全美数学竞赛USA-AMC_12-AHSME-2005-44
数学amc竞赛
数学amc竞赛
数学amc竞赛
美国数学竞赛(American Mathematics Competition,简称AMC)是一个由美国数学家协会(MAA)准备的年度北美数学竞赛,它吸引了来自世界各地大多数由7 到 12 年级学生构成的参赛团队。
AMC 竞赛旨在帮助学习数学的学生和老师对数学基础有更多的了解,引发学生对自然科学和数学科学的激情,提高学生的数学兴趣,并推动数学教育发展。
AMC 竞赛分第一至六级,级别越高,答题难度越高,每一关分数要求也越高,学生需要有步步增进的学习计划和高度的技巧,非常有意义的。
参赛学生可以了解越来越多的数学基础知识,可以利用问题解决的思维模式来解决复杂的科学问题,可以培养数学思考能力和好奇心,以及完成数学实验,研究题目和思考答案的兴趣。
最后想说的是,AMC 竞赛对于促进学生的数学学习起到了重要的作用,希望更多的学生能参与到这场有趣的竞赛中,以更深入地了解数学。
美国数学竞赛
竞赛题目的难度分布及运算量的不同
•我国数学竞赛题目缺乏应用性和技巧性,运算量较大,并且 一个题目的内容比较单一.美国数学竞赛题目应用性很强, 技巧性也较高,运算量比较小,同时能够够将多个知识点融 合到一个题目当中. •竞赛时间的不同 •我国中学数学竞赛由于题目较难,运算量较大,导致考试时 间较长.而美国题目难度稍低,运算量不大,同时有的竞赛 允许使用计算器,这样就减少了很多的竞赛时间.
IMO选拔
• • • • • 初中数学联赛 高中数学联赛 AMC8:11月中举行。 AMC10:2月初 AMC12:2月中。 美国数学邀请赛:3月底。 美国数学奥林匹克:4月的最后一周。 数学奥林匹克夏令营(MOSP) 国际数学奥林匹克(IMO):7月
AMC通过其完善的测试体系一直承担着为美国培育世界数 学奥林匹克IMO选手的重任。AMC的研究人员透过AMC8、AMC 10、AMC12、AIME等一系列测验,找出绩优生参加USJMO和 USAMO,再从全美数十州筛选出12位精英,成立美国数学奥 林匹克夏令营(MOSP),最终从中选出美国参加IMO的6名选 手,组成IMO美国国家队。
美国中学数学竞赛的特点
• 1)组织者广泛、参赛者自愿 • 2)竞赛目的多样化 • 3)普及与选拔两项功能有机结合
• 4)竞赛形式多样化,评分规则多元化
中美数学竞赛的比较
•竞赛考察知识点的不同 •首先,美国考察的内容比我国考察的内容更接近实际生活。 •其次,由于美国高中阶段就已经讲解了我们在大学阶段学习 的内容,比如微积分、极限、级数等等,而我国高中只简单 的涉及一点微积分的知识,故在一些中学数学竞赛中,美国 考察的知识范围是大于同等级别中国数学竞赛考察知识的范 围的.美国中学数学教学的特点是广而浅,我国则是窄而 深.
2024年美赛竞赛赛题解析
2024年美赛竞赛赛题解析(中英文版)英文文档:Title: Analysis of the 2024 American Mathematics Competition (AMC) QuestionsThe American Mathematics Competition (AMC) is an annual mathematics examination for high school students in the United States.The 2024 AMC questions are designed to test students" mathematical knowledge, problem-solving skills, and creativity.In this article, we will analyze the key features and trends of the 2024 AMC questions.Firstly, the 2024 AMC questions cover a wide range of mathematical topics, including algebra, geometry, probability, and calculus.These topics are essential components of a comprehensive mathematics education.The questions are designed to assess students" understanding of these topics and their ability to apply mathematical concepts to solve problems.Secondly, the 2024 AMC questions require students to think critically and logically.Many questions are word problems that require students to interpret mathematical information, identify relevant equations or theorems, and develop a plan to solve the problem.The ability to communicate mathematical ideas clearly and effectively is alsoan important aspect of the examination.Thirdly, the 2024 AMC questions emphasize problem-solving skills.Students are required to use various strategies, such as substitution, elimination, and iteration, to find solutions.The examination also tests students" ability to estimate solutions and determine the reasonableness of their answers.Fourthly, the 2024 AMC questions encourage students to think creatively and explore mathematical concepts beyond traditional problem-solving methods.Some questions may have multiple solutions or require students to develop their own original solutions.This encourages students to think outside the box and explore the boundaries of mathematical knowledge.In conclusion, the 2024 American Mathematics Competition (AMC) questions are designed to assess students" mathematical knowledge, problem-solving skills, and creativity.The questions cover a wide range of topics and require students to think critically, logically, and creatively.By participating in the AMC, students can improve their mathematical abilities and expand their horizons in the field of mathematics.中文文档:标题:2024年美国数学竞赛(AMC)题目解析美国数学竞赛(AMC)是一项年度数学考试,面向美国高中学生。
全美数学竞赛流程
全美数学竞赛流程全美数学竞赛(AMC)是美国数学协会(MAA)主办的一项数学竞赛,分为AMC 10和AMC 12两个级别。
以下是全美数学竞赛的流程:1. 注册报名:学生可以通过学校或个人报名参加AMC竞赛。
报名通常在每年10月开始,截止日期一般在11月初。
2. 竞赛日期:竞赛通常分为两个日期进行,AMC 10和AMC12的日期可能不同。
竞赛通常在每年2月进行,考试时间为75分钟。
3. 考试内容:AMC竞赛分为多个选择题,每个竞赛级别有25道题目。
AMC 10适用于初中和低年级高中学生,AMC 12适用于高年级高中学生。
题目类型包括代数、几何、概率、数论等数学知识点。
4. 答题方式:学生需要在答题卡上选择正确答案。
答题卡需要填写个人信息和参加的竞赛级别。
5. 判题与分数:竞赛结束后,答题卡会被寄回MAA进行判题。
每道题目的正确答案会公布在MAA网站上。
学生可以在个人平台上查询自己的分数和排名。
6. 参赛资格:根据竞赛成绩,学生有机会获得进入AMC竞赛的更高级别,如AIME(AMC的随机选取的约5%到接近2.5%的学生进入AIME竞赛)。
7. 成绩认可:AMC竞赛成绩被广泛用于许多数学竞赛和数学奖学金的选拔,包括全国数学奥林匹克、AMC奖学金、美国数学学会奖学金等。
8. 破解讲座:MAA常常会组织一些破解讲座,分享一些解题技巧和策略,帮助学生提高竞赛成绩和解题水平。
以上是全美数学竞赛的一般流程,具体流程可能会有一些差异,可以参考MAA的官方网站或者咨询相关责任人了解更多详细信息。
美国数学竞赛
附:美国AMC简介American Mathematics Competition又称为American High School Mathematics Examination美国中学数学科考试(AHSME),是由美国数学协会(Mathematics Association of America)于1950年成立,目前总部设于美国际布拉斯加大学林肯校区(University Of Nebraska-Lincoln),是美国数学协会(Mathematics Association of America)的直属机构。
在1985年时,又添加了初中数学科的检定考试American Junior High School Mathematics Examination(AJHSME)、每年仅在北美地域,正式注销应试的先生就超越600,000人次,也因而AMC是世界上目前信度和效度最高的数学科试题。
而全球停止同步检验的国度还有加拿大、新加坡、香港、日本、匈牙利、希腊、土耳其、法国、等二十余国。
此项检验已获美国中学校长推介为每年的次要活动之一。
AMC检验由试题研发、命制到一致阅卷等作业,完全委托素由数理出名的内布拉斯加大学林肯校区University Of Nebraska-Lincoln数学系教授率领专家学者成立委员会全权担任。
该委员会成员皆来自全美一流学府,如麻省理工学院MIT、哈佛大学Harvard、普林斯顿大学Princeton等名校,共同研讨规划。
多年来,AMC还扮演为美国培育世界数学奥林匹克(IMO)选手的重责大任。
AMC 的研讨人员透过AMC 8、AMC 10、AMC 12、AIME一系列检验,找出绩优生参与美国数学奥林匹克(USAMO),再从全美数十州挑选出24至30位菁英,成立数学奥林匹克夏令营(MOSP)。
经过AMC的密集训练,现实证明,以1990年到2000年这十年为例,有九年由AMC集训的美国队博得奖牌。
申请美国大学,哪些竞赛可以让你脱颖而出?
