Low-Velocity Impact Response and Ultrasonic NDE of Woven Carbon-Epoxy—Nanoclay Nanocomposites

合集下载

聚驱后超低界面张力泡沫复合驱实验研究

聚驱后超低界面张力泡沫复合驱实验研究

聚驱后超低界面张力泡沫复合驱实验研究刘宏生【摘要】In order to study the result of enhancing recovery factor by ultra-low interfacial tension foam compound flooding after polymer flooding, the interfacial activity and foam stability of binary foaming agent system were studied under Daqing oil reservoir condition by interfacial tension instrument and foam evaluation instrument. The effects of polymer concentration and alternate cycle on flooding result were discussed. The results show that,the ultra-low interfacial tension between crude oil and binary foaming agent system is acquired in the wide concentration range of surfactant and polymer, and that the binary foaming agent system has a very good foam composite index. The binary foam compound flooding can enhance oil recovery factor more than 15%. The shorter the gas/liquid alternate cycle is, the higher the enhanced recovery factor is. The result of the foam compound flooding is the best when gas and liquid is simultaneously injected. Under the same dosage of surfactant and polymer, the binary foam compound flooding is better than that of ternary foam compound flooding,binary liquid flooding and high concentration polymer flooding. And the binary foam compound flooding can avoid alkali corrosion,scaling and other problems.%为研究聚驱后超低界面张力泡沫复合驱提高采收率的效果,在大庆油田的油水条件下,用界面张力仪和泡沫评价仪评价了二元发泡剂体系的界面性能和泡沫性能,用泡沫驱油装置研究了聚合物浓度和交替周期对泡沫复合驱效果的影响.实验结果表明,二元发泡剂体系在较宽的表面活性剂和聚合物浓度范围内可以与原油形成超低界面张力.同时二元发泡剂体系具有非常好的泡沫综合指数.聚驱后二元泡沫复合驱可提高采收率15%以上.聚驱后二元泡沫复合驱的气液交替周期越小采收率越高,且气液同注泡沫驱效果最好.在表面活性剂和聚合物用量相同条件下,二元泡沫复合驱效果好于三元泡沫复合驱、二元液驱及高浓度聚驱,且避免了强碱带来的腐蚀、结垢等问题.【期刊名称】《西安石油大学学报(自然科学版)》【年(卷),期】2012(027)003【总页数】5页(P72-75,80)【关键词】聚合物驱油;超低界面张力;泡沫复合驱;泡沫综合指数;气液交替周期【作者】刘宏生【作者单位】大庆油田有限责任公司勘探开发研究院,黑龙江大庆163712【正文语种】中文【中图分类】TE357.46大庆油田经过五十多年的开发,目前主力油层聚合物驱已进入后续水驱阶段,虽然聚驱能扩大波及体积和提高驱油效率,可比水驱提高采收率10%以上,但聚驱后仍然有约50%原油残留在地下[1-2].大庆油田主力油层聚驱后层内、层间矛盾进一步加大,进一步提高聚驱后采收率具有非常重要的意义.泡沫是气体分散于起泡剂溶液中所组成的分散体系,是一种黏弹性流体[3],具有比聚合物更大的渗流阻力,因此泡沫驱是一种很有潜力的提高采收率技术.国外有关泡沫技术的研究主要是针对二氧化碳和蒸汽驱中气体流动控制[4-5];国内大庆[6-7]、胜利[8-9]等油田对泡沫技术做了大量研究工作,主要针对把泡沫作为一种控制液体流动及提高驱油效率的方法.为研究二元泡沫复合驱在大庆油田聚驱后应用的可行性,本文在大庆油水条件下,评价了二元发泡剂体系的界面性能和泡沫性能,研究了聚合物浓度和气液交替周期对泡沫驱油效果的影响,对比了聚驱后不同驱替方式的驱油效率,为泡沫驱方案的制定提供了重要的工艺参数.1 实验材料与方法1.1 实验材料及设备聚合物(HPAM,大庆炼化公司,分子量为1 600万、2 500万)、双子表面活性剂(DWS,辽河誉达公司)、重烷基苯磺酸盐(HABS,大庆东昊公司)、模拟油(大庆脱水原油和煤油按一定比例混合)、污水(大庆油田注入污水)、氢氧化钠(上海化学试剂公司)、氮气(大庆雪龙气体公司);人造三层非均质岩心(大庆石油学院提供,尺寸4.5 cm×4.5 cm×30 cm,气测渗透率为1 100×10-3μm2左右,变异系数为0.72,孔隙度为22%~25%);界面张力仪TX-500C(美国BOWING公司)、驱油装置(江苏华安石油仪器公司).1.2 实验方法(1)界面张力测定.选用TX-500C界面张力仪进行测量,样品均由污水配制,实验温度45℃下,转速为5 000 r/min,平衡2 h读取界面张力值.(2)泡沫性能测定.泡沫综合指数测试方法与文献[10]相同,样品均由污水配制.(3)泡沫驱油实验.①在45℃下,岩心抽真空至-1.0 MPa,饱和污水,测量孔隙体积.饱和模拟油,确定含油饱和度,老化12 h以上;②用污水进行水驱至含水98%以上;③注入0.5 PV聚合物溶液(分子量为1 660万,质量分数为0.1%,清水配制)进行驱油实验,后续污水驱至含水98%以上;④按照不同需求注入0.3 PV的发泡剂体系(HPAM分子量为2 500万)和氮气(标准状态下气液体积比3∶1),然后注入0.2 PV聚合物保护段塞(分子量为2 500万,质量分数为0.2%,污水配制),后续污水驱至含水98%以上.2 结果与讨论2.1 二元发泡剂体系的界面张力化学驱提高采收率最为关键的参数之一是油水界面张力,DWS与HPAM二元发泡剂体系的界面张力如图1所示,发泡剂体系中HPAM分子量为2 500万.当DWS质量分数改变时,发泡剂体系中HPAM质量分数为0.1%(图1(a));当HPAM质量分数改变时,发泡剂体系中DWS质量分数为0.3%(图1 (b)).图1 二元发泡剂体系的界面张力Fig.1 Interfacial tension of binary foaming agent system由图1可知,二元发泡剂体系中DWS质量分数在0.05%~0.40%、HPAM质量分数在0.06%~0.25%可以与大庆原油形成超低界面张力.随着发泡剂体系中HPAM质量分数增加,界面张力逐渐增加,但HPAM质量分数低于0.25%时,仍能形成超低界面张力.这是由于当发泡剂体系中HPAM质量分数增加,体系黏度逐渐增加.测定界面张力时,由于体系黏度升高,原油在体系中的拉伸产生一定阻力;DWS分子在高黏度体系中的运动非常困难,使油水界面分布的表面活性剂分子排列发生改变,导致二元发泡剂体系的界面张力略有增加.2.2 二元发泡剂体系的泡沫性能图2 二元发泡剂体系的泡沫综合指数Fig.2 Foam composite index of binary foaming agent system泡沫综合指数是结合泡沫质量和泡沫半衰期两个参数,用于评价泡沫性能的综合指标.泡沫综合指数越大,表示泡沫性能越好[10].二元发泡剂体系的泡沫综合指数如图2所示,发泡剂体系中HPAM分子量为2 500万.当DWS质量分数改变时,发泡剂体系中HPAM质量分数为0.1%(图2(a));当HPAM质量分数改变时,发泡剂体系中DWS质量分数为0.3%(图2(b)).由图2(a)可知,二元泡沫综合指数远大于10 000,说明DWS的泡沫性能较好,且随着发泡剂体系中DWS质量分数增加,二元泡沫的综合指数达到极大值,然后逐渐降低.这是由于当DWS质量分数较低时,泡沫稳定性较差,产生的泡沫有一部分迅速破裂,泡沫质量和泡沫半衰期均降低,导致泡沫综合指数较低;而随着质量分数增加,泡沫稳定性变好,同时携液量增加,因此泡沫综合指数逐渐增加;当质量分数过高时,泡沫携液量过大,排液速度加快,使得泡沫稳定性降低,导致泡沫综合指数降低,因此二元泡沫综合指数出现了最高值.同样由图2(b)可知,二元发泡剂体系在HPAM分子量为2 500万、质量分数为0.1%时,泡沫综合指数到达极大值,而后随着HPAM质量分数增加而降低.这是由于发泡剂体系中加入HPAM后,体系黏度增加,DWS分子与HPAM分子之间相互吸引和缠绕,导致泡沫液膜更加稳定,因此,泡沫综合指数出现极大值;当HPAM质量分数大于0.1%时,体系黏度过高,明显阻碍DWS分子在气液界面分布,导致泡沫综合指数降低,泡沫性能降低.2.3 二元发泡剂体系中HPAM质量分数对采收率的影响表1 发泡剂体系中HPAM质量分数与采收率的关系Tab.1 Relationship between enhanced recovery factor and HPAM concentration in foaming systemHPAM质量分数/%岩心含油饱和度/%水驱采收率/%聚驱采收率提高值/%水驱和聚驱总采收率/%泡沫驱采收率提高值/%总采收率/% 0.06 69.80 36.60 18.70 55.30 15.20 70.50 0.10 69.90 33.50 19.80 53.30 17.30 70.60 0.15 69.90 37.50 16.00 53.50 19.70 73.20 0.20 68.80 36.10 16.50 52.60 23.30 75.90发泡剂体系中HPAM质量分数对泡沫驱采收率的影响如表1所示.由表1可知,不同非均质岩心的水驱和聚驱总采收率在52.6%~55.3%之间,聚驱后二元泡沫复合驱可提高采收率15%以上,总采收率可达70%以上.发泡剂体系中HPAM质量分数增加,二元泡沫复合驱采收率提高值逐渐增加,最大可达23%以上,这是由于发泡剂体系中加入HPAM后,泡沫综合指数增加,泡沫驱采收率增加,当HPAM质量分数大于0.1%时,泡沫驱采收率应该降低,但实际却出现了增加,这是由于HPAM与DWS相互作用,使泡沫的液膜增厚,耐油性及稳定性增强,在多孔介质中运移时,形成假塑性流体,具有很大的表观黏度及良好的油水选择性,可以较大幅度地提高注采压力,且HPAM可以减少发泡剂在油藏中的吸附损耗.因此,泡沫驱采收率提高值始终增加.2.4 气液交替周期对采收率的影响二元泡沫复合驱气液交替周期与采收率的关系如表2所示.由表2可知,无论采取何种气液交替周期方式注入,聚驱后二元泡沫复合驱采收率提高值均大于16%.在其他条件相同时,随气液交替次数的增多,泡沫复合驱采收率呈增加趋势.气液混合注入方式泡沫驱采收率最大.因此现场试验时,要尽可能缩小交替周期.表2 气液交替周期与采收率的关系Tab.2 Relationship between enhanced recovery factor and gas/liquid alternate cycle气液交替次数/次岩心含油饱和度/%水驱采收率/%聚驱采收率提高值/%水驱和聚驱总采收率/%泡沫驱采收率提高值/%总采收率/% 2 75.60 35.90 18.70 54.60 16.67 71.30 3 73.00 36.00 17.50 53.50 18.15 71.70 4 72.20 35.80 18.89 54.69 20.12 74.80同注73.40 35.40 18.37 53.77 22.40 76.30在多孔介质中,泡沫一般由以下3种机理产生和运移[5],即液膜滞后、气泡缩颈分离和液膜分断,这些机理的前提条件需要气体和液体在多孔介质中不断地相互作用.气液同注方式是气液交替注入的一种特殊形式,即气体和液体同时进入多孔介质混合相互作用,由以上3种机理产生较丰富的泡沫.交替方式注入时,泡沫在多孔介质中形成的好坏与交替段塞密切相关,交替次数越多,即交替段塞越小,气液接触越充分产生的泡沫越丰富;如果交替次数较少,由于气体和液体的密度、黏度等性质存在很大的区别,致使它们之间的流动通道各不相同,不能形成很好的泡沫,就发挥不出泡沫较大表观黏度的流度控制作用,因此交替注入方式的泡沫驱采收率较低,且交替次数越少,泡沫驱效果越差.2.5 聚驱后不同驱替方法驱油效果对比在相同条件下,对比了聚驱后高浓度聚驱、二元液驱、二元泡沫复合驱和三元泡沫复合驱4种驱替方式的驱油效果.不同驱替方式中聚合物分子量均为2 500万,质量分数为0.2%,液体注入量均为0.3 PV,再加0.2 PV聚合物保护段塞.二元液驱为DWS与HPAM复合体系,二元泡沫复合驱为二元液与气体交替注入,交替周期0.1 PV,气液体积比3∶1.三元泡沫复合驱为强碱三元体系,氢氧化钠质量分数1.2%,HABS质量分数0.3%,注入方式与二元泡沫复合驱相同.实验结果见表3和图3所示.图3 聚驱后不同驱替方法的注入压力曲线Fig.3 Injection pressure curves of different displacement forms after polymer flooding表3 聚驱后不同驱替方法的驱油效果对比Tab.3 Comparison of enhanced oil recoveries of different displacement forms after polymer flooding体系黏度/ (mPa·s)聚驱后驱替方法82.30 71.50 37.24 18.27 9.72 65.23岩心含油饱和度/%水驱采收率/%聚驱采收率提高值/%聚驱后采收率提高值/%总采收率/% 45.90 73.80 35.09 17.54 13.16 65.79高浓度聚驱64.50 70.20 37.72 17.05 11.59 66.36 二元液驱65.10 73.00 36.00 17.50 18.15 71.70 二元泡沫驱63.90 72.60 35.90 18.70 16.67 71.30 47.80 72.60 36.16 16.46 14.41 67.03 三元泡沫驱由表3可知,聚驱后4种不同驱替方法中,高浓度聚驱采收率提高值最低,不到10%,二元泡沫复合驱采收率提高值最大,达到16.67%~18.15%,三元泡沫复合驱次之.由图3可知,二元泡沫复合驱的注入压力最高,三元泡沫复合驱的注入压力略低于二元泡沫复合驱,二元液的注入压力最低.在HPAM、DWS用量相同条件下,二元液黏度远大于三元液黏度,因此,聚驱后二元泡沫复合驱的注入压力和采收率提高值均大于三元泡沫复合驱,而二元液可以形成超低界面张力,使得二元液驱效果好于高浓度聚驱,同时表面活性剂具有降压增注的作用,因此二元液注入压力最低.3 结论(1)二元发泡剂体系在较宽的DWS、HPAM质量分数范围内可以与大庆原油形成超低界面张力,随着发泡剂体系中HPAM质量分数增加,界面张力逐渐增加,但仍能形成超低界面张力.同时二元发泡剂体系具有非常好的泡沫性能,在DWS质量分数为0.3%,HPAM分子量为2 500万、质量分数为0.1%时,二元体系的泡沫性能最好.(2)聚驱后二元泡沫复合驱可提高采收率15%以上,且发泡剂体系中HPAM质量分数越大,聚驱后泡沫驱采收率越大.二元泡沫复合驱的气液交替周期越小,聚驱后泡沫驱采收率越大,且气液同注泡沫驱效果最好.(3)在表面活性剂、HPAM用量相同条件下,二元泡沫复合驱效果最好,强碱三元泡沫复合驱效果次之,单纯高浓度聚驱效果最差.且二元泡沫驱避免了强碱带来的腐蚀、结垢等负面问题.参考文献:[1] WANG De-min,CHENG Jie-cheng,WU Jun-zheng,etal.Experiences learned after production of more than 300 million barrels of oil by polymer flooding in Daqing Oilfield[C].SPE 77693,2002.[2]王德民,程杰成,吴军政,等.聚合物驱油技术在大庆油田的应用[J].石油学报,2005,26(1):74-78.WANG De-min,CHENG Jie-cheng,WU Jun-zheng,et al.Application of polymer flooding technology in Daqing Oilfield[J].Acta Petrolei Sinica,2005,26(1):74-78.[3] Benjamin D,Miguel A,Francois G.Anti-inertiral lift in foams:A signature of the elasticity of complex fluids[J].Physical Review Letters,2005,95(16):168303.[4] Tortopidis S,Shallcross D C.Carbon dioxide foam flood studies under australian reservoir conditions[C].SPE 28811,1994.[5] Chou S L.Conditions for generating foam in porous media[C].SPE 22628,1991.[6]刘合,叶鹏,刘岩,等.注氮气泡沫控制水窜技术在油田高含水期的应用[J],石油学报,2010,31(1):91-95.LIU He,YE Peng,LIU Yan,et al.Nitrogen foam injection technique and its application in reservoirs with high water cut[J].Acta Petrolei Sinica,2010,31(1):91-95.[7]邵振波,孙丽静,刘宏生.聚驱后高压泡沫复合驱油实验[J].大庆石油地质与开发,2011,30(2):140-144.SHAO Zhen-bo,SUN Li-jing,LIU Hong-sheng.The study of high-pressure foam combination flooding after polymer flooding[J].Petroleum Geology&Oilfield Development in Daqing,2011,30(2):140-144.[8]曹嫣镔,王秋霞,郭省学,等.耐高温高效泡沫体系TH-1的研制及应用[J].西安石油大学学报:自然科学版,2004,19(3):60-62.CAO Yan-bin,WANG Qiu-xia,GUO Sheng-xue,et al.Development and application of TH-1 high-tempera ture resisting foaming system[J].Journal of Xi'an Shiyou University:Natural Science Edition,2004,19(3):60-62.[9]裴海华,葛际江,张贵才,等.稠油泡沫驱和三元复合驱微观驱油机理对比研究[J].西安石油大学学报:自然科学版,2010,25(1):53-56.PEI Hai-hua,GE Ji-jiang,ZHANG Gui-cai,et parison of microscopic oil displacement mechanism of foam flooding with ASP flooding for heavy oil[J].Journal of Xi'an Shiyou University:Natural Science Edition,2010,25 (1):53-56.[10]伍晓林,陈广宇,张国印.泡沫复合体系配方的研究[J].大庆石油地质与开发,2000,19(3):27-29.WU Xiao-lin,CHEN Guang-yu,ZHANG Guo-yin.A study on foam complex system formulare[J].Petroleum Geology& Oilfield Development in Daqing,2000,19 (3):27-29.。

炼油行业的专业英语

炼油行业的专业英语

炼油行业的专业英语术语比赛,大家一起来说说知道的术语。

可以是装置的缩写,也可以是产品和原料名称的缩写。

装置如:1.常减压蒸馏装置CDU&VDU Crude Distillate Unit & Vacuum Distillate Unit2.延迟焦化装置DCU Delayed Coking U nit产品或原料的如:MTBE 甲基叔丁基醚奖励多多啊。

每个缩写术语奖励金币2个。

有完整英语解释奖励5个金币。

作者: sophi8079 时间: 2008-7-2 05:08 标题: 回复1# 的帖子HCU--Hydrocracking UnitNHT--Naphtha HydrotreatingHHPS--Hot High Pressure SeparatorCHPS--Cold High Pressure SeparatorHLPS--Hot Low Pressure SeparatorCLPS--Cold Low Pressure SeparatorK.O.D-- Knock Out DrumCN--Coker NaphthaLVGO--Light Vaccum Gas OilHVGO--Heave Vaccum Gas OilVR--Vaccum ResidAR--Atmosphere ResidHey, does this topic prepare for me specially?[本帖最后由sophi8079 于2008-7-2 05:16 编辑]作者: djj723800 时间: 2008-7-2 07:40炼油装置英文名称:烷基化:Alkylation催化重整:Catalyticreforming脱沥青Deasphalting脱硫Desulfurization流化催化裂化Fluid catalyticcracking重油催化裂化Resid catalyticcracking废酸再生Spent acid regeneration硫磺Sulfur processing减粘裂化Visbreaking电脱盐Electrical desalting渣油加氢脱硫residue hydrodesulfurization(HDS)芳烃抽提aromatics extraction process叠合polymerization作者: dyfkkk 时间: 2008-7-2 10:22AGO – atmospheric gas oil.(常压瓦斯油)BFW – boiler feed water.(锅炉给水)CDU – crude distillation unit.(原油蒸馏装置)VDU – vacuum distillation unit.(减压塔)CH4 – methane.(甲烷)CO – carbon monoxide.(一氧化碳)CO2 – carbon dioxide.(二氧化碳)DEA – diethanolamine, (二乙醇胺)EC – eddy current(涡流)FCC – fluid catalytic cracker.(流化催化裂化)HCO – heavy cycle oil.(重循环油)HCGO – heavy coker gas oil.(重焦化瓦斯油)HIC – Hydrogen Induced Cracking(氢致开裂)HPS – high pressure separator.(高压分离器)HVGO – heavy vacuum gas oil.(重减压瓦斯油)HSAS – heat stable amine salts.(热稳定型胺盐)LCGO – light coker gas oil. (轻焦化瓦斯油)LCO – light cycle oil.(轻循环油)LPS – low pressure separator.(低压分离器)LVGO – light vacuum gas oil. (轻减压瓦斯油)MDEA – methyldiethanolamine. (甲基二乙醇胺)MEA – monoethanolamine.(单乙醇胺)NAC – naphthenic acid corrosion.(环烷酸腐蚀)PFD – process flow diagram.(工艺流程图)SCC – stress corrosion cracking.(应力腐蚀)SOHIC – Stress Oriented Hydrogen Induced Cracking(应力诱导氢致开裂)SS: Stainless Steel.(不锈钢)SW – sour water.(酸性水)SWS – sour water stripper.(酸性水汽提塔)作者: xueyonggao 时间: 2008-7-2 16:49晕吖。

复合材料点阵结构设计理论及机械强度

复合材料点阵结构设计理论及机械强度
发现点一:发现了复合材料点阵结构载荷传递路径及变形机制,提出了连续纤维增强+芯子协同变形的设计思想,创建了材料/结构/单胞一体化的复合材料点阵结构设计方法。提出了一系列复合材料点阵结构制备方法,实现了轻质高强复合材料点阵结构的制备。提出的制备方法包括模压成型工艺、切割粘结工艺、嵌锁组装工艺等。采用上述方法制备的碳纤维复合材料点阵结构在低密度区具有优异的力学性能,其平压和剪切强度指标分别达到国际领先和先进水平。
该项目共发表SCI论文68篇,出版复合材料点阵结构研究领域第一部专著,获授权国家发明专利7项。8篇代表性论文被Science等期刊SCI他引405次。该项目研究成果引起国际学术界的关注,美国工程院院士Atluri教授指出:该项目设计的复合材料点阵材料填补了Ashby材料选择图的空白。杨卫院士、方岱宁院士、程耿东院士,Wadley教授等对该项目的研究成果均给予了高度评价。
6
Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates/Materials and Design/王世勋,吴林志,马力
7
Energy absorption and low velocity impact response of polyrethane foam filled pyramidal lattice core sandwich panels/Composite Structures/张国旗,王兵,马力,吴林志,泮世东,杨金水
2
Experimental investigation of 3D sandwich structure with core reinforced by composite columns/Materials and Design/王兵,吴林志,金鑫,杜善义,孙雨果,马力

含减纱2.5D机织碳

含减纱2.5D机织碳

含减纱2.5D 机织碳/环氧复合材料低速冲击损伤机制张典堂,窦宏通,董放,江昊(江南大学生态纺织教育部重点实验室,江苏无锡214122)摘要:针对锥形回转体构件常用的减纱工艺,设计和制备了不含减纱、含半列减纱和含整列减纱2.5D 机织碳/环氧复合材料。

分别设置54J 和72J 的冲击能量,采用落锤冲击仪对3种复合材料开展了低速冲击试验,获取了载荷-时间曲线,并采用Micro-CT 开展了损伤形貌和损伤量化分析。

基于低速冲击损伤“局部”分布特征,建立了一种宏-细观混合有限元模型,开展了3种复合材料的低速冲击数值模拟,并揭示了失效机理。

结果表明:数值模拟的力学响应曲线及损伤形貌与对应试验结果吻合较好;相比于不含减纱试样,在54J 冲击能量下,含半列减纱和整列减纱试样的冲击损伤体积分别增加了21.0%和34.8%;在72J 冲击能量下,含半列减纱和整列减纱试样的冲击损伤体积分别增加了15.7%和24.4%。

可以看出,减纱点的引入明显降低了结构的承载效率。

关键词:减纱;2.5D 机织复合材料;低速冲击;损伤机制;混合模型中图分类号:TB332文献标志码:A 文章编号:员远苑员原园圆源载(圆园23)园6原园园24原09收稿日期:2022-12-04基金项目:国家自然科学基金资助项目(11702115,12072131)通信作者:张典堂(1986—),男,博士,研究员,主要研究方向为先进纺织复合材料制备。

E-mail :**************************.cnLow-velocity impact damage mechanism of 2.5D woven carbon/epoxycomposites with yarn reductionZHANG Diantang ,DOU Hongtong ,DONG Fang ,JIANG Hao(Key Laboratory of Eco-Textiles Ministry of Education ,Jiangnan University ,Wuxi 214122,Jiangsu Province ,China )Abstract :The 2.5D woven carbon/epoxy composites without yarn reduction袁with half rows yarn reduction and with all rowsyarn reduction were designed and prepared for the common yarn reduction process of conical rotating members.The impact energy levels of 54J and 72J were set袁respectively.Low-velocity impact tests were carried out onthree composite materials using a drop hammer impactor袁and load-time curves were obtained.Micro-CT was al鄄so used to carry out the damage morphology and damage quantification analysis.A macro-meso hybrid finite ele鄄ment model is developed based on the 野local冶distribution characteristics of low-velocity impact damage.Numer鄄ical simulations of low-velocity impacts of three composite materials were carried out to reveal the failure mecha鄄nisms.The results show that the mechanical response curves and damage morphology of the numerical simulation are in good agreement with the corresponding experimental results.Meanwhile袁compared with without yarn re鄄duction.At the impact energy of 54J袁the impact damage volume increased by 21.0%and 34.8%for the speci鄄mens with half-row yarn reduction and whole row yarn reduction袁respectively.At the impact energy of 72J袁the impact damage volume increased by 15.7%and 24.4%for the half rows yarn reduction and all rows yarn reduc鄄tion袁respectively.It can be seen that the introduction of the yarn reduction point significantly reduces the load-bearing efficiency of the structure.Key words :yarn reduction曰2.5D woven composites曰low-velocity impact曰damage mechanism曰hybrid model近年来,随着2.5D 机织预成型技术的日益成熟及机械自动化程度的提高,2.5D 机织复合材料因其细观结构设计性强、力学性能优异和近净成形等优势,愈发广泛地应用于航天发动机喷管、航天天线罩和航空发动机燃烧室火焰筒等锥形回转体部件[1]。

