-10x )kg ,根据题意,得(10-10x )÷310-10=2×[(10-10x )÷25-10], 解得x =40%.则(10-10×40%)÷25-10=5(kg). 答:第一次加入的甲种金属是5 kg ,原来这块合金中甲种金属的百分比是40%.二、二元一次方程(组)的应用4.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(B )A. 7,6,1,4B. 6,4,1,7C. 4,6,1,7D. 1,6,4,75.某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付1118元;如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?解:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得①⎩⎪⎨⎪⎧12x +10y =1118,8(x +y )=816,解得⎩⎪⎨⎪⎧x =49,y =53. ②⎩⎪⎨⎪⎧12x +10y =1118,10(x +y )=816,解得⎩⎪⎨⎪⎧x =151,y =-69.4.(不合题意舍去) 答:七年级(1)班有49人、七年级(2)班有53人.(2)七年级(1)班节省的费用为(12-8)×49=196(元),七年级(2)班节省的费用为(10-8)×53=106(元).6.由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?解:设1辆大车一次运货x 吨,1辆小车一次运货y 吨.根据题意,得⎩⎪⎨⎪⎧3x +4y =22,2x +6y =23, 解得⎩⎪⎨⎪⎧x =4,y =2.5.则x +y =4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.三、一元二次方程的应用7.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是(B )A. (1+x )2=1110B. (1+x )2=109C. 1+2x =1110D. 1+2x =1098.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m 的住房墙,另外三边用25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m 2?(第8题图)解:设矩形猪舍垂直于住房墙一边长为x (m),则平行于墙的一边的长为(25-2x +1)m ,由题意,得x (25-2x +1)=80,化简,得x 2-13x +40=0,解得x 1=5,x 2=8.当x =5时,26-2x =16>12(舍去);当x =8时,26-2x =10<12,答:所围矩形猪舍的长为10 m 、宽为8 m.9.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率.(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 解:(1)设增长率为x ,根据题意,得2500(1+x )2=3025,解得x =0.1=10%或x =-2.1(不合题意,舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).答:根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费3327.5万元.四、分式方程的应用10.现有纯农药一桶,倒出20升后用水补满,然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3∶5,则桶的容积为40升.11.扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,则原计划每天栽树多少棵? 解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)棵.由题意,得1200x -1200(1+20%)x=2, 解得x =100.经检验,x =100是原分式方程的解,且符合题意.答:原计划每天种树100棵.12.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600 m 道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10 h 完成任务.(1)按原计划完成总任务的13时,已抢修道路_________________m. (2)问:原计划每小时抢修道路多少米?解:(1)按原计划完成总任务的13时,已抢修道路3600×13=1200(m), 故答案为1200.(2)设原计划每小时抢修道路x (m),根据题意,得1200x +3600-1200[(1+50%)x ]=10, 解得x =280.经检验,x =280是原方程的解,且符合题意.答:原计划每小时抢修道路280 m.。
中考数学专题训练(附详细解析):列方程解应用题(分式方程)
中考数学专题训练(附详细解析):列方程解应用题(分式方程)1、某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?解析:设甲车间每天能加工x个,则乙车间每天能加工1.3x个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程。
解答:甲车间生产的电子元件数为4600/2=2300个,乙车间生产的电子元件数也为2300个。
设甲车间每天生产x个,则乙车间每天生产1.3x个,根据题意可得方程:x*(33-(2300/x))+1.3x*(2300/x)=2300化简得:x=100所以,甲车间每天生产电子元件100个。
2、某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。
设原计划每天生产x个,根据题意可列分式方程为()解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可。
解答:根据题意可列方程:20x+10)/(x+4)=15化XXX:x=10所以,原计划每天生产零件10个。
3、甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成。
问乙队单独完成这项工程需要多少天?解析:设乙工程队单独完成这项工程需要x天,由题意可得等量关系:甲10天的工作量+甲与乙8天的工作量=1,再根据等量关系可得方程10/x+8/(30x)=1.解答:根据题意可列方程:10/x+8/(30x)=1化简得:x=45所以,乙队单独完成这项工程需要45天。
时需要转化或者组合,才能得到最终的方程.在解题时要注意符号的运用,避免出现错误的计算结果.小改写:4、XXX要到距离家1500米的学校上学。
中考数学总复习《方程(组)与不等式(组)》专项测试卷(带有答案)
中考数学总复习《方程(组)与不等式(组)》专项测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________1.下列方程变形中①方程3-2x 3-x -22=1去分母,得2(3-2x)-3(x -2)=1 ②方程3x +8=-4x -7移项,得3x +4x =7-8③方程7(3-x)-5(x -3)=8去括号,得21-7x -5x +15=8 ④方程37x =73,得x =1 错误的有( )A .4个B .3个C .1个D .0个2.(2023·无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =2,y =0C.⎩⎪⎨⎪⎧x =0.5,y =3 D.⎩⎪⎨⎪⎧x =-2,y =4 3.二元一次方程x +3y =7的非负整数解的个数是( )A .1B .2C .3D .44.(2023·南充)关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =2m -1,x -y =n 的解满足x +y =1,则4m÷2n 的值是( )A .1B .2C .4D .85.(2023·温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( )A.52x +y =30 B .x +52y =30 C.32x +y =30 D .x +32y =30 6.(2023·齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150 cm 的导线,将其全部截成10 cm 和20 cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共 有( )A .5种B .6种C .7种D .8种7.(2023春·合川区期末)已知⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =23,nx -my =-2的解,则5m +n 的平方根为( )A .-4和4B .-5和5C .-13和13D .-27和27 8.(2023·绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A.⎩⎪⎨⎪⎧x +5y =3,5x +y =2 B.⎩⎪⎨⎪⎧5x +y =3,x +5y =2 C.