随着国内赴美留学的学生日趋增多,在竞争激烈的情况下,仅仅拿高分去申请,是没有绝对优势的,需要参加含金量更高的竞赛活动,才能算是做好了充足的两手准备~申请美国大学时,哪些竞赛可以让你脱颖而出?请听王老师的干货分享:数学类竞赛美国数学竞赛American Mathematics Contest (AMC)比赛分8、10、12年级。
参加AMC10和 AMC12成绩优异者可晋级美国数学邀请赛AIME (American Invitational Mathematics Examination)。
国际奥林匹克数学竞赛International Mathematical Olympiad (IMO)普林斯顿数学竞赛the Princeton University Math Competition(PUMaC)哈佛MIT数学竞赛the Harvard-MIT Math Tournament (HMMT)杜克大学数学竞赛Duke Math Meet (DMM)美国高中生建模比赛High School Mathematical Contest in Modeling(HiMCM)丘成桐数学大赛Shing-Tung Yau High School Mathematics Awards (YHMA)国际数学建模挑战赛The International Mathematical Modeling Challenge(IMMC)综合性科技类竞赛谷歌科学挑战赛Google Science Fair (GSF)英特尔天才奖Intel Science Talented Search(STS )英特尔国际科学工程Intel Science and Engineering Fair(ISEF)西门子科学竞赛Siemens Competition in Math, Science & Technology国际太空城市设计大赛International Space Settlement Design Competition(ISSDC)世界青少年发明展International Exhibition for Young Inventors(IEYI)上海青少年科技创新大赛Shanghai Adolescents Science&Technology Innovation Contest登峰杯全国中学生学术科技创新大赛包括学术作品竞赛、数学建模竞赛、机器人竞赛、结构设计竞赛、数据挖掘竞赛、艺术创意设计竞赛等六个竞赛项目“环保马拉松Envirothon”高中理工科竞赛物理/化学/生物类竞赛普林斯顿大学物理竞赛Princeton University Physics Competition(PUPC)国际青年物理学家竞赛简称International Youth Physical Tournament (IYPT)国际奥林匹克物理竞赛International Physics Olympiad (IPhO)“物理杯”美国高中物理竞赛PHYSICS BOWL“美国物理教师协会”物理摄影大赛AAPT Photo Contest英国物理奥林匹克竞赛British Physics Olympiad competition (BPhO)国际奥林匹克化学竞赛International Chemistry Olympiad (IChO)美国化学奥林匹克竞赛U.S. National Chemistry Olympiad英国化学奥林匹克竞赛UK Chemistry Olympiad英国皇家化学学会新星挑战赛Rising Star China Chemistry Challeng(RSC)国际奥林匹克生物竞赛International Biology Olympiad (IBO)美国生物奥林匹克竞赛USA Biology Olympiad英国生物奥林匹克竞赛British Biology Olympiad国际基因工程机器竞赛International Genetically Engineered Machine Competition(IGEM)国际脑神经科学大赛International Brain Bee丘成桐中学科学奖Shing-Tung Yau High School Science Awards (YHSA)除了比较熟悉的丘成桐数学奖,近年来,丘成桐科学奖已经形成数学、物理、化学、生物、计算机五大学科的奖项设置。
2005年美国数学竞赛-AMC_12
2005A 1Two is 10%of x and 20%of y .What is x −y ?A.1B.2C.5D.10E.202The equations 2x +7=3and bx −10=−2have the same solution.What is the value of b ?A.-8B.-4C.-2D.4E.83A rectangle with a diagonal length of x is twice as long as it is wide.What is the area of the rectangle?A.14x 2B.25x 2C.12x 2D.x 2E.32x 24A store normally sells windows at $100each.This week the store is offering one free window for each purchase of four.Dave needs seven windows and Doug needs eight windows.How much will they save if they purchase the windows together than rather separately?A.100B.200C.300D.400E.5005The average (mean)of 20numbers is 30,and the average of 30other numbers is 20.What is the average of all 50numbers?A.23B.24C.25D.26E.276Josh and Mike live 13miles apart.Yesterday,Josh started to ride his bicycle toward Mike’s house.A little later Mike started to ride his bicycle toward Josh’s house.When they met,Josh had ridden for twice the length of time as Mike and at four-fifths of Mike’s rate.How many miles had Mike ridden when they met?A.4B.5C.6D.7E.87Square EF GH is inside the square ABCD so that each side of EF GH can be extended to pass through a vertex of ABCD .Square ABCD has side length √50and BE =1.What is the area of the inner square EF GH ?A.25B.32C.36D.40E.428Let A,M ,and C be digits with(100A +10M +C )(A +M +C )=2005What is A ?A.1B.2C.3D.4E.5This file was downloaded from the AoPS −MathLinks Math Olympiad Resources Page Page 1http://www.mathlinks.ro/20059There are two values of a for which the equation 4x 2+ax +8x +9=0has only one solution for x .What is the sum of these values of a ?A.-16B.-8C.0D.8E.2010A wooden cube n units on a side is painted red on all six faces and then cut into n 3unitcubes.Exactly one-fourth of the total number of faces of the unit cubes are red.What is n ?A.3B.4C.5D.6E.711How many three-digit numbers satisfy the property that the middle digit is the average ofthe first and the last digits?A.41B.42C.43D.44E.4512A line passes through A(1,1)and B(100,1000).How many other points with integer coordi-nates are on the line and strictly between A and B?A.0B.2C.3D.8E.913The regular 5-point star ABCDE is drawn and in each vertex,there is a number.EachA,B,C,D,and E are chosen such that all 5of them came from set 3,5,6,7,9.Each letter is a different number (so one possible ways is A=3,B=5,C=6,D=7,E=9).Let AB be the sum of the numbers in A and B.If AB,BC,CD,DE,and EA form an arithmetic sequence (not necessarily this order),find the value of CD.A.9B.10C.11D.12E.1314On a standard die one of the dots is removed at random with each dot equally likely to bechosen.The die is then rolled.What is the probability that the top face has an odd number of dots?(A)511(B)1021(C)12(D)1121(E)61115Let AB be a diameter of a circle and C be a point on AB with 2·AC =BC .Let D and Ebe points on the circle such that DC ⊥AB and DE is a second diameter.What is the ratio of the area of DCE to the area of ABD ?(A)16(B)14(C)13(D)12(E)2316Three circles of radius s are drawn in the first quadrant of the xy -plane.The first circle istangent to both axes,the second is tangent to the first circle and the x -axis,and the third is tangent to the first circle and the y -axis.A circle of radius r >s is tangent to both axes and to the second and third circles.What is r/s ?200517A unit cube is cut twice to form three triangular prisms,two of which are congruent,as shownin Figure 1.The cube is then cut in the same manner along the dashed lines shown in Figure2.This creates nine pieces.What is the volume of the piece that contains vertex W ?[img]/Forum/album p ic.php ?pic i d =320[/img ]A)112B)19C)18D)16E)1418Call a number ”prime-looking”if it is composite but not divisible by 2,3,or 5.The three smallestprime-looking numbers are 49,77,and 91.There are 168prime numbers less than 1000.How many prime-looking numbers are there less than 1000?(A)100(B)102(C)104(D)106(E)10819A faulty car odometer proceeds from digit 3to digit 5,always skipping the digit 4,regardless ofposition.If the odometer now reads 002005,how many miles has the car actually traveled?(A)1404(B)1462(C)1604(D)1605(E)180420For each x in [0,1],definef (x )=2x,if 0≤x ≤12;f (x )=2−2x,if 12<x ≤1.Let f [2](x )=f (f (x )),and f [n +1](x )=f [n ](f (x ))for each integer n ≥2.For how many values of x in [0,1]is f [2005](x )=12?(A)0(B)2005(C)4010(D)20052(E)2200521How many ordered triples of integers (a,b,c ),with a ≥2,b ≥1,and c ≥0,satisfy both log a b =c 2005and a +b +c =2005?(A)0(B)1(C)2(D)3(E)422A rectangular box P is inscribed in a sphere of radius r .The surface area of P is 384,and the sumof the lengths of its 12edges is 112.What is r ?(A)8(B)10(C)12(D)14(E)16200523Two distinct numbers a and b are chosen randomly from the set {2,22,23,...,225}.What is theprobability that log a b is an integer?(A)225(B)31300(C)13100(D)750(E)1224Let P (x )=(x −1)(x −2)(x −3).For how many polynomials Q (x )does there exist a polynomialR (x )of degree 3such that P (Q (x ))=P (x )·R (x )?(A)19(B)22(C)24(D)27(E)3225Let S be the set of all points with coordinates (x,y,z ),where x,y,and z are each chosen from theset {0,1,2}.How many equilateral triangles have all their vertices in S ?