UHMWPE球面层合板弹道侵彻性能研究

UHMWPE球面层合板弹道侵彻性能研究

UHMWPE球面层合板弹道侵彻性能研究陈昕;朱锡;梅志远;王晓强【摘要】进行了超高分子量聚乙烯(UHMWPE)平面层合板、平面夹芯结构以及球面夹芯结构的弹道侵彻实验研究,发现凸球面结构的抗侵彻能力低于平面结构,根据实验现象对球面结构初始曲率的不利影响作了初步分析.应用DYTRAN软件对不同曲率的UHMWPE层合板弹道侵彻进行了数值仿真,分析了层合板曲率对弹道性能的影响规律,认为曲率对层合板变形的限制作用以及由此导致的应力集中是造成抗侵彻能力下降的主要原因.%Ultra-high molecular weight polyethylene (UHMWPE) laminates, plane sandwich stuctures and spherical sandwich structures were studied with ballistic penetration tests, and lower anti-penetraion performance of convex spherical structures was found than that of plane structures.Disadvantage of initial curvature of spherical structures was elementarily analyzed based on experimental phenomena.Ballistic penetration of UHMWPE laminates with different curvatures was numerically simulated with DYTRAN FEM software, and curvature influence on ballistic properties was analyzed.The deformation restriction of curvatures and the induced stress concentration due to initial curvature were considered to be the main causes to lead to degradation of anti-penetration capacity of a UHMWPE spherical laminate.【期刊名称】《振动与冲击》【年(卷),期】2011(030)004【总页数】5页(P119-123)【关键词】弹道侵彻;层合板;UHMWPE;球面;有限元【作者】陈昕;朱锡;梅志远;王晓强【作者单位】海军工程大学船舶与海洋工程系,武汉,430033;海军工程大学船舶与海洋工程系,武汉,430033;海军工程大学船舶与海洋工程系,武汉,430033;海军工程大学船舶与海洋工程系,武汉,430033【正文语种】中文【中图分类】O347.3超高分子量聚乙烯(UHMWPE)作为继碳纤维、芳纶之后出现的第三代高性能纤维,不仅比强度和比模量非常高,并且在冲击作用下表现出优异的能量吸收性能,在防弹、抗冲击领域已经得到了广泛的应用[1-5]。

钻井英语缩写

钻井英语缩写

钻井英语缩写AbbreviationDP Drill pipe 钻杆HWDP heavy weight drill pipe 加重钻杆DC drill collar 钻铤STB stabilizer 钻杆扶正器SMDC short magnetic drill collar 短无磁钻铤PDM positive displacement motor 螺杆NMDC nonmagnetic drill collar 无磁钻铤(钻具)BOP blowout preventer 封井器CSC casing 套管JNT joint 单根XO cross-over 配合接头IF internal flush 内平FH full hole 贯眼REG regular 正规IU internal upset 内加厚EU external upset 外加厚IEU internal & external upset 内外加厚OH open hole 裸眼WOB weight on bit 钻压RPM revolutions per minute 转速分钟SPM strokes per minute 冲程每分钟ECD equivalent circulating density 当量泥浆密度MT metric ton 公制吨BHA bottom hole assembly 底部钻具组合DST drill stem test 钻具测试KS key seat 键槽STDS stands 立柱VIS viscosity 粘度WL water loss 失水PV plastic viscosity 塑性粘度YP yield point 屈服值FL filtrate loss 滤失TVD true vertical depth 垂深MD measured depth 测量井深TD total depth 总井深KOP kick off point 造斜点DIR direction 定向AZM azimuth 方位DEV deviation 井斜ROP rate of penetration 机械钻速ID inside-diameter 外径FTG footage 进尺PPG pounds per gallon (密度)每加仑磅PSI pounds per square inch 每平方英寸磅SGL single 单根HTHP high temperature high pressure 高温高压AD assistant driller 副司钻LCM lost circulation material 堵漏剂API American petroleum institute 美国石油协会IADC International association drilling contractor 国际钻井承包商CNPC China national petroleum company 中国石油天然气总公司ASAPP/N part number 零件型号S/N serial number 系列号N/W net weight 净重G/W gross weight 毛重P/U pick up 吊起M/U make up 接上L/D lay down 甩开N/U nipple up 接上N/D nipple down 卸开R/U rig up 安装WOC wait on cement 侯凝RIH run in hole 下钻WOO wait on order 等指令POOH pull out of hole 起钻DR drilling 钻进RM reaming 扩眼(划眼)WOW wait on water 等水TOF top of fish 鱼顶SX sacksMW mud weight 泥浆密度CBU circulate bottoms up 循环一周TOH trip out of hole 起钻MWD measurement while drilling 随钻测量KSW key seat wiper 键槽清洁器SCR silicon controled rectifier 可控硅房PS power swivel=(top driver) 顶部驱动(顶驱)YP yield point 屈服点ID inside-diameter 内径SMDC short magnetic drill collar 短有磁钻铤BOP blowout preventer 防喷器STB stabilizer稳定器XO cross-over 转换接头ECD equivalent circulating density 当量循环密度C Capacitor 电容器CB Circuit Breaker 断路器CM Control Module 控制组件CP Cement Pump 水泥泵COM Common 公共的CPC Cement Pump Conso1e 水泥泵控制台CPT Control Power Trarisforme 控制电源变压器CT Current transformer 电流互感器C/O Chain Oiler 链条注油器℃Degrees Centigrade 摄氏温度D Diode 二极管DB Dynamic Brake 能耗制动DC Drille’s Console 司钻控制台DIV Diverter 分流器DP Distribution Panel 分配板DW Drawworks 绞车ERC Engine Room Console 柴油机房控台F Farads 法拉F Fuse 熔断器FL Field 1oss 失磁FS Fuse Swith 熔断器开关FSD Full scale deflection 满刻度偏转FVR FUll V1toage Reversing 满电压倒向FVNR FUll Vo1tage Nonreversing 满电压不可倒向GEN Generator 发电机GND Ground 接地H Henris 亨利HED Hall EffeCct Device 霍尔效应元件HOA Hand-Off—Auto 手动一关断一自动HP Horsepower 马力HS Heat sink 散热器HSE House 房子HTR Heater 加热器HVR High Voltage Resistor 高压电阻HZ Hertz(Cycles per second) 赫兹(周期/秒)IC Integrated Circuit 集成电路ID InSide Diameter 内径IEEE Institute Of Electrical &E1ectronics Engineers 电气和电子工程师学会ISO Iso1ater 绝缘体I/O Input/Output 输入/输出K Kilo(103) 千( )KCMIL Thousand Circular Mils 千圆密耳KV Kilovolts 千伏KVA Kilovolt Amperes 千伏安KVAR Reative Kilovolt-Amperes 千乏(无功功率)KW Kilowatts 千瓦L Light 灯L Inductor 电感LS Level Switch 电子开关M Meter 表MCC Motor Contro1 Center 电动机控制中心MOV Metal Oxide VariSter 金属氧化物电阻MP Mud Pumps 泥浆泵MS Motor Starter 电动机启动器MPC Mud Pumps Console 泥浆泵控制台m Milli( ) 毫( )mA Milu amperes 毫安mH Milli Henries 毫亨NEC National Eiectrical Code 国家电业标准NEMA National E1ctrical Manufactirers Assoc 电气制造业协会NTL Neutral 中性N/P Namcplate 铭牌n Nano( ) 纳nF Nano Farad(10F) 纳法OD OutSide Diameter 外径OL OverlOad Relay 过载继电器PB PUSh Button 按钮PBSS Push Button Start/Stop 启动/停止按钮PC Printed Circuit 印刷电路PCB Printed Circuit Board 印刷电路板PF PiCO Faral 微法( F)PFC Power Factcr Correctcr 功率因数补偿器PL Lamp cr Pilot Light 灯或指示灯PLC Programmable Logic Contro11er 可编程逻辑控制器PM Prime Mover 原动机POT POtentiometer 电位器PP P1ug Panel 插头板PS Pressure Switch 压力开关PT Potentia1 Transfromer 电位变压器R Resistor 电阻REC Receptacle 插座或容器RECT Rectifier 整流器REF Reference 给定RL Relay 继电器RT Rtary Table 转盘RHCC Ross Hill Controls Corporation ROSS Hill控制公司RTD Resistive Temperature Device 电阻式温度仪SCR Silicon Contro11ed Rectifier 晶闸管整流器SW or S Switch 开关SH Shield 屏蔽ST Shunt Trip 分励脱扣SWGR Switchgear 开关装置TB Terminal B1ock 接线板TD Time Delay Relay Or Top Drive 延时继电器或顶驱TH Thruster 推进器TS Temperature Switch 温度开关USCG United States Coast Guard 美国海岸警卫队V Vo1ts 伏特VA Vo1t Amperes 伏安VAC Voltage A1ternating Current 电压(交流)VAR Vo1ts Amp Reactive 乏VDC Voltage Direct Current 电压(直流)UPS Uninterruptible Power Supply 不间断电源UVR Undervo1tage Release 欠压释放W Watts 瓦石油钻井业常用专业词汇A氨基三乙酸(NTA) || aminotriacetic acid胺基 || amino铵基 || ammonium安全地层 || safe formation安全试破 || safe destruction安全钻井 || safe drilling坳陷 || down warping region螯合 || chelation凹陷 || sag凹陷地层 || subsidence formation奥陶系 || Ordovician systemAPI模拟法 || API recommened methodB多靶点 || multiple target point白沥青 || white asphalt白油 || mineral oil白云母 || white mica半透膜 || semipermeable membrane包被絮凝剂 || flocculant包被 || envelop包被抑制性 || encapsulating ability饱和度 || saturation饱和度剖面图 || profile map of degree of saturation 饱和盐水 || saturated salt water背斜 || anticlinal钡 || barium苯环 || benzene ring苯酚 || phenyl hydroxide本质区别 || essential difference泵压过高 || overhigh pumping pressure比表面积 || specific surface area比吸水量 || specific absorption比重瓶法 || density bottle method避免 || avoid蓖麻油 || ricinus oil边界摩擦 || boundary friction扁藻(浮游植物) || algae变化趋势 || variation trend标准化 || standardization标准粘度测量 || standard visicosity measure表面粗糙度 || roughness of the surface表面电位 || surface electric potential表面活性剂 || surfactant ,surface active agent表面能 || interface energy表面粘度 || surface viscosity表面抛光 || sample surfaceAibbs表面弹性 || Aibbs surface elasticity表面张力 || surface tension表明 || verify /reveal表皮系数(S) || skin coefficient憋钻 || bit bouncing宾汉方程 || bingham equation丙三醇 || glycerine丙烯情 || acrylonitrile丙烯酸 || acrylic acid丙烯酸盐 || acrylate丙烯酰胺 || acrylamide薄而韧的泥饼 || thin,plastic and compacted mud-cake ||薄片 || flake薄弱地层 || weak formation泊松比|| poisson’s ratio剥离 || peel off补救 || remediation不分散泥浆 || nondispersed mud不干扰地质录井 || play no role in geological logging不均质储层 || heterogeneous reservoir不均匀 || uneven不可逆 || irreversible不同程度 || inordinately部分水解聚丙烯酰胺(PHPA) || partially hydrolyzed polyacrylamideC参数优选 || parametric optimization残酸 || reacted acid残余饱和度 || residual staturation残渣 || gel residue , solid residue测量 || measure侧链 || side chain侧钻水平井 || sidetrack horizontal well层间 || interlayer层间距 || the distance between the two crystal layer, layer distance 层理 || bedding层流 || layer flow差减法 || minusing尝试 || trial柴油 || diesel oil长连缔合物 || long chain associated matter操作方法 || operation method超伸井 || high deep well超深预探井 || ultradeep prospecting well超声波 || ultrasonography超高密度泥浆 || extremely high density mud超细碳酸钙 || super-fine calcium carbonate产层 || production/pay zone产层亏空 || reservoir voidage产量 || production ,output沉淀 || precipitation沉降 || subside沉降速度 || settling rate沉砂 || sand setting衬套 || sleeve程序 || program成对水平井 || paired parallel horizontal wells成分 || ingredient成胶剂 || gelatinizing agent成膜树脂 || film-forming resin成岩性差 || poor diagenetic grade承压 || bearing pressure承压低 || lower pressure resistance承压能力 || loading capacity尺寸 || dimension斥力 || repulsion除硫效果 || sulfur limitation effect除硫剂 || sulfur elimination除砂器 || desander触变性 || thixotropy触变剂 || thixotropic agent垂沉 || sag垂直井 || vertical well充气钻井液 || aerated drilling fluid磁化 || magnetization次生有机阳离子聚合物 || secondary organic cationic polymer 冲砂 || sand removal冲蚀 || flush冲刷 || washing out冲洗 || clean冲洗效率 || cleaning efficiency冲洗液 || washing fluid从…角度 || from the standpoint of丛式井 || cluster well稠化剂 || gelling agent稠油区 || viscous oil area稠油藏 || high oil reservoir初步分析 || preliminary analysis初始稠度 || initial consistency初始粘度 || initial viscosity初探 || primary investigation处理剂 || additive ,treating-agent粗分散泥浆 || coarse dispersed mud粗泡沫堵漏工艺 || coarse-foam plugging technology促凝剂 || accelerating agent醋酸 || acetate醋酸钠 || sodium acetate窜流 || fluid channeling脆裂 || embrittlement crack脆性 || brittle/crisp ,fragility催化剂 || accelerant , catalyst萃取剂 || extracting agentD达西定律|| Darcy’s equation大段水层 || thick aqueous formation大分子氢键络合作用 || polycomplexation of hydrogen bond大灰量 || mass slurry大井斜角 || high deviation angle大块岩样 || big rock sample大块钻屑 || massive drilling cuttings大类 || genera大理石 || marble大砾石层 || large gravel bed大量分析 || quantitative analysis大排量洗井 || high flow rate washover大排量循环 || high flow rate circulation大位移定向井 || extended-reach directional well大斜度钻井 || big inclination/angle drilling大直径井眼 || large hole代表性岩心 || representive core sample单宁酸 || tannate单体 || monomer单相关分析法 || analyzing method of single correlation单相关系数加权 || coefficient weighted method of single correlation 单轴抗压强度 || uniaxial compressive strength氮 || nitrogenN-羟甲剂胺 || N-hydroxymethyl amine淡水 || fresh water单向压力暂堵剂 || unidirectional pressure temporary plugging additive 导向螺杆钻具 || stearable assemly导向器 || guider等温曲线 || isothermal curve低毒油基 || low toxicity oil based低返速 || low return-velocity低固相泥浆 || low solid drilling fluid低级醛 || low-grade aldehyde低粘土相泥浆 || low clay content drilling fluid狄塞尔堵漏剂 || diacel plugging agent滴定 || titration底水丰富 || basal water abundance底水油藏井 || bottom water reservoir well第二界面 || second contact surface缔合物 || associated matter地层 || formation地层出液量 || formation fluid production地层破碎 || straturn breaking地层倾角大 || higher formation clination地层水 || formation water地层损害 || formation damage地面岩心压汞 || surface core mercury injection test地下水 || groundwater , subsurface water地应力 || ground stress地质 || geology地质构造 || geologic structure淀粉 || starch电测 || electronic logging电导率 || electric conductivity电荷 || electricity电化学法 || electrochemistry method电解质 || electrolyte电镜分析 || electronic microscope photos电位 || potential fallξ电位 || zeta potential电性 || electric property电泳法 || electrophoresis method电子探针 || electron spectrum调查 || census顶替过程 || displacing operation定量设计 || quantitative design定向井 || direction well定子 || stator冻胶 || gel动静弹性模量 || dynamic and static elasticity modulus动力稳定性 || settling stability动力学 || kinetics动态滤失 || dynamic filtration动切力 || yield value动塑比 || ratio of dynamic shear force/yield value to plastic viscosity 堵漏 || plugging堵塞 || seal堵塞比(DR) || damage ratio堵塞物 || bulkhead堵水 || water shutoff毒性大 || high toxicity毒性污染环境 || toxicity ruins the environment短过渡 || short transition time短纤维 || brief fiber断层发育 || mature fault断裂带 || faulted zone对策 || countermeasure多产层 || multilayered reservoir多分支侧钻井 || multi-lateral sidetracking well多功能添加剂 || multifunction additive多孔介质 || porons medium多目标定向井 || multi-target directional well多相稳态胶体悬浮体系 || polynomial gel suspension system多元醇 || polyatomic alcohol多元非线性回归 || multielement non-linesr regression多元统计 || multivariate statistics惰性材料 || inert material惰性润滑剂 || inert lubricantE二次沉淀 || secondary precipitation二叠系 || Permian system二甲胺 || dimethylamine二甲基二烯丙基氯化铵 || dimethyl diallyl ammonium chloride二价阳离子 || bivalent ion二开 || second section二氧化碳(CO2) carbon dioxide二元共聚物 || binary polymerF发气剂 || gas-development发展趋势 || development tendency反排解堵 || plug removal by reverse flow范氏力 || van der waals force范氏粘度计 || fann viscosimeter返回 || go back to方便钻井液复合粉 || convenient mud compound powder方程 || equation芳香烃 || aromatic group防窜水泥 || anti-fluid-channeling cement防腐 || anti-corrosion防卡 || pipe-sticking prevention ,anti-sticking防漏失 || lost circulation prevention防气窜 || anti-fluid-channeling防塌机理 || mechanism of anti-caving防塌剂 || anti-caving/collapse agent , clay stabilizer 防止|| prevent…from纺织 || textile放空不返 || loss of bit load with loss return放射性示踪剂 || radioactive tracer tritium非均质 || nonhomogeneity非离子 || nonionic非牛顿流体 || non-newtonian fluid非渗透性 || impervious废泥浆 || mud disposal沸石 || zeolite分布 || distribution分段固井技术 || stage cementing technology分光度法 || spectrophotometer分类 || division分散 || dispersion分散剂 || dispersant分散介质 || dispersion medium分析 || analysis分形理论 || fractal theory分形几何 || fractal geometry分子 || molecules分子间能量交换 || energy exchange between molecules分子量 || molecular weight分子链 || molecular chain分子形态 || shape of molecular chain粉尘 || dust粉煤灰 || fly ash粉末 || powder粉砂质 || aleuritic texture酚羟基的邻位或对位氢 || p-or o-hydrogen atom of phenolic group封闭剂 || sealing agent封闭稳定 || good isolation封堵 || formation sealing封堵剂 || formation sealant封固段 || interval isolation扶正器 || centralizer氟硼酸 || borofluorhydric浮力效应 || effect of buoyancy孵化速度 || incubation浮游植物 || floating vegetation复合 || combine复合离子 || multifunctional ionic复合离子聚合物 || amphiprotic/amphoteric polymers ,复合金属两性离子聚合物 || composite metal zwitterionic polymer复合聚合物泥浆 || compound-polymer mud复配方案 || compositional formulation复杂地层 || complex formation, troublesome region ,trick formation 复杂度 || complex rate复杂时效 || outage time复杂情况 || down-hole troublesome condition腐蚀 || corrosion腐蚀电位 || corrosion potential腐蚀速率 || corrosion rate腐殖酸 || humate ,humic acid腐殖酸钾(KHm) || potassium humic辅料 || auxiliary material负 || negative ||负压钻井 || underbalanced drilling符合 || accord with符合率 || coincidence || rate副产品 || by-product附加密度 || addition mud densityG改善泥饼质量 || improvement of mud cake改性 || modification改性淀粉 || modified starch改性沥青 || modified asphalt改造 || refomation钙 || calcium钙矾石 || ettringite钙膨润土钠化 || sodium modified calcium betonite || 干混拌技术 || mixing technology干扰 || interfere with甘油 || glycerol锆 || zirconium高分子 || higher molecular weight高分子聚合物 || macromoleclar polymer ||高分子絮凝剂 || polymer flocculant高负荷 || high load高级脂肪醇树脂 || higher fatty alcohol高价金属阳离子 || high valent cationic高角度微裂缝 || high angle micro-fracture高矿化度地层水 || highly mineralized formation brines 高岭土 || kaolinite高炉矿渣(BFS) || blast furnace slag高密度钻井液 || high density drilling fluid高难度 || high challenge高粘度清扫液 || viscous sweeping fluid高砂比 || high sand ratio高温静置 || quiescence in high temperature高温泥浆 || high-temperature mud高吸水量树脂 || absorbent resin高温高压流变仪 || HTHP rheometer高效润滑剂 || super lubricant高压盐水层 || high pressured slatwater layer膏岩层 || gypsolyte膏质泥岩 || creaming mudstone膏状磺化沥青 || paste sulphonated asphalt隔离冲洗液 || spacer/flushing fluid隔离膜 || isolating membrane各向异性 || anisotropy工程 || engineering共聚 || copolymerization共聚物 || copolymer共聚物类降粘剂 || copolymer thinner狗腿 || dogleg构造裂缝 || structural fracture固化 || solidification固化剂 || hardener , curing agent固井技术 || cementing technology固体团块 || solid cake固相 || solid phase固相含量 || solid concentration固相颗粒 || solid particles固相颗粒侵入 || solid invasion固相控制技术 || solid control technology固相损害 || damage of particles固液分离技术 || centrifugal separation method 胍胶 || guargum瓜尔胶 || guar挂片失重法 || weight loss method ||关掉电机 || turn off the power光谱 || spectroscopy硅 || silicone硅粉 || silica powder硅氟 || fluosilicic硅铝比 || ratio of silicate to aluminium硅酸钠 || sodium silicate硅酸盐 || silicate滚轮失重法 || roller weight loss method国内外 || home and abroad过渡金属 || transitional metal过平衡压力 || over-balanced pressure过剩浓度 || residual concentration过氧化物 || peroxideH海绿石 || chlorite海上 || offshore海水泥浆 || sea water mud海湾 || bay海洋生物 || marine animal含量 || content含水量 || moisture content耗氧量(COD) || chemical oxygen demand耗氧量(BOD520) || biological oxygen demand核桃壳粉 || walnut shell flour核磁共振(NMR) || nuclear magnetic resonance 合成 || synthesis合成基钻井液 || synthetic base drilling fluid 合格 || eligible合理级配 || reasonable distribution褐煤 || lignite赫巴模式 || Herschel-Buckley model黑色正电胶(BPG) || black positive gel恒定滤失速率 || constant filtration rate葫芦串 || irregular borehole护胶剂 || colloid protecting resistance护胶作用 || colloid stability互层 || interbeded红外光谱 || infrared spectrography花岗岩 || granite划眼作业 || reaming operation化学螯合剂 || chelating agent化学冲洗液 || chemically washing solution化学结垢(沉淀) || chemical precipitation环保型 || environment friendly /acceptable环境保护 || environment protection环空当量密度 || annular equivalent density环空返速 || velocity in annular环空压耗 || annular pressure lost环氧丙烷 || epoxypropare环氧氯丙烷(ECH) || epoxy chloropropane ,epichlorohydric缓蚀剂 || corrosion inhibitor磺化 || sulfonation磺化酚醛树脂 || sulfomethal phenolaldehy resin磺化剂 || sulfonating agent磺化类处理剂 || sulfonated additives磺化沥青 || sulfonated gilsonite磺化沥青泥浆 || sulfonated-asphalt mud磺甲基酚醛树脂 || sulfonated methypheuo formald-ehyde磺酸基团 || sulfonic acid group ,sulfo group灰色关联分析法 || gray relative analysis method灰岩 || limestone回归分析 || regressive analysis回收率 || recovery percent回填还耕 || refilling for plowland火成岩 || igneous rock火山喷发岩 || volcanic混合金属层状氢氧化物(MMLHC) || mixed metal layer hydroxide compound 混合金属氢氧化物(MMH) || mixed metal hydroxides混合纤维 || composite fiber混合盐水 || mixed salt活动套管 || moving casing活度 || water activity活性硅灰 || activated grammite活性粘土矿物 || active clayey mineral活性污泥法 || activated sludge process宏观 || macroscopicJ基液 || base fluid机械力 || mechanical机械杂质 || mechanical impurity机械钻速(ROP) || rate of penetrate及时反出 || timely return极限剪切粘度 || high shear viscosity极限应变 || ultimate strain极性基团 || polar group极压润滑剂 || pressured/extreme || lubricator挤堵 || squeeze激光多普勒测速仪(LDA) || laser Doppler anemometer激光粒度仪 || laser particle analyzer激活剂 || activator技术措施 || technical measure技术讲座 || workshop for technology技术经济效果 || technical-economic effect技术套管 || intermediate casing季铵盐 || quaternary ammonium, anionic group钾 || potassium ,kalium钾基石灰泥浆 || potassium base lime mud甲硅烷基化处理 || methylsilicane甲基 || methyl甲基硅油聚磺高密度钻井液 || methyl silicone oil polysulfonate drilling fluid with high density甲醛 || formaldehyde , methanal甲酸盐 || formate加量 || dosage加重剂 || heavy weight additive加重泥浆 || weighted mud加重钻井液“垂沉” || sag phenomenon of weighted drilling fluid 架桥粒子 || bridge particle价数 || valence监督 || supervision碱 || alkali简化泥浆处理 || simplify mud treatment简介 || brief description检查井 || inspection well检测 || inspection/monitor减轻剂 || lightening admixture减阻剂 || anti-friction agent , drag reducer剪切破坏 || shear failure剪切稀释能力 || shear thinning property , shearing dilution剪切应力 || shear stress键 || bond健康,安全与环境(HSE) || health , safety and environment间隙 || clearance降解产物 || degradation productsK卡森方程 || Casson equation卡钻 || pipe-sticking卡钻因子 || stuck-pipe factor勘探与开发 || exploration and development开发井 || development well开钻泥浆 || spud mud抗冲击韧性 || toughness抗冲击性 || impact resistance抗电解质 || potential resistance to electrolyte contamination 抗钙 || compatibility of calcium抗裂程度 || rupture strength抗温抗盐 || heat and salinity tolerance抗压强度 || compressive strength抗折强度 || breaking strength栲胶 || tannin , quebrocho克 || gram颗粒 || particle颗粒级配理论 || theory of granulartity苛刻 || rigorous可变形粒子 || deformation particle可靠 || inerrable可逆 || reversible可溶性盐 || soluble salt可压缩性 || compressibility可用性 || feasibility可钻性 || drillability刻度盘 || dial scale坑内密封法 || seal in a pit空气湿度 || air humidity孔洞 || cavern孔喉 || pore throat孔隙 || pore孔隙度测井 || porosity log孔隙压力 || pore pressure孔隙液 || pore fluid快钻剂 || quick drilling矿化度 || mineral salt concentration , mineralization矿石 || ore矿物 || mineral矿物组分 || mineralogical composation矿物晶体 || mineral crystal矿物油 || mineral oil矿渣 || slag扩散 || diffusionL老化时间 || ageing time老区 || maturing field雷诺数 || Renault number类别 || category累计厚度 || gross thickness累托石 || rectorite沥青 || asphalt ,gilsonite,bitumen沥青类产品 || gilsonite and similar materials离心法敏感性评价 || centrifugation sensitivity evaluation 离心机 || centrifugal machine离心机固控技术 || centrifugal solid control离子 || ionic离子形态 || ionic forms粒度 || grain grade粒度分布 || particles/size distribution粒度分析 || particles size analysis粒子 || particle砾石充填 || gravel pack连通性 || formation communication连续提取法 || continuous extraction两凝水泥浆 || two-stage cementing cement两性离子 || zwitter ionic裂缝 || fissure裂缝壁 || side of fracture plugging裂隙地层 || fractured formation裂隙滞后效应 || fracture lag-effect邻井 || offset/adjacent well林产 || forestry淋洗量 || wash out amount磷 || phosphorus磷酸 || phosphate磷酸氢二铵 || diammonium phosphate磷酸盐 || phosphate || salt磷酸酯 || organic phosphate临界点 || critical point临界环空流速 || critical annular fluid velocity临界流量 || critical flow velocity临界盐度 || critical salinity零点 || zero point零析水 || zero free water硫 || sulfur硫化氢 || hydrogen sulfide硫化物 || sulfide硫酸 || sulfate硫酸钠 || sodium sulphate流变参数 || reheological parameter流变模式 || reheology model流变性 || rheology behavior流变性能改进剂 || rheology conditioner流变学 || rheology流动度 || fluidity流动介质 || flow media流动孔喉 || flowing pore throat流动摩阻压力 || flowage friction drag流动实验 || flow test流动阻力 || flow resistance流沙层 || drift sand formation流态 || flow pattern流体力学 || hydromechanics theory流体输送减阻 || accelerating fluid feeding流型 || fluid type漏斗粘度 || funnel viscosity漏失 || lost circulation漏失层位 || location of the thief zone漏失通道 || porous media陆上 || onshore卤虫 (甲壳类动物) || crustacean卤水 || bitter铬 || chromium络合 || coordination ,chelate络合行为热效应 || thermal effect of the coordination 录井 || log裸眼 || open well裸眼井段 || barefoot interval滤饼 || filter cake滤失量 || filtration滤饼电性质 || electro kinetic property滤液 || filtrate滤液侵入 || filtrate invasion铝 || aluminum铝酸盐 || aluminate氯酚 || chlophenol氯化钙(CaCl2) || calcium chloride氯化物 || chlorideKCl溶液 || potassium chloride solutionM马来酸酐 || maleic anhydride埋深 || burial depth满足…需要 || meet requirement of曼尼希反应 || Mannick reaction芒硝层 || chuco毛细管吸收时间测定仪(CST) || capillary suction timer毛细管压力 || capillary pressure酶 || enzyme煤层 || coal bed煤层气储层 || coalbed methane reservoir镁 || magnesium门限流动压差 || threshold differential pressure of flow 蒙脱石 || smectite咪错基 || imidazoline醚基 || ether密胺树脂 || melamine resin密闭液 || sealing fluid密度 || density密实 || dense幂律模式 || power law method敏感性 || sensitivity敏感性流动实验 || flowrate test膜 || film , membrane磨铣 || mill摩擦 || friction摩擦付 || friction couples摩擦系数 || friction coefficient摩阻损失 || friction loss末端毛细管阻力 || terminal capillary pressure木质素磺酸盐 || lignosulfonate模拟 || analog, simulate模式(型) || model目 || meshN纳米材料 || nano-composite material纳米技术 || nano-tech钠 || sodium钠化 || sodium treatment钠膨润土泥浆 || sodium bentonite mud囊衣 || capsule dressing囊芯 || capsule-core内聚力 || cohesion内摩擦角 || internal frictional angle内泥饼 || internal filter cake内切圆半径 inscribed circle radius内烯烃 || isomerised || olefins内源和外源颗粒 || endogenous and exogenous granula 内在因素 || intermediate factor能量交换 || energy exchange泥包 || bit balling泥饼 || mud-cake泥饼强度冲刷仪 || mud filter cake tester泥浆处理 || mud treatment泥浆跟踪剂 || mud tracer泥浆配方 || mud formula泥浆转化为水泥浆(MTC) || mud to cement泥岩 || mudstone , conglomerate泥页岩 || shale , || argillutite泥质膏岩 || argillaceous粘度 || viscosity粘度极大值 || maximum viscosity粘度计 || viscosimeter粘附 || adhere粘附张力 || adhesive tension粘弹性 || viscoelastic粘土 || clay粘土分级评价法 || method of grading mud-making clay 粘土矿物层间距(d001) || crystal || indices粘土矿物含量 || clay mineral content粘土片 || clay latice粘土膨胀 || clay swelling粘土膨胀倍数 || swelling ratio of clays粘土稳定性 || clay stability粘性流体 || viscous fluid柠檬酸 || citric acid凝固点 || freezing point凝析油 || condensate oil牛顿流体 || Newtonian fluid扭距 || torque浓度 || concentration浓硫酸 || strong sulfuric浓缩 || concentrationP排列 || line along排驱压力 || displacement pressure排水 || water draining剖面图 || profile map泡沫流体实验装置 || aerated fluid test simulator 泡沫剂 || foaming agent泡沫衰变机理 || foam decay mechanism泡沫质量 || foam quality泡沫钻井液 || foam drilling fluid配方 || formula ,recipe ,composition配浆时间 || drilling fluid preparing time配位体 || ligand配伍性 || compatibility配制 || madeup盆地 || basin喷 || blowout喷射钻井 || jet drilling喷嘴粘度 || nozzle viscosity膨润土 || bentonite ,montmorillonite膨润土含量 || bentonite content膨胀 || swell膨胀剂 || sweller膨胀率 || expansion ratio膨胀性堵漏材料 || expandable plugging additives硼冻胶 || boracium gel硼砂 || borax硼酸盐 || borate偏心度 || excentricity偏移 || shift片麻岩 || gneiss漂珠 || hollow microsphere品种 || variety平衡线膨胀率 || equalibrium linear expansion value 平衡压力钻井 || balanced drilling评价 || evaluation评价标准 || evaluation criterion评价井 || appraisal well平板型层流 || plate laminar flow平均井深 || average well depth平均线膨胀率 || average expansion rate平均直径 || mean diameter屏蔽环 || shielding zone屏蔽暂堵技术 || temporary shielding method ,barrier-building temporary seal incores破胶剂 || gel breaker破胶性 || breaking property破裂压力 || fracture pressure破裂压力梯度 || fracture pressure gradient破乳 || break the emulsion破乳剂 || demulsifying agent葡萄糖 || glucoseQ起到重要作用 || play an important role起泡剂 || frothing agent起下钻阻卡 || blockage during tripping气液表面能 || gas-liquid interface energy迁移 || migration前置液 || prepad fluid铅(Pb) lead潜在因素 || implicit factor潜山 || buried hill浅高压气层 || shallow high pressure gas formation浅海 || shallow-water , neritic area浅井 || shallow well嵌段聚合物 || block polymer欠饱和盐水钻井液 || unsaturated salt water drilling fluid欠平衡钻井 || underbanlanced drilling欠压实 || uncompaction羟基 || hydroxy羟基水 || hydroxy water羟丙基淀粉 || hydroxypropul starch羟乙基纤维素 || hydroxyethyl cellulose强造浆软泥岩 || high mud making soft shale桥堵剂 || bridge additive切力 || shearing force侵入深度 || invasion depth侵蚀 || erosion亲核化学吸附 || nucleophyllic chemical adsorption亲水环境 || hydrophilic environment亲水性 || hydrophilcity亲油性 || lipophilic氢 || hydrogen。

