高考数学复习 2-5
新高考数学一轮复习教师用书:第2章 5 第5讲 指数与指数函数
第5讲 指数与指数函数1.根式 (1)根式的概念①若x n =a,则x 叫做a 的n 次方根,其中n>1且n∈N *.n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n∈N *,n>1时,x =±n a ,当n 为偶数且n∈N *时.(2)根式的性质①(n a)n =a(n∈N *,且n>1). ②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a|=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a<0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mn n a m (a>0,m,n ∈N *,且n>1); ②负分数指数幂:a -m n =1a m n =1na m (a>0,m,n∈N *,且n>1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a>0,r,s ∈Q);②(a r )s =a rs(a>0,r,s ∈Q); ③(ab)r=a r b r(a>0,b>0,r ∈Q). 3.指数函数的图象及性质函数 y =a x(a>0,且a≠1)图象0<a<1a>1图象特征在x 轴上方,过定点(0,1)当x 逐渐增大时,图象逐渐下降当x 逐渐增大时,图象逐渐上升性质定义域 R 值域(0,+∞)单调性 减增函数值 变化 规律当x =0时,y =1当x<0时,y>1; 当x>0时,0<y<1当x<0时,0<y<1; 当x>0时,y>14.指数函数的变化特征在同一平面直角坐标系中,分别作出指数函数y =a x,y =b x,y =c x,y =d x(a >1,b >1,0<c <1,0<d <1)的图象,如图所示.作出直线x =1,分别与四个图象自上而下交于点A(1,a),B(1,b),C(1,c),D(1,d),得到底数的大小关系是:a >b >1>c >d >0.根据y 轴右侧的图象,也可以利用口诀:“底大图高”来记忆.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)n a n =(n a)n=a.( ) (2)(-1)24=(-1)12=-1.( ) (3)函数y =a -x是R 上的增函数.( )(4)函数y =ax2+1(a>1)的值域是(0,+∞).( ) (5)函数y =2x -1是指数函数.( )(6)若a m<a n(a>0,且a≠1),则m<n.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× [教材衍化]1.(必修1P59A 组T4改编)化简416x 8y 4(x<0,y<0)=________. 解析:因为x<0,y<0,所以416x 8y 4=(16x 8·y 4)14=(16)14·(x 8)14·(y 4)14=2x 2|y|=-2x 2y.答案:-2x 2y2.(必修1P55“思考”改编)函数y =2x与y =2-x的图象关于________对称.解析:作出y =2x与y =2-x=⎝ ⎛⎭⎪⎫12x的图象(图略),观察可知其关于y 轴对称. 答案:y 轴3.(必修1P56例6改编)已知函数f(x)=a x -2+2(a>0且a≠1)的图象恒过定点A,则A 的坐标为________.解析:令x -2=0,则x =2,f(2)=3,即A 的坐标为(2,3). 答案:(2,3) [易错纠偏](1)忽略n 的范围导致式子n a n(a∈R)化简出错; (2)不能正确理解指数函数的概念致错; (3)指数函数问题时刻注意底数的两种情况; (4)复合函数问题容易忽略指数函数的值域致错. 1.计算3(1+2)3+4(1-2)4=________.解析:3(1+2)3+4(1-2)4=(1+2)+(2-1)=2 2. 答案:2 22.若函数f(x)=(a 2-3)·a x为指数函数,则a =________. 解析:由题意知⎩⎪⎨⎪⎧0<a ,a ≠1,a 2-3=1,即a =2.答案:23.若函数f(x)=a x 在[-1,1]上的最大值为2,则a =________. 解析:当a>1时,a =2;当0<a<1时a -1=2, 即a =12.答案:2或124.函数y =21x -1的值域为________. 解析:因为1x -1≠0,所以21x -1>0且21x -1≠1. 答案:(0,1)∪(1,+∞)指数幂的运算化简下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·⎝⎛⎭⎪⎫-3a -12b -1÷⎝ ⎛⎭⎪⎫4a 23·b -312(a,b>0).【解】 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷⎝ ⎛⎭⎪⎫4a 23·b -312 =-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32=-54a -12·b -32=-54·1ab3=-5ab 4ab 2.指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.[提醒] 运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12. 解:(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b -32=85.指数函数的图象及应用(1)函数f(x)=21-x的大致图象为( )(2)函数f(x)=|a x+b|(a>0,a ≠1,b ∈R)的图象如图所示,则a +b 的取值范围是________.(3)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f(x)=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)因为根据图象得a>1,f(12)=0,b<0.所以a +b =0,所以a +b =a -a>1-1=0.(3)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2)(0,+∞) (3){0}∪[1,+∞)应用指数函数图象的4个技巧(1)画指数函数y =a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝ ⎛⎭⎪⎫-1,1a .(2)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除. (3)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(4)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.1.函数y =xax|x|(a>1)的图象大致是( )解析:选B.y =⎩⎪⎨⎪⎧a x,x>0,-a x ,x<0,因为a>1,依据指数函数的图象特征可知选B.2.若函数y =21-x+m 的图象不经过第一象限,则m 的取值范围为________.解析:y =⎝ ⎛⎭⎪⎫12x -1+m,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m≤-2.答案:(-∞,-2]指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.主要命题角度有:(1)比较指数式的大小; (2)解简单的指数方程或不等式; (3)复合函数的单调性; (4)函数的值域(最值). 角度一 比较指数式的大小设a =0.60.6,b =0.61.5,c =1.50.6,则a,b,c 的大小关系是( ) A .a<b<c B .a<c<b C .b<a<cD .b<c<a【解析】 因为函数y =0.6x是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b<a<1.因为函数y =1.5x在(0,+∞)上是增函数,0.6>0,所以1.50.6>1.50=1,即c>1.综上,b<a<c. 【答案】 C角度二 解简单的指数方程或不等式设函数f(x)=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x<0,x ,x ≥0 ,若f(a)<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】 当a<0时,不等式f(a)<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a>-3,此时-3<a<0;当a≥0时,不等式f(a)<1可化为a<1,所以0≤a<1.故a 的取值范围是(-3,1).故选C.【答案】 C角度三 复合函数的单调性(1)函数f(x)=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调减区间为________. (2)(2020·金华十校联考)若函数f(x)=2|x -a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m 的最小值等于________.【解析】 (1)设u =-x 2+2x +1,因为y =⎝ ⎛⎭⎪⎫12u在R 上为减函数, 所以函数f(x)=⎝ ⎛⎭⎪⎫12-x 2+2x +1的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], 所以f(x)的减区间为(-∞,1]. (2)因为f(x)=2|x -a|,所以f(x)的图象关于x =a 对称.又由f(1+x)=f(1-x),知f(x)的图象关于直线x =1对称,故a =1,且f(x)的增区间是[1,+∞),由函数f(x)在[m,+∞)上单调递增,知[m,+∞)⊆[1,+∞),所以m ≥1,故m 的最小值为1. 【答案】 (1)(-∞,1] (2)1 角度四 函数的值域(最值)如果函数y =a 2x+2a x-1(a>0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为( ) A.13 B .1 C .3D.13或3 【解析】 令a x=t,则y =a 2x+2a x-1=t 2+2t -1=(t +1)2-2.当a>1时,因为x∈[-1,1],所以t∈⎣⎢⎡⎦⎥⎤1a ,a , 又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a<1时,因为x∈[-1,1],所以t∈⎣⎢⎡⎦⎥⎤a ,1a , 又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤a ,1a 上单调递增,则y max =⎝ ⎛⎭⎪⎫1a +12-2=14,解得a =13(负值舍去). 综上知a =3或a =13.【答案】 D有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.[提醒] 在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.1.已知函数f(x)=a x+b(a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.解析:当a >1时,函数f(x)=a x+b 在[-1,0]上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a <1时,函数f(x)=a x+b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.答案:-322.已知函数f(x)=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫12x,a ≤x<0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.解析:当0≤x≤4时,f (x)∈[-8,1],当a≤x<0时,f(x)∈⎣⎢⎡⎭⎪⎫-⎝ ⎛⎭⎪⎫12a ,-1,所以⎣⎢⎡⎭⎪⎫-12a ,-1[-8,1],即-8≤-12a <-1,即-3≤a<0,所以实数a 的取值范围是[-3,0). 答案:[-3,0)[基础题组练]1.函数f(x)=1-e |x|的图象大致是( )解析:选A.将函数解析式与图象对比分析,因为函数f(x)=1-e |x|是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎫-23a -13b 23的结果为( )A .-2a3bB .-8a bC .-6a bD .-6ab解析:选C.原式=⎣⎢⎡⎦⎥⎤4÷⎝ ⎛⎭⎪⎫-23a 23-⎝ ⎛⎭⎪⎫-13b -13-23=-6ab -1=-6a b ,故选C.3.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1解析:选B.A 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73.B 中,因为y =0.6x在R 上是减函数,-1<2,所以0.6-1>0.62.C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小.因为y =1.25x在R 上是增函数,0.1<0.2,所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.4.(2020·宁波效实中学高三质检)若函数f(x)=a |2x -4|(a>0,a ≠1)满足f(1)=19,则f(x)的单调递减区间是 ( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:选B.由f(1)=19得a 2=19.又a>0,所以a =13,因此f(x)=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g(x)=|2x -4|在[2,+∞)上单调递增,所以f(x)的单调递减区间是[2,+∞).5.已知函数y =f(x)与y =F(x)的图象关于y 轴对称,当函数y =f(x)和y =F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫作函数y =f(x)的“不动区间”,若区间[1,2]为函数y =|2x-t|的“不动区间”,则实数t 的取值范围是( )A .(0,2]B.⎣⎢⎡⎭⎪⎫12,+∞C.⎣⎢⎡⎦⎥⎤12,2 D.⎣⎢⎡⎦⎥⎤12,2∪[)4,+∞ 解析:选C.因为函数y =f(x)与y =F(x)的图象关于y 轴对称,所以F(x)=f(-x)=|2-x-t|,因为区间[1,2]为函数f(x)=|2x-t|的“不动区间”,所以函数f(x)=|2x-t|和函数F(x)=|2-x-t|在[1,2]上单调性相同, 因为y =2x-t 和函数y =2-x-t 的单调性相反, 所以(2x-t)(2-x-t)≤0在[1,2]上恒成立, 即1-t(2x+2-x)+t 2≤0在[1,2]上恒成立, 即2-x≤t ≤2x 在[1,2]上恒成立, 即12≤t ≤2,故答案为C. 6.指数函数y =f(x)的图象经过点(m,3),则f(0)+f(-m)=________. 解析:设f(x)=a x(a >0且a≠1),所以f(0)=a 0=1. 且f(m)=a m=3.所以f(0)+f(-m)=1+a -m=1+1a m =43.答案:437.(2020·杭州中学高三月考)已知e x+x 3+x +1=0,1e3y -27y 3-3y +1=0,则ex +3y的值为________. 解析:因为e x+x 3+x +1=0,1e3y -27y 3-3y +1=0等价于e-3y +(-3y)3+(-3y)+1=0,所以x =-3y,即x +3y =0,所以ex +3y =e 0=1.答案:18.若函数f(x)=⎩⎪⎨⎪⎧a x,x>1,(2-3a )x +1,x ≤1是R 上的减函数,则实数a 的取值范围是________.解析:依题意,a 应满足⎩⎪⎨⎪⎧ 0<a<1,2-3a<0,(2-3a )×1+1≥a 1,解得23<a ≤34.答案:⎝ ⎛⎦⎥⎤23,349.当x∈(-∞,-1]时,不等式(m 2-m)·4x-2x<0恒成立,则实数m 的取值范围是________.解析:原不等式变形为m 2-m<⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x 在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2,当x∈(-∞,-1]时,m 2-m<⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m<2,解得-1<m<2. 答案:(-1,2)10.已知函数f(x)=⎝ ⎛⎭⎪⎫13ax 2-4x +3. (1)若a =-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a 的值.解:(1)当a =-1时,f(x)=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g(x)=-x 2-4x +3, 由于g(x)在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减, 所以f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f(x)的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g(x)=ax 2-4x +3,f(x)=⎝ ⎛⎭⎪⎫13g (x ),由于f(x)有最大值3,所以g(x)应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1, 即当f(x)有最大值3时,a 的值为1.11.已知函数f(x)=a |x +b|(a>0,a ≠1,b ∈R).(1)若f(x)为偶函数,求b 的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a,b 应满足的条件.解:(1)因为f(x)为偶函数,所以对任意的x∈R ,都有f(-x)=f(x),即a |x +b|=a |-x +b|,|x +b|=|-x +b|,解得b =0.(2)记h(x)=|x +b|=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x<-b. ①当a>1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是增函数,所以-b≤2,b ≥-2.②当0<a<1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是减函数,但h(x)在区间[-b,+∞)上是增函数,故不存在a,b 的值,使f(x)在区间[2,+∞)上是增函数.所以f(x)在区间[2,+∞)上是增函数时,a,b 应满足的条件为a>1且b≥-2.[综合题组练]1.已知函数f(x)=|2x-1|,a<b<c 且f(a)>f(c)>f(b),则下列结论中,一定成立的是( )A .a<0,b<0,c<0B .a<0,b ≥0,c>0C .2-a <2cD .2a +2c <2解析:选D.作出函数f(x)=|2x -1|的图象,如图,因为a<b<c 且f(a)>f(c)>f(b),结合图象知,0<f(a)<1,a<0,c>0,所以0<2a <1.所以f(a)=|2a -1|=1-2a <1,所以f(c)<1,所以0<c<1.所以1<2c <2,所以f(c)=|2c -1|=2c -1,又因为f(a)>f(c),所以1-2a >2c -1,所以2a +2c <2,故选D.2.(2020·衢州市高考模拟)已知函数f(x)=⎩⎪⎨⎪⎧(12)x ,x >0-x 2-4x ,x ≤0,则此函数图象上关于原点对称的点有( )A .0对B .1对C .2对D .3对 解析:选B.作出函数y =f(x)图象如图所示:再作出-y =f(-x),即y =x 2-4x,恰好与函数图象位于y 轴左侧部分(对数函数的图象)关于原点对称,记为曲线C,发现y =⎝ ⎛⎭⎪⎫12x与曲线C 有且仅有一个交点, 因此满足条件的对称点只有一对,图中的A 、B 就是符合题意的点.故选B.3.(2020·杭州模拟)已知函数y =a x +b(a>0,且a≠1,b>0)的图象经过点P(1,3),如图所示,则4a -1+1b的最小值为________,此时a,b 的值分别为________. 解析:由函数y =a x +b(a>0且a≠1,b>0)的图象经过点P(1,3),得a +b =3,所以a -12+b 2=1,又a>1,则4a -1+1b =⎝ ⎛⎭⎪⎫4a -1+1b ⎝ ⎛⎭⎪⎫a -12+b 2=2+12+2b a -1+a -12b ≥52+2 2b a -1·a -12b =92,当且仅当2b a -1=a -12b ,即a =73,b =23时取等号,所以4a -1+1b 的最小值为92. 答案:92 73,23 4.(2020·绍兴一中高三期中)已知函数f(x)=e |x|,将函数f(x)的图象向右平移3个单位后,再向上平移2个单位,得到函数g(x)的图象,函数h(x)=⎩⎪⎨⎪⎧e (x -1)+2,x ≤5,4e 6-x +2,x>5,若对于任意的x∈[3,λ](λ>3),都有h(x)≥g(x),则实数λ的最大值为________.解析:依题意,g(x)=f(x -3)+2=e |x -3|+2,在同一坐标系中分别作出g(x),h(x)的图象如图所示,观察可得,要使得h(x)≥g(x),则有4e 6-x +2≥e (x -3)+2,故4≥e 2x -9,解得2x -9≤ln 4,故x≤ln 2+92,实数λ的最大值为ln 2+92. 答案:ln 2+925.已知函数f(x)=2a·4x -2x-1.(1)当a =1时,求函数f(x)在x ∈[-3,0]上的值域;(2)若关于x 的方程f(x)=0有解,求a 的取值范围.解:(1)当a =1时,f(x)=2·4x -2x -1=2(2x )2-2x -1, 令t =2x ,x ∈[-3,0],则t∈⎣⎢⎡⎦⎥⎤18,1. 故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1, 故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a(2x )2-2x-1=0有解,设2x =m>0,等价于方程2am 2-m -1=0在(0,+∞)上有解,记g(m)=2am 2-m -1,当a =0时,解为m =-1<0,不成立.当a<0时,开口向下,对称轴m =14a<0, 过点(0,-1),不成立.当a>0时,开口向上,对称轴m =14a>0,过点(0,-1),必有一个根为正,综上得a>0.6.(2020·宁波效实中学模拟)已知函数f(x)=⎝ ⎛⎭⎪⎫13x,x ∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).(1)求h(a);(2)是否存在实数m,n 同时满足下列条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n 2,m 2]?若存在,求出m,n 的值;若不存在,说明理由. 解:(1)因为x∈[-1,1], 所以f(x)=⎝ ⎛⎭⎪⎫13x ∈⎝ ⎛⎭⎪⎫13,3, 设t =⎝ ⎛⎭⎪⎫13x∈⎝ ⎛⎭⎪⎫13,3. 则y =φ(t)=t 2-2at +3=(t -a)2+3-a 2.当a<13时,y min =h(a)=φ⎝ ⎛⎭⎪⎫13=289-2a 3; 当13≤a ≤3时,y min =h(a)=φ(a)=3-a 2; 当a>3时,y min =h(a)=φ(3)=12-6a. 所以h(a)=⎩⎪⎨⎪⎧289-2a 3,a<13,3-a 2,13≤a ≤3,12-6a ,a>3. (2)假设存在m,n 满足题意.因为m>n>3,h(a)=12-6a 在(3,+∞)上是减函数,又因为h(a)的定义域为[n,m],值域为[n 2,m 2],所以⎩⎪⎨⎪⎧12-6m =n 2,12-6n =m 2,两式相减得6(m -n)=(m -n)(m +n),即m +n =6,与m>n>3矛盾, 所以满足题意的m,n 不存在.。
新高考数学复习考点知识讲解2---排列与组合
【自主解答】(1)法一: = = = .