⎩⎪⎨⎪⎧5x =y +3,x =5y +2 D.⎩⎪⎨⎪⎧5x =y +2,x =5y +39.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数有多少.设有x 人,则可列方程为 .10.(2023·丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝 斤.11.解方程:x -x -12=x +23+1.12.(2023·辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2 500元,那么最多可购买甲种驱蚊手环多少个?13.(2023·宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,表格列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270小乐妈妈 30 20 230①根据表格,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B 两种包装中分别有m 个豆沙粽,m 个肉粽,A 包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A ,B 两种包装的销量分别为(80-4m)包,(4m +8)包,A ,B 两种包装的销售总额为17 280元.求m 的值.参考答案1.下列方程变形中①方程3-2x 3-x -22=1去分母,得2(3-2x)-3(x -2)=1 ②方程3x +8=-4x -7移项,得3x +4x =7-8③方程7(3-x)-5(x -3)=8去括号,得21-7x -5x +15=8④方程37x =73,得x =1 错误的有( B )A .4个B .3个C .1个D .0个2.(2023·无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( D )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =2,y =0C.⎩⎪⎨⎪⎧x =0.5,y =3D.⎩⎪⎨⎪⎧x =-2,y =4 3.二元一次方程x +3y =7的非负整数解的个数是( C )A .1B .2C .3D .44.(2023·南充)关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =2m -1,x -y =n 的解满足x +y =1,则4m÷2n 的值是( D )A .1B .2C .4D .85.(2023·温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( A ) A.52x +y =30 B .x +52y =30 C.32x +y =30 D .x +32y =30 6.(2023·齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150 cm 的导线,将其全部截成10 cm 和20 cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共 有( C )A .5种B .6种C .7种D .8种7.(2023春·合川区期末)已知⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =23,nx -my =-2的解,则5m +n 的平方根为( B )A .-4和4B .-5和5C .-13和13D .-27和27 8.(2023·绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( B )A.⎩⎪⎨⎪⎧x +5y =3,5x +y =2 B.⎩⎪⎨⎪⎧5x +y =3,x +5y =2 C.⎩⎪⎨⎪⎧5x =y +3,x =5y +2 D.⎩⎪⎨⎪⎧5x =y +2,x =5y +3 9.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数有多少.设有x 人,则可列方程为8x -3=7x +4.10.(2023·丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝 967斤. 11.解方程:x -x -12=x +23+1. 解:去分母,得6x -3(x -1)=2(x +2)+6去括号,得6x -3x +3=2x +4+6移项合并,得x =7.12.(2023·辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2 500元,那么最多可购买甲种驱蚊手环多少个?解:(1)设每个甲种驱蚊手环的售价是x 元,每个乙种驱蚊手环的售价是y 元根据题意,得 ⎩⎪⎨⎪⎧3x +y =128,x +2y =76, 解得⎩⎪⎨⎪⎧x =36,y =20,答:每个甲种驱蚊手环的售价是36元,每个乙种驱蚊手环的售价是20元;(2)设购买甲种驱蚊手环m 个,则购买乙种驱蚊手环(100-m)个根据题意,得36m +20(100-m)≤2 500解得m ≤1254又∵m 为正整数∴m 的最大值为31.答:最多可购买甲种驱蚊手环31个.13.(2023·宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,表格列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270 小乐妈妈 30 20 230①根据表格,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B 两种包装中分别有m 个豆沙粽,m 个肉粽,A 包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A ,B 两种包装的销量分别为(80-4m)包,(4m +8)包,A ,B 两种包装的销售总额为17 280元.求m 的值. 解:(1)设豆沙粽的单价为x 元,肉粽的单价为2x 元由题意,得10x +12×2x =136解得x =4∴2x =8(元)答:豆沙粽的单价为4元,肉粽的单价为8元;(2)①设豆沙粽优惠后的单价为a 元,肉粽优惠后的单价为b 元由题意,得⎩⎪⎨⎪⎧20a +30b =270,30a +20b =230, 解得⎩⎪⎨⎪⎧a =3,b =7,答:豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②由题意,得[3m +7(40-m)]·(80-4m)+[3(40-m)+7m]·(4m +8)=17 280解得m =19或m =10∵m ≤12(40-m) ∴m ≤403∴m =10.。
中考数学专题练习三元一次方程组解法及应用(含解析)
2019中考数学专题练习-三元一次方程组解法及应用(含解析)一、单选题1.在y=ax2+bx+c中,当x=1时,y=0;当x=﹣1时,y=6;当x=2时,y=3;则当x=﹣2时,y=()A.13B.14C.15D. 162.若m1,m2,…m2019是从0,1,2这三个数中取值的一列数,且m1+m2+…+m2019=1546,(m1﹣1)2+(m2﹣1)2+…+(m2019﹣1)2=1510,则在m1,m2,…m2019中,取值为2的个数为()A.505B.510C.520D.55 03.某兴趣小组决定去市场购买A,B,C三种仪器,其单价分别为3元,5元,7元,购买这批仪器需花62元;经过讨价还价,最后以每种单价各下降1元成交,结果只花50元就买下了这批仪器.那么A种仪器最多可买()A.8件B.7件C.6件D.5件4.有甲、乙、丙三种商品,如果购甲1件、乙2件、丙3件,共需136元;购甲3件、乙2件、丙1件,共需240元.则购进甲、乙、丙三种商品各1件共需()元.A.94B.92C.91D.905.有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.2006.已知a+b=16,b+c=12,c+a=10,则a+b+c等于()A.19B.38C.14D. 227.若(2x-4)2+(x+y)2+|4z-y|=0,则x+y+z等于()A. B. C.2D. -28.三元一次方程组的解是()A. B. C.D.9.以为解建立三元一次方程组,不正确的是()A. B. C.D.10.下列四组数值中,为方程组的解是()A. B. C.D.11.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个 D.2个12.)若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0B.1C.2D.不能求出13.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3B.5C.7D.914.若方程组的解x和y的值相等,则k的值为()A.4B.11C.10D.1215.在“六•一”儿童节那天,某商场推出A、B、C三种特价玩具.若购买A种2件、B种1件、C种3件,共需23元;若购买A种1件、B种4件、C种5件,共需36元.那么小明购买A种1件、B种2件、C种3件,共需付款()A.21元B.22元C.23元D.不能确定二、填空题16.由方程组,可以得到x+y+z的值是________.17.