低噪声下海音频信号条件和记录系统说明书

低噪声下海音频信号条件和记录系统说明书

A Novel Conditioning and Recording System of Low-noise Underwater AcousticSignalNi Xiuhui, Zheng Yi*, Meng Qingming Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology Shandong Academy of Sciences Institute of Oceanographic InstrumentationQingdao, ChinaLi Weidong People's Hospital of Zhao YuanYantai, ChinaAbstract—A novel conditioning and recording system of Low-noise underwater acoustic signal is proposed in order to coordinate the applied vector hydrophones. The low-noise analog circuit design is taken into account seriously according to the requirements of high precision and low distortion of underwater acoustic data. Compared with other similar systems, it features on miniaturization, high dynamic range, low distortion and low power consumption.Keywords-Underwater acoustic experiment, Low noise, Data recording, MSP430I.I NTRODUCTIONMost of underwater acoustic signals picked up by sensors like hydrophones are very weak, which requires a data acquisition system with high SNR performance.In order to obtain high-quality experimental data, An underwater acoustic data recording system is accomplished based on low-noise analog circuit design techniques, this system also features on high dynamic range, low distortion signal acquisition while achieving high sample rate and real time storage. This paper describes the Date Recording system of Underwater Acoustic Data in detail, including both the hardware and software implementation, as well as the key design challenges and the techniques employed to meet the specifications.The system is applied in the marine-self noise field measurement experiment which using the combined acoustic vector sensors. Therefore, four channel signals are collected and stored by this system. one channel is sound pressure signal, and other channels are particle velocity signals.The workflow and the structure of proposed system are shown in Fig.1 and Fig.2.Figure 1.The workflow of the recording systemFigure 2. The structure of the recording systemThis proposed system includes the following functions:•Variable gain amplification of acoustic signals;•High order band-pass filter;•Data acquisition and storage.According to the require of high dynamic range signal acquisition, the power supply of analog board comes from positive and negative 12 volt lithium battery. The acoustic signals after conditioning can swing up to ±10v with little distortion. Thus, it is suitable to choose a ±10v input range ADC like the 16-bit LT1859 for the digitization of analog signals. and the 5v、3.3v voltage is generated by low quiescent current LDO for the overall digital system power supply.II.T HE D ESIGN OF H ARDWAREThe design of analog circuit includes multi-level signal amplification、high-pass filter、low-pass filter and phase adjust section. The purpose of analog circuit mainly is to extract the useful signal from the noises, filter out unwanted interference and increase signal amplitude.Low-noise preamplifier should be used because low noise is one of the important characteristic for the conditioning of underwater acoustic signal. The ADI instrument amplifier AD8221 is taken for amplifier of the velocity signals channel whose the noise density of input voltage is 8 /nV Hz. Due to the high source impedance of piezoceramic pressure sensors, the JFET input, monolithicinstrumentation amplifier AD8220 is selected instead. Using JFET transistors, the AD8220 offers extremely high input impedance, extremely low bias currents, therefore, minimize the current noise which is the main problem of high source impedance sensors.The useful signal needs to be extracted form a variety of background noises by appropriate filters. Low-frequency signal is eliminated by the high-pass filter in order to avoid the output saturation cause by the low frequency marine hydrodynamic noise, and then the high frequency noise is almost completely removed by the 8th-order order low-pass Butterworth filter which has the least attenuation for all frequencies in the pass band. The Sallen–Key topology is used to implement both the 6-order high-pass and 8-order low-pass Butterworth filters that are particularly valued for its simplicity. Just one single amplifier, two resistors and two capacitors are needed by the 2-order filter of SK topology structure at the unit gain as are shown in Fig.3. The RC value can be calculated through the assisted tools of filter design, and pay attention to that the metal film resistors of smallerresistance value help to reduce system noise [1].Figure 3. A unity-gain low-pass filter implemented with a Sallen–Keytopology.Where the undamped natural frequency fo and Q factor (i.e., damping ratio ζ) are given by(1) And, (2)So,(3) The intensity of underwater acoustic signal is in the range of 104 orders of magnitude [2], The PGA section amplification circuit of this system carry out the adjustment of the overall gain from 20dB-80dB by different feedback resistors which are selected by analog switch DG211, so that the signal sampling of a large dynamic range is achieved. Besides, this system also includes amplifier circuits used in the impedance isolation and RC phase adjustment circuit. It is better that it is independent for four-channel analog board or a PCB board is made for the minimum interference among four channels, and the even channels of ADC are grounded to achieve the previous purpose. In the noise test of the electronic system, the analog signal input is grounded, the electronic system is configured to 4000 times amplification, and we found the output noise is about 10mv. Therefore, the valid noise of input terminal is 10mv/4000=2.5uv. The analog circuits are fully tested for low noise (less than 10uV noise).By the way, the high order filters also contribute to the low noise performance because it filtered out most of the high frequency noise. The low-pass and high-pass filters are cascade by SK topology using the low-noise amplifier OP2177. The magnitude-frequency characteristic is shown in Fig4. (The pass band is 10-500Hz in this case, and it canbe adjusted as needed to design)Figure 4. Amplitude frequency response of analog circuitsThe design of digital circuit includes MCU and interfacewith various peripherals.The Texas Instruments MSP430 family of ultra low power microcontrollers consists of several devices featuring lower power consumption, and 25MIPS CPU speed [3]. The5xx series MSP430 chip -Msp430F5438A have beenselected for governing digital system. This kind of devicesare complete system on-a-chip and in clued many integrated peripherals like Direct Memory Access (DMA) modules,UARTs, etc. All these characteristics make them a very attractive choice for this design.The media chosen to store the experimental data acquiredduring an inspection is a Secure Digital cards. Which is removable Flash-based storage devices that are gaining in popularity in small consumer devices such as digital cameras. Their small size, relative simplicity, low power consumption, and low cost make them an ideal solution for many applications. This interface combined with the MSP430, can form the foundation for a low-cost, long-life data logger. So, the SD card is a good choice for the underwater acoustic signal recording system when the data collection system takes a long time to collect and record huge amounts of data. It has two optional protocols: the SD mode and the SPI mode. All of data exchange can be completed by the four lines in the SPI mode, which greatly simplify the design of hardware circuit. The interface between SD and the MCU is use the SPI protocol which is shown in Fig.5.Figure 5. SD Card Schematic-SPI ModeThis system takes the 16bit softspan ADC chip LTC1859 in order to meet the 10V sampling of positive and negative analog signal. 16-bit resolution analog to digital conversion provides a responsive instrument capable of registering changes as small as one part in 65536 (0.000015% of the full scale measurement range). Besides, the voltage reference of chip internal is 10ppm, the SNR is 87dB, these features are all very important for a high-quality data acquisition system. It is connected to MCU through SPI interface, as is shown in Fig.6.Figure 6. ADC chip interface with the MCUThe electronic compass, with a pointing accuracy of 1º rms, uses the low-power three-dimensional digital compass of the PNI Company, and it is linked to MCU through RS232 interface.All the interfaces like SPI and 232 are industrial standard and therefore very convenient for firmware development and debug.III. T HE D ESIGN OF F IRMWAREThe mount of data to be collected can be estimated as shown in Equation 4. Fs is the sampling frequency, Word_Size is the number of bytes needed to store one single sensor read (2bytes for a16-bit resolution), N ch the number of sensor. T is the recording time in seconds. As at 10k sampling rate from four channels for an hour , the amount of data to be collected is:Data_Size = fs*Word_Size* N ch *T(4) =10240*2*4*3600=294912000bytes=280Mbytes The 32G SD card can fulfill 4 days deployment storage.The data from this recording system is writing directly in the sector rather than through the creation of file system storage, which results in higher writing speed.The writing sector of SD card consists of three procedures: sent the writing sector command to the SD card; transmit data to the SD card; the SD card internal programming. Here I must say The SD card programming internal needn’t the CPU intervention, however, the time-consuming of one sector can reach up to hundreds of mill-seconds [5]. So in order to achieve the high-speed writing of SD card, big RAM caches are essential. And The DMA capabilities available in the MSP430 MCU, that permit fast data transfers without CPU intervention, are of a great advantage in applications where high sampling rates are required. The strategy of high-speed recording proposed below also relies on the exploitation of the DMA capabilities The classic double-buffer strategy is adopted, Two array of memory buffers of 512*12 bytes each is used to temporarily store the acquired data while is being transferred to the SD card. Let us focus on the data acquisition strategy implemented in the MCU: 1. 0.1ms timer interrupts is established for the sampling rate of 10k. The four channels is sampled once the interrupts is carried out, all of eight bytes from 2 bytes per channel is continuously written in the established AdcBuffer; 2. After 768 interrupts, the AdcBuffer of 6K is full, and the DMA is opened so that the data in the AdcBuffer is transmitted to the MMCBuffer of the same capacity; 3. Meanwhile, the new sampled data is over write in AdcBuffer. 4. The 6K bytes data will be transmitted to the SD card once the DMA transmission is completed;The flow chart of this strategy is shown in Fig.7. With the 16K RAM and DMA modules of Msp430F5438A combined with 25Mips processing speed, the real-time data recording up to 20ksps four channels is achieved. The high-speed SD card is used in this Stand-alone data logger with configurable sample rate from as low as 0.001 Hz up to as high as 10,000 samples per second.Figure 7. The system sampling and real-time handlingIV.C ONCLUSIONSeveral tests have been performed in order to ensure the low-noise performance on the analog circuits and check the effectiveness of the strategies adopted to optimize the SD real-time writing performance of the recording system.The system provides a reliable data acquisition platform for the underwater acoustic experiment, satisfying the requirements derived from the targeted application, in terms of sampling rate, resolution, data storage capabilities and power consumption. Besides, the dynamic range of signal is greater than 70dB, and the equivalent input noise is less than 10μv, the pass-band ripple is less than 0.1dB, the phase difference among channels is small. Also, the operating current of the whole system is about 80mA, the entire system is lightweight and portable if the high-energy lithium-ion battery is adopted, and it is convenient to be placed in equipment and deploy. In a word, this system is very feasible in the marine environment noise field measurement experiment for the use on underwater acoustic signal logging.A CKNOWLEDGMENTThe first author wishes to thank Zheng yi and Yang guang for their valuable comments that improved the qualityof this paper. And this paper was supported by the National Natural Science Foundation of China under Grant 40806044, and supported by the QingDao Science and Technology Planning Project Fund of China under Grant 10-3-4-9-2-jch, and supported by Research Fund for the Doctoral Program of the Shandong Academy of Sciences under Grant Y09-2.R EFERENCES[1]Henry, Wang pei-qing, etc. The noise suppression and attenuationtechnology of electronic systems[M]. Electronic industry press, 2003(In Chinese).[2]Liu bo-sheng, Lei jia-yu etc. Underwater acoustic principle [M].Harbin engineering university press, 2010 (In Chinese).[3]Texas Instruments Incorporated. MSP430 Family User's Guideslau208g. /.[4]Linear Technology Corporation. LTC1859 Datasheet./.[5]SanDisk. Secure Digital Card Product Manual - Revision 1.7,September 2003.。

试管婴儿(IVF)和人工授精(IUI)英文报告的专用词汇和缩写

试管婴儿(IVF)和人工授精(IUI)英文报告的专用词汇和缩写

试管婴儿(IVF)PMH=past medical history 病史, pure motor hemiparesisyun运动性轻偏瘫FSH=follical stimulating hormone促卵泡激素,卵细胞刺激素E2=estradiol雌二醇AFC=antral follical count腔卵泡数量SA=sample approval样本oligo(having few, having little)-Astheno(weak, soft)--teratospermia少-弱-畸精症microdoes微小剂量 flare项目HSG= hysterosalpingogram 子宫输卵管(碘油)造影HCG 人体绒(毛)膜促性腺激素(human chorionic gonadotrop(h)in)GONAL-F果纳芬激素IUI= intrauterine insemination(人工授精)ICSI= intracytoplasmic sperm ingection单精子卵细胞浆内注射(即一种试管婴儿方式),分以下几类: rescure ICSI内单精子注射, half ICSI单精子显微注射, remedial ICSI补救性注射GnRH-a/Gn控制性促排卵控制性促排卵(controlled ovarian stimulation,COSE2 (estradiol) - 雌二醇Controlled Ovarian Stimulation & IUI 刺激卵巢及宫内授精easing hormone agonist/Gonadotropin,GnRH—a/Gn)控制性促排卵促性腺素釋放素Gonadotrophin-releasing hormone (GnRH) 促效劑agonist +排卵針gonadotrophins (GT)"肌醇" Mi(Myo-inositol)recto-vaginal 直肠阴道的anteverted前倾的myometrium子宫肌层cervix子宫颈hysterosonometry ( a process of transvaginal ultrasound or HSM) 阴道超声/子宫超声检测endometrium子宫内膜arterial 动脉的 velocity速度;迅速;速率adnexa附件ovarian 卵巢stromal基质;子座velocity速率LUTEAL黄体的;黄体素的Gonadotrpin促性腺激素cyst包囊;囊肿testosterone-like substances (TLS) 睾酮样物质serology 血清学UTERUS 子宫fallopian tubes - 输卵管free spill of contrast bilaterally 兩側輸卵管通暢(因為顯影劑會進入腹腔)diminished ovarian reserve. 卵巢储备功能下降LH路福瑞(Luveris),是一種基因工程合成的由雪蘭諾公司製造的,維持動情激素的激素,研究發現,成熟卵子的比率,如果有用基因工程合成路福瑞,與沒有使用基因工程合成路福瑞成熟卵子的比率是80%比71%,卵子受精的比率是83%比71%;好胚胎的比率有用路福瑞的17%,沒有用路福瑞的是3%;胚胎的著床濾是有用路福瑞的35%,沒有用路福瑞的是5%。

光电英语词汇(U)

光电英语词汇(U)