(A)72(B)76(C)80(D)84(E)882005B 1A scout troop buys 1000candy bars at a price of five for $2.They sell all the candy bars at a price of two for $1.What was their profit,in dollars?A.100B.200C.300D.400E.5002A positive number x has the property that x %of x is 4.What is x ?A.2B.4C.10D.20E.403Brianna is using part of the money she earned on her weekend job to buy several equally-priced CDs.She used one fifth of her money to buy one third of the CDs.What fraction of her money will she left after she buys all the CDs?A.15B.13C.25D.23E.454At the beginning of the school year,Lisa’s goal was to earn an A on at least 80%of her 50quizzes for the year.She earned an A on 22of the first 30quizzes.If she is to achieve her goal,on at most how many of the remaining quizzes can she earn a grade lower than an A?A.1B.2C.3D.4E.55An 8-foot by 10-foot floor is tiled with square tiles of size 1foot by 1foot.Each tile has a pattern consisting of four white quarter circles of radius 1/2foot centered at each corner of the tile.The remaining portion of the tile is shaded.How many square feet of the floor are shaded?A.80−20πB.60−10πC.80−10πD.60+10πE.80+10π6In ABC ,we have AC =BC =7and AB =2.Suppose that D is a point on line AB such that B lies between A and D and CD =8.What is BD ?A.3B.2√3C.4D.5E.4√220057What is the area enclosed by the graph of |3x |+|4y |=12?A.6B.12C.16D.24E.258For how many values of a is it true that the line y =x +a passes through the vertex of the parbola y =x 2+a 2?A.0B.1C.2D.10E.Infinitely many 9On a certain math exam,10%of the students got 70points,25%got 80points,20%got 85points,15%got 90points,and the rest got 95points.What is the difference between the mean and the median score on this exam?A.0B.1C.2D.4E.510The first term of a sequence is 2005.Each succeeding term is the sum of the cubes of thedigits of the previous terms.What is the 2005th term of the sequence?A.29B.55C.85D.133E.25011An envelope contains eight bills:2ones,2fives,2tens,and 2twenties.Two bills are drawnat random without replacement.What is the probability that their sum is $20or more?A.14B.27C.37D.12E.2312The quadratic equation x 2+mx +n =0has roots that are twice those of x 2+px +m =0,and none of m,n,and p is zero.What is the value of n/p ?A.1B.2C.4D.8E.1613Suppose that 4x 1=5,5x 2=6,6x 3=7,...,127x 124=128.What is x 1x 2···x 124?A.2B.52C.3D.72E.414A circle having center (0,k ),with k >6,is tangent to the lines y =x,y =−x and y =6.What is the radius of this circle?A.6√2−6B.6C.6√2D.12E.6+6√215The sum of four two-digit numbers is 221.None of the eight digits is 0and no two of themare same.Which of the following is not included among the eight digits?A.1B.2C.3D.4E.516Eight spheres of radius 1,one per octant,are each tangent to the coordinate planes.What isthe radius of the smallest sphere,centered at the origin,thta contains these eight spheres?A.√2B.√3C.1+√2D.1+√3E.3200517How many distinct four-tuples (a,b,c,d )of rational numbers are there witha log 102+b log 103+c log 105+d log 107=2005?A.0B.1C.17D.2004E.infinitely many 18AMC 122005B 18Let A (2,2)and B (7,7)be points in the plane.Define R as the region inthe first quadrant consisting of those points C such that ABC is an actue triangle.What is the closest integer to the area of the region R(A )25(B )39(C )51(D )60(E )8019Let x and y be two-digit integers such that y is obtained by reversing the digits of x .Theintegers x and y satisfy x 2−y 2=m 2for some positive integer m .What is x +y +m ?A.88B.112C.116D.144E.15420Let a,b,c,d,e,f,g and h be distinct elements in the set{−7,−5,−3,−2,2,4,6,13}.What is the minimum possible value of(a +b +c +d )2+(e +f +g +h )2A.30B.32C.34D.40E.5021A positive integer n has 60divisors and 7n has 80divisors.What is the greatest integer ksuch that 7k divides n ?A.0B.1C.2D.3E.422A sequence of complex numbers z 0,z 1,z 2,....is defined by the rulez n +1=iz nz n where z n is the complex conjugate of z n and i 2=−1.Suppose that |z 0|=1and z 2005=1.How many possible values are there for z 0?A.1B.2C.4D.2005E.2200523Let S be the set of ordered triples (x,y,z )of real numbers for whichlog 10(x +y )=z and log 10(x 2+y 2)=z +1.There are real numbers a and b such that for all ordered triples (x,y,z )in S we have x 3+y 3=a ·103z +b ·102z .What is the value of a +b ?2005A.152B.292C.15D.392E.2424All three vertices of an equilateral triangle are on the parabola y=x2,and one of its sides has a slope of2.The x-coordinates of the three vertices have a sum of m/n,where m and n are relatively prime positive integers.What is the value of m+n?A.14B.15C.16D.17E.1825Six ants simultaneously stand on the six vertices of a regular octahedron,with each ant at a different vertex.Simultaneously and independently,each ant moves from its vertex to one of the four adjacent vertices,each with equal probability.What is the probability that no two ants arrive at the same vertex?A.5 256B.21 1024C.11 512D.23 1024E.3 128。
全美数学竞赛USA-AMC_12-AHSME-2009-44
2009A1Kim’sflight took offfrom Newark at10:34AM and landed in Miami at1:18PM.Both cities are in the same time zone.If herflight took h hours and m minutes,with0<m<60,what is h+m?(A)46(B)47(C)50(D)53(E)542Which of the following is equal to1+11+11+1?(A)54(B)32(C)53(D)2(E)33What number is one third of the way from14to34?(A)13(B)512(C)12(D)712(E)234Four coins are picked out of a piggy bank that contains a collection of pennies,nickels,dimes, and quarters.Which of the following could not be the total value of the four coins,in cents?(A)15(B)25(C)35(D)45(E)555One dimension of a cube is increased by1,another is decreased by1,and the third is left unchanged.The volume of the new rectangular solid is5less than that of the cube.What was the volume of the cube?(A)8(B)27(C)64(D)125(E)2166Suppose that P=2m and Q=3n.Which of the following is equal to12mn for every pair of integers(m,n)?(A)P2Q(B)P n Q m(C)P n Q2m(D)P2m Q n(E)P2n Q m7Thefirst three terms of an arithmetic sequence are2x−3,5x−11,and3x+1respectively.The n th term of the sequence is2009.What is n?(A)255(B)502(C)1004(D)1506(E)80378Four congruent rectangles are placed as shown.The area of the outer square is4times that of the inner square.What is the ratio of the length of the longer side of each rectangle to the length of its shorter side?Thisfile was downloaded from the AoPS Math Olympiad Resources Page Page12009(A)3(B)√10(C)2+√2(D)2√3(E)49Suppose that f(x+3)=3x2+7x+4and f(x)=ax2+bx+c.What is a+b+c?(A)−1(B)0(C)1(D)2(E)310In quadrilateral ABCD,AB=5,BC=17,CD=5,DA=9,and BD is an integer.What is BD?DC BA(A)11(B)12(C)13(D)14(E)1511Thefigures F1,F2,F3,and F4shown are thefirst in a sequence offigures.For n≥3,F n is constructed from F n−1by surrounding it with a square and placing one more diamond on each side of the new square than F n−1had on each side of its outside square.For example,figure F3has13diamonds.How many diamonds are there infigure F20?F1F2F34(A)401(B)485(C)585(D)626(E)76112How many positive integers less than1000are6times the sum of their digits?(A)0(B)1(C)2(D)4(E)12200913A ship sails 10miles in a straight line from A to B ,turns through an angle between 45◦and 60◦,and then sails another 20miles to C .Let AC be measured in miles.Which of the following intervals contains AC 2?1020A BC(A)[400,500](B)[500,600](C)[600,700](D)[700,800](E)[800,900]14A triangle has vertices (0,0),(1,1),and (6m,0),and the line y =mx divides the triangleinto two triangles of equal area.What is the sum of all possible values of m ?(A)−13(B)−16(C)16(D)13(E)1215For what value of n is i +2i 2+3i 3+···+ni n =48+49i ?Note:here i =√−1.(A)24(B)48(C)49(D)97(E)9816A circle with center C is tangent to the positive x and y -axes and externally tangent to thecircle centered at (3,0)with radius 1.What is the sum of all possible radii of the circle with center C ?(A)3(B)4(C)6(D)8(E)917Let a +ar 1+ar 21+ar 31+···and a +ar 2+ar 22+ar 32+···be two different infinite geometric series of positive numbers with the same first term.The sum of the first series is r 1,and thesum of the second series is r 2.What is r 1+r 2?