法二: = = = = .
(2)∵A -A = -
= ·
= ·
=m·
=mA ,
∴A -A =mA .
给出下列四个关系式:
① ② ③ ④
其中正确的个数为()
故从8个顶点中任取三个均可构成一个三角形共有 个三角形,
从中任选两个,共有 种情况,
因为平行六面体有六个面,六个对角面,
从8个顶点中4点共面共有12种情况,
每个面的四个顶点共确定6个不同的三角形,
故任取出2个三角形,则这2个三角形不共面共有1540-12×6=1468种,
故选:B.
8、5个男同学和4个女同学站成一排
(2)由题意作树形图,如图.
故所有的排列为:abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb,共有24个
题型二排列公式计算
例2 (1)计算: ;(2)证明:A -A =mA .
(1)4个女同学必须站在一起,有多少种不同的排法?
(2)任何两个女同学彼此不相邻,有多少种不同的排法?
(3)其中甲、乙两同学之间必须有3人,有多少种不同的排法?
(4)男生和女生相间排列方法有多少种?
【答案】(1) ;(2) ;(3) ;(4) .
【分析】
(1)捆绑法求解即可;
(2)插空法求解即可;
(3)特殊位置法求解即可;
,D正确.
故选:BCD.
2023年高考数学总复习第二章 函数概念与基本初等函数第5节:指数与指数函数(学生版)
2023年高考数学总复习第二章函数概念与基本初等函数第5节指数与指数函数考试要求1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,12,13的指数函数的图像;4.体会指数函数是一类重要的函数模型.1.根式的概念及性质(1)概念:式子na 叫作根式,其中n 叫作根指数,a 叫作被开方数.(2)性质:(na )n =a (a 使na 有意义);当n 为奇数时,na n =a ,当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N +,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.3.指数幂的运算性质实数指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈R .4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫作指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.(2)指数函数的图像与性质a >10<a <1图像定义域R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1;当x <0时,0<y <1当x <0时,y >1;当x >0时,0<y <1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数1.画指数函数y =a x (a >0,且a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),12.指数函数y =a x (a >0,且a ≠1)的图像和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究.3.在第一象限内,指数函数y =a x (a >0,且a ≠1)的图像越高,底数越大.1.思考辨析(在括号内打“√”或“×”)(1)4(-4)4=-4.()(2)分数指数幂a mn 可以理解为mn 个a 相乘.()(3)函数y =2x -1是指数函数.()(4)函数y =a x2+1(a >1)的值域是(0,+∞).()2.(易错题)若函数f (x )=(a 2-3)·a x 为指数函数,则a =________.3.(易错题)函数y =21x -1的值域是________.4.函数f (x )=a x -1+2(a >0且a ≠1)的图像恒过定点________.5.(2021·贵阳一中月考)3213-76+814×42--2323________.6.已知a 35-13,b 35-14,c =3234,则a ,b ,c 的大小关系是________.考点一指数幂的运算1.计算:823--780+4(3-π)4+[(-2)6]12=________.2.[(0.06415)-2.5]23-3338-π0=________.3.(2021·沧州七校联考1412·(4ab -1)3(0.1)-1·(a 3·b -3)12(a >0,b >0)=________.4.已知f (x )=3x +3-x ,f (b )=4,则f (2b )=________.考点二指数函数的图像及应用例1(1)已知实数a ,b 满足等式2022a =2023b ,下列等式一定不成立的是()A.a =b =0B.a <b <0C.0<a <bD.0<b <a(2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.训练1(1)函数f (x )=a x -b 的图像如图所示,其中a ,b 为常数,则下列结论正确的是()A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0(2)如果函数y =|3x -1|+m 的图像不经过第二象限,则实数m 的取值范围是________.考点三解决与指数函数性质有关的问题角度1比较指数式的大小例2(1)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是() A.a<b<c B.a<c<bC.b<a<cD.b<c<a(2)若e a+πb≥e-b+π-a,下列结论一定成立的是()A.a+b≤0B.a-b≥0C.a-b≤0D.a+b≥0角度2解简单的指数方程或不等式例3(1)已知实数a≠1,函数f(x)4x,x≥0,2a-x,x<0,若f(1-a)=f(a-1),则a的值为________.(2)若2x2+114x-2,则函数y=2x的值域是()A.18,2 B.18,2C.-∞,18 D.[2,+∞)角度3指数函数性质的综合应用例4(1)不等式4x-2x+1+a>0,对任意x∈R都成立,则实数a的取值范围是________.(2)已知定义域为R的函数f(x)=-12+12x+1,则关于t的不等式f(t2-2t)+f(2t2-1)<0的解集为________.训练2(1)(2021·郑州调研)已知函数f(x)=4x-12x,a=f(20.3),b=f(0.20.3),c=f(log0.32),则a,b,c的大小关系为()A.c<b<aB.b<a<cC.b<c<aD.c<a<b(2)若函数f (x )2+2x +3,19,则f (x )的单调递增区间是______.(3)函数y +1在区间[-3,2]上的值域是________.1.若函数f (x )=a x (a >0,且a ≠1)f (-1)=()A.1B.2C.3D.32.(2021·成都诊断)不论a 为何值,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是()113.(2022·哈尔滨质检)函数y =a x -1a(a >0,且a ≠1)的图像可能是()4.(2020·天津卷)设a =30.7,b 0.8,c =log 0.70.8,则a ,b ,c 的大小关系为()A.a <b <cB.b <a <cC.b <c <aD.c <a <b5.(2021·衡水中学检测)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是()A.(-2,1)B.(-4,3)C.(-3,4)D.(-1,2)6.(2020·新高考山东卷)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天7.化简:(a23·b-1)-12·a-12·b136a·b5(a>0,b>0)=________.8.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是____________.9.已知函数f(x),a≤x<0,x2+2x,0≤x≤4的值域是[-8,1],则实数a的取值范围是________.10.已知定义域为R的函数f(x)=-2x+b2x+1+2为奇函数.(1)求b的值;(2)任意t∈R,f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.11.已知函数f(x)=4x+m2x是奇函数.(1)求实数m的值;(2)设g(x)=2x+1-a,若函数f(x)与g(x)的图像有公共点,求实数a的取值范围.12.若关于x的方程|a x-1|=2a(a>0,且a≠1)有两个不相等的实根,则a的取值范围是()A.0,12(1,+∞) B.0,12C.12,1 D.(1,+∞)13.(2022·邯郸模拟)设f(x)|2x-1|,x≤2,-x+5,x>2,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)14.已知定义在R上的函数f(x)=2x-12|x|.(1)若f(x)=32,求x的值;(2)若2t f(2t)+mf(t)≥0对任意t∈[1,2]恒成立,求实数m的取值范围.。
高考数学一轮复习第二章函数5对数与对数函数课件新人教A版22
则 logax2=2logax1,∴x2=12 ,
又 2logax2=logax1+3,∴2loga12 =logax1+3,∴x1=a,x2=a2.
∵四边形ABCD为正方形,∴|AB|=|BC|,
即x2-x1=(logax1+3)-2logax1,
∴a2-a=2,解得a=2或a=-1(舍去).
2
3
2 lg 2
3
2
=100lg 3-lg 2=100lg =(10 ) =102lg =10
lg
3 2
2
=
4
(2)原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg
2+2lg 5=2(lg 2+lg 5)=2.
3
(3)∵f(x)=logax,∴f(4t)-f(t)=loga4t-logat=loga4=2loga2=3,∴loga2=2,
的底数.
故0<c<d<1<a<b,即在第一象限内从左到右底数逐渐增大.
-8知识梳理
双基自测
1
2
3
4
5
5.反函数
y=logax
指数函数y=ax(a>0,且a≠1)与对数函数
(a>0,且
y=x
a≠1)互为反函数,它们的图象关于直线
对称.
-9知识梳理
1
双基自测
2
3
4
5
6
1.下列结论正确的打“√”,错误的打“×”.
2
故选 B.