光电英语词汇(U)光电英语词汇(U)光电英语词汇(U)u-band u[吸收光]带u-bolt u型螺栓u-center(uniform chromaticity scale) diagra 均匀色品图u-form tube u型管ulbricht integrating photometer 乌布利希积分光度计ulbricht sphere 布利希球(积分光度计)ultex 整块双焦点镜ultifocus lens 多焦点透镜ultimate (1)最後的(2)极限的(3)基本的ultimate particles 基本粒子ultimate pressure 极限压强ultimate range 极限范围ultimate ray 最後射线ultimate vacuum 极限真空ultiplicator 乘数ultra achromatic lens 超消色差透镜ultra bright 超亮的ultra narrowband filters 超窄频滤光镜ultra precise measurement 超精密测量ultra purity 超纯度ultra radio frequency 超射频[率]ultra trace 超痕量ultra-light-weight 超轻重量ultra-optimeter 超级光学计ultra-photometer 不可见光光度计ultra-portable camera 超小型电视摄像机ultra-rapid lens 超大孔径物镜ultra-red (1)红外的(2)红外线ultra-red absorption spectrometry 红外线吸收分光光度学ultra-red ray 红外线ultrafast 超速的ultrafast coherent phenomena 超速相干现象ultrafast light pulse 超速光脉冲ultrafast relaxation 超速弛豫ultrafiltration 超滤作用ultraharmonic 高次谐波[的]ultraharmonics 高次谐波ultrahigh frequency 超高频ultrahigh resolution 超高分辨率ultrahigh speed photographic instrument 超高速照相器械ultrahigh speed photography 超高速摄影术ultrahigh vacuum 超高真空ultralow frequency 超低频ultraluminescence 紫外荧光,紫外光ultramarine blue 绀青ultramicrometer 超微测试计ultramicroscope 超显微镜ultramicroscopic 超显微[的]ultramicroscopy 超显微术ultramicrowave 超微波ultraphosphate 过磷酸ultraphotic rays 不可见射线ultraplane microscope projection lens 超平场显微镜投影镜头ultraporcelain 超高频瓷ultrarays 宇宙线ultrascope image tube 紫外显像管ultrashort laser pulse 超短激光脉冲ultrashort light pulse 超短光脉冲ultrashort pulse 超短脉冲ultrashort synchronized laser pulse 超短同步激光脉冲ultrashort wave (usw)超短波ultrasil 超硅,高硅ultrasonic (1)超声的(2)超声速的ultrasonic bragg cell 超声喇格盒ultrasonic bragg diffraction 超声布喇格衍射ultrasonic cleaning 超声清洗ultrasonic control 超声控制ultrasonic cross grating 超声交叉光栅ultrasonic detecdor 超声[波]检测器ultrasonic flow 超声速流ultrasonic grating 超声光栅ultrasonic grating constant 超声光栅常数ultrasonic hologram 超声全息图ultrasonic holography 超声全息术ultrasonic lens 超声透镜ultrasonic light diffraction 超声致光衍射ultrasonic method 超声波法ultrasonic modulator 超声调制器ultrasonic q-switch 超声q开关ultrasonic scanner 超声扫描器ultrasonic space grating 超声空间光栅ultrasonic standing wave 超声驻波ultrasonic switch 超声开关ultrasonic washing 超声清洗ultrasonic wave 超声波ultrasonic-wave grating 超声波光栅ultrasonics 超声学ultrasound 超音波ultrasound holography 超声全息术ultrathin laser 超薄激光器ultrathing microscope 超薄显微镜ultraviolet (1)紫外的(2)紫外线ultraviolet absorbing filters 紫外吸收滤光镜ultraviolet absorption spectrometry 紫外吸收分光光度学ultraviolet and visible spectrophotometer 紫外可见分光光度计ultraviolet astronomical photometry 紫外天文光度学ultraviolet band 紫外区,紫外波段ultraviolet bandpass filter 紫外带通滤光片ultraviolet catastrophe 紫外灾变ultraviolet curing equipment 紫外线硬化设备ultraviolet cutoff 紫外线截止ultraviolet detection 紫外辐射探测ultraviolet dosimeter 紫外线剂量计ultraviolet impulse optics 紫外线脉冲光学ultraviolet injury 紫外线损伤ultraviolet lamp 紫外[线]灯ultraviolet laser (uv laser)紫外激光器ultraviolet lenses 紫外线透镜ultraviolet light (1)紫外线(2)紫外[线]轴射ultraviolet light sources 紫外线光源ultraviolet materials 紫外线材料ultraviolet microscope 紫外线显微镜ultraviolet photodiodes 光二极体(紫外光) ultraviolet photography 紫外线照相术ultraviolet photometer 紫外线度计ultraviolet photomicrography 紫外线显微照相术ultraviolet photon 紫外光子ultraviolet polarimeter 紫外线旋光仪,紫外偏振计ultraviolet pumping 紫外线抽运ultraviolet radiation 紫外辐射ultraviolet radiation standard 紫外辐射标准ultraviolet ray 紫外线ultraviolet refractometry 紫外折射测量法ultraviolet sensitive paper 紫外光敏纸ultraviolet spectrogram 紫外光谱图ultraviolet spectrograph 紫外摄谱仪ultraviolet spectrometer 紫外线分光计ultraviolet spectrum 紫外光谱ultraviolet telescope 紫外望远镜ultraviolet transition 紫外跃迁ultraviolet transmitting filters 紫外透过滤光镜ultraviolet vidicon 紫外光导摄像管ultraviolet wavelength 紫外线波长ultraviolet-emitting source 紫外线发射源ultraviolet-induced 紫外感应的ultraviolet-transmitting filter 紫外透射滤光片ultrawide angle lens 特广角物镜ultrawide angle photographic lens system 特广角照相透镜系统umber 赭色umbra (复数:umbre)本影umen-second 流明秒umweganregung 迂回激发un shielded telescope 无屏蔽望远镜un silvered plate 非镀银板unaberrated system 无像差系统unactivated 未激活的unactivated state 未激活态unadjusted eye 肉眼unaided eye 肉眼unannealed 未退火的unbacked film 无衬胶卷unbalance 失衡,不平衡unbalanced sight 非平衡瞄准unbiased (1)不偏的(2)未加偏压的unblanking [信号]开启,开锁unblemished surface 无[瑕]疵表面unblocking 卸模unbound electron 无束缚电子uncertainty (1)不确定性(2)不精确性uncertainty condition 测不准条件uncertainty principle 测不准定理uncertainty relation 测不准关系uncharged particle 不带电粒子unchecked 未经校核的unchirped 无啁啾效应的unchopped radiometer 未斩光辐射计unclad fibre 无色层纤维uncoated (1)未镀膜的(2)无履盖的uncoated laser 未镀膜激光器uncoated lens 无镀膜透镜uncoaxiality 不同轴性uncollimated 未准直的unconditional probability 无条件概率unconnected 不连接的uncontrolled 不受控制的uncoupled 解耦合的uncoupled particle 解耦合粒子uncut lens 未加工透镜undamped spiking 无阻尼尖峰undamped wave (1)无阻尼波(2)等幅波undeflected 未偏转的under exposure 曝光不足,欠曝光under-active 活化不足的under-exposed 曝光不足的,欠曝光的underbalance 欠平衡,欠平衡的undercharge 充电不足[的] undercolour removal (ucr)底色去除undercompensation 欠补偿,补偿不足undercorrected lens 校正不完全透镜undercorrection 校正不足undercoupling 欠耦合,耦合不足undercurrent (1)电流不足(2)暗流,潜流underdamping 阻尼不足,欠阻尼underdense 欠密的underdeterminant 子行例式underdevelopment 显影不足underexcitation 欠激发,内激励underlagged [相位]滞後欠调underload 欠载undermined-phase technique [偏振态测量]不定相位技术undermodulation 欠调制underquenching 淬火不足undersaturation 欠饱和undersea ranging 海下测距,水下测距undershoot (1)下冲(2)负脉冲信号underspeed 速度不足underswing 负尖峰underwater camera 水下照相机underwater laser radar 水下激光雷达underwater tv camera 水下电视摄像机underwater visibility 水下能见度underwater vision 水下视觉undeveloped 未显影的undeviated light 未偏射光undiffracted wave 未衍射波undissolved substance 不溶物undistorted 无畸变的undistorted image 无畸变图像,不失真图像undistorted wave 无畸变波undisturbed 无扰动的undoped 无掺杂的undoped diode 非掺杂二极管undoped single crystal 非掺杂单晶体undosed 未经照射的undulating light 脉动光undulation 波动,起伏undulatory 波动的unearthed 未接地的uneven front 不整齐前沿uneven grain 不均匀颗粒unevenness 不均匀性unevenness of exposure 曝光不均匀性unexcited 未激励的unexcited level 未激发能级unexcited state 未激发态unexposed 未曝光的unfilled level 未满能级unfilled shell 未填满壳层unfinished 未抛光的unfixed point 不定点unfocused 未聚焦的unfocused laser 未聚焦激光器unfocused light 未聚焦光unfocused surface 未研磨面unguided 无制导的unharmonic oscillator 非谐振荡器uniaxial 单轴的uniaxial crystal 单轴晶体uniaxial negative crystal 负单轴晶体uniaxial nonlinear single crystal 单轴非线性单晶uniaxial orientation 单轴取向unicolor 单色unicontrol 单向控制unidimensional 一维[的]unidimensional hologram 一维全息图unidirection 单向,同一方向unidirectional 单向的unidirectional traveling wave 单向行波unidirectional-information flow 单向信息流unified coarse thread (unc)统一标准粗牙螺纹unified fine thread (unf)统一标准细牙螺纹uniform 均匀uniform acceleration 匀加速度uniform amplitude 等幅uniform chromaticity scale diagram 均匀色品图uniform color space 均匀色空间uniform density 均匀密度uniform diffuse transmission 均匀扩散传输uniform distribution 均匀分布uniform field kerr cell 均[匀]场克尔盒uniform illumination 均匀照明uniform lightness-chromaticness scale (ulcs)均匀亮度–色度标uniform point source 均等点源uniform slope 等斜牵uniform velocity 匀速度uniformity 均匀性uniformity of illumination 照明均匀性uniformity of light 光的均匀性uniformization 均匀化uniformly diffusing surface 均匀散射面uniguide slit 单向狭缝unijunction 单结unijunction transistor 单结[晶体]管unilateral 单边的,单向的unilateral conduction 单向导电unilateral transducer 单向换能器unilaterally adjustable 单向可调的unilayer 单分子层unimodal laser 单模激光器uninsulated 未绝缘的union (1)连接(2)活接头unionized 未电离的uniphase 单相[的]uniphase mode 单相模uniplanar orientation 单面取向unipolar 单极的uniqe (1)唯一的(2)单值的uniqueness of solution 解的唯一性uniqueness theorem 唯一性定理unit (1)单位(2)单元(2)设备,装置,机构(4)组合,组合件,部件unit amplitude 单位振幅unit area 单位面积unit bore system 基孔制unit brightness 单位亮度unit cell 晶胞unit charge 单位电荷unit cube 单位立方体unit error 单位误差unit function 单位函数unit length 单位长度unit load 单位负载unit mass 单位质量unit matrix 单位[矩]阵unit of capacity 容量单位unit of error 误差单位unit of measurement 计量单位unit of time 时间单位unit of weight 重量单位unit plane 单位面,主位面unit pressure 单位压力unit pulse 单位脉冲unit resistance 单位电阻unit shaft system 基轴制unit step function 单位阶跃函数unit strain 单位应变unit stress 单位应力unit system 单位制unit time 单位时间unit vector 单位失量unit-power sighting telescope 一倍瞄准[望远]镜unitarityㄠ正性unitaryㄠ正的unitary matrixㄠ正矩阵unitary operatorㄠ正算符unitary representationㄠ正表示unitary scattering factorㄠ正散射因数unity emissivity 完全发射unity transmittance 单一透射比univalent 单价的universal angel block 万能角规universal apparatus 通用仪器universal bevel protractor 通用斜角规universal dividing head 万能分度头universal finder 万能取景器universal focus lens 固定焦聚焦透镜universal gear tester 万能测齿仪universal gravitation 万有引力universal horizontal metroscope 万能卧式测量仪universal joint mechanism 万向节机构universal joint spider 万向节十字头universal laser 通用激光器universal length measuring machine 万能测长仪universal lens interferometer 通用透镜干涉仪universal level 通用水准仪universal machine tools 通用机床universal measuring head 万能测量头universal measuring microscope 万能测量显微镜universal meter 万用表universal microscope 万能型显微镜universal motor 交流真流两用电动机universal photomicroscope 万能照相显微镜universal refractometer 万能折射计universal scale holder 万能尺架universal sine-rule 万能正弦规尺universal stage 万能[旋转]工具作台universal stand 万能台,多用座universal theodolite 通用经纬仪universal type 万能型,通用型univibrator 单稳态触发器,单稳态多谐振荡器univoltage lens 单电压透镜unknown (1)未知的(2)未知数unlimited exposure 无限曝光unmagnetized 未磁化的unmoderated 未减速的,未慢化的unmodulated 未调制的unoccupied level 未满能级unpacking 拆箱,拆封unperturbed 未扰动的unplugged 非堵塞的,非封开的unpolarized 未偏振的,未极化的unpolarized light 非偏振光unpredictability 不可预知性unquantized 未量子化的unreflected 无反射的,未反射的unrelated colo[u]r 孤立色unreliability 不可靠性unresolved lines 未分离谱线unresonant system 非分振系统unsaturation 未饱和unsealed system 非密封系统unshaded area 无阳影区unsharp 不清晰的unsharp image 不清晰图像unsharp line 模拟线unshielded 无屏蔽的,无防护的unstability 不稳定的unstable 不稳定的unstable optical resonator 非稳定光学共振腔unsteady 不稳定的unsteady state 非稳态unsuppressed sideband 未抑制的旁通带unsurveyed 未测量的unswept pumping 固定频率抽运unsymmetrical 非对称的untitled 无倾斜的unxoned metal lens 未分区金属透镜(天线)unzoned lens 未分区透镜(天线)up-down counter 可逆计数器upconversion (1)上转换(2)升频转换upconverter (1)上转换器(2)升频器,上变频器upconverting laser 升频转换激光器upfloated 浮起的upper film loop 上片环upper hemispherical flux 上半球光通量upper laser level 激光高能极,激光上能级upper limb 上缘upper limit (1)上限尺寸,最大尺寸(2)上限upper margin 上边,顶边upper right 右上方upper side band wave 上边带波upper side frequency 上边频upper state 上态upper state relaxation 高能态弛豫upper-hybrid-resonace absorption 上混合共振吸收upright 真立的upright image 正立像upright post 立柱upright projection 正立投影upscattering 向上散射upside 上部,上面upside down 颠倒,倒转upstage 顶级upstream 上游的,上流的upstream ionization 上游离子化upwash 上洗upwelling 喷出,涌出uranin 荧光素钠uraninite 沥青铀矿uranium (u)铀uranium glass 铀玻璃ureterscope 输尿管镜usability 使用性能usable aperture 有效孔径,可用孔径useful diameter 有效直径useful work 有效功utiliscope 工业电视装置utilization factor 利用系数utrecht solar eclipse expedition 乌得勒支日食考察uv (ultra-violet) detector 紫外[光]检测器uv dye laser 紫外染料激光器uv filter 紫外滤光片uv irradiation 紫外[线]辐照uv lamp 紫外线灯uv laser 紫外缴光器uv light (1)外光线(2)紫外[线]辐射uv photostat 紫外直接影印机(2)\紫外直接影印制品(3)紫外照相复制uv scanner 紫外扫描器uv-nitrogen laser 紫外氮激光器uv-transmitting 紫外透射的uv-visible photoemitter 紫外–可见光光电[子]发射体uv-visible spectral response 紫外–可见光光谱响应uvicon 紫外二次电子导电管uviol 透紫外[线]玻璃uviol glass 透紫外线玻璃uvioresistant 不透紫外线的uxmeter 勒克司计,照度计光电英语词汇(U) 相关内容:。

纤维增强混凝土的抗冲击性研究现状

纤维增强混凝土的抗冲击性研究现状

纤维增强混凝土的抗冲击性研究现状摘要:本文综述了含各种纤维的普通纤维混凝土(FRC)抗冲击性能的研究现状。

首先,基于广泛的文献综述和我们的观点,讨论了FRC在冲击载荷下的共同特性,无论纤维类型如何,例如其冲击强度增强的原因、尺寸对冲击阻力的影响,以及影响应变率敏感性的因素。

此外,还研究了不同纤维(即钢纤维、聚合物纤维、碳纤维和玄武岩纤维)的FRC在不同载荷条件下的综合抗冲击性能。

在总结了各种纤维FRC的冲击性能后,根据纤维类型对FRC的抗冲击性进行了比较评估,以确定哪种类型的FRC的抗冲击性改善最好。

前言:混凝土是世界上使用最广泛的建筑材料(也是人类仅次于水的第二大使用材料)[1]。

钢筋广泛用途主要是因为它结合了混凝土和钢的最佳特性。

两者相辅相成,因此,通过将它们结合在一起,钢筋混凝土(RC)增强的抗拉或抗剪性能使其在准静态荷载条件下成功用作结构元件。

然而,近年来,民用结构或建筑物经常暴露在极端荷载条件下,导致其破碎,因此在极端荷载下它们是不够的[2]。

研究人员建议使用连续织物、续短纤维、外部纤维增强聚合物等加固混凝土。

钢、聚合物、碳和玄武岩等材料制成的不连续纤维,由于其几个优点,已被研究人员最广泛地采用:(1)它们易于包含在混凝土混合物中,(2)它们通过纤维桥接有效地提高混凝土在冲击或爆炸下的韧性(3)它们比其他方法更具成本效益[3-4]。

1不同类型FRC的抗冲击性与普通混凝土相比,FRC的抗冲击性显著提高。

由于裂缝表面的纤维桥接效应,纤维加固可有效提高混凝土在冲击下的能量吸收能力。

然而,正如Banthia 等人所指出的,改善取决于纤维类型和几何形状[9];因此,必须根据纤维类型和几何形状分析FRC的抗冲击性。

1.1钢纤维Mindess等人利用冲击试验和高速图像研究了SFRC的抗裂性,并观察到钢纤维降低了冲击载荷下的裂纹速度,从而使混凝土具有更高的冲击韧性[11]。

根据Ong等人对混凝土板进行的落锤冲击试验,通过加入钩状钢纤维并增加其数量,素混凝土板的抗冲击性大大提高。

温度对编织复合材料层合厚板冲击性能的影响研究

温度对编织复合材料层合厚板冲击性能的影响研究

装 备 环 境 工 程第20卷 第9期 ·178·EQUIPMENT ENVIRONMENTAL ENGINEERING 2023年9月收稿日期:2023-08-14;修订日期:2023-09-06 Received :2023-08-14;Revised :2023-09-06引文格式:葛辛辛, 赵南, 屈毫拓, 等. 温度对编织复合材料层合厚板冲击性能的影响研究[J]. 装备环境工程, 2023, 20(9): 178-184.GE Xin-xin, ZHAO Nan, QU Hao-tuo, et al. Effect of Temperature on Impact Resistance of Woven Composite Thick Laminates[J]. Equipment 温度对编织复合材料层合厚板冲击性能的影响研究葛辛辛1,赵南1,杨骏1,屈毫拓1,欧阳旭宇1,张攀2*(1. 中国船舶科学研究中心,江苏 无锡 214082; 2. 华中科技大学 船舶与海洋工程学院,武汉 430074)摘要:目的 研究室温和低温下编织复合材料层合厚板的冲击性能。

方法 通过开展低速冲击试验和冲击后的压缩试验,对冲击响应曲线、冲击损伤容貌、压缩失效模式和剩余压缩强度进行分析,探讨冲击时的环境温度对编织复合材料层合厚板冲击性能的影响。

结果 冲击后的编织复合材料层合厚板存在凹坑、分层、基体裂纹和纤维断裂等多种失效模式,压缩失效模式主要表现为横贯冲击损伤区域截断式破坏失效。

结论 低温环境增强基体强度,降低了复合材料的冲击损伤程度,从而提高编织复合材料结构的剩余压缩强度。

关键词:编织复合材料;低速冲击;损伤;失效模式;压缩强度中图分类号:U668.1 文献标识码:A 文章编号:1672-9242(2023)09-0178-07 DOI :10.7643/ issn.1672-9242.2023.09.020Effect of Temperature on Impact Resistance of Woven Composite Thick LaminatesGE Xin-xin 1, ZHAO Nan 1, YANG Jun 1,QU Hao-tuo 1, OUYANG Xu-yu 1, ZHANG Pan 2*(1. China Ship Scientific Research Center, Jiangsu Wuxi 214082, China; 2. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)ABSTRACT: The work aims to study the impact resistance of woven composite thick laminates at room and low temperature. By carrying out the low-velocity impact test and post-impact compression test, the impact response curves, impact damage appearance, compression failure mode and residual compressive strength were analyzed and the effect of ambient temperature on the impact resistance of woven composite thick laminates was explored. The woven composite thick laminates after impact had many impact failure modes, such as pitting, delamination, matrix crack and fiber fracture, and the compression failure mode was truncation failure crossing through the impact damage area. The low temperature environment enhances the strength of the matrix, reduces the impact damage degree of composite material, and thus increases the residual compressive strength of the woven composite structure. The results of this study can provide references for the application in ice zone of the woven carbon fiber reinforced thick composite laminates.KEY WORDS: woven composite; low-velocity impact; damage; failure mode; compression strength复合材料因其具有高比刚度和高比强度的优异力学性能、抗疲劳性、耐腐蚀和易成形等特性,在船舶与海洋工程领域得到广泛应用[1]。

低速冲击下复合材料刚度退化方案仿真研究12_15

低速冲击下复合材料刚度退化方案仿真研究12_15

复合材料层压板低速冲击刚度退化方案仿真研究伊鹏跃,于哲峰,汪海(上海交通大学航空航天学院,上海200240 )摘要:针对复合材料层压板低速冲击仿真,根据应力更新、材料弹性参数折减和基于应变渐进失效的不同刚度退化思路,改进传统损伤刚度折减方法,通过ABAQUS分别编写了三种刚度退化方案的VUMAT子程序,引入粘滞规律克服刚度退化的数值计算收敛困难,结合实验进行有限元仿真,研究比较了不同刚度退化方案下冲击响应的异同,结果表明:改进的三种刚度退化方案都可较准确地描述低速冲击下复合材料失效过程;应力更新方案,思路简单清晰,但失效过程应力变化剧烈,增量步数多,计算效率低;弹性参数折减方案中,根据失效模式调整折减系数,结合粘滞规律,响应平稳;前两种方案对冲击损伤形式只能定性,无法定量表征;而渐进失效方案引入合理的损伤变量,不但冲击响应连续而且能较好地表征材料损伤形式与程度。

关键词:复合材料低速冲击刚度退化VUMAT 有限元Stiffness degradation simulation methods for composite laminate subjected to low-velocity impactYI Pengyue, YU Zhefeng, WANG Hai(School of Aeronautics and Astronautics, Shanghai Jiao T ong University, Shanghai200240,China)Abstract: To study simulation of composite laminate under low-velocity impact, stiffness reduction strategies based on stress updating , degradation of elastic constant and progressive damage have been modified and implemented in the user material subroutine (VUAMT) in ABAQUS. The difficulty of convergence in numerical calculationis overcome by viscous regularization. Differences between the three methods have been studied according to the finite element analysis and experimental data. Conclusions drawn from the comparison are that, the analytical results are ideal compared to test results. The three stiffness degradation process can describe the process of material damage exactly. Solution based on stress updating is simple and clear,but the number of increment and iteration is large due to stress varying greatly during material damage and computer calculation is inefficient. Elastic constant degradation is able to adjust the degraded coefficient based on damage mode. The impact response combining viscous regularization is ideal. Material damage mode is predicted but damage degree is unknown in this two ways. Progressive damage degradation is based on material progressive damage model and the response is continuous. Material damage mode and its degree can be well simulated.Key words:Composite; low-velocity impact; Stiffness degradation; VUMAT; Finite element analysis.引言复合材料由于具有高的比刚度和比强度、疲劳性能好等优点,在航空航天领域和其他现代工业中得到越来越广泛地应用。

低渗透油藏非达西流动数值模拟

低渗透油藏非达西流动数值模拟

SPE 154890低渗透油藏非达西流动数值模拟Jianchun Xu,SPE, Ruizhong Jiang,SPE, Lisha Xie, Ruiheng Wang, Lijun Shan, 中国石油大学(华东), Linkai Li,威德福(中国)能源服务有限公司摘要随着全世界油田的进一步开发,越来越多的低渗透油藏投入生产。

然而,流体在低渗透孔隙介质中的流动不再遵循达西流动规律,相代替的是一种低速非达西渗流。

大部分商业数值模拟软件在进行低渗透油藏开发模拟时会带来不准确性。

所以针对非达西流动的数值模拟软件已经开发出来。

在本文中,非达西流动数学公式已经给出。

接着,在实际油田和实验室测试数据的基础上,一个理想化的五点法井网公式被建立出来。

在相同油藏条件下,进行了非达西模拟,达西模拟和拟线性模拟。

最后,得出了达西流动条件下的压力梯度分布,累计产油量和剩余油分布的模拟结果,以及拟线性流动和非达西流动的模拟结果。

调查研究显示了大部分低渗透油藏区块的流动满足非达西软件表明合理的曲线段;与达西流动结果相比较,当考虑非达西流动时,累计产油量减少,拟线性流动时最少,所以达西流动模型夸大了油藏的渗流能力,而拟线性流动模型夸大了油藏的渗流阻力;剩余油饱和度的分析表明,真对非达西流动模型模拟和拟线性流动模型模拟,不同的流动区域存在着包括使得在低渗透油藏流动模型更加复杂的死油区和流动区。

