浙江省杭州市西湖区2018-2019年最新中考数学一模试卷(含答案)
浙教版2018-2019学年中考数学模拟试卷含答案
∵S△ABC=?AB ?BC=×2×2 =4,∴S△ADC=2,∵= 2 ,∵△DEF∽△DAC,∴GH =BG=,∴BH=,又∵EF=AC=2,∴S△BEF=?EF?BH=×2×=,应选 C.方法二: S△BEF= S 四边形ABCD﹣ S△ABE﹣ S△BCF﹣ S△FED,易知 S△ABE+ S△BCF=S 四边形ABCD=3, S△EDF=,∴S△BEF= S 四边形ABCD﹣ S△ABE﹣ S△BCF﹣ S△FED=6﹣3﹣=.应选: C.【点评】此题主要考察了三角形面积的运算,作出恰当的辅助线得到三角形的底和高是解答此题的关键.11 .如图,将半径为 2 ,圆心角为 120 °的扇形OAB 绕点A逆时针旋转60 °,点,B的对应点分别O为 O′,B′,连接BB′,那么图中阴影局部的面积是〔〕A.B.2﹣C.2﹣D.4﹣【分析】连接 OO ′,BO′,根据旋转的性质得到∠OAO ′=60°,推出△OAO ′是等边三角形,得到∠AOO ′=60 °,推出△OO′B是等边三角形,得到∠AO′B= 120 °,得到∠O′B′B=∠O′BB′=30 °,根据图形的面积公式即可得到结论.【解答】解:连接 OO ′,BO′,∵将半径为 2,圆心角为120 °的扇形OAB绕点A逆时针旋转60 °,∴∠OAO ′=60°,∴△OAO ′是等边三角形,∴∠AOO ′=60°,OO′=OA ,∴点 O′中⊙O 上,∵∠AOB=120°,∴∠O′OB=60°,∴△OO ′B 是等边三角形,∴∠AO ′B=120°,∵∠AO ′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影局部的面积=S△B′O′B﹣〔 S 扇形O′OB﹣ S△OO′B〕=×1×2﹣〔﹣×2×〕=2﹣.【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,。
浙江省杭州市西湖区2018届数学中考一模试卷
答案第2页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.13,13B.14,14C.13,14D.14,135.如图,⊙O 的半径为2,点A 为⊙O 上一点,半径OD ⊥弦BC 于D ,如果∠BAC=60°,那么OD 的长是()A.2B.C.1D.6.已知m=|﹣|÷,则()A.﹣9<m <﹣8B.﹣8<m <﹣7C.7<m <8D.8<m <97.已知二次函数y=﹣x 2+2mx ,以下点可能成为函数顶点的是()A.(﹣2,4)B.(1,2)C.(﹣1,﹣1)D.(2,﹣4)8.在菱形ABCD 中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S ,菱形的周长记作C ,若AD=2,则()A.C 与∠α的大小有关B.当∠α=45°时,S=C.A ,B ,C ,D 四个点可以在同一个圆上D.S 随∠α的增大而增大9.对于二次函数y=x 2﹣2mx+3m ﹣3,以下说法:①图象过定点(),②函数图象与x 轴一定有两个交点,③若x=1时与x=2017时函数值相等,则当x=2018时的函数值为﹣3,④当m=﹣1时,直线y=﹣x+1与直线y=x+3关于此二次函数对称轴对称,其中正确命题是(),则(答案第4页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分三、综合题(共6题)8.如图,BE 是△ABC 的角平分线,延长BE 至D ,使得BC=CD .(1)求证:△AEB ∽△CED ;(2)若AB=2,BC=4,AE=1,求CE 长.9.从数﹣1,0,1,2,3中任取两个,其和的绝对值为k (k 是自然数)的概率记作P k ,(如:P 2是任取两个数,其和的绝对值为2的概率)(1)求k 的所有取值;(2)求P 3.10.二次函数y=(m+1)x 2﹣2(m+1)x ﹣m+3.(1)求该二次函数的对称轴;(2)过动点C (0,n )作直线l ⊥y 轴,当直线l 与抛物线只有一个公共点时,求n 关于m 的函数表达式;(3)若对于每一个给定的x 值,它所对应的函数值都不大于6,求整数m .11.已知:在△ABC 中,∠A=90°,AB=6,AC=8,点P 在边AC 上,且⊙P 与AB ,BC 都相切.第5页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求⊙P 半径;(2)求sin ∠PBC .12.已知函数y 1=x ﹣m+1和y 2=(n≠0)的图象交于P ,Q 两点.(1)若y 1的图象过(n ,0),且m+n=3,求y 2的函数表达式:(2)若P ,Q 关于原点成中心对称.①求m 的值;②当x >2时,对于满足条件0<n <n 0的一切n 总有y 1>y 2,求n 0的取值范围.13.已知△ABD 与△GDF 都是等腰直角三角形,BD 与DF 均为斜边(BD <DF ).(1)如图1,B ,D ,F 在同一直线上,过F 作MF ⊥GF 于点F ,取MF=AB ,连结AM 交BF 于点H ,连结GA ,GM .①求证:AH=HM ;②请判断△GAM 的形状,并给予证明;③请用等式表示线段AM ,BD ,DF 的数量关系,并说明理由.答案第6页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)如图2,GD ⊥BD ,连结BF ,取BF 的中点H ,连结AH 并延长交DF 于点M ,请用等式直接写出线段AM ,BD ,DF 的数量关系.参数答案1.【答案】:【解释】:2.【答案】:【解释】:3.【答案】:【解释】:第7页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………4.【答案】:【解释】:5.【答案】:【解释】:6.【答案】:答案第8页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:7.【答案】:【解释】:8.【答案】:【解释】:第9页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………9.【答案】:【解释】:答案第10页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………10.【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○……………………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○……………………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:(1)【答案】:(2)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:(1)【答案】:(2)【答案】:(3)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:第21页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:答案第22页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第23页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】:答案第24页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………。
浙江省杭州市西湖区2018年中考数学模拟试题4 精品
浙江省杭州市西湖区2018年中考数学模拟试题4考生须知:1. 本试卷分试题卷和答题卷两部分. 满分120分, 考试时间100分钟.2. 答题时, 应该在答题卷指定位置填写校名, 姓名,填涂考试号.3. 所有答案都必须做在答题卷标定的位置上, 请务必注意试题序号和答题序号相对应.试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 反比例函数xm y 12+=的图象在 ( ) A. 第一、三象限 B. 第一、四象限 C. 第一、二象限 D. 第三、四象限 2. 抛物线42+=x y 的顶点坐标是A.(4,0)B. (-4,0)C.(0,-4)D.(0,4) 3.在Rt△ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )A . sin A a c =B .cosA a c =C .tan A c a =⋅D .tan Aac =(第5题)10 1520 学生数(人)518 10 4 锻炼时间(h )5.为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图。
那么关于该班45名同学一周参加体育锻炼时间的说法错误的是( )A .众数是9B .中位数是9C .平均数是9D .锻炼时间不低于9小时的有14人6.如图所示的正方体,用一个平面截去它的一个角,则截面不可能是( )A .锐角三角形B .等腰三角形C .等腰直角三角形D .等边三角形8.设0<k <2,关于x 的一次函数2(1)y kx x =+-,当1≤x ≤2时的最大值是( ) (A )22k - (B )1k - (C )k (D )1k + 9.如图,边长为a 的六角螺帽在桌面上滚动(没有滑动)一周,则它的中心O 点所经过的路径长为( ) A .6a B .5aC .2a π Dπ10.如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H , BD 、AF 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AF 、GD 所夹的锐角为45°;③;④ 若BE 平分∠DBC ,且HE ·HB=4-ABCD 的面积为4。
2018年杭州西湖区一模数学试卷
CD=______.
三、解答题:本大题有 7 个小题,共 66 分.解答 应写出文字说明、证明过程或演算步骤.
17.(本小题满分 6 分)
21.(本小题满分 10 分) 已知:在△ABC 中, A 90 ,AB=6,AC=8,点 P 在边 AC 上,且 P 与 AB,BC 都 相切. (1)求 P 半径; (2)求 sin PBC .
22.(本小题满分 12 分)
已知函数
y1
x
m
1
和
y2
n x
n
0
的图象交于
P,Q
两点.
(1)若 y1 的图象过 n,0 ,且 m n 3 ,求 y2 的函数表达式;
(2)若 P,Q 关于原点成中心对称.
①求 m 的值;
②当 x 2 时,对于满足条件 0 n n0 的一切 n 总有 y1 y2 ,求 n0 的取值范围.
中正确命题是( )
A.①②
B.②③
C.①②④
D.①③④
10.如图,在△ABC 中,∠A=36°,AC=AB=2,将△ABC 绕点 B 逆时针方向旋转得到△DBE,
使点 E 在边 AC 上,DE 交 AB 于点 F,则△AFE 与△DBF 的面积之比等于( )
A. 5-1 2
B. 5-1 4
C. 3- 5 2
摸得奇数号标签的概率大于 0.5,则 n 可以是_______. 14.在 Rt△ABC 中,∠ABC=90°,AB=2,BC=1,将△ABC 绕 AB 所在直线旋转一周,得到
杭州市西湖区2019年中考数学一模试卷含答案解析+【精选五套中考模拟卷】
杭州市西湖区2019年中考数学一模试卷含答案解析一.选择题1.﹣0.25的相反数是()A. B. 4C. ﹣4 D. ﹣52.据我市统计局在网上发布的数据,2019年我市生产总值(GDP)突破千亿元大关,达到了1050亿元,将1050亿用科学记数法表示正确的是()A. 105×109B. 10.5×1010C. 1.05×1011D. 105 0×1083.下列运算正确的是()A.a+a2=a3B.(a2)3=a6C.(x﹣y)2=x2﹣y2D.a2a3=a64.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A. 3,4B. 4,5 C. 3,4,5 D. 不存在5.如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A. 360°B. 260°C. 180°D. 140°6.有五个相同的小正方体堆成的物体如图所示,它的主视图是()A. B.C. D.7.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A. B.C.D.8.在乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90B.中位数是90C.平均数是90D.极差是159.已知等边△ABC,顶点B(0,0),C(2,0),规定把△ABC先沿x轴绕着点C顺时针旋转,使点A落在x轴上,称为一次变换,再沿x轴绕着点A顺时针旋转,使点B落在x轴上,称为二次变换,…经过连续2019次变换后,顶点A的坐标是()A. (4033,)B. (4033,0) C. (4036,) D. (4036,0)10.如图,在△ABC中,∠ACB=90°,AC=BC=2.E,F分别是射线AC、CB上的动点,且AE=BF,EF与AB交于点G,EH⊥AB于点H,设AE=x,GH=y,下面能够反映y与x之间函数关系的图象是()A. B. C.D.二.填空题11.若代数式有意义,则实数x的取值范围是________.12.分解因式:x3y﹣2x2y2+xy3=________.13.已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为________.14.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论:①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是________.三.综合题15.计算:(π﹣)0+ ﹣(﹣1)2019﹣tan60°.16.已知反比例函数的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围.17.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.18.一种药品在进价上加价100%作为原价,后经两次降价后利润率为28%,求平均每次的降价率?19.小高发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=12米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,求电线杆的高度.(结果保留根号)20.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,DE.AC与DE相交于点F.(1)求证:△ADF∽△CEF;(2)若AD=4,AB=6,求的值.21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于F.(1)求证:CF=BF;(2)若CD=6,AC=8,求BE、CF的长.22.一服装批发店出售星星童装,每件进价120元,批发价200元,多买优惠;凡是一次买10件以上的,每多买一件,所买的全部服装每件就降低1元,但是最低价为为每件160元,(1)求一次至少买多少件,才能以最低价购买?(2)写出服装店一次销售x件时,能获利润y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲批发了46件,乙批发了50件,店主却发现卖46件赚的钱反而比卖50件赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每件160元至少提高到多少?23.综合题(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.答案解析部分一.<b >选择题</b>1.【答案】A【考点】相反数【解析】【解答】解:﹣0.25的相反数是0.25,故答案为:A.【分析】只有符号不同的两个数是互为相反数。
浙江省杭州市西湖区2018中考数学一模试卷(含答案)