(A)0(B)12(C)1(D)1+√52(E)218For k >0,let I k =10...064,where there are k zeros between the 1and the 6.Let N (k )bethe number of factors of 2in the prime factorization of I k .What is the maximum value of N (k )?(A)6(B)7(C)8(D)9(E)10200919Andrea inscribed a circle inside a regular pentagon,circumscribed a circle around the pen-tagon,and calculated the area of the region between the two circles.Bethany did the same with a regular heptagon (7sides).The areas of the two regions were A and B ,respectively.Each polygon had a side length of 2.Which of the following is true?(A)A =2549B (B)A =57B (C)A =B (D)A =75B (E)A =4925B 20Convex quadrilateral ABCD has AB =9and CD =12.Diagonals AC and BD intersect atE ,AC =14,and AED and BEC have equal areas.What is AE ?(A)92(B)5011(C)214(D)173(E)621Let p (x )=x 3+ax 2+bx +c ,where a ,b ,and c are complex numbers.Suppose thatp (2009+9002πi )=p (2009)=p (9002)=0What is the number of nonreal zeros of x 12+ax 8+bx 4+c ?(A)4(B)6(C)8(D)10(E)1222A regular octahedron has side length 1.A plane parallel to two of its opposite faces cutsthe octahedron into the two congruent solids.The polygon formed by the intersection of the plane and the octahedron has area a √b c ,where a ,b ,and c are positive integers,a and c are relatively prime,and b is not divisible by the square of any prime.What is a +b +c ?(A)10(B)11(C)12(D)13(E)1423Functions f and g are quadratic,g (x )=−f (100−x ),and the graph of g contains the vertexof the graph of f .The four x -intercepts on the two graphs have x -coordinates x 1,x 2,x 3,and x 4,in increasing order,and x 3−x 2=150.The value of x 4−x 1is m +n √p ,where m ,n ,and p are positive integers,and p is not divisible by the square of any prime.What is m +n +p ?(A)602(B)652(C)702(D)752(E)80224The tower function of twos is defined recursively as follows:T (1)=2and T (n +1)=2T (n )for n ≥1.Let A =(T (2009))T (2009)and B =(T (2009))A .What is the largest integer k such thatlog 2log 2log 2...log 2B k timesis defined?(A)2009(B)2010(C)2011(D)2012(E)201325The first two terms of a sequence are a 1=1and a 2=1√3.For n ≥1,a n +2=a n +a n +11−a n a n +1.2009What is|a2009|? (A)0(B)2−√3(C)1√3(D)1(E)2+√32009B1Each morning of herfive-day workweek,Jane bought either a50-cent muffin or a75-cent bagel.Her total cost for the week was a whole number of dollars.How many bagels did she buy?(A)1(B)2(C)3(D)4(E)52Paula the painter had just enough paint for30identically sized rooms.Unfortunately,on the way to work,three cans of paint fell of her truck,so she had only enough paint for25rooms.How many cans of paint did she use for the25rooms?(A)10(B)12(C)15(D)18(E)253Twenty percent less than60is one-third more than what number?(A)16(B)30(C)32(D)36(E)484A rectangular yard contains twoflower beds in the shape of congruent isosceles right triangles.THe remainder of the yard has a trapezoidal shape,as shown.The parallel sides of the trapezoid have lengths15and25meters.What fraction of the yard is occupied by theflower beds?(A)18(B)16(C)15(D)14(E)135Kiana has two older twin brothers.The product of their ages is128.What is the sum of their three ages?(A)10(B)12(C)16(D)18(E)246By inserting parentheses,it is possible to give the expression2×3+4×5several values.How many different values can be obtained?(A)2(B)3(C)4(D)5(E)620097In a certain year the price of gasoline rose by20%during January,fell by20%during February, rose by25%during March,and fell by x%during April.The price of gasoline at the end of April was the same as it had been at the beginning of January.To the nearest integer,what is x?(A)12(B)17(C)20(D)25(E)358When a bucket is two-thirds full of water,the bucket and water weigh a kilograms.When the bucket is one-half full of water the total weight is b kilograms.In terms of a and b,what is the total weight in kilograms when the bucket is full of water?(A)23a+13b(B)32a−12b(C)32a+b(D)32a+2b(E)3a−2b9Triangle ABC has vertices A=(3,0),B=(0,3),and C,where C is on the line x+y=7.What is the area of ABC?(A)6(B)8(C)10(D)12(E)1410A particular12-hour digital clock displays the hour and minute of a day.Unfortunately, whenever it is supposed to display a1,it mistakenly displays a9.For example,when it is 1:16PM the clock incorrectly shows9:96PM.What fraction of the day will the clock show the correct time?(A)12(B)58(C)34(D)56(E)91011On Monday,Millie puts a quart of seeds,25%of which are millet,into a bird feeder.On each successive day she adds another quart of the same mix of seeds without removing any seeds that are left.Each day the birds eat only25%of the millet in the feeder,but they eat all of the other seeds.On which day,just after Millie has placed the seeds,will the birdsfind that more than half the seeds in the feeder are millet?(A)Tuesday(B)Wednesday(C)Thursday(D)Friday(E)Saturday12Thefifth and eighth terms of a geometric sequence of real numbers are7!and8!respectively.What is thefirst term?(A)60(B)75(C)120(D)225(E)31513Triangle ABC has AB=13and AC=15,and the altitude to BC has length12.What is the sum of the two possible values of BC?(A)15(B)16(C)17(D)18(E)1914Five unit squares are arranged in the coordinate plane as shown,with the lower left corner at the origin.The slanted line,extending from(a,0)to(3,3),divides the entire region into two regions of equal area.What is a?2009(A)12(B)35(C)23(D)34(E)4515Assume0<r<3.Below arefive equations for x.Which equation has the largest solutionx?(A)3(1+r)x=7(B)3(1+r/10)x=7(C)3(1+2r)x=7(D)3(1+√r)x=7(E)3(1+1/r)x=716Trapezoid ABCD has AD BC,BD=1,∠DBA=23◦,and∠BDC=46◦.The ratio BC:AD is9:5.What is CD?(A)79(B)45(C)1315(D)89(E)141517Each face of a cube is given a single narrow stripe painted from the center of one edge to the center of its opposite edge.The choice of the edge pairing is made at random and independently for each face.What is the probability that there is a continuous stripe encircling the cube?(A)18(B)316(C)14(D)38(E)1218Rachel and Robert run on a circular track.Rachel runs counterclockwise and completes a lap every90seconds,and Robert runs clockwise and completes a lap every80seconds.Both start from the start line at the same time.At some random time between10minutes and 11minutes after they begin to run,a photographer standing inside the track takes a picture that shows one-fourth of the track,centered on the starting line.What is the probability that both Rachel and Robert are in the picture?(A)116(B)18(C)316(D)14(E)51619For each positive integer n,let f(n)=n4−360n2+400.What is the sum of all values of f(n)that are prime numbers?2009(A)794(B)796(C)798(D)800(E)80220A convex polyhedron Q has vertices V 1,V 2,...,V n ,and 100edges.The polyhedron is cut byplanes P 1,P 2,...,P n in such a way that plane P k cuts only those edges that meet at vertex V k .In addition,no two planes intersect inside or on Q .The cuts produce n pyramids and a new polyhedron R .How many edges does R have?(A)200(B)2n (C)300(D)400(E)4n 21Ten women sit in 10seats in a line.All of the 10get up and then reseat themselves usingall 10seats,each sitting in the seat she was in before or a seat next to the one she occupied before.In how many ways can the women be reseated?(A)89(B)90(C)120(D)210(E)223822Parallelogram ABCD has area 1,000,000.Vertex A is at (0,0)and all other vertices are inthe first quadrant.Vertices B and D are lattice points on the lines y =x and y =kx for some integer k >1,respectively.How many such parallelograms are there?(A)49(B)720(C)784(D)2009(E)204823A region S in the complex plane is defined byS ={x +iy :−1≤x ≤1,−1≤y ≤1}.A complex number z =x +iy is chosen uniformly at random from S .What is the probability that 34+34i z is also in S ?(A)12(B)23(C)34(D)79(E)7824For how many values of x in [0,π]is sin −1(sin 6x )=cos −1(cos x )?Note:The functionssin −1=arcsin and cos −1=arccos denote inverse trigonometric functions.(A)3(B)4(C)5(D)6(E)725The set G is defined by the points (x,y )with integer coordinates,3≤|x |≤7,3≤|y |≤7.How many squares of side at least 6have their four vertices in G ?2009(A)125(B)150(C)175(D)200(E)225。