引言许多年内,达西规律已经被认为是一个运用于流体在孔隙介质中流动的基础公式,尤其是在石油工业。

然而经验结果显示,在低渗透油藏的流动已经不再遵循达西规律(Prada and Civan1999; Zeng et al., 2011)。

对于低渗透油藏,流动曲线是一条直线和一条曲线结合出来的。

存在拟启动压力梯度(拟TPG)和最小启动压力梯度(最小TPG)(Zeng et al., 2011)。

图例1用三种流动模型来描述流动特性。

达西流动模型忽略了凹曲线段,渗流曲线只是一条通过原点的直线;拟线性模型同样也一条经过X轴上拟压力梯度点的直线。

石油工程钻井液专业词汇

石油工程钻井液专业词汇

钻井液常用专业词汇(A-Z)A氨基三乙酸(NTA)@aminotriacetic acid胺基@amino铵基@ammonium安全地层@safe formation安全试破@safe destruction安全钻井@safe drilling坳陷@down warping region螯合@chelation凹陷@sag凹陷地层@subsidence formation奥陶系@Ordovician systemAPI模拟法@API recommened methodB多靶点@multiple target point白沥青@white asphalt白油@mineral oil白云母@white mica半透膜@semipermeable membrane包被絮凝剂@flocculant包被@envelop包被抑制性@encapsulating ability饱和度@saturation饱和度剖面图@profile map of degree of saturation 饱和盐水@saturated salt water背斜@anticlinal钡@barium苯环@benzene ring苯酚@phenyl hydroxide本质区别@essential difference泵压过高@overhigh pumping pressure比表面积@specific surface area比吸水量@specific absorption比重瓶法@density bottle method避免@avoid蓖麻油@ricinus oil边界摩擦@boundary friction扁藻(浮游植物)@algae变化趋势@variation trend标准化@standardization标准粘度测量@standard visicosity measure表面粗糙度@roughness of the surface 表面电位@surface electric potential表面活性剂@surfactant ,surface active agent表面能@interface energy表面粘度@surface viscosity表面抛光@sample surfaceAibbs表面弹性@Aibbs surface elasticity表面张力@surface tension表明@verify /reveal表皮系数(S)@skin coefficient憋钻@bit bouncing宾汉方程@bingham equation丙三醇@glycerine丙烯情@acrylonitrile丙烯酸@acrylic acid丙烯酸盐@acrylate丙烯酰胺@acrylamide薄而韧的泥饼@thin,plastic and compacted mud-cake@薄片@flake薄弱地层@weak formation泊松比@poisson’s ratio剥离@peel off补救@remediation不分散泥浆@nondispersed mud不干扰地质录井@play no role in geological logging 不均质储层@heterogeneous reservoir不均匀@uneven不可逆@irreversible不同程度@inordinately部分水解聚丙烯酰胺(PHPA)@partially hydrolyzed polyacrylamideC参数优选@parametric optimization残酸@reacted acid残余饱和度@residual staturation残渣@gel residue , solid residue测量@measure侧链@side chain侧钻水平井@sidetrack horizontal well层间@interlayer层间距@the distance between the two crystal layer, layer dis tance层理@bedding层流@layer flow差减法@minusing尝试@trial柴油@diesel oil长连缔合物@long chain associated matter操作方法@operation method超伸井@high deep well超深预探井@ultradeep prospecting well超声波@ultrasonography超高密度泥浆@extremely high density mud超细碳酸钙@super-fine calcium carbonate产层@production/pay zone产层亏空@reservoir voidage产量@production ,output沉淀@precipitation沉降@subside沉降速度@settling rate沉砂@sand setting衬套@sleeve程序@program成对水平井@paired parallel horizontal wells成分@ingredient成胶剂@gelatinizing agent成膜树脂@film-forming resin成岩性差@poor diagenetic grade承压@bearing pressure承压低@lower pressure resistance承压能力@loading capacity尺寸@dimension斥力@repulsion除硫效果@sulfur limitation effect除硫剂@sulfur elimination除砂器@desander触变性@thixotropy触变剂@thixotropic agent垂沉@sag垂直井@vertical well充气钻井液@aerated drilling fluid磁化@magnetization次生有机阳离子聚合物@secondary organic cationic polymer冲砂@sand removal冲蚀@flush冲刷@washing out 冲洗@clean冲洗效率@cleaning efficiency冲洗液@washing fluid从…角度@from the standpoint of丛式井@cluster well稠化剂@gelling agent稠油区@viscous oil area稠油藏@high oil reservoir初步分析@preliminary analysis初始稠度@initial consistency初始粘度@initial viscosity初探@primary investigation处理剂@additive ,treating-agent粗分散泥浆@coarse dispersed mud粗泡沫堵漏工艺@coarse-foam plugging technology 促凝剂@accelerating agent醋酸@acetate醋酸钠@sodium acetate窜流@fluid channeling脆裂@embrittlement crack脆性@brittle/crisp ,fragility催化剂@accelerant , catalyst萃取剂@extracting agentD达西定律@Darcy’s equation大段水层@thick aqueous formation大分子氢键络合作用@polycomplexation of hydrogen bond大灰量@mass slurry大井斜角@high deviation angle大块岩样@big rock sample大块钻屑@massive drilling cuttings大类@genera大理石@marble大砾石层@large gravel bed大量分析@quantitative analysis大排量洗井@high flow rate washover大排量循环@high flow rate circulation大位移定向井@extended-reach directional well大斜度钻井@big inclination/angle drilling大直径井眼@large hole代表性岩心@representive core sample单宁酸@tannate单体@monomer单相关分析法@analyzing method of single correlation单相关系数加权@coefficient weighted method of single correlation 单轴抗压强度@uniaxial compressive strength氮@nitrogenN-羟甲剂胺@N-hydroxymethyl amine淡水@fresh water单向压力暂堵剂@unidirectional pressure temporary plugging additiv e导向螺杆钻具@stearable assemly导向器@guider等温曲线@isothermal curve低毒油基@low toxicity oil based低返速@low return-velocity低固相泥浆@low solid drilling fluid低级醛@low-grade aldehyde低粘土相泥浆@low clay content drilling fluid狄塞尔堵漏剂@diacel plugging agent滴定@titration底水丰富@basal water abundance底水油藏井@bottom water reservoir well第二界面@second contact surface缔合物@associated matter地层@formation地层出液量@formation fluid production地层破碎@straturn breaking地层倾角大@higher formation clination地层水@formation water地层损害@formation damage地面岩心压汞@surface core mercury injection test 地下水@groundwater , subsurface water地应力@ground stress地质@geology地质构造@geologic structure淀粉@starch电测@electronic logging电导率@electric conductivity电荷@electricity电化学法@electrochemistry method电解质@electrolyte电镜分析@electronic microscope photos电位@potential fall ξ电位@zeta potential电性@electric property电泳法@electrophoresis method电子探针@electron spectrum调查@census顶替过程@displacing operation定量设计@quantitative design定向井@direction well定子@stator冻胶@gel动静弹性模量@dynamic and static elasticity modulus动力稳定性@settling stability动力学@kinetics动态滤失@dynamic filtration动切力@yield value动塑比@ratio of dynamic shear force/yield value to plastic vi scosity堵漏@plugging堵塞@seal堵塞比(DR)@damage ratio堵塞物@bulkhead堵水@water shutoff毒性大@high toxicity毒性污染环境@toxicity ruins the environment短过渡@short transition time短纤维@brief fiber断层发育@mature fault断裂带@faulted zone对策@countermeasure多产层@multilayered reservoir多分支侧钻井@multi-lateral sidetracking well多功能添加剂@multifunction additive多孔介质@porons medium多目标定向井@multi-target directional well多相稳态胶体悬浮体系@polynomial gel suspension system多元醇@polyatomic alcohol多元非线性回归@multielement non-linesr regression多元统计@multivariate statistics惰性材料@inert material惰性润滑剂@inert lubricantE二次沉淀@secondary precipitation二叠系@Permian system二甲胺@dimethylamine二甲基二烯丙基氯化铵@dimethyl diallyl ammonium chloride二价阳离子@bivalent ion二开@second section二氧化碳(CO2) carbon dioxide二元共聚物@binary polymerF发气剂@gas-development发展趋势@development tendency反排解堵@plug removal by reverse flow范氏力@van der waals force范氏粘度计@fann viscosimeter返回@go back to方便钻井液复合粉@convenient mud compound powder方程@equation芳香烃@aromatic group防窜水泥@anti-fluid-channeling cement防腐@anti-corrosion防卡@pipe-sticking prevention ,anti-sticking防漏失@lost circulation prevention防气窜@anti-fluid-channeling防塌机理@mechanism of anti-caving防塌剂@anti-caving/collapse agent , clay stabilizer 防止@prevent…from纺织@textile放空不返@loss of bit load with loss return放射性示踪剂@radioactive tracer tritium非均质@nonhomogeneity非离子@nonionic非牛顿流体@non-newtonian fluid非渗透性@impervious废泥浆@mud disposal沸石@zeolite分布@distribution分段固井技术@stage cementing technology分光度法@spectrophotometer分类@division分散@dispersion分散剂@dispersant 分散介质@dispersion medium分析@analysis分形理论@fractal theory分形几何@fractal geometry分子@molecules分子间能量交换@energy exchange between molecules分子量@molecular weight分子链@molecular chain分子形态@shape of molecular chain粉尘@dust粉煤灰@fly ash粉末@powder粉砂质@aleuritic texture酚羟基的邻位或对位氢@p-or o-hydrogen atom of phenolic group封闭剂@sealing agent封闭稳定@good isolation封堵@formation sealing封堵剂@formation sealant封固段@interval isolation扶正器@centralizer氟硼酸@borofluorhydric浮力效应@effect of buoyancy孵化速度@incubation浮游植物@floating vegetation复合@combine复合离子@multifunctional ionic复合离子聚合物@amphiprotic/amphoteric polymers ,复合金属两性离子聚合物@composite metal zwitterionic polymer复合聚合物泥浆@compound-polymer mud复配方案@compositional formulation复杂地层@complex formation, troublesome region ,trick form ation复杂度@complex rate复杂时效@outage time复杂情况@down-hole troublesome condition腐蚀@corrosion腐蚀电位@corrosion potential腐蚀速率@corrosion rate腐殖酸@humate ,humic acid腐殖酸钾(KHm)@potassium humic辅料@auxiliary material负@negative@负压钻井@underbalanced drilling符合@accord with符合率@coincidence@rate副产品@by-product附加密度@addition mud densityG改善泥饼质量@improvement of mud cake改性@modification改性淀粉@modified starch改性沥青@modified asphalt改造@refomation钙@calcium钙矾石@ettringite钙膨润土钠化@sodium modified calcium betonite@ 干混拌技术@mixing technology干扰@interfere with甘油@glycerol锆@zirconium高分子@higher molecular weight高分子聚合物@macromoleclar polymer@高分子絮凝剂@polymer flocculant高负荷@high load高级脂肪醇树脂@higher fatty alcohol高价金属阳离子@high valent cationic高角度微裂缝@high angle micro-fracture高矿化度地层水@highly mineralized formation brines高岭土@kaolinite高炉矿渣(BFS)@blast furnace slag高密度钻井液@high density drilling fluid高难度@high challenge高粘度清扫液@viscous sweeping fluid高砂比@high sand ratio高温静置@quiescence in high temperature高温泥浆@high-temperature mud高吸水量树脂@absorbent resin高温高压流变仪@HTHP rheometer高效润滑剂@super lubricant高压盐水层@high pressured slatwater layer膏岩层@gypsolyte膏质泥岩@creaming mudstone 膏状磺化沥青@paste sulphonated asphalt隔离冲洗液@spacer/flushing fluid隔离膜@isolating membrane各向异性@anisotropy工程@engineering共聚@copolymerization共聚物@copolymer共聚物类降粘剂@copolymer thinner狗腿@dogleg构造裂缝@structural fracture固化@solidification固化剂@hardener , curing agent固井技术@cementing technology固体团块@solid cake固相@solid phase固相含量@solid concentration固相颗粒@solid particles固相颗粒侵入@solid invasion固相控制技术@solid control technology固相损害@damage of particles固液分离技术@centrifugal separation method 胍胶@guargum瓜尔胶@guar挂片失重法@weight loss method@关掉电机@turn off the power光谱@spectroscopy硅@silicone硅粉@silica powder硅氟@fluosilicic硅铝比@ratio of silicate to aluminium硅酸钠@sodium silicate硅酸盐@silicate滚轮失重法@roller weight loss method国内外@home and abroad过渡金属@transitional metal过平衡压力@over-balanced pressure过剩浓度@residual concentration过氧化物@peroxideH海绿石@chlorite海上@offshore海水泥浆@sea water mud海湾@bay海洋生物@marine animal含量@content含水量@moisture content耗氧量(COD)@chemical oxygen demand耗氧量(BOD520)@biological oxygen demand核桃壳粉@walnut shell flour核磁共振(NMR)@nuclear magnetic resonance 合成@synthesis合成基钻井液@synthetic base drilling fluid合格@eligible合理级配@reasonable distribution褐煤@lignite赫巴模式@Herschel-Buckley model黑色正电胶(BPG)@black positive gel恒定滤失速率@constant filtration rate葫芦串@irregular borehole护胶剂@colloid protecting resistance护胶作用@colloid stability互层@interbeded红外光谱@infrared spectrography花岗岩@granite划眼作业@reaming operation化学螯合剂@chelating agent化学冲洗液@chemically washing solution化学结垢(沉淀)@chemical precipitation环保型@environment friendly /acceptable环境保护@environment protection环空当量密度@annular equivalent density环空返速@velocity in annular@环空压耗@annular pressure lost环氧丙烷@epoxypropare环氧氯丙烷(ECH)@epoxy chloropropane ,epichlorohydric缓蚀剂@corrosion inhibitor磺化@sulfonation磺化酚醛树脂@sulfomethal phenolaldehy resin磺化剂@sulfonating agent磺化类处理剂@sulfonated additives磺化沥青@sulfonated gilsonite磺化沥青泥浆@sulfonated-asphalt mud磺甲基酚醛树脂@sulfonated methypheuo formald-ehyde磺酸基团@sulfonic acid group ,sulfo group灰色关联分析法@gray relative analysis method灰岩@limestone 回归分析@regressive analysis回收率@recovery percent回填还耕@refilling for plowland火成岩@igneous rock火山喷发岩@volcanic混合金属层状氢氧化物(MMLHC)@mixed metal layer hydroxide compound 混合金属氢氧化物(MMH)@mixed metal hydroxides 混合纤维@composite fiber混合盐水@mixed salt活动套管@moving casing活度@water activity活性硅灰@activated grammite活性粘土矿物@active clayey mineral活性污泥法@activated sludge process宏观@macroscopicJ基液@base fluid机械力@mechanical机械杂质@mechanical impurity机械钻速(ROP)@rate of penetrate及时反出@timely return极限剪切粘度@high shear viscosity极限应变@ultimate strain极性基团@polar group极压润滑剂@pressured/extreme@lubricator挤堵@squeeze激光多普勒测速仪(LDA)@laser Doppler anemometer激光粒度仪@laser particle analyzer激活剂@activator技术措施@technical measure技术讲座@workshop for technology技术经济效果@technical-economic effect技术套管@intermediate casing季铵盐@quaternary ammonium, anionic group钾@potassium ,kalium钾基石灰泥浆@potassium base lime mud甲硅烷基化处理@methylsilicane甲基@methyl甲基硅油聚磺高密度钻井液@methyl silicone oil polysulfonatedrilling fluid with high density甲醛@formaldehyde , methanal甲酸盐@formate加量@dosage加重剂@heavy weight additive加重泥浆@weighted mud加重钻井液“垂沉”@sag phenomenon of weighted drilling fluid架桥粒子@bridge particle价数@valence监督@supervision碱@alkali简化泥浆处理@simplify mud treatment简介@brief description检查井@inspection well检测@inspection/monitor减轻剂@lightening admixture减阻剂@anti-friction agent , drag reducer剪切破坏@shear failure剪切稀释能力@shear thinning property , shearing dilution剪切应力@shear stress键@bond健康,安全与环境(HSE)@health , safety and environment间隙@clearance降解产物@degradation products降粘机理@thinning mechanism降粘剂@thinner,visbreaker降失水剂@fluid loss agent/additive, filtration reducer胶结强度 bonding/consolidation strength胶结疏松@weak bonding胶囊破胶剂@encapsulated gel breaker胶凝@gelatify胶凝性质@jellyfication胶乳@latex胶体率@colloid fraction胶体稳定性@colloid stability胶质@gum交联@cross-linking交联剂@cross linker交联冻胶@gel cross-linking交换液@exchange fluid接近@concordant with结垢@precipitation, scale deposit , fouling 结构可瞬时形成或拆散@quick formation and breaking结构强度@structural strength@结合@refer to结晶@crystallization结晶水@crystal water接触角@contact angle接枝共聚物@grafting copolymerization解卡剂@pipe free agent介质@medium界面@interface界面胶结@interfacial cementation金属@metal金属离子@metal ions紧密堆积理论@theory of high packing近井壁@near-well zone近平衡钻井@near-balanced drilling浸出液@leaching agent浸酸改造@acidizing经验性总结分析@empirical analysis晶格@lattice bond净化技术@solid control井壁稳定@borehole井壁稳定@hole stability ,stable borehole井底@downhole井底静止温度低(BHST)@low borehole static temperature井段@interval/section井径@well/hole gauge井径规则@regular and consistent borehole gauge 井径扩大率@hole diameter enlargement rate井口@wellhead井漏@lost circulation井身结构@wellbore configuration井下安全@downhole safety井下复杂情况@down hole problem井斜@inclination井眼@well bore ,borehole井眼轨迹@well track井眼净化@hole cleaning井眼缩径@hole shrinkage井眼稳定@hole stability井涌@kick浸泡时间@soak time静切力(结构力)@gel strength/static shear force静损害@static damage静态挂片法@static weight loss method静态滤失@static filtration静液柱压差@hydrostatic column pressure difference@静置@quiescence静止消泡时间@static defoaming time静置沉淀@static settlement居中@centralization居中度@centralizer聚α-烯基polyalphaolifen聚丙烯青铵盐@ammonium@polyacryhoitril聚丙烯酰胺(PAM)@polyacrylamide聚电解质@poly-electrolyte聚合醇@polyalcohol , polyol聚合物不分散泥浆@non dispersed polymer mud聚合物降滤失水剂@polymer filtration control agent 聚合物三磺盐水泥浆@three-sulfonated polymer salt mud聚合物钻井液@polymer drilling fluid聚合物混油钻井液@poly-oil mixture drilling fluid聚磺钻井液@sulphonated polymer mud聚结稳定性@coagulation stability聚乙二醇(PEG)@polyethyleneglycol聚乙烯醇(PVA)@polyvinyl alcoholK卡森方程@Casson equation卡钻@pipe-sticking卡钻因子@stuck-pipe factor勘探与开发@exploration and development开发井@development well开钻泥浆@spud mud抗冲击韧性@toughness抗冲击性@impact resistance抗电解质@potential resistance to electrolyte contamination 抗钙@compatibility of calcium抗裂程度@rupture strength抗温抗盐@heat and salinity tolerance抗压强度@compressive strength抗折强度@breaking strength栲胶@tannin , quebrocho克@gram 颗粒@particle颗粒级配理论@theory of granulartity苛刻@rigorous可变形粒子@deformation particle可靠@inerrable可逆@reversible可溶性盐@soluble salt可压缩性@compressibility可用性@feasibility可钻性@drillability刻度盘@dial scale坑内密封法@seal in a pit空气湿度@air humidity孔洞@cavern孔喉@pore throat孔隙@pore孔隙度测井@porosity log孔隙压力@pore pressure孔隙液@pore fluid快钻剂@quick drilling矿化度@mineral salt concentration , mineralization 矿石@ore矿物@mineral矿物组分@mineralogical composation矿物晶体@mineral crystal矿物油@mineral oil矿渣@slag扩散@diffusionL老化时间@ageing time老区@maturing field雷诺数@Renault number类别@category累计厚度@gross thickness累托石@rectorite沥青@asphalt ,gilsonite,bitumen沥青类产品@gilsonite and similar materials离心法敏感性评价@centrifugation sensitivity evaluation离心机@centrifugal machine离心机固控技术@centrifugal solid control离子@ionic离子形态@ionic forms粒度@grain grade粒度分布@particles/size distribution粒度分析@particles size analysis粒子@particle砾石充填@gravel pack连通性@formation communication连续提取法@continuous extraction两凝水泥浆@two-stage cementing cement 两性离子@zwitter ionic裂缝@fissure裂缝壁@side of fracture plugging裂隙地层@fractured formation裂隙滞后效应@fracture lag-effect邻井@offset/adjacent well林产@forestry淋洗量@wash out amount磷@phosphorus磷酸@phosphate磷酸氢二铵@diammonium phosphate磷酸盐@phosphate@salt磷酸酯@organic phosphate临界点@critical point临界环空流速@critical annular fluid velocity 临界流量@critical flow velocity临界盐度@critical salinity零点@zero point零析水@zero free water硫@sulfur硫化氢@hydrogen sulfide硫化物@sulfide硫酸@sulfate硫酸钠@sodium sulphate流变参数@reheological parameter流变模式@reheology model流变性@rheology behavior流变性能改进剂@rheology conditioner流变学@rheology流动度@fluidity流动介质@flow media流动孔喉@flowing pore throat流动摩阻压力@flowage friction drag流动实验@flow test流动阻力@flow resistance流沙层@drift sand formation流态@flow pattern 流体力学@hydromechanics theory流体输送减阻@accelerating fluid feeding流型@fluid type漏斗粘度@funnel viscosity漏失@lost circulation漏失层位@location of the thief zone漏失通道@porous media陆上@onshore卤虫 (甲壳类动物)@crustacean卤水@bitter(luo)@chromium络合@coordination ,chelate络合行为热效应@thermal effect of the coordination 录井@log裸眼@open well裸眼井段@barefoot interval滤饼@filter cake滤失量@filtration滤饼电性质@electro kinetic property滤液@filtrate滤液侵入@filtrate invasion铝@aluminum铝酸盐@aluminate氯酚@chlophenol氯化钙(CaCl2)@calcium chloride氯化物@chlorideKCl溶液@potassium chloride solutionM马来酸酐@maleic anhydride埋深@burial depth满足…需要@meet requirement of曼尼希反应@Mannick reaction芒硝层@chuco毛细管吸收时间测定仪(CST)@capillary suction timer毛细管压力@capillary pressure酶@enzyme煤层@coal bed煤层气储层@coalbed methane reservoir镁@magnesium门限流动压差@threshold differential pressure of flow蒙脱石@smectite咪错基@imidazoline醚基@ether密胺树脂@melamine resin密闭液@sealing fluid密度@density密实@dense幂律模式@power law method敏感性@sensitivity敏感性流动实验@flowrate test膜@film , membrane磨铣@mill摩擦@friction摩擦付@friction couples摩擦系数@friction coefficient摩阻损失@friction loss末端毛细管阻力@terminal capillary pressure木质素磺酸盐@lignosulfonate模拟@analog, simulate模式(型)@model目@meshN纳米材料@nano-composite material纳米技术@nano-tech钠@sodium钠化@sodium treatment钠膨润土泥浆@sodium bentonite mud囊衣@capsule dressing囊芯@capsule-core内聚力@cohesion内摩擦角@internal frictional angle内泥饼@internal filter cake内切圆半径 inscribed circle radius内烯烃@isomerised@olefins内源和外源颗粒@endogenous and exogenous granula内在因素@intermediate factor能量交换@energy exchange泥包@bit balling泥饼@mud-cake泥饼强度冲刷仪@mud filter cake tester泥浆处理@mud treatment泥浆跟踪剂@mud tracer泥浆配方@mud formula泥浆转化为水泥浆(MTC)@mud to cement泥岩@mudstone , conglomerate 泥页岩@shale ,@argillutite泥质膏岩@argillaceous粘度@viscosity粘度极大值@maximum viscosity粘度计@viscosimeter粘附@adhere粘附张力@adhesive tension粘弹性@viscoelastic粘土@clay粘土分级评价法@method of grading mud-making clay粘土矿物层间距(d001)@crystal@indices粘土矿物含量@clay mineral content粘土片@clay latice粘土膨胀@clay swelling粘土膨胀倍数@swelling ratio of clays粘土稳定性@clay stability粘性流体@viscous fluid柠檬酸@citric acid凝固点@freezing point凝析油@condensate oil牛顿流体@Newtonian fluid扭距@torque浓度@concentration浓硫酸@strong sulfuric浓缩@concentrationO排列@line along排驱压力@displacement pressure排水@water draining剖面图@profile map泡沫流体实验装置@aerated fluid test simulator泡沫剂@foaming agent泡沫衰变机理@foam decay mechanism泡沫质量@foam quality泡沫钻井液@foam drilling fluid配方@formula ,recipe ,composition配浆时间@drilling fluid preparing time配位体@ligand配伍性@compatibility配制@madeup盆地@basin喷@blowout喷射钻井@jet drilling喷嘴粘度@nozzle viscosity膨润土@bentonite ,montmorillonite膨润土含量@bentonite content膨胀@swell膨胀剂@sweller膨胀率@expansion ratio膨胀性堵漏材料@expandable plugging additives硼冻胶@boracium gel硼砂@borax硼酸盐@borate偏心度@excentricity偏移@shift片麻岩@gneiss漂珠@hollow microsphere品种@variety平衡线膨胀率@equalibrium linear expansion value 平衡压力钻井@balanced drilling评价@evaluation评价标准@evaluation criterion评价井@appraisal well平板型层流@plate laminar flow平均井深@average well depth平均线膨胀率@average expansion rate平均直径@mean diameter屏蔽环@shielding zone屏蔽暂堵技术@temporary shielding method ,barrier-building temp orary seal incores破胶剂@gel breaker破胶性@breaking property破裂压力@fracture pressure破裂压力梯度@fracture pressure gradient破乳@break the emulsion破乳剂@demulsifying agent葡萄糖@glucoseQ起到重要作用@play an important role起泡剂@frothing agent起下钻阻卡@blockage during tripping气液表面能@gas-liquid interface energy迁移@migration前置液@prepad fluid铅(Pb) lead潜在因素@implicit factor 潜山@buried hill浅高压气层@shallow high pressure gas formation 浅海@shallow-water , neritic area浅井@shallow well嵌段聚合物@block polymer欠饱和盐水钻井液@unsaturated salt water drilling fluid欠平衡钻井@underbanlanced drilling欠压实@uncompaction羟基@hydroxy羟基水@hydroxy water羟丙基淀粉@hydroxypropul starch羟乙基纤维素@hydroxyethyl cellulose强造浆软泥岩@high mud making soft shale桥堵剂@bridge additive切力@shearing force侵入深度@invasion depth侵蚀@erosion亲核化学吸附@nucleophyllic chemical adsorption 亲水环境@hydrophilic environment亲水性@hydrophilcity亲油性@lipophilic氢@hydrogen氢氟酸@hydrofluoric acid氢键@hydrogen bond氢氧化钠@alkali氢氧化钙@calcium hydroxide清扫液@sweeping fluid清水@clear water清洗剂@cleaning agent蜻纶@acrylon fiber蜻纶费丝@nitrilon倾角@dip angle丘陵@hill type球形胶束@roundness glues区块@block屈服强度@shear strength屈服值@yielding point曲边三角形@curved line trangle取代度@substituted ratio取芯@core,coring operation取芯进尺@coring footage取芯收获率@coring recovery rate曲线@curve去除@wipe off醛@aldehydeR热采井@thermal production wells热分析@thermoanalysis热滚@hot aging热滚分散实验@roller oven test , hot rolling test热力学@thermodynamics热凝橡胶@coagulative rubber热效应@thermal effect@热稳定性@temperature resistance ,heat stability ,stabilityat high temperature热重法(TG)@thermogravimetry人工神经网络@artificial neural network韧性@tenacity韧性粒子@tenacity particle日产气@daily gas融合@amalgamation溶洞@cave溶胶@sol溶解氧@dissolved oxygen溶蚀@corrode溶蚀性孔洞@solution cave@溶液@solution柔性棒状胶束@flexibility claviform glues蠕虫状胶束@vermiculate glues乳滴聚结实验@emulsion drop aggregation test乳化@emulsify ,emulsion乳化剂@emulsifier乳化钻井液@emulsion drilling fluid乳化作用@emulsification入井液@working fluid软化点沥青@softening point asphalt软泥岩@soft mudstone软件包@software package润滑剂@lubricant润滑仪@lubricity tester润湿反转@wetting transition , wettability reversed 润湿性@wettability弱面@weak planeS塞流顶替@plug-flow displacement3r/min读值@3r/m reading 三高一适当(3H1S)@three high and one proper三磺饱和盐水泥浆@three-sulfonated-polymer-saturated-brine mud三钾胺@dimethyl amine三甲基单烯丙基氯化铵@trimethyl allyl ammonium chloride三维网状结构@three-dimensional network structure三乙醇胺@triethavolamine散射@scatter铯@cesium射孔@perforation射孔液@perforation fluidX-射线计算机层析技术(CT)@computerized tomography沙砾岩@glutenite砂泥岩@sand shale砂岩@sand ,sandstone杀菌剂@bacteriostat筛管@screen pipe上泵容易@easy pumpability上部地层@upper formation /segment上古生界@upper palaeozoic上升趋势@escalating trend上下密度差@difference of densities上下限@top and bottom limitation上游领域@upstream扫描电镜 (SEM)@scanning electronic microscope设计@design设计原理@design principle神经网络@nerve network深穿透射孔枪弹@deep penetrating bullet深度@depth深井钻井@deep drilling深探井@exploration well渗流@phase flow s渗漏@leakage渗透@peculation `渗透率@fluid permeability渗透率各向异性@permeability anisotropy渗透率恢复值@return permeability渗透水化@osmotic hydration@渗透性地层@permeable formation渗析纯化purified by dialysis method声波测井@sonic logging声幅值@acoustic amplitude生产能力@production capacity生态环境@ecology environment生物处理@biological treatment生物毒性@biotoxicity生物降解@biological degradation生物聚合物@biological polymer ,xanthan 生物流化床法 biological fluid bed method 生物滤池法@bio-filter process生物转盘法@biological rotary method实验@trail十八醇@octadecanol失水@water loss失重@weightlessness,@weight loss时间推移技术@time delaying method石膏@gypsolyte, gypsum石灰@lime石蜡@alpha , paraffin wax石炭系@carboniferous system石英@quartz石油加工@oil refinery石油裂化@petroleum cracking process施工作业@field operation@事故率@failure rate湿挤压@wet-extrusion室内模拟实验@simulating lab test室内实验和现场@lab and field室内研究@laboratory study室温@ambient temperature适量@defined amount@适应温度@reaction temperature示踪分析法@mud filtrate tracer analysis 释放@release收缩@shrink疏水性@hydrophobicity叔胺盐@tertiary ammonium salt数据库@data base数学模型@mathematical model数字模拟@digital analog塑料小球@plastic beads树脂@resin,@colophony s束缚@irreducible束缚水@bond water 衰变@decay瞬时滤失@instantaneous filtration , spurt loss瞬时速度@instantaneous velocity双层组合套管固井技术@pipe-in-pipe casing string 双电层斥力@double electrode layer repulsion双分支侧钻水平井@bi-lateral sidetracking horizontal well水包油型乳化液@oil-in-water fluid水不溶物@water insoluble matter水层@water layer水化@hydration水化膨胀分散@hydrous disintegration水化抑制剂@hydrate control水泥环@cement sheath水泥浆@cement slurry水泥石@set cement水泥熟料@cement clinker水泥早强剂@cement hardener水解@hydration水解度@hydrolyzing degree水力学@hydraulics水基泥浆@water-base drilling fluid水敏性@water sensitivity水平井段@net horizontal section水平井段长@extended horizontal depth水平井偏心环空@horizontal eccentric annulus水平位移@horizontal displacement水溶性@water-soluble水溶液@aqueous solution水锁@water lock水眼粘度@bit nozzle viscosity ,Casson high shear viscosity锶@strontium四苯硼酸钠@sodium tetraphenyl borate四级固控系统@four stage solid control system四球机@four-ball instrument松弛测量法@relaxation measurement松散地层@unconsolidated formation松散吸附水@adsorbed water塑性粘度@plastic viscosity塑性水泥@plastic cement速度场@velocity field速敏@speed-sensitivity速凝@fast setting速凝剂@accelerator酸度计滴定法@acidometer titration酸酐@anhydride酸碱滴定法@acid-base titration酸敏@acid sensitivity酸溶性@acid soluble酸性条件@acidic condition酸性粘土@acid clay酸渣@acid-slug随钻堵漏@plugging while drilling顺利@go smoothly缩合@condensation缩合共聚@condensation-copolymerization缩径@hole shrinkage@羧基@carboxylic ,carboxyl羧甲基纤维素钠(Na-CMC)@sodium salt of carboxy methyl-cellulose T塔里木盆地@tarim basin太古界@archaeozoic滩海@tidal坍塌@slough /cave坍塌压力@collapse pressure坍塌页岩@sloughing shale弹塑性@plastoelasticity弹性力学@elastic mechanic弹性模量@elastic modulus探井@prospecting well碳化@carbonization碳酸钙@calcium carbonate碳酸氢根离子(HCO3-)@bicarbonate ion碳酸盐@carbonate碳质@carbon羰基@carboxide陶粒@ceramsite套管@casing套管壁@casing wall套管居中@casing centralization套管开窗井段@window killing section套管外封隔器@external casing packer特低密度@ultralow density@特性粘度@intrinsic viscosity梯度@gradient梯度多凝水泥浆@gradient multi-setting cement slurry提出@propose提取@extraction体积分布@volume distribution体积分散@volume ratio体积恢复当量@equivalent volume体系@system天然或人造@natural and synthetic填充粒子@filler particle田青粉@sesbania调凝剂@thickening time control agent调整井@adjustment well铁垢@iron dirty铁矿粉@hematite铁离子(Fe) ferrous ion铁离子稳定剂@ferrous stability铁落木质素磺酸盐@fer-rochrome lignosulfonte 烃类@hydro carbons通井@drafting process同时@simultaneously同心环空@concentric annulus统计@statistics统计分析@statistics analysis投料比@rate of charge土酸@clay/mud@acid钍@thorium途径@way突破@breakthroughW外部因素@external factors外源@exogenous完井液@completion fluid完善井@improved well完钻井深@total depth烷基化@alkylate烷氧基@alkoxy万能显微镜@all-powerful microscope维护简单@maintenance is simple危险区@dangerous zone微观@microcosmic微晶@micro-crystal@微粒迁移@fine migration微裂缝@micro-fissure/fracture, microcrack微米@micron, micrometer。

