高中数学第一册(上)加法原理和乘法原理的应用
乘法原理与加法原理的应用
乘法原理与加法原理的应用乘法原理和加法原理是数学中常用的求解组合问题的原理。
它们可以用来计算多种情况下的可能性数量,解决各种实际问题。
本文将介绍乘法原理和加法原理的概念以及它们在实际应用中的具体使用方法。
一、乘法原理的应用乘法原理可用于计算多个独立事件组合的总数。
它的核心思想是将每个事件的可能性数量相乘,从而得到整体的可能性数量。
例如,假设有一个抽奖活动,参与者需要从 1 到 5 这 5 个数字中选择 3 个数字。
首先,我们需要计算第一个数字的选择可能数量,即 5种选择;然后,计算第二个数字的选择可能数量,即4 种选择;最后,计算第三个数字的选择可能数量,即 3 种选择。
根据乘法原理,总的可能性数量为 5 × 4 × 3 = 60 种。
乘法原理还可以用于计算有限条件下的排列组合问题。
例如,假设有 5 个小球,其中 2 个红色,3 个蓝色。
我们要把这些小球排成一列,问共有多少种排列方式。
根据乘法原理,第一个小球的选择有 5 种,第二个小球的选择有 4 种,以此类推,总共的排列数量为 5 × 4 × 3 × 2 × 1 = 120 种。
二、加法原理的应用加法原理可用于计算多个事件组合的总数,这些事件相互独立且不会同时发生。
它的核心思想是将每个事件的可能性数量相加,得到整体的可能性数量。
例如,假设一个班级有 5 个男生和 4 个女生。
我们要从班级中选择一位班长,该班长可以是男生也可以是女生。
根据加法原理,男生和女生的选择数量分别为 5 个和 4 个,所以总的选择数量为 5 + 4 = 9 个。
加法原理还可以用于计算具有多个条件限制的情况。
例如,假设有一家咖啡店提供 3 种咖啡和 2 种小吃供顾客选择。
顾客想要选择一种咖啡和一种小吃。
根据加法原理,咖啡的选择数量为 3 种,小吃的选择数量为 2 种,所以总的选择数量为 3 + 2 = 5 种。
三、乘法原理与加法原理的综合应用乘法原理和加法原理可以同时应用于解决更复杂的问题。
两个基本计数原理加法原理和乘法原理
两个基本计数原理加法原理和乘法原理两个基本计数原理:加法原理和乘法原理在我们日常生活和数学学习中,计数是一项非常重要的任务。
而加法原理和乘法原理就是两个帮助我们解决计数问题的基本原理。
让我们先来聊聊加法原理。
想象一下,你要从 A 地去 B 地,有三条不同的路可以走,分别是路 1、路 2 和路 3。
那么从 A 地到 B 地,总的路线选择就是这三条路的总和,这就是加法原理。
加法原理说的是,如果完成一件事情有 n 类不同的方式,在第一类方式中有 m1 种不同的方法,在第二类方式中有 m2 种不同的方法,以此类推,在第 n 类方式中有 mn 种不同的方法,那么完成这件事情总的方法数就是 m1 +m2 +… + mn 种。
比如说,在一个班级里评选优秀学生,有学习成绩优秀的、品德优秀的、社会实践积极的三种类型。
假设学习成绩优秀的有 10 人,品德优秀的有 8 人,社会实践积极的有 6 人。
那么这个班级里优秀学生的总数就是 10 + 8 + 6 = 24 人。
再比如,你周末想去图书馆看书,图书馆在三个不同的区域分别有分馆,第一个区域有 2 家分馆,第二个区域有 3 家分馆,第三个区域有 1 家分馆。
那么你可以选择去的图书馆分馆总数就是 2 + 3 + 1 = 6 家。
接下来,我们说一说乘法原理。
假设你早上要穿衣服出门,上衣有3 件不同的款式可以选择,裤子有 2 条不同的款式可以选择。
那么你搭配衣服的方式总共有 3×2 = 6 种。
这就是乘法原理。
乘法原理是指,如果完成一件事情需要 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,以此类推,做第 n 步有 mn 种不同的方法,那么完成这件事情总的方法数就是m1×m2×…×mn 种。
比如说,要从 0 、 1 、 2 、 3 这 4 个数字中选出 3 个数字组成一个三位数,百位上有 3 种选择(因为 0 不能在百位),十位上有 3 种选择,个位上有 2 种选择,那么总共能组成的三位数个数就是 3×3×2 =18 个。
计数原理知识点总结高中
计数原理知识点总结高中一、基本原理计数原理的基本原理包括加法原理和乘法原理。
1. 加法原理加法原理是指当一个事件可以分解为几个不相容的部分时,这个事件的总数等于各部分的事件数之和。
加法原理可以用于求解排列组合等问题。
举例: 一个班上有男生20人、女生25人,那么班上的学生总数为20+25=45人。
2. 乘法原理乘法原理是指当一个事件要发生的步骤可以划分为若干个子事件时,这个事件发生的总次数等于各子事件发生次数的乘积。
举例: 要在4x4的格子中按照某种规则走,从左上角到右下角,每一步只能向右或者向下移动,那么一共有6步,每一步有两种选择,那么总共有2^6=64种不同的走法。
二、排列组合排列和组合是计数原理中的两个重要概念,它们是用来计算不同元素的排列和组合的方法。
1. 排列在数学中,排列的定义是指从若干不同的元素中取出一部分进行排列,排列的顺序是有意义的。
对于n个元素中取出m个元素进行排列,共有n(n-1)(n-2)...(n-m+1)种排列,记作A(n,m)。
2. 组合组合是指从若干不同的元素中取出一部分进行组合,组合的顺序是没有意义的。
对于n个元素中取出m个元素进行组合,共有C(n,m) = n!/((n-m)!m!)种组合。
排列和组合在实际问题中有着广泛的应用,比如在组合学、密码学等领域,都会涉及到排列和组合的计算。
因此,掌握排列和组合的相关知识是非常重要的。
三、分配原理分配原理是指把若干个不同的物体分给若干个相异的盒子的方法,它与排列和组合有着密切的联系。
分配原理也是计数原理中的重要内容之一,可以在实际问题中得到广泛的应用。
举例: 有10个苹果和3个盒子,要求将这10个苹果分给这3个盒子,每个盒子至少有一个苹果,求分法的总数。
按照分配原理,将10个苹果放入3个盒子,总共有${{10-1}\choose{3-1}}=36$种不同的分法。
分配原理在实际问题中也有着广泛的应用,比如在计算机科学中的任务调度、网络流量控制等方面都会用到分配原理的相关知识。
乘原理和加法原理的区别
乘原理和加法原理的区别乘法原理和加法原理是概率论中两个重要的基本原理,它们在计算事件的可能性时起到了重要作用。
虽然它们都是计算概率的方法,但是在具体应用中有明显的区别。
首先来看乘法原理。
乘法原理是指当一个事件可以分解为多个相互独立的子事件时,可以通过将这些子事件的概率相乘来计算整个事件的概率。
简单来说,乘法原理适用于多个事件同时发生的情况。
举个例子来说明,假设一次抽取彩票的过程可以分解为两步:第一步是抽取红色球的概率为p,第二步是抽取蓝色球的概率为q。
那么整个抽取过程的概率就可以通过p和q的乘积来计算。
乘法原理的应用范围非常广泛,不仅仅局限于概率论中。
在组合数学中,乘法原理也有重要的运用。
例如,当从一个有n个元素的集合中选择k个元素时,可以通过乘法原理计算出选择的可能性,即n个元素中选出k个的组合数为C(n,k)=n!/(k!(n-k)!)。
而加法原理则与乘法原理不同,它适用于多个事件互斥或互不相干的情况。
加法原理指的是当一个事件可以通过多个互斥的子事件中的任意一个发生而实现时,可以通过将这些子事件的概率相加来计算整个事件的概率。
换句话说,加法原理适用于多个事件中至少发生一个的情况。
继续以上面的例子来说明,假设现在有两种不同的彩票方式可以选取,第一种方式的概率为p,第二种方式的概率为q,那么选择一种方式购买彩票的概率就可以通过p和q的和来计算。
加法原理同样在概率论以外的领域有着广泛的应用。
在组合数学中,加法原理用来计算多种情况下的组合数。
比如当一个集合可以被划分成若干个不相交的子集时,可以通过加法原理计算出集合的总数。
另外,加法原理也在马尔可夫链、图论等领域中得到应用。
简而言之,乘法原理和加法原理是计算概率时使用的两种不同方法。