赢在微点高考二轮数学·理科复习课件2-5-1
2.(2018·茂名五大联盟学校联考)甲,乙两组数的数据如茎叶图所示,则 甲、乙的平均数、方差、极差及中位数相同的是( )
A.极差 C.平均数
B.方差 D.中位数
第26页
返回导航
赢在微点 无微不至
考前顶层设计·数学理·教案
解析 由题中茎叶图中数据的分布,可知方差不同,极差不同,甲的中 位数为16+2 21=18.5,乙的中位数为14+2 18=16, x 甲=5+16+12+625+21+37=538,x 乙=1+6+14+618+38+39=538,所以 甲、乙的平均数相同。故选 C。
答案 A
第20页
返回导航
赢在微点 无微不至
考前顶层设计·数学理·教案
微考向 2:用样本的数字特征估计总体 【例 3】 某班男女生各 10 名同学最近一周平均每天的锻炼时间(单 位:分钟)用茎叶图记录如下:
假设每名同学最近一周平均每天的锻炼时间是互相独立的。 ①男生每天锻炼的时间差别小,女生每天锻炼的时间差别大; ②从平均值分析,男生每天锻炼的时间比女生多; ③男生平均每天锻炼时间的标准差大于女生平均每天锻炼时间的标准 差;
(2)在系统抽样的过程中,要注意分段间隔,需要抽取 n 个个体,样本 就需要分成 n 个组,则分段间隔即为Nn(N 为样本容量),首先确定在第一 组中抽取的个体的号码数,再从后面的每组中按规则抽取每个个体。
第8页
返回导航
赢在微点 无微不至
考前顶层设计·数学理·教案
变|式|训|练
1.某班有学生 60 人,将这 60 名学生随机编号为 1~60 号,用系统抽
第16页
返回导航
赢在微点 无微不至
考前顶层设计·数学理·教案
变|式|训|练 1.(2018·南宁摸底联考)已知某地区中小学生人数和近视情况分别如图① 和图②所示。为了了解该地区中小学生的近视形成原因,用分层抽样的方法 抽取 2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )
2025高考数学一轮复习-第2讲-充分条件与必要条件-专项训练【含解析】
2025高考数学一轮复习-第2讲-充分条件与必要条件-专项训练【原卷版】时间:45分钟一、选择题1.钱大姐常说“好货不便宜”,她这句话的意思是“好货”是“不便宜”的()A .充分条件B .必要条件C .无法判断D .既不充分又不必要条件2.“x =3”是“x 2=9”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.使x >3成立的一个充分条件是()A .x >4B .x >0C .x >2D .x <24.设集合A ={1,a 2,-2},B ={2,4},则“a =2”是“A ∩B ={4}”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.a <0,b <0的一个必要条件为()A.a b >1 B.ab <-1C .a +b <0D .a -b >06.已知a ,b ∈R ,则ab >0是b -a a >b -ab 的()A .无法判断B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件7.任意实数a ,b ,c ,在下列命题中,是真命题的为()A .“ac >bc ”是“a >b ”的必要条件B .“ac =bc ”是“a =b ”的必要条件C .“ac >bc ”是“a >b ”的充分条件D .“ac =bc ”是“a =b ”的充分条件8.下面四个条件中,使a >b 成立的充分不必要的条件是()A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3二、填空题9.“a 和b 都是偶数”是“a +b 是偶数”的条件.(填“充分不必要”“必要不充分”或“充要”)10.“x >3”是“x <-2或x >2”的条件.(填“充分不必要”“必要不充分”或“充要”)三、解答题11.判断下列各项中,p 是否是q 的必要条件,并说明原因.(1)p :数a 能被6整除,q :数a 能被3整除;(2)p :x >1,q :x >1或x <-1;(3)p :△ABC 有两个角相等,q :△ABC 是正三角形.12.设p :实数x 满足a <x <4a (a >0),q :实数x 满足2<x ≤5.若q 是p 的充分条件,求实数a 的取值范围.13.设A ,B ,C 三个集合,则A B 是A (B ∪C )的()A .充分不必要条件B .必要不充分条件C .无法判断D .既不充分也不必要条件14.(多选题)给出四个条件:①xt 2>yt 2;②xt >yt ;③x 2>y 2;④0<1x <1y .其中能成为x >y 的充分条件的有()A .①B .②C .③D .④15.若“a ≥b ⇒c >d ”和“a <b ⇒e ≤f ”都是真命题,则“c ≤d ”是“e ≤f ”的条件(填“充分”或“必要”).16.已知p :-1<x <3,若-a <x -1<a 是p 的一个必要条件,求使a >b 恒成立的实数b 的取值范围.2025高考数学一轮复习-第2讲-充分条件与必要条件-专项训练【解析版】时间:45分钟一、选择题1.钱大姐常说“好货不便宜”,她这句话的意思是“好货”是“不便宜”的(A)A.充分条件B.必要条件C.无法判断D.既不充分又不必要条件解析:由题意可知,好货⇒不便宜,故选A.2.“x=3”是“x2=9”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当x=3时,有x2=9.当x2=9时,x=3或x=-3.故“x=3”是“x2=9”的充分不必要条件.3.使x>3成立的一个充分条件是(A)A.x>4B.x>0C.x>2D.x<2解析:∵x>4⇒x>3,∴x>4是x>3成立的一个充分条件.4.设集合A={1,a2,-2},B={2,4},则“a=2”是“A∩B={4}”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=2时,A={1,4,-2},A∩B={4}.当A∩B={4}时,a 可以为-2,故不能推出a =2.由此可知“a =2”是“A ∩B ={4}”的充分不必要条件.5.a <0,b <0的一个必要条件为(C )A.a b >1 B.ab <-1C .a +b <0D .a -b >0解析:a <0,b <0⇒a +b <0,故选C.6.已知a ,b ∈R ,则ab >0是b -a a >b -ab 的(B )A .无法判断B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件解析:本题考查充分条件与必要条件、不等式的性质.因为b -aa -b -a b =(a -b )2ab ,当ab >0,且a =b 时,b -a a -b -a b =0;当(a -b )2ab >0时,ab >0,且a ≠b ,所以ab >0是b -a a >b -ab 的必要不充分条件,故选B.7.任意实数a ,b ,c ,在下列命题中,是真命题的为(B )A .“ac >bc ”是“a >b ”的必要条件B .“ac =bc ”是“a =b ”的必要条件C .“ac >bc ”是“a >b ”的充分条件D .“ac =bc ”是“a =b ”的充分条件解析:>bc ,>0⇒a >b >bc ,<0⇒a <b ,∴ac >bc ⇒/a >b ,而a >b ⇒/ac >bc ,∴“ac >bc ”既不是“a >b ”的充分条件,也不是其必要条件,故A ,C 错误.又=bc ,≠0⇒/a =b =bc ,=0⇒a =b ,∴由ac =bc ⇒/a =b ,而由a =b ⇒ac =bc ,∴“ac =bc ”是“a =b ”的必要条件.故选B.8.下面四个条件中,使a>b成立的充分不必要的条件是(A) A.a>b+1B.a>b-1C.a2>b2D.a3>b3解析:要求使a>b成立的充分条件,必须满足由选项推出a>b.A 中,a>b+1能使a>b成立,故A正确.B中,a>b-1时,a>b不一定成立,故B错误.C中,a2>b2时,a>b也不一定成立,因为a,b 不一定均为正值,所以C错误.D中,a3>b3是a>b成立的充要条件,故D错误.二、填空题9.“a和b都是偶数”是“a+b是偶数”的充分不必要条件.(填“充分不必要”“必要不充分”或“充要”)解析:当a+b为偶数时,a,b可以都为奇数.10.“x>3”是“x<-2或x>2”的充分不必要条件.(填“充分不必要”“必要不充分”或“充要”)解析:令集合A={x|x>3},B={x|x<-2或x>2},∵A B,∴x>3是x<-2或x>2的充分不必要条件.三、解答题11.判断下列各项中,p是否是q的必要条件,并说明原因.(1)p:数a能被6整除,q:数a能被3整除;(2)p:x>1,q:x>1或x<-1;(3)p:△ABC有两个角相等,q:△ABC是正三角形.解:(1)数a能被3整除时,不一定能被6整除,即q⇒/p,∴p 不是q的必要条件.(2)∵x>1或x<-1⇒/x>1,∴q⇒/p.∴p不是q的必要条件.(3)∵正三角形三个角都相等,故当△ABC为正三角形时,必有两个角相等,即q⇒p,∴p是q的必要条件.12.设p:实数x满足a<x<4a(a>0),q:实数x满足2<x≤5.若q是p的充分条件,求实数a的取值范围.解:因为q是p的充分条件,所以q对应的集合是p对应集合的子集,所以{x|2<x≤5}⊆{x|a<x<4a},≤2,a>5,≤2,>54,得54<a≤2,即实数a的取值范围是54<a≤2.13.设A,B,C三个集合,则A B是A(B∪C)的(A)A.充分不必要条件B.必要不充分条件C.无法判断D.既不充分也不必要条件解析:A B⇒A(B∪C),但A(B∪C)⇒A B,例如A=Z,B =N,C=R,所以A B是A(B∪C)的充分不必要条件,故选A.14.(多选题)给出四个条件:①xt2>yt2;②xt>yt;③x2>y2;④0<1x<1y.其中能成为x>y的充分条件的有(AD)A.①B.②C.③D.④解析:①由xt2>yt2可知t2>0,所以x>y,故xt2>yt2⇒x>y;②当t>0时,x>y,当t<0时,x<y,故xt>yt⇒/x>y;③由x2>y2,得|x|>|y|,故x2>y2⇒x>y;④由0<1x<1y⇒x>y.故选AD.15.若“a≥b⇒c>d”和“a<b⇒e≤f”都是真命题,则“c≤d”是“e≤f”的充分条件(填“充分”或“必要”).解析:由题意知a≥b⇒c>d,类比集合中由A⊆B⇒∁U B⊆∁U A,利用补集思想可推知c≤d⇒a<b,又有a<b⇒e≤f,故c≤d⇒e≤f,故“c≤d”是“e≤f”的充分条件.16.已知p:-1<x<3,若-a<x-1<a是p的一个必要条件,求使a>b恒成立的实数b的取值范围.解:因为-a<x-1<a是p:-1<x<3的一个必要条件,且-a<x -1<a⇔1-a<x<1+a(a>0),所以{x|-1<x<3}⊆{x|1-a<x<1+a,a>0},-a≤-1,+a≥3,>0.解得a≥2,则使a>b恒成立的实数b的取值范围是{b|b<2}.。
2024年高考数学复习培优讲义专题2-指对同构(朗博同构)(含解析)
题1-2 指对同构(朗博同构)【常见同构形式】(1)乘积模型:ln ln ()ln ln ln ()ln ln ln ln(ln )()ln a b x aa a aeb e f x xe ae b b e e b b f x x x a a b b f x x x ⎧<⋅⇒=⎪<⇒<⇒=⎨⎪+<+⇒=+⎩(2)商式模型:ln ()ln ln ln ()ln ln ln ln ln(ln )()ln a aa ab x e b xf x e b x e b e e e f x a b a b x a a b b f x x x ⎧<⇒=⎪⎪⎪<⇒<⇒=⎨⎪−<−⇒=−⎪⎪⎩(3)和差模型:ln ln ln ()ln ln ln ln ()ln a a aaa b xe e b bf x x xe a b b e e e bf x e x ⎧±<±⇒=±±<±⇒⎨±<±⇒=±⎩【六大超越函数图像】(6)2020新高考1卷21(2)1.已知函数1()ln x f x ae x lna −=−+,若f (x )≥1,求a 的取值范围.2022新高考1卷第22题2.已知函数()x f x e x =−和()ln g x x x =−,证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2022全国甲卷(理)21题3.已知函数()ln xf x x a xx e −=+−.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.2023新高考1卷T19(2) 同构+切线放缩或2次求导4.已知函数()()x f x a e a x =+−,证明:当a >0时,3()2ln 2f x a >+.2022全国乙卷(理)16题5.已知1x x =和2x x =分别是函数2()2e x f x a x =−(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a的取值范围是 .题型一 一元同构2023深圳高二下期末·21(2)1.已知2()()x f x axe a R =∈,若关于x 的()2ln 0f x x x −−≥恒成立,求实数a 的取值范围.重点题型·归类精讲2.若关于x 的不等式ln ln 0e xx a a xx+−>对()0,1x ∀∈恒成立,则实数a 的取值范围为( ) A .1,e ⎛⎤−∞ ⎥⎝⎦B .1,e ∞⎡⎫+⎪⎢⎣⎭C .1,1e ⎡⎫⎪⎢⎣⎭D .10,e ⎛⎤ ⎥⎝⎦宁波九校高三上期末·22(2) 3.已知函数1()ln 2f x x x x x ⎛⎫=+− ⎪⎝⎭,e 是自然对数的底数.若不等式2()(1)4axf x a e x ≤+−对0x ∀>恒成立,求实数a 的取值范围.江苏盐城2023届高三5月三模·22 4.已知函数()(ln ).x a f x e e a x =−+ (1)当a =1时,求()f x 的单调递增区间; (2)()0f x ≥恒成立,求a 的取值范围.湖南九校联盟第二次联考·16 5.已知不等式))(1ln (0xa x e a a e −⎡⎤≥>⎢⎥⎣⎦恒成立,则实数a 的最大值为_______湖南省2023届高三下3月考试·16 6.已知e 是自然对数的底数.若()0x ∀∈+∞,,e ln mx m x ≥成立,则实数m 的最小值是 .7.若不等式0x ae lnx lna −+恒成立,则a 的取值范围是( )A .1[,)e +∞B .2[,)e +∞C .[,)2e+∞D .[e ,)+∞湖北鄂东南联考 ·88.已知函数()ln x f x x x xe k −=−−−恒有零点,则实数k 的取值范围是( )A .(],1−∞−B .1,1e⎛⎤−∞−− ⎥⎝⎦C .11,1e⎡⎤−−−⎢⎥⎣⎦D .11,0e⎡⎫−−⎪⎢⎣⎭福建龙岩九校联考·16 9.已知函数mx x m x f −+=)1ln()(,若不等式x e x x f −+>1)(在()+∞,0上恒成立,则实数m 的取值范围是____________ .湖南常德3月模拟10.已知不等式ln()x x a e a +≤−对[1,)x ∀∈+∞恒成立,则a 的取值范围为 .浙江省衢州、丽水、湖州三地市2023高三下学期4月教学质量检测·8 11.对任意的实数0x >,不等式22ln ln 0x ae x a −+≥恒成立,则实数a 的最小值为( )e2eC.2eD.12e2022湖北四地七校高二下期中·712.已知实数a >0,不等式()0x e aln ax ->恒成立,则a 的取值范围是( ) A .1<<a e eB .0<a <1C .0<a <eD .a >e湖南郴州高二下期末·16 13.函数.若对任意,都有,则实数m 的取值范围为_________.2023湖南邵阳二模·8 14.若不等式()1e 1ln 10txt x x ⎛⎫−−−≥ ⎪⎝⎭对任意[)2e 1,x ∞∈++恒成立,则正实数t 的取值范围是( )A. ln2,2e 1∞⎡⎫+⎪⎢+⎣⎭B. ln21,2e 1∞+⎡⎫+⎪⎢+⎣⎭C. ln210,2e 1+⎛⎫ ⎪+⎝⎭ D. ln2ln21,2e 12e 1+⎡⎤⎢⎥++⎣⎦15.已知函数ln 0x f xe a ax a a a ,若关于x 的不等式0f x恒成立,则实数a 的取值范围为( ) A .],0(eB .],0(2eC .],1[2eD .),1(2e()()()e1ln R mxf x m x x m =+−−∈0x >()0f x ≥16.关于x 的不等式ln 1axx e xe a x x−≤−−恒成立,则a 的取值范围为 .2022衡阳市八中高二期末·16 17.已知函数1()(0)a x f x x alnx x a e=++−<,若()0f x 在[2x ∈,)+∞上恒成立,则实数a 的取值范围为 . 2023届郴州三模·1618.设实数0m >,若对任意的21x e ∞⎛⎫∈+ ⎪⎝⎭,,不等式ln 1mx mx x e e m m mx−≥−恒成立,则实数m 的取值范围为 .湖北省部分学校高三下5月适应性考试·14 19.对于任意实数0x >,不等式22e ln ln 0x a x a −+≥恒成立,则a 取值范围是__________.2023·广东惠州·一模T22(2)20.已知函数()2ln f x x a x =−,若函数()(2)e x f x a x x ≥+−恒成立,求实数a 的取值范围.2023·广东深圳·南山区高三上期末联考·22 21.已知定义在()0,∞+上的函数()e ax f x x =. (1)若R a ∈,讨论()f x 的单调性;(2)若0a >,且当()0,x ∈+∞时,不等式2e ln aax xx ax ⎛⎫≥⎪⎝⎭恒成立,求实数a 的取值范围.2023·广东汕头·一模T2222.已知函数()e ln(2)ln 2x f x a x a =−++−.(1)若函数()f x 在2023x =处取得极值,求a 的值及函数的单调区间; (2)若函数()f x 有两个零点,求a 的取值范围.的题型二 二元同构2022届山东聊城一模·823.已知正数x ,y 满足ylnx +ylny =e x ,则xy ﹣2x 的最小值为( ) A .1122n B .222ln ﹣ C .1122n −D .222ln +24.实数x ,y 满足ln ln xe y x y y =+,则2ln xe y x−的最小值为________2022届T8第一次联考·825.设a ,b 都为正数,e 为自然对数的底数,若1a ae b blnb ++<,则( ) A .ab e >B .1a b e +>C .ab e <D .1a b e +<2023茂名市高三一模·1226.(多选)e 是自然对数的底数,,m n ∈R ,已知e ln ln m m n n n m +>+,则下列结论一定正确的是( ) A .若0m >,则0m n −> B .若0m >,则e 0m n −> C .若0m <,则ln 0m n +< D .若0m <,则e 2m n +>河北省衡水中学2023届高三下学期第三次综合素养评价·16 27.若正实数a ,b 满足()1ln ln e a a b a a b −−+≥,则1ab的最小值为 .28.