amc获奖规则
amc获奖规则
AMC(美国数学竞赛)是由美国数学协会(MAA)主办的一
项全国性数学竞赛。
以下是AMC获奖的一般规则:
1. AMC 10/12奖项规则:AMC 10和AMC 12是两个不同水平
的竞赛,因此设有不同的获奖等级。
- 每个竞赛等级分为三个层次的奖项:优异奖(AIME资格奖)、荣誉奖和优胜奖。
- 在AMC 10中,获得120分及以上的学生可以获得优异奖,100分及以上获得荣誉奖,85分及以上获得优胜奖。
- 在AMC 12中,获得100分及以上的学生可以获得优异奖,90分及以上获得荣誉奖,80分及以上获得优胜奖。
- 在AMC 10和AMC 12中,获得竞赛分数最高者将获得冠
军奖。
2. AIME(美国数学邀请赛)获奖规则:AIME是AMC竞赛
的下一轮,只有获得AMC特定分数线上的学生才能参加。
- AIME竞赛获得者根据分数可以获得一个分数等级的奖项。
- AIME成绩相对于全国参赛者进行排名,最高分者获得冠
军奖。
3. 数学奥林匹克竞赛获奖规则:数学奥林匹克竞赛是AMC的
最高级别竞赛,只有获得AIME高分的学生才有机会参加。
- 数学奥林匹克竞赛获奖者根据分数可以获得金、银、铜牌
奖项。
- 数学奥林匹克竞赛根据分数进行排名,最高分者获得金牌奖。
以上是AMC获奖的一般规则,具体规则可能有细微的变化,可以参考美国数学协会(MAA)的官方规定了解更详细的信息。
美国留学:美国数学竞赛AMC
美国留学:美国数学竞赛AMC近年来,随着标准化考试越来越普遍,仅仅靠SAT、托福等成绩越来越难和同龄人区分开来,因此,有一门数学竞赛成绩就成了申请环节中加分的利器。
今天就来为大家科普一下什么是AMC。
1. AMC基本信息AMC全称为American Mathematics Competition,是“美国数学竞赛”的简称,1950年美国数学协会Mathematics Association of America (简称MAA),开始举办美国高中数学考试(AHSME)。
在1985年时,MAA又增加了初中数学的考试(AJHSME),2000年以后这些考试统一被称为AMC,AMC总部现设在美国加州內布拉斯加大学林肯校区。
AMC的目标是发掘、培养学生的数学潜能,为从事数学及其他学科的学习和研究打下坚实基础。
2. AMC比赛类型与年级AMC8由8年级和8年级以下学生参加。
注:许多小学生参加AMC8考试,特别是来自中国的学生,不少四至六年级的中国学生参加AMC8考试并获奖。
AMC10由10年级和10年级以下的学生参加。
AMC12由12年级和12年级以下的学生参加。
AIME由AMC10和AMC12测试中成绩达到要求的学生参加。
USJMO由AMC10的约前230名美国学生参加。
USAMO由AMC10的约前270名美国学生参加。
3. AMC举办时间AMC系列赛的举办时间AMC8在每年的11月中举行。
AMC10和AMC12的比赛时间相同,分A、B两次在每年的2月初和2月中举行。
AIME在每年的3月底举行。
USJMO和USAMO在每年4月的最后一周举行。
4. AMC主试委员会AMC测试的试题研发、命制到统一阅卷等工作由AMC主试委员会全权负责。
该委员会由以数理闻名的内布拉斯加大学林肯分校数学系的专家和来自其它全美一流学府,如麻省理工学院(MIT)、哈佛大学(Harvard)、普林斯顿大学(Princeton)等名校的专家组成。
美国数学竞赛AMC1012简介
美国数学竞赛AMC1012简介AMC系列AMC系列的全称American Mathematics Competitions是由美国数学协会举办的,是美国最⽼的(1950年开始举办)的和最负盛名的初⾼中⽣数学竞赛。
AMC系列⽐赛⼀共有以下⼏个⽐赛:American Mathematics Competition 8 - AMC 8American Mathematics Competition 10/12 - AMC 10/12American Invitational Mathematics Exam - AIMEUnited States Mathematical Olympiad and Junior Mathematical Olympiad - USA(J)MOAMC10/12AMC10和12是AMC⽐赛系列中层次较⾼的,相⽐AMC8来说,这个⽐赛就是玩真格的了,难度也是提升了不少。
官⽹上是这么说的“The AMC 10/12 is the first in a series of competitions that eventually lead all the way to the International Mathematical Olympiad”。
翻译成⼤⽩话就是想去国际数学奥赛?那咱们从AMC10/12起步吧。
1、题型:共25道选择题,计时75分钟,总分150分。
包含⼏何,代数,基础数论,排列组合以及概率统计知识。
答对⼀题得六分,不答得1.5分,答错得0分。
AMC10 参赛年级:10年级及以下的美国,美属领地,加拿⼤和国际学⽣都可报名参加。
10年级以下的学⽣可以选择AMC10或12,或在不同⽇期参加AMC10和12。
(年龄要求:截⽌⽐赛当天17.5岁及以下)AMC12 参赛年级:12年级及以下的美国,美属领地,加拿⼤和国际学⽣都可报名参加。
11-12年级的学⽣只能参加AMC12。
美国中学数学竞赛(AMC12-12级)(附答案)
2004 AMC12 试题1. 爱丽每小时的工资为美金20元,其中的1.45%要缴地方税,试问爱丽每小时的工资中要付地方税美金多少分?(美金1元二美金100分)(A) 0.0029 (B) 0.029 (C) 0.29 (D) 2.9 (E) 292. 于AMC2的测验中,每答对一题可得6分,答错可得0分,未作答可得2.5分.假设凯琳在25题中有8题未作答,她至少要答对几题,总分才会不低于100 分?(A) 11(B) 13(C) 14(D) 16(E) 173.滿足x 2y100的正整数序对(x, y)有多少組?(A) 33(B) 49(C) 50(D) 99(E) 1004.白婆婆有6个女儿、没有儿子,有些女儿也恰有6个女儿,其他的女儿没有孩子. 白婆婆有女儿及外孙女共30位,没有外曾孙女. 试问白婆婆的女儿及外孙女中有多少位没有女儿?(A) 22 (B) 23 (C) 24 (D) 25 (E) 265.直线y mx(A) mb 1 (B) 1 mb 0 (C) mb 0 (D) 0 mb 1 (E) mb 16.设u 2 20042005, V 20042005, W 2003 20042004, X 2 20042004Y 20042004, Z 20042003.試问以下何者值最大?(A) U V (B) V W (C) W X (D) X Y (E) Y Z7. 一种代币的游戏,其规那么如下:每回持有最多代币者须分给其他每一位参与游戏者一枚代币,并放一枚代币於回收桶中;当有一位游戏参与者没有代币时,那么游戏结束.假设A、B C三人玩此游戏,在游戏开始时分别持有15、14及13枚代币.试问游戏从开始到结束,共进行了多少回?(A) 36 (B) 37 (C) 38 (D) 39 (E) 409. 有一个将花生酱装在圆桶状瓶子内出售的公司 .市场研究建议瓶子较粗时可增加销售量.假设瓶子的直径增加25%,而体积仍维持不变,那么 瓶子的高度应减少百分之多少?(A) 10(B) 25(C) 36(D) 50(E) 6010. 有49个连续整数,它的和为75,則它们排在最中间的数为何?(A) 7(B) 72(C) 73(D) 74(E) 7511. 某国的硬币中有1分、5分、10分及25分四种,在保拉的皮包 內硬币的平均值为20分.假设再增加一枚25分的硬币,平均值則增为 21分.試问她的皮包內有多少枚10分的硬币?(A) 0(B) 1(C) 2(D) 3(E) 412. 设A (0, 9) , B (0,12).点A 、B 在直线y x 上, 且AA 与BB 交于点 C (2,8).試问AB的长度是多少?(A) 2(B) 2 2(C) 3(D) 22(E) 3“13. 以S 表示坐标平面上所有的点(a,b)所形成的集合,其中a,b 等于1, 0,或1.試问有多少条相异的直线至少通过集合 S 中的两个点?(A) 8(B) 20(C) 24(D) 27(E) 3614. 三个实数的数列形成一个等差数列,首项是9.假设将第二项加2、第 三项加20可使得这三个数变为等比数列,那么这个等比数列中第三项 最小可能是多少?(A) 1(B) 4(C) 36(D) 49(E) 8115.小美与小雯在一个圆形的跑道上向相反的方向跑 ,开始两人分别从8.如下图EAB 及 ABC 为直角,厢 4 , BC 6 , AE 8, AC 与BE 交于D 点.試问 差为多少?(A) 2(B) 4(C) 5 (D) 8 (E) 9ADE 与BDC 面积之圆形跑道直径的两端起跑.小美跑了 100公尺时她们第一次相遇;在 第一次相遇后小雯跑了 150公尺时她们第二次相遇.假设她们跑的速 度都分别维持固定不变,试问此圆形跑道的长度是多少公尺?(A) 250(B) 300(C) 350(D) 400(E) 50016.使函数 log 2004{log 2003{log 2002{log 2001 X}}}有定义的集合为 之值是多少?(A) 0(B) 20012002(C) 20022003(D) 20032004{xx c}.試问 c(E) 20012°°丹317.函数f 满足以下性质: (i) f(1) 1,且(ii)对任意的正整数n ,f(2n) n f(n).试问f(2100)之值为何?(A) 1(B) 299(C) 2100(D) 24950 18.如下图,ABCD 是边长2的正方形.在正方形 的内部作一个以AB 为直径的半圆,且自C 点引 此半圆的切线交AD 边于E 点•试问CE 的长度是 多少?(E) 5 ■.5(E) 29999(B) 5 (C) 6 (D)?19.如下图,A B C 三圆彼此外切且均内切于圆等,圆A 的半径1且通过圆D 的圆心.试问圆B 的半径是多少?D.B 、C 两圆相(A)3(B)于(C) 土 (D) |20.从0与1之间的数,随机独立取出两实数a 与b,并将a, b 之和记 作c.分别以A, B, C 表示最接近a, b, c 的整数.试问 的机率为何?(A) 1(B) !(C) 1(D) 2(E) 443 23421.假设n 02nCOS5,那么Cos2之值是多少?(A) 15 (B) I (C) ±55(D) ?(E)上5522.三个半径为1的球彼此外切且放置在一水平面上,一个半径为2 的大球放在它们的上面 .试问大球的最高点至平面的距离是多 少?C 2004 0,且 P (x)=0 有 2004个复数根 z a k b k i , 20042004b k 为实数,a ib i 0,且a kb k .k 1k 1试问以下哪一项可能不是 0 ?2004(A) C 0(B)C2003(C) b z b s L b s 004 (D)a kk 124. 设A 、B 为平面上的两点,其中AB 1.令S 为平面上所有半径是1且 能盖住线段AB 之圆的并集,則S 的面积是多少?(A) 2.3(B) -(C) 33(D)卫 3(E) 4 2 33 2325. 对每一个整数n 4,令a n 表示n 进位的循环小数0.133n .把乘积a 4a 5L a 99写成—的形式,其中m P 为正整数,且p 尽可能小.试问mp!之值是多少?(A) 98(B) 101(C) 132(D) 798(E) 962Q屈o J123 52(A) 3(B) 3 -(C) 3 -(D)2349(E) 3 2、223.多项式P(x) GX C 0 ,的系数都是实数, 1 k 2004,其中 a k ,2004(E)C kk 12004C 2004X 2003C 2003XL答案:1 ( E )2 ( C )3 ( B )4 ( E )5 ( B )6 ( A )7 ( B )8 ( B )9 ( C )10 ( C ) 11 ( A )12 ( B )13 ( B )14 ( A )15 ( C ) 16 ( B )17 ( D )18 ( D )19 ( D )20( E ) 21 ( D )22 ( B )23 ( E )24 ( C )25 ( E )。
全美数学竞赛USA-AMC_12-AHSME-2007-44
2007A1One ticket to a show costs$20at full price.Susan buys4tickets using a coupon that gives her a25%discount.Pam buys5tickets using a coupon that gives her a30%discount.How many more dollars does Pam pay than Susan?(A)2(B)5(C)10(D)15(E)202An aquarium has a rectangular base that measures100cm by40cm and has a height of50 cm.It isfilled with water to a height of40cm.A brick with a rectangular base that measures 40cm by20cm and a height of10cm is placed in the aquarium.By how many centimeters does the water rise?(A)0.5(B)1(C)1.5(D)2(E)2.53The larger of two consecutive odd integers is three times the smaller.What is their sum?(A)4(B)8(C)12(D)16(E)204Kate rode her bicycle for30minutes at a speed of16mph,then walked for90minutes at a speed of4mph.What was her overall average speed in miles per hour?(A)7(B)9(C)10(D)12(E)145Last year Mr.John Q.Public received an inheritance.He paid20%in federal taxes on the inheritance,and paid10%of what he had left in state taxes.He paid a total of$10,500for both taxes.How many dollars was the inheritance?(A)30,000(B)32,500(C)35,000(D)37,500(E)40,0006Triangles ABC and ADC are isosceles with AB=BC and AD=DC.Point D is inside ABC,∠ABC=40◦,and∠ADC=140◦.What is the degree measure of∠BAD?(A)20(B)30(C)40(D)50(E)607Let a,b,c,d,and e befive consecutive terms in an arithmetic sequence,and suppose that a+b+c+d+e=30.Which of the following can be found?(A)a(B)b(C)c(D)d(E)e8A star-polygon is drawn on a clock face by drawing a chord from each number to thefirth number counted clockwise from that number.That is,chords are drawn from12to5,from 5to10,from10to3,and so on,ending back at12.What is the degree measure of the angle at each vertex in the star-polygon?(A)20(B)24(C)30(D)36(E)60Thisfile was downloaded from the AoPS Math Olympiad Resources Page Page120079Yan is somewhere between his home and the stadium.To get to the stadium he can walk directly to the stadium,or else he can walk home and then ride his bicycle to the stadium.He rides7times as fast as he walks,and both choices require the same amount of time.What is the ratio of Yan’s distance from his home to his distance from the stadium?