乘法原理适用于多个事件同时发生的情况,可以通过将各个事件的概率相乘来计算整个事件的概率;而加法原理适用于多个事件中至少发生一个的情况,可以通过将各个事件的概率相加来计算整个事件的概率。
乘法原理与加法原理在概率统计中的应用
乘法原理与加法原理在概率统计中的应用概率统计是现代数学中的一个重要分支,其主要研究对象是随机现象。
在概率统计中,乘法原理与加法原理是两种基本的计数原理,它们可以帮助我们更好地理解和应用概率统计的相关概念和方法。
一、乘法原理的基本概念和应用乘法原理是概率论中常常用到的一种数学工具,它描述了独立事件的联合概率如何计算。
乘法原理是指,如果一个事件可以按照多种方式发生,每种方式发生的概率都为p1,p2,p3...pn,则该事件发生的概率是p1×p2×p3×...pn。
乘法原理在概率统计中的应用非常广泛,例如样本空间的计算,在计算样本空间时,可以利用乘法原理,将样本空间的个体数按照事件发生的方式进行组合,以此来获得样本空间中的所有个体。
此外,在计算复合事件的概率时,也可以利用乘法原理,将复合事件拆分为多个独立事件的组合。
例如,一项产业展览会上,参展商将自己的产品分为若干类别,指定该展览会上每个类别的参展商数量,我们可以利用乘法原理计算整个展览会上各个类别参展商出现的概率,从而为展商提供更完整的信息,有助于他们做出更科学的决策。
二、加法原理的基本概念和应用加法原理是概率统计中另一个非常重要的计数原理,它用于计算不相交事件的概率。
加法原理是指,如果事件A和事件B不相交,则它们的并集事件的概率是P(A∪B)=P(A)+P(B)。
加法原理在概率统计中的应用非常广泛,例如,当我们想要计算两个或多个事件的联合概率时,一般情况下,事件之间并不是完全独立的,因此,应用乘法原理计算联合概率往往会非常复杂。
而此时,可以利用加法原理,将不相交事件的概率加起来,从而计算事件的联合概率。
加法原理也常常应用于计算条件概率。
例如,在一个羽毛球赛场上,如果我们想要计算A选手与B选手中至少一个选手获胜的概率,可以利用加法原理将选手获胜的概率相加,然后再减去两个选手同时获胜的概率。
此时,我们需要利用乘法原理计算两个选手同时获胜的概率,从而得到正确的概率计算结果。
加法原理和乘法原理
加法原理和乘法原理
加法原理和乘法原理是数学中常用的计数原理,它们在解决组合计数问题时非常有用。
这两个原理分别适用于不同的情况,可以帮助我们计算出一系列事件发生的可能性。
加法原理是指,当有两个或更多个事件互斥(即不能同时发生)时,所有事件发生的总数等于各个事件发生的次数之和。
这意味着我们可以将问题拆分为若干个独立的子问题,然后将结果相加。
例如,假设有一个抽奖活动,有3个奖品可以选择。
如果一个人可以选择获得1个奖品或不获得奖品两种情况,那么总共的可能性就是2^3=8种。
这是因为每个奖品都有两个选择:获得或不获得。
加法原理帮助我们将这些选择情况进行累加,得到最终的结果。
乘法原理则适用于有多个步骤或条件的问题。
当每个步骤或条件的选择数目独立且互不影响时,我们可以将各个步骤或条件的选择数目相乘,得到总的组合数目。
例如,假设有一个4道选择题的考试,每道题有3个选项。
我们可以使用乘法原理计算出总的考试可能性数目。
因为每道题都有3个选项,所以一共有3^4=81种可能性。
需要注意的是,加法原理和乘法原理只适用于互斥事件或独立事件。
如果有关联的事件,则不能简单地使用这两个原理。
此外,加法原理和乘法原理提供了一种计算可能性的方法,但并
不保证所有可能都是合理或可行的。
因此,在使用这两个原理时,仍需要结合实际情况进行判断和验证。
乘法原理和加法原理
乘法原理和加法原理首先,我们来介绍乘法原理。
乘法原理是指如果一个事件发生的方式有m种,另一个事件发生的方式有n种,那么这两个事件同时发生的方式有mn种。
乘法原理常常用于计算多个事件同时发生的总数。
例如,如果有一条裤子有3种颜色,一件衬衫有2种颜色,那么一套搭配的上衣和裤子的方式有32=6种。
在实际生活中,乘法原理也常常用于计算排列组合、密码锁密码的可能性等。
接下来,我们来介绍加法原理。
加法原理是指如果一个事件发生的方式有m种,另一个事件发生的方式有n种,且这两个事件没有共同的发生方式,那么这两个事件发生的总方式有m+n种。
加法原理常常用于计算多个事件中至少有一个发生的总数。
例如,某人去购物可以选择去商场或者超市,那么他购物的方式有2种。
在实际生活中,加法原理也常常用于计算不同情况下的总数,比如考试中选择题的得分可能性等。
乘法原理和加法原理在解决实际问题时常常需要结合使用。
比如,某人有3种颜色的上衣和2种颜色的裤子可以搭配,他又有4种颜色的鞋子可以选择,那么他搭配上衣、裤子和鞋子的方式有324=24种。
这个例子中就是使用了乘法原理。
又比如,某人去购物可以选择去商场或者超市,他又可以选择购买衣服或者食品,那么他购物的方式有2+2=4种。
这个例子中就是使用了加法原理。
总结来说,乘法原理和加法原理是数学中的两个基本计数原理,在实际生活和工作中也有着广泛的应用。
通过学习和掌握乘法原理和加法原理,我们可以更好地解决实际问题,提高计算能力和逻辑思维能力。
希望大家通过本文的介绍,对乘法原理和加法原理有更深入的了解,并能够灵活运用于实际生活和工作中。
加法原理与乘法原理讲义
加法原理与乘法原理讲义加法原理和乘法原理是概率论中的重要概念,用于解决事件的组合计数问题。
在进行组合计数时,有时会遇到需要同时满足多个条件的情况,这时就可以利用加法原理和乘法原理进行统计计算。
下面就来介绍一下加法原理和乘法原理的定义和应用。
一、加法原理加法原理是指,如果一个事件可以按照若干个步骤分解,每个步骤都有若干种可能,那么整个事件的总数等于各个步骤可能性的和。
换句话说,如果事件A和事件B是两个互不相容的事件,即事件A和事件B不可能同时发生,那么事件A和事件B的总数等于事件A的可能性加上事件B的可能性。
例如,一些班级中有男生和女生两个性别,每个性别中有不同颜色的眼睛,现在要统计班级中总共有多少人。
如果男生有3个选项,女生有2个选项,眼睛颜色有4个选项,那么根据加法原理,男生和女生的总数等于3+2=5,而加上眼睛颜色的选项后,总数为5*4=20。
二、乘法原理乘法原理是指,如果一个事件可以分解为若干个步骤,并且每个步骤都有若干种可能,那么每个步骤可能性的乘积就是整个事件的可能性。
换句话说,如果事件A可以分解为事件B和事件C两个步骤,事件B有m种可能性,事件C有n种可能性,那么事件A的总数等于m*n。
例如,一位学生要从一本书中选择一章节进行阅读,这本书有6个章节,每章节中有3个段落,每段落有5个句子。
那么根据乘法原理,这位学生选择读一章节的总数等于6*3*5=90。
三、加法原理与乘法原理的应用加法原理和乘法原理可以应用于各种组合计数问题的求解,例如排列组合、样本空间的计算等。
1.排列组合排列组合是计算从一些集合中选择若干个元素的不同方式的方法。
对于排列问题,加法原理和乘法原理可以应用于确定每个位置的可能性。
例如,有4个不同的球员竞争3个奖项,每个奖项只能被一个球员获得。
根据加法原理,每个奖项的选出方式等于4,所以总数是4+4+4=12种。
对于组合问题,乘法原理可以应用于确定每个位置的可能性。
例如,从8个不同的球员中选择3个球员组成一个小组。
加法原理及乘法原理课件
在保险业务中,可能会面临多种风险,如火灾、盗窃、车祸等。根据加法原理,可以分别计算每种风险发生的概 率,然后将这些概率相加以获得多种风险同时发生的总概率。这有助于保险公司制定合理的保险费率,以应对可 能出现的多种风险。
02
乘法原理
定义
乘法原理
做一件事,完成它需要分成几步 ,每一步又可以独立地完成,那 么完成这件事的方法数就是每一 步方法数的乘积。
适用范围
适用于分步骤完成的任何事情, 每一步的方法数是固定的。
适用范围
01
02
03
组合问题
乘法原理可以用于计算组 合数,即从n个不同元素 中取出m个元素的不同取 法数。
排列问题
乘法原理也可以用于计算 排列数,即从n个不同元 素中取出m个元素进行排 列的不同排法数。