设11110e ,11ln1.111a b ==,则( )A .1ab a <<B .1ab b <<C .1a ab <<D .1b ab <<题型三 局部同构华大新高考五月押题卷·1229.(多选)已知0λ>,若关于x 的方程()1ln 0x e x x xλλλ−−+=存在正零点,则实数λ的值可能为A .1eB .12C .eD .230.已知函数1ln )(−−=x ae x f x ,若0)(≥x f 恒成立,则实数a 的取值范围是 .2023·广东·海珠区高三2月联考·22 31.已知函数()()1e 02x f x ax a =−≠. (1)讨论函数()f x 的单调性; (2)已知函数()()ln xg x f x x=−有两个零点,求实数a 的取值范围.2023·广东3月·中学生标准学术能力诊断测试联考模拟预测T22(2) 部分同构+放缩 32.设()()e xxf x x =∈R ,若(e )()(ln 1)x f x k x ⋅≤⋅+在()1,x ∈+∞上恒成立,求k 的取值范围.2023·广东·深圳中学5月适应性测试T22(1) 部分同构33.已知函数()e ln xf x ax a x x =−−,若不等式()0f x <恒成立,求实数a 的取值范围.题型四 同构+切线放缩2023佛山一模T1134.(多选)若正实数x ,y 满足()1e 1ln x x y y −=+,则下列不等式中可能成立的是( )A .1x y <<B .1y x <<C .1x y <<D .1y x <<巴蜀中学2023届高考适应性月考卷(八)T8——局部构造+切线放缩35.已知函数22ln 1()e x x f x x a x+=−−,当()0,x ∈+∞时,()0f x ≥恒成立,则实数a 的取值范围是( ) A .(2,e 1⎤−∞−⎦B .(],e −∞C .(],2−∞D .(],1−∞2023届湖南四大名校5月“一起考”T736.若当π0,2x ⎛⎫∈ ⎪⎝⎭时,关于x 的不等式2e cos cos lncos 1x x x x x ax −++≥恒成立,则满足条件的a 的最小整数为( ) A. 1 B. 2 C. 3 D. 437.(2023·广东珠海·高三联考模拟考试)已知函数()()()()ln 2R ,e 1xf x x ax ag x x x a x =−−∈=−−+.(1)求函数()f x 的单调区间;(2)若不等式()()f x g x ≤恒成立,求实数a 的取值范围.38.(2023·广东·统考一模)已知函数()1e x f x x +=.(1)求()f x 的极值; (2)当0x >时,()()1ln 2f x a x x ≥+++,求实数a 的取值范围.补充练习杭州一模(高三上期末)T16——同构有一定难度,函数分析也比较麻烦1.已知不等式()ln ln 10,1()xa a a x a a >−>≠对)1,(x ∀∈+∞恒成立,a 的取值范围是________.2023湖北高三九师联盟1月·82.已知a >b >1,若1a a b e be ae a ++=+,则 A .ln(a +b )>1B .ln(a -b )<0C .333a b −+<D .133a b −<湖北名校联合体高三下学期开学考·163.已知关于x 的不等式()1ln 2x e a a ax a −+>−(0)a >恒成立,则实数a 的取值范围为________.4.对0x ∀>,恒有()112ln axa e x x x ⎛⎫+≥+⎪⎝⎭,则实数a 的最小值为________.专题1-2 指对同构(朗博同构)【常见同构形式】(1)乘积模型:ln ln ()ln ln ln ()ln ln ln ln(ln )()ln a b x aa a aeb e f x xe ae b b e e b b f x x x a a b b f x x x ⎧<⋅⇒=⎪<⇒<⇒=⎨⎪+<+⇒=+⎩(2)商式模型:ln ()ln ln ln ()ln ln ln ln ln(ln )()ln a aa ab x e b xf x e b x e b e e e f x a b a b x a a b b f x x x ⎧<⇒=⎪⎪⎪<⇒<⇒=⎨⎪−<−⇒=−⎪⎪⎩(3)和差模型:ln ln ln ()ln ln ln ln ()ln a a aaa b xe e b bf x x xe a b b e e e bf x e x⎧±<±⇒=±±<±⇒⎨±<±⇒=±⎩【六大超越函数图像】(6)2020新高考1卷21(2)1.已知函数1()ln x f x ae x lna −=−+,若f (x )≥1,求a 的取值范围.【答案】[)1+∞, [方法一]:【最优解】:同构由()1f x ≥得1e ln ln 1x a x a −−+≥,即ln 1ln 1ln a x e a x x x +−++−≥+,而ln ln ln x x x e x +=+,所以ln 1ln ln 1ln a x x e a x e x +−++−≥+.令()m h m e m =+,则()10m h m e +'=>,所以()h m 在R 上单调递增.由ln 1ln ln 1ln a x x e a x e x +−++−≥+,可知(ln 1)(ln )h a x h x +−≥,所以ln 1ln a x x +−≥,所以max ln (ln 1)a x x ≥−+. 令()ln 1F x x x =−+,则11()1xF x x x−'=−=. 所以当(0,1)x ∈时,()0,()F x F x '>单调递增; 当(1,)x ∈+∞时,()0,()F x F x '<单调递减. 所以max [()](1)0F x F ==,则ln 0a ≥,即1a ≥. 所以a 的取值范围为1a ≥. [方法二]:换元同构由题意知0,0a x >>,令1x ae t −=,所以ln 1ln a x t +−=,所以ln ln 1a t x =−+. 于是1()ln ln ln ln 1x f x ae x a t x t x −=−+=−+−+.由于()1,ln ln 11ln ln f x t x t x t t x x ≥−+−+≥⇔+≥+,而ln y x x =+在,()0x ∈+∞时为增函数,故t x ≥,即1x ae x −≥,分离参数后有1x xa e −≥.令1()x x g x e −=,所以1112222(1)()x x x x x e xe e x g x e e −−−−−−−=='. 当01x <<时,()0,()g x g x >'单调递增;当1x >时,()0,()g x g x <'单调递减. 所以当1x =时,1()x x g x e−=取得最大值为(1)1g =.所以1a ≥.[方法三]:通性通法1()ln ln x f x ae x a −=−+,11()x f x ae x−'∴=−,且0a >.设()()g x f x =',则121()0,x g x ae x −'=+> ∴g(x)在(0,)+∞上单调递增,即()f x '在(0,)+∞上单调递增, 当1a =时,()01f '=,∴()()11min f x f ==,∴()1f x ≥成立.当1a >时,11a < ,111a e −<∴,111()(1)(1)(1)0a f f a e a a−''∴=−−<,∴存在唯一00x >,使得01001()0x f x ae x −'=−=,且当0(0,)x x ∈时()0f x '<,当0(,)x x ∈+∞时()0f x '>,0101x ae x −∴=,00ln 1ln a x x ∴+−=−, 因此01min 00()()ln ln x f x f x ae x a −==−+000011ln 1ln 2ln 122ln 1a x a a x a x x =++−+≥−+⋅=+>1, ∴()1,f x >∴()1f x ≥恒成立;当01a <<时, (1)ln 1,f a a a =+<<∴(1)1,()1f f x <≥不是恒成立. 综上所述,实数a 的取值范围是[1,+∞). [方法四]:因为定义域为(0,)+∞,且()1f x ≥,所以(1)1f ≥,即ln 1a a +≥. 令()ln S a a a =+,则1()10S a a='+>,所以()S a 在区间(0,)+∞内单调递增. 因为(1)1S =,所以1a ≥时,有()(1)S a S ≥,即ln 1a a +≥. 下面证明当1a ≥时,()1f x ≥恒成立.令1()ln ln x T a ae x a −=−+,只需证当1a ≥时,()1T a ≥恒成立. 因为11()0x T a ea−=+>',所以()T a 在区间[1,)+∞内单调递增,则1min [()](1)ln x T a T e x −==−. 因此要证明1a ≥时,()1T a ≥恒成立,只需证明1min [()]ln 1x T a e x −=−≥即可.由1,ln 1x e x x x ≥+≤−,得1,ln 1x e x x x −≥−≥−.上面两个不等式两边相加可得1ln 1x e x −−≥,故1a ≥时,()1f x ≥恒成立. 当01a <<时,因为(1)ln 1f a a =+<,显然不满足()1f x ≥恒成立.所以a 的取值范围为1a ≥.【整体点评】(2)方法一:利用同构思想将原不等式化成ln 1ln ln 1ln a x x e a x e x +−++−≥+,再根据函数()m h m e m =+的单调性以及分离参数法即可求出,是本题的最优解;方法二:通过先换元,令1x ae t −=,再同构,可将原不等式化成ln ln t t x x +≥+,再根据函数ln y x x =+的单调性以及分离参数法求出;方法三:利用导数判断函数()f x 的单调性,求出其最小值,由min 0f ≥即可求出,解法虽稍麻烦,但是此类题,也是本题的通性通法;方法四:由特殊到一般,利用(1)1f ≥可得a 的取值范围,再进行充分性证明即可2022新高考1卷第22题2.已知函数()x f x e x =−和()ln g x x x =−,证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列. 【解答】易得()f x 在()0,+∞↑,(),0−∞↓;()g x 在()0,1↓,()1,+∞↑只有y b =过()f x 与()g x 交点时,恰有3个不同交点 则有1223()()()()f x f x g x g x b ====,即12122233ln ln x xe x e x x x x x b −=−=−=−= ①∵111122ln ln xxxe x e e x x −==−− ,且1211,xe x <<,∴1212ln xe x x x =⇒= ② 又∵32ln 3332ln ln x x x x ex e x −=−=− ,且3200ln ,x x >>,∴2323ln x x x x e =⇒= ③由①②③可得:()()2132222ln 2xx x e x b x x b x +=+=++−=,证毕2022全国甲卷(理)21题3.已知函数()ln xf x x a x x e −=+−.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【详解】(1)[方法一]:同构处理 由()0f x ≥得:ln ln 0x x e x x a −++−−≥令ln ,1t x x t −=≥,则()0tf t e t a =+−≥即t a e t ≤+ 令()[),1,tg t e t t =+∈+∞,则()'10tg t e =+>故()tg t e t =+在区间[)1,+∞上是增函数故()()min 11g t g e ==+,即1a e ≤+ 所以a 的取值范围为(,1]e −∞+ [方法二]:常规求导()f x 的定义域为(0,)+∞,则2111()1x f x e x x x ⎛⎫'=−−+ ⎪⎝⎭1111111x x x e e x x x x x ⎛⎫−⎛⎫⎛⎫=−+−=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x '=,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)1f x f e a ≥=+−, 若()0f x ≥,则10e a +−≥,即1a e ≤+ 所以a 的取值范围为(,1]e −∞+ (2)法一:极值点偏移+同构简化计算由题知,()f x 一个零点小于1,一个零点大于1,不妨设121x x ,要证121x x <,即证121x x <因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭, 又因为()()12f x f x =,故只需证()221f x f x ⎛⎫> ⎪⎝⎭,即证11ln ln 0,(1,)x x e x x xe x x x x −+−−−>∈+∞同构,原不等式变形为:()1ln ln 1ln ln x x xxex x ex x+−++−>+ 令()xg x e x =+,则有1(ln )ln g x x g x x ⎛⎫−>+⎪⎝⎭即证:)1ln ln ,(1,x x x x x−>∈+∞+ 即证1()2ln 0(1,,)h x x x xx =+∈<+∞− ()()222121'()10,1x h x x x x x−−=−−=<>,即()h x 递减,故()(1)0h x h <=,证毕. [方法二]:对数平均不等式由题意得:()ln x xe ef x a x x=+−令1xe t x=>,则()ln f t t t a =+−,()1'10f t t =+>所以()ln g t t t a =+−在()1,+∞上单调递增,故()0g t =只有1个解又因为()ln x xe ef x a x x =+−有两个零点12,x x ,故1212x x e e t x x == 两边取对数得:1122ln ln x x x x −=−,即12121ln ln x x x x −=−()121212*ln ln x x x x x x −<−121x x <,即121x x <()121212*ln ln x x x x x x −<−121211212121222112ln ln ln ln ln x x xx xx x x x x x x x x x x −<⇔−⇔<−不妨设121x t x =>,则只需证12ln t t t <−构造()12ln ,1h t t t t t =−+>,则()22211'110h t t t t ⎛⎫=−−=−−< ⎪⎝⎭故()12ln h t t t t=−+在()1,+∞上单调递减故()()10h t h <=,即12ln t t t<−得证2023新高考1卷T19(2) 同构+切线放缩或2次求导4.已知函数()()x f x a e a x =+−,证明:当a >0时,3()2ln 2f x a >+. 解:即证:当a >0时,232ln 2xae a x a +−>+第一步,指数化,同构变形:()ln 2ln 2332ln ln ln 22a xa x ea x a e a x a a +++−>+⇒−+>−+ 第二步,换元:令ln t a x =+,t ∈R ,有23ln 2te t a a −>−+ 第三步,放缩:1t e t −≥(证明略),即证231ln 2a a >−+第四步,构造函数:令23()ln 2g a a a =−+,1'()2g a a a =−,故()g a 在202⎛⎫↑ ⎪ ⎪⎝⎭,,2,2⎫+∞↓⎪⎢⎪⎣⎭22132()ln ln 1122222g a g ⎛≤=−+=+< ⎝⎭2022全国乙卷(理)16题5.已知1x x =和2x x =分别是函数2()2e x f x a x =−(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a的取值范围是 .【答案】1,1e ⎛⎫⎪⎝⎭【详解】[方法一]:转化法,零点的问题转为函数图象的交点因为()2ln 2e xf x a a x '=⋅−,所以方程2ln 2e 0x a a x ⋅−=的两个根为12,x x ,即方程ln e x a a x ⋅=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,因为12,x x 分别是函数()22e x f x a x =−的极小值点和极大值点,所以函数()f x 在()1,x −∞和()2,x +∞上递减,在()12,x x 上递增, 所以当时()1,x −∞()2,x +∞,()0f x '<,即e y x =图象在ln x y a a =⋅上方 当()12,x x x ∈时,0fx,即e y x =图象在ln x y a a =⋅下方1a >,图象显然不符合题意,所以01a <<.令()ln x g x a a =⋅,则()2ln ,01xg x a a a '=⋅<<,设过原点且与函数()y g x =的图象相切的直线的切点为()00,ln x x a a⋅,则切线的斜率为()020ln x g x a a '=⋅,故切线方程为()0020ln ln x x y a a a a x x −⋅=⋅−,则有0020ln ln x x a a x a a −⋅=−⋅,解得01ln x a=,则切线的斜率为122ln ln eln a a a a ⋅=, 因为函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,所以2eln e a <,解得1e e a <<,又01a <<,所以11ea <<,综上所述,a 的取值范围为1,1e ⎛⎫⎪⎝⎭.[方法二]:【通性通法】构造新函数,二次求导 ()2ln 2e x f x a a x '=⋅−=0的两个根为12,x x因为12,x x 分别是函数()22e x f x a x =−的极小值点和极大值点,所以函数()f x 在()1,x −∞和()2,x +∞上递减,在()12,x x 上递增,设函数()()()g 2ln xx f x a a ex '==−,则()()2g 2ln 2x x a a e '=−,若1a >,则()g x '在R 上单调递增,此时若()0g 0x '=,则()f x '在()0-,x ∞上单调递减,在()0,x +∞上单调递增,此时若有1x x =和2x x =分别是函数()22(0x f x a ex a =−>且1)a ≠的极小值点和极大值点,则12x x >,不符合题意;若01a <<,则()g x '在R 上单调递减,此时若()0g 0x '=,则()f x '在()0,x −∞上单调递增,在()0,x +∞上单调递减,令()0g 0x '=,则02(ln )xea a =,此时若有1x x =和2x x =分别是函数()22(0x f x a ex a =−>且1)a ≠的极小值点和极大值点,且12x x <,则需满足()00f x '>,()()00002ln 20ln xe f x a a ex ex a ⎛⎫'=−=−> ⎪⎝⎭,即001ln 1ln x x a a <>,故()002ln ln ln 1ln x e a x a a ==>,所以11ea <<. [方法三]:同构+放缩(简证) ① 先得出01a << ② ()ln ln 2ln ln ln ln x a xx ae ea a ex ea ex x a a ⋅=⇒⋅=⇒=(ln 0x a >)③ 放缩:xxe e ex e x≥⇒≥()()221ln 11ln 01ln ee a a a ea >⇒<⇒−<<⇒<<题型一 一元同构2023深圳高二下期末·21(2)1.