如果x,y互为相反数,且满足|a﹣2y﹣3|+(5x+9)2=0,那么a=________ .18.某商店中销售水果时采用了三种组合搭配的方式进行销售,甲种搭配是:2千克A水果,4千克B水果;乙种搭配是:3千克A水果,8千克B水果,1千克C水果;丙种搭配是:2千克A水果,6千克B水果,1千克C水果;如果A水果每千克售价为2元,B水果每千克售价为1.2元,C水果每千克售价为10元,某天,商店采用三种组合搭配的方式进行销售后共得销售额441.2元,并且A水果销售额116元,那么C水果的销售额是________元.19.三元一次方程组的解是________20.方程组的解是________21.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上客车;再过t分钟,货车追上了客车,则t=________22.某校初三在综合实践活动中举行了“应用数字”智能比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多________分.23.三元一次方程组的解是________三、计算题24.已知,xyz≠0,求的值.25.解方程组:.26.解方程组:四、解答题27.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:才能使产值最高最高产值是多少?(以千元为单位)28.根据下面的等式,求出妈妈买回来的鱼、鸡、菜各花了多少钱?鸡+鸭+鱼+菜=35.4元鸡+鱼+菜=20.4元鸭+鱼+菜=21.4元鸭+菜=17元.29.若方程组的解x、y的和为﹣5,求k的值,并解此方程组.五、综合题30.已知方程组.(1)用含z的代数式表示x;(2)若x,y,z都不大于10,求方程组的正整数解;(3)若x=2y,z<m(m>0),且y>﹣1,求m的值.31.某学校计划用104 000元购置一批电脑(这批款项须恰好用完,不得剩余或追加).经过招标,其中平板电脑每台1600元,台式电脑每台4000元,笔记本电脑每台4600元.(1)若学校同时购进其中两种不同类型的电脑共50台,请你帮学校设计该如何购买;(2)若学校同时购进三种不同类型的电脑共26台(三种类型的电脑都有),并且要求笔记本电脑的购买量不少于15台.32.解下列方程组(1)(2)答案解析部分一、单选题1.在y=ax2+bx+c中,当x=1时,y=0;当x=﹣1时,y=6;当x=2时,y=3;则当x=﹣2时,y=()A.13B.14C.15D. 16【答案】C【考点】解三元一次方程组【解析】【解答】解:根据题意得,解方程组得,所以y=2x2﹣3x+1,当x=﹣2时,y=2×4﹣3×(﹣2)+1=15.故选C.【分析】根据题意得到三元一次方程组得,再解方程组得,则y=2x2﹣3x+1,然后把x=﹣2代入计算.2.若m1,m2,…m2019是从0,1,2这三个数中取值的一列数,且m1+m2+…+m2019=1546,(m1﹣1)2+(m2﹣1)2+…+(m2019﹣1)2=1510,则在m1,m2,…m2019中,取值为2的个数为()A.505B.510C.520D.55 0【答案】C【考点】解三元一次方程组【解析】【解答】解:设0有a个,1有b个,2有c个,由题意得,列出方程组解得,故取值为2的个数为520个,故选C.【分析】解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可3.某兴趣小组决定去市场购买A,B,C三种仪器,其单价分别为3元,5元,7元,购买这批仪器需花62元;经过讨价还价,最后以每种单价各下降1元成交,结果只花50元就买下了这批仪器.那么A种仪器最多可买()A.8件B.7件C.6件D.5件【答案】D【考点】解三元一次方程组【解析】解:设分别购买A,B,C三种仪器x、y、z台,则有:,两式相减得:x+y+z=12①,又x+2y+3z=25①,①①﹣①得:y+2z=13,当y=1,z=6时,x=5,此时x的值最大.故A种仪器最多可5台.故选D.【分析】设分别购买A,B,C三种仪器x、y、z台,根据“购买这批仪器需花62元,但经过讨价还价,最后以每种单价各下降1元成交,结果只花50元就买下了这批仪器”列方程组求解即可.4.有甲、乙、丙三种商品,如果购甲1件、乙2件、丙3件,共需136元;购甲3件、乙2件、丙1件,共需240元.则购进甲、乙、丙三种商品各1件共需()元.A.94B.92C.91D.90【答案】A【考点】解三元一次方程组【解析】【解答】解:设购甲、乙、丙三种商品各一件,分别需要x元、y元、z元,根据题意有:,把这两个方程相加得:4x+4y+4z=376,4(x+y+z)=376,①x+y+z=94.①三种商品各一件共需94元钱.故选:A.【分析】设出购甲、乙、丙三种商品各一件的未知数,建立方程组,整体求解.5.有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.200【答案】C【考点】解三元一次方程组【解析】解:设购甲,乙,丙三种商品各一件需要x元、y元、z元.根据题意,得,两方程相加,得4x+4y+4z=600,x+y+z=150.则购甲,乙,丙三种商品各一件共需150元.【分析】设购甲,乙,丙三种商品各一件需要x元、y元、z元.根据等量关系:①购甲3件,乙2件,丙1件共需315元钱;①购甲1件,乙2件,丙3件共需285元,列方程组,再进一步运用加减消元法即可求解.6.已知a+b=16,b+c=12,c+a=10,则a+b+c等于()A.19B.38C.14D. 22【答案】A【考点】三元一次方程组解法及应用【解析】【解答】,①+①+①得2a+2b+2c=38,所以a+b+c=19.故答案为:A.【分析】将已知的三个方程组成方程组,然后相加,可得2a+2b+2c=38,两边同时除以2,即可得a+b+c的值.7.若(2x-4)2+(x+y)2+|4z-y|=0,则x+y+z等于()A. B. C.2D. -2【答案】A【考点】解三元一次方程组【解析】【解答】①(2x-4)2+(x+y)2+|4z-y|=0,① ,解得:,则x+y+z=2-2-=-.故选:A【分析】利用非负数的性质列出关于x ,y及z的方程组,求出方程组的解即可得到x ,y ,z的值,确定出x+y+z的值.8.三元一次方程组的解是()A. B. C.D.【答案】A【考点】三元一次方程组解法及应用【解析】【解答】①+①+①得:x+y+z=6①,①-①得:x=1,①-①得:y=0,①-①得:z=5.故答案为:A.【分析】观察方程组的特点,可以让三个方程相加,得到x+y+z=6.然后记该方程与方程组中的各方程分别相减,即可求出未知数的值.9.以为解建立三元一次方程组,不正确的是()A. B. C.D.【答案】D【考点】解三元一次方程组【解析】【解答】因为将未知数的值代入C项中为,所以选择C.【分析】将三个未知数的值代入选项中的三元一次方程中逐个验证即可.10.下列四组数值中,为方程组的解是()A. B. C.D.【答案】D【考点】解三元一次方程组【解析】【解答】解方程组,①+①得:3x+y=1①,①+①得:4x+y=2①,①﹣①得:x=1,将x=1代入①得:y=﹣2,将x=1,y=﹣2代入①得:z=3,则方程组的解为.故选D.【分析】根据题意得知,原题目要求用合适的方法解一个三元一次方程组.11.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个 D.2个【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:设“●”“■”“▲”分别为x、y、z,由图(1)(2)可知,,解得x=2y,z=3y,所以x+z=2y+3y=5y,即“■”的个数为5.故选A.【分析】设“●”“■”“▲”分别为x、y、z,由图列出方程组解答即可解决问题.12.)若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0B.1C.2D.不能求出【答案】A【考点】解三元一次方程组【解析】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选A.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.13.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3B.5C.7D.9【答案】C【考点】解三元一次方程组【解析】【解答】解:由①+①,可得2x=4a,①x=2a,将x=2a代入①,得y=2a﹣a=a,①二元一次方程组的解是二元一次方程的一个解,①将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,①a=7故答案为:C.【分析】先解得方程组的值x=2a,y=a,然后把它们代入到3x﹣5y﹣7=0中,求出a的值.14.若方程组的解x和y的值相等,则k的值为()A.4B.11C.10D.12【答案】B【考点】解三元一次方程组【解析】【解答】解:把y=x代入4x+3y=1得:7x=1,解得x=,①y=x=.把y=x=得:k+(k﹣1)=3,解得:k=11故选B.【分析】x和y的值相等,把第一个式子中的y换成x,就可求出x与y的值,这两个值代入第二个方程就可得到一个关于k的方程,从而求得k的值.15.在“六•一”儿童节那天,某商场推出A、B、C三种特价玩具.若购买A种2件、B种1件、C种3件,共需23元;若购买A种1件、B种4件、C种5件,共需36元.