浙江省杭州市西湖区2021届中考数学一模试卷(解析版)一.选择题1.﹣的相反数是〔〕A. B.4﹣C4.D﹣.52.据我市统计局在网上发布的数据,2021年我市生产总值〔GDP〕突破千亿元大关,到达了1050亿元,将1050亿用科学记数法表示正确的选项是〔〕A.1059B.10118×10×10 C.×10 D.1050×103.以下运算正确的选项是〔〕A.a+a2=a3B.〔a2〕3=a6C.〔x﹣y〕2=x2﹣y22a3=a64.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是〔〕A.3,4B.4,5C.3,4,5D.不存在5.如图,△ABC中,∠C=80°,假设沿图中虚线截去∠C,那么∠1+∠2=〔〕A.360°B.260°C.180°D.140°6.有五个相同的小正方体堆成的物体如下图 ,它的主视图是〔〕A. B. C. D.7.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色局部的图形构成一个轴对称图形的概率是〔〕A. B. C. D.8.在村学校舞蹈比中,某校10名学生参成如所示,于10名学生的参成,以下法中的是〔〕A.众数是90B.中位数是90C.平均数是90D.极差是159.等△ABC,点B〔0,0〕,C〔2,0〕,定把△ABC先沿x着点C旋,使点A落在x上,称一次,再沿x着点A旋,使点B落在x上,称二次,⋯2021次后,点A的坐是〔〕A.〔4033,〕B.〔4033,0〕C.〔4036,〕D.〔4036,0〕10.如,在△ABC中,∠ACB=90°,AC=BC=2、E,F分是射AC、CB上的点,且AE=BF,EF与AB交于点G,EH⊥AB于点H, AE=x,GH=y,下面能反映y与x之函数关系的象是〔〕A. B. C. D.二.填空题11.假设代数式有意,数x的取范是________、12.分解因式:x3y2x2y2+xy3=________、13.三个边长分别为2、3、5的正方形如图排列,那么图中阴影局部面积为________、14.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M、那么以下结论:①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是________、三.综合题15.计算:〔π﹣02021﹣tan60°、〕+﹣〔﹣1〕16.反比例函数的图象与一次函数y2=ax+b的图象交于点A〔1,4〕和点B〔m,﹣2〕,((((((((((((((1〕求这两个函数的关系式;(2〕观察图象,写出使得y1>y2成立的自变量x的取值范围、17.如下图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上、1〕画出位似中心点O;2〕直接写出△ABC与△A′B′C′的位似比;〔3〕以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标、18.一种药品在进价上加价100%作为原价,后经两次降价后利润率为28%,求平均每次的降价率?19.小高发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=12米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,求电线杆的高度、〔结果保存根号〕20.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,DE、AC与DE相交于点F、〔1〕求证:△ADF∽△CEF;〔2〕假设AD=4,AB=6,求的值、21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于F、(1〕求证:CF=BF;(2〕假设CD=6,AC=8,求BE、CF的长、22.一服装批发店出售星星童装,每件进价120元,批发价200元,多买优惠;但凡一次买10件以上的,每多买一件,所买的全部服装每件就降低1元,但是最低价为为每件160元,〔1〕求一次至少买多少件,才能以最低价购置?〔2〕写出服装店一次销售x件时,能获利润 y〔元〕与x〔件〕之间的函数关系式,并写出自变量x的取值范围;〔3〕一天,甲批发了46件,乙批发了50件,店主却发现卖46件赚的钱反而比卖 50件赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每件 160元至少提高到多少?23.综合题〔1〕阅读理解:如图①,在△ABC中,假设AB=10,AC=6,求BC边上的中线AD的取值范围、解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE〔或将△ACD绕着点D逆时针旋转180°得到△EBD〕,把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断、中线AD的取值范围是________;〔2〕问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;〔3〕问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明、答案解析局部.<b>选择题</b>1.【答案】A【考点】相反数【解析】【解答】解:﹣的相反数是 0.25,故答案为:A 、【分析】只有符号不同的两个数是互为相反数。
2018年浙江省杭州市西湖区中考数学一模试卷
2018年浙江省杭州市西湖区中考数学一模试卷A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)已知正n边形的每一个内角为135°,则n= .12.(4分)已知a=,则(4a+b)2﹣(4a﹣b)2为.13.(4分)标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是.14.(4分)在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC绕AB所在直线旋转一周,得到的几何体的侧面积为.15.(4分)定义:关于x的函数y=mx2+nx与y=nx2+mx(其中mn≠0)叫做互为交换函数,若这两个函数图象的顶点关于x轴对称,那么m,n满足的关系式为.16.(4分)已知△ABC与△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,则CD= .三、解答题(本大题共7小题,共计66分)17.(6分)已知x=﹣3,求代数式(1+)÷的值.18.(8分)如图,BE是△ABC的角平分线,延长BE至D,使得BC=CD.(1)求证:△AEB∽△CED;(2)若AB=2,BC=4,AE=1,求CE长.19.(8分)从数﹣1,0,1,2,3中任取两个,其和的绝对值为k(k是自然数)的概率记作Pk ,(如:P2是任取两个数,其和的绝对值为2的概率)(1)求k的所有取值;(2)求P3.20.(10分)二次函数y=(m+1)x2﹣2(m+1)x﹣m+3.(1)求该二次函数的对称轴;(2)过动点C(0,n)作直线l⊥y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;(3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m.21.(10分)已知:在△ABC中,∠A=90°,AB=6,AC=8,点P在边AC上,且⊙P与AB,BC都相切.(1)求⊙P半径;(2)求sin∠PBC.22.(12分)已知函数y1=x﹣m+1和y2=(n≠0)的图象交于P,Q两点.(1)若y1的图象过(n,0),且m+n=3,求y2的函数表达式:(2)若P,Q关于原点成中心对称.①求m的值;②当x>2时,对于满足条件0<n<n0的一切n总有y1>y2,求n的取值范围.23.(12分)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD <DF).(1)如图1,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连结AM交BF于点H,连结GA,GM.①求证:AH=HM;②请判断△GAM的形状,并给予证明;③请用等式表示线段AM,BD,DF的数量关系,并说明理由.(2)如图2,GD⊥BD,连结BF,取BF的中点H,连结AH并延长交DF于点M,请用等式直接写出线段AM,BD,DF的数量关系.2018年浙江省杭州市西湖区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣32=()A.﹣3B.﹣9C.3D.9【分析】根据有理数的乘方运算进行计算,注意负号.【解答】解:﹣32=﹣9,故选:B.【点评】本题考查了有理数的乘方,比较简单,它表示3的平方的相反数.2.(3分)某企业今年1月份产值为x万元,2月份比1月份增加了10%,3月份比2月份减少了20%,则3月份的产值是()万元.A.(1+10%)(1﹣20%)x B.(1+10%+20%)xC.(x+10%)(x﹣20%)D.(1+10%﹣20%)x【分析】根据题意可以先列出2月份的产量为(1+10%)x,再根据题意可列三月份的产量.【解答】解:根据题意可得2月份产量为x(1+10%)万元∵3月份比2月份减少了20%∴3月份的产量为(1+10%)(1﹣20%)x故选:A.【点评】本题考查了列代数式,能根据题意正确列出代数式是本题关键3.(3分)如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.8【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.【点评】本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键,题目比较典型,难度适中,注意:对应成比例.4.(3分)右图是某市10月1日至7日一周内“日平均气温变化统计图”.在这组数据中,众数和中位数分别是()A.13,13B.14,14C.13,14D.14,13【分析】根据众数与中位数的定义,找出出现次数最多的数,把这组数据从小到大排列,求出最中间两个数的平均数即可.【解答】解:温度为14℃的有2天,最多,故众数为14℃;7天温度排序为:10,11,12,13,14,14,15,位于中间位置的数是13,故中位数为13℃,故选:D.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(3分)如图,点A是半径为2的⊙O上一点,BC是⊙O的弦,OD⊥BC于D,若∠BAC=60°,则OD的长是()A.2B.C.1D.【分析】由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,在Rt△BOD中,利用特殊三角函数值易求OD.【解答】解:∵∠BAC=60°,∴∠BOC=120°,∵OD⊥BC,∴∠BOD=90°,∠BOD=∠BOC=60°,在Rt△BOD中,∠OBD=90°﹣60°=30°,∴OD=OB=1,故选:C.【点评】本题考查了圆周角定理、垂径定理、特殊角三角函数计算,解题的关键是熟记特殊角三角函数.6.(3分)已知m=|﹣|÷,则()A.﹣9<m<﹣8B.﹣8<m<﹣7C.7<m<8D.8<m<9【分析】根据绝对值的性质,可化简绝对值,根据被开方数越大算术平方根越大,可得答案.【解答】解:m=×=3,∵2.5<<2.6,∴7.5<3<7.8,故C符合题意;故选:C.【点评】本题考查了实数的性质,利用被开方数越大算术平方根越大得出 2.5<<2.6是解题关键.7.(3分)已知二次函数y=﹣x2+2mx,以下点可能成为函数顶点的是()A.(﹣2,4)B.(1,2)C.(﹣1,﹣1)D.(2,﹣4)【分析】根据顶点公式求得顶点坐标为(m,m2),即可得出横坐标和纵坐标的关系,然后就能确定可能的顶点.【解答】解:∵a=﹣1,b=2m,c=0,∴﹣=﹣=m,==m2,∴顶点坐标为(m,m2),∴可能成为函数顶点的是(﹣2,4),故选:A.【点评】本题考查了二次函数的性质,熟练掌握顶点公式是解题的关键.8.(3分)在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则()A.C与∠α的大小有关B.当∠α=45°时,S=C.A,B,C,D四个点可以在同一个圆上D.S随∠α的增大而增大【分析】根据菱形的周长公式、菱形的面积公式、锐角三角函数的定义判断即可.【解答】解:A、错误.菱形的周长=8,与∠α的大小无关;B、错误,∠α=45°时,菱形的面积=2•2•sin45°=2;C、错误,A,B,C,D四个点不在同一个圆上;D、正确.∵0°<α<90°,S=菱形的面积=2•2•sinα,∴菱形的面积S随α的增大而增大.故选:D.【点评】本题考查菱形的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的性质定理、四点共圆的知识以及菱形的面积公式.9.(3分)对于二次函数y=x2﹣2mx+3m﹣3,以下说法:①图象过定点(,﹣),②函数图象与x轴一定有两个交点,③若x=1时与x=2017时函数值相等,则当x=2018时的函数值为﹣3,④当m=﹣1时,直线y=﹣x+1与直线y=x+3关于此二次函数对称轴对称,其中正确命题是()A.①②B.②③C.①②④D.①③④【分析】①将横坐标代入可得y的值,与已知点的y值相等,则过这个定点;②令y=0,列方程,计算△的值,配方后可知△>0,则函数图象与x轴一定有两个交点;③根据二次函数的对称性结合当x=0和x=2018时的函数值相等,可得出当x=2018时的函数值为3m﹣3;④先将m=﹣1代入抛物线的解析式,计算其对称轴是x=﹣1,分别计算特殊点,确定其点关于直线x=﹣1对称,故直线y=﹣x+1与直线y=x+3关于此二次函数对称轴对称.【解答】解:①当x=时,y=﹣2m×+3m﹣3=,所以图象过定点(,﹣),命题①正确;②当y=0时,x2﹣2mx+3m﹣3=0,△=(﹣2m)2﹣4×1×(3m﹣3)=4m2﹣12m+12=4(m﹣)2+3>0,∴函数图象与x轴一定有两个交点,命题②正确;③∵当x=1时的函数值与x=2017时的函数值相等,∴当x=0和x=2018时的函数值相等,∵当x=0时,y=x2﹣2mx+3m﹣3=3m﹣3,∴当x=2018时,y=x2﹣2mx﹣3的函数值为﹣3,命题③正确;④当m=﹣1时,抛物线的解析式为:y=x2+2x﹣6,对称轴是:x=﹣1,设y1=﹣x+1,y2=x+3,当x=﹣1时,y1=1+1=2,y2=﹣1+3=2,当y=0时,x1=1,x2=﹣3,∴直线y=﹣x+1与直线y=x+3关于此二次函数对称轴对称,命题④正确;故选:C.【点评】本题主要考查了二次函数和一次函数的性质的知识,解答本题的关键是要掌握二次函数图象的对称轴,与x轴的交点的个数等知识,此题难度不大.10.(3分)如图,在△ABC中,∠A=36°,AC=AB=2,将△ABC绕点B逆时针方向旋转得到△DBE,使点E在边AC上,DE交AB于点F,则△AFE与△DBF的面积之比等于()A.B.C.D.【分析】首先证明BD∥AE,可得△AEF∽△BDF,推出=()2,想办法求出即可解决问题;【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BC=BE,∴∠C=∠BEC=72°,∴∠EBC=36°,∴∠ABE=∠A=36°,∵∠DBE=72°,∴∠ABD=∠A=36°,∴BD∥AE,∴△AEF∽△BDF,∴=()2,设BC=BE=AE=x,∵∠C=∠C,∠CBE=∠A,∴△CBE∽△CAB,∴BC2=CE•CA,∴x2=(2﹣x)2,∴x2+2x﹣4=0,∴x=﹣1+,或x=﹣1﹣,∴=()2=故选:C.【点评】本题主要考查了等腰三角形的性质,以及旋转的性质,相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)已知正n边形的每一个内角为135°,则n= 8 .【分析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多边形的边数.【解答】解:多边形的外角是:180﹣135=45°,∴n==8.【点评】任何任何多边形的外角和是360°,不随边数的变化而变化.根据这个性质把多边形的角的计算转化为外角的计算,可以使计算简化.12.(4分)已知a=,则(4a+b)2﹣(4a﹣b)2为 4 .【分析】根据平方差公式即可求出答案【解答】解:由题意可知:ab=原式=(4a+b+4a﹣b)(4a+b﹣4a+b)=8a•2b=16ab=4故答案为:4【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.13.(4分)标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是奇数.【分析】若n为偶数,则奇数与偶数个数相等,即摸得奇数号标签的概率为0.5,若n为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5,据此可得.【解答】解:若n为偶数,则奇数与偶数个数相等,即摸得奇数号标签的概率为0.5,若n为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5,故答案为:奇数.【点评】本题主要考查概率的意义,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.14.(4分)在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC绕AB所在直线旋转一周,得到的几何体的侧面积为π.【分析】将△ABC绕AB所在直线旋转一周,得到的几何体为圆锥,圆锥的底面圆的半径为1,利用勾股定理计算母线长,然后利用圆锥的侧面展开图为一扇形和扇形的面积公式求解.【解答】解:将△ABC绕AB所在直线旋转一周,得到的几何体为圆锥,圆锥的底面圆的半径为1,母线长==,所以将△ABC绕AB所在直线旋转一周,得到的几何体的侧面积=•2π1•=π.故答案为π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.(4分)定义:关于x的函数y=mx2+nx与y=nx2+mx(其中mn≠0)叫做互为交换函数,若这两个函数图象的顶点关于x轴对称,那么m,n满足的关系式为m=﹣n .【分析】根据题意可以得到两个函数的顶点坐标,然后根据这两个函数图象的顶点关于x轴对称,即可求得m、n的关系.【解答】解:函数y=mx2+nx=m(x+)2﹣的顶点坐标为(,),y=nx2+mx=n(x+)2﹣的顶点坐标为(﹣,﹣),∵这两个函数图象的顶点关于x轴对称,∴,解得,m=﹣n,故答案为:m=﹣n.