已知2()()x f x axe a R =∈,若关于x 的()2ln 0f x x x −−≥恒成立,求实数a 的取值范围.【答案】1a e≥【简证】()2ln 0f x x x −−≥恒成立等价于()22ln 0xaxe x x −−≥恒成立,即()()ln 2ln 22ln 2ln 0x xx x aee x x ae x x +−+=−+≥,则有ln 22ln x xx xa e++≥令2ln t x x =+,t ∈R ,则有max1t t a e e ⎛⎫≥=⎪⎝⎭(构造函数求导得出最值,过程略) 总结:同构+分参2.若关于x 的不等式ln ln 0e xx a a xx+−>对()0,1x ∀∈恒成立,则实数a 的取值范围为( ) A .1,e ⎛⎤−∞ ⎥⎝⎦B .1,e ∞⎡⎫+⎪⎢⎣⎭C .1,1e ⎡⎫⎪⎢⎣⎭D .10,e ⎛⎤ ⎥⎝⎦【答案】B【分析】由题意可知0a >,且ln e ln e xx a xa x >对()0,1x ∀∈恒成立,设()ln x g x x =,则问题转化为()()e xg a g x >在()0,1上恒成立,利用导数说明函数的单调性,再分e 1x a ≥和0e 1x a <<两种情况讨论,结合函数的取值情况及单调性,分别计算可得.重点题型·归类精讲【详解】由题意可知0a >,ln e ln ln e x x a a x x +>,即ln e ln e x x a xa x >对()0,1x ∀∈恒成立. 设()ln x g x x =,则问题转化为()()e xg a g x >在()0,1上恒成立,因为()21ln xg x x−'=,所以当0e x <<时,()0g x '>,当e x >时,()0g x '<, 所以()g x 在()0,e 上单调递增,在()e,+∞上单调递减,又()10g =,所以当()0,1x ∈时,()0g x <;当()1,x ∈+∞时,()0g x >. ①在()0,1x ∈上,若e 1x a ≥恒成立,即1a ≥,()()e0xg a g x ≥>;②在()0,1x ∈上,若0e 1x a <<,则e x a x >恒成立,即1e xxa <<恒成立, 令()e x x h x =,()0,1x ∈,则()10ex xh x −'=>,所以()h x 在()0,1上单调递增, 所以()()11e h x h <=,所以11e a <≤,综上所述,实数a 的取值范围为1,e ∞⎡⎫+⎪⎢⎣⎭.故选:B .宁波九校高三上期末·22(2) 3.已知函数1()ln 2f x x x x x ⎛⎫=+− ⎪⎝⎭,e 是自然对数的底数.若不等式2()(1)4axf x a e x ≤+−对0x ∀>恒成立,求实数a 的取值范围. 【答案】实数a 的取值范围为2,e ⎡⎫+∞⎪⎢⎣⎭.12()(1)42ln 4(1)4ax ax f x a e x x x x a e x x ⎛⎫≤+−⇒+−≤+− ⎪⎝⎭,整理,同乘x 得:()2212ln (1)1ln (1)ax axx x a e x x ax e x ⎛⎫+≤+⇒+≤+ ⎪⎝⎭, 比较一下2种构造方式,方式1:令()x g x xe x =+,()'()11xg x x e =++,易错:由洛必达可知(选填时用)——这里用不了错了!()111lim 1lim 0x x x x x x x e e e −−→−∞→−∞+−∞+=====−+∞−−∞,故()'()110()xg x x e g x =++>⇒↑()11'()111x xx xx x e g x x e e e−−−+++=++=+=,令()1xh x e x =−+,易知()h x ≥2恒成立, 故()11()0'()0()xx x e e x h x g x g x −−++=−−++=−>⇒>⇒↑由()2222ln 21ln (1)ln ln axx ax x x ax e x ex axe ax +≤+⇒+≤+,则有2(ln )()g x g ax ≤,由单调性可知22min ln 2ln x x ax a x e⎛⎫≤⇒≥= ⎪⎝⎭参考ln xy x=图像可以快速得出答案,解答题还是要写一下求导过程. 方式2:()ln g x x x x =+总结:(1)求导通分看极值点即可,注意2个增区间之间用“,”而不是“∪”(2)先同构再判断单调性. 江苏盐城2023届高三5月三模·22 4.已知函数()(ln ).x a f x e e a x =−+ (1)当a =1时,求()f x 的单调递增区间; (2)()0f x ≥恒成立,求a 的取值范围.【答案】(1)()1,+∞(2)(,1]−∞(1)解:当时,,,又,单调递增, ··············································· 2分 又,当时,当时,∴的单调递增区间为()1,+∞. ·························································· 4分 1a =()()1ln x f x e e x =−+()xe f x e x'=−()20xef x e x ''=+>()f x '∴()10f '=∴()0,1x ∈()0f x '<()1,x ∈+∞()0f x '>()f x(2)若恒成立,即恒成立.方法1:,,令, 则,在上单调递增,又,当时,故存在唯一正实数使得, ····················································· 6分 当时,,单调递减,当时,,单调递增,,由恒成立,得,由得,, ······ 8分 ∴,∴,∴,设,则恒成立,故在上递增,而,∴, 又且函数在上是增函数,故的取值范围为. ···································································· 12分 法2:同法一得,由得,∴ ,,故的取值范围为. ················· 12分方法3:令,则,,则,令,则, ················································ 8分 ∵,∴在上单调递增,当时,显然成立;当时,恒成立,即恒成立,可证(过程略),,,即,,综上,的取值范围为(,1]−∞. ······························································ 12分 ()0f x ≥()ln 0x ae e a x −+≥()ln x a af x e e x e a =−−()a x a x e xe e f x e x x−'=−=()x ag x xe e =−()0x x g x e xe '=+>()x ag x xe e ∴=−()0,+∞()00ag e =−<x →+∞()g x →+∞0x 00x a x e e =0x x <()0f x '<()f x 0x x >()0f x '>()f x ()()000min ln x a a f x f x e e x e a ∴==−−()0f x ≥()min 0f x ≥00x a x e e =00ln x x a +=()()00000min (2ln )0x xf x f x e x e x x ∴==−+≥0001(2ln )0x x x −+≥000(2ln )10x x x +−≤00012ln 0x x x +−≤1()2ln h x x x x=+−221()10h x x x '=++>()h x (0,)+∞(1)0h =001x <≤00ln x x a +=ln y x x =+(0,1]a (,1]−∞()()000min ln x a af x f x e e x e a ==−−00x a x e e =00ln x x a +=()000min00011ln ln aa a a a a a e f x e x e a e x e a e x a e a x x x ⎛⎫⎛⎫=−−=−−=+−− ⎪ ⎪⎝⎭⎝⎭()20a a e a e a ≥−−≥()220a e a ∴−≥a (,1]−∞a e t =ln a t =()()ln ln ln x e t t x t tx ≥+=()()()ln ln ln tx xxe tx tx tx e ≥=()(0)xg x xe x =>()()ln()g x g tx ≥()()10x g x x e '=+>()(0)xg x xe x =>()0,+∞()ln 0tx ≤()()ln()g x g tx ≥()ln 0tx >()ln ln ln x tx t x ≥=+ln ln t x x ≤−ln 1x x −≥∴ln 1t ≤∴t e ≤a e e ≤∴1a ≤a方法4:∵恒成立,∴,即,同法3考查函数可得, ··········································· 7分 反之,当时,, 又可证(过程略),∴,∴恒成立,故的取值范围为. ···································································· 12分 补充:同构和型+放缩ln (ln )0(ln )ln ln ln x a x a x a x a x e x x e a x e e a x e a x e x x a e −−−+≥⇒≥+⇒−≥+⇒+≥+=+令()x g x e x =+↑,则有()min ()(ln )ln ln 1g x a g x x a x a x x −≥⇒−≥⇒≤−=总结:(1)两次求导+取点(2)法一和法二是整体求导再用隐零点处理,法三和法四是同构处理相对简单 湖南九校联盟第二次联考·16 5.已知不等式))(1ln (0xa x e a a e −⎡⎤≥>⎢⎥⎣⎦恒成立,则实数a 的最大值为_______ 【答案】2e[]ln ln (1)lnln (1)1ln ln(1)1ln ln(1)1x x x a x a a x e a e a a x e a x x x e a x e−−−≥⇒≥−−−+⇒≥+−⇒−+−≥−令()x g x e x =+↑,则有()2(ln )ln(1)ln ln(1)ln(1)ln 2ln g x a g x x a x x x a a e a −≥−⇒−≥−⇒−−≥⇒≥⇒≥可放缩补充:构造函数求导令ln(1)()g x x x −−=,12()111x g x x x '−=−=−− 故g (x )在(1,2)上单调递减,在(2,+∞)上单调递增,因此min ()(2)2g x g ==. 因为不等式(1)ln(0)xa x e a a e−≥>恒成立,所以Ina ≤2,即2.a e ≤ 总结:指对分离,补全结构,最后的最值可以放缩得出. 补充:对右边的式子配凑也可以()0f x ≥(1)0f ≥a e e a ≥()(0)xg x xe x =>1a ≤1a ≤11x a a x −+≥+−ln 1,1x a x x e x a −≤−≥−+ln x a e a x −≥+()ln x ae e a x ≥+a (,1]−∞湖南省2023届高三下3月考试·166.已知e 是自然对数的底数.若()0x ∀∈+∞,,e ln mx m x ≥成立,则实数m 的最小值是 . 【答案】1e解析:由ln e ln e ln ln mx mx x m x mx x x e x ≥⇒≥=⋅.令()e x f x x =,则()f x 在()0+∞,上单调递增, 且()()ln f mx f x ≥,所以ln mx x ≥,即ln xm x≥对()0x ∀∈+∞,恒成立. 令()ln xg x x =,则()21ln x g x x−'=,所以当()0e x ∈,时,()0g x '>;当()e x ∈+∞,时,()0g x '<, 故()g x 在[)1+∞,上的最大值是1e ,所以1e m ≥,即实数m 的最小值是1e .故答案为:1e. 总结:同乘补全结构即可,入门型7.若不等式0x ae lnx lna −+恒成立,则a 的取值范围是( )A .1[,)e +∞B .2[,)e +∞C .[,)2e+∞D .[e ,)+∞【答案】A 【法一】:同构ln ln ln ln ln 0ln ln ln ln ln x a x a x x ae x a e e a x e a x x x e x +⇒+−+≥⇒≥+≥=+++构造函数()x g x e x =+,故ln ln ln ln (ln )(ln )a x x e a x e x g a x g x ++≥++≥+⇒ 而'()10x g x e =+>,则ln ln a x x +≥,即()max ln ln a x x ≥−令ln y x x =−,则1x y x '−=,故max 1y =−,则1ln 1a a e≥−⇒≥. 对于ln ln a x x +≥还可以直接分类参数:max1ln ln ln ln ln ln x xx xx a x x a x e a ee e ⎛⎫⎛⎫+≥⇒≥−=⇒≥= ⎪ ⎪⎝⎭⎝⎭ 总结:需要同加x 才能补全结构 【法二】:整体求导、取点设()x f x ae lnx lna =−+,则0x >,0a >,1()x f x ae x∴'=−, 易知()f x '在(0,)+∞上为增函数,存在0(0,)x ∈+∞,使得0001()0x f x ae x '=−=, 即01x ae x =, 两边取对数,可得00lna x lnx +=−,当00x x <<时,()0f x '<,函数()f x 单调递减, 当0x x >时,()0f x '>,函数()f x 单调递增,000001()()2x min f x f x ae lnx lna x lna x ∴==−+=++, 不等式0x ae lnx lna −+恒成立,∴00120x lna x ++恒成立, ∴12x lna x +−恒成立, 00001122x x x x +⋅=,当且仅当01x =时取等号, 22lna ∴−,即1ae ,故a 的取值范围是1[e,)+∞.湖北鄂东南联考 ·88.已知函数()ln x f x x x xe k −=−−−恒有零点,则实数k 的取值范围是( )A .(],1−∞−B .1,1e⎛⎤−∞−− ⎥⎝⎦C .11,1e⎡⎤−−−⎢⎥⎣⎦D .11,0e⎡⎫−−⎪⎢⎣⎭方法1:同构要使()ln x f x x x xe k −=−−−恒有零点,只需ln ln l =n x x x k x x xe x x e e −−=−−−− 设ln x x t −=,求导可知(],1t ∈−∞−而t k t e =−,求导可知函数t k t e =−在(],1−∞−上单调递增,故1,1k e ⎛⎤∈−∞−⎥⎝⎦方法2:分参求导ln xk x x xe −=−−,令()ln xg x x x xe −=−−,则()1'()1111x x x g x e x x x e x e −−⎪=⎛⎫+−=−−− ⎝⎭∵110xx e −> 故()ln x g x x x xe −=−−在(]0,1递增,()1,+∞递减,故max 1()(1)1g x g e==−−,故选B.注:由常见不等式1x e x ≥+得到,即1100xx e x x e−−>⇒>; 或者令11()x x xe e h x e x x x −=−=,221'()x x x e h x e−=,因为0x >,故'()0h x > 方法3:直接求导(可以消掉k )()()2111'()1xx x x x xxx x e x xe e x x f x x e e xe xe −−−−−=−+=++=,不难得出x x e −在()0,+∞上恒小于0,故()f x 在()0,1上单调递增,在[)1,+∞上递减,故max 1()(1)1f x f k e ==−−−,当0x →时,()f x →−∞,故()f x 的值域为1,1k e ⎛⎤−∞−−− ⎥⎝⎦,则11101k k e e−−−≥⇒≤−−. 福建龙岩九校联考·169.已知函数mx x m x f −+=)1ln()(,若不等式x e x x f −+>1)(在()+∞,0上恒成立,则实数m 的取值范围是____________ . 【答案】(],1−∞x e x x f −+>1)(在()+∞,0上恒成立等价于ln(1)1x m x mx x e +−>+−第一步,错位同构:()ln(1)1xm x x mx e +−+>−,第二步,构造对应函数:令()xg x mx e =−,则有[]ln(1)()g x g x +>第三步,分析单调性,定义域:易知0ln(1)x x <+<,故()g x 在()0,+∞上单调递减 第四步,由单调性求出参数范围:()min'()001xx g x m e x m e=−≤>⇒≤=总结:错位同构,很少见,最后要注意取等.湖南常德3月模拟10.已知不等式ln()x x a e a +≤−对[1,)x ∀∈+∞恒成立,则a 的取值范围为 . 【答案】11a e −<≤−解析:易得:()ln()ln()x xx a e a x a x a x e +≤−⇒+++≤+,1a >−即:ln()ln()x a x x a e x e +++≤+,构造函数()xg x x e =+,∴()()()ln g x a g x +≤.易知()g x 在[1,)x ∈+∞为增函数;∴()ln x x a ≥+, 令()()ln h x x x a =−+,()111x a h x x a x a+−'=−=++, 当0a ≥时,()0h x '≥,()h x 在[1,)x ∈+∞为增函数,()()10h x h ≥≥,∴01a e ≤≤−;当10a −<<时,11a −>;[1,1)x a ∈−,()0h x '<;()1x a ∈−+∞,时,()0h x '≥; ∴()()min 110h x h a a =−=−≥,∴11a −<≤,综上:11a e −<≤−. 总结:最后不等式要注意x 取值范围 补充:对于()ln x x a ≥+,也可以分参()()()minln ln ln 1x x x x x a e x a e x a a e x e ≥+⇒≥+⇒≥+⇒≤−=−浙江省衢州、丽水、湖州三地市高三下学期4月教学质量检测·811.对任意的实数0x >,不等式22ln ln 0x ae x a −+≥恒成立,则实数a 的最小值为( )e2eC.2eD.12e【答案】D总结:指对分离,补全结构2022湖北四地七校高二下期中·712.已知实数a >0,不等式()0x e aln ax ->恒成立,则a 的取值范围是( ) A .1<<a e eB .0<a <1C .0<a <eD .a >e【解答】解:令f (x )=e x ﹣aln (ax ),a >0,x ∈(0,+∞),f ′(x )=e x ﹣在x ∈(0,+∞)上单调递增,x →0时,f ′(x )→﹣∞;x →+∞时,f ′(x )→+∞. ∴存在唯一x 0>0,使得﹣=0,即=,x 0=lna ﹣lnx 0,∴x =x 0时,函数f (x )取得极小值即最小值,f (x 0)=+ax 0﹣2alna >0,∴2﹣2lna >0,解得0<a <e . 总结:补全结构即可。
高考数学总复习 第5章 第2讲 等差数列及其前n项和课件 理 新人教A版
第五页,共53页。
3. 利用Sn的图象(túxiànɡ)确定其最值时,最高点不一定是最 大值,最低点不一定是最小值.