(A)23(B)34(C)45(D)56(E)6710A triangle with side lengths in the ratio3:4:5is inscribed in a circle of radius3.What is the area of the triangle?(A)8.64(B)12(C)5π(D)17.28(E)1811Afinite sequence of three-digit integers has the property that the tens and units digits of each term are,respectively,the hundreds and tens digits of the next term,and the tens and units digits of the last term are,respectively,the hundreds and tens digits of thefirst term.For example,such a sequence might begin with the terms247,275,and756and end with the term824.Let S be the sum of all the terms in the sequence.What is the largest prime factor that always divides S?(A)3(B)7(C)13(D)37(E)4312Integers a,b,c,and d,not necessarily distinct,are chosen independantly and at random from 0to2007,inclusive.What is the probability that ad−bc is even?(A)38(B)716(C)12(D)916(E)5813A piece of cheese is located at(12,10)in a coordinate plane.A mouse is at(4,−2)and is running up the line y=−5x+18.At the point(a,b)the mouse starts getting farther from the cheese rather than closer to it.What is a+b?(A)6(B)10(C)14(D)18(E)2214Let a,b,c,d,and e be distinct integers such that(6−a)(6−b)(6−c)(6−d)(6−e)=45.What is a+b+c+d+e?(A)5(B)17(C)25(D)27(E)3015The set{3,6,9,10}is augmented by afifth element n,not equal to any of the other four.The median of the resulting set is equal to its mean.What is the sum of all possible values of n?(A)7(B)9(C)19(D)24(E)26200716How many three-digit numbers are composed of three distinct digits such that one digit isthe average of the other two?(A)96(B)104(C)112(D)120(E)25617Suppose that sin a +sin b = 53and cos a +cos b =1.What is cos(a −b )?(A) 53−1(B)13(C)12(D)23(E)118The polynomial f (x )=x 4+ax 3+bx 2+cx +d has real coefficients,and f (2i )=f (2+i )=0.What is a +b +c +d ?(A)0(B)1(C)4(D)9(E)1619Triangles ABC and ADE have areas 2007and 7002,respectively,with B =(0,0),C =(223,0),D =(680,380),and E =(689,389).What is the sum of all possible x-coordinates ofA ?(A)282(B)300(C)600(D)900(E)120020Corners are sliced offa unit cube so that the six faces each become regular octagons.Whatis the total volume of the removed tetrahedra?(A)5√2−73(B)10−7√23(C)3−2√23(D)8√2−113(E)6−4√2321The sum of the zeros,the product of the zeros,and the sum of the coefficients of the functionf (x )=ax 2+bx +c are equal.Their common value must also be which of the following?(A)the coefficient of x 2(B)the coefficient of x (C)the y -intercept of the graph of y =f (x )(D)one of the x -intercepts of the graph of y =f (x )(E)the mean of the x -intercepts of the graph o f (x )22For each positive integer n,let S (n )denote the sum of the digits of n.For how many valuesof n is n +S (n )+S (S (n ))=2007?(A)1(B)2(C)3(D)4(E)523Square ABCD has area 36,and AB is parallel to the x-axis.Vertices A,B,and C are onthe graphs of y =log a x,y =2log a x,and y =3log a x,respectively.What is a ?(A)6√3(B)√3(C)3√6(D)√6(E)624For each integer n >1,let F (n )be the number of solutions of the equation sin x =sin nx on the interval [0,π].What is 2007n =2F (n )?(A)2,014,524(B)2,015,028(C)2,015,033(D)2,016,532(E)2,017,033200725Call a set of integers spacy if it contains no more than one out of any three consecutive integers.How many subsets of{1,2,3,...,12},including the empty set,are spacy?(A)121(B)123(C)125(D)127(E)1292007B1Isabella’s house has3bedrooms.Each bedroom is12feet long,10feet wide,and8feet high.Isabella must paint the walls of all the bedrooms.Doorways and windows,which will not be painted,occupy60square feet in each bedroom.How many square feet of walls must be painted?(A)678(B)768(C)786(D)867(E)8762A college student drove his compact car120miles home for the weekend and averaged30 miles per gallon.On the return trip the student drove his parents’SUV and averaged only20 miles per gallon.What was the average gas mileage,in miles per gallon,for the round trip?(A)22(B)24(C)25(D)26(E)283The point O is the center of the circle circumscribed about ABC,with∠BOC=120◦and ∠AOB=140◦,as shown.What is the degree measure of∠ABC?ABC O140◦120◦(A)35(B)40(C)45(D)50(E)604At Frank’s Fruit Market,3bananas cost as much as2apples,and6apples cost as much as 4oranges.How many oranges cost as much as18bananas?(A)6(B)8(C)9(D)12(E)185The2007AMC12contests will be scored by awarding6points for each correct response,0 points for each incorrect response,and1.5points for each problem left unanswered.After looking over the25problems,Sarah has decided to attempt thefirst22and leave the last three unanswered.How many of thefirst22problems must she solve correctly in order to score at least100points?2007(A)13(B)14(C)15(D)16(E)176Triangle ABC has side lengths AB=5,BC=6,and AC=7.Two bugs start simultaneously from A and crawl along the sides of the triangle in opposite directions at the same speed.They meet at point D.What is BD?(A)1(B)2(C)3(D)4(E)57All sides of the convex pentagon ABCDE are of equal length,and∠A=∠B=90◦.What is the degree measure of∠E?(A)90(B)108(C)120(D)144(E)1508Tom’s age is T years,which is also the sum of the ages of his three children.His age N years ago was twice the sum of their ages then.What is TN?(A)2(B)3(C)4(D)5(E)69A function f has the property that f(3x−1)=x2+x+1for all real numbers x.What is f(5)?(A)7(B)13(C)31(D)111(E)21110Some boys and girls are having a car wash to raise money for a class trip to China.Initially 40%of the group are girls.Shortly thereafter two girls leave and two boys arrive,and then 30%of the group are girls.How many girls were initially in the group?(A)4(B)6(C)8(D)10(E)1211The angles of quadrilateral ABCD satisfy∠A=2∠B=3∠C=4∠D.What is the degree measure of∠A,rounded to the nearest whole number?(A)125(B)144(C)153(D)173(E)18012A teacher gave a test to a class in which10%of the students are juniors and90%are seniors.The average score on the test was84.The juniors all received the same score,and the average score of the seniors was83.What score did each of the juniors receive on the test?(A)85(B)88(C)93(D)94(E)9813A traffic light runs repeatedly through the following cycle:green for30seconds,then yellow for3seconds,and then red for30seconds.Leah picks a random three-second time interval to watch the light.What is the probability that the color changes while she is watching?(A)163(B)121(C)110(D)17(E)1314Point P is inside equilateral ABC.Points Q,R and S are the feet of the perpendiculars from P to AB,BC,and CA,respectively.Given that P Q=1,P R=2,and P S=3,what is AB?2007(A)4(B)3√3(C)6(D)4√3(E)915The geometric series a+ar+ar2+...has a sum of7,and the terms involving odd powers of r have a sum of3.What is a+r?(A)43(B)127(C)32(D)73(E)5216Each face of a regular tetrahedron is painted either red,white or blue.Two colorings are considered indistinguishable if two congruent tetrahedra with those colorings can be rotated so that their appearances are identical.How many distinguishable colorings are possible?(A)15(B)18(C)27(D)54(E)8117If a is a nonzero integer and b is a positive number such that ab2=log10b,what is the median of the set{0,1,a,b,1/b}?(A)0(B)1(C)a(D)b(E)1b18Let a,b,and c be digits with a=0.The three-digit integer abc lies one third of the way from the square of a positive integer to the square of the next larger integer.The integer acb lies two thirds of the way between the same two squares.What is a+b+c?(A)10(B)13(C)16(D)18(E)2119Rhombus ABCD,with a side length6,is rolled to form a cylinder of volume6by taping AB to DC.What is sin(∠ABC)?