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.16.(4分)已知△ABC与△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,则CD= 1或.【分析】分两种情形分别求解即可.【解答】解:如图,当CD在AB同侧时,∵AC=AD=1,∠C=60°,∴△ACD是等边三角形,∴CD=AC=1,当C、D在AB两侧时,∵△ABC与△ABD不全等,∴△ABD′是由△ABD沿AB翻折得到,∴△ABD≌△ABD′,∴∠AD′B=ADB=120°,∵∠C+∠AD′B=180°,∴∠CAD′+∠CBD′=180°,∵∠CBD′=90°,∴∠CAD′=90°,∴CD′==.当D″在BD′的延长线上时,AD″=AC,也满足条件,此时CD″=BC=故答案为1或或.【点评】本题考查全等三角形的性质、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.三、解答题(本大题共7小题,共计66分)17.(6分)已知x=﹣3,求代数式(1+)÷的值.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣3时,原式=÷=•=x(x+1)=﹣3×(﹣2)=6【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)如图,BE是△ABC的角平分线,延长BE至D,使得BC=CD.(1)求证:△AEB∽△CED;(2)若AB=2,BC=4,AE=1,求CE长.【分析】(1)根据角平分线的性质结合等腰三角形的性质可得出∠CDE=∠ABE,结合对顶角相等,即可证出△AEB∽△CED;(2)根据相似三角形的性质,即可得出=,代入数据即可求出CE的长度.【解答】(1)证明:∵BE是△ABC的角平分线,∴∠ABE=∠CBE.∵BC=CD,∴∠CDE=∠CBE=∠ABE.又∵∠AEB=∠CED,∴△AEB∽△CED;(2)解:∵BC=4,∴CD=4.∵△AEB∽△CED,∴=,即=,∴CE=2.【点评】本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用角平分线的性质及等腰三角形的性质找出∠CDE=∠ABE;(2)根据相似三角形的性质找出=.19.(8分)从数﹣1,0,1,2,3中任取两个,其和的绝对值为k(k是自然数)的概率记作Pk ,(如:P2是任取两个数,其和的绝对值为2的概率)(1)求k的所有取值;(2)求P3.【分析】(1)画树状图列出所有等可能结果,结合树状图得到所有取值情况;(2)由树状图得出所有等可能结果其和的绝对值为3的结果数,根据概率公式计算可得.【解答】解:(1)k的所有取值情况如下:(2)由树状图可知共有20种等可能结果,其中和的绝对值为3的有4种结果,==.所以P3【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(10分)二次函数y=(m+1)x2﹣2(m+1)x﹣m+3.(1)求该二次函数的对称轴;(2)过动点C(0,n)作直线l⊥y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;(3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m.【分析】(1)根据抛物线的对称轴方程即可求解;(2)由题意知直线l经过顶点时,直线l与抛物线只有一个交点,据此可得;(3)根据题意可知抛物线开口向下,且顶点的纵坐标不大于6,依此得到不等式组,解之即可.【解答】解:(1)∵y=(m+1)x2﹣2(m+1)x﹣m+3,∴对称轴方程为x=﹣=1.(2)∵y=(m+1)x2﹣2(m+1)x﹣m+3=(m+1)(x﹣1)2﹣2m+2,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+2;(3)抛物线y=(m+1)x2﹣2(m+1)x﹣m+3的顶点坐标是(1,﹣2m+2).依题可得,解得﹣2≤m<﹣1,∴整数m的值为﹣2.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征及解不等式组的能力,理解题意得出对应方程或不等式组是解题的关键.21.(10分)已知:在△ABC中,∠A=90°,AB=6,AC=8,点P在边AC上,且⊙P与AB,BC都相切.(1)求⊙P半径;(2)求sin∠PBC.【分析】(1)根据角平分线的性质定理以及圆的切线的两个判定定理即可解决问题.(2)根据勾股定理和三角函数解答即可.【解答】解:(1)如图所示:过P作PE⊥BC,∵⊙P与AB,BC都相切,∴BA=BE=6,PA=PE,∵在△ABC中,∠A=90°,AB=6,AC=8,∴△ABC的面积=,即解得:PA=3,即⊙P半径=3;(2)在Rt△BPE中,BP=,∴sin∠PBC=.【点评】本题考查切线的性质等知识,解题的关键是熟练掌握切线的性质.22.(12分)已知函数y1=x﹣m+1和y2=(n≠0)的图象交于P,Q两点.(1)若y1的图象过(n,0),且m+n=3,求y2的函数表达式:(2)若P,Q关于原点成中心对称.①求m的值;②当x>2时,对于满足条件0<n<n0的一切n总有y1>y2,求n的取值范围.【分析】(1)把(n,0)代入可得0=n﹣m+1,与m+n=3,构成方程组可解m,n (2)①设P(x,y),可得Q(﹣x,﹣y)代入解析式可解m.②由y1>y2,可得x>,解不等式可得n的取值范围【解答】解:(1)∵若y1的图象过(n,0)∴0=n﹣m+1 且m+n=3∴m=2,n=1∴y2的函数表达式:y2=(2)①设P(x,y)∵P,Q关于原点成中心对称∴Q(﹣x,﹣y)∵函数y1=x﹣m+1和y2=(n≠0)的图象交于P,Q两点∴y=x﹣m+1﹣y=﹣x﹣m+1∴m=1②当m=1时,y1=x∵当x>2时,对于满足条件0<n<n0的一切n总有y1>y2∴x>∴x2>n,且x>2∴n<4∴0<n≤4【点评】本题考查反比例函数和一次函数的交点的性质,关键是交点坐标代入解析式可得方程组,不等式.23.(12分)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD <DF).(1)如图1,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连结AM交BF于点H,连结GA,GM.①求证:AH=HM;②请判断△GAM的形状,并给予证明;③请用等式表示线段AM,BD,DF的数量关系,并说明理由.(2)如图2,GD⊥BD,连结BF,取BF的中点H,连结AH并延长交DF于点M,请用等式直接写出线段AM,BD,DF的数量关系.【分析】(1)①根据AAS证明△AHB≌△MHF,可得结论;②先根据SAS证明△GAD≌△GMF,得AG=GM,再证明∠ADG+∠DGM=90°,可得△GAM是等腰直角三角形;③先根据等腰直角三角形的斜边是直角边的倍,及勾股定理得:AM2=2MG2,Rt△GMF中,有MG2=AB2+FG2,代入可得:AM2=2MG2=BD2+DF2;(2)如图2,先证明△ABH≌△HFM,得FM=AB,在Rt△ADM中,由勾股定理得:AM2=AD2+DM2,整理可得结论.【解答】解:(1)①证明:如图1,∵MF⊥GF,∴∠GFM=90°,∵△ABD与△GDF都是等腰直角三角形,∴∠DFG=∠ABD=45°,∴∠HFM=90°﹣45°=45°,∴∠ABD=∠HFM,∵AB=MF,∠AHB=∠MHF,∴△AHB≌△MHF,∴AH=HM;②如图1,△GAM是等腰直角三角形,理由是:∵△ABD与△GDF都是等腰直角三角形,∴AB=AD,DG=FG,∠ADB=∠GDF=45°,∴∠ADG=∠GFM=90°,∵AB=FM,∴AD=FM,∴△GAD≌△GMF,∴AG=GM,∠AGD=∠MGF,∴∠ADG+∠DGM=∠MGF+∠DGM=90°,∴△GAM是等腰直角三角形;③如图1,AM2=BD2+DF2,理由是:∵△AGM是等腰直角三角形,∴AM2=2MG2,Rt△GMF中,MG2=FG2+FM2=AB2+FG2,∵△ABD与△GDF都是等腰直角三角形,∴AB=,FG=,∴AM2=2MG2=2(+)=BD2+DF2;(2)如图2,∵GD⊥BD,∠ADB=45°,∴∠ADG=45°,∴∠ADM=45°+45°=90°,∵∠HMF=∠ADM+∠DAM=90°+∠DAM=∠BAH,∵H是BF的中点,∴BH=HF,∵∠AHB=∠MHF,∴△ABH≌△HFM,∴FM=AB,在Rt△ADM中,由勾股定理得:AM2=AD2+DM2,=AD2+(DF﹣FM)2,=AD2+DF2﹣2DF•FM+FM2,=BD2+DF2﹣2DF,=BD2+DF2﹣DF•BD.【点评】本题考查了等腰直角三角形的性质和判定、三角形全等的性质和判定、勾股定理,本题运用了类比的思想解决问题,第2问有难度,证明△ABH≌△HFM是关键.。
【解析版】浙江省杭州市西湖区中考数学一模试卷
浙江省杭州市西湖区中考数学一模试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1.关于m的不等式﹣m>1的解为()A. m>0 B. m<0 C. m<﹣1 D. m>﹣12.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定 B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定 D.无法确定谁的成绩更稳定3.如图所示零件的左视图是()A. B. C. D.4.已知点A(1,m)与点(3,n)都在反比例函数y=﹣的图象上,则m与n的大小关系是()A. m<n B. m>n C. m=n D.不能确定5.的平方根()A. 4 B. 2 C.±4 D.±26.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是() A.若y1=y2,则x1=x2 B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y27.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F,若AC=4,则OF的长为()A. 1 B. C. 2 D. 48.如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么△DEF与△ABC的周长比为()A. 4:1 B. 3:1 C. 2:1 D.:19.△ABC的一边长为5,另两边分别是方程x2﹣6x+m=0的两根,则m的取值范围是()A. m> B.<m≤9 C.≤m≤9 D. m≤10.如图,在Rt△OAB中,∠AOB=90°,OA=4,OB=3.⊙O的半径为2,点P是线段AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点.设AP=x,PQ2=y,则y与x的函数图象大致是()A. B. C. D.二、认真填一填(本题有6个小题,每小题4分,共24分)11.从﹣2,﹣8,5中任取两个不同的数作为点的坐标,该点在第三象限的概率为.12.函数y=x2﹣6x+8(0≤x≤4)的最大值与最小值分别为,.13.已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=4,tan∠CBD=,则AB= ,sin∠ABE= .14.将关于x的一元二次方程x2+px+q=0变形为x2=﹣px﹣q,就可将x2表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”,已知x2﹣x﹣1=0,可用“降次法”求得x4﹣3x+的值是.15.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上,点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P,则点P与Q的坐标分别为.16.已知函数y=k(x+1)(x﹣),下列说法:①方程k(x+1)(x﹣)=﹣3必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k>3时,抛物线顶点在第三象限;④若k<0,则当x<﹣1时,y随着x的增大而增大,其中正确的序号是.三、全面答一答(本题有7个小题,共66分)度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.18.小明在数学课外小组活动中遇到这样一个“新定义”问题:定义运算“※”为:a※b=,求1※(﹣4)的值.小明是这样解决问题的:由新定义可知a=1,b=﹣4,又b<0,所以1※(﹣4)=请你参考小明的解题思路,回答下列问题:(1)计算:3※7;(2)若15※m=,求m的值;(3)函数y=4※x(x≠0)的图象大致是A. B.C.D.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,点A,B,C的坐标分别为(0,﹣1),(1,﹣1),(5,﹣1)(1)判断△ABC的形状;(2)将△ABC绕点C顺时针旋转90°得到△A1B1C,请在网格中画出△A1B1C,并直接写出点A1和B1的坐标;(3)将△A BC绕线段AC所在直线旋转一周,求所得几何体的表面积.20.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.21.如图,在△ABC中,AB=AC=4,sinC=(1)求BC的长;(2)作以AC为直径的⊙O,使⊙O交线段AB于点D,交线段BC于点E,并求点D到BC的距离(要求:尺规作图,保留作图痕迹,不写画法)22.已知二次函数h=x2﹣(2m﹣1)x+m2﹣m(m是常数,且m≠0)(1)证明:不论m取何值时,该二次函数图象总与x轴有两个交点;(2)若A(n﹣3,n2+2)、B(﹣n+1,n2+2)是该二次函数图象上的两个不同点,求二次函数解析式和m的值;(3)设二次函数h=x2﹣(2m﹣1)x+m2﹣m与x轴两个交点的横坐标分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=2﹣,请结合函数的图象回答:当y<m时,求m的取值范围.23.(1)如图1,两个等边三角形ABC和A1B1C1的中心(点O)相同,且满足AB∥A1B1,BC∥B1C1,AC∥A1C1,可知AB与 A1B1,BC与B1C1,AC与A1C1之间的距离相等,直线MQ分别交三角形相邻两边于点M、N、P、Q,与AB所成夹角为∠α①当∠α=30°时,求的值;②当30°<∠α<90°,请用含∠α的式子表示;(2)如图2,两个正方形ABCD和A1B1C1D1的中心(点O)相同,且满足AB∥A1B1,BC∥B1C1,CD∥C1D1,AD∥A1D1,可知AB与A1B1,BC与B1C1,CD与C1D1,AD与A1D1之间的距离相等,直线MQ分别交正方形相邻两边于点M、N、P、Q,与AB所成夹角为∠α①当∠α=30°时,求的值;②当0°<∠α<90°,请用含∠α的式子表示;(3)根据(1)、(2)的研究,如果正n边形(n>4)的位置关系也满足同样的条件(如图3),正n边形相邻两边被直线MQ截得的两条线段为MN,PQ,请用含m,∠α(0°<∠α<90°)的式子表示.浙江省杭州市西湖区中考数学一模试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.关于m的不等式﹣m>1的解为()A. m>0 B. m<0 C. m<﹣1 D. m>﹣1考点:解一元一次不等式.分析:直接把m的系数化为1即可.解答:解:不等式的两边同时除以﹣1得,m<﹣1.故选C.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.2.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定 B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定 D.无法确定谁的成绩更稳定考点:方差;条形统计图.专题:计算题;数形结合.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定解答:解:通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.如图所示零件的左视图是()A. B. C. D.考点:简单几何体的三视图.分析:找到从上面看所得到的图形即可.解答:解:零件的左视图是两个竖叠的矩形.中间有2条横着的虚线.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的棱用实线表示,看不到的用虚线表示.4.已知点A(1,m)与点(3,n)都在反比例函数y=﹣的图象上,则m与n的大小关系是()A. m<n B. m>n C. m=n D.不能确定考点:反比例函数图象上点的坐标特征.分析:把所给点的横纵坐标代入反比例函数的解析式,求出mn的值,比较大小即可.解答:解:点A(1,m)在反比例函数y=﹣的图象上,m=﹣3,点(3,n)在反比例函数y=﹣的图象上,n=﹣1,∴m<n.故选:A.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.5.的平方根()A. 4 B. 2 C.±4 D.±2考点:算术平方根;平方根.