概率问题
在概率论中,乘法原理可 以用于计算多步骤事件的 概率,即多个独立事件的 概率乘积。
应用实例
组合问题
从5个不同元素中取出3个元素的 组合数为C(5,3)=10,这是通过 将第一个元素的选择方法数(5 种)与第二个元素的选择方法数
(4种)相乘得到的。
排列问题
对于3个不同元素的全排列数为 A(3,3)=6,这是通过将第一个元 素的选择方法数(3种)与第二 个元素的选择方法数(2种)相
05
加法原理与乘法原理的实践 意义
提高数学思维能力
掌握加法原理与乘法原理,能够 更好地理解和运用数学概念,提
高数学思维能力。
通过运用加法原理与乘法原理, 可以解决各种数学问题,提高数
学解题能力。
掌握加法原理与乘法原理,有助 于发现数学中的规律和模式,培
养数学直觉和创造性思维。
培养逻辑推理能力
加法原理与乘法原理
加法原理与乘法原理加法原理和乘法原理是概率论中非常重要的概念,它们用于计算一系列事件发生的可能性。
在这篇文章中,我将详细介绍加法原理和乘法原理的定义、理解和应用。
首先,让我们从加法原理开始。
加法原理是指在多个事件发生的情况下,计算这些事件中至少发生一个的总可能性的方法。
简单来说,加法原理是通过把每个事件的可能性相加来计算总可能性。
假设我们有两个互斥事件A和B(即事件A和事件B不可能同时发生),事件A的概率为P(A),事件B的概率为P(B)。
根据加法原理,事件A或事件B发生的总概率为P(A∪B)=P(A)+P(B)。
如果我们有更多的事件,比如事件A、B和C,我们可以使用加法原理计算它们中至少发生一个的总概率。
总概率为P(A∪B∪C)=P(A)+P(B)+P(C)。
现在我们来看一个具体的例子,假设我们有一个骰子,它有六个面,每个面的数字分别为1、2、3、4、5和6、我们想知道投掷一次骰子的结果可能是奇数或小于等于3的概率。
我们可以定义两个事件,事件A表示投掷的结果是奇数,事件B表示投掷的结果小于等于3、根据加法原理,我们可以计算总概率为P(A∪B)=P(A)+P(B)。
首先,事件A的概率为P(A)=3/6,因为1、3和5是奇数,而总共有6个可能的结果。
事件B的概率为P(B)=3/6,因为1、2和3小于等于3,而总共有6个可能的结果。
所以总概率为P(A∪B)=3/6+3/6=1从上面的例子可以看出,加法原理非常简单直观,它将每个事件的概率相加,得到满足条件的总概率。
接下来,我们来介绍乘法原理。
乘法原理是指计算多个事件同时发生的总可能性的方法。
简单来说,乘法原理将每个事件的概率相乘,得到它们同时发生的总概率。
假设我们有两个独立事件A和B,事件A的概率为P(A),事件B的概率为P(B)。
根据乘法原理,事件A和事件B同时发生的总概率为P(A∩B)=P(A)×P(B)。
如果我们有更多的独立事件,比如事件A、B和C,我们可以使用乘法原理计算它们同时发生的总概率。
加法原理与乘法原理
加法原理与乘法原理加法原理和乘法原理是概率论中非常重要的基本原理,它们用来计算和分析事件的可能性。
无论是在日常生活中还是在各种实际问题中,加法原理和乘法原理都有着广泛的应用。
本文将对这两个原理进行详细论述,并分析它们的实际应用。
一、加法原理加法原理是指对于两个不相交的事件A和B,它们的总可能性等于各自发生的可能性之和。
换句话说,当事件A和B不能同时发生时,它们的概率可以进行相加。
这一原理可以用以下公式表示:P(A∪B) = P(A) + P(B)其中,P(A∪B)表示事件A和B中至少发生一个的概率,P(A)和P(B)分别表示事件A和B各自发生的概率。
加法原理的应用非常广泛。
例如,在一次投掷一枚硬币的实验中,我们可以定义事件A为“正面朝上”和事件B为“反面朝上”。
根据加法原理,事件A和B至少发生一个的概率为1,即P(A∪B) = 1。
这是因为在一次投掷中,硬币只能以正面朝上或反面朝上其中一种方式落下。
二、乘法原理乘法原理是指对于两个独立事件A和B,它们的总可能性等于各自发生的可能性相乘。
换句话说,当事件A和B相互独立时,它们的概率可以进行相乘。
这一原理可以用以下公式表示:P(A∩B) = P(A) × P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)和P(B)分别表示事件A和B各自发生的概率。
乘法原理的应用也非常广泛。
例如,在抓娃娃机的实验中,我们定义事件A为“第一次抓到娃娃”和事件B为“第二次抓到娃娃”。
根据乘法原理,事件A和B同时发生的概率为P(A∩B) = P(A) × P(B)。
假设第一次抓到娃娃的概率为0.2,第二次抓到娃娃的概率为0.3,则可以计算出事件A和B同时发生的概率为0.2 × 0.3 = 0.06。
综上所述,加法原理和乘法原理是概率论中常用的计算方法。
通过运用这两个原理,我们可以准确地计算事件的可能性,分析事件之间的关系。
在实际应用中,我们可以根据具体问题确定采用加法原理还是乘法原理,从而得到正确的计算结果。
加法原理与乘法原理的应用问题
加法原理与乘法原理的应用问题在数学中,加法原理和乘法原理是解决组合问题的基本原理。
它们可以帮助我们解决各种实际问题,从排列组合到概率统计,都离不开这两个原理的应用。
本文将通过几个具体的问题,来探讨加法原理和乘法原理的应用。
问题一:某电商平台有3种优惠券,每个用户只能选择其中一种使用。
现有10个用户,问有多少种不同的优惠券使用情况?解析:根据加法原理,我们可以将问题拆解为3个子问题,即每个用户选择哪种优惠券。
由于每个用户只能选择其中一种,所以每个子问题有3种选择。
根据乘法原理,我们将这3个子问题的解相乘即可得到最终的答案。
所以,答案为3的10次方,即59049种不同的优惠券使用情况。
问题二:某班级有5个男生和7个女生,要从中选出3个同学组成一个小组,其中至少有一个男生和一个女生。
问有多少种不同的组合方式?解析:我们可以将问题分解为两个子问题。
第一个子问题是从5个男生中选出至少一个男生,共有C(5,1) + C(5,2) + C(5,3)种选择方式;第二个子问题是从7个女生中选出至少一个女生,共有C(7,1) + C(7,2) + C(7,3)种选择方式。
根据乘法原理,将两个子问题的解相乘,即可得到最终的答案。
所以,答案为( C(5,1) + C(5,2) + C(5,3) ) * ( C(7,1) + C(7,2) + C(7,3) ),即1050种不同的组合方式。
问题三:某公司有4个职位需要填补,共有10个应聘者。
其中,职位A只能由男性担任,职位B只能由女性担任,职位C和D没有性别限制。
问有多少种不同的分配方式?解析:我们可以将问题分解为三个子问题。
第一个子问题是从男性应聘者中选出一个人来担任职位A,共有C(4,1)种选择方式;第二个子问题是从女性应聘者中选出一个人来担任职位B,共有C(6,1)种选择方式;第三个子问题是从剩下的应聘者中选出两个人来担任职位C和D,共有C(9,2)种选择方式。
根据乘法原理,将三个子问题的解相乘,即可得到最终的答案。
高中数学第一册(上)加法原理和乘法原理