那么小明购买A种1件、B种2件、C种3件,共需付款()A.21元B.22元C.23元D.不能确定【答案】B【考点】解三元一次方程组【解析】【解答】解:设A、B、C三种特价玩具单价分别为x、y、z元,由题意,得,设x+2y+3z=m(2x+y+3z)+n(x+4y+5z)①,解得①x+2y+3z=(2x+y+3z)+(x+4y+5z)=×23+×36=22.故选B.【分析】设A、B、C三种特价玩具单价分别为x、y、z元,列方程组,用待定系数法求解.二、填空题16.由方程组,可以得到x+y+z的值是________.【答案】3【考点】解三元一次方程组【解析】【解答】解:①①+①+①,得2x+2y+2z=6,①x+y+z=3,故答案为:3.【分析】先观察方程的系数特点,将三个方程的左右两边分别相加,可得2x+2y+2z=6,即可求得x+y+z的值.17.如果x,y互为相反数,且满足|a﹣2y﹣3|+(5x+9)2=0,那么a=________ .【答案】【考点】解三元一次方程组【解析】【解答】根据题意得:,解得:.即:a=.【分析】根据非负数的性质可得出两个关于x、y的方程,再联立x=﹣y组成方程组,可求得a的值.18.某商店中销售水果时采用了三种组合搭配的方式进行销售,甲种搭配是:2千克A水果,4千克B水果;乙种搭配是:3千克A水果,8千克B水果,1千克C水果;丙种搭配是:2千克A水果,6千克B水果,1千克C水果;如果A水果每千克售价为2元,B水果每千克售价为1.2元,C水果每千克售价为10元,某天,商店采用三种组合搭配的方式进行销售后共得销售额441.2元,并且A水果销售额116元,那么C水果的销售额是________元.【答案】150【考点】解三元一次方程组【解析】【解答】解:设该天卖出甲种、乙种、丙种水果分别是x、y、z,由题意得:,即,由①﹣①×11得:31(y+z)=465,即y+z=15,则共卖出C水果15千克,C水果的销售额为15×10=150(元).答:C水果的销售额为150元.【分析】根据题意找出相等关系,再根据三种组合搭配的方式进行销售后共得销售额441.2元和A水果销售额116元,建立方程组,利用整体思想求出x+y的值即可。
中考数学 列方程(组)解应用题 含答案
中考数学考点跟踪训练8列方程(组)解应用题一、选择题1.(2010·曲靖)练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么下面所列方程正确的是( )A .5(x -2)+3x =14B .5(x +2)+3x =14C .5x +3(x +2)=14D .5x +3(x -2)=14答案 A解析 水性笔的单价为x 元,则练习本的单价为(x -2)元,5本练习本和3支水性笔的总价为5(x -2)+3x 元,故选A.2.(2010·恩施)某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( )A. 21元B. 19.8元 C .22.4元 D .25.2元答案 A解析 设该商品的进价为x 元,28×0.9-x =20%x,1.2x =28×0.9,x =21.3.(2011·泰安)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种各买了多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A.⎩⎪⎨⎪⎧ x +y =30,12x +16y =400B.⎩⎪⎨⎪⎧ x +y =30,16x +12y =400 C.⎩⎪⎨⎪⎧ 16x +12y =30,x +y =400 D.⎩⎪⎨⎪⎧12x +16y =30,x +y =400 答案 B解析 甲种奖品每件16元、x 件需16x 元,乙种奖品每件12元、y 件需12y 元,合计16x +12y =400,故选B.4.(2010·绵阳)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为( )A .129B .120C .108D .96答案 D解析 设1艘大船一次载客x 人,1艘小船一次载客y 人,⎩⎪⎨⎪⎧ x +4y =46,2x +3y =57,解之,得⎩⎪⎨⎪⎧x =18,y =7,∴3x +6y =3×18+6×7=54+42=96.5.(2011·凉山)某品牌服装原价173元,连续两次降价x %后售价为127元,下面所列方程中正确的是( )A .173()1+x %2=127B .173()1-2x %=127C .173()1-x %2=127D .127()1+x %2=173答案 C解析 该品牌服装降价一次后为173-173×x %=173(1-x %)元,降价两次后为173(1-x %)-173(1-x )×x %=173(1-x %)2元,故选C.二、填空题6.(2011·湘潭)湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为________.答案 50-8x =38解析 每个莲蓬的单价为x 元,8个莲蓬合计8x 元,找回(50-8x )元,所以50-8x =38.7.(2011·浙江)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为 ________元.答案 440 解析 设一束鲜花的价格为x 元,一个礼盒的价格为y 元,则⎩⎪⎨⎪⎧x +2y =143,①2x +y =121,②由①+②得3x +3y =264.∴x +y =88.∴5x +5y =88×5=440.8.(2011·潼南)某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的每度电价比基本用电量的每度电价增加20%收费.某用户在5月份用电100度,共交电费56元,则a =________度.答案 40解析 0.50×100<56,可知该用户超量用电.0.50a +0.50(1+20%)(100-a )=56,0.5a +60-0.6a =56,-0.1a =-4,a =40.9.(2011·上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是________.答案 20%解析 设每年屋顶绿化面积的增长率为x .2000(1+x )2=2880.(1+x )2=1.44.1+x =±1.2.所以x 1=0.2,x 2=-2.2(舍去).故x =0.2=20%.10.(2011·宿迁)如图,邻边不等..的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m 2,则AB 的长度是______m(可利用的围墙长度超过6m).答案 1解析 设AB 长为x m ,则BC =(6-2x )m.∴x (6-2x )=4,x 2-3x +2=0.x 1=2,x 2=1.当x =2时,AB =2,BC =2,不合题意,舍去,所以x =1.三、解答题11.(2011·安徽)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.解 设粗加工的该种山货质量为x 千克,根据题意,得x +(3x +2000)=10000.解得 x =2000.答:粗加工的该种山货质量为2000千克.12.(2011·扬州)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:⎩⎪⎨⎪⎧ x +y =12x +8y = 乙:⎩⎨⎧ x +y = x 12+y 8=根据甲、乙两名同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示____________________,y 表示 __________________;乙:x 表示 ____________________,y 表示 __________________;(2)求A 、B 两工程队分别整治河道多少米?(写出完整的解答过程)解 (1) 甲:⎩⎪⎨⎪⎧ x +y =20,12x +8y =180; 乙:⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20. 甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数;乙:x 表示A 工程队整治的河道长度,y 表示B 工程队整治的河道长度;(2)若解甲的方程组 ⎩⎪⎨⎪⎧ x +y =20, ①12x +8y =180, ② ①×8,得:8x +8y =160, ③③-②,得:4x =20,∴x =5.把x =5代入①得:y =15,∴ 12x =60,8y =120.若解乙的方程组⎩⎪⎨⎪⎧x +y =180, ①x 12+y 8=20, ② ②×12,得:x +1.5y =240, ③③-①,得:0.5y =60.∴y =120.把y =120代入①,得,x =60.答:A 、B 两工程队分别整治河道60米和120米.13.(2011·益阳)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?解 设每吨水的政府补贴优惠价为x 元,市场调节价为y 元.⎩⎨⎧ 14x +()20-14y =29,14x +()18-14y =24,解得:⎩⎪⎨⎪⎧x =1,y =2.5.