分析:先根据算术平方根的定义化简,再根据平方根的定义进行求解.解答:解:∵42=16,∴=4,∵(±2)2=4,∴的平方根为±2.故选D点评:本题主要考查了算术平方根的定义,平方根的定义,需要先求出,是易错题,需要注意.6.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是() A.若y1=y2,则x1=x2 B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y2考点:二次函数图象上点的坐标特征.分析:由于抛物线y=x2﹣1的图象关于y轴对称,开口向上,分别判断如下:若y1=y2,则x1=﹣x2;若x1=﹣x2,则y1=y2;若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2;若x1<x2<0,则y1>y2.解答:解:A、若y1=y2,则x1=﹣x2;B、若x1=﹣x2,则y1=y2;C、若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2;D、正确.故选D.点评:本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数图象的性质.7.如图,AB是半圆O的直径,A C为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F,若AC=4,则OF的长为()A. 1 B. C. 2 D. 4考点:全等三角形的判定与性质;垂径定理.分析:根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.解答:解:∵OD⊥AC,AC=4,∴AD=CD=2,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,∴△ADO≌△OFE(AAS),∴OF=AD=2,故选C.点评:本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ADO≌△OFE和求出AD的长,注意:垂直于弦的直径平分这条弦.8.如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么△DEF与△ABC的周长比为()A. 4:1 B. 3:1 C. 2:1 D.:1考点:勾股定理.专题:网格型.分析:如图,设正方形网格的边长为1,根据勾股定理求出△EFD、△ABC的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明△EDF∽△BAC,即可解决问题.解答:解:如图,设正方形网格的边长为1,由勾股定理得:DE2=22+22,EF2=22+42,∴DE=2,EF=2;同理可求:AC=,BC=,∵DF=2,AB=2,∴,∴△EDF∽△BAC,∴l△DEF:l△ABC=:1,故选D.点评:本题主要考查了勾股定理和相似三角形的判定及其性质定理的应用问题;应牢固掌握有关定理,这是灵活运用解题的关键;对综合的分析问题解决问题的能力提出了较高的要求.9.△ABC的一边长为5,另两边分别是方程x2﹣6x+m=0的两根,则m的取值范围是()A. m> B.<m≤9 C.≤m≤9 D. m≤考点:根与系数的关系;三角形三边关系.专题:计算题.分析:设三角形另两边分别为a、b(a≥b),先利用判别式的意义得到m≤9,根据根与系数的关系得到a+b=6,ab=m,由于a<b+5,则利用完全平方公式变形得到(a﹣b)2<25,所以(a+b)2﹣4ab<25,即36﹣4m<25,解得m>,于是可得到m的取值范围是<m≤9.解答:解:设三角形另两边分别为a、b(a≥b),根据题意得△=(﹣6)2﹣4m≥0,解得m≤9,a+b=6,ab=m,∵a<b+5,即a﹣b<5,∴(a﹣b)2<25,∴(a+b)2﹣4ab<25,即36﹣4m<25,∴m>,∴m的取值范围是<m≤9.故选B.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了三角形三边的关系.10.如图,在Rt△OAB中,∠AOB=90°,OA=4,OB=3.⊙O的半径为2,点P是线段AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点.设AP=x,PQ2=y,则y与x的函数图象大致是()A. B. C. D.考点:动点问题的函数图象.分析:根据题意列出函数表达式,即可判断.解答:解:如图,作PC⊥OA,垂足为C,∵PC∥BO,∴△ABO∽△APC,∴,∵AP=x,OA=4,OB=3,∴PC=,AC=,∴OC=4﹣,∴OP2=(4﹣)2+()2=x2﹣x+16,∴y=OP2﹣OQ2=x2﹣x+12,当x=0时,y=12,当x=5时,y=5.故选:A.点评:本题主要考查了函数的图象与列函数表达式,分析题意弄清题目中的函数关系是做出正确判断的根本.二、认真填一填(本题有6个小题,每小题4分,共24分)11.从﹣2,﹣8,5中任取两个不同的数作为点的坐标,该点在第三象限的概率为.考点:列表法与树状图法;点的坐标.分析:列举出所有情况,看在第三象限的情况数占总情况数的多少即可.解答:解:画树形图得:∵共有6种等可能的结果,该点在第三象限的有2种情况,∴该点在第二象限的概率是:=.故答案为:.点评:本题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到在第三象限的情况数是解决本题的关键.12.函数y=x2﹣6x+8(0≤x≤4)的最大值与最小值分别为8 ,﹣1 .考点:二次函数的最值.分析:已知函数y=x2﹣6x+8的标准式,将其化为顶点式为y=(x﹣3)2﹣1,考虑0≤x≤4,即可求解此题.解答:解:将标准式化为两点式为y=(x﹣3)2﹣1,0≤x≤4,∵开口向,上,∴当x=0时,y max=8;当x=3时,有最小值:y min=﹣1.故答案为:8,﹣1.点评:此题主要考查了二次函数最值,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.此题要注意x的取值范围,在0≤x ≤4范围内求解.13.已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=4,tan∠CBD=,则AB= ,sin∠ABE= .考点:菱形的性质;解直角三角形.分析:(1)首先连接AC,AC与BD相交于点O,由四边形ABCD是菱形,可得AC⊥BD,BO=BD=2,又由tan∠CBD=,可求得OC的长,然后由勾股定理求得边AB的长;(2)由AE⊥BC,利用S菱形ABCD=BC•AE=BD•AC,即可求得AE的长,继而求得∠ABE的正弦值.解答:解:(1)连接AC,AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD=2,∵Rt△BOC中,tan∠CBD==,∴OC=1,∴AB=BC==,故答案为:;(2)∵AE⊥BC,∴S菱形ABCD=BC•AE=BD•AC,∵AC=2OC=2,∴AE=×2×4,∴AE=,∴sin∠ABE==.故答案为:.点评:此题考查了菱形的性质、勾股定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14.将关于x的一元二次方程x2+px+q=0变形为x2=﹣px﹣q,就可将x2表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”,已知x2﹣x﹣1=0,可用“降次法”求得x4﹣3x+的值是.考点:因式分解的应用;一元二次方程的解.分析:先求得x2=x+1,再代入x4﹣3x+即可得出答案.解答:解:∵x2﹣x﹣1=0,∴x2=x+1,∴x4﹣3x+=(x+1)2﹣3x+=x2+2x+1﹣3x+=x2﹣x+=x+1﹣x+=.故答案为:.点评:本题考查了一元二次方程的解,将四次先降为二次,再将二次降为一次,逐步得出答案即可.15.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上,点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P,则点P与Q的坐标分别为(2,4﹣2)、().考点:正方形的性质;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.分析:首先根据点Q在OB:y=x上,以及QO=OC=2,求出点Q的坐标是多少;然后设点P 的坐标是(2,a),确定出CP所在的直线的解析式,再根据点Q在CP上,求出a的值,即可求出点P的坐标是多少.解答:解:∵点Q在OB:y=x上,QO=OC=2,∴点Q的坐标是(,),设P点的坐标是(2,a),∵点C的坐标是(0,2)∴CP所在的直线的解析式是:y=kx+2,则k=(a﹣2)÷(2﹣0)=0.5a﹣1,∴CP所在的直线的解析式是:y=(0.5a﹣1)x+2,∵点Q(,)在y=(0.5a﹣1)x+2上,∴(0.5a﹣1)×+2=则a=4﹣2,∴点P的坐标为(2,4﹣2),∴点P与Q的坐标分别为(2,4﹣2)、().故答案为:(2,4﹣2)、().点评:(1)此题主要考查了正方形的性质和应用,要熟练掌握,解答此题的关键是要明确:①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.(2)此题还考查了一次函数图象上点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.(3)此题还考查了待定系数法求一次函数解析式的方法,要熟练掌握.16.已知函数y=k(x+1)(x﹣),下列说法:①方程k(x+1)(x﹣)=﹣3必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k>3时,抛物线顶点在第三象限;④若k<0,则当x<﹣1时,y随着x的增大而增大,其中正确的序号是①③.考点:二次函数的性质;抛物线与x轴的交点.分析:由二次函数与x轴的交点以及二次函数的性质来判断命题的正确性.解答:解:函数y=k(x+1)(x﹣)的图象与x轴交于(﹣1,0)(,0),①方程k(x+1)(x﹣)=﹣3,解得:x1=0,x2=﹣1,∴①正确;②∵函数y=k(x+1)(x﹣)的图象与x轴交于(﹣1,0),(,0),∴移动函数图象使其经过原点,则将图象向右移动1个单位或移动﹣单位,∴②错误,③当k>3时,<1,∴对称轴在y轴的左侧,开口向上,与x轴有两个交点,∴③正确,④若k<0,开口向下,在对称轴的左侧,y随着x的增大而增大,∵函数y=k(x+1)(x﹣)的对称轴方程是:x=<0,∴④错误.点评:本题考查了二次函数的性质,抛物线与x轴的交点,要熟悉二次函数的性质,并会根据条件求出字母系数的值.三、全面答一答(本题有7个小题,共66分)17.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.考点:用样本估计总体;加权平均数;中位数;众数.分析:(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.解答:解:(1)平均用电量为:(9×3+10×1+11×1)÷5=9.6度;(2)9度出现了3次,最多,故众数为9度;第3天的用电量是9度,故中位数为9度;(3)总用电量为22×9.6×36=7603.2度.点评:本题考查了统计的有关概念及用样本估计总体的知识,题目相对比较简单,属于基础题,解题时注意有关的统计量都应带单位.18.小明在数学课外小组活动中遇到这样一个“新定义”问题:定义运算“※”为:a※b=,求1※(﹣4)的值.小明是这样解决问题的:由新定义可知a=1,b=﹣4,又b<0,所以1※(﹣4)=请你参考小明的解题思路,回答下列问题:(1)计算:3※7;(2)若15※m=,求m的值;(3)函数y=4※x(x≠0)的图象大致是 DA. B.C.D.考点:解分式方程;有理数的混合运算;反比例函数的图象.专题:新定义.分析:(1)利用题中的新定义计算即可得到结果;(2)分m大于0与小于0两种情况,利用题中的新定义计算即可求出m的值;(3)分x大于0与x小于0两种情况化简函数解析式,做出函数图象即可.解答:解:(1)根据题中的新定义得:3※7=;(2)当m>0时,已知等式变形得:=,即m=4;当m<0时,已知等式变形得:﹣=,即m=﹣4;(3)当x>0时,函数解析式为y=,当x<0时,函数解析式为y=﹣,图象大致为D.故选:D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,点A,B,C的坐标分别为(0,﹣1),(1,﹣1),(5,﹣1)(1)判断△ABC的形状;(2)将△ABC绕点C顺时针旋转90°得到△A1B1C,请在网格中画出△A1B1C,并直接写出点A1和B1的坐标;(3)将△ABC绕线段AC所在直线旋转一周,求所得几何体的表面积.考点:作图-旋转变换;圆锥的计算.分析:(1)根据勾股定理和勾股定理的逆定理即可判断△ABC的形状;(2)根据图形旋转的性质画出图形,写出点A1和B1的坐标即可;(3)所得几何体的表面积为底面半径为2,母线长为的圆锥侧面积与底面半径为2,母线长为2的圆锥侧面积的和.解答:解:(1)∵AB==,BC==2,AC=5,()2+(2)2=52,在△ABC中,AB2+BC2=AC2,∴△ABC的形状是直角三角形;(2)如图,△A1B1C即为所求.由图可知,A1(5,6),B1(3,5);(3)∵Rt△ABC中,∠ABC=90°,AB==,BC==2,AC=5,所得两个圆锥的底面半径都为2,∴几何体的表面积=π×2×+π×2×2=6π.故所得几何体的表面积为6π.点评:本题考查的是作图﹣旋转变换,圆锥侧面积的计算,关键是熟知图形旋转不变性的性质,圆锥的侧面积=底面周长×母线长÷2的知识点.20.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.考点:全等三角形的判定与性质;矩形的判定.分析:(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF 与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.解答:(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(2)AB=AC证明:∵AF=DC,AF∥DC,∴四边形ADCF是平行四边形.∵AB=AC,BD=DC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形.点评:此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用,熟记特殊平行四边形的判定方法是解题的关键.21.如图,在△ABC中,AB=AC=4,sinC=(1)求BC的长;(2)作以AC为直径的⊙O,使⊙O交线段AB于点D,交线段BC于点E,并求点D到BC的距离(要求:尺规作图,保留作图痕迹,不写画法)考点:作图—复杂作图;解直角三角形.专题:作图题.分析:(1)作AH⊥BC于H,如图1,根据等腰三角形的性质得BH=BC,在Rt△ACH中,利用∠C的正弦可计算出AH,然后根据勾股定理计算出CH,再利用BC=2CH求解;(2)作AC的垂直平分线得到点O,再以AC为直径作⊙0,如图2,过点D作DH⊥BC于H,连结CE,根据等腰三角形的性质得∠B=∠ACB,再根据圆周角定理得∠AEC=90°,则可在Rt△BCD中利用正弦可计算出CD═,利用勾股定理计算出BD=,然后在Rt△BHD中,根据∠B的正弦可计算出DH.解答:解:(1)作AH⊥BC于H,如图1,∵AB=AC,∴BH=BC,在Rt△ACH中,∵sinC==,∴AH=×4=8,∴CH==4,∴BC=2CH=8;(2)如图2,DH⊥BC于H,连结CD,∵AB=AC,∴∠B=∠ACB,∵AC为直径,∴∠ADC=90°,在Rt△BCD中,∵sinB=,∴CD=8×=,∴BD==,在Rt△BHD中,∵sinB=,∴DH=×=,即点D到BC的距离为.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理和解直角三角形.22.已知二次函数h=x2﹣(2m﹣1)x+m2﹣m(m是常数,且m≠0)(1)证明:不论m取何值时,该二次函数图象总与x轴有两个交点;(2)若A(n﹣3,n2+2)、B(﹣n+1,n2+2)是该二次函数图象上的两个不同点,求二次函数解析式和m的值;(3)设二次函数h=x2﹣(2m﹣1)x+m2﹣m与x轴两个交点的横坐标分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=2﹣,请结合函数的图象回答:当y<m时,求m的取值范围.考点:抛物线与x轴的交点;二次函数图象上点的坐标特征.分析:(1)由抛物线与x轴有两个交点可知△>0,根据△=b2﹣4ac即可得到关于m的不等式,判断出△的取值范围即可;(2)根据A(n﹣3,n2+2)、B(﹣n+1,n2+2)是该二次函数图象上的两个不同点,可以求出抛物线的对称轴,进而求出m的值和二次函数的解析式;(3)首先令h=x2﹣(2m﹣1)x+m2﹣m=0,求出x1=m,x2=m﹣1,然后得到y与m的关系式,画出图象,结合图象进行作答.解答:解:(1)由题意有△=[﹣(2m﹣1)]2﹣4(m2﹣m)=1>0.