加法原理和乘法原理[教学目标]1.了解学习本章的意义,激发学生的兴趣;2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力;3.会利用两个原理分析和解决一些简单的应用问题.[教学重点]分类计数原理(加法原理)与分步计数原理(乘法原理).[教学难点]原理的准确理解及应用.[内容分析]两个基本原理是排列、组合的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以在教学目标中特别提出要使学生学会准确地应对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的基于这一想法,在引入新课时,首先是把正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类和分步教学中给出的练习均在课本例题的基础上稍加改动过的,目的就在于帮助学生对这一知识的理解与两个原理是教与学重点,又具有相当难度.加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小〞,即“分解〞的思想.更具体地说就是把事物分成类或分成步去数.“分类〞、“分步〞,看似简单,不难理解,却是全章的理论依据和基本方法,贯穿始终,所以,是举足轻重的重点.两个原理,要能在各种[教学过程]一、复习引入:一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法?揭示本节课内容:等我们学了这一部分内容后,这些问题会很容易解决而这部分内容是代数中一个独立的问题,与旧知识联系很少,但它是以后学习二项式定理、概率学、统计学从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合.它们研究对象独特,研究问题的方法不同一般虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关至于在日今天我们就来学习本章的两个基本原理(这是排列、组合的第一节课,把这一章的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为本章的学)二、讲解新课:〔1-1〕从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种方法?分析:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以,共有3+2=5种不同的走法,如下图(1-2) 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船一天中,火车有4 班, 汽车有2班,轮船有3班那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有3类方法:第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法;所以,从甲地到乙地共有4+2+3=9种方法 2.分类计数原理(加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++ 种不同的方法〔2-1〕从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地,一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?分析:因为乘火车有3种走法,乘汽车有2种走法,所以,乘一次火车再接着乘一次汽车从甲地到乙地,共有326⨯=种不同走法,如下图,所有走法:火车1──汽车1;火车1──汽车2;火车2──汽车1;火车2──汽车2;火车3──汽车1;火车3──汽车2〔2-2〕如图,由A 村去B 村的道路有2条,由B 村去C 村的道路有3条从A 村经B 村去C 村,共有多少种不同的走法? 分析: 从A 村经 B 村去C 村有2步,第一步, 由A 村去B 村有2种方法,第二步, 由B 村去C 村有3种方法,所以 从A 村经 B 村去C 村共有 2×3 = 6 种不同的方法 4.分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯分类计数原理(加法原理)中,“完成一件事,有n 类办法〞,是说每种办法“互斥〞,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否那么不可以.分步计数原理(乘法原理)中,“完成一件事,需要分成n 个步骤〞,是说每个步骤都不足甲地乙地火车汽车轮船A村C村B村以完成这件事,这些步骤,彼此间也不能有重复和遗漏.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m 种不同的方法,那么完成这件事的方法数就可以直接用乘法原理.可以看出“分〞是它们共同的特征,但是,分法却大不相同.两个原理的公式是:12n N m m m =+++, 12n N m m m =⨯⨯⨯这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要灵活而巧妙地分类或分步.强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比.两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成〞,乘三、讲解X 例:例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,〔1〕从书架上任取1本书,有多少种不同的取法?〔2〕从书架的第1、2、3层各取1本书,有多少种不同的取法?解:〔1〕从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2根据分类计数原理,不同取法的种数是4+3+2=9种所以,从书架上任取1本书,有9种不同的取法;〔2〕从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本艺术书,有3种方法;第3步从第3层取1本体育书,有2种方法根据分步计数原理,从书架的第1、2、3层各取1本书,不同取法的种数是43224⨯⨯=种所以,从书架的第1、2、3层各取1本书,有24种不同的取法例2.一种拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数?解:每个拨号盘上的数字有10种取法,根据分步计数原理,4个拨号盘上各取1个数字组成的四位数字的个数是1010101010000N =⨯⨯⨯=,所以,可以组成10000例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法? 解:从3名工人中选1名上日班和1名上晚班,可以看成是经过先选1名上日班,再选1名上晚班两个步骤完成,先选1名上日班,共有3种选法;上日班的工人选定后,上晚班的工人有2根据分步技数原理,不同的选法数是326N =⨯=种,6种选法可以表示如下〔略〕.所以,从3名工人中选出2名分别上日班和晚班,6种不同的选法例4.甲厂生产的收音机外壳形状有3种,颜色有4种,乙厂生产的收音机外壳形状有4种,颜色有5种,这两厂生产的收音机仅从外壳形状和颜色看,共有所少种不同的品种?解:收音机的品种可分两类:第一类:甲厂收音机的种类,分两步:形状有3种,颜色有4种,共3412⨯=种; 第二类:乙厂收音机的种类,分两步:形状有4种,颜色有5种,共4520⨯=种 所以,共有122032+=个品种说明:分类和分步计数原理,都是关于做一件事的不同方法的种数的问题区别在于:分类计数原理针对“分类〞问题,其中方法相互独立,用其中任何一种方法都可以做完这件事;分步计数原理针对“分步〞问题,各个步骤中方法相互独立,只有各个步骤都完成才算完成四、课堂练习:1 . 书架上层放有6本不同的数学书,下层放有5本不同的语文书(1) 从中任取一本,有多少种不同的取法?(2)从中任取数学书与语文书各一本,有多少种不同的取法?解:(1)从书架上任取一本书,有两种方法:第一类可从6本数学书中任取一本,有6种方法;第二类可从5本语文书中任取一本,有5种方法;根据加法原理可得共有 5+6=11 种不(2) 从书架上任取数学、语文书各一本,可以分成两步完成:第一步任取一本数学书,有6种方法;第二步任取一本语文书,有5种方法根据乘法原理共有5×6=30种不同取法2. 某班级有男学生5人,女学生4人(1)从中任选一人去领奖, 有多少种不同的选法?(2) 从中任选男、女学生各一人去参加座谈会,有多少种不同的选法?