[解析] (1)本题考查等差数列的基础量运算. 设{an}的公差为 d,由 S2=a3 可得 d=a1=12,故 a2=a1 +d=1,Sn=na1+nn-2 1d=14n(n+1). (2)设等差数列的公差为 d,由于数列是递增数列,所以 d>0,a3=a1+2d=1+2d,a2=a1+d=1+d,代入已知条件: a3=a22-4 得:1+2d=(1+d)2-4,解得 d2=4,所以 d=2(d =-2 舍去),所以 an=1+(n-1)×2=2n-1. [答案] (1)1 14n(n+1) (2)2n-1
第十二页,共53页。
(3)d>0⇔{an}是递增数列,Sn 有最小值;d<0⇔{an}是递 减数列,Sn 有最大值;d=0⇔{an}是常数数列.
(4)am,am+k,am+2k,am+3k,…仍是等差数列,公差为 kd. (5)数列 Sm,S2m-Sm,S3m-S2m,…也是等差数列. (6)S2n-1=(2n-1)an. (7)若 n 为偶数,则 S 偶-S 奇=n2d. 若 n 为奇数,则 S 奇-S 偶=a 中(中间项).
常数. [解]
证明:由题设知 an+1= aan+2n+bbnn2=
1+bann = 1+bann2
bn+1 ,所以bn+1=
1+abnn2
an+1
1+bann2,从而abnn++112-bann2=1(n
高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理
切入点:(1)直接套用斜率公式,并借助-12<x<32求其范围; (2)先分别计算|PA|、|PQ|的长,再建立|PA|·|PQ|的函数,进而借 助导数求其最值.
[解](1)设直线AP的斜率为k,k=xx2+-1214=x-12, 因为-12<x<32, 所以-1<x-12<1, 即直线AP斜率的取值范围是(-1,1).
(与向量交汇直线过定点问题)设M点为圆C:x2+y2=4上的动 点,点M在x轴上的投影为N.动点P满足2 P→N = 3 M→N ,动点P的轨迹 为E.
(1)求E的方程; (2)设E的左顶点为D,若直线l:y=kx+m与曲线E交于A,B两 点(A,B不是左、右顶点),且满足| D→A + D→B |=| D→A - D→B |,求证:直 线l恒过定点,并求出该定点的坐标.
第二部分 讲练篇
专题五 解析几何 第3讲 圆锥曲线中的综合问题
研考题 举题固法
求圆锥曲线中的最值范围问题(5年2考) 考向1 构造不等式求最值或范围
[高考解读] 以直线与圆锥曲线的位置关系为载体,融函数与 方程,均值不等式、导数于一体,重在考查学生的数学建模、数学 运算能力和逻辑推理及等价转化能力.
[解](1)设点M(x0,y0),P(x,y),由题意可知N(x0,0), ∵2P→N= 3M→N,∴2(x0-x,-y)= 3(0,-y0), 即x0=x,y0= 23y, 又点M在圆C:x2+y2=4上,∴x20+y20=4, 将x0=x,y0= 23y代入得x42+y32=1, 即轨迹E的方程为x42+y32=1.
设C(p,q),由2qpp=+q21,-2=0
得p=q=2,所以C(2,2).
高考解答题专项突破(一) 第2课时 利用导数证明不等式--2025年高考数学复习讲义及练习解析
第2课时利用导数证明不等式考点一直接构造函数证明不等式例1(2023·新课标Ⅰ卷)已知函数f (x )=a (e x +a )-x .(1)讨论f (x )的单调性;(2)证明:当a >0时,f (x )>2ln a +32.解(1)因为f (x )=a (e x +a )-x ,定义域为R ,所以f ′(x )=a e x -1,当a ≤0时,由于e x >0,则a e x ≤0,故f ′(x )=a e x -1<0恒成立,所以f (x )在R 上单调递减;当a >0时,令f ′(x )=a e x -1=0,解得x =-ln a ,当x <-ln a 时,f ′(x )<0,则f (x )在(-∞,-ln a )上单调递减,当x >-ln a 时,f ′(x )>0,则f (x )在(-ln a ,+∞)上单调递增.综上,当a ≤0时,f (x )在R 上单调递减;当a >0时,f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增.(2)证法一:由(1)得,f (x )min =f (-ln a )=a (e -ln a +a )+ln a =1+a 2+ln a ,要证f (x )>2ln a +32,即证1+a 2+ln a >2ln a +32,即证a 2-12-ln a >0恒成立,令g (a )=a 2-12-ln a (a >0),则g ′(a )=2a -1a =2a 2-1a,令g ′(a )<0,则0<a <22,令g ′(a )>0,则a >22,所以g (a ),+,所以g (a )min =-12-ln 22=ln 2>0,则g (a )>0恒成立,所以当a >0时,f (x )>2ln a +32恒成立,证毕.证法二:令h (x )=e x -x -1,则h ′(x )=e x -1,当x <0时,h ′(x )<0,当x >0时,h ′(x )>0,所以h (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,故h (x )≥h (0)=0,则e x ≥x +1,当且仅当x =0时,等号成立,因为f (x )=a (e x +a )-x =a e x +a 2-x =e x +ln a +a 2-x ≥x +ln a +1+a 2-x ,当且仅当x +ln a =0,即x =-ln a 时,等号成立,所以要证f (x )>2ln a +32,即证x +ln a +1+a 2-x >2ln a +32,即证a 2-12-ln a >0恒成立,以下同证法一.待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.1.(2023·新课标Ⅱ卷节选)证明:当0<x <1时,x -x 2<sin x <x ;证明构建F (x )=x -sin x ,则F ′(x )=1-cos x >0对任意x ∈(0,1)恒成立,则F (x )在(0,1)上单调递增,可得F (x )>F (0)=0,所以当0<x <1时,x >sin x ;构建G (x )=sin x -(x -x 2)=x 2-x +sin x ,则G ′(x )=2x -1+cos x ,构建g (x )=G ′(x ),则g ′(x )=2-sin x >0对任意x ∈(0,1)恒成立,则g (x )在(0,1)上单调递增,可得g (x )>g (0)=0,即G ′(x )>0对任意x ∈(0,1)恒成立,则G (x )在(0,1)上单调递增,可得G (x )>G (0)=0,所以当0<x <1时,sin x >x -x 2.综上所述,当0<x <1时,x -x 2<sin x <x .考点二放缩法证明不等式例2已知x ∈(0,1),求证:x 2-1x <ln x e x .证明证法一:要证x 2-1x <ln x ex ,只需证e 2x ,又易证e x >x +1(0<x <1),∴只需证ln x +(x +,即证ln x +1-x 3+1x-x 2>0,而x 3<x ,x 2<x (0<x <1),∴只需证ln x +1-2x +1x>0,令g (x )=ln x +1-2x +1x,则g ′(x )=1x -2-1x 2=-2x 2-x +1x 2,而2x 2-x +1>0恒成立,∴g ′(x )<0,∴g (x )在(0,1)上单调递减,∴当x ∈(0,1)时,g (x )>g (1)=0,即ln x +1-2x +1x>0,∴x 2-1x <ln x ex .证法二:∵x ∈(0,1),∴e x ∈(1,e),x 2-1x∈(-∞,0),∴要证x 2-1x <ln x ex 成立,只需证e 2x 成立,只需证x 2-1x<ln x ,又x 2<x (0<x <1),∴只需证ln x +1x-x >0,令h (x )=ln x +1x-x ,则h ′(x )=1x -1x 2-1=-x 2-x +1x2,而x 2-x +1>0恒成立,∴h ′(x )<0,∴h (x )在(0,1)上单调递减,∴当x ∈(0,1)时,h (x )>h (1)=0,∴ln x +1x-x >0,∴x 2-1x <ln x ex .导数的综合应用题中,最常见就是e x 和ln x 与其他代数式结合的难题,对于这类问题,可以先对e x 和ln x 进行放缩,使问题简化,便于化简或判断导数的正负.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)e x ≥e x ,当且仅当x =1时取等号;(3)当x ≥0时,e x ≥1+x +12x 2,当且仅当x =0时取等号;(4)当x ≥0时,e x ≥1+e 2x 2,当且仅当x =0时取等号;(5)x -1x≤ln x ≤x -1≤x 2-x ,当且仅当x =1时取等号.2.(2023·四川南充模拟)已知函数f (x )=ax -sin x .(1)若函数f (x )为增函数,求实数a 的取值范围;(2)求证:当x >0时,e x >2sin x .解(1)因为f (x )=ax -sin x ,所以f ′(x )=a -cos x ,由函数f (x )为增函数,得f ′(x )=a -cos x ≥0恒成立,即a ≥cos x 在R 上恒成立,因为y =cos x ∈[-1,1],所以a ≥1,即实数a 的取值范围是[1,+∞).(2)证明:由(1)知,当a =1时,f (x )=x -sin x 为增函数,当x >0时,由f (x )>f (0)=0,得x >sin x ,要证当x >0时,e x >2sin x ,现在证当x >0时,e x >2x ,即证e x -2x >0在(0,+∞)上恒成立,设g (x )=e x -2x (x >0),则g ′(x )=e x -2,当0<x <ln 2时,g ′(x )<0,当x >ln 2时,g ′(x )>0,所以g (x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,所以g (x )min =g (ln 2)=e ln 2-2ln 2=2(1-ln 2)>0,所以g (x )≥g (ln 2)>0,所以e x >2x 成立,故当x >0时,e x >2sin x .考点三凹凸反转法证明不等式例3求证:e x -e x +1-eln x x >0(x >0).证明原不等式等价于e x -e x +1>eln x x(x >0).令F (x )=e x -e x +1(x >0),F ′(x )=e x -e ,当x ∈(0,1)时,F ′(x )<0,F (x )单调递减;当x ∈(1,+∞)时,F ′(x )>0,F (x )单调递增,所以F (x )min =F (1)=e -e +1=1.令G (x )=eln x x (x >0),G ′(x )=e(1-ln x )x 2.当x ∈(0,e)时,G ′(x )>0,G (x )单调递增;当x ∈(e ,+∞)时,G ′(x )<0,G (x )单调递减,所以G (x )max =G (e)=1,等号不同时取得,所以F (x )>G (x ),即e x -e x +1>eln x x,故原不等式成立.“凹凸反转法”证明不等式的方法步骤欲证g (x )>h (x )―――――――――→g (x )图象凹形状h (x )图象凸形状求g (x )的最小值求h (x )的最大值―――――――――→说明g (x )min 大于h (x )max证得g (x )>h (x ),如图所示.注意:在证明过程中,“隔离化”是关键.如果证g (x )≥f (x )恒成立,只需证g (x )min ≥f (x )max 恒成立,但只有当f (x )与g (x )取到最值的条件是同一个x 的值时取等号,否则只能得到g (x )>f (x ).3.已知函数g (x )=x ln x .证明:当x >0时,g (x )>x e x -2e.证明因为g (x )=x ln x ,所以g ′(x )=1+ln x ,令g ′(x )=0,得x =1e,所以当x ,g ′(x )<0;当x +,g ′(x )>0,所以函数g (x ),+,所以当x >0时,g (x )min ==-1e .令φ(x )=x e x -2e ,则φ′(x )=1-x ex ,所以当0<x <1时,φ′(x )>0,当x >1时,φ′(x )<0,所以φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以φ(x )max =φ(1)=-1e .又两个等号不同时成立,故当x >0时,g (x )>x e x -2e.课时作业1.(2023·福建福州模拟)已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.解(1)f ′(x )=e x-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增.②若a >0,则当0<x <e a时,f ′(x )>0;当x >e a时,f ′(x )<0,故f (x ),+.(2)证法一:因为x >0,所以只需证f (x )≤e x x-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e.令g (x )=e x x-2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤e x x-2e ,即xf (x )-e x +2e x ≤0.证法二:由题意知,要证xf (x )-e x +2e x ≤0,即证e x ln x -e x 2-e x +2e x ≤0,即证ln x -x +2≤e x e x.设函数m (x )=ln x -x +2(x >0),则m ′(x )=1x-1.所以当x ∈(0,1)时,m ′(x )>0;当x ∈(1,+∞)时,m ′(x )<0,故m (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而m (x )在(0,+∞)上的最大值为m (1)=1.设函数h (x )=e x e x(x >0),则h ′(x )=e x (x -1)e x2.所以当x ∈(0,1)时,h ′(x )<0;当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而h (x )在(0,+∞)上的最小值为h (1)=1.综上,当x >0时,m (x )≤h (x ),即xf (x )-e x +2e x ≤0.2.(2024·山东临沂沂水县第四中学高三上学期月考)已知函数f (x )=e x -2-ax (a ∈R ).(1)讨论函数f (x )的单调性;(2)当a ≤0时,求证:f (x )>ln x .解(1)函数的定义域为(-∞,+∞),f ′(x )=e x -2-a .当a ≤0时,f ′(x )>0,则函数f (x )在(-∞,+∞)上单调递增;当a >0时,由f ′(x )=0,得x =2+ln a ;当x <2+ln a 时,f ′(x )<0,当x >2+ln a 时,f ′(x )>0,∴f (x )在(-∞,2+ln a )上单调递减,在(2+ln a ,+∞)上单调递增.综上所述,当a ≤0时,f (x )在(-∞,+∞)上单调递增;当a >0时,f (x )在(-∞,2+ln a )上单调递减,在(2+ln a ,+∞)上单调递增.(2)证明:要证f (x )>ln x ,即证e x -2-ax >ln x ,即证e x -2x -a >ln x x .设g (x )=e x -2x -a (x >0),则g ′(x )=(x -1)e x -2x 2,当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴g (x )min =g (1)=e -1-a =1e-a .令h (x )=ln x x(x >0),则h ′(x )=1-ln x x 2(x >0),当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0,∴h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴h (x )max =h (e)=1e,当a ≤0时,g (x )≥1e -a ≥1e≥h (x ),∵前后取等号的条件不一致,∴e x -2x -a >ln x x .综上所述,当a ≤0时,f (x )>ln x .3.已知函数f (x )=ln x ,g (x )=x -1,证明:(1)当x ∈(0,+∞)时,不等式f (x )≤g (x )恒成立;(2)对于任意正整数n 恒成立(其中e 为自然对数的底数).证明(1)要证不等式f (x )≤g (x )恒成立,即证ln x ≤x -1恒成立,令h (x )=ln x -x +1,则h ′(x )=1x -1=1-x x,当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以h (x )≤h (1)=0,所以ln x ≤x -1恒成立.(2)由(1)知ln x ≤x -1,令x =1+12k ,则ln <12k ,k ∈N *,所以ln ln …+ln <12+122+…+12n =1-12n <1,4.(2023·哈尔滨模拟)已知函数f (x )=ax +1(x >0),g (x )=ln x -a -1x+2a .(1)若a =12f (x )与g (x )的大小;(2)若m >n >0,求证:m -n ln m -ln n>mn .解(1)当a =12时,f(x)=x2+1,g(x)=ln x+12x+1,令F(x)=f(x)-g(x)=x2-ln x-12x,则F′(x)=12-1x+12x2=(x-1)22x2≥0,所以F(x)在(0,+∞)上单调递增,且F(1)=0.综上,当x=1时,F(x)=0,f(x)=g(x);当x∈(0,1)时,F(x)<0,f(x)<g(x);当x∈(1,+∞)时,F(x)>0,f(x)>g(x).(2)证明:m>n>0,mn>1,要证m-nln m-ln n>mn,即证m-nmn>ln m-ln n,即证mn-nm>ln mn,设t=mn,且t>1,即证t-1t>ln t2=2ln t,即证t2-ln t-12t>0(t>1),由(1)知,当x∈(1,+∞)时,F(x)>0成立,故不等式成立,所以当m>n>0时,m-nln m-ln n>mn. 5.设函数f(x)=ln(a-x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=x+f(x)xf(x),证明:g(x)<1.解(1)由题意,得y=xf(x)=x ln(a-x),y′=ln(a-x)+x[ln(a-x)]′.因为x=0是函数y=xf(x)的极值点,所以y′|x=0=ln a=0,所以a=1.(2)证明:由(1)可知f(x)=ln(1-x),要证g(x)<1,即证x+f(x)xf(x)<1,即需证x+ln(1-x)x ln(1-x)<1.