即不论m取何值时,该二次函数图象总与x轴有两个交点;(2)∵A(n﹣3,n2+2)、B(﹣n+1,n2+2)是该二次函数图象上的两个不同点,∴抛物线的对称轴x==﹣1,∴=﹣1,∴m=﹣,∴抛物线解析式为h=x2+2x+;(3)令h=x2﹣(2m﹣1)x+m2﹣m=0,解得x1=m,x2=m﹣1,即y=2﹣=,作出图象如右:当=m时,解得m=,当y<m时,m的取值范围为m>或﹣<m<0.点评:本题考查的是抛物线与x轴的交点,根的判别式,解答此题的关键是利用数形结合的思想画出函数图象,再根据函数图象直接解答.23.(1)如图1,两个等边三角形ABC和A1B1C1的中心(点O)相同,且满足AB∥A1B1,BC∥B1C1,AC∥A1C1,可知AB与 A1B1,BC与B1C1,AC与A1C1之间的距离相等,直线MQ分别交三角形相邻两边于点M、N、P、Q,与AB所成夹角为∠α①当∠α=30°时,求的值;②当30°<∠α<90°,请用含∠α的式子表示;(2)如图2,两个正方形ABCD和A1B1C1D1的中心(点O)相同,且满足AB∥A1B1,BC∥B1C1,CD∥C1D1,AD∥A1D1,可知AB与A1B1,BC与B1C1,CD与C1D1,AD与A1D1之间的距离相等,直线MQ分别交正方形相邻两边于点M、N、P、Q,与AB所成夹角为∠α①当∠α=30°时,求的值;②当0°<∠α<90°,请用含∠α的式子表示;(3)根据(1)、(2)的研究,如果正n边形(n>4)的位置关系也满足同样的条件(如图3),正n边形相邻两边被直线MQ截得的两条线段为MN,PQ,请用含m,∠α(0°<∠α<90°)的式子表示.考点:相似形综合题.分析:(1)①作NE⊥AB于E,PF⊥AC于F,由AB∥A1B1,可得∠1=∠α=30°,根据等边三角形的性质即可推出∠2=120°﹣∠1=90°,由AC∥A1C1,推出∠PQF=∠2=90°根据锐角三角函数即可求得结果;②如图2,作ND⊥AB于D,PE⊥AC于E,由AB∥A1B1,可得∠1=∠α,根据等边三角形的性质即可推出∠2=120°﹣∠1=120°﹣∠α,由AC∥A1C1,推出∠PQE=∠2=120°﹣∠α,根据30°<∠α<90°,结合不等式的性质即可推出30°<120°﹣∠α<90°,然后根据Rt△MDN和Rt△QEP,结合锐角三角函数的性质推出DN=MN •sin∠α,PE=PQ•sin(120°﹣∠α),通过计算即可推出=;(2)①作NE⊥AB于E,PF⊥AC于F,由AB∥A1B1,可得∠1=∠α=30°,根据正方形的性质即可推出∠2=90°﹣∠1=60°,由AC∥A1C1,推出∠PQE=∠2=60°,根据三角函数即可求得结果,②由(1)②同理可得EN=MN•sin∠α,PF=PQ•sin(90°﹣∠α),得到MN •sin∠α=PQ•sin(90°﹣∠α),即可得到结论;(3)如图4,作NE⊥AB于E,PF⊥AC于F,由AB∥A1B1,可得∠1=∠α,根据正多边形的性质即可推出∠2=,由AC∥A1C1,推出∠PQE=∠2=,根据30°<∠α<90°,结合不等式的性质即可推出30°<<90°,然后根据Rt△MDN和Rt△QEP,结合锐角三角函数的性质推出DN=MN•sin∠α,PE=PQ•sin,通过计算即可推出结果.解答:解:(1)如图1,①作NE⊥AB于E,PF⊥AC于F,则NE=PF∵AB∥A1B1,∴∠1=∠α,∵等边三角形A1 B1 C1中,∠A1=60°,∴∠2=120°﹣∠1=120°﹣∠α,∵AC∥A1C1,∴∠PQF=∠2=120°﹣∠α,∵∠α=30°∴∠1=30°,∠PQF=90°,∴Q,F重合,PQ=PF,∴在Rt△MEN中,DN=MN,∴PQ=MN,∴=2;②如图2,作ND⊥AB于D,PE⊥AC于E,则 ND=PE,∵AB∥A1B1,∴∠1=∠α,∵等边三角形A1 B1 C1中,∠A1=60°,∴∠2=120°﹣∠1=120°﹣∠α,∵AC∥A1C1,∴∠PQE=∠2=120°﹣∠α,∵30°<∠α<90°,∴30°<120°﹣∠α<90°,∴在Rt△MDN和Rt△QEP中,DN=MN•sin∠α,PE=PQ•sin(120°﹣∠α),∴MN•sin∠α=PQ•sin(120°﹣∠α),∴=,(2)如图3,①作NE⊥AB于E,PF⊥AC于F,则NE=PF∵AB∥A1B1,∴∠1=∠α,∵正方形A1B1C1D1中,∠A1=90°,∴∠2=90°﹣∠1=90°﹣∠α,∵AC∥A1C1,∴∠PQF=∠2=90°﹣∠α,∵∠α=30°∴∠1=30°,∠PQF=60°,∴在Rt△MEN和Rt△QFP中,EN=MN,PE=PQ•sin60°=PQ,∴MN=PQ,∴=;②由(1)②同理可得EN=MN•sin∠α,PF=PQ•sin(90°﹣∠α),∴MN•sin∠α=PQ•sin(90°﹣∠α),∴=,(3)如图4,作NE⊥AB于E,PF⊥AC于F,则NE=PF,∵AB∥A1B1,∴∠1=∠α,∵正n边形中,∠A1=,∴∠2=,∵AC∥A1C1,∴∠PQE=∠2=,∵30°<∠α<90°,∴30°<<90°,∴在Rt△MEN和Rt△QFP中,EN=MN•sin∠α,PF=PQ•sin,∴MN•sin∠α=PQ•sin,∴=.点评:本题主要考查了等边三角形的性质,正方形的性质,正多边形的性质,锐角三角函数值等知识点,关键在于综合熟练的运用各相关的性质定理,认真的进行计算.。
浙江省杭州市西湖区2018届中考一模数学试题(含答案)
2018年杭州市各类高中招生文化西湖区第一次模拟考试数 学考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,在答题卷上写姓名和准考证号,并在试卷首页指定位置写上姓名和座位号.3.必须在答题纸的对应题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题卷一并上交.参考公式:二次函数2y ax bx c =++图像的顶点坐标公式:24,24b ac b aa -⎛⎫- ⎪⎝⎭一、选择题:本大题有10小题,每题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求的. 1.23-=( )A . 3-B . 9-C . 3D . 92.某企业今年1月份产值为x 元,2月份比1月份增加了10%,3月份比二月份减少20%,则3月份的产值是( )万元A . ()()110%120%x+-B .()110%20%x++C .()()10%20%x x +-D .()110%20%x +-3.如图,已知直线1l 、2l 、3l 分别交4l 于点A 、B 、C ,交5l 于点D 、E 、F ,且123////l l l ,若4AB =,6AC =,9DF =则DE =() A . 5 B . 6C . 7D . 84.如图,某市4月1日值7日一周内 “日平均气温变化统计图”.在组数据中,众数和中位数分别是( ) A . 13,13 B . 14,14 C . 13,14 D .14,13l 4l 5l 3l 2l 1FEDCB Ayx16141210 8 6 4 21 2 3 4 5 6 7OODCBA5.如图,点A 是半径为2的O e 上一点,BC 是O e 的弦,OD BC ⊥于点D ,若60BAC ∠=︒,则OD =( ) A . 2B 3C . 1D 3 6.已知642m =- ) A . 98m -<<-B . 87m -<<-C . 78m <<D . 89m <<7.已知二次函数22y x mx =-+,以下点可能成为二次函数顶点的是( ) A . ()2,4-B . ()1,2C . ()1,1--D . ()2,4-8.在菱形ABCD 中,记ABC α∠=∠,()090α︒<∠<︒菱形的面积记作S ,菱形的周长记作C ,若2AD =,则E F DCBA( )A . C 与α∠的大小有关B . 当45α∠=︒时,2SC . A 、B 、C 、D 四点可以在一个圆上D . S 随α∠的增大而增大9.对于二次函数2233y x mx m =-+-,以下说法:①图像必过定点33,24⎛⎫- ⎪⎝⎭;②函数图像与x 轴一定有两个交点;③若1x =时与2017x =时的函数值相等,则018x =2时的函数值为3-;④当1m =-时,直线1y x =-+与直线3y x =+关于此二次函数对称轴对称.其中正确命题是( ) A . ①② B .②③ C .①②④ D . ①③④10.如图,在ABC △中,36A ∠=︒,2AB AC ==,将ABC △绕点B 逆时针方向旋转得到DBE △,使得点E 在AC 上,DE 交AB 于点F ,则AEF △与DBF △的面积之比等于( ) A 51-B 51-C 35-D 35- 二、填空题:本大题共6个小题,每题4分,共24分. 11.正n 边形的一个内角为135︒,则n =________.12.已知14a b=,则()()2244a b a b +--为_______.13.标号为1,2,3,4,┈,n 的n 张标签(除标号外其他都完全相同), 任意摸一张,若摸得的奇数号标签的概率大于0.5,则n 可以是_______.14.在t R ABC △中,90ABC ∠=︒,2AB =,1BC =.将t R ABC △绕AB 所在直线旋转一周,得到的几何体的侧面积为_______.15.定义:关于x 的函数2y mx nx =+与2y nx mx =+(其中0mn ≠)叫做互为交换函数.若这两个函数图像的顶点关于x 轴对称,那么m ,n 满足的关系式为______________.16.已知ABC △与ABD △不全等,且1AC AD ==,45ABC ABD ∠=∠=︒,60ACB ∠=︒.则CD =_______.三、解答题:本大题共有7小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分6分)已知3x =-,求代数式32221+x x x x+⎛⎫÷ ⎪+⎝⎭的值.18.(本小题满分8分)如图,BE 是ABC △的角平分线,延长BE 至D ,使得BC CD =. ⑴求证:AEB CED △∽△;⑵若2AB =,4BC =,1AE =,求CE 的长.EDCBA19.(本小题满分8分)从数1,0,1,2,3-中任意取两个,其和的绝对值为k (k 是自然数)的概率记作k P . (如:2P 是任意取两个,其和的绝对值为2的概率) ⑴求k 的所有值;⑵求3P .20.(本小题满分10分)二次函数()()21213y m x m x m =+-+-+.⑴求二次函数的对称轴;⑵过动点(),C o n 做直线l y ⊥轴,当直线l 与抛物线只有一个公共交点时,求n 关于m 的函数表达式; ⑶若每一个给定的x 值,它所对应的函数值都不大于6,求整数m .21.已知:在ABC △中,90A ∠=︒,6AB =,8AC =点P 在边AC 上,且P e 与AB ,BC 都相切.⑴求P e 半径; ⑵求sin PBC ∠的值.CB A22.(本小题满分12分)已知函数11y x m =-+和()20ny n x=≠的图像交于P 、Q 两点. ⑴若1y 的图像过(),0n ,且3m n +=,求2y 的函数表达式;⑵若P 、Q 两点关于成中心对称. ①求m 的值;②当2x >时,对于满足条件00n n <<的一切n 总有12y y >,求0n 的取值范围.23. (本小题满分12分)已知ABD △与GDF △都是等腰直角三角形,BD 与DF 均为斜边(BD DF <).⑴如图1,B ,D ,F 在同一直线上,过F 作MF GF ⊥于点F ,取MF AB =,联结AM 交BF 于点H .联结GA ,GM .①求证:AH HM =;②请判断GAM △的形状,并给予证明;③请用等式表示线段AM 、BD 、DF 的数量关系,并说明理由.⑵如图2,GD BD ⊥,联结,取BF 的中点H ,联结AH 并延长交DF 于点M ,请用等式直接写出线段AM 、BD 、DF 的数量关系,。
浙江省杭州市西湖区2018年中考数学模拟试题9 精品
浙江省杭州市西湖区2018年中考数学模拟试题9考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟2.答题时,应该在答题卷指定位置内写明校名、姓名和准考证号3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应4.考试结束后,上交试题卷和答题卷试题卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案。
1. 计算 (– 1)0= ( )A. – 1B. 1C. 0D. 2 2. 一个物体的俯视图是含圆心的圆,则它的主视图是( )A. 扇形B. 四边形C. 三角形D. 弓形 3. 的算术平方根是81( )A. 9B. ±9C. 3D. ±3 4. 把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A 、115°B 、120°C 、145°D 、135°5. 已知二次函数)1(43222<a a ax x y +-=,当自变量x 取m 时对应的函数值小于0,当自变量x 分别取m -1、m +1时对应的函数值为y 1、y 2,则y 1、y 2必满足( ) A .y 1>0,y 2>0 B .y 1<0,y 2<0C .y 1<0,y 2>0D .y 1>0,y 2<07. 给出下列命题:① 3.50万精确到百分位;② 若关于x 的方程232x mx +=-的解是正数,则m >-6;③ 等腰三角形的中线、高、角平分线互相重合;④ 平分弦的直径必垂直于这条弦;⑤ 二次函数)0(2≠++=a c bx ax y ,当x 取值1x ,2x 时(12x x ≠),函数值相等,则当x 取12x x +时,函数值为c . 其中真命题有( )A .1个 B.2个 C.3个 D.4个 8. 如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )(A ) (B ) (C ) (D ) 9. 如图,在ABCD 中,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切。
浙江省杭州市2018-2019学年九年级数学中考模拟试卷含答案
浙江省杭州市2018-2019学年九年级数学中考模拟试卷一、单选题1.下列式子中,计算结果为﹣1的是()A. |﹣1|B. ﹣(﹣1)C. ﹣12D. (﹣1)22.尽管受到国际金融危机的影响,但湖州市经济依然保持了平稳增长.据统计,截止到今年4月底,该市金融机构存款余额约为1193亿元,用科学记数法应记为( )A. 1.193×1010元B. 1.193×1011元C. 1.193×1012元D. 1.193×1013元3.化简的结果是()A. -3B. 3C. ±3D.4.下列说法错误的是( )A. Rt△ABC中,AB=3,BC=4,则AC=5B. 极差能反映一组数据的变化范围C. 经过点A(2,3)的双曲线一定经过点B(-3,-2)D. 连接菱形各边中点所得的四边形是矩形5.如图,在Rt△ABC中,∠A=90°,P为边BC上一动点,PE⊥AB于E ,PF⊥AC于F ,动点P从点B出发,沿着BC匀速向终点C运动,则线段EF的值大小变化情况是().A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减少第5题图第8题图第10题图6.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A. 86B. 68C. 97D. 737.某运动员投篮5次,投中4次,则该运动员下一次投篮投中的概率为()A. B. C. D. 不能确定8.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A. 30°B. 60°C. 90°D. 120°9.已知关于x的方程x2+2x=m有两个相等的实数根,则m的值是()A. 1B. -1C.D. -10.已知点A,B分别在反比例函数y= (x>0),y= (x>0)的图象上且OA⊥OB,则tanB为()A. B. C. D.二、填空题11.,则=________ .12.如图,,垂足为,过作.若,则________.13.3如图,从边长为的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是________14.如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=________.第14题图第15题图第16题图15.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是________.16.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为________三、解答题17.如图,直线与反比例函数的图象交于点,与轴交于点.(1)求的值及点的坐标;(2)过点作轴交反比例函数的图象于点,求点D的坐标和的面积;(3)观察图象,写出当x>0时不等式的解集.18.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?19.已知:如图,点E 、A 、C 在同一条直线上,AB ∥CD ,AB=CE ,∠B=∠E .(1)求证:△ABC ≌△CED ;(2)若∠B=25°,∠ACB=45°,求∠ADE 的度数. 20.把y=x 2的图象向上平移2个单位.(1)求新图象的解析式、顶点坐标和对称轴; (2)画出平移后的函数图象;(3)求平移后的函数的最大值或最小值,并求对应的x 的值.21.如图,点A,O,B在同一直线上,射线OD和射线OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)写出图中所有互为余角的角.22.