解:(1) 完成从学生中任选一人去领奖这件事,共有2类办法,第一类办法,从男学生中任选一人, 共有1m = 5种不同的方法;第二类办法,从女学生中任选一人, 共有2m = 4种不同的方法所以, 根据加法原理, 得到不同选法种数共有 N = 5 + 4 = 9 种(2) 完成从学生中任选男、女各一人去参加座谈会这件事, 需分2步完成, 第一步,选一名男学生,有 1m = 5种方法;第二步, 选一名女学生,有2m = 4种方法; 所以,根据乘法原理, 得到不同选法种数共有 N = 5 × 4 = 20 种由例1可知: 解题的关键是从总体上看做这件事情是“分类完成〞 ,还是“分步完成〞 “分类完成〞用“加法原理〞 ;“分步完成〞用“乘法原理〞3. 满足A ∪B ={1,2}的集合A 、B 共有多少组?分析一:A 、B 均是{1,2}的子集:φ,{1},{2},{1,2},但不是随便两个子集搭配都行,此题尤如含A 、B 两元素的不定方程,其全部解分为四类:1)当A =φ时,只有B ={1,2},得1组解;2)当A ={1}时,B ={2}或B ={1,2},得2组解;3)当A ={2}时,B ={1}或B ={1,2},得2组解;4)当A ={1,2}时,B =φ或{1}或{2}或{1,2},得4组解.根据分类计数原理,共有1+2+2+4=9组解.分析二: 设A 、B 为两个“口袋〞,需将两种元素(1与2)装入,任一元素至少装入一个袋中,分两步可办好此事:第1步装“1〞,可装入A 不装入B ,也可装入B 不装入A ,还可以既装入A 又装入B ×3=9种装法,即原题共有9组解.4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2从甲地到丙地共有多少种不同的走法?答案:2×3+4×五、小结:本节课主要介绍了两个基本原理,解题时应紧扣原理,弄清事情完成的前后经过,分清是分类还是分步,或分类中含分步、分步中含分类无论是分类、分步,关键是做到不重不漏六、课后作业:南师大《数学之友》T10.1七、板书设计〔略〕八、教学后记:。
加法原理、乘法原理
加法原理、乘法原理基础知识:1.加法原理:如果完成一件事情可以分成几类方法,每一类又包含若干种不同方法,那么将所有类中的方法数累加就是完成这件事的所有方法数.加法原理的关键在于分类,类与类之间用加法.2.乘法原理:如果完成一件事情可以分成几个步骤,每一步又包含若干种不同方法,那么将所有步骤中的方法数连乘就是完成这件事的所有方法数.乘法原理的关键在于分步,步与步之间用乘法.3.分类原则:分类要做到“不重不漏”.任意两类之间不可以重复,这叫做不重;把所有的类别累加在一起就得到整体,这叫做不漏.4.分步原则:分步要做到“前不影响后”.无论前面步骤采取哪种方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.例1.从1开始依次写下去一直到999,得到一个多位数1234567891011121314…997998999,请问:(1)这个多位数一共有多少位?(2)第999位数字是多少?(3)在这个多位数中,数字9一共出现了多少次?(4)数字0一共出现了多少次?问题(1)这个多位数一共有多少位?[答疑编号5721040101]1【答案】(1)2889;(2)9;(3)300;(4)189【解答】分析1:999个自然数构成一个多位数,可以利用加法原理分类的思想求这个多位数的位数.将这999个自然数分成3类:第1类是1位数;第2类是2位数;第3类是3位数.分别计算每一类自然数占了多少位,再求和就可以得出多位数的位数了.详解1:按照自然数的位数去分类.构成这个多位数的自然数中1位数有9个,占了9位;2位数有90个,占了2×90=180位;3位数有900个,占了3×900=2700位;所以这个多位数总共有9+180+2700=2889位.问题(2)第999位数字是多少?详解2:1位数和2位数一共占了189位,999位数数字还需要3位数占据999-189=810位.由810÷3=270…0可知第999位数字是第270个3位数的最后1位.第270个3位数是369,所以第999位数字是9.问题(3)在这个多位数中,数字9一共出现了多少次?分析3:前面2问分类的方法是按照自然数的位数去分类,1位数,2位数,3位数各自分为一类.但按照这种分类的思路来解第3问就不是很方便了:1位数含有1个9,2位数含有19个9,但是考虑3位数含有多少个9还是比较复杂.通过这种分类的思路去分析问题并没有使问题变得简单.可以考虑按照分段的方法去分类,第1类1—99;第2类100—199;第3类200—299;……;第10类900—999.分别计算每一类中包含了多少个9,然后再加和就可以了.注意利用每一类的相似性,比如第1类到第9类每一类所包含9的个数应该一样多,当然第10类900—999中9的个数2比前9类要多100个.再考虑一种分类的方法,按照9出现的位置去分类.首先考虑9在百位出现了多少次;再考虑9在十位出现了多少次;最后考虑9在个位出现了多少次.详解3:按照分段的方法去分类.实际这种分类方法也是按照百位数的不同去分类,在每一类中百位数是相同的(1—99可以看成百位数为0).考虑第1类1—99中包含了多少个9,个位包含9的有:9,19,29,39,49,59,69,79,89,99一共10个;十位包含9的有:90,91,92,93,94,95,96,97,98,99也是10个.这样在1—99中9在个位和十位各出现了10次,一共是20次.同理,第2类100—199;第3类200—299;……;第9类800—899;每一类中也都包含20个9.第10类900—999中9的个数比前9类要多100个,应该是120个.所以原来的多位数中总共有20×9+120=300个9.其实更快的方法是按9出现的位置去数,应用乘法原理.问题(4)数字0一共出现了多少次?详解4:按照0出现在个位、十位去分类当0出现在十位时,百位可以为1~9,个位可以为0~9,根据乘法原理,共有9×10=90次;同理,当0出现在个位时,共有9×10+9=99次,所以原来的多位数中0出现了99+90=189次.例2.允许数字重复,那么用数字0、1、3、5、7、9最多可以组成多少个不同的三位数?3[答疑编号5721040102]【解答】百位有5种选择,十位和个位都有6种选择.根据乘法原理,一共可以组成5×6×6=180个三位数.变化:如果不允许数字重复呢?其中被5整除的无重复数字的三位数又有多少个呢?例3.在所有的三位数中,至少出现一个2的偶数有________个.[答疑编号5721040103]【解答】①个位是2的有9×10=90个;②十位是2但个位不是2的偶数有9×4=36个;③百位是2但十位和个位都不是2的偶数有9×4=36个,所以一共有90+36+36=162个符合条件的三位数.例4.用1、2、3、4、5这5个数字组成四位数,至多允许有1个数字重复两次.例如1234、1233和2454是满足条件的,而1212、3335和4444就是不满足条件的.那么,所有这样的四位数共有________个.[答疑编号5721040104]【解答】方法1:分类讨论.如果包含4个互不相同的数字,一共有5×4×3×2=120个;如果包含3个互不相同的数字,我们可以先从5个数45字中选出3个数字,然后再从挑出的3个数字中选1个可以重复,最后把这3个数字带上1个重复的数字共4个数字排成1行.根据乘法原理,就有个,所以一共有120+360=480个四位数.方法2:排除法.所有可能的四位数有5×5×5×5=625个;只包含1个数字的有5个,包含2个数字的有5×4×(2×2×2-1)=140个.那么包含3个或4个不同数字的四位数有625-5-140=480个.例5.书架上有1本英语书,9本不同的语文书,9本不同的数学书和7本不同的历史书.现在要从中取出3本书,而且不能有两本是同一科的.那一共有多少种取法?[答疑编号5721040105]【答案】774【解答】因为一共要4种书中选3种,所以要分4种情况讨论:如果拿的是英语、语文和数学书,根据乘法原理一共有1×9×9种方法;如果拿的是英语、语文和历史书,一共有1×9×7种拿法,同理另外两种情况分别有1×9×7种和9×9×7种拿法.