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)当0≤x ≤14时,y =x ;当x >14时,y =14×1+()x -14×2.5=2.5x -21,所求函数关系式为:y =⎩⎨⎧x ()0≤x ≤14,2.5x -21()x >14. (3)∵x =24>14,∴把x =24代入y =2.5x -21,得:y =2.5×24-21=39.答:小英家3月份应交水费39元.14.(2011·烟台)去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井的作业任务.部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?解 设原计划每天打x 口井,由题意可列方程30x -30x +3=5, 去分母得,30(x +3)-30x =5x (x +3),整理得,x 2+3x -18=0,解得x 1=3,x 2=-6(不合题意,舍去).经检验,x 2=3是方程的根,∴x =3.答:原计划每天打3口井.15.(2011·衢州)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?小明的解法如下:解 设每盆花苗增加x 株,则每盆花苗有()x +3株,平均单株盈利为()3-0.5x 元,由题意,得()x +3()3-0.5x =10.化简,整理得x 2-3x +2=0.解这个方程,得x 1=1,x 2=2,∴x +3=4或5.答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系:________________________________________________.请用一种与小明不相同的方法求解上述问题.解 (1)平均单株盈利×株数=每盆盈利;平均单株盈利=3-0.5×每盆增加的株数;每盆的株数=3+每盆增加的株数.(2)解法1(解法2(图象法):如图,纵轴表示平均单株盈利,横坐标表示株数,则相应长方形面积表示每一盆盈利.从图象可知,每盆植入4株或5株时,相应长方形面积都是10.答:要使每盆的盈利达到10元,每盆应该植入4株或5株.解法3(列分式方程):设每盆花苗增加x株时,每盆盈利10元,根据题意,得10=3-0.5x.x+3解这个方程,得x1=1,x2=2.经验证,x1=1,x2=2是所列方程的解.∴x+3=4或5.答:要使每盆的盈利达到10元,每盆应该植入4株或5株.四、选做题16.(2011·义乌)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?解(1)2x,50-x.(2)由题意得:(50-x)(30+2x)=2100,化简得:x2-35x+300=0,解得:x1=15, x2=20,∵该商场为了尽快减少库存,则x=15不合题意,舍去. ∴x=20.答:每件商品降价20元,商场日盈利可达2100元.。
2020中考数学三轮复习专题训练:方程应用题(含解析)
2020中考数学三轮复习专题训练:方程应用题(含解析)解得:a>21。
答:最少购进A型手机22台。
手机店老板应购进22台A型手机和43台B型手机。
A型手机的进价为1200元/台,B型手机的进价为1000元/台。
A型手机每台售价1800元,B型手机每台售价1500元。
购进B型手机的数量比购进A型手机的数量的2倍少3台,即购进43台B型手机和22台A型手机。
售完后,总获利超过元。
7.新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂。
乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元。
已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同。
1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?解:(1)设甲品牌消毒剂每瓶价格为x元,则乙品牌消毒剂每瓶价格为3x-50元。
根据题意得到以下方程组:300 ÷ x = 400 ÷ (3x-50)300(3x-50) = 400x解得:x=150,3x-50=400/3经检验,x=150和3x-50=400/3是原方程组的解,且符合题意。
答:甲品牌消毒剂每瓶价格为150元,乙品牌消毒剂每瓶价格为100元。
2)设甲品牌消毒剂购买的瓶数为a,乙品牌消毒剂购买的瓶数为b,则有以下方程组:a +b = 40150a + 100b = 1400解得:a=20,b=20答:购买了20瓶乙品牌消毒剂。
品,已知文体超市有两种文具袋可供选择,价格分别为5元/个和8元/个,且___购买的文具袋总数为n个.1)若___共花费60元,求___购买了多少个8元/个的文具袋?(用n和x表示)2)若___购买的文具袋中,8元/个的文具袋数比5元/个的文具袋数多3个,求___购买的文具袋总数.解:(1)设___购买了x个8元/个的文具袋,则购买了(n﹣x)个5元/个的文具袋。
初三数学例方程解应用题
初三数学例方程解应用题初三数学例题:方程解1. 一元一次方程•题目:解下列方程:3x + 5 = 20•解答:首先将方程转化为等式:3x + 5 = 20,然后移项求解,得出 x = 5。
2. 一元二次方程•题目:解下列方程:x² + 3x + 2 = 0•解答:可以使用因式分解或配方法解这个方程。
通过因式分解,我们可以将方程转化为 (x + 1)(x + 2) = 0。
根据零乘法,我们得出 x + 1 = 0 或者 x + 2 = 0,解得 x = -1 或者 x = -2。
3. 一元三次方程•题目:解下列方程:x³ - 2x² + x + 6 = 0•解答:使用综合除法可以找到其中一个解 x = 2,然后使用综合除法或带入法得到另外两个解为 x = -1 和 x = -3。
4. 二元一次方程•题目:解下列方程组:{ 2x + y = 7; x - y = 1 }•解答:可以使用消元法或代入法解这个方程组。
通过消元法,我们可以将第一个方程乘以2,得到 4x + 2y = 14,然后将第二个方程加到此式上,消去y,得到 5x = 15,解得 x = 3。
代入x的值到任意一个方程中,可解得 y = -2。
5. 二元二次方程•题目:解下列方程组:{ x² + y² = 25; x + y = 7 }•解答:首先我们可以得到关于x的一元二次方程 y = 7 - x,然后将其代入第一个方程中得到x² + (7 - x)² = 25。
展开并整理方程,可以得到2x² - 14x + 24 = 0,然后通过因式分解或配方法解这个方程,得到 x = 2 或 x = 6。
代入 x 的值到 y =7 - x,解得当 x = 2 时,y = 5;当 x = 6 时,y = 1。
以上是一些关于初三数学中涉及方程解的例题。
通过深入理解每类方程的特点和解题方法,我们可以更好地应对各种类型的方程题目。
中考数学考点列方程(组)解题应用
中考数学考点列方程(组)解题应用中考数学考点-列方程〔组〕解题应用
【一】列方程(组)解应用题的一般步骤
1、审题:
2、设未知数;
3、找出相等关系,列方程(组);
4、解方程(组);
5、检验,作答;
【二】列方程(组)解应用题常见类型题及其等量关系;
1、工程问题
(1)基本工作量的关系:工作量=工作效率工作时间
(2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量
(3)注意:工程问题常把总工程看作1,水池注水问题属于工程问题
2、行程问题
(1)基本量之间的关系:路程=速度时间
(2)常见等量关系:
相遇问题:甲走的路程+乙走的路程=全路程
追及问题(设甲速度快):
同时不同地:甲的时间=乙的时间;甲走的路程乙走的路程=原来甲、乙相距路程
同地不同时:甲的时间=乙的时间时间差;甲的路程=乙的路程3、水中航行问题:
顺流速度=船在静水中的速度+水流速度;
逆流速度=船在静水中的速度水流速度
4、增长率问题:
常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的量(1+增长率);。
中考数学全面突破《方程(组)及其应用》考点及测试题含答案