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?23.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD 中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为________;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为________;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=________(用含b 的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=________(用含n,b 的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含m,n,b的式子表示).答案一、选择题1. C2. B3. B4. A5. C6. D7. D8. B9. B 10. B二、填空题11.8 12.42°13.a+6 14.72°15.(7,3)16.2三、解答题17.(1)(3,0)(2)4(3)0<x<4318. (1):0.2;5,0.05;100(2)解:如图:(3)篮球8个,足球2个;或篮球9个,足球1个19.(1)证明:∵AB∥CD,∴∠BAC=∠ECD,又∵∠B=∠E,AB=CE,∴△ABC≌△CED(2)解:∵△ABC≌△CED,∴∠E=∠B=25°,∠EDC=∠ACB=45°,CA=CD,∴∠CAD=∠CDA,设∠ADE=x,根据外角的性质可知:∠CAD=∠E+∠ADE=25°+x,∴25°+x=45°-x,解得:x=10°,即∠ADE=10°20.(1)解:把y=- x2的图象向上平移2个单位后得到抛物线的解析式为:y=- x2+2,所以它的顶点坐标是(0,2),对称轴是x=0,即y轴(2)解:由y=- x2+2,得其函数图象如图所示:(3)解:如图所示:当x=0时,y最大=221. (1)解:∵点A,O,B在同一条直线上,∴∠AOC+∠BOC=180°,∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠COD= ∠AOC,∠COE= ∠BOC∴∠COD+∠COE= (∠AOC+∠BOC)=90°,∴∠DOE=90°(2)解:互为余角的角有:∠COD和∠COE,∠AOD和∠BOE,∠AOD和∠COE,∠COD和∠BOE22.(1)解:由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:图象如下.(2)解:由﹣x2+2x+3=0,得:x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线顶点坐标为(1,4).(3)解:由图象可知:当﹣1<x<3时,抛物线在x轴上方(4)解:由图象可知:当x>1时,y的值随x值的增大而减小.23.(1)(2)(3);;或;或。
2019年浙江省杭州市西湖区中考数学一模试卷和参考答案.Word
2 0 1 9 年浙江省杭州市西湖区中考数学一模试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出四个选项,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.(3分)与﹣2的和为0的数是()A.2B.﹣C.D.﹣22.(3分)下列计算正确的是()A.a3+a4=a7B.a3﹣a4=a﹣1C.a3•a4=a7D.a3÷a4=a 3.(3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5B.左视图的面积为3C.俯视图的面积为3D.三种视图的面积都是44.(3分)已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a 的值是()A.4B.﹣4C.1D.﹣15.(3分)若菱形的两条对角线的长分别为6,8.则此菱形的周长是()A.14B.20C.28D.406.(3分)在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()分数5060708090100人数12813144A.70,80B.70,90C.80,90D.90,100 7.(3分)下列函数的图象与y轴不相交的是()A.y=﹣x B.y=4x+1C.y=D.y=x2+2x 8.(3分)二次函数y=ax2+bx+c的y与x的部分对应值如表:X…0134…y…242﹣2…则下列判断中正确的是()A.抛物线开口向上B.y最大值为4C.当x>1时,y随著x的增大而减小D.当0<x<2时,y>29.(3分)如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P 在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=()A.B.C.D.10.(3分)二次函数y=ax2+bx+c(a>0)的顶点为P,其图象与x轴有两个交点A(﹣m,0),B(1,0),交y轴于点C(0,﹣3am+6a),以下说法:①m=3;②当∠APB=120°时,a=;③当∠APB=120°时,抛物线上存在点M(M与P不重合),使得△ABM是顶角为120°的等腰三角形;④抛物线上存在点N,当△ABN为直角三角形时,有a≥正确的是()A.①②B.③④C.①②③D.①②③④二.认真填一填(本題有6个小題,毎小題4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)不等式4x﹣9>0的解是.12.(4分)某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.13.(4分)若方程组的解是,则=.14.(4分)在平面直角坐标系xOy中,若抛物线y=ax2+bx+c的顶点为M,且经过A(0,4),B(4,4)两点,若M到线段AB的距离为4,则a=.15.(4分)如图,一次函数y=kx+1的图象与反比例函数y=(x>0)的图象交于点P,P A⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴,y 轴于点C,点D.且OA=OB,=,则m=,=.16.(4分)在平面直角坐标系中,有三条直线l1,l2,l3,它们的函数解析式分别是y=x,y=x+1,y=x+2.在这三条直线上各有一个动点,依次为A,B,C,它们的横坐标分别为a,b,c,则当a,b,c满足条件时,这三点不能构成△ABC.三、全面答一答(本题有7个小題,共66分)解答应写出必要的文字说明、证明过程或推理步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(1)计算:3﹣[6﹣(2﹣3)2](2)因式分解:4m2﹣16n2.18.(8分)给定下面一列分式:﹣,﹣,﹣,﹣,…(其中a≠1)(1)请写出第6个分式;(2)当3a﹣4b=3时,求﹣的值.19.(8分)从数﹣2,﹣1,1,3中任取两个,其和的绝对值为k(k是自然数)的槪率记作P k(如:P3是任取两个数,其和的绝对值为3的概率)(1)求k的所有取值;(2)求P1,P4.20.(10分)如图,点A,C,D在同一条直线上,BC与AE交于点F,F A=FC,∠D=∠B,AD=BC.(1)求证:△ABC≌△EDA;(2)尺规作图:作△AED沿着AD方向平移AC长度后的三角形;(保留作图痕迹,不写作法)(3)若AC=5cm,∠EAD=20°,请问△AED经过怎样的运动变为△CAB?21.(10分)如图,⊙O是△ABC的外接圆,AB=AC,BD是⊙O的直径.P A ∥BC,与DB的延长线交于点P.连结AD.(1)求证:P A是⊙O的切线;(2)若tan∠ABC=,BC=4,求BD与AD的长.22.(12分)数学老师布置了这样一个问題:如果α,β都为锐角.且tanα=,tanβ=.求α+β的度数.甲、乙两位同学想利用正方形网格构图来解决问题.他们分别设计了图1和图2.(1)请你分别利用图1,图2求出α+β的度数,并说明理由;(2)请参考以上思考问题的方法,选择一种方法解决下面问题:如果α,β都为锐角,当tanα=5,tanβ=时,在图3的正方形网格中,利用已作出的锐角α,画出∠MON,使得∠MON=α﹣β.求出α﹣β的度数,并说明理由.23.(12分)设k≠0,若函数y1=(x﹣k)2+2k和y2=﹣(x+k)2﹣2k的图象与y轴依次交于A,B两点,函数y1,y2的图象的顶点分别为C,D.(1)当k=1时,请在同一直角坐标系中,分别画出函数y1,y2的草图,并根据图象.写出y1,y2两图象的位置关系;(2)当﹣2<k<0时,求线段AB长的取值范围;(3)A,B,C,D四点构成的图形是否为平行四边形?若是平行四边形,则是否构成菱形或矩形?若能构成菱形或矩形,请直接写出k的值.2 0 1 9 年浙江省杭州市西湖区中考数学一模试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出四个选项,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.(3分)与﹣2的和为0的数是()A.2B.﹣C.D.﹣2【解答】解:∵2+(﹣2)=0,∴与﹣2的和为0的数是2,故选:A.2.(3分)下列计算正确的是()A.a3+a4=a7B.a3﹣a4=a﹣1C.a3•a4=a7D.a3÷a4=a 【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、不是同底数幂的除法指数不能相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.3.(3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5B.左视图的面积为3C.俯视图的面积为3D.三种视图的面积都是4【解答】解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.4.(3分)已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a 的值是()A.4B.﹣4C.1D.﹣1【解答】解:根据题意得△=22﹣4•(﹣a)=0,解得a=﹣1.故选:D.5.(3分)若菱形的两条对角线的长分别为6,8.则此菱形的周长是()A.14B.20C.28D.40【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=20.故选:B.6.(3分)在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()分数5060708090100人数12813144A.70,80B.70,90C.80,90D.90,100【解答】解:把这组数据从小到大排列,最中间两个数的平均数是(80+80)÷2=80,则该班学生成绩的中位数是80;90出现了14次,出现的次数最多,则众数是90;故选:C.7.(3分)下列函数的图象与y轴不相交的是()A.y=﹣x B.y=4x+1C.y=D.y=x2+2x【解答】解:反比例函数的图象是双曲线,这两条曲线只能无限接近于两坐标轴,但不能与其相交,也就是图象与y轴不相交.故选:C.8.(3分)二次函数y=ax2+bx+c的y与x的部分对应值如表:X…0134…y…242﹣2…则下列判断中正确的是()A.抛物线开口向上B.y最大值为4C.当x>1时,y随著x的增大而减小D.当0<x<2时,y>2【解答】解;A、由图表中数据可得出:x=1.5时,y有最大值,故此函数开口向下,故此选项错误;B、当x=1时,y=4,低于顶点坐标,故此选项错误;C、当x>1.5时,y随著x的增大而减小,故此选项错误;D、当0<x<2时,y>2,此选项正确.故选:D.9.(3分)如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P 在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=()A.B.C.D.【解答】解:如图作BM⊥AC于M,连接PD.∵∠ABC =90°,AD =DC ,AB =6,BC =3, ∴BD =AD =DC ,AC ==3,∵•AB •BC =•AC •BM , ∴BM =,∴S △ABD =S △ADP +S △BDP ,∴•AD •BM =•AD •PF +•BD •PE , ∴PE +PF =BM =.故选:A .10.(3分)二次函数y =ax 2+bx +c (a >0)的顶点为P ,其图象与x 轴有两个交点A (﹣m ,0),B (1,0),交y 轴于点C (0,﹣3am +6a ),以下说法: ①m =3;②当∠APB =120°时,a =;③当∠APB =120°时,抛物线上存在点M (M 与P 不重合),使得△ABM 是顶角为120°的等腰三角形;④抛物线上存在点N ,当△ABN 为直角三角形时,有a ≥ 正确的是( ) A .①②B .③④C .①②③D .①②③④【解答】解:①∵点A (﹣m ,0)、B (1,0)在抛物线y =ax 2+bx +c 上, ∴,由①﹣②得am 2﹣bm ﹣a ﹣b =0,即(m+1)(am﹣a﹣b)=0.∵A(﹣m,0)与B(1,0)不重合,∴﹣m≠1即m+1≠0,∴m=,∴点C的坐标为(0,3a﹣3b),∵点C在抛物线y=ax2+bx+c上,∴c=3a﹣3b,代入②得a+b+3a﹣3b=0,即b=2a,∴m==3,故①正确;②∵m=3,∵A(﹣3,0),∴抛物线的解析式可设为y=a(x+3)(x﹣1),则y=a(x2+2x﹣3)=a(x+1)2﹣4a,∴顶点P的坐标为(﹣1,﹣4a).根据对称性可得P A=PB,∴∠P AB=∠PBA=30°.设抛物线的对称轴与x轴的交点为G,则有PG⊥x轴,∴PG=AG•tan∠P AG=2×=,∴4a=,∴a=,故②正确;③在第一象限内作∠MBA=120°,且满足BM=BA,过点M作MH⊥x轴于H,如图1,在Rt△MHB中,∠MBH=60°,则有MH=4sin60°=4×=2,BH=4cos60°=4×=2,∴点M的坐标为(3,2),当x=3时,y=(3+3)(3﹣1)=2,∴点M在抛物线上,故③正确;④∵点N在抛物线上,∴∠ABN≠90°,∠BAN≠90°.当△ABN为直角三角形时,∠ANB=90°,此时点N在以AB为直径的⊙G上,因而点N在⊙G与抛物线的交点处,要使点N存在,点P必须在⊙G上或⊙G外,如图2,则有PG≥2,即4a≥2,也即a≥,故④正确.故选:D.二.认真填一填(本題有6个小題,毎小題4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)不等式4x﹣9>0的解是x>.【解答】解:移项得,4x>9,把x的系数化为1得,x>.故答案为:x>.12.(4分)某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为0.4.【解答】解:学生仰卧起坐次数在25~30之间的频率是:=0.4.故答案是:0.4.13.(4分)若方程组的解是,则=±.【解答】解:∵方程组的解是,∴,解得:或,∴==或==﹣;故答案为:±.14.(4分)在平面直角坐标系xOy中,若抛物线y=ax2+bx+c的顶点为M,且经过A(0,4),B(4,4)两点,若M到线段AB的距离为4,则a=1或﹣1.【解答】解:∵A(0,4),B(4,4),∴AB∥x轴,∵M到线段AB的距离为4,∴M(2,8)或(2,0),①当M(2,8)时,设抛物线的解析式为y=a(x﹣2)2+8,代入A(0,4)得,4=4a+8,解得a=﹣1,②当M(2,0)时,设抛物线的解析式为y=a(x﹣2)2,代入A(0,4)得,4=4a,解得a=1,所以a=1或﹣1,故答案为1或﹣1.15.(4分)如图,一次函数y=kx+1的图象与反比例函数y=(x>0)的图象交于点P,P A⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴,y 轴于点C,点D.且OA=OB,=,则m=﹣4,=.【解答】解:∵一次函数y=kx+1的图象交y轴于点D,令x=0,得y=1,∴点D的坐标为(0,1);设OC=a,则CA=2OC=2a,OA=3a=OB,P(3a,﹣3a).∵OC∥BP,∴△DOC∽△DBP,∴=,即==,∴a=,∴P(2,﹣2).∵反比例函数y=(x>0)的图象过点P,∴m=2×(﹣2)=﹣4;=()2=()2=.故答案为﹣4;.16.(4分)在平面直角坐标系中,有三条直线l1,l2,l3,它们的函数解析式分别是y=x,y=x+1,y=x+2.在这三条直线上各有一个动点,依次为A,B,C,它们的横坐标分别为a,b,c,则当a,b,c满足条件a=b=c或a=b+1=c+2或=2时,这三点不能构成△ABC.【解答】解:(1)动点的横坐标相等时:a=b=c.(2)动点的纵坐标相等时:∵y=a,y=b+1,y=c+2,∴a=b+1=c+2.(3)三点满足一次函数式,三点可以表示一次函数的斜率:斜率为函数图象与x轴所形成角的正切值;∵三点的坐标为(a,a),(b,b+1),(c,c+2),∴=,1+=1+,∴=2.故答案为:a=b=c或a=b+1=c+2或=2.