(A)π9(B)12(C)π6(D)π4(E)√3220The parallelogram bounded by the lines y=ax+c,y=ax+d,y=bx+c and y=bx+d has area18.The parallelogram bounded by the lines y=ax+c,y=ax−d,y=bx+c,and y=bx−d has area72.Given that a,b,c,and d are positive integers,what is the smallest possible value of a+b+c+d?(A)13(B)14(C)15(D)16(E)1721Thefirst2007positive integers are each written in base3.How many of these base-3rep-resentations are palindromes?(A palindrome is a number that reads the same forward and backward.)(A)100(B)101(C)102(D)103(E)10422Two particles move along the edges of equilateral triangle ABC in the directionA→B→C→A2007starting simultaneously and moving at the same speed.One starts at A ,and the other starts at the midpoint of BC .The midpoint of the line segment joining the two particles traces out a path that encloses a region R .What is the ratio of the area of R to the area of ABC ?(A)116(B)112(C)19(D)16(E)1423How many non-congruent right triangles with positive integer leg lengths have areas that arenumerically equal to 3times their perimeters?(A)6(B)7(C)8(D)10(E)1224How many pairs of positive integers (a,b )are there such that gcd(a,b )=1and a b +14b 9ais an integer?(A)4(B)6(C)9(D)12(E)infinitely many 25Points A ,B ,C ,D ,and E are located in 3-dimensional space with AB =BC =CD =DE =EA =2and ∠ABC =∠CDE =∠DEA =90◦.The plane of ABC is parallel to DE .What is the area of BDE ?(A)√2(B)√3(C)2(D)√5(E)√6。
AMC美国数学竞赛简介
AMC美国数学竞赛简介American Mathematics Competition又称为American High School Mathematics Examinatio n美国中学数学科考试(AHSME),是由美国数学协会(Mathematics Association of America)于1950年成立,目前总部设于美国内布拉斯加大学林肯校区(University Of Nebraska-Lincoln),是美国数学协会(Mathematics Association of America)的直属机构。
AMC的三种级别AMC8 简介 AMC8是针对初中一年级、初中二年级学生的数学测验,25题选择题、考试时间40分钟。
其测验目的是为了增进学生对数学习题解答的能力。
这项测验提供了一些中学程度的数学概念的教学与评量;其题目范围不仅是由易而难,而且还涵盖了较广泛的数学实际应用。
其中的一些题目颇具挑战性,程度高于一般的中学数学。
因此,不失为一个良好的数学经验。
AMC8的测验允许使用计算器(工程用计算器除外);此外,其成绩表现不错的学生也将被邀请参加AMC10 测验。
AMC8有一个特别的目的:是希望使这些题目能利用在各中学数学课程的实际教学上。
AMC8测验可激发学生增加对数学理解能力的潜能。
除了AMC8之外,还有其接下来的各项测验都能刺激学生产生对于数学课程的兴趣。
另外,AMC8尚可增进且鼓舞学生对于数学学习抱持着更积极的态度,并引起学生对数学的喜好。
对学习者而言,AMC8是有助于对数学观念的理解和进步。
但重要的是,必须抱持着积极的学了这样的一个机会。
我们竭诚欢迎初中一年级及初中二年级的学生参加AMC8测验;无论你身在何处,只要你是初中二年级或初中二年级以下的学生就能有资格参加AMC8的测验。
AMC10 简介AMC10是针对高中一年级及初中三年级学生的数学测验,25题选择题、考试时间75分钟;包含演算概念理解的数学题型。
全美数学竞赛流程
全美数学竞赛流程全美数学竞赛(AMC)是美国数学协会举办的一项重要数学比赛活动,旨在激发学生对数学的兴趣和热爱,提高数学解决问题的能力。
通过AMC的选拔,优秀的学生有机会代表自己所在的学校或地区参加更高级别的数学竞赛,包括AIME(美国初级数学邀请赛)和USAMO (美国数学奥林匹克竞赛)等。
本文将详细介绍全美数学竞赛的流程和重要环节。
一、比赛阶段全美数学竞赛主要分为AMC 10和AMC 12两个阶段,分别针对初中和高中的学生。
每个阶段的竞赛内容相对应,并在时间和难度上区分。
1. AMC 10AMC 10是针对初中学生的比赛,共有25道选择题,时间限制为75分钟。
题目涵盖了初中各个数学领域,包括代数、几何、数论、概率等。
考生需要通过选择正确的答案,每题得分为1分,错选或不选均不扣分。
AMC 10的难度适中,旨在考察学生的数学基础和解题能力。
2. AMC 12AMC 12是针对高中学生的比赛,同样是25道选择题,时间限制也为75分钟。
AMC 12相对于AMC 10难度更高,题目内容更加复杂和挑战性,要求考生具备更高的数学思维和解题能力。
得分方式和AMC 10相同,每题得1分,错选或不选不扣分。
二、报名及参赛资格1. 报名学生可以通过学校或教育机构的组织报名参加AMC。
一般来说,学校会提供报名表格供学生填写并缴纳报名费用。
报名费用相对较低,以鼓励更多学生积极参与数学竞赛。
2. 参赛资格AMC针对初中和高中的学生开放报名,参赛学生需符合相应年级要求。
AMC 10主要面向9年级及以下的学生,AMC 12则面向9年级及以上的学生。
在同一个学年中,学生只能参加其中一个阶段的比赛。
获得AMC的优胜者有资格晋级更高级别竞赛,例如AIME和USAMO。
三、考试及阅卷AMC比赛在规定的时间和地点进行,具体考试日期会提前告知参赛学生。
考试使用标准化的试卷,并由指定的监考人员负责监督考试过程。
考试结束后,学生将试卷交回,并由专业人员进行阅卷和评分。
amc12知识点
amc12知识点在美国每年举行的学术类竞赛中,American Mathematics Competition(AMC)12级考试是一场非常重要的测试,其考试内容涵盖了高中数学课程的多个知识点,考生在考试时需要掌握的相关知识点如下:一、代数:代数是AMC12级考试的主要考察内容之一,考生在此考试中需要掌握的知识点主要包括:1、方程的求解:包括一元二次方程,一元三次方程,多项式方程以及配方方程等。
2、分式和集合:包括有理数,有理数分式,有理数函数,有理数方程,组合数,集合性质和集合运算等。
3、代数定义与定理:包括一元、多元函数的定义,函数空间,逻辑与数学等定义,以及组合数学,对数,矩阵,向量,可解性,泰勒展开式,方程的几何意义等定理。
4、几何:几何考试中的知识点包括点、线、面的定义,平面几何元素的定义,平面几何的公式,几何定理,空间几何元素的定义,空间几何的公式和定理等。
5、抽象代数:涉及的知识内容包括:群的定义、子群的定义、群的最基本性质、群的性质、群的等价定义、群的(减去空集)最大子群、有序群、群上函数、群的直和和拆分、群的素性以及群的素元性等。
二、分析:分析在AMC12级考试中也是非常重要的考试内容,需要掌握的知识点包括:1、实数的定义:定义实数的上下界,定义实数的连续性,定义实数的可穿透性,定义实数的有理性,定义实数的完全性,定义无穷大和无穷小等。
2、极限:涵盖了极限的定义,极限的性质,极限的解释,一阶导数,二阶导数,多元函数的一二阶导数,函数的极值,梯形公式,距离内切圆等知识点。
3、函数:函数是AMC12级考试中的重要考点,涉及的知识有定义域,值域,单调性,非单调性,函数的增减性,函数的最大值与最小值,函数的偶函数,奇函数,奇偶函数,偶函数的性质,非减函数,反函数,函数的奇元性,函数的唯一性,函数的可导性,函数的可积性,函数的可微性,函数的积分,积分函数的性质,函数的连续性,函数的紧致性,函数的序号,函数的反向性,函数的一致性,函数的可算性,函数的多项式,函数的可分解性,函数的完全性,函数可数性,函数的定义域,函数的轴对称,函数的完整性,函数的稳定性,函数的对称性,函数的半轴对称,函数的单调性等内容。
美国高中数学测验 AMC12之机率问题(下)
美国高中数学测验 AMC12之机率问题(下)洪伟诚 . 李俊贤 . 蔡诚祐 . 何家兴 . 张福春关键词:高中数学几何机率前述两节的问题皆建立在样本点个数为可数时的情况,接下来将介绍一不可数的无穷样本空间S且利用此空间的一些几何测量m(S),例如长度、面积、或者体积,来求A事件的机率。
而A事件的机率可用A事件之几何测量与样本空间S之几何测量的比例来计算,其形式有下列三种:P(A)=A的长度S的长度或P(A)=A的面积S的面积或P(A)=A的体积S的体积注:我们必须假设一不可数无穷样本空间S满足均匀性质,这样才能做以上的几何机率。
几何测量—长度所谓长度的几何测量,表示其无穷样本空间可用一线段、数线或是时间轴⋯等表示,则考虑某事件的机率时,只需探讨此事件所占的线段(或数线)与样本空间相对的长度比值即可,下列为利用长度测量来求的机率问题。
例1.(1972 AMC12 #17) 随机将一条线切为两段,试问较长的一段至少是较短的一段的x倍(其中x¸1)的机率为多少?•(B)2x•(C)1x+1•(D)1x•(E)2x+1解:(E)假设线段AB被切为两段,若较长一段(标记为l1,长度为sx)为较短一段(标记为l2,长度为s)的x倍,则线段AB总长度为(x+1)s,因此切点会落于l2中的机率为\dfrac{1}{x+1}。
但因线段的切法可能为(l1,l2)或是(l2,l21)两种情况,如下图故所求机率为2x+1。
例2.(2007 AMC12B #13)有一交通号志以下列的循环重复的运作:绿灯30秒,然后黄灯3秒,之后再转红灯30秒。
利亚随机挑选三秒钟的区间去注视号志灯,试问号志灯在转换颜色时,利亚正在注视的机率为多少?•(A)163•(B)121•(C)110•(D)17解:(D)由题意知,交通号志运作一循环需时63秒,而若利亚所注视的时间在当绿灯转变为黄灯、黄灯转变为红灯或红灯转变为绿灯的前三秒钟内,则利亚会看到号志颜色正在转变,如下图所示故所求机率为3+3+363=963=17例3.(2009 AMC12B #18) 瑞吉儿与罗伯特在一圆形的跑道上跑步,其中瑞吉儿以逆时钟方向跑且跑完一圈需时90秒,而罗伯特以顺时钟方向跑且跑完一圈需时80秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005A 1Two is 10%of x and 20%of y .What is x −y ?(A)1(B)2(C)5(D)10(E)202The equations 2x +7=3and bx −10=−2have the same solution for x .What is the value of b ?(A)−8(B)−4(C)−2(D)4(E)83A rectangle with a diagonal of length x is twice as long as it is wide.What is the area of the rectangle?(A)14x 2(B)25x 2(C)12x 2(D)x 2(E)32x24A store normally sells windows at $100each.This week the store is offering one free window for each purchase of four.Dave needs seven windows and Doug needs eight windows.How many dollars will they save if they purchase the windows together rather than separately?(A)100(B)200(C)300(D)400(E)5005The average (mean)of 20numbers is 30,and the average of 30other numbers is 20.What is the average of all 50numbers?(A)23(B)24(C)25(D)26(E)276Josh and Mike live 13miles apart.Yesterday,Josh started to ride his bicycle toward Mike’s house.A little later Mike started to ride his bicycle toward Josh’s house.When they met,Josh had ridden for twice the length of time as Mike and at four-fifths of Mike’s rate.How many miles had Mike ridden when they met?(A)4(B)5(C)6(D)7(E)87Square EF GH is inside the square ABCD so that each side of EF GH can be extended to pass through a vertex of ABCD .Square ABCD has side length √50and BE =1.What is the area of the inner square EF GH ?This file was downloaded from the AoPS Math Olympiad Resources PagePage 12005AB CD EFGH(A)25(B)32(C)36(D)40(E)428Let A ,M ,and C be digits with(100A +10M +C )(A +M +C )=2005.What is A ?(A)1(B)2(C)3(D)4(E)59There are two values of a for which the equation 4x 2+ax +8x +9=0has only one solution for x .What is the sum of these values of a ?(A)−16(B)−8(C)0(D)8(E)2010A wooden cube n units on a side is painted red on all six faces and then cut into n 3unitcubes.Exactly one-fourth of the total number of faces of the unit cubes are red.What is n ?(A)3(B)4(C)5(D)6(E)711How many three-digit numbers satisfy the property that the middle digit is the average ofthe first and the last digits?(A)41(B)42(C)43(D)44(E)4512A line passes through A (1,1)and B (100,1000).How many other points with integer coordi-nates are on the line and strictly between A and B ?(A)0(B)2(C)3(D)8(E)913The regular 5-point star ABCDE is drawn and in each vertex,there is a number.EachA,B,C,D,and E are chosen such that all 5of them came from set 3,5,6,7,9.Each letter is a different number (so one possible ways is A=3,B=5,C=6,D=7,E=9).Let AB be the sum2005of the numbers in A and B.If AB,BC,CD,DE,and EA form an arithmetic sequence(not necessarily this order),find the value of CD.