钻井业专业词汇英语翻译

钻井业专业词汇英语翻译

钻井业专业词汇英语翻译更新日期:2006-1-6 出处:翻译中国作者:A氨基三乙酸(NTA) aminotriacetic acid胺基amino铵基ammonium安全地层safe formation安全试破safe destruction安全钻井safe drilling坳陷down warping region螯合chelation凹陷sag凹陷地层subsidence formation奥陶系Ordovician systemAPI模拟法API recommened methodB多靶点multiple target point白沥青white asphalt白油mineral oil白云母white mica半透膜semipermeable membrane包被絮凝剂flocculant包被envelop包被抑制性encapsulating ability饱和度saturation饱和度剖面图profile map of degree of saturation 饱和盐水saturated salt water背斜anticlinal钡barium苯环benzene ring苯酚phenyl hydroxide本质区别essential difference泵压过高overhigh pumping pressure比表面积specific surface area比吸水量specific absorption比重瓶法density bottle method避免avoid蓖麻油ricinus oil边界摩擦boundary friction扁藻(浮游植物)algae变化趋势variation trend标准化standardization标准粘度测量standard visicosity measure表面粗糙度roughness of the surface表面电位surface electric potential表面活性剂surfactant ,surface active agent表面能interface energy表面粘度surface viscosity表面抛光sample surfaceAibbs表面弹性Aibbs surface elasticity表面张力surface tension表明verify /reveal表皮系数(S) skin coefficient憋钻bit bouncing宾汉方程bingham equation丙三醇glycerine丙烯情acrylonitrile丙烯酸acrylic acid丙烯酸盐acrylate丙烯酰胺acrylamide薄而韧的泥饼thin,plastic and compacted mud-cake薄片flake薄弱地层weak formation泊松比poisson’s ratio剥离peel off补救remediation不分散泥浆nondispersed mud不干扰地质录井play no role in geological logging不均质储层heterogeneous reservoir不均匀uneven不可逆irreversible不同程度inordinately部分水解聚丙烯酰胺(PHPA) partially hydrolyzed polyacrylamide C参数优选parametric optimization残酸reacted acid残余饱和度residual staturation残渣gel residue , solid residue测量measure侧链side chain侧钻水平井sidetrack horizontal well层间interlayer层间距the distance between the two crystal layer, layer distance层理bedding层流layer flow差减法minusing尝试trial柴油diesel oil长连缔合物long chain associated matter操作方法operation method超伸井high deep well超深预探井ultradeep prospecting well超声波ultrasonography超高密度泥浆extremely high density mud超细碳酸钙super-fine calcium carbonate产层production/pay zone产层亏空reservoir voidage产量production ,output沉淀precipitation沉降subside沉降速度settling rate沉砂sand setting衬套sleeve程序program成对水平井paired parallel horizontal wells成分ingredient成胶剂gelatinizing agent成膜树脂film-forming resin成岩性差poor diagenetic grade承压bearing pressure承压低lower pressure resistance承压能力loading capacity尺寸dimension斥力repulsion除硫效果sulfur limitation effect除硫剂sulfur elimination除砂器desander触变性thixotropy触变剂thixotropic agent垂沉sag垂直井vertical well充气钻井液aerated drilling fluid磁化magnetization次生有机阳离子聚合物secondary organic cationic polymer 冲砂sand removal冲蚀flush冲刷washing out冲洗clean冲洗效率cleaning efficiency冲洗液washing fluid从…角度from the standpoint of丛式井cluster well稠化剂gelling agent稠油区viscous oil area稠油藏high oil reservoir初步分析preliminary analysis初始稠度initial consistency初始粘度initial viscosity初探primary investigation处理剂additive ,treating-agent粗分散泥浆coarse dispersed mud粗泡沫堵漏工艺coarse-foam plugging technology促凝剂accelerating agent醋酸acetate醋酸钠sodium acetate窜流fluid channeling脆裂embrittlement crack脆性brittle/crisp ,fragility催化剂accelerant , catalyst萃取剂extracting agentD达西定律Darcy’s equation大段水层thick aqueous formation大分子氢键络合作用polycomplexation of hydrogen bond 大灰量mass slurry大井斜角high deviation angle大块岩样big rock sample大块钻屑massive drilling cuttings大类genera大理石marble大砾石层large gravel bed大量分析quantitative analysis大排量洗井high flow rate washover大排量循环high flow rate circulation大位移定向井extended-reach directional well大斜度钻井big inclination/angle drilling大直径井眼large hole代表性岩心representive core sample单宁酸tannate单体monomer单相关分析法analyzing method of single correlation单相关系数加权coefficient weighted method of single correlation 单轴抗压强度uniaxial compressive strength氮nitrogenN-羟甲剂胺N-hydroxymethyl amine淡水fresh water单向压力暂堵剂unidirectional pressure temporary plugging additive 导向螺杆钻具stearable assemly导向器guider等温曲线isothermal curve低毒油基low toxicity oil based低返速low return-velocity低固相泥浆low solid drilling fluid低级醛low-grade aldehyde低粘土相泥浆low clay content drilling fluid狄塞尔堵漏剂diacel plugging agent滴定titration底水丰富basal water abundance底水油藏井bottom water reservoir well第二界面second contact surface缔合物associated matter地层formation地层出液量formation fluid production地层破碎straturn breaking地层倾角大higher formation clination地层水formation water地层损害formation damage地面岩心压汞surface core mercury injection test地下水groundwater , subsurface water地应力ground stress地质geology地质构造geologic structure淀粉starch电测electronic logging电导率electric conductivity电荷electricity电化学法electrochemistry method电解质electrolyte电镜分析electronic microscope photos电位potential fallξ电位zeta potential电性electric property电泳法electrophoresis method电子探针electron spectrum调查census顶替过程displacing operation定量设计quantitative design定向井direction well定子stator冻胶gel动静弹性模量dynamic and static elasticity modulus动力稳定性settling stability动力学kinetics动态滤失dynamic filtration动切力yield value动塑比ratio of dynamic shear force/yield value to plastic viscosity 堵漏plugging堵塞seal堵塞比(DR) damage ratio堵塞物bulkhead堵水water shutoff毒性大high toxicity毒性污染环境toxicity ruins the environment短过渡short transition time短纤维brief fiber断层发育mature fault断裂带faulted zone对策countermeasure多产层multilayered reservoir多分支侧钻井multi-lateral sidetracking well多功能添加剂multifunction additive多孔介质porons medium多目标定向井multi-target directional well多相稳态胶体悬浮体系polynomial gel suspension system多元醇polyatomic alcohol多元非线性回归multielement non-linesr regression多元统计multivariate statistics惰性材料inert material惰性润滑剂inert lubricantE二次沉淀secondary precipitation二叠系Permian system二甲胺dimethylamine二甲基二烯丙基氯化铵dimethyl diallyl ammonium chloride二价阳离子bivalent ion二开second section二氧化碳(CO2)carbon dioxide二元共聚物binary polymerF发气剂gas-development发展趋势development tendency反排解堵plug removal by reverse flow范氏力van der waals force范氏粘度计fann viscosimeter返回go back to方便钻井液复合粉convenient mud compound powder 方程equation芳香烃aromatic group防窜水泥anti-fluid-channeling cement防腐anti-corrosion防卡pipe-sticking prevention ,anti-sticking防漏失lost circulation prevention防气窜anti-fluid-channeling防塌机理mechanism of anti-caving防塌剂anti-caving/collapse agent , clay stabilizer防止prevent…from纺织textile放空不返loss of bit load with loss return放射性示踪剂radioactive tracer tritium非均质nonhomogeneity非离子nonionic非牛顿流体non-newtonian fluid非渗透性impervious废泥浆mud disposal沸石zeolite分布distribution分段固井技术stage cementing technology分光度法spectrophotometer分类division分散dispersion分散剂dispersant分散介质dispersion medium分析analysis分形理论fractal theory分形几何fractal geometry分子molecules分子间能量交换energy exchange between molecules 分子量molecular weight分子链molecular chain分子形态shape of molecular chain粉尘dust粉煤灰fly ash粉末powder粉砂质aleuritic texture酚羟基的邻位或对位氢p-or o-hydrogen atom of phenolic group 封闭剂sealing agent封闭稳定good isolation封堵formation sealing封堵剂formation sealant封固段interval isolation扶正器centralizer氟硼酸borofluorhydric浮力效应effect of buoyancy孵化速度incubation浮游植物floating vegetation复合combine复合离子multifunctional ionic复合离子聚合物amphiprotic/amphoteric polymers ,复合金属两性离子聚合物composite metal zwitterionic polymer 复合聚合物泥浆compound-polymer mud复配方案compositional formulation复杂地层complex formation, troublesome region ,trick formation 复杂度complex rate复杂时效outage time复杂情况down-hole troublesome condition腐蚀corrosion腐蚀电位corrosion potential腐蚀速率corrosion rate腐殖酸humate ,humic acid腐殖酸钾(KHm) potassium humic辅料auxiliary material负negative负压钻井underbalanced drilling符合accord with符合率coincidence rate副产品by-product附加密度addition mud densityG改善泥饼质量improvement of mud cake改性modification改性淀粉modified starch改性沥青modified asphalt改造refomation钙calcium钙矾石ettringite钙膨润土钠化sodium modified calcium betonite干混拌技术mixing technology干扰interfere with甘油glycerol锆zirconium高分子higher molecular weight高分子聚合物macromoleclar polymer高分子絮凝剂polymer flocculant高负荷high load高级脂肪醇树脂higher fatty alcohol高价金属阳离子high valent cationic高角度微裂缝high angle micro-fracture高矿化度地层水highly mineralized formation brines 高岭土kaolinite高炉矿渣(BFS) blast furnace slag高密度钻井液high density drilling fluid高难度high challenge高粘度清扫液viscous sweeping fluid高砂比high sand ratio高温静置quiescence in high temperature高温泥浆high-temperature mud高吸水量树脂absorbent resin高温高压流变仪HTHP rheometer高效润滑剂super lubricant高压盐水层high pressured slatwater layer膏岩层gypsolyte膏质泥岩creaming mudstone膏状磺化沥青paste sulphonated asphalt隔离冲洗液spacer/flushing fluid隔离膜isolating membrane各向异性anisotropy工程engineering共聚copolymerization共聚物copolymer共聚物类降粘剂copolymer thinner狗腿dogleg构造裂缝structural fracture固化solidification固化剂hardener , curing agent固井技术cementing technology固体团块solid cake固相solid phase固相含量solid concentration固相颗粒solid particles固相颗粒侵入solid invasion固相控制技术solid control technology固相损害damage of particles固液分离技术centrifugal separation method胍胶guargum瓜尔胶guar挂片失重法weight loss method关掉电机turn off the power光谱spectroscopy硅silicone硅粉silica powder硅氟fluosilicic硅铝比ratio of silicate to aluminium硅酸钠sodium silicate硅酸盐silicate滚轮失重法roller weight loss method国内外home and abroad过渡金属transitional metal过平衡压力over-balanced pressure过剩浓度residual concentration过氧化物peroxide海绿石chlorite海上offshore海水泥浆sea water mud海湾bay海洋生物marine animal含量content含水量moisture content耗氧量(COD)chemical oxygen demand耗氧量(BOD520) biological oxygen demand核桃壳粉walnut shell flour核磁共振(NMR)nuclear magnetic resonance 合成synthesis合成基钻井液synthetic base drilling fluid合格eligible合理级配reasonable distribution褐煤lignite赫巴模式Herschel-Buckley model黑色正电胶(BPG) black positive gel恒定滤失速率constant filtration rate葫芦串irregular borehole护胶剂colloid protecting resistance护胶作用colloid stability互层interbeded红外光谱infrared spectrography花岗岩granite划眼作业reaming operation化学螯合剂chelating agent化学冲洗液chemically washing solution化学结垢(沉淀) chemical precipitation环保型environment friendly /acceptable环境保护environment protection环空当量密度annular equivalent density环空返速velocity in annular环空压耗annular pressure lost环氧丙烷epoxypropare环氧氯丙烷(ECH) epoxy chloropropane ,epichlorohydric缓蚀剂corrosion inhibitor磺化sulfonation磺化酚醛树脂sulfomethal phenolaldehy resin磺化剂sulfonating agent磺化类处理剂sulfonated additives磺化沥青sulfonated gilsonite磺化沥青泥浆sulfonated-asphalt mud磺甲基酚醛树脂sulfonated methypheuo formald-ehyde磺酸基团sulfonic acid group ,sulfo group灰色关联分析法gray relative analysis method灰岩limestone回归分析regressive analysis回收率recovery percent回填还耕refilling for plowland火成岩igneous rock火山喷发岩volcanic混合金属层状氢氧化物(MMLHC) mixed metal layer hydroxide compound 混合金属氢氧化物(MMH) mixed metal hydroxides混合纤维composite fiber混合盐水mixed salt活动套管moving casing活度water activity活性硅灰activated grammite活性粘土矿物active clayey mineral活性污泥法activated sludge process宏观macroscopicJ基液base fluid机械力mechanical机械杂质mechanical impurity机械钻速(ROP) rate of penetrate及时反出timely return极限剪切粘度high shear viscosity极限应变ultimate strain极性基团polar group极压润滑剂pressured/extreme lubricator挤堵squeeze激光多普勒测速仪(LDA) laser Doppler anemometer激光粒度仪laser particle analyzer激活剂activator技术措施technical measure技术讲座workshop for technology技术经济效果technical-economic effect技术套管intermediate casing季铵盐quaternary ammonium, anionic group钾potassium ,kalium钾基石灰泥浆potassium base lime mud甲硅烷基化处理methylsilicane甲基methyl甲基硅油聚磺高密度钻井液methyl silicone oil polysulfonate drilling fluid with high density甲醛formaldehyde , methanal甲酸盐formate加量dosage加重剂heavy weight additive加重泥浆weighted mud加重钻井液“垂沉”sag phenomenon of weighted drilling fluid 架桥粒子bridge particle价数valence监督supervision碱alkali简化泥浆处理simplify mud treatment简介brief description检查井inspection well检测inspection/monitor减轻剂lightening admixture减阻剂anti-friction agent , drag reducer剪切破坏shear failure剪切稀释能力shear thinning property , shearing dilution剪切应力shear stress键bond健康,安全与环境(HSE) health , safety and environment间隙clearance降解产物degradation products降粘机理thinning mechanism降粘剂thinner,visbreaker降失水剂fluid loss agent/additive, filtration reducer胶结强度bonding/consolidation strength胶结疏松weak bonding胶囊破胶剂encapsulated gel breaker胶凝gelatify胶凝性质jellyfication胶乳latex胶体率colloid fraction胶体稳定性colloid stability胶质gum交联cross-linking交联剂cross linker交联冻胶gel cross-linking交换液exchange fluid接近concordant with结垢precipitation, scale deposit , fouling结构可瞬时形成或拆散quick formation and breaking 结构强度structural strength结合refer to结晶crystallization结晶水crystal water接触角contact angle接枝共聚物grafting copolymerization解卡剂pipe free agent介质medium界面interface界面胶结interfacial cementation金属metal金属离子metal ions紧密堆积理论theory of high packing近井壁near-well zone近平衡钻井near-balanced drilling浸出液leaching agent浸酸改造acidizing经验性总结分析empirical analysis晶格lattice bond净化技术solid control井壁稳定borehole井壁稳定hole stability ,stable borehole井底downhole井底静止温度低(BHST) low borehole static temperature 井段interval/section井径well/hole gauge井径规则regular and consistent borehole gauge井径扩大率hole diameter enlargement rate井口wellhead井漏lost circulation井身结构wellbore configuration井下安全downhole safety井下复杂情况down hole problem井斜inclination井眼well bore ,borehole井眼轨迹well track井眼净化hole cleaning井眼缩径hole shrinkage井眼稳定hole stability井涌kick浸泡时间soak time静切力(结构力) gel strength/static shear force静损害static damage静态挂片法static weight loss method静态滤失static filtration静液柱压差hydrostatic column pressure difference静置quiescence静止消泡时间static defoaming time静置沉淀static settlement居中centralization居中度centralizer聚α-烯基polyalphaolifen聚丙烯青铵盐ammonium polyacryhoitril聚丙烯酰胺(PAM) polyacrylamide聚电解质poly-electrolyte聚合醇polyalcohol , polyol聚合物不分散泥浆non dispersed polymer mud聚合物降滤失水剂polymer filtration control agent聚合物三磺盐水泥浆three-sulfonated polymer salt mud 聚合物钻井液polymer drilling fluid聚合物混油钻井液poly-oil mixture drilling fluid聚磺钻井液sulphonated polymer mud聚结稳定性coagulation stability聚乙二醇(PEG) polyethyleneglycol聚乙烯醇(PV A) polyvinyl alcoholK卡森方程Casson equation卡钻pipe-sticking卡钻因子stuck-pipe factor勘探与开发exploration and development开发井development well开钻泥浆spud mud抗冲击韧性toughness抗冲击性impact resistance抗电解质potential resistance to electrolyte contamination 抗钙compatibility of calcium抗裂程度rupture strength抗温抗盐heat and salinity tolerance抗压强度compressive strength抗折强度breaking strength栲胶tannin , quebrocho克gram颗粒particle颗粒级配理论theory of granulartity苛刻rigorous可变形粒子deformation particle可靠inerrable可逆reversible可溶性盐soluble salt可压缩性compressibility可用性feasibility可钻性drillability刻度盘dial scale坑内密封法seal in a pit空气湿度air humidity孔洞cavern孔喉pore throat孔隙pore孔隙度测井porosity log孔隙压力pore pressure孔隙液pore fluid快钻剂quick drilling矿化度mineral salt concentration , mineralization矿石ore矿物mineral矿物组分mineralogical composation矿物晶体mineral crystal矿物油mineral oil矿渣slag扩散diffusionL老化时间ageing time老区maturing field雷诺数Renault number类别category累计厚度gross thickness累托石rectorite沥青asphalt ,gilsonite,bitumen沥青类产品gilsonite and similar materials离心法敏感性评价centrifugation sensitivity evaluation 离心机centrifugal machine离心机固控技术centrifugal solid control离子ionic离子形态ionic forms粒度grain grade粒度分布particles/size distribution粒度分析particles size analysis粒子particle砾石充填gravel pack连通性formation communication连续提取法continuous extraction两凝水泥浆two-stage cementing cement两性离子zwitter ionic裂缝fissure裂缝壁side of fracture plugging裂隙地层fractured formation裂隙滞后效应fracture lag-effect邻井offset/adjacent well林产forestry淋洗量wash out amount磷phosphorus磷酸phosphate磷酸氢二铵diammonium phosphate磷酸盐phosphate salt磷酸酯organic phosphate临界点critical point临界环空流速critical annular fluid velocity临界流量critical flow velocity临界盐度critical salinity零点zero point零析水zero free water硫sulfur硫化氢hydrogen sulfide硫化物sulfide硫酸sulfate硫酸钠sodium sulphate流变参数reheological parameter流变模式reheology model流变性rheology behavior流变性能改进剂rheology conditioner流变学rheology流动度fluidity流动介质flow media流动孔喉flowing pore throat流动摩阻压力flowage friction drag流动实验flow test流动阻力flow resistance流沙层drift sand formation流态flow pattern流体力学hydromechanics theory流体输送减阻accelerating fluid feeding流型fluid type漏斗粘度funnel viscosity漏失lost circulation漏失层位location of the thief zone漏失通道porous media陆上onshore卤虫(甲壳类动物) crustacean卤水bitter(luo) chromium络合coordination ,chelate络合行为热效应thermal effect of the coordination 录井log裸眼open well裸眼井段barefoot interval滤饼filter cake滤失量filtration滤饼电性质electro kinetic property滤液filtrate滤液侵入filtrate invasion铝aluminum铝酸盐aluminate氯酚chlophenol氯化钙(CaCl2) calcium chloride氯化物chlorideKCl溶液potassium chloride solutionM马来酸酐maleic anhydride埋深burial depth满足…需要meet requirement of曼尼希反应Mannick reaction芒硝层chuco毛细管吸收时间测定仪(CST) capillary suction timer毛细管压力capillary pressure酶enzyme煤层coal bed煤层气储层coalbed methane reservoir镁magnesium门限流动压差threshold differential pressure of flow 蒙脱石smectite咪错基imidazoline醚基ether密胺树脂melamine resin密闭液sealing fluid密度density密实dense幂律模式power law method敏感性sensitivity敏感性流动实验flowrate test膜film , membrane磨铣mill摩擦friction摩擦付friction couples摩擦系数friction coefficient摩阻损失friction loss末端毛细管阻力terminal capillary pressure木质素磺酸盐lignosulfonate模拟analog, simulate模式(型) model目meshN纳米材料nano-composite material纳米技术nano-tech钠sodium钠化sodium treatment钠膨润土泥浆sodium bentonite mud囊衣capsule dressing囊芯capsule-core内聚力cohesion内摩擦角internal frictional angle内泥饼internal filter cake内切圆半径inscribed circle radius内烯烃isomerised olefins内源和外源颗粒endogenous and exogenous granula 内在因素intermediate factor能量交换energy exchange泥包bit balling泥饼mud-cake泥饼强度冲刷仪mud filter cake tester泥浆处理mud treatment泥浆跟踪剂mud tracer泥浆配方mud formula泥浆转化为水泥浆(MTC) mud to cement泥岩mudstone , conglomerate泥页岩shale , argillutite泥质膏岩argillaceous粘度viscosity粘度极大值maximum viscosity粘度计viscosimeter粘附adhere粘附张力adhesive tension粘弹性viscoelastic粘土clay粘土分级评价法method of grading mud-making clay 粘土矿物层间距(d001) crystal indices粘土矿物含量clay mineral content粘土片clay latice粘土膨胀clay swelling粘土膨胀倍数swelling ratio of clays粘土稳定性clay stability粘性流体viscous fluid柠檬酸citric acid凝固点freezing point凝析油condensate oil牛顿流体Newtonian fluid扭距torque浓度concentration浓硫酸strong sulfuric浓缩concentrationO排列line along排驱压力displacement pressure排水water draining剖面图profile map泡沫流体实验装置aerated fluid test simulator泡沫剂foaming agent泡沫衰变机理foam decay mechanism泡沫质量foam quality泡沫钻井液foam drilling fluid配方formula ,recipe ,composition配浆时间drilling fluid preparing time配位体ligand配伍性compatibility配制madeup盆地basin喷blowout喷射钻井jet drilling喷嘴粘度nozzle viscosity膨润土bentonite ,montmorillonite膨润土含量bentonite content膨胀swell膨胀剂sweller膨胀率expansion ratio膨胀性堵漏材料expandable plugging additives硼冻胶boracium gel硼砂borax硼酸盐borate偏心度excentricity偏移shift片麻岩gneiss漂珠hollow microsphere品种variety平衡线膨胀率equalibrium linear expansion value平衡压力钻井balanced drilling评价evaluation评价标准evaluation criterion评价井appraisal well平板型层流plate laminar flow平均井深average well depth平均线膨胀率average expansion rate平均直径mean diameter屏蔽环shielding zone屏蔽暂堵技术temporary shielding method ,barrier-building temporary seal incores 破胶剂gel breaker破胶性breaking property破裂压力fracture pressure破裂压力梯度fracture pressure gradient破乳break the emulsion破乳剂demulsifying agent葡萄糖glucoseQ起到重要作用play an important role起泡剂frothing agent起下钻阻卡blockage during tripping气液表面能gas-liquid interface energy迁移migration前置液prepad fluid铅(Pb)lead潜在因素implicit factor潜山buried hill浅高压气层shallow high pressure gas formation浅海shallow-water , neritic area浅井shallow well嵌段聚合物block polymer欠饱和盐水钻井液unsaturated salt water drilling fluid 欠平衡钻井underbanlanced drilling欠压实uncompaction羟基hydroxy羟基水hydroxy water羟丙基淀粉hydroxypropul starch羟乙基纤维素hydroxyethyl cellulose强造浆软泥岩high mud making soft shale桥堵剂bridge additive切力shearing force侵入深度invasion depth侵蚀erosion亲核化学吸附nucleophyllic chemical adsorption亲水环境hydrophilic environment亲水性hydrophilcity亲油性lipophilic氢hydrogen氢氟酸hydrofluoric acid氢键hydrogen bond氢氧化钠alkali氢氧化钙calcium hydroxide清扫液sweeping fluid清水clear water清洗剂cleaning agent蜻纶acrylon fiber蜻纶费丝nitrilon倾角dip angle丘陵hill type球形胶束roundness glues区块block屈服强度shear strength屈服值yielding point曲边三角形curved line trangle取代度substituted ratio取芯core,coring operation取芯进尺coring footage取芯收获率coring recovery rate曲线curve去除wipe off醛aldehydeR热采井thermal production wells热分析thermoanalysis热滚hot aging热滚分散实验roller oven test , hot rolling test热力学thermodynamics热凝橡胶coagulative rubber热效应thermal effect热稳定性temperature resistance ,heat stability ,stability at high temperature热重法(TG) thermogravimetry人工神经网络artificial neural network韧性tenacity韧性粒子tenacity particle日产气daily gas融合amalgamation溶洞cave溶胶sol溶解氧dissolved oxygen溶蚀corrode溶蚀性孔洞solution cave溶液solution柔性棒状胶束flexibility claviform glues蠕虫状胶束vermiculate glues乳滴聚结实验emulsion drop aggregation test乳化emulsify ,emulsion乳化剂emulsifier乳化钻井液emulsion drilling fluid乳化作用emulsification入井液working fluid软化点沥青softening point asphalt软泥岩soft mudstone软件包software package润滑剂lubricant润滑仪lubricity tester润湿反转wetting transition , wettability reversed润湿性wettability弱面weak planeS塞流顶替plug-flow displacement3r/min读值3r/m reading三高一适当(3H1S) three high and one proper三磺饱和盐水泥浆three-sulfonated-polymer-saturated-brine mud 三钾胺dimethyl amine三甲基单烯丙基氯化铵trimethyl allyl ammonium chloride三维网状结构three-dimensional network structure三乙醇胺triethavolamine散射scatter铯cesium射孔perforation射孔液perforation fluidX-射线计算机层析技术(CT) computerized tomography沙砾岩glutenite砂泥岩sand shale砂岩sand ,sandstone杀菌剂bacteriostat筛管screen pipe上泵容易easy pumpability上部地层upper formation /segment上古生界upper palaeozoic上升趋势escalating trend上下密度差difference of densities上下限top and bottom limitation上游领域upstream扫描电镜(SEM) scanning electronic microscope设计design设计原理design principle神经网络nerve network深穿透射孔枪弹deep penetrating bullet深度depth深井钻井deep drilling深探井exploration well渗流phase flow s渗漏leakage渗透peculation `渗透率fluid permeability渗透率各向异性permeability anisotropy渗透率恢复值return permeability渗透水化osmotic hydration渗透性地层permeable formation渗析纯化purified by dialysis method声波测井sonic logging声幅值acoustic amplitude生产能力production capacity生态环境ecology environment生物处理biological treatment生物毒性biotoxicity生物降解biological degradation生物聚合物biological polymer ,xanthan生物流化床法biological fluid bed method 生物滤池法bio-filter process生物转盘法biological rotary method实验trail十八醇octadecanol失水water loss失重weightlessness, weight loss时间推移技术time delaying method石膏gypsolyte, gypsum石灰lime石蜡alpha , paraffin wax石炭系carboniferous system石英quartz石油加工oil refinery石油裂化petroleum cracking process施工作业field operation事故率failure rate湿挤压wet-extrusion室内模拟实验simulating lab test室内实验和现场lab and field室内研究laboratory study室温ambient temperature适量defined amount适应温度reaction temperature示踪分析法mud filtrate tracer analysis释放release收缩shrink疏水性hydrophobicity叔胺盐tertiary ammonium salt数据库data base数学模型mathematical model数字模拟digital analog塑料小球plastic beads树脂resin, colophony s束缚irreducible束缚水bond water衰变decay瞬时滤失instantaneous filtration , spurt loss瞬时速度instantaneous velocity双层组合套管固井技术pipe-in-pipe casing string双电层斥力double electrode layer repulsion双分支侧钻水平井bi-lateral sidetracking horizontal well 水包油型乳化液oil-in-water fluid水不溶物water insoluble matter水层water layer水化hydration水化膨胀分散hydrous disintegration水化抑制剂hydrate control水泥环cement sheath水泥浆cement slurry水泥石set cement水泥熟料cement clinker水泥早强剂cement hardener水解hydration水解度hydrolyzing degree水力学hydraulics水基泥浆water-base drilling fluid水敏性water sensitivity水平井段net horizontal section水平井段长extended horizontal depth水平井偏心环空horizontal eccentric annulus水平位移horizontal displacement水溶性water-soluble水溶液aqueous solution水锁water lock水眼粘度bit nozzle viscosity ,Casson high shear viscosity 锶strontium四苯硼酸钠sodium tetraphenyl borate四级固控系统four stage solid control system四球机four-ball instrument松弛测量法relaxation measurement松散地层unconsolidated formation松散吸附水adsorbed water塑性粘度plastic viscosity塑性水泥plastic cement速度场velocity field速敏speed-sensitivity速凝fast setting速凝剂accelerator酸度计滴定法acidometer titration酸酐anhydride酸碱滴定法acid-base titration酸敏acid sensitivity酸溶性acid soluble酸性条件acidic condition酸性粘土acid clay酸渣acid-slug随钻堵漏plugging while drilling顺利go smoothly缩合condensation缩合共聚condensation-copolymerization缩径hole shrinkage羧基carboxylic ,carboxyl羧甲基纤维素钠(Na-CMC) sodium salt of carboxy methyl-cellulose T塔里木盆地tarim basin太古界archaeozoic滩海tidal坍塌slough /cave坍塌压力collapse pressure坍塌页岩sloughing shale弹塑性plastoelasticity弹性力学elastic mechanic弹性模量elastic modulus探井prospecting well碳化carbonization碳酸钙calcium carbonate碳酸氢根离子(HCO3-) bicarbonate ion碳酸盐carbonate碳质carbon羰基carboxide陶粒ceramsite套管casing套管壁casing wall套管居中casing centralization套管开窗井段window killing section套管外封隔器external casing packer特低密度ultralow density特性粘度intrinsic viscosity梯度gradient梯度多凝水泥浆gradient multi-setting cement slurry提出propose提取extraction体积分布volume distribution体积分散volume ratio体积恢复当量equivalent volume体系system天然或人造natural and synthetic填充粒子filler particle田青粉sesbania调凝剂thickening time control agent调整井adjustment well铁垢iron dirty铁矿粉hematite铁离子(Fe) ferrous ion铁离子稳定剂ferrous stability铁落木质素磺酸盐fer-rochrome lignosulfonte 烃类hydro carbons通井drafting process同时simultaneously同心环空concentric annulus统计statistics统计分析statistics analysis投料比rate of charge土酸clay/mud acid钍thorium途径way突破breakthroughW外部因素external factors外源exogenous完井液completion fluid完善井improved well完钻井深total depth烷基化alkylate烷氧基alkoxy万能显微镜all-powerful microscope维护简单maintenance is simple危险区dangerous zone微观microcosmic微晶micro-crystal微粒迁移fine migration微裂缝micro-fissure/fracture, microcrack微米micron, micrometer微泡沫钻井液micro-foam drilling fluid微膨胀minimum inflation微生物microbe尾管liner位移与垂深比displacement/vertical depth未动用石油储藏undeveloped reservoir。