第四讲方程(组)及其应用命题点分类集训命题点1 一次方程(组)及其应用【命题规律】1.考查内容:①解一元一次方程;②解二元一次方程组;③一次方程(组)的实际应用.2.实际应用题背景主要有:购买分配类问题;3.三大题型均有设题,解答题居多.【命题预测】一次方程(组) 及其应用是命题主流趋势之一,解答题考查一次方程(组)的解法应做到不丢分,实际应用问题会与不等式(组)结合,也应引起重视.1.方程2x+3=7的解是( )A. x=5B. x=4C. x=3.5D. x=21. D【解析】2x+3=7,2x=4,x=2,∴选项D正确.2.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母, 1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x名工人生产螺钉,则下面所列方程正确的是( )A. 2×1000(26-x)=800xB. 1000(13-x)=800xC. 1000(26-x)=2×800xD. 1000(26-x)=800x2. C【解析】本题要求螺钉和螺母配套,且1个螺钉需要配2个螺母,所以螺母的数量是螺钉的2倍. 不难得出,x名工人生产螺钉的个数为800x个,则(26-x)名工人生产螺母的个数是1000×(26-x)个,根据其等量关系得:1000×(26-x)=2×800x,故选C.3.有一根40 cm的金属棒,欲将其截成x根7 cm的小段和y根9 cm的小段,剩余部分作废料处理,若使废料最少,则正整数x、y应分别为( )A. x =1,y =3B. x =4,y =1C. x =3,y =2D. x =2,y =33. C 【解析】根据题意得:7x +9y ≤40,则x ≤40-9y7,∵40-9y ≥0,且y是正整数,∴y 的值可以是1或2或3或4.当y =1时,x ≤317,则x =4,此时,所剩的废料是:40-1×9-4×7=3 cm ;当y =2时,x ≤227,则x =3,此时,所剩的废料是:40-2×9-3×7=1 cm ;当y =3时,x ≤137,则x =1,此时,所剩的废料是:40-3×9-1×7=6 cm ;当y =4时,x ≤47,则x =0(舍去).则符合题意的是:x =3,y =2.4.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的14还少5台,则购置的笔记本电脑有________台.4. 16 【解析】设购置的笔记本电脑有x 台,则购置的台式电脑为4(x +5)台,根据两种电脑的台数共100台,列方程得4(x +5)+x =100,解得x =16台.5.解方程组:⎩⎪⎨⎪⎧x -y =2x -y =y +1.5. 解:⎩⎪⎨⎪⎧x -y =2 ①x -y =y +1 ②解法一:把①代入②,得2=y +1,则y =1, 把y =1代入①,得x -1=2, ∴x =3,∴原方程组的解为⎩⎪⎨⎪⎧x =3y =1.解法二:由②-①,得0=y +1-2, ∴y =1.(1分)把y =1代入①,得x -1=2, ∴x =3,∴原方程组的解为⎩⎪⎨⎪⎧x =3y =1.6.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A 品牌的足球和3个B 品牌的足球共需380元,购买4个A 品牌的足球和2个B 品牌的足球共需360元. (1)求A 、B 两种品牌的足球的单价;(2)求该校购买20个A 品牌的足球和2个B 品牌的足球的总费用.6. 解:(1)设A 品牌的足球的单价为x 元/个,B 品牌的足球的单价为y 元/个,则有⎩⎪⎨⎪⎧2x +3y =3804x +2y =360,解得⎩⎪⎨⎪⎧x =40y =100,∴A 品牌的足球的单价为40元/个,B 品牌的足球的单价为100元/个. (2)40×20+100×2=1000(元). ∴总费用为1000元.命题点2 一元二次方程及其应用【命题规律】考查题型及形式:①一元二次方程解法常在选择题或解答题中考查,常考的解法是因式分解和配方法;②根的判别式一般在选择题和填空题中设题,求方程中某个参数的取值范围;③根与系数关系常为根据一元二次方程,在不求解方程根的情况下,利用方程根与系数的关系,求两根之和(积)或某个参数;④一元二次方程实际应用考查增长(下降)率.【命题预测】一元二次方程的解法和实际应用是一种命题趋势;而根的判别式为2011版新课标选学内容,在练习中应逐渐渗透.7.一元二次方程x2-6x-5=0配方后可变形为( )A. (x-3)2=14B. (x-3)2=4C. (x+3)2=14D. (x+3)2=47. A8.一元二次方程2x2-3x+1=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根8. B9.一元二次方程x2-3x-2=0的两根为x1,x2,则下列结论正确的是( )A. x1=-1,x2=2B. x1=1,x2=-2C. x1+x2=3D. x1x2=29. C10.若x1,x2是一元二次方程x2-2x-1=0的两个根,则x21-x1+x2的值为( )A. -1B. 0C. 2D. 310. D【解析】由题意可得x21-2x1-1=0,x1+x2=2,即x21-2x1=1,所以原式=x 21-2x 1+()x 1+x 2=1+2=3. 11.方程x -1=2的解是________.11. x =5 【解析】方程两边平方得,x -1=4,解得 x =5,经检验,x =5是原方程的解12.若关于x 的一元二次方程x 2+3x -k =0有两个不相等的实数根,则实数k 的取值范围是________.12. k >-94【解析】∵一元二次方程x 2+3x -k =0有两个不相等的实数根,∴b 2-4ac =32-4×1×(-k)>0,即9+4k >0,解得k >-94.13.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是________.13. 10% 【解析】设降价的百分率是x ,则100(1-x)2=81,解得x 1=0.1,x 2=1.9(舍去),故这两次降价的百分率是10%. 14.解方程:2(x -3)2=x 2-9.14. 解:原方程可化为2(x -3)2=(x +3)(x -3),2(x -3)2-(x +3)(x -3)=0, (x -3)[2(x -3)-(x +3)]=0, (x -3)(x -9)=0, ∴x -3=0或x -9=0, ∴x 1=3,x 2=9.【一题多解】原方程可化为x 2-12x +27=0, 这里a =1,b =-12,c =27,∵b 2-4ac =(-12)2-4×1×27=36>0,∴x=-b±b2-4ac2a=12±362×1=12±62,∴原方程的根为x1=3,x2=9.15.某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率.(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元.如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据: 1.21=1.1, 1.44=1.2, 1.69=1.3, 1.96=1.4)15. 解:(1)设2014年至2016年该地区投入教育经费的年平均增长率为x,由题意得:2900(1+x)2=3509,解得x1=0.1,x2=-2.1(不符合题意舍去).答:2014年至2016年该地区投入教育经费的年平均增长率为10%.(2)按10%的增长率,到2018年投入教育经费为3509(1+10%)2=4245.89(万元).因为4245.89<4250,所以教育经费不能达到4250万元.答:按此增长率到2018年该地区投入的教育经费不能达到4250万元.方法指导求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.命题点3 分式方程及其应用【命题规律】考查形式:1.分式方程的解法主要考查可化为一元一次方程的分式方程;2.实际应用常考类型——行程问题(关系式中存在两个量的乘积等于第三量);3.三大题型中均有设题,解答题居多.【命题预测】分式方程的解法和实际应用的考查是一种主流命题趋势,做题时要熟练掌握解分式方程的步骤和实际应用常考类型的关系式. 16.方程2x +1x -1=3的解是( )A. -45B. 45C. -4D. 416. D 【解析】本题考查解分式方程,原方程两边同时乘以x -1,得2x +1=3(x -1),解得x =4,把x =4代入x -1=3≠0,所以x =4是原分式方程的根. 17.关于x 的方程3x -2x +1=2+m x +1无解,则m 的值为( )A. -5B. -8C. -2D. 517. A 【解析】方程3x -2x +1=2+mx +1转化为整式方程为(3x -2)=2(x +1)+m ,解得x =4+m ,根据题意,方程无解,即是方程的增根是使得分母为0的根,令x +1=0,解得x =-1,即x =4+m =-1,解得m =-5,故选A.18.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运5000 kg 所用时间与乙搬运8000 kg 所用时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运x kg 货物,则可列方程为( ) A. 5000x -600=8000x B. 5000x =8000x +600 C. 5000x +600=8000x D. 5000x =8000x -60018. B 【解析】甲每小时搬运x kg 货物,则乙每小时搬运(x +600)kg 货物,甲搬运5000 kg 货物所用时间为5000x小时,乙搬运8000 kg 货物所用时间为8000x +600小时,根据等量关系“甲搬运5000 kg 所用时间与乙搬运8000 kg 所用时间相等”列方程:5000x =8000x +600. 19.若关于x 的方程ax +1x -1-1=0有增根,则a 的值为________.19. -1 【解析】将方程两边同时乘以x -1,得ax +1-x +1=0,则(a -1)x +2=0,∵原方程有增根,∴x =1,将x =1代入(a -1)x +2=0中,得a -1+2=0,a =-1.20.解方程:1x -2-4x 2-4=1.20. 解:去分母,得x +2-4=x 2-4,移项、整理得x 2-x -2=0, 解方程,得x 1=2,x 2=-1,经检验:x 1=2是增根,舍去;x 2=-1是原方程的根, 所以原方程的根是x =-1. 21.x -3x -2+1=32-x. 21. 