最后我们根据加法原理,一共有1×9×9+1×9×7+1×9×7+9×9×7=1×9×16+10×9×7=144+630=774种拿法.例1.用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码;(2)四位数;(3)四位奇数.[答疑编号5721040201]【解答】(1)完成“组成无重复数字的四位密码”这件事,可以分四个步骤:第一步:选取左边第一个位置上的数字,有5种选取方法;第二步:选取左边第二个位置上的数字,有4种选取方法;第三步:选取左边第三个位置上的数字,有3种选取方法;第四步:选取左边第四个位置上的数字,有2种选取方法;由乘法原理,可组成不同的四位密码共有N=5×4×3×2=120(个).(2)完成“组成无重复数字的四位数”这件事,可以分四个步骤:第一步:从1,2,3,4中选取一个数字作千位数字,有4种选取方法;第二步:从1,2,3,4中余下的三个数字和0中选取一个数字作百位数字,有4种选取方法;第三步:从余下的三个数字中选取一个数字作十位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作个位数字,有2种选取方法;由乘法原理,可组成不同的四位数共有N=4×4×3×2=96(个).(3)完成“组成无重复数字的四位奇数”这件事,可以分四个步骤:6第一步:从1,3中选取一个数字作个位数字,有2种选取方法;第二步:从1,3中余下的一个数字和2,4中选取一个数字作千位数字,有3种选取方法;第三步:从余下的三个数字中选取一个数字作百位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作十位数字,有2种选取方法;由乘法原理,可组成不同的四位奇数共有N=2×3×3×2=36(个).例2.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?[答疑编号5721040202]【解答】取a+b与取b+a是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由乘法原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据加法原理共有45+45=90种不同取法.例3.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案有多少种?[答疑编号5721040203]【解答】5名志愿者分配到3个不同的奥运场馆,可以分成3,1,71和2,2,1两类,第一类:分成3,1,1,完成此件事可以分成3步,第1步:3个馆选一个馆去3个人,共有3种选法,第2步:5个人中选3个人,共有种选法,第3步:剩下的2个人分别去两个馆,所以当分配成3,1,1时,根据乘法原理,共有3×10×2=60(种);第二类:分成2,2,1,完成此件事可以分成3步,第1步:5个人中选出一个人,共有5种选法,第2步:3个馆中选出一个馆,共有3种选法,第3步:剩下的4个人中选2个人去剩下两个馆中的一个,最后一个人去另外一个馆,共有(种),所以当分配成2,2,1时,根据乘法原理,共有5×3×6=90(种);所以根据加法原理,不同的分配方案共有60+90=150(种).例4.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数有多少个?[答疑编号5721040204]【解答】可分三步来做这件事:第一步:先将3、5放到六个数位中的两个,共有2种排法;第二步:再将4、6插空放入剩下四个数位中的两个,共有2×2=4种排法;8第三步:将1、2放到3、5、4、6形成的空位中,共有5种排法.根据乘法原理:共有2×4×5=40(种).例5.在一个3行4列的方格表内放入4枚相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?在一个3行4列的方格表内放入4枚互不相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?[答疑编号5721040205]【解答】「问题1」4枚棋子放入4列,每一列有且仅有1枚棋子,因此总共分4个步骤考虑.第1步考虑第1列的棋子放在什么位置;第2步考虑第2列的棋子放在什么位置;第3步考虑第3列的棋子放在什么位置;第4步考虑第4列的棋子放在什么位置.每一步都有3种选择方法,所以方法数一共有3×3×3×3=81种.「问题2」假设4枚互不相同的棋子为A,B,C,D.将按照下面的4个步骤进行考虑,先放棋子A,12个格子可以随便选择,一共有12种方法.第2步放棋子B,A那一列的3个格子不能选择,其它的格子都可以放B,所以一共有9种方法.第3步放棋子C,A、B那两列一共6个格子不能选,所以一共有6种方法.第4步放棋子D,A、B、C三列一共9个格子不能选,还剩3个格子,所以一共有3种方法.利用乘法原理,放入4个不同棋子的方法数一共有12×9×6×3=1944种方法.9另外一种解法.「问题2」4个棋子要占4个方格,先选出放棋子的4个方格.实际上挑出4个方格的方法数和第1问是完全相同的,总共有3×3×3×3=81种选择方法.选好方格后再将棋子排列进去,第1列的方格可以选择A,B,C,D中的任何一个棋子,所以有4种方法;第2列的方格还剩下三个棋子可供选择,所以有3种方法;第3列的方格还剩下两个棋子可供选择,有2种方法;第4列的方格只有1种方法.所以选好4个方格后排列棋子的方法数一共是4×3×2×1=24种.选4个方格有81种方法,选好4个方格后放棋子一共有24种方法,所以将表格中放入4个互不相同的棋子的总方法数是81×24=1944种.例6. 如图,把图中的8个部分用红、黄、绿、蓝4种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.那么,这幅图共有多少种不同的着色方法?[答疑编号5721040206]【解答】按照A,B,D,E,C,G,F,H的步骤进行染色.对A进行染色的时候没有任何的限制,总共有4种染色的方法;对B 进行染色的时候由于不能和A同色,所以有3种染色的方法;对D进行染10色的时候由于不能和A,B同色,所以只剩2种染色的方法;对E进行染色时不能和B,D同色,所以有2种染色的方法;对C进行染色时不能和B,E 同色,所以有2种染色方法;对G进行染色时不能和D,E同色,所以有2种染色的方法;对F进行染色时不能和D,G同色,所以有2种染色的方法;对H进行染色时不能和E,G同色,所以有2种染色的方法.综合上面的八个步骤,利用乘法原理,共有4×3×2×2×2×2×2×2=768种着色的方法.「评议」本题染色的步骤还有很多种,大家考虑一下按照A,B,C,D,E,F,G,H的步骤进行染色是否可以?可能有同学发现按照A,B,C,D,E,F,G,H的步骤进行染色会算出另外一个答案4×3×3×2×1×3×1×2=432.当然,正确答案只能有一个,那么这种分步方法到底错在哪里呢?这里要提到利用乘法原理一条重要的原则:“前不影响后”.无论前面步骤采取哪种染色方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.而按照A,B,C,D,E,F,G,H的步骤来染色就违反了这个原则.请看下面图中的例子:在上面的例子中,左图前4步采取的染色方法是红、黄、绿、蓝,第5步对E进行染色时只有1种方法;右图前4步采取的染色方法是红、黄、绿、绿,这样第5步对E进行染色时有2种方法.于是第5个步骤对E进行11染色无法确定到底有几种染色的方法,前4步不同的染色方案影响到了第5步的方法数,既然不能确定是1种还是2种,乘法原理自然也就无法应用了.例7.如果一个数与11作竖式乘法的过程中不需要进位,那么就称这个数是“好数”.例如,11、131和142就都是“好数”,而65、78和75都不是“好数”.那么小于300的三位数中共有________个“好数”.[答疑编号5721040207]【解答】首先看首位数字是1的“好数”,其十位数字不能是9.在十位数字是8的“好数”中,只有180和181;在十位数字是7的“好数”中,只有170,171和172这3个……在十位数字是0的“好数”中,有100,101……109这10个.因此首位数字是1的“好数”有2+3+……+10=54个.同样方法,可以求出首位数字是2的“好数”有3+4+……+10=54个.因此,小于300的“好数”有54+52=106个.12。