Ls-Dyna_负体积问题

Ls-Dyna_负体积问题

Ls-Dyna_负体积问题LS-DYNA FAQ 中英⽂版-Negative Volume 负体积2007年09⽉13⽇星期四下午 10:26泡沫材料的负体积(或其它软的材料)对于承受很⼤变形的材料,⽐如说泡沫,⼀个单元可能变得⾮常扭曲以⾄于单元的体积计算得到⼀个负值。

这可能发⽣在材料还没有达到失效标准前。

对⼀个拉格朗⽇(Lagrangian)⽹格在没有采取⽹格光滑(mesh smoothing)或者重划分(remeshing)时能适应多⼤变形有个内在的限制。

LS-DYNA中计算得到负体积(negative volume)会导致计算终⽌,除⾮在*control_timestep卡⾥⾯设置ERODE选项为1,⽽且在*control_termination⾥设置DTMIN项为任何⾮零的值,在这种情况下,出现负体积的单元会被删掉⽽且计算继续进⾏(⼤多数情况)。

有时即使ERODE和DTMIN换上⾯说的设置了,负体积可能还是会导致因错误终⽌。

有助于克服负体积的⼀些⽅法如下:* 简单的把材料应⼒-应变曲线在⼤应变时硬化。

这种⽅法会⾮常有效。

* 有时候修改初始⽹格来适应特定的变形场将阻⽌负体积的形成。

此外,负体积通常只对⾮常严重的变形情况是个问题,⽽且特别是仅发⽣在像泡沫这样的软的材料上⾯。

* 减⼩时间步缩放系数(timestep scale factor)。

缺省的0.9可能不⾜以防⽌数值不稳定。

* 避免⽤全积分的体单元(单元类型2和3),它们在包含⼤变形和扭曲的仿真中往往不是很稳定。

全积分单元在⼤变形的时候鲁棒性不如单点积分单元,因为单元的⼀个积分点可能出现负的Jacobian⽽整个单元还维持正的体积。

在计算中⽤全积分单元因计算出现负的Jacobian⽽终⽌会⽐单元积分单元来得快。

* ⽤缺省的单元⽅程(单点积分体单元)和类型4或者5的沙漏(hourglass)控制(将会刚化响应)。

对泡沫材料⾸先的沙漏⽅程是:如果低速冲击type 6,系数1.0; ⾼速冲击type 2或者3。

考虑偏轴角影响的2.5D机织复合材料冲击后压缩性能

考虑偏轴角影响的2.5D机织复合材料冲击后压缩性能

in the 2° Uiaction , anU as the impacO enayy increases , the compressive strength of the 2° specimen Uecreases
more oPviopsiz- With the increase of off-vxis ngle , the mechanichi response of the materiao cOanges from brittleness te
(1.江南大学 机械工程学院,江苏 无锡 210102; 2.江南大学 纺织科学与工程学院,江苏 无锡 210102)
摘要:2.3D机织复合材料作为一种各向异性材料,其冲击后压缩性能亦表现出显著的各向异性特征。为了探究偏轴
角对2.3D机织复合材料冲击后剩余力学性能的影响,课题组进行了低速冲击和压缩试验,并借助超声C扫描技术等检
・2・
轻工机械 Light Industry Machinery
2021年第3期
ygioe, mainly alone tIr ±45° Uirechont. It has gyat ereieeeyne significhech for acchrately evaluatine tIr service performaech of tic materials in tic impact-proec ecvironmeci. Keywords : wovec composites; ultasonic C-sccv techeolony; off-pxit anele; mechanicd response; Uamagc mechanism
测手段,对比了 2.3D机织复合材料受不同能量冲击后沿2。及45。方向的压缩性能。对材料在冲击后压缩试验中的力学

胎儿卵圆孔相关参数对出生后卵圆孔早期闭合的预测价值

胎儿卵圆孔相关参数对出生后卵圆孔早期闭合的预测价值

论著•临床研究胎儿卵圆孔相关参数对出生后卵圆孔早期闭合的预测价值▲郭清1杨建荣2闭邱沙1洪梅3凌亮1(1广西壮族自治区江滨医院超声科,南宁市530021,电子邮箱:****************;2广西壮族自治区人民医院普外科,南宁市530021;3广西壮族自治区江滨医院儿科,南宁市530021)【摘要】目的探讨胎儿卵圆孔相关指标对出生后卵圆孔早期闭合的预测价值。

方法纳入100例出生后7d内首次超声心动图检查提示卵圆孔未闭!PFO)的新生儿,根据出生后3月龄卵圆孔闭合情况分为闭合组38例、未闭合组62例。

比较两组胎儿期卵圆孔相关指标,分析生后3月龄卵圆孔闭合的影响因素。

评价相关指标对生后3月龄卵圆孔闭合的预测价值。

结果未闭合组卵圆孔内径(FO-d)、卵圆孔瓣长度(FOV-L)、FO-d/房间隔总长度(AS-L)比值均大于闭合组,而卵圆孔收缩期峰值流速低于闭合组(均P<0.05)。

FOV-L、FO-d/AS-L比值增大是出生后3月龄PFO的独立危险因素(均P<0.05)。

FOV-L、FO-d/AS-L比值及两者联合预测生后3月龄卵圆孔闭合的曲线下面积分别为0.841、0.817、0.879;联合预测时的曲线下面积大于FO-d/AS-L 比值!P<0.05)#结论胎儿期卵圆孔相关指标与PFO新生儿卵圆孔早期闭合密切相关,其中FOV-F和FO-d^AS-L 比值可作为3月龄时卵圆孔闭合的预测指标。

【关键词】卵圆孔未闭;胎儿;卵圆孔;超声心动图;3月龄;预测价值【中图分类号】R322.11【文献标识码】A【文章编号】0253-4304(2020)13-1645-03DOI:10.11675/j.issn.0253-4304.2020.13.07Prenictive value of fetal foramen ovale-belaten parameters in early impatency of foramen ovale after birth GUOQing1$YANGJianfong2$BIQiufpha1$HONGMei3$LINGLiang1(1Departmeni O Ultrasoond$Jiangbin Hospital O Guangxi Zhuang Autoaomoge Regioo$Nanning530021,China;2Departmeni O General Sugeg$the People's Hospital O Guangxi Zhuang Regioo,Nanning530021,China;3Degartmeni O Pediatria,Jiangbin Hospital O Guangxi Zhuang Autoaomope Regioo,Nanning530021,China) (Abstract)Objective To investigate tOe predictive vvlue of fetal foramen ovvle-related parameten in early impaOncy of foramen ovvle after birtO.Methods One hundred neonates initially diaanosed as patent foramen ovvle (PFO)by echocardiography within7days after birtO were enrolled,and were did—into inipatency goup(n=38)and patency goup(n=62)ccording to the impt—cy of foramen ovale at3months after bit.The fetO foramen ovaUe-relat—pa^ametem were compar—between the two goups,and the factoe influencing the inipt—cy of foramen ovale at3months aotec birth were analyz—.The vvlue of related parameterc for predicting imptency of foramen ovvle at3months after birth was assessed.Resdts By comparison with the inipdOncy group,the patency group achieved laraer diametec of foramen oval(FO-d),length of valve of foramen ovale(FOV-F)and FO・d/Ungth of atoal septum(AS-L)ratio with lowec peak systolic velocity of foramen ovale(ll P<0.05).Increased FOV-F and FO-d^AS-L ratio were the independent Osk factorc Oc PFO at3months le birth(l l P<0.05).For predicting impt—cy of foramen ovale at3months aft—birth,the teas undec the curve of FOV-F,FO-d^AS-L ratio,and their combination were0.841,0.817and0.879,respectively;thei combination achieved laravr area undec the cuev than FO-d^AS-L ratio(P<0.05).Conclusion The fetal foramen ovale-related parameteo are closely related to early impt—cy of foramen ovale after birth in PFO neonates,among which FOV-F and FO・d/AS・L ratio can be the predictors Oc11X131—00of foramen ovale at3months tter bn-tO.(Key words]Patent foramen ovale,Fetus,Foramen ovale,Echocardiography,Three months old,Pr—imOe eaeuL▲基金项目:广西医药卫生科研课题(Z20170173)作者简介:郭清(1967〜),女,本科,副主任医师,研究方向:心脏超声诊断%卵圆孔未闭(pdint foramen。

三维螺旋超结构

三维螺旋超结构

第44卷 第23期 包 装 工 程2023年12月PACKAGING ENGINEERING ·265·收稿日期:2023-05-09基金项目:国家自然科学基金(52071239) 三维螺旋超结构/介质的低频协同效应及其吸波蜂窝制备杨昊a ,徐逸凡b ,石跃婷a ,王睿c ,汪君c ,李维c ,陈志宏a*(武汉理工大学 a.理学院 b.材料科学与工程国际化示范学院c.材料复合新技术国家重点实验室 武汉 430070)摘要:目的 拓展蜂窝吸波材料的低频吸收性能,提出一种三维螺旋超结构复合吸波蜂窝的设计方法。

方法 在吸波蜂窝中加载三维螺旋超结构,使用电磁场理论和等效电路理论定性分析螺旋超结构对复合蜂窝吸收性能的调控作用,以优化螺旋超结构的参数。

结果 入射电磁波在螺旋超结构表面激发驻波电流,产生强烈的电共振和磁共振,与蜂窝损耗介质产生协同吸收效应,增强了吸波蜂窝的低频吸收性能。

结论 仿真和实验结果表明,加载三维螺旋超结构使得吸波蜂窝的低频吸收性能显著增强,在1~6 GHz 频段的平均反射损耗从−3 dB 增强至−10 dB 。

关键词:蜂窝吸波材料;超材料;低频吸收;等效电路中图分类号:TB484.2 文献标识码:A 文章编号:1001-3563(2023)23-0265-10 DOI :10.19554/ki.1001-3563.2023.23.032Low-frequency Synergistic Effect of 3D Helical Metastructure/Medium andPreparation of Its Absorbing HoneycombYANG Hao a , XU Yi-fan b , SHI Yue-ting a , WANG Rui c , WANG Jun c , LI Wei c , CHEN Zhi-hong a*(a. School of Science, b. International School of Materials Science and Engineering, c. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China) ABSTRACT: The work aims to propose a design method of 3D helical metastructure composite absorbing honeycomb, in order to expand the low-frequency absorption properties of honeycomb absorbing materials. The 3D helical metastructure was loaded in the absorbing honeycomb, and the regulation effect of the helical metastructure on the absorption properties of the composite honeycomb was qualitatively analyzed by the electromagnetic field theory and the equivalent circuit theory, so as to optimize the structural parameters of the helical metastructure. The incident electromagnetic wave excited the standing wave current on the surface of the helical metastructure, produced strong electrical resonance and magnetic resonance, and generated a synergistic absorption effect with the honeycomb loss medium, which enhanced the low-frequency absorption properties of the absorbing honeycomb. The simulation and experimental results show that the low-frequency absorption properties of the absorbing honeycomb are significantly enhanced by loading the 3D helical metastructure, and the average reflection loss of the 1-6 GHz is enhanced from −3 dB to −10 dB.KEY WORDS: honeycomb absorbing materials; metamaterials; low-frequency absorption; equivalent circuit电磁波的广泛应用带来了电磁辐射、电磁干扰等问题[1-3],导致人类生存空间的电磁环境日益恶化。

复合材料加筋壁板低速冲击响应与冲击能量关系

复合材料加筋壁板低速冲击响应与冲击能量关系

复合材料加筋壁板低速冲击响应与冲击能量关系石晓朋;李曙林;常飞;卞栋梁;尹俊杰【摘要】基于ABAQUS有限元软件,采用Hashin损伤准则建立了一种有效的复合材料加筋壁板低速冲击模型.分析了接触力、加筋壁板吸收能量和损伤散逸能对冲击响应的影响.结果表明:随着冲击能量的增大,接触力峰值前移,且冲击后板吸收能量与损伤散逸能的差值变大.落锤冲击实验表明,低速冲击能量下损伤程度与冲击能量正相关.对比了损伤区域的仿真结果和实验结果,发现二者拟合较好.【期刊名称】《材料工程》【年(卷),期】2015(043)004【总页数】6页(P53-58)【关键词】复合材料加筋壁板;冲击响应;有限元分析;损伤面积;冲击能量【作者】石晓朋;李曙林;常飞;卞栋梁;尹俊杰【作者单位】空军工程大学航空航天工程学院,西安710038;空军工程大学航空航天工程学院,西安710038;空军工程大学航空航天工程学院,西安710038;空军工程大学航空航天工程学院,西安710038;空军工程大学航空航天工程学院,西安710038【正文语种】中文【中图分类】TB332复合材料加筋壁板结构是由加强筋(筋条)和被支撑的壳体(蒙皮)组成的结构,其不仅具有已有复合材料层合板结构比强度高、比刚度高以及结构可设计性好等特点,而且还具有自身所固有的诸多优点,例如自动化的低成本制造过程和高可靠性等[1],因而,越来越多地应用于航空航天领域和各种工程结构中。