解:去分母得x -3+x -2=-3,解得x =1,检验:x =1时,x -2=-1≠0,2-x =2-1=1≠0, ∴原方程的解为x =1.22.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?22. 解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.由题意列方程为:600x +3000-6004x +2=30002x ,解得: x =150,经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8,∴乙8分钟内骑车的路程为:300×8=2400(米), ∴乙离学校还有3000-2400=600(米).答:当甲到达学校时,乙同学离学校还有600米.中考冲刺集训一、选择题1.方程2x -1=3x +2的解为( )A. x =1B. x =-1C. x =3D. x =-32.在解方程x -13+x =3x +12时,方程两边同时乘以6,去分母后,正确的是( ) A. 2x -1+6x =3(3x +1) B. 2(x -1)+6x =3(3x +1)C. 2(x -1)+x =3(3x +1)D. (x -1)+6x =3(x +1)3.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是( )A. a >0B. a =0C. c >0D. c =04.已知关于x 的一元二次方程x 2+mx -8=0的一个实数根为2,则另一实数根及m 的值分别为( )A. 4,-2B. -4,-2C. 4,2D. -4,25.已知关于x ,y 的方程x 2m -n -2+4y m +n +1=6是二元一次方程,则m ,n 的值为( )A. m =1,n =-1B. m =-1,n =1C. m =13,n =-43D. m =-13,n =436.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( ) A. ⎩⎪⎨⎪⎧x +y =783x +2y =30 B. ⎩⎪⎨⎪⎧x +y =782x +3y =30 C. ⎩⎪⎨⎪⎧x +y =302x +3y =78 D.⎩⎪⎨⎪⎧x +y =303x +2y =78 7.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止至2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆.设2013年底至2015年底该市汽车拥有量的年平均增长率为x .根据题意列方程得( )A. 10(1+x )2=16.9B. 10(1+2x )=16.9C. 10(1-x )2=16.9D. 10(1-2x )=16.98.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A. 12x (x -1)=45B. 12x (x +1)=45 C. x (x -1)=45 D. x (x +1)=45 二、填空题9.方程组⎩⎪⎨⎪⎧x +2y =22x +y =4的解是________. 10.方程 12x =2x -3的解是________. 11.已知等腰三角形的一边长为9,另一边长为方程x 2-8x +15=0的根,则该等腰三角形的周长为________.12.方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为________.13.关于x 的一元二次方程x 2+2x -2m +1=0的两实数根之积为负,则实数m 的取值范围是________.三、解答题14.解方程:x +1x -1+41-x 2=1.15.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.16. A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.17.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子.根据市场预测,该品牌粽子每个售价为4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个.为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%.请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.18.某工程队修建一条长1200 m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?1. D2. B3. D【解析】该方程是一元二次方程,则有a≠0,该一元二次方程根的判别式为b 2-4ac =16-4ac ,要使原方程一定有实数根,只需b 2-4ac ≥0即可.A 选项中a >0,若c >0,16-4ac 可能小于0,不符合题意;B 选项中一元二次方程a 不能为0,不符合题意;C 选项同A 选项,不符合题意;D 选项中当c =0时,b 2-4ac =16>0,符合题意,故选D.4. D5. A6. D 【解析】∵男生有x 人,女生有y 人,学生人数是30,∴x +y =30.∵男生每人种3棵,女生每人种2棵,共种78棵,∴3x +2y =78.因此所列方程组是⎩⎪⎨⎪⎧x +y =303x +2y =78,故选D. 7. A 【解析】因为年平均增长率为x ,从2013年到2015年连续增长两年,开始量为10万辆,结束量为16.9万辆,则可列方程10(1+x )2=16.9.8. A 【解析】根据题意:每两队之间都比赛一场,每队参加x -1场比赛,共比赛12x(x -1)场比赛,根据题意列出一元二次方程12x(x -1)=45.故选A . 9. ⎩⎪⎨⎪⎧x =2y =0 10. x =-1 【解析】化简12x =2x -3得x -3=4x ,则-3x =3,所以x =-1,经检验x =-1是原方程的根.11. 19或21或23 【解析】解方程x 2-8x +15=0,得x 1=3或x 2=5,等腰三角形的一边为9,则有这样几种情况:3、9、9;5、9、9;5、5、9,周长分别为21或23或19.12. -3 【解析】∵ 2x -4= 0,解得 x =2,把x =2代入方程x 2+mx +2=0,解得 m =-3.13. m >12【解析】一元二次方程两实数根之积为负,则方程应满足条件⎩⎪⎨⎪⎧b 2-4ac >0x 1·x 2=c a <0,即⎩⎪⎨⎪⎧4-4(1-2m )>01-2m <0,解得 m >12. 14. 解:方程两边都乘以(x +1)(x -1)得,(x +1)2-4=x 2-1,解得x =1,检验:当x =1时,分母x -1=0,∴原方程无解.15. 解:设《汉语成语大词典》的标价是x 元,《中华上下五千年》的标价是y 元,依题意得:⎩⎪⎨⎪⎧x +y =15050%x +60%y =80, 解得⎩⎪⎨⎪⎧x =100y =50. 答:《汉语成语大词典》的标价是100元,《中华上下五千年》的标价是50元.16. 解:设A 型机器每小时加工x 个零件,则B 型机器每小时加工(x -20)个零件.依题意得:400x =300x -20, ∴400x -8000=300x ,∴100x =8000,解得x =80.经检验:x =80是原方程的解,且符合题意.答:A 型机器每小时加工80个零件.17. 解:设上涨x 元,(4+x -3)(500-x 0.1×10)=800, x 2-4x +3=0,∴x 1=1,x 2=3.3×200%=6,∵x =3时,售价为7元,而7>6, ∴应取x =1,∴x =1即售价为5元时使超市每天的销售利润为800元.18. 解:(1)设这个工程队原计划每天修建道路x 米,由题意得:1200x -1200(1+50%)x=4, 解得x =100,经检验,x =100是原方程的解,又符合实际意义. 答:这个工程队原计划每天修建道路100米.(2)由题意得,1200÷100=12(天),又∵1200÷(12-2)=120(米),∴(120-100)100×100%=20%. 答:实际平均每天修建道路的工效比原计划增加20%.。
初三解方程练习题及答案
初三解方程练习题及答案解方程是数学学科中的基础内容之一,对于初三学生来说,掌握解方程的方法是必要的。
本文将提供一些初三解方程练习题及答案,供同学们备考使用。
1. 题目:解方程2x + 3 = 9解答:首先,将方程转化为x的一次方程。
2x = 9 - 32x = 6然后,两边同除以2,得到x的值。
x = 3因此,方程的解为x = 3。
2. 题目:解方程4(x - 2) = 16解答:首先,将方程展开并整理。
4x - 8 = 16然后,将方程转化为x的一次方程。
4x = 16 + 84x = 24再次,两边同除以4,得到x的值。
x = 6所以,方程的解为x = 6。
3. 题目:解方程3x - 5 = 10解答:首先,将方程转化为x的一次方程。
3x = 10 + 53x = 15然后,两边同除以3,得到x的值。
x = 5因此,方程的解为x = 5。
4. 题目:解方程5(2x - 3) = 40解答:首先,将方程展开并整理。
10x - 15 = 40然后,将方程转化为x的一次方程。
10x = 40 + 1510x = 55接着,两边同除以10,得到x的值。