三、全面答一答(本题有7个小題,共66分)解答应写出必要的文字说明、证明过程或推理步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(1)计算:3﹣[6﹣(2﹣3)2](2)因式分解:4m2﹣16n2.【解答】解:(1)3﹣[6﹣(2﹣3)2]=3﹣(6﹣1)=﹣2;(2)4m2﹣16n2=(2m﹣4n)(2m+4n)=4(m﹣2n)(m+2n).18.(8分)给定下面一列分式:﹣,﹣,﹣,﹣,…(其中a≠1)(1)请写出第6个分式;(2)当3a﹣4b=3时,求﹣的值.【解答】解:(1)第6个分式为:;(2)由3a﹣4b=3可得:a﹣1=,把a﹣1=,代入﹣=﹣=﹣=.19.(8分)从数﹣2,﹣1,1,3中任取两个,其和的绝对值为k(k是自然数)的槪率记作P k(如:P3是任取两个数,其和的绝对值为3的概率)(1)求k的所有取值;(2)求P1,P4.【解答】解:(1)画树状图得:则k的所有取值有12种等可能的结果;(2)∵其和的绝对值为1的有4种情况,其和的绝对值为4的有2种情况,∴P1==;P4==.20.(10分)如图,点A,C,D在同一条直线上,BC与AE交于点F,F A=FC,∠D=∠B,AD=BC.(1)求证:△ABC≌△EDA;(2)尺规作图:作△AED沿着AD方向平移AC长度后的三角形;(保留作图痕迹,不写作法)(3)若AC=5cm,∠EAD=20°,请问△AED经过怎样的运动变为△CAB?【解答】解:(1)∵F A=FC,∴∠F AC=∠FCA,在△ABC和△EDA中,,∴△ABC≌△EDA.(2)如图所示.(3)△AED先向右平移5cm,再绕点C逆时针旋转160°就可以与△ABC重合.21.(10分)如图,⊙O是△ABC的外接圆,AB=AC,BD是⊙O的直径.P A ∥BC,与DB的延长线交于点P.连结AD.(1)求证:P A是⊙O的切线;(2)若tan∠ABC=,BC=4,求BD与AD的长.【解答】(1)证明:∵AB=AC,∴,∴OA⊥BC,∵P A∥BC,∴AP⊥OA,即P A是⊙O的切线;(2)∵AC=BC,∴∠ABC=∠ACB,∵BC=4,OM⊥BC,∴BM=2,∵tan∠ABC=,∴AB=,∵∠D=∠ACB,tan∠ABC=,∴tan∠D=,∵BD是⊙O的直径,∴∠BAD=90°,∴AD=2,∴BD==5.22.(12分)数学老师布置了这样一个问題:如果α,β都为锐角.且tanα=,tanβ=.求α+β的度数.甲、乙两位同学想利用正方形网格构图来解决问题.他们分别设计了图1和图2.(1)请你分别利用图1,图2求出α+β的度数,并说明理由;(2)请参考以上思考问题的方法,选择一种方法解决下面问题:如果α,β都为锐角,当tanα=5,tanβ=时,在图3的正方形网格中,利用已作出的锐角α,画出∠MON,使得∠MON=α﹣β.求出α﹣β的度数,并说明理由.【解答】解:(1)①如图1中,在△AMC和△CNB中,,∴△AMC≌△CNB,∴AC=BC,∠ACM=∠CBN,∵∠BCN+∠CBN=90°,∴∠ACM+∠BCN=90°,∴∠ACB=90°,∴∠CAB=∠CBA=45°,∴α+β=45°.②如图2中,设正方形边长为1,则CE=1,AE=2,BE=,∴==,=,∴=,∵∠CEB=∠AEB∴△CEB∽△BEA,∴∠CAB=∠CBE=α,∵∠BED=∠ECB+∠CBE=α+β,∵DE=DB,∠D=90°,∠BED=45°,∴α+β=45°.(2)如图3中,∠MOE=α,∠NOH=β,∠MON=α﹣β.在△MFN和△NHO中,,∴△MFN≌△NHO,∴MN=NO,∠MNF=∠NOH,∵∠NOH+∠ONH=90°,∴∠ONH+∠MNF=90°,∴∠MNO=90°,∴∠NOM=∠NMO=45°,∴α﹣β=45°.23.(12分)设k≠0,若函数y1=(x﹣k)2+2k和y2=﹣(x+k)2﹣2k的图象与y轴依次交于A,B两点,函数y1,y2的图象的顶点分别为C,D.(1)当k=1时,请在同一直角坐标系中,分别画出函数y1,y2的草图,并根据图象.写出y1,y2两图象的位置关系;(2)当﹣2<k<0时,求线段AB长的取值范围;(3)A,B,C,D四点构成的图形是否为平行四边形?若是平行四边形,则是否构成菱形或矩形?若能构成菱形或矩形,请直接写出k的值.【解答】解:(1)k=1时,y1=(x﹣1)2+2和y2=﹣(x+1)2﹣2的图象如图所示,这两个函数图象关于原点对称.(2)∵点A(0,k2+2k,),B(0,﹣k2﹣2k),∴AB=|k2+2k﹣(﹣k2﹣2k)|=|2k2+4k|,∵﹣2<k<0,∴AB是最小值为O,最大值为2,∴0<AB≤2.(3)∵点A(0,k2+2k,),B(0,﹣k2﹣2k),C(k,2k),D(﹣k,﹣2k),∴A、B关于原点对称,C、D关于原点对称,∴OA=OB,OC=OD,∴四边形ADBC是平行四边形.当OA=OC时,四边形ADBC是矩形,此时k2+2k=±k,k=﹣2或﹣﹣2,当OA⊥OC时,四边形ADBC是菱形,此时点C、D在x轴上,与k≠0矛盾.∴四边形ADBC不可能是菱形.一、选择题(本题共10个小题,每小题4分,共40分)1.(4分)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果盈利50元记作+50元,那么亏本30元记作:()A.﹣30元B.﹣50元C.+50元D.+30元2.(4分)下列运算正确的是:()A.(a﹣b)2=a2﹣b2B.a10÷a2=a5C.(2a2b3)3=8a6b9D.2a2•3a3=6a63.(4分)安徽省,政府工作报告》指出,2 0 1 9 年全年将实施亿元以上技改项目1000项,完成投资6600亿元,把6600亿用科学记数法可表示为()A.6.6×103B.66×1010C.6.600×1011D.0.66×1012 4.(4分)三本相同的书本叠成如图所示的几何体,它的俯视图是()A.B.C.D.5.(4分)下列二次根式中,与之积为有理数的是()A.B.C.D.﹣6.(4分)若|x+y﹣5|与(x﹣y﹣1)2互为相反数,则x2﹣y2的值为()A.﹣5B.5C.13D.157.(4分)如表是某毕业班理化实验测试的分数分布,对于不同的x,下列关于分数的统计量不会发生改变的是()分数/分78910频数29﹣x x+1424 A.众数、方差B.中位数、方差C.众数、中位数D.平均数、中位数8.(4分)AD是△ABC的高,AC=2,AD=4,把△ADC沿着直线AD对折,点C落在点E的位置,如果△ABE是等腰三角形,那么线段BE的长度为()A.2B.2或5C.2D.59.(4分)甲、乙两车从A地出发沿同一路线驶向B地,甲车匀速驶向B地,甲车出发30分钟后,乙车才出发,乙先匀速行驶一段时间后,到达货站装货后继续行驶,速度减少了56千米/时,结果与甲车同时到达B地,甲乙两车距A 地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法中正确的是()A.甲车从A地到B地行驶了6小时B.甲的速度是120千米/时C.乙出发90分钟追上甲D.当两车在行驶过程中,相距40千米时,x=2或3.510.(4分)如图,在矩形ABCD中,P是BC上一点,E是AB上一点,PD平分∠APC,PE⊥PD,连接DE交AP于F,在以下判断中,不正确的是()A.当P为BC中点,△APD是等边三角形B.当△ADE∽△BPE时,P为BC中点C.当AE=2BE时,AP⊥DED.当△APD是等边三角形时,BE+CD=DE二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)计算:4cos60°﹣+(3﹣π)0=.12.(5分)随着各地对房地产市场调控的深入,近来某市房价持续回落,某楼盘原价为每平方米12000元,第一次降价后,销售业绩没有预期回升,于是再次降价,比第一次多降了10%,两次降价后售价为每平方米8640元,设第一次降价百分率为x,则可列方程为:.13.(5分)分式方程﹣1=的解是x=.14.(5分)如图,D为△ABC中边BC中点,E为CD上一点,将△ACE沿AE 折叠时C与D重合,F为AB上一点,FB=FC,FC与AD、AE分别交于P、Q点,下列结论①AE∥DF;②△APQ≌△DPF;③AF=DF;④.其中正确的有.三、解答题15.(8分)求不等式组的解集,并把它们的解集在数轴上表示出来.16.(8分)从2开始,连续的偶数相加,它们和的情况如表:加数的个数n S12=1×222+4=6=2×332+4+6=15=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(1)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+ (2)=;(2)如下数表是由从1开始的连续自然数组成,观察规律:①第n行的第一个数可用含n的式子表示为:;②如果某行的第一个数为157,求其所在的行数.四、解答题17.(8分)如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC绕点O按逆时针方向旋转90°后的△A2B2C2;(3)判断△A1B1C1和△A2B2C2是不是成轴对称?如果是,请在图中作出它们的对称轴.18.(8分)如图,四边形ABCD是某新建厂区示意图,∠A=75°,∠B=45°,BC⊥CD,AB=500米,AD=200米,现在要在厂区四周建围墙,求围墙的长度有多少米?19.(10分)某校组织学生参观航天展览,甲、乙、丙、丁四位同学随机分成两组乘车.(1)哪两位同学会被分到第一组,写出所有可能;(2)用列表法(或树状图法)求甲、乙分在同一组的概率.20.(10分)如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD =OD,若OB⊥AC于E点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.21.(12分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D 为对角线OB的中点,点E(4,m)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D、E,且cos∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和m的值;(3)若反比例函数的图象与矩形的边BC交于点F,点G、H分别是y轴、x轴上的点,当△OGH≌△FGH时,求线段OG的长.22.(12分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:13610…时间(第x天)198194188180…日销售量(m件)②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.23.(14分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE ∥BC,∠CDE=∠ABC=∠ACB=α.(1)如图1,当α=60°时,求证:△DCE是等边三角形;(2)如图2,当α=45°时,求证:①=;②CE⊥DE.(3)如图3,当α为任意锐角时,请直接写出线段CE与DE 的数量关系是:=.2 0 1 9 年安徽省阜阳市太和县中考数学一模试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共40分)1.(4分)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果盈利50元记作+50元,那么亏本30元记作:()A.﹣30元B.﹣50元C.+50元D.+30元【解答】解:如果盈利50元记作+50元,那么亏本30元记作﹣30元,故选:A.2.(4分)下列运算正确的是:()A.(a﹣b)2=a2﹣b2B.a10÷a2=a5C.(2a2b3)3=8a6b9D.2a2•3a3=6a6【解答】解:A、(a﹣b)2=a2﹣2ab+b2,所以此选项不正确;B、a10÷a2=a8,所以此选项不正确;C、(2a2b3)3=8a6b9,所以此选项正确;D、2a2•3a3=6a5,所以此选项不正确;故选:C.3.(4分)安徽省,政府工作报告》指出,2 0 1 9 年全年将实施亿元以上技改项目1000项,完成投资6600亿元,把6600亿用科学记数法可表示为()A.6.6×103B.66×1010C.6.600×1011D.0.66×1012【解答】解:数据6600亿用科学记数法可表示:6.600×1011,故选:C.4.(4分)三本相同的书本叠成如图所示的几何体,它的俯视图是()A.B.C.D.【解答】解:从上边看是五个矩形,右边的矩形的边是虚线,故选:D.5.(4分)下列二次根式中,与之积为有理数的是()A.B.C.D.﹣【解答】解:A、=3,3×=6,符合题意;B、原式=,×=,不符合题意;C、原式=2,2×=2,不符合题意;D、原式=﹣3,﹣3×=﹣3,不符合题意,故选:A.6.(4分)若|x+y﹣5|与(x﹣y﹣1)2互为相反数,则x2﹣y2的值为()A.﹣5B.5C.13D.15【解答】解:由题意得:|x+y﹣5|+(x﹣y﹣1)2=0,∴,则原式=(x+y)(x﹣y)=5,故选:B.7.(4分)如表是某毕业班理化实验测试的分数分布,对于不同的x,下列关于分数的统计量不会发生改变的是()分数/分78910频数29﹣x x+1424 A.众数、方差B.中位数、方差C.众数、中位数D.平均数、中位数【解答】解:分数为8分和9分的人数之和为9﹣x+x+14=23,则抽取的总人数为2+23+24=49人,由统计表可知10分的人数最多,有24人,故众数为10;其中位数为第25个数据,即中位数为9分,∴对于不同的x,众数和中位数不会发生改变,故选:C.8.(4分)AD是△ABC的高,AC=2,AD=4,把△ADC沿着直线AD对折,点C落在点E的位置,如果△ABE是等腰三角形,那么线段BE的长度为()A.2B.2或5C.2D.5【解答】解:如图①当高AD在△ABC内时,由题意EA=EB=AC=2.②当高AD在△ACB′外时,设AB′=B′E=x.在Rt△ADC中,CD===2,由题意DE=DC=2,在Rt△AED中,∵AB′2=AD2+DB′2,∴x2=42+(x﹣2)2,∴x=5.∴线段BE的长度为2或5,故选:B.9.(4分)甲、乙两车从A地出发沿同一路线驶向B地,甲车匀速驶向B地,甲车出发30分钟后,乙车才出发,乙先匀速行驶一段时间后,到达货站装货后继续行驶,速度减少了56千米/时,结果与甲车同时到达B地,甲乙两车距A 地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法中正确的是()A.甲车从A地到B地行驶了6小时B.甲的速度是120千米/时C.乙出发90分钟追上甲D.当两车在行驶过程中,相距40千米时,x=2或3.5【解答】解:A、错误.甲车从A地到B地行驶了6.5小时.B、错误.甲的速度为=80千米/时.C、错误.设乙开始的速度为x千米/时,由题意3x+2.5(x﹣56)=520,解得x=120,设乙出发t小时追上甲,则(120﹣80)t=0.5×80,t=1,所以乙出发t小时追上甲.D、正确.由题意甲的函数解析式为y=80x+40,乙开始的函数解析式为y=120x,装货后的解析式为y=64x+136,由题意120x﹣(80x+40)=40或64x+136﹣(80x+40)=40,解得x=2或3.5.故选:D.10.(4分)如图,在矩形ABCD中,P是BC上一点,E是AB上一点,PD平分∠APC,PE⊥PD,连接DE交AP于F,在以下判断中,不正确的是()A.当P为BC中点,△APD是等边三角形B.当△ADE∽△BPE时,P为BC中点C.当AE=2BE时,AP⊥DED.当△APD是等边三角形时,BE+CD=DE【解答】解:A、∵四边形ABCD是矩形,∴AB=CD,∠A=∠B,∵点P是BC的中点,∴PB=PC,在△APB和△DPC中,,∴△APB≌△DPC,∴P A=PD,∠APB=∠DPC,∵PD平分∠APC,∴∠APD=∠CPD,∴∠APB=∠APD=∠CPD,∵∠APB+∠APD+∠CPD=180°,∴∠APD=60°,∵P A=PD,∴△APD是等边三角形;∴A正确,故A不符合题意;C、∵PD⊥PE,∴∠BPE+∠DPC=90°,∠APE+∠APD=90°,∵∠APD=∠CPD,∴∠APE=∠BPE,过点B作BG∥AP交PE的延长线于G,∴∠G=∠APE=∠BPE,∴BG=BP,∵BG∥AP,∴△BEG∽△AEP,∴∴,∵AE=2BE,∴,在Rt△ABP中,sin∠BAP=,∴∠BAP=30°,∴∠APB=60°,∴∠BPE=∠APE=30°=∠BAP,∴AE=PE,∵EA⊥AD,EP⊥PD,∴∠ADE=∠PDE,在△ADE和△PDE中,,∴△ADE≌△PDE,∴∠AED=∠PED,∵AE=PE,∴DE⊥AP,∴C正确,故C不符合题意;D、∵△APD是等边三角形,∴AP=DP,∠APD=60°,∴∠CPD=60°,∴∠APB=60°,∴∠BPE=∠APE=∠P AB=30°∴AE=PE设BE=a,在Rt△PBE中,BP=BE=a,PE=2a,∴AE=2a,∴CD=AB=BE+AE=3a,易证△APB≌△DPC,∴PB=PC,∴AD=BC=2BP=2a,在Rt△ADE中,根据勾股定理,得,DE==4a,∵BE+CD=a+3a=4a=DE,∴D正确,故D不符合题意;∴符合题意的只有B.故选:B.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)计算:4cos60°﹣+(3﹣π)0=1.【解答】解:原式=4×﹣2+1=2﹣2+1=1,故答案为:112.