加法原理和乘法原理
加法原理和乘法原理一、加法原理加法原理(也叫做并法则)是指对于两个或多个互不相容事件的概率之和等于每个事件概率的总和。
互不相容事件是指它们不能同时发生的事件。
假设有两个事件A和B,它们是互不相容的事件。
事件A发生的概率为P(A),事件B发生的概率为P(B),那么根据加法原理,事件A或者事件B发生的概率等于事件A发生的概率加上事件B发生的概率,即:P(A或B)=P(A)+P(B)这个原理可以进一步推广到多个事件的情况。
如果有n个互不相容的事件A1,A2,...,An,它们的概率分别为P(A1),P(A2),...,P(An),那么这些事件中至少有一个事件发生的概率等于每个事件概率之和,即:P(A1或A2或...或An)=P(A1)+P(A2)+...+P(An)加法原理的应用可以帮助计算出一系列互不相容事件的概率和,从而推断出整个概率空间的概率。
二、乘法原理乘法原理(也叫做积法则)是指对于两个或多个独立事件的概率乘积等于每个事件概率的乘积。
独立事件是指它们的发生与其它事件无关。
假设有两个事件A和B,它们是独立事件。
事件A发生的概率为P(A),事件B发生的概率为P(B),那么根据乘法原理,事件A和事件B同时发生的概率等于事件A发生的概率乘上事件B发生的概率,即:P(A且B)=P(A)×P(B)这个原理可以进一步推广到多个事件的情况。
P(A1且A2且...且An)=P(A1)×P(A2)×...×P(An)乘法原理的应用可以帮助计算出多个独立事件同时发生的概率,从而推断出复杂事件的概率。
三、加法原理和乘法原理的关系加法原理和乘法原理在概率论中是相辅相成的。
乘法原理可以看作加法原理的特殊情况。
当事件A和事件B同时发生时,可以将事件A和事件B看作两个互不相容的子事件,此时根据加法原理,事件A或者事件B发生的概率等于事件A发生的概率加上事件B发生的概率。
而根据乘法原理,事件A和事件B同时发生的概率等于事件A发生的概率乘上事件B在事件A发生的条件下发生的概率。
高考数学中乘法原理与加法原理的应用
高考数学中乘法原理与加法原理的应用在高考数学中,乘法原理与加法原理是两个非常重要的数学原理。
它们都是解决计数问题的基本方法,而在高考数学中,也常常会出现这样的题目:需要考生运用乘法原理和加法原理,解决各种不同的计数问题。
本文将从实际例子出发,阐述乘法原理与加法原理的应用,并为广大考生提供一些应试技巧和方法。
乘法原理是指:若第一件事情有m种可能,第二件事情有n种可能,那么两件事情一起的可能性有m×n种。
例如下面的例子:例1:有两个球,分别是红球和蓝球,它们可以相互搭配,求出一共有多少种搭配方案?我们可以先分别考虑这两个球的可能性,红球有2种可能性(选或者不选),蓝球也有2种可能性,所以一共有2×2=4种搭配方案。
再看一个更加具体的例子:例2:有5个不同的球,用这些球排列,求出一共有多少种排列方法?我们可以发现,这道题是一个排列问题,而排列问题的解决方法就是使用乘法原理。
对于这个问题,我们可以先考虑第一个球的可能性,这个球可以选择5种不同的球中的任意一种。
然后考虑第二个球的可能性,因为已经选择了一个球,所以第二个球只有4种可能性。
同理,第三个球只有3种可能性,第四个球有2种可能性,第五个球只有1种可能性。
因此,一共有5×4×3×2×1=120种排列方法。
以上两个例子分别是乘法原理的应用和基本原理。
在实际应用中,有些问题并不那么简单。
下面我们再来看看一个较为复杂的例子:例3:有5个人要坐在一排椅子上,其中有两个人必须相邻,求出有多少种坐法?对于这个问题,我们可以分为两种情况来考虑:第一,这两个人坐在起始位置和终止位置的椅子上;第二,这两个人坐在中间位置的两个椅子上。
对于第一种情况,我们首先将这两个人看成一个整体,相当于有4个人要坐在4个椅子上。
这种情况下,有4×3×2×1=24种坐法。
然后,考虑这两个人在整体中的不同坐法,一共有2种:前面那个人在左边还是右边。
乘法原理和加法原理及其在哲学管理学中的应用
乘法原理和加法原理及其在哲学管理学中的应用乘法原理是概率论中的一个基本原理,通过将复杂的事件分解成简单的子事件,并计算各个子事件发生的概率,从而计算整个事件发生的概率。
乘法原理的应用广泛,可以用于计算事件的概率、组合的可能性等。
在哲学中,乘法原理可以用于推理和论证。
通过将一个复杂的问题分解为更简单的子问题,并计算出每个子问题的概率或可能性,可以推导出整个问题的解决方案或结论。
例如,考虑到一个道德决策中的不同因素,乘法原理可以用于计算每个因素的权重和可能性,从而得出最终的道德决策。
在管理学中,乘法原理可以用于计算和评估不同因素对一个企业或组织的影响。
通过将企业或组织的绩效分解为不同因素的绩效,并计算每个因素的影响和概率,可以了解到不同因素对绩效的影响程度和可能性,从而采取相应的管理措施。
例如,在市场营销中,乘法原理可以用于计算各个市场因素(如产品质量、价格、推广活动等)对销售额的影响,从而制定相应的市场策略。
加法原理是概率论中的另一个基本原理,用于计算事件的概率。
加法原理可以分为两种情况:互斥事件和非互斥事件。
在互斥事件的情况下,加法原理可以用于计算任意一个事件发生的概率。
一个互斥事件是指两个事件不能同时发生的情况,例如投掷硬币时,出现正面和出现反面是互斥事件。
根据加法原理,两个互斥事件的概率等于每个事件发生的概率之和。
在非互斥事件的情况下,加法原理可以用于计算至少一个事件发生的概率。
一个非互斥事件是指两个事件可以同时发生或分别发生的情况,例如投掷骰子时,出现奇数和出现小于等于3的事件是非互斥事件。
根据加法原理,两个非互斥事件的概率等于每个事件发生概率之和减去两个事件同时发生的概率。
在哲学中,加法原理可以用于推理和论证。
通过将一个复杂的问题分解为不同的事件,并计算每个事件的概率,可以推导出整个问题的解决方案或结论。
例如,在伦理学中,加法原理可以用于计算不同伦理原则的概率,从而得出最终的道德判断。
在管理学中,加法原理可以用于计算和评估不同事件对一个企业或组织的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加法原理和乘法原理的应用【教学目标】1.进一步理解两个基本原理.2.会利用两个原理分析和解决一些简单的应用问题【教学重点】两个基本原理的进一步理解和体会.【教学难点】正确判断是分类还是分步,分类计数原理的分类标准及其多样性.【教学过程】一、复习引入:1.分类计数原理:2.分步计数原理:3.原理浅释分类计数原理(加法原理)中,“完成一件事,有n类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理.可以看出“分”是它们共同的特征,但是,分法却大不相同.这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要合理、灵活而巧妙地分类或分步.强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比.两个基本原理的作用:计算做一件事完成它的所有不同的方法种数两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成”二、范例分析:例1.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?