因为当x∈(-∞,0)时,x ln(1-x)<0,当x∈(0,1)时,x ln(1-x)<0;所以需证x +ln (1-x )>x ln (1-x ),即证x +(1-x )ln (1-x )>0.令h (x )=x +(1-x )ln (1-x ),x ∈(-∞,1),且x ≠0,则h ′(x )=1+(-1)ln (1-x )+(1-x )·-11-x=-ln (1-x ),所以当x ∈(-∞,0)时,h ′(x )<0;当x ∈(0,1)时,h ′(x )>0,所以h (x )>h (0)=0,即x +ln (1-x )>x ln (1-x ),所以x +ln (1-x )x ln (1-x )<1成立,所以x +f (x )xf (x )<1,即g (x )<1.6.(2023·天津高考)已知函数f (x )(x +1).(1)求曲线y =f (x )在x =2处切线的斜率;(2)当x >0时,证明:f (x )>1;(3)证明:56<ln (n !)n +n ≤1,n ∈N *.解(1)f ′(x )=-1x 2ln (x +1)所以f ′(2)=13-ln 34,故曲线y =f (x )在x =2处切线的斜率为13-ln 34.(2)证明:构造g (t )=ln t -2(t -1)t +1(t ≥1),则g ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2≥0,所以函数g (t )在[1,+∞)上单调递增,所以g (t )≥g (1)=0,所以ln t >2(t -1)t +1(t >1).令x +1=t (x >0),则ln (x +1)>2x x +2(x >0),所以当x >0时(x +1)>1,即f(x)>1.(3)证明:先证ln(n!)n+n≤1.令h(n)=ln(n!)n+n,n∈N*,则h(n+1)-h(n)=ln(n+1)(n+1)n+1=1由(2)可知(x+1)>1,令n=1x,则1,故h(n)单调递减,则h(n)≤h(1)=1,得证.再证ln(n!)n+n>56.证法一:构造s(x)=ln x-(x+5)(x-1)4x+2,x>0,则s′(x)=1x-x2+x+7(2x+1)2=-(x-1)3x(2x+1)2,当0<x<1时,s′(x)>0,当x>1时,s′(x)<0,故s(x)在(0,1)上单调递增,在(1,+∞)上单调递减,故s(x)≤s(1)=0,即ln x≤(x+5)(x-1)4x+2.又当n≥2时,h(n)-h(n+1)1·n-1=112n2+8n<112n2-12n所以h(1)-h(2)+h(2)-h(3)+…+h(n-1)-h(n)=h(1)-h(n)<1-ln2+52ln2-2+-12+12-13+…+1n-2-=32ln2-1<32ln2-1+112<16,故h(n)>h(1)-16=56,得证.综上,56<ln(n!)n+n≤1,n∈N*.证法二:先证不等式(1+x)-1<x212成立.令p(x)=ln(1+x)-x3+12x6(x+2)(x≥0),则p′(x)=-x3(x+4)3(x+1)(x+2)2≤0,故p(x)在[0,+∞)上单调递减,故当x>0时,p(x)<p(0)=0,所以当n≥2时1<112n2<112n(n-1)=以下同证法一.。
新高考数学复习知识点讲解与练习2---不等关系与不等式、一元二次不等式及其解法
新高考数学复习知识点讲解与练习不等关系与不等式、一元二次不等式及其解法知识梳理1.两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ;(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b ≠0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).3.三个“二次”间的关系判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y =ax 2+bx+c (a >0)的图象 一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅∅1.有关分数的性质 若a >b >0,m >0,则 (1)真分数的性质b a <b +m a +m ;b a >b -m a -m (a -m >0). (2)假分数的性质a b >a +m b +m ;a b <a -m b -m(b -m >0). 2.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 3.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.诊断自测1.判断下列说法的正误. (1)a >b ⇔ac 2>bc2.()(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.()(3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0的解集为R .() (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.()答案(1)×(2)√(3)×(4)×解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ⇒/ ac 2>bc 2. (3)若方程ax 2+bx +c =0(a <0)没有实根.则不等式ax 2+bx +c >0的解集为∅. (4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 2.若a >b >0,c <d <0,则一定有() A.a d >b c B.a d <b c C.a c >b d D.a c <b d 答案B解析 因为c <d <0,所以0>1c >1d ,两边同乘-1得-1d >-1c >0,又a >b >0,故由不等式的性质可知-a d >-b c >0.两边同乘-1得a d <bc.故选B.3.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是() A.A ≤B B.A ≥B C.A <B D.A >B 答案B解析∵a ,b ∈[0,+∞),∴A ≥0,B ≥0,又A 2-B 2=(a +2ab +b )-(a +b )=2ab ≥0,∴A ≥B . 4.已知函数f (x )=x 3+ax 2+bx +c .且0<f (-1)=f (-2)=f (-3)≤3,则() A.c ≤3 B.3<c ≤6 C.6<c ≤9 D.c >9 答案 C解析 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-1+a -b +c =-27+9a -3b +c ,解得⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,由0<f (-1)≤3,得0<-1+6-11+c ≤3,即6<c ≤9.5.已知角α,β满足-π2<α<β<π2,则α-β的取值范围是________.答案(-π,0)解析 因为-π2<α<β<π2,所以-π<α-β<π,且α-β<0,所以-π<α-β<0.所以α-β的取值范围是(-π,0).6.(必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________.解析 由题意知Δ=[-(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案(-∞,-3-22)∪(-3+22,+∞)考点一 比较大小及不等式的性质的应用【例1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是()A.c ≥b >aB.a >c ≥bC.c >b >aD.a >c >b(2)已知非负实数a ,b ,c 满足a +b +c =1,则(c -a )(c -b )的取值范围为________. 答案(1)A(2)⎣⎡⎦⎤-18,1 解析 (1)∵c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)因为a ,b ,c 为非负实数,且a +b +c =1,则a +b =1-c ,0≤c ≤1,故|(c -a )(c -b )|=|c -a ||c -b |≤1,即-1≤(c -a )(c -b )≤1;又(c -a )(c -b )=c 2-(1-c )c +ab ≥2⎝⎛⎭⎫c -142-18≥-18.综上,有-18≤(c -a )(c -b )≤1.感悟升华(1)比较大小常用的方法: ①作差法;②作商法;③函数的单调性法.(2)判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除或特殊值法验证.【训练1】 (1)(2020·浙江卷)已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x -a )(x -b )(x -2a -b )≥0,则()A.a <0B.a >0C.b <0D.b >0(2)若a >b >0,且ab =1,则下列不等式成立的是() A.a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1bC.a +1b <log 2(a +b )<b 2aD.log 2(a +b )<a +1b <b 2a答案(1)C(2)B解析 (1)法一 由题意,知a ≠0,b ≠0,则方程 (x -a )(x -b )(x -2a -b )=0的根为a ,b ,2a +b .①a ,b ,2a +b 均为不同的根,则不等式可标根为图(1), 此时应满足⎩⎪⎨⎪⎧a <0,b <0,2a +b <0,可得a <0,b <0.②a ,b ,2a +b 中有两个根为相等的根,则 (ⅰ)a =2a +b >0,即b =-a <0, 此时(x -a )2(x +a )≥0,符合图(2).(ⅱ)a =b <0,此时(x -a )2(x -3a )≥0,符合图(3). 综合①②,可知b <0符合题意.故选C.法二(特殊值法) 当b =-1,a =1时,(x -1)(x +1)(x -1)≥0在x ≥0时恒成立;当b =-1,a =-1时,(x +1)(x +1)(x +3)≥0在x ≥0时恒成立;当b =1,a =-1时,(x +1)(x -1)(x +1)≥0在x ≥0时不一定成立.故选C.(2)令a =2,b =12,则a +1b =4,b 2a =18,log 2(a +b )=log 252∈(1,2),则b 2a <log 2(a +b )<a +1b .考点二 一元二次不等式的解法角度1 不含参的不等式【例2-1】求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞,即原不等式的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞. 角度2含参不等式【例2-2】解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0, 解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫2a≤x ≤-1; 当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a .感悟升华 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论: (1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便正确写出解集.【训练2】 (1)(2019·天津卷)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为________. (2)已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =() A.-3 B.1 C.-1 D.3答案(1)⎝⎛⎭⎫-1,23(2)A 解析 (1)3x 2+x -2<0变形为(x +1)(3x -2)<0,解得-1<x <23,故使不等式成立的x 的取值范围为⎝⎛⎭⎫-1,23.(2)由题意得A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由题意知-1,2为方程x 2+ax +b =0的两根,由根与系数的关系可知a =-1,b =-2,则a +b =-3.考点三 一元二次不等式的恒成立问题角度1 在R 上恒成立【例3-1】若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为()A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0) 答案D解析一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,∴k ≠0,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0, 解之得-3<k <0.角度2 在给定区间上恒成立【例3-2】设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 答案⎩⎨⎧⎭⎬⎫m |0<m <67或m <0解析 要使f (x )<-m +5在[1,3]上恒成立, 则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪0<m <67或m <0. 法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是 ⎩⎨⎧⎭⎬⎫m |0<m <67或m <0.角度3 给定参数范围的恒成立问题【例3-3】已知a ∈[-1,1]时,不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为() A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞) D.(1,3) 答案C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3. 感悟升华恒成立问题求解思路(1)一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解. (2)一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性求其最小值,让最小值大于等于0,从而求参数的范围.(3)一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围就选谁当主元,求谁的范围谁就是参数.【训练3】 (1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是() A.[-1,4] B.(-∞,-2]∪[5,+∞) C.(-∞,-1]∪[4,+∞) D.[-2,5](2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.(3)若不等式x 2+(a -6)x +9-3a >0在|a |≤1时恒成立,则x 的取值范围是________.答案(1)A(2)⎝⎛⎭⎫-22,0(3)(-∞,2)∪(4,+∞) 解析(1)由于x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.(2)二次函数f (x )对于任意x ∈[m ,m +1],都有f (x )<0成立,则⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. (3)将原不等式整理成关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以①若x =3,则f (a )=0,不符合题意,应舍去.②若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0, 即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4. 故x 的取值范围是(-∞,2)∪(4,+∞).基础巩固题组一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是()A.f (x )=g (x )B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化答案B解析f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ).2.已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b成立的有() A.1个 B.2个 C.3个 D.4个答案C解析 运用倒数性质,由a >b ,ab >0可得1a <1b,②、④正确.又正数大于负数,①正确,③错误,故选C.3.已知a ,b >0,且P =a +b 2,Q =a 2+b 22,则P ,Q 的大小关系是() A.P ≥Q B.P >Q C.P ≤Q D.P <Q答案C解析 因为a ,b >0,所以P 2-Q 2=(a +b )24-a 2+b 22=-(a -b )24≤0,当且仅当a =b 时取等号.故选C.4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是()A.{a |0<a <4}B.{a |0≤a <4}C.{a |0<a ≤4}D.{a |0≤a ≤4}答案D解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4. 5.已知函数f (x )=-x 2+ax +b 2-b +1,对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定答案C解析 由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a 2=1,解得a =2. 又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.6.若实数a ,b ,c 满足对任意实数x ,y 有3x +4y -5≤ax +by +c ≤3x +4y +5,则()A.a +b -c 的最小值为2B.a -b +c 的最小值为-4C.a +b -c 的最大值为4D.a -b +c 的最大值为6答案A解析 由题意可得-5≤(a -3)x +(b -4)y +c ≤5恒成立,所以a =3,b =4,-5≤c ≤5,则2≤a +b -c ≤12,即a +b -c 的最小值是2,最大值是12,A 正确,C 错误;-6≤a -b +c ≤4,则a -b +c 的最小值是-6,最大值是4,B 错误,D 错误,故选A.二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________. 