然而,复合材料加筋壁板同复合材料层合板一样,对冲击载荷十分敏感,在低速冲击载荷作用下,会出现基体开裂、分层、纤维断裂等损伤,这种损伤范围较大且不易发现,往往会给材料带来更大威胁。

因此,对加筋壁板在低速冲击载荷作用下响应的研究具有重要意义。

目前,国内外许多学者针对复合材料层合板低速冲击损伤机理进行了研究。

Davies等[2]用较低能量进行冲击,发现接触力与时间关系曲线近似为正弦曲线,揭示了层压板损伤面积与冲击能量、最大接触力的关系; Schoeppner等[3]总结出了分层门槛力与其他参数的相关关系;Feraboli等[4-6]证实,当冲击能量较低、且在弹性冲击阶段时,损伤萌生接触力、峰值接触力与能量成正比关系,当能量增大到能够产生损伤时,损伤会耗散能量,接触力不再增加,出现一个平台,甚至损伤一开始便出现平台,没有线性上升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Low-Velocity Impact Response andUltrasonic NDE of Woven Carbon/Epoxy–Nanoclay NanocompositesM AHESH V.H OSUR,*F ARHAN C HOWDHURY AND S HAIK J EELANICenter for Advanced Materials,Tuskegee University,Tuskegee,AL36088,USAABSTRACT:In the present study,NanomerÕI-28E,organically modifiedmontmorillonite nanoclay supplied by Nanocor Inc.,was used to modify SC-15,atoughened epoxy system using sonication route.Different weight percentage rangingfrom1–3%of nanoclay was used.The modified epoxy was then used to fabricate15-layer plain weave carbon/epoxy composite laminates using a vacuum assistedresin transfer molding(VARTM)method.Samples of size100Â100mm were cutfrom the laminates and were subjected to low-velocity impact loading using aninstrumented drop-weight system(Dynatup Model8210)at three different energylevels of10,20and30J.Transient response of the samples was recorded andanalyzed in terms to load-energy vs time relations.Impact damage was characterizedby utilizing an ultrasonic nondestructive evaluation system(c-scan).Results of thestudy indicate that the infusion of nanoclay in the system reduced the impact damagethough the impact response in terms of the peak load remained mostly unaltered.Reduced damage size was attributed to increased stiffness and resistance to damageprogression of the nanophased laminates.KEY WORDS:nanocomposites,low-velocity impact,ultrasonic NDE.INTRODUCTIONI T IS A general practice to include mineral fillers to polymers in commercial productionfor reasons of cost reduction and stiffness improvement.Most studies dealing with modification of semi-crystalline polymers with inorganic particles report embrittling effects by comparing ultimate elongation and impact strength with those of unfilled resins. Some researchers showed enhancement of toughness in rigid particles filled polyproplylene and polyethelene.In the case of micrometer sized particulates,high filler content,typically higher than20%by volume is generally required to bring about the above stated positive effects of the fillers.This would detrimentally affect some properties of the matrix*Author to whom correspondence should be addressed.E-mail:mhosur@Figures1–9appear in color online:Journal of C OMPOSITE M ATERIALS,Vol.41,No.18/200721950021-9983/07/182195–18$10.00/0DOI:10.1177/0021998307074146ßSAGE Publications2007Los Angeles,London,New Delhi and Singapore2196M.V.H OSUR ET AL. polymers such as processability,appearance,density and aging performance.There is, therefore,a need for new materials where lower particle concentration is desired.With this regard,newly developed nanocomposites would be competitive materials.Nanoscale materials such as nanocomposites provide the opportunity to explore new behavior and functionality beyond those found in conventional materials.Polymeric nanocomposites are materials that are designed and processed from selected constituents.The extremely high surface area is one of the most attractive characteristics of the nanoparticles because it facilitates creating a great interface in a composite.An interphase of1nm thick represents roughly0.3%of the total volume of polymer in the case of micro particle filled composites,whereas it can reach30%of the total volume in the case of nanocomposites[1].Contribution made by the interphase modified by the low nanofiller loading provides possibilities of enhanced performance by influencing the properties of the matrices.Chun et al.reported significant improvement in the tensile performance of polypropylene composites in terms of stiffening,strengthening and toughening with a low-filled content of about0.5%[2].Clay and inorganic reinforcements have been shown to be effective reinforcements in neat polymeric structures[3–8],but very little work has been done to examine advanced fiber-reinforcement composites that utilize nano-composite matrices.Hussain et al.[9]incorporated nano scale Al2O3particles in filament wound carbon fiber/epoxy composites.He observed an increase in modulus,flexural strength, interlaminar shear strength,and fracture toughness when the matrix was filled with10% by volume of alumina particles of25nm diameter.Seferis et al.[10]have shown the ability to incorporate nanosized alumina structures in the matrix and interlayer regions of prepreg-based carbon/epoxy composites.Timmerman et al.[11]studied the influence of nanoclay on the carbon fiber/matrix composites under thermal cyclic loading and reported that the transverse cracking in symmetric carbon fiber/epoxy laminates was significantly reduced when nanoparticle fillers were used.Gopakumar et al.[12]studied the influence of clay exfoliation on the physical properties of montomorillonite/ployethelene composites. They reported that nanoscale dimensions of the dispersed clay particles in the nanocomposites led to significant improvement in viscous and elastic properties and stiffness,which was attributed to the enhanced phase adhesion.In order to integrate the nanoscale materials as part of larger material components,it is essential to determine the influence of the nano phased particles on the properties of the larger material systems. It has been demonstrated that effective dispersion of anisotropic nanoparticles can substantially improve properties of the polymeric matrices.This dispersion of nanoparticles highly depends on processing techniques such as solution blending,shear mixing,in situ polymerization,ultrasonic cavitation,high pressure mixing[13–19]. Nanoparticles,like nanoclays,used in carbon fiber-reinforced polymeric composites,at very low concentrations seem to improve mechanical and thermo mechanical properties of the composites[20].However,impact resistance of such polymer composites is probably one of the most important and least understood phenomena.Very few studies on the effect of nanoclay platelets in polymer composites have been carried out.Low velocity impact testing of composites is a very crucial area for investigation.A major concern that limits the usage of composites is their susceptibility to damage due to impact loading.There are practical situations like tool drops,runway debris,bird strikes,hailstorms,and ballistic loading,which induce considerable damage to the composite posites are inherently weak in transverse direction,i.e.,the stiffness and the strength in through-the-thickness direction are poor since no fibers are present in that direction.Low-velocity impact is considered potentially dangerous mainly because the damage might be leftWoven Carbon/Epoxy–Nanoclay Nanocomposites2197 undetected,as the surface may appear to be undamaged.Understanding the causes for the formation of such damages and improving the damage resistance characteristics of composites are very important.When subjected to impact loading,the energy is absorbed in the form of creation of new surfaces.The failure mechanisms include indentation, matrix cracking,delamination,ply splitting,and fiber fracture[21–24].This will considerably reduce the residual mechanical properties of the laminate.The worst scenario occurs when the damage is at subsurface levels.It is known that the residual compressive strength,which is the most affected mechanical property,is reduced to almost up to50%[25–28].In many situations,the level of impact at which visible damage is formed is much higher than the level at which substantial loss of residual properties occurs. Even when no visible impact damage is observed at the surface(energies below barely visible impact damage,BVID),matrix cracking and interlaminar failure can occur,and the load carrying capacity of the composite laminates is considerably reduced.Visible damage occurs if an impact is above a threshold impact energy,which depends on the laminate stiffness.Though there have been a number of studies on the impact response of composites,to the best of the authors’knowledge,there are no studies reported in the open literature on the effects of nanoclay on the impact response of woven composites.Hence,in the present study,low velocity impact response of carbon/nanoclay-epoxy composites was investi-gated.In addition to that,the damage area of these composite laminates was also studied through ultrasonic c-scan images to observe the effect of different weight percentages of nanoclay platelets on the polymer composites.EXPERIMENTALResin PreparationUltrasonic cavitation technique is one of the most efficient means to disperse nanoparticles into a polymer[29].Sonics Vibra Cell ultrasonic processor(Ti-horn, 20kHz,100W/cm2)was used to obtain a homogeneous mixture of epoxy resin and Nanocor NanomerÕI-28E nanoclay,a surface modified montmorillonite clay.SC-15 epoxy,manufactured by Applied Poleramic,Inc.,comes with two parts:part A and part B. At first,the part A of SC-15epoxy(mixture of diglycidylether of bisphenol A,60–70%, aliphatic diglycidylether,10–20%)was sonicated with nanoclay at an amplitude of55% with a total mixing time of30min.The distance of one movement up and down of the ultrasonic probe is called its amplitude.The amplitude can be set at a certain percentage of maximum amplitude of the probe.In the current study,a12.7mm diameter high intensity probe which has maximum amplitude of124m m was used.Amplitude setting at55% corresponds to amplitude of68.2m m.Nanoclay pick up moisture from air very easily.To get rid of the moisture,nanoclay was heated to100 C for2h before sonication.A pulser cycle(turning on and off-time ratio of2:1)was used to control the temperature of the mixture.It was recommended to keep the temperature of the mixture at around40–50 C for good mixing,which was monitored using an infrared thermometer.The pulser cycle helps to achieve this goal.In addition,a water bath was also used.After sonication,the homogeneous mixture was cooled down to room temperature in a refrigerating cooler maintained at5 C as shown in Figure1(b).The sonicated part A with nanoclay was then mixed with part B of SC-15epoxy(epoxy hardener,cycloaliphaticamine 70–90%and polyoxylalkylamine 10–30%)at a ratio of 10:3by weight using a high speed mechanical stirrer for about 5min.Figure 1(c)illustrates the mechanical mixing of part A and part B.The mechanical mixing introduces air bubbles into the resin.This warranted a need of removing the trapped air and reaction volatiles from the reaction mixture.This was done using high vacuum for about 30min.The resin mixture was kept in a sealed desiccating chamber,as can be seen in Figure 1(d),and connected to a vacuum suction pump.The high vacuum pulls out the air from the mixture and the resin is degasified at the lower layer.Two distinct layers are evident in Figure 1(d).Nanocomposite FabricationCarbon/nanoclay-epoxy composites were manufactured by both VARTM processes.A 15-layer plain weave carbon fabric was used to fabricate the composite laminates.The fabric had T-300carbon fibers with 3k fiber tows in both warp and fill directions.Nominal thickness of the laminates was 3.3mm.Arrangement of the fabrication process is detailed schematically in Figure 2.The VARTM process uses vacuum pressure to remove air from the fabric lay-up before and while the matrix resin is introduced to the fabric reinforcement.The pressure difference between the atmosphere and the vacuum is the driving force for infusion of the resin into thelay-up.(a)(d)(b)(c)Figure 1.(a)Vibra-cell ultrasonic processor.(b)Cooling of sonicated Part A.(c)Mechanical mixing of part A and part B of SC-15epoxy .(d)Degasification of resin mixture.2198M.V.H OSUR ET AL .Woven Carbon/Epoxy–Nanoclay Nanocomposites2199Suction lineVacuum baggingFigure2.VARTM layup sequence.For fabricating the laminate,freekote(mold releasing agent)was sprayed on the mold. The required number of layers was carefully placed on the mold.Then a sealant tape was tacked on the surface of the mold about25–50mm from the perimeter of the fabric layers. Resin supply tubes were connected to the system with the mold end of the tube connected to a spiral wrap along with a distribution mesh that lies on the top and bottom of the preform.This facilitates easy flow of resin over the top and through the thickness of the laminate when vacuum is applied.Tubes linking the vacuum pump and the spiral wrap were also connected.Resin traps were placed between the vacuum pump and the mold to collect the excess resin.Finally,a vacuum bag was placed on the mold pressed firmly against the sealant tape to provide a vacuum tight system.The preform was left to debulk under vacuum.After debulking,the nanophased SC-15resin system was infused impregnating the fabric as the resin flow advanced towards the vacuum side.The resin inlet valve was closed when resin reaches the suction side,and the infused laminate was left to cure at room temperature.Vacuum was maintained until the end of cure to remove any volatiles generated during the polymerization,in addition to maintaining the pressure of one atmosphere.The room temperature cured material was taken out from the vacuum bagging and trimmed.Test samples were machined for low velocity impact characterization.They were thermally post cured at100 C for5h in a mechanical convection oven.Low Velocity Impact TestingAll the impact tests in this study were conducted using an impact drop tower device DYNATUP Model8210manufactured by GRC Instruments.DYNATUP,as shown in Figure3,is equipped with as Impulse data acquisition system,version3.Impulse v.3can acquire8192data ing this machine,impact energy and velocity can be varied by changing the mass and height of the dropping weight.The Specimen is held with clamped edge conditions in the fixture placed at the bottom of the drop tower,which provides aclamped circular support span of 75mm in diameter.The weight of crosshead was maintained at 6.62kg and it was guided through two smooth guide columns.The impactor end is fitted with an instrumented tup of 15.56kN capacity that records the transient response of the specimens.In all 8192data points are collected during the impact event.Samples were impacted with 12.5mm diameter instrumented tup having an hemispherical end.Transient response of the samples includes velocity,deflection,load and energy as a function of time.For each type of laminates,at least three samples were subjected to impact at 10,20,and 30J.The machine is also fitted with a velocity detector that measures the velocity of the tup just before it strikes the specimen.It is also fitted with pneumatic rebound brakes,which prevents multiple impacts on the specimen.Data acquisition system records load vs.time data for each test.Along with this data and the velocity at impact data,the software calculates deflection,specimen velocity and energy absorbed by the specimen.The data is analyzed in terms of peak load and absorbed energy.The absorbed energy is calculated as the difference of total energy (at the end of the event)and the energy at peak load.The impact energy is,in general,mainly absorbed in the form of elastic deformation,plastic deformation and through various damage modes.As composite materials have no plastic deformation,all the energy is absorbed through elastic deformation and through different failure modes.Hence,in the current study,absorbed energy is attributed to the energy spent in creating damage.The 100mm Â100mm composite samples were placed between the pneumatic clamps.Heights were adjusted depending on the desired energy level.To calculate the height of the indenter from which it should be dropped to achieve 10,20,and 30J of energy,thePneumatic clamphTup, m 1Insert, m 2Main massFigure 3.Experimental set-up for low-velocity impact test.2200M.V.H OSUR ET AL .Woven Carbon/Epoxy–Nanoclay Nanocomposites2201 equation E¼mgh is used,where E is the impact energy,m is the mass of the impactor,g is the acceleration due to gravity,and h is the drop height.The height is the distance between the tip of the indenter and the top surface of the sample held between the pneumatic clamps.The two known parameters are the mass which is6.62kg and the acceleration due to gravity which is9.81m/s2.Now the values for energies are put separately as10,20,and 30J to get their respective heights.Once the height required to attain a particular energy level is known,the indenter is moved accordingly to that height before it is dropped on the specimen for the test.Ultrasonic C-ScanUltrasonic inspection of the laminates was conducted using an ultrasonic pulse-receiver unit by Sonix Inc.with FlexSCAN-C TM software.The scanning was done in pulse-echo immersion mode using1MHz50mm-focus transducer.The1MHz sensor had a piezoelectric element size of19mm.Scanning was done with the impacted surface facing the sensor to obtain the projected damage.Gate was set on the back surface echo.All the laminates were subjected to ultrasonic nondestructive evaluation both before and after impact testing.The ultrasonic testing before impact loading was carried out to ensure that there was no fabrication defect in the sample.Post impact ultrasonic testing was conducted to evaluate the extent of damage in the sample.From the c-scan images,the damage area as projected onto a plane was measured.RESULTS AND DISCUSSIONLow Velocity Impact CharacterizationThe specimens were tested under three energy levels namely10,20,and30J.Figure4 shows the load and energy vs.time response of control samples,1%,2%,and3% nanoclay samples at these three energy levels.Table1gives the average values of the peak load and absorbed energy of the three types of samples impacted at the three energy levels. It was observed that the average peak load,as shown in Table1,at which the control samples failed,was 1.40kN for10J, 1.42kN for20J,and 1.45kN for30J.The corresponding absorbed energy was4.97J,15.84,J and13.18J.As expected there was an increase in the peak load as the energy levels were increased.A similar trend was also seen in the case of different weight percentages of nanoclay samples.The average peak load at which the1%nanoclay samples failed,was1.42kN for10J,1.45kN for20J,and1.50kN for30J whereas the average absorbed energy was5.36J,12.88J and8.64J.The average peak load at which the2%nanoclay samples failed,was1.35kN for10J,1.43kN for20J, and1.46kN for30J and the corresponding average absorbed energy was5.34,15.42,and 9.45J.The average peak load,as shown in Figure4(d),at which the3%nanoclay samples failed,was1.42kN for10J,1.52kN for20J,and1.41kN for30J and the corresponding average absorbed energy was5.98J,14.94J and8.55J.In most of the cases the load vs.time plot showed a smooth rise up to the maximum load indicating an elastic response up to that point.Whenever there was some oscillations until the load reaches the peak value indicates that there is perforation of the top surface followed by the oscillatory drop in load implying the progressive local failure of thelaminate [30].The slope of the load–time curve,which is designated as the contact stiffness,increases with the increasing amount of energy.The initial knee found in the load–time–energy plot is due to the inertia effect of the tup and the sample.Once the inertia of the tup and samples matched,a smooth load rise is seen.Figure 5(a)–(c)shows a comparison of load–time response for control,1%,2%,and 3%nanoclay samples at 10,20,and 30J energy levels respectively.The slope of the load–time curve,which is designated as the contact stiffness,remains the same.The peak load has an increased value for 1%nanoclay sample as compared to control and other percentages of nanoclay samples.It is observed that the peak load,as shown in00.51.01.5246810051015202530 J 20 J 10 J30 J 20 J 10 J30 J 20 J 10 J30 J 20 J 10 JTime (msec)246810Time (msec)246810Time (msec)0246810Time (msec)L o a d (k N )E n e r g y (J )05101520E n e r g y (J )05101520E n e r g y (J )05101520E n e r g y (J )(a)00.51.01.5L o a d (k N )(c)0.51.01.5L o a d (k N )(b)00.51.01.5L o a d (k N )(d)Figure 4.Load and energy vs time response of VARTM:(a)control samples.(b)1%nanoclay samples.(c)2%nanoclay samples,and (d)3%nanoclay samples at three different energy levels.Table 1.Average peak load and absorbed energy.Damage area,mm 2Control sample1%nanoclay2%nanoclay3%nanoclay10JPeak load (kN)1.41 1.42 1.35 1.42Absorbed energy (J) 4.97 5.36 5.34 5.9820JPeak load (kN)1.42 1.45 1.43 1.52Absorbed energy (J)15.8412.8815.4214.9430JPeak load (kN)1.45 1.50 1.46 1.41Absorbed energy (J)13.188.649.458.552202M.V.H OSUR ET AL .2.(a )1.1.0.L o a d (k N )2.(c )1.1.0.L o a d (k N )2.(b )1.1.0.L o a d (k N )T i m e (m s e c )T i m e (m s e c )T i m e (m s e c )F i g u r e 5.L o a d –t i m e r e s p o n s e o f c o n t r o l ,1%,2%,a n d 3%n a n o c l a y s a m p l e s a t 10,20,a n d 30J e n e r g y l e v e l s r e s p e c t i v e l y .Woven Carbon/Epoxy–Nanoclay Nanocomposites22032204M.V.H OSUR ET AL. Figure5(a),at which the samples failed,was1.35,1.44,1.39,and1.36kN for control,1%, 2%and3%nanoclay samples,respectively.As can be seen in Figure5(b),the peak load at which the samples failed was1.40,1.49,1.46and1.43kN for control,1%,2%,and3% nanoclay samples,respectively.Also,at30J impact energy,the peak load,as shown in Figure5(c),was1.37,1.54,1.48,and1.42for control,1%,2%and3%nanoclay samples, respectively.It is clearly seen from here that1%nanoclay samples had the highest peak load than control and other nanoclay samples.But there was no significant effect of nanoclay seen in all three energy levels.Quite a few oscillations were observed untill the load reaches the peak value.The loading and unloading portion of the load–time curves is not smooth and symmetric which indicates the presence of progressive damage.In the case of composite laminates subjected to impact loading at different energy levels, the peak load generally increases with impact energy until a threshold is reached beyond which it either remains constant or will reduces(when there is severe damage)with increasing energy.For this to happen,the requirements is to start at a very low energy and gradually increase the impact energy level.In the current study,impact energy was chosen to be10,20,and30J.In the control samples,the first indication of damage was seen at 10J.With the increase in the energy levels,however,the peak load did not increase much indicating that the peak load was close to the threshold level when the samples were tested at10J.As was seen in the study,damage level increased at20and30J and hence the peak load did not increase.A close look at Figure4reveals that the shape of the load–time curves is different for30J as compared to10and20J for all the samples.This is related to the damage in the samples.The composite laminates are brittle in nature and respond elastically until they reach the peak load.If the impact energy is higher than the energy absorbed until the peak load,the additional energy is taken up in the creation of damage with a small amount of energy lost in friction between the sample and the impactor.After the peak load is reached,there is a drop in the load indicating the creation of damage.If there was no damage in the sample,the load–time response will be symmetric about the peak load.The drop in the peak load is not too sharp indicating qualitatively that the damage created is not significantly high so as to reduce the stiffness of the laminate. This is characteristic of woven fabric composites unlike unidirectional laminates. During impact loading,the initial damage is at the contact zone.However,that damage is highly localized and does not affect the residual properties to a large extent. As the impact energy is increased,the laminate undergoes large deformation.The next failure that takes place will be the tensile failure of the back surface due to flexure. In the case of unidirectional laminates as the fibers are provided in only one direction, the ply will split along the fibers.This leads to the creation of large delaminations at the interfaces immediately preceding the last layer.However,in the case of woven fabric composites,the plies will have fibers in both directions.In addition,they are woven together.Even if a fiber tow fails in tension,the damage is localized and will not propagate in the plane of the ply as the damage front is resisted by not only the fibers in the transverse direction but also by the interlacing.Hence,the sharp drop is not observed in the case of woven composites.In the current study,there was a barely visible dent at the surface of the samples when impacted at10J.However,at20J the dent is quite visible at the impact location with fiber fracture at the front(impact)surface as well as fiber fracture with prominent cracks on the back surface.However,at30J,there was clear penetration through the entire thickness for all samples.As long as there is no penetration,the impact duration will be long.Hence,itis seen in the load–time plots of samples impacted at10and20J,the duration was longer than for those impacted at30J.Further,in the event of an impact,energy is absorbed by a material in the form of elastic,plastic deformations and through failure modes.As indicated earlier,in the case of composites,there is hardly any plastic deformation.Hence the energy absorption is predominantly through the creation of various damage modes.As can be seen from Table1,the absorbed energy for the control samples at10J was less when compared to all the nanophased laminates which implies that nanophased laminates were able to absorb more energy elastically at all energy levels.At higher energy levels,the absorbed energy was higher in the case of the control samples which would mean than the damaged area was also higher as will be demonstrated in the next section.At30J,there was clear penetration of the samples.When this happens,the entire kinetic energy of the tup is not transferred to the sample.As a consequence,the absorbed energy will be less.The absorbed energy for all the nanophased samples at30J was less compared to control samples.This would mean that the control samples had higher damage than the nanophased samples.It can be inferred that the inclusion of nanoclay into the samples resisted the propagation of cracks and contained the growth of damage.Ultrasonic NDENanoclay seems to have a marginal effect on peak load and initial slope of the load–time graph but the effect is readily seen when the damage areas are investigated.Ultrasonic c-scan studies were used to find out the extent of damage for all the samples.In the ultrasonic testing,ultrasound traverses through the water media in the case of immersion technique and gets reflected back at the front surface of the sample.Part of the ultrasonic energy gets transmitted into the sample.If there is no defect in the path of the ultrasound, it traverses through the thickness of the material while suffering an attenuation due to the absorption of ultrasound by the material and then gets reflected back again at the back surface of the sample.Signals of ultrasound that are reflected off the front and back surfaces of the sample are called front wall and back wall echoes.If a defect or damage is present in the sample,then it acts as a reflector of the ultrasound and a defect echo is generated.Depending on the nature of defect or damage,there may be a presence or a total absence of back surface echo.In the current study,back surface signal was continuously monitored and collected over an area of50Â50mm at an internal of0.25mm.The amplitude of this signal is stored in terms of decibels(dB)and plotted as a c-scan image.Presence of damage due to impact in the sample reduces the back wall signal to almost zero.In the current study,the term damage is used to include the cumulative effects of all damage modes which include matrix cracking,fiber fracture as well as penetration.Some representative ultrasonic c-scan images of control and1%nanoclay samples with the photographs of front and back surface of the laminates impacted at10,20,and30J, respectively,are presented in Figures6(a)–(c)through Figures9(a)–(c)respectively. Impact testing was not carried out beyond30J as there was total penetration of the sample at30J.The horizontal and vertical stripes seen in the ultrasonic c-scans are impressions left by the distribution meshes in VARTM manufacturing creating waviness in the surface.This waviness is generally produced in VARTM manufactured composites which is captured by the c-scans.In Figure6,the samples,tested at10J,did not show any。

相关文档
最新文档