解:取bb+是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,a+与取a由分步计数原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据分类计数原理共有45+45=90种不同取法.例2.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种?解:分类标准一:固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.分类标准二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,8, …,2,2,1,1种.由分类计数原理得不同取法共有10+9+9+…+2+2+1+1=100种.例3.《教学与测试》第66节例3.用5种不同颜色给图中四个区域涂色,每个区域涂一种颜色.(1)共有多少种不同的涂色方法?(2)若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法? 分析:由于各号区域都涂色后这件事才算完成,因此完成这件事的首选方法是分步.(1)54=625. (2)方法一:分类:第1类:2号、4号区域同色,有5×4×3=60种;第2类:2号、4号区域异色:有5×4×3×2=120种.共60+120=180种涂法.方法二:分步:先涂1号区域有5种涂法,再涂3号区域有4种,2号、4号区域各有3种,共有5×4×3×3=180种.类题: 如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为( )A . 180B . 160C . 96D . 60若变为图二,图三呢?(240种,5×4×4×4=320种)例4.如下图,共有多少个不同的三角形?解:所有不同的三角形可分为三类”第一类:其中有两条边是原五边形的边,这样的三角形共有第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个 由分类计数原理得,不同的三角形共有5+20+10=35个.例5.75600有多少个正约数?有多少个奇约数?解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数.由于 75600=24×33×52×7(1) 75600的每个约数都可以写成l k j l 7532⋅⋅⋅的形式,其中40≤≤i ,30≤≤j ,20≤≤k ,10≤≤l于是,要确定75600的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一图一 图二 图三个值,这样i 有5种取法,j 有4种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成l k j 753⋅⋅的形式,同上奇约数的个数为4×3×2=24个.三、课堂练习:1.用1,2,3,4,5可组成多少个三位数?(各位上的数字允许重复)2.用数字1,2,3可写出多少个小于1000的正整数? (各位上的数字允许重复)3.集合A={a ,b ,c ,d ,e },集合B={1,2,3},问A 到B 的不同映射f 共有多少个?B 到A 的映射g 共有多少个?4.将3封信投入4个不同的邮筒的投法共有多少种?5. 4名学生从3个不同的楼梯下楼的方法数.6. 4名学生分配到3个车间去劳动,共有多少中不同的分配方案?7. 求集合{1,2,3,4,5}的子集的个数8.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语. 问:(1)从中任选一个会英语或日语的,有多少种选法?(2)从中选出的人去做英语和日语翻译,有多少种选法?答案:1. 5×5×5×5=625 2. 3+32+33=39 3. 35,53 4. 43 5. 34 6. 347. 在集合{1,2,3,4,5}的子集中,每个元素都只有出现和不出现这2种可能,所以这个集合的子集的个数为2×2×2×2×2=25=32个.8.10人中有3人既会英语又会日语,只会英语5人,只会日语2人.法一:(1)10;(2)①不选两者都会的有:5×2=10种;②选两者都会的1人,若此人说英语:3×2=6种,若此人说日语:3×5=15,共6+15=21种;③选两者都会的2人:3×2=6种.因此共有37种选法.法二:按说英语的人分类:①只会英语的5人中选1人,那能说日语有2+3=5(中会日语+两语都会)种,共5×5=25种选法.②从两者都会的3人中选1人说英语,那能说日语的共有5-1=4人,共3×4=12种.因此共有37种选法.四、小结 :分类计数原理和分步计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事 应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制五、课后作业:1.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?解(1)分三步:①先选百位数字.由于0不能作百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由乘法原理知所求不同三位数共有5×5×4=100个.(2)分三步:(1)百位数字有5种选法;(ii)十位数字有6位选法;(iii)个位数字有6种选法.所求三位数共有5×6×6=180个.(3)分三步:①先选个位数字,有3种选法;②再选百位数字,有4种选法;③选十位数字也是4种选法,所求三位奇数共有3×4×4=48个.(4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个.(5)分4类:①千位数字为3,4之一时,共有2×5×4×3=120个;②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48个;③千位数字是5,百位数字是4,十位数字为0,1之一时,共有2×3=6个;④还有5420也是满条件的1个.故所求自然数共120+48+6+1=175个.说明:⑴排数字问题是最常见的一种类型,要特别注意首位不能排0.⑵第(5)题改成:可以组成多少个大于3000,小于5421的四位数?答案:588个2.求下列集合的元素个数.(1){(,)|,,6}M x y x y N x y=∈+≤;(2){(,)|,,14,15}=∈≤≤≤≤.H x y x y N x y解:(1)分7类:①0x=,y有5种取法;x=,y有6种取法;③2x=,y有7种取法;②1④3x=,y只x=,y有2种取法;⑦6 x=,y有4种取法;⑤4x=,y有3种取法;⑥5有1种取法因此M共有765432128++++++=个元素(2)分两步:①先选x,有4种可能;②再选y有5种可能.由乘法原理,H共有4520⨯=个元素3.有四位同学参加三项不同的比赛,(1)每位同学必须参加一项竞赛,有多少种不同的结果?(2)每项竞赛只许一位学生参加,有多少种不同的结果?解:(1)每位学生有三种选择,四位学生共有参赛方法:333381⨯⨯⨯=种;(2)每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464⨯⨯=种.4.①设{,,,,,}B x y z=,从A到B共有多少个不同映射?A a b c d e f=,{,,}②6个人分到3个车间,共有多少种分法?解:(1)分6步:先选a的象,有3种可能,再选b的象也是3种可能,…,选f象也有3种=种不同映射;可能,由乘法原理知,共有63729(2)把6个人构成的集合,看成上面(1)中之A,3个车间构成的集合,看成上面的B,因此,所求问题转化为映射问题,如上题所述,共有729种方案5.甲、乙、丙、丁四个人各写一张贺卡,放在一起,再各取一张不是自己所写的贺卡,共有多少种不同的取法?解:列表排出所有的分配方案,共有3+3+3=9种,或33119⨯⨯⨯=种.六、板书设计(略)七、教学后记:。