(A)9(B)10(C)11(D)12(E)1314On a standard die one of the dots is removed at random with each dot equally likely to be chosen.The die is then rolled.What is the probability that the top face has an odd number of dots?(A)511(B)1021(C)12(D)1121(E)61115Let AB be a diameter of a circle and C be a point on AB with2·AC=BC.Let D and E be points on the circle such that DC⊥AB and DE is a second diameter.What is the ratio of the area of DCE to the area of ABD?E BA D C(A)16(B)14(C)13(D)12(E)2316Three circles of radius s are drawn in thefirst quadrant of the xy-plane.Thefirst circle is tangent to both axes,the second is tangent to thefirst circle and the x-axis,and the third is tangent to thefirst circle and the y-axis.A circle of radius r>s is tangent to both axes and to the second and third circles.What is r/s?2005rs(A)5(B)6(C)8(D)9(E)1017A unit cube is cut twice to form three triangular prisms,two of which are congruent,as shown in Figure1.The cube is then cut in the same manner along the dashed lines shown in Figure2.This creates nine pieces.What is the volume of the piece that contains vertex W?(A)112(B)19(C)18(D)16(E)1418Call a number”prime-looking”if it is composite but not divisible by2,3,or5.The three smallest prime-looking numbers are49,77,and91.There are168prime numbers less than 1000.How many prime-looking numbers are there less than1000?(A)100(B)102(C)104(D)106(E)10819A faulty car odometer proceeds from digit3to digit5,always skipping the digit4,regardless of position.If the odometer now reads002005,how many miles has the car actually traveled?(A)1404(B)1462(C)1604(D)1605(E)18042005 20For each x in[0,1],definef(x)=2x,if0≤x≤12;2−2x,if12<x≤1.Let f[2](x)=f(f(x)),and f[n+1](x)=f[n](f(x))for each integer n≥2.For how many values of x in[0,1]is f[2005](x)=12?(A)0(B)2005(C)4010(D)20052(E)2200521How many ordered triples of integers(a,b,c),with a≥2,b≥1,and c≥0,satisfy both log a b=c2005and a+b+c=2005?(A)0(B)1(C)2(D)3(E)422A rectangular box P is inscribed in a sphere of radius r.The surface area of P is384,and the sum of the lengths of its12edges is112.What is r?(A)8(B)10(C)12(D)14(E)1623Two distinct numbers a and b are chosen randomly from the set{2,22,23,...,225}.What is the probability that log a b is an integer?(A)225(B)31300(C)13100(D)750(E)1224Let P(x)=(x−1)(x−2)(x−3).For how many polynomials Q(x)does there exist a polynomial R(x)of degree3such that P(Q(x))=P(x)·R(x)?(A)19(B)22(C)24(D)27(E)3225Let S be the set of all points with coordinates(x,y,z),where x,y,and z are each chosen from the set{0,1,2}.How many equilateral triangles have all their vertices in S?(A)72(B)76(C)80(D)84(E)882005B 1A scout troop buys 1000candy bars at a price of five for $2.They sell all the candy bars at a price of two for $1.What was their prot,in dollars?(A)100(B)200(C)300(D)400(E)5002A positive number x has the property that x %of x is 4.What is x ?(A)2(B)4(C)10(D)20(E)403Brianna is using part of the money she earned on her weekend job to buy several equally-priced CDs.She used one fifth of her money to buy one third of the CDs.What fraction of her money will she have left after she buys all the CDs?(A)15(B)13(C)25(D)23(E)454At the beginning of the school year,Lisas goal was to earn an A on at least 80%of her 50quizzes for the year.She earned an A on 22of the first 30quizzes.If she is to achieve her goal,on at most how many of the remaining quizzes can she earn a grade lower than an A?(A)1(B)2(C)3(D)4(E)55An 8-foot by 10-foot floor is tiled with square tiles of size 1foot by 1foot.Each tile has a pattern consisting of four white quarter circles of radius 1/2foot centered at each corner of the tile.The remaining portion of the tile is shaded.How many square feet of the floor are shaded?(A)80−20π(B)60−10π(C)80−10π(D)60+10π(E)80+10π6In ABC ,we have AC =BC =7and AB =2.Suppose that D is a point on line AB such that B lies between A and D and CD =8.What is BD ?(A)3(B)2√3(C)4(D)5(E)4√27What is the area enclosed by the graph of |3x |+|4y |=12?(A)6(B)12(C)16(D)24(E)2520058For how many values of a is it true that the line y =x +a passes through the vertex of the parabola y =x 2+a 2?(A)0(B)1(C)2(D)10(E)infinitely many 9On a certain math exam,10%of the students got 70points,25%got 80points,20%got 85points,15%got 90points,and the rest got 95points.What is the difference between the mean and the median score on this exam?(A)0(B)1(C)2(D)4(E)510The first term of a sequence is 2005.Each succeeding term is the sum of the cubes of thedigits of the previous terms.What is the 2005th term of the sequence?(A)29(B)55(C)85(D)133(E)25011An envelope contains eight bills:2ones,2fives,2tens,and 2twenties.Two bills are drawnat random without replacement.What is the probability that their sum is $20or more?(A)14(B)27(C)37(D)12(E)2312The quadratic equation x 2+mx +n =0has roots that are twice those of x 2+px +m =0,and none of m,n,and p is zero.What is the value of n/p ?(A)1(B)2(C)4(D)8(E)1613Suppose that 4x 1=5,5x 2=6,6x 3=7,...,127x 124=128.What is x 1x 2···x 124?(A)2(B)52(C)3(D)72(E)414A circle having center (0,k ),with k >6,is tangent to the lines y =x,y =−x and y =6.What is the radius of this circle?(A)6√2−6(B)6(C)6√2(D)12(E)6+6√215The sum of four two-digit numbers is 221.None of the eight digits is 0and no two of themare same.Which of the following is not included among the eight digits?(A)1(B)2(C)3(D)4(E)516Eight spheres of radius 1,one per octant,are each tangent to the coordinate planes.What isthe radius of the smallest sphere,centered at the origin,that contains these eight spheres?(A)√2(B)√3(C)1+√2(D)1+√3(E)317How many distinct four-tuples (a,b,c,d )of rational numbers are there witha log 102+b log 103+c log 105+d log 107=2005?(A)0(B)1(C)17(D)2004(E)infinitely many200518Let A(2,2)and B(7,7)be points in the plane.Define R as the region in thefirst quadrant consisting of those points C such that ABC is an acute triangle.What is the closest integer to the area of the region R?(A)25(B)39(C)51(D)60(E)8019Let x and y be two-digit integers such that y is obtained by reversing the digits of x.The integers x and y satisfy x2−y2=m2for some positive integer m.What is x+y+m?(A)88(B)112(C)116(D)144(E)15420Let a,b,c,d,e,f,g and h be distinct elements in the set{−7,−5,−3,−2,2,4,6,13}.What is the minimum possible value of(a+b+c+d)2+(e+f+g+h)2(A)30(B)32(C)34(D)40(E)5021A positive integer n has60divisors and7n has80divisors.What is the greatest integer k such that7k divides n?(A)0(B)1(C)2(D)3(E)422A sequence of complex numbers z0,z1,z2,....is defined by the rulez n+1=iz n z nwhere z n is the complex conjugate of z n and i2=−1.Suppose that|z0|=1and z2005=1.How many possible values are there for z0?(A)1(B)2(C)4(D)2005(E)2200523Let S be the set of ordered triples(x,y,z)of real numbers for whichlog10(x+y)=z and log10(x2+y2)=z+1.There are real numbers a and b such that for all ordered triples(x,y,z)in S we have x3+y3= a·103z+b·102z.What is the value of a+b?(A)152(B)292(C)15(D)392(E)2424All three vertices of an equilateral triangle are on the parabola y=x2,and one of its sides has a slope of2.The x-coordinates of the three vertices have a sum of m/n,where m and n are relatively prime positive integers.What is the value of m+n?(A)14(B)15(C)16(D)17(E)18200525Six ants simultaneously stand on the six vertices of a regular octahedron,with each ant at a different vertex.Simultaneously and independently,each ant moves from its vertex to one of the four adjacent vertices,each with equal probability.What is the probability that no two ants arrive at the same vertex?(A)5256(B)211024(C)11512(D)231024(E)3128。