x = 5.5所以,方程的解为x = 5.5。
5. 题目:解方程x/4 + 2 = 6解答:首先,将方程转化为x的一次方程。
x/4 = 6 - 2x/4 = 4然后,两边同乘以4,得到x的值。
x = 16因此,方程的解为x = 16。
通过以上练习题的解答,我们可以看出解方程的基本步骤是将方程化简为x的一次方程,然后通过逆运算求解,最终得到方程的解。
在解题过程中,我们需要注意每一步的运算准确性,确保结果的正确性。
这些练习题旨在帮助同学们熟悉解方程的方法,并且提供答案供参考。
总结起来,初三解方程是数学学科的基础知识,通过不断练习和理解解方程的方法,可以提高解题的能力。
希望同学们能够掌握解方程的基本步骤,提高数学解题能力。
加油!。
初三解方程练习题和答案
初三解方程练习题和答案解方程是初中数学中的重要内容之一,它需要我们灵活运用各种解方程的方法,找到未知数的值。
本文将为大家提供一些初三解方程练习题和答案,帮助大家巩固解方程的知识。
练习题一:1. 某数的两倍加上5等于13,求这个数。
2. 7减去某数的一半等于3,求这个数。
3. 某数减去5的一半等于8,求这个数。
4. 某数的四分之一加上8等于14,求这个数。
练习题二:1. 某数的三倍减2等于13,求这个数。
2. 一本书的原价是某数元,打8折后的价格是38元,求这个数。
3. 某数加上4再除以3等于5,求这个数。
4. 某数的一半加上3等于7,求这个数。
练习题三:1. 某数加上3的两倍等于13,求这个数。
2. 某数的五分之一减3等于7,求这个数。
3. 某数的四分之一加上6等于10,求这个数。
4. 某数减去4再除以2等于5,求这个数。
答案如下:练习题一:1. 设这个数为x,则有2x + 5 = 13,化简方程得2x = 8,最后x = 4。
2. 设这个数为x,则有7 - x/2 = 3,化简方程得-x/2 = -4,最后x = 8。
3. 设这个数为x,则有x - 5/2 = 8,化简方程得x = 16。
4. 设这个数为x,则有x/4 + 8 = 14,化简方程得x/4 = 6,最后x = 24。
练习题二:1. 设这个数为x,则有3x - 2 = 13,化简方程得3x = 15,最后x = 5。
2. 设原价为x元,则有0.8x = 38,化简方程得x = 47.5。
3. 设这个数为x,则有(x + 4)/3 = 5,化简方程得x + 4 = 15,最后x = 11。
4. 设这个数为x,则有x/2 + 3 = 7,化简方程得x/2 = 4,最后x = 8。
练习题三:1. 设这个数为x,则有x + 3 * 2 = 13,化简方程得x + 6 = 13,最后x = 7。
2. 设这个数为x,则有x/5 - 3 = 7,化简方程得x/5 = 10,最后x = 50。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程(组)解应用题
一、一元一次方程的应用
1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是(A )
A. 100元
B. 90元
C. 810元
D. 819元
2.某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问:一月份每辆电动车的售价是多少元?
解:设一月份每辆电动车的售价是x 元,根据题意,得
100x +12200=(x -80)×100×(1+10%),
解得x =2100.
答:一月份每辆电动车的售价是2100元.
3.现有甲、乙两种金属的合金10 kg ,如果加入甲种金属若干,那么重新熔炼后的合金中乙种金属占2份,甲种金属占3份,如果加入的甲种金属是第一次加入的2倍,那么重新熔炼后的合金中乙种金属占3份,甲种金属占7份,第一次加入的甲种金属多少?原来这块合金中甲种金属的百分比是多少?
解:设原来这块合金中甲种金属的百分比是x ,则甲种金属有10x (kg),乙种金属有(10-
10x )kg ,根据题意,得
(10-10x )÷310-10=2×[(10-10x )÷25
-10], 解得x =40%.
则(10-10×40%)÷25
-10=5(kg). 答:第一次加入的甲种金属是5 kg ,原来这块合金中甲种金属的百分比是40%.
二、二元一次方程(组)的应用
4.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(B )
A. 7,6,1,4
B. 6,4,1,7
C. 4,6,1,7
D. 1,6,4,7
5.某景点的门票价格如表:
某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付1118元;如果两班联合起来作为一个团体购票,那么只需花费816元.
(1)两个班各有多少名学生?
(2)团体购票与单独购票相比较,两个班各节约了多少钱?
解:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得①⎩
⎪⎨⎪⎧12x +10y =1118,8(x +y )=816,解得
⎩
⎪⎨⎪⎧x =49,y =53. ②⎩⎪⎨⎪⎧12x +10y =1118,10(x +y )=816,解得⎩
⎪⎨⎪⎧x =151,y =-69.4.(不合题意舍去) 答:七年级(1)班有49人、七年级(2)班有53人.
(2)七年级(1)班节省的费用为(12-8)×49=196(元),
七年级(2)班节省的费用为(10-8)×53=106(元).
6.由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.
解:本题的答案不唯一.
问题:1辆大车与1辆小车一次可以运货多少吨?
解:设1辆大车一次运货x 吨,1辆小车一次运货y 吨.
根据题意,得⎩
⎪⎨⎪⎧3x +4y =22,2x +6y =23, 解得⎩⎪⎨⎪⎧x =4,y =2.5.
则x +y =4+2.5=6.5(吨).
答:1辆大车与1辆小车一次可以运货6.5吨.
三、一元二次方程的应用
7.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是(B )
A. (1+x )2=1110
B. (1+x )2=109
C. 1+2x =1110
D. 1+2x =109
8.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m 的住房墙,另外三边用25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,所围矩形猪舍
的长、宽分别为多少时,猪舍面积为80 m 2?
(第8题图)
解:设矩形猪舍垂直于住房墙一边长为x (m),则平行于墙的一边的长为(25-2x +1)m ,由题意,得
x (25-2x +1)=80,
化简,得x 2-13x +40=0,
解得x 1=5,x 2=8.
当x =5时,26-2x =16>12(舍去);
当x =8时,26-2x =10<12,
答:所围矩形猪舍的长为10 m 、宽为8 m.
9.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.
(1)求2013年至2015年该地区投入教育经费的年平均增长率.
(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 解:(1)设增长率为x ,根据题意,得
2500(1+x )2=3025,
解得x =0.1=10%或x =-2.1(不合题意,舍去).
答:这两年投入教育经费的平均增长率为10%.
(2)3025×(1+10%)=3327.5(万元).
答:根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费3327.5万元.
四、分式方程的应用
10.现有纯农药一桶,倒出20升后用水补满,然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3∶5,则桶的容积为40升.
11.扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,则原计划每天栽树多少棵? 解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)棵.
由题意,得1200x -1200(1+20%)x
=2, 解得x =100.
经检验,x =100是原分式方程的解,且符合题意.
答:原计划每天种树100棵.
12.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接
到抢修一段长3600 m 道路的任务,按原计划完成总任务的13
后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10 h 完成任务.
(1)按原计划完成总任务的13
时,已抢修道路_________________m. (2)问:原计划每小时抢修道路多少米?
解:(1)按原计划完成总任务的13时,已抢修道路3600×13
=1200(m), 故答案为1200.
(2)设原计划每小时抢修道路x (m),
根据题意,得1200x +3600-1200[(1+50%)x ]
=10, 解得x =280.
经检验,x =280是原方程的解,且符合题意.
答:原计划每小时抢修道路280 m.。