(5分)随着各地对房地产市场调控的深入,近来某市房价持续回落,某楼盘原价为每平方米12000元,第一次降价后,销售业绩没有预期回升,于是再次降价,比第一次多降了10%,两次降价后售价为每平方米8640元,设第一次降价百分率为x,则可列方程为:12000(1﹣x)(1﹣x﹣10%)=8640.【解答】解:设第一次降价百分率为x,根据题意得:12000(1﹣x)(1﹣x﹣10%)=8640;故答案为:12000(1﹣x)(1﹣x﹣10%)=8640.13.(5分)分式方程﹣1=的解是x=﹣5.【解答】解:去分母得:6﹣x2+9=﹣x2﹣3x,解得:x=﹣5,经检验x=﹣5是分式方程的解.故答案为:﹣514.(5分)如图,D为△ABC中边BC中点,E为CD上一点,将△ACE沿AE 折叠时C与D重合,F为AB上一点,FB=FC,FC与AD、AE分别交于P、Q点,下列结论①AE∥DF;②△APQ≌△DPF;③AF=DF;④.其中正确的有①②④.【解答】解:∵FB=FC,D为△ABC中边BC中点,∴DF⊥BC,∵将△ACE沿AE折叠时C与D重合,∴AE⊥BC,∴AE∥DF;故①正确;∵BD=CD,DE=CE,∴DE=CE=BD,∵DF∥AE,∴==,=,∴AE=DF,QE=DF,∴=3,∴QE=AQ,∴DF=AQ,在△APQ与△DPF中,解题的关键是灵活运用所学知识解决问题,,∴△APQ≌△DPF,故②正确;如图2中,当∠AFQ设钝角是,AQ>AF,即DF>AF,故③错误.连接DQ,易证四边形AFDQ是平行四边形,∴AF∥DQ,∴∠F AP=∠ADQ,∵∠ADC=∠ACD,∠QDC=∠QCE,∴∠ADQ=∠ACF=∠F AP,∵∠AFP=∠CF A,∴△AFP∽△CF A,可得AF2=FP•FC,时PF=PQ=a,则FQ=QC=2a,∴AF2=4a2,∴AF=2a,PC=3a,∴,故④正确,故答案为①②④.三、解答题15.(8分)求不等式组的解集,并把它们的解集在数轴上表示出来.【解答】解:解①得x<4,解②得x≥﹣2.则不等式组的解集是:﹣2≤x<4.16.(8分)从2开始,连续的偶数相加,它们和的情况如表:加数的个数n S12=1×222+4=6=2×332+4+6=15=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(1)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=n(n+1);(2)如下数表是由从1开始的连续自然数组成,观察规律:①第n行的第一个数可用含n的式子表示为:n2﹣n+1;②如果某行的第一个数为157,求其所在的行数.【解答】解:(1)2+4+6+8+…+2n=n•=n(n+1).故答案为:n(n+1).(2)①∵第一行的第一个数字1=12﹣0,第二行的第一个数字3=22﹣1,第三行的第一个数字7=32﹣2,第四行的第一个数字13=42﹣3,以此类推,第n行的第一个数字为n2﹣(n﹣1)=n2﹣n+1,故答案为:n2﹣n+1;②当n2﹣n+1=157时,解得n=13或﹣12(舍去),∴其所在的行数为13.四、解答题17.(8分)如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC绕点O按逆时针方向旋转90°后的△A2B2C2;(3)判断△A1B1C1和△A2B2C2是不是成轴对称?如果是,请在图中作出它们的对称轴.【解答】解:(1)如图,△A1B1C1即为所求作三角形;(2)如图,△A2B2C2即为所求作三角形;(3)如图,直线l即为△A1B1C1和△A2B2C2的对称轴.18.(8分)如图,四边形ABCD是某新建厂区示意图,∠A=75°,∠B=45°,BC⊥CD,AB=500米,AD=200米,现在要在厂区四周建围墙,求围墙的长度有多少米?【解答】解:如图,过点A作AE⊥BC于点E,过点D作DF⊥AE于点F,∵∠B=45°,∴△ABE是等腰直角三角形,∴AE=BE,∠BAE=∠B=45°.∵AB=500米,∴AE=BE=500×=500米.∵∠A=75°,∴∠DAF=75°﹣45°=30°.∵AD=200米,∴DF=AD=100米,AF=200×=100米.∵BC⊥CD,∴四边形CDFE是矩形,∴CD=EF=AE﹣AF=(500﹣100)米,CE=DF=100米,∴AB+BC+AD+CD=500+(500+100)+200+(500﹣100)=(1300+500﹣100)米.答:围墙的长度是(1300+500﹣100)米.19.(10分)某校组织学生参观航天展览,甲、乙、丙、丁四位同学随机分成两组乘车.(1)哪两位同学会被分到第一组,写出所有可能;(2)用列表法(或树状图法)求甲、乙分在同一组的概率.【解答】解:(1)所有可能的结果是:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁;(2)根据题意画树状图如下:∵共有12种等可能的结果,甲、乙分在同一组的有2种情况,∴甲、乙分在同一组的概率为.20.(10分)如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD =OD,若OB⊥AC于E点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.【解答】解:(1)A是PB的中点,理由:连接AD,∵CD是⊙O的直径,∴AD⊥AC,∵OB⊥AC,∴AD∥OB,∵PD=OD,∴P A=AB,∴A是PB的中点;(2)∵AD∥OB,∴△APD∽△BPO,∴,∵⊙O半径为8,∴OB=8,∴AD=4,。
2018年杭州市西湖区数学一模试卷解析
2021年西湖区初中数学一模测试解析考生须知:1 .本试卷总分值120分,测试时间100分钟;2 .做题前,在做题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号;3 .必须在做题纸的对应做题位置上做题,写在其他地方无效,做题方式详见做题纸上的说明;4 .如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑;5 .测试结束后,试题卷和做题纸一并上交.一,一一 " 2 b 4ac b2参考公式:二次函数y ax bx c a 0 图象的顶点坐标公式:------------------- , -----------2a 4a一、仔细选一选〔此题共有10个小题,每题3分,共30分〕下面每题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案21- - 3 =〔〕A. -3B. -9C. 3D. 9答案:B2.某企业今年1月份产值为X万元,2月份比1月份增加了10%, 3月份比2月份减少了20%,那么3月份的产值是〔〕万元A. 1+10% 1- 20% x B, 1+10%-20% xC. x 10% x 20% D, 1+10%-20%x答案:A3.如图,直线I1J2J3分别交直线L于点A, B, C,交直线I于点D, E ,AC=6, DF=9,贝U DE=( )A. 5B. 6答案:B F,且l1 // 12 " l3,右AB=4C. 7D. 84.如图是某市4月1日至7日一周内 日平均气温变化统计图〞,在这组数据中,众数和中位数分别是(答案:C6. m422.1 —,那么〔〕13A . -9 m 8 C . 7 m 8答案:C2-7 .二次函数 y x 2mx ,以下点可能成为函数顶点的是( )A. (-2, 4) B, (1, 2)C, (-1, -1)D. (2, -4)答案:A8 .在菱形ABCD 中,记/ABC= /a (0°,瓜<90),菱形的面积记作 S,菱形的周长记作 C,假设AD=2 ,那么 ( ) A. C 与/a 的大小有关B.当/a =45时,S= J2C.A, B, C, D 四个点可以在同一个圆上D.S 随/a 的增大而增大答案:D9 .对于二次函数y x 2 2m x 3m 3,以下说法:①图像过定点 3,-3 ;②函数图像与x 轴一定 2 4 有两个交点;③假设x 1时与x 2021时函数值相等,那么当x 2021时的函数值为-3;④当m 1时,直线y x 1与直线y x 3关于此二次函数对称轴对称.其中正确命题是() A.①② B.②③C.①②④D.①③④答案:C10 .如图,在AABC 中,DA=36°, AB =AC =2 ,将 ABC 绕点B 逆时针方向旋转得到 DBE ,使点E 在边AC 上,DE 交AB 于点F,那么 AFE 与 DBF 的面积之比等于〔〕*5-1 5-1A. 13, 13B.14, 14C.13, 14 答案:D5.如图,点A 是半径为2的..上一点, BC 是..的弦,ODLBC 于D,假设/BAC=6.,那么OD 的长是()A. 2C. 1B . -8 m 7 D . 8 m 9D.14, 132 . 43 - .5 3-5.2 . 4〔第10题图〕AE AE BC思路:面积比等于相似比的平方, ——————,顶角36的等腰三角形即黄金三角形,底边比腰BD AC AC 上.5 1 、一上心.为------- ,平方得答案为C选项.2答案:C 二、认真填一填〔此题有6个小题,每题4分,共24分〕要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案11 .正n边形的一个内角为135,那么n=.答案:81 2 212 .a ——,那么4ab 4ab 为.4b答案:413 .标号分别为1, 2, 3, 4L , n的n张标签〔除标号外其他完全相同〕,任摸一张,假设摸得奇数号标签的概率大于0.5,那么n可以是.答案:大于等于5的奇数即可,如5,7,9 L14 .在RtVABC中, ABC 90 , AB 2,BC 1,将VABC绕AB所在直线旋转一周,得到的几何体的侧面积为.答案:^52 215 . JE乂:关于x的函数y mx nx与y nx mx 〔其中mn 0〕叫做互为交换函数,右这两个函数图像的顶点关于x轴对称,那么m, n满足的关系式为 .答案:m n/m n 016 . VABC 与 VABD 不全等,且 AC AD 1, ABD ABC 45 , ACB 60,那么 CD . 答案:i 或J2思路:分类讨论,D 点在BC 边上时,利用特殊角度60度计算,易知VACD 为等边三角形;D 点在VABC 外部时,DB 垂直BC 利用勾股定理可以计算 CD 三、全面答一答〔此题有 7个小题,共66分〕解容许写出文字说明,证实过程或推演步骤;如果觉得有的题目有点困难,那么把自己能写出的解答写出 一局部也可以17 .〔本小题总分值6分〕仆—“2 x 2…x 3 ,求代数式1 ————2的值x x x代入x 3得 3 3 1原式 618 .〔本小题总分值8分〕如图BE 是VABC 的角平分线,延长 BE 至D ,使得BC CD . 〔1〕求证:VAEB:VCED ;〔2〕假设 AB 2,BC 4, AE 1,求 CE 长答案:(1) QBE 平分 ABC ABE CBE 又Q B DCBE CDE 那么 ABE CDE 又 AEB CEDVAEB:VCED (2)Q BC CD,BC 4 BC CD 4 又由 VAEB : VCED AB AE CD CE 2 1 4 CE CE 219 .(本小题总分值8分)从数-1, 0, 1, 2, 3中任取两个,其和的绝对值为 k (k 是自然数)的概率记作 P k (如:P 2是任取两个数,其和的绝对值为2的概率)(1)求k 的所有取值; (2)求 P3.【答案】20种;月二? 【解析】(1)列表得:一 x 2答案:原式= ----------x2x x 1-----------=x xx 2-10123 -11012 01123 10134 21235 32345由表可知一共有20种情况,k的所有值分别为:0, 1, 2, 3, 4, 5;(2)二•共有20种等可能的结果,其和的绝对值为3的有4种情况,20 .(本小题总分值10分)二次函数 y= (m + 1)x 2- 2(m + 1)x- m + 3.(1)求该二次函数的对称轴;(2)过动点C (0, n)作直线l ,y 轴,当直线l 与抛物线只有一个公共点时,求 n 关于m 的函数表达式; (3)假设对于每一个给定的 x 值,它所对应的函数值都不大于6,求整数m.【答案】(1)对称轴:直线 x 1; (2)n 2m 2; (3)m 2;(2)直线l 过点C(0, n)且垂直于y 轴 .•直线1的解析式为y n2由题息得 y (m 1)x 2(m 1)x m 3(m 1)(x 22x) m 3(m 1)(x 22x 1) 2m 2(m 1)(x 1)22m 2,二次函数顶点坐标为(1, 2m 2)•••直线1与抛物线只有一个公共点n 2m 2(3)由题意可知二次函数开口向下m 1 0 m 1由(2)问可知顶点坐标为(1, 2m 2)••• 2m 2 62m 4 m 2 2 m 1••• m 是整数m 2解.(1)对称轴为直线x2(m 1)2a 2(m 1)sin / PBC = PDBP3 _5 3.5 521.(本小题总分值10分)ABC 中,/A=90°, AB=6, AC=8,点P 在边AC 上,.P 与AB , AC 都相切.(1)求.P的半径;(2)求sin / PBC.【答案】(1) 3 (2)— 5【解析】(1)作PDLBC交BC于D,设圆P的半径为r••• AB=6 , AC=8 , ZA=90°BC=10•••圆P与AB、BC都相切• .PA=PD=r, BD=AB=6 , CD=4, PC=8-r••• PDXBC PD2+CD2=PC22 2(8 r)2 r2 161. r=3圆P的半径为3.••• BD=6 , PD=3, PDXBC・•.BP=3、. 522.(本小题总分值12分)函数y = x- m + 1和y2 = n(n1 0)的图象交于P,Q两点.x(1)假设y1的图像过(n, 0),且m + n=3,求丫2的函数表达式;(2)假设P,Q关于原点成中央对称.①求m的值;的取值范围②当x>2时,对于满足条件0<n<n0的一切n总有y1 > y2,求n01 c ,【答案】(1) y—;(2)①m 1;②0 n o 4;x【解析】解.(1)将点(n,0)带入y1得n m 1 0 ①m n 3②①+②得2n 1 3 n 11• ・y2 ・x(2)y1 x m 1① ny2 x.nx m 1 —x2x mx x n 0••• P,Q关于原点对称x1 x2m 1 0•1• m 1图1y x、,n 2n , x - , x n, x y X xn o 4••• 0 n0 423.〔本小题总分值12分〕ABD与GDF都是等腰直角三角形, BD与DF均为斜边〔BD<DF〕〔1〕如图1, B, D, F在同一直线上,过F作MFLGF于点F,取MF=AB ,连接AM交BF于点H,连接GA, GM①求证AH=HM ;②请判断GAM的形状,并给予证实;③请用等式表示线段AM,BD,DF的数量关系,并说明理由.〔2〕如图2, GDLBD,连结BF,取BF的中点H,连结AH并延长交DF于点M,请用等式直接写出线段AM,BD,DF的数量关系.【答案】〔1〕 4GAM是等腰直角三角形;AM2= BD2 + DF2〔2〕AM" = BD2| DF2-yflBD DF【解析】证实:〔1〕①.一△ ABD和ACDF都是等腰直角三角形,且MFXGF, MF=ABZB= ZDFG= Z HFM=45 , AB=AD=MF••• ZAHB= / MHFAABH MFH(AAS)AH=HM② : AD=MF , ZADG= / MFG=90 ,DG=GFZ^DG^A MFG(SAS)AG=GMZAGD= ZMGF••• ZDGM+ / MGF=90ZAGM= / DGM+ Z AGD=90・•.△GAM 是等腰直角三角形DAM 2 AG 2 GM 2 2AG 2, AG 2 AD 2 DG 2 2 2 2. AM 2 2AD 2 2DG 2 _ 2 _ ____ _222BD 2AD ,DF 2DG••• AM 2 BD 2 DF 2ZVIBD 和 AGOF 为等腰 R 电,GD_RD乙十 = 180"・. AB // MF ^ABH = ZAIFH••• H 为 BF 中点BH=FH ••• hARH WMFH (AAS)DM =(2)设 BD=m , DF=n ,6那么 AD = AB = —m在 RlLADM 中,4/ = + )0AM 2 = BD 2^DF 2-41BD DF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省杭州市西湖区2019届中考数学一模试卷(解析版)
一.选择题
1.﹣0.25的相反数是()
A. B.4 C.﹣4 D.﹣5
2.据我市统计局在网上发布的数据,2016年我市生产总值(GDP)突破千亿元大关,达到了1050亿元,将1050亿用科学记数法表示正确的是()
A.105×109
B.10.5×1010
C.1.05×1011
D.1050×108
3.下列运算正确的是()
A.a+a2=a3
B.(a2)3=a6
C.(x﹣y)2=x2﹣y2
D.a2a3=a6
4.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()
A.3,4
B.4,5
C.3,4,5
D.不存在
5.如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()
A.360°
B.260°
C.180°
D.140°
6.有五个相同的小正方体堆成的物体如图所示,它的主视图是()
A. B. C. D.
7.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()
A. B. C. D.。