答案{x |x >1}解析 由题意知⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}. 8.若关于x 的不等式ax >b 的解集为⎝⎛⎭⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.答案⎝⎛⎭⎫-1,45 解析 由已知ax >b 的解集为⎝⎛⎭⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a 得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为⎝⎛⎭⎫-1,45. 9.当x >0时,若不等式x 2+ax +1≥0恒成立,则a 的最小值为________.答案 -2解析 当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0,则需⎩⎪⎨⎪⎧a 2-4>0,-a 2<0,解得a >2,所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2.10.下面四个条件中,使a >b 成立的充分而不必要的条件是________.①a >b +1;②a >b -1;③a 2>b 2;④a 3>b 3答案①解析 ①中,若a >b +1,则必有a >b ,反之,当a =2,b =1时,满足a >b ,但不能推出a >b +1,故a >b +1是a >b 成立的充分而不必要条件;②中,当a =b =1时,满足a >b -1,反之,由a >b -1不能推出a >b ;③中,当a =-2,b =1时,满足a 2>b 2,但a >b 不成立;④中,a >b 是a 3>b 3的充要条件,综上所述答案为①.三、解答题11.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解(1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3. 所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 即a 的值为3±3,b 的值为-3.12.已知-1<x +y <4且2<x -y <3,求z =2x -3y 的取值范围.解 设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y ,所以⎩⎪⎨⎪⎧m +n =2,m -n =-3,所以⎩⎨⎧m =-12,n =52,由-1<x +y <4知-2<-12(x +y )<12,① 由2<x -y <3知5<52(x -y )<152,② ①+②得3<-12(x +y )+52(x -y )<8,即3<z <8. 能力提升题组13.(2021·浙江十校联盟联考)已知a >b >0,给出下列命题: ①若a -b =1,则a -b <1;②若a 3-b 3=1,则a -b <1;③若e a -e b =1,则a -b <1;④若ln a -ln b =1,则a -b <1.其中真命题的个数是()A.1B.2C.3D.4答案B解析 对于①,当a >b >0,a -b =1时,a -b =(a +b )(a -b )=(1+b +b )(1+b -b )=1+2b >1,①错误;对于②,由a 3-b 3=(a -b )(a 2+ab +b 2)=1得a -b =1a 2+ab +b 2.又因为a >b >0,a 3-b 3=1,所以a 3=1+b 3>1,即a >1,所以a 2+ab +b 2>1,a -b =1a 2+ab +b 2<1,②正确;对于③,由e a -e b =1得e a -b =e a e b =e b +1e b =1+1e b <2,所以a -b <ln 2<1,③正确;对于④,由ln a -ln b =1得a =b e ,则a -b =(e -1)b ,当b >1e -1时,a -b =(e -1)b >1,④错误.综上所述,真命题的个数为2,故选B.14.(2020·湖州期末质检)已知实数a ,b ,c 满足a 2+b 2+2c 2=1,则2ab +c 的最小值是()A.-34B.-98C.-1D.-43答案B解析 由题意得1-2c 2=a 2+b 2≥-2ab ,所以2ab +c ≥2c 2+c -1=2⎝⎛⎭⎫c +142-98≥-98,当且仅当c =-14,ab =-716时等号成立,所以2ab +c 的最小值为-98,故选B. 15.若关于x 的不等式a ≤34x 2-3x +4≤b 的解集恰好是[a ,b ],则a =________,b =________. 答案04解析 令f (x )=34x 2-3x +4=34(x -2)2+1,其图象对称轴为x =2.①若a ≥2,则a ,b 是方程f (x )=x 的两个实根,解得a =43,b =4,矛盾; ②若b ≤2,则f (a )=b ,f (b )=a ,两式相减得a +b =83,代入f (a )=b 可得a =b =43,矛盾; ③若a <2<b ,则f (x )min =1,所以a ≤1(否则在顶点处不满足a ≤f (x )),所以此时a ≤f (x )的解集是R ,所以f (x )≤b 的解集是[a ,b ],所以f (a )=f (b )=b .由⎩⎪⎨⎪⎧f (b )=b ,b >2 解得b =4,由⎩⎪⎨⎪⎧f (a )=4,a <2解得a =0. 16.若实数x ,y 满足x 2+4y 2+4xy +4x 2y 2=32,则x +2y 的最小值为________,7(x +2y )+2xy 的最大值为________.答案 -4216解析 因为x 2+4y 2+4xy +4x 2y 2=32,所以(x +2y )2+4x 2y 2=32,则(x +2y )2≤32,-42≤x +2y ≤42,即x +2y 的最小值为-4 2.由(x +2y )2+4x 2y 2=32,不妨设⎩⎨⎧x +2y =42sin θ,2xy =42cos θ,则7(x +2y )+2xy =42(7sin θ+cos θ)=16sin(θ+φ),其中tan φ=77,所以当sin(θ+φ)=1时,7(x +2y )+2xy 取得最大值16. 17.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a <0.因为方程(x -2)⎝⎛⎭⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅; 当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0, 根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a >0, 由于1a <2,故原不等式的解集是⎩⎨⎧x ⎪⎪⎭⎬⎫x <1a 或x >2. 综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >2; 当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <1a ;当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. 18.(2016·浙江卷)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2; (2)34<f (x )≤32. 证明(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x ,由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34,又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.。
高考数学复习第二章基本初等函数导数及其应用第5课时指数与指数函数理市赛课公开课一等奖省优质课获奖
39/41
◆一个关系 分数指数幂与根式的关系 根式与分数指数幂的实质是相同的,分数指数幂与根式可以 相互转化,通常利用分数指数幂进行根式的化简运算.
40/41
◆两个防范 (1)指数函数y=ax(a>0,a≠1)的图像和性质与a的取值有关, 要特别注意区分a>1与0<a<1来研究. (2)对可化为a2x+b·ax+c=0或a2x+b·ax+c≥0(≤0)的指数方 程或不等式,常借助换元法解决,但应注意换元后“新元”的范 围.
为偶数时,n an=|a|= -a a<0 .⑤负数没有偶次方根.
5/41
2.有理数指数幂
6/41
(2)有理数指数幂的性质 ①aras=ar+s (a>0,r、s∈Q);②(ar)s=ars (a>0,r、s∈Q); ③(ab)r= arbr (a>0,b>0,r∈Q).
7/41
3.指数函数的图像与性质
(1)求f(x)的表达式;
(2)若不等式
1 a
x+
1 b
x-m≥0在x∈(-∞,1]时恒成立,求实
数m的取值范围.
解析:(1)因为f(x)的图像过A(1,6),B(3,24),则
b·a=6, b·a3=24.
所
以a2=4,又a>0,所以a=2,则b=3.所以f(x)=3·2x.
33/41
(2)由(1)知a=2,b=3,则x∈(-∞,1]时,
主干回顾 夯基固源 考点研析 题组冲关 素能提升 学科培优
课时规范训练
1/41
第 5 课时 指数与指数函数
2/41
1.了解指数函数模型的实际背景. 2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂 的运算. 3.理解指数函数的概念,理解指数函数的单调性,掌握指数 函数图像通过的特殊点. 4.知道指数函数是一类重要的函数模型.
2015届高考数学一轮总复习 2-5对数与对数函数
2015届高考数学一轮总复习 2-5对数与对数函数基础巩固强化一、选择题1.(2013·湖南省五市十校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >32x -3+1,x ≤3满足f (a )=3,则f (a -5)的值为( )A .log 23 B.1716 C.32 D .1[答案] C[解析] ∵f (a )=3,∴⎩⎪⎨⎪⎧a ≤3,2a -3+1=3, ①或⎩⎪⎨⎪⎧a >3,log 2(a +1)=3. ② ①无解,由②得,a =7,所以f (a -5)=22-3+1=32,选C.2.(文)已知0<a <1,log a m <log a n <0,则( ) A .1<n <m B .1<m <n C .m <n <1 D .n <m <1[答案] A[解析] 由0<a <1得函数y =log a x 为减函数. 又由log a m <log a n <0=log a 1,得m >n >1,故应选A. (理)(2013·山东威海期末)下列四个数中最大的是( ) A .(ln2)2 B .ln(ln2) C .ln 2 D .ln2[答案] D[解析] 由0<ln2<1,得ln(ln2)<0,因此ln(ln2)是最小的一个;由于y =ln x 为增函数,因此ln 2<ln2;那么最大的只能是A 或D ;因为0<ln2<1,故(ln2)2<ln2.3.(文)(2013·宣城二模)若a =ln 264,b =ln2·ln3,c =ln 2π4,则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .c >b >aD .b >a >c[答案] A[解析] ∵ln6>lnπ>1,∴a >c ,排除B ,C ;b =ln2·ln3<(ln2+ln32)2=ln 264=a ,排除D ,故选A.(理)若x ∈(110,1),a =lg x ,b =lg 2x ,c =12lg x ,则a 、b 、c 的大小关系是( )A .a <b <cB .a <c <bC .c <a <bD .b <c <a[答案] B[解析] ∵110<x <1,∴-1<lg x <0,∴0<lg 2x <1,∵a -c =lg x -12lg x =12lg x <0,∴a <c ,故a <c <b ,故选B.4.(文)(2013·开封一模)已知f (x )是奇函数,且f (2-x )=f (x ),当x ∈(2,3)时,f (x )=log 2(x -1),则当x ∈(1,2)时,f (x )=( )A .-log 2(4-x )B .log 2(4-x )C .-log 2(3-x )D .log 2(3-x ) [答案] C[解析] 依题意得f (x +2)=f (-x )=-f (x ),f (x +4)=-f (x +2)=f (x ).当x ∈(1,2)时,x -4∈(-3,-2),4-x ∈(2,3),故f (x )=f (x -4)=-f (4-x )=-log 2(4-x -1)=-log 2(3-x ),选C.(理)(2013·乌鲁木齐第一次诊断)函数f (x )=log 2(1+x ),g (x )=log 2(1-x ),则f (x )-g (x )( ) A .是奇函数 B .是偶函数C .既不是奇函数又不是偶函数D .既是奇函数又是偶函数 [答案] A[解析] f (x )-g (x )的定义域为(-1,1),记F (x )=f (x )-g (x )=log 21+x 1-x ,则F (-x )=log 21-x1+x=log 2(1+x 1-x )-1=-log 21+x1-x=-F (x ),故f (x )-g (x )是奇函数.5.(文)函数f (x )=|log 12x |的图象是( )[答案] A[解析] f (x )=|log 12x |=|log 2x |=⎩⎪⎨⎪⎧log 2x (x ≥1),-log 2x (0<x <1).故选A. [点评] 可用筛选取求解,f (x )的定义域为{x |x >0},排除B 、D ,f (x )≥0,排除C ,故选A. (理)(2012·河南豫东、豫北十所名校段测)函数y =ln|1x |与y =-x 2+1在同一平面直角坐标系内的大致图象为( )[答案] C[解析] y =ln|1x |为偶函数,当x >0时,y =ln 1x =-ln x 为减函数,故排除A 、B ;y =-x 2+1≤0,其图象在x 轴下方,排除D ,故选C.6.(文)(2012·湖南文,7)设a >b >1,c <0,给出下列三个结论: ①c a >cb ; ②ac <b c ; ③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是( ) A .① B .①② C .②③ D .①②③[答案] D[解析] 本题考查不等式性质,比较大小.c a -c b =c (b -a )ab ,∵a >b >1,c <0,∴c (b -a )ab >0,c a >cb ,①正确;a >b >1,ac <b c ,②正确;∵a -c >b -c >1,∴log b (a -c )>log b (b -c )>log a (b -c ),③正确. [点评] 比较大小的方法有作差法、单调性法等.(理)(2013·北京东城区检测)给出下列命题:①在区间(0,+∞)上,函数y =x -1,y =x 12 ,y =(x -1)2,y =x 3中有3个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x-1)的图象关于点A (1,0)对称;④已知函数f (x )=⎩⎪⎨⎪⎧3x -2,x ≤2log 3(x -1),x >2,则方程f (x )=12有2个实数根,其中正确命题的个数为( )A .1B .2C .3D .4 [答案] C[解析] 命题①中,在(0,+∞)上只有y =x 12,y =x 3为增函数,故①不正确;②中第1个不等式等价于log 31>log 3m >log 3n ,故0<n <m <1,②正确;③中函数y =f (x -1)的图象是把y =f (x )的图象向右平移1个单位得到的,由于函数y =f (x )的图象关于坐标原点对称,故函数y =f (x -1)的图象关于点A (1,0)对称,③正确;④中当3x -2=12时,x =2+log 312<2,当log 3(x -1)=12时,x =1+3>2,故方程f (x )=12有2个实数根,④正确.故选C.二、填空题 7.(文)函数y =log 23-x 2的定义域为________. [答案] {x |1≤x <2或-2<x ≤-1}[解析] 要使函数有意义,应满足log 23 (2-x 2)≥0,∵y =log 23 x 为减函数,∴0<2-x 2≤1,∴1≤x 2<2,∴1≤x <2或-2<x ≤-1.(理)函数f (x )=ln ⎝⎛⎭⎫1+1x -1的定义域是________.[答案] (-∞,0)∪(1,+∞)[解析] 要使f (x )有意义,应有1+1x -1>0,∴xx -1>0,∴x <0或x >1. 8.(文)(2013·河南鹤壁一模)若正整数m 满足10m -1<2512<10m ,则m =________.(lg2≈0.3010) [答案] 155[解析] 不等式10m-1<2512<10m 两边同时取以10为底的对数,则⎩⎪⎨⎪⎧m -1<512lg2,m >512lg2,∴154.112<m <155.112,∴m =155.(理)(2013·天津塘沽一模)若f (x )=ax -12,且f (lg a )=10,则a =________.[答案] 10或1010[解析]9.方程log 3(x 2-10)=1+log 3x 的解是________. [答案] x =5[解析] 原方程化为log 3(x 2-10)=log 3(3x ),由于log 3x 在(0,+∞)上严格单增,则x 2-10=3x ,解之得x 1=5,x 2=-2.∵要使log 3x 有意义,应有x >0,∴x =5.三、解答题10.(文)(2013·广西桂林一模)已知函数f (x )=log a (a x -1)(a >0且a ≠1). (1)证明函数f (x )的图象在y 轴的一侧;(2)设A (x 1,y 1)、B (x 2,y 2)(x 1<x 2)是f (x )图象上两点,证明直线AB 的斜率大于0. [证明] (1)由a x -1>0,得a x >1.当a >1时,解得x >0,此时f (x )的图象在y 轴右侧; 当0<a <1时,解得x <0,此时f (x )的图象在y 轴左侧. ∴对a >0且a ≠1的任意实数a ,f (x )的图象总在y 轴一侧.(理)(2013·北京朝阳期末)已知f (x )=log 3x 2+ax +b x ,x ∈(0,+∞),是否存在实数a ,b ,使f (x )同时满足下列条件:①在(0,1)上是减函数,在[1,+∞)上是增函数;②f (x )的最小值是1.若存在,求出a ,b 的值;若不存在,请说明理由.[解析] 假设存在实数a ,b 使命题成立,∵f (x )在(0,1)上是减函数,在[1,+∞)上是增函数,∴x =1时,f (x )取得最小值1, ∴log 31+a +b 1=1,∴a +b =2.∵f (x )在(0,1)上是减函数, 设0<x 1<x 2<1, ∴f (x 1)>f (x 2)恒成立,即x 21+ax 1+b x 1>x 22+ax 2+b x 2恒成立,整理得(x 1-x 2)(x 1x 2-b )x 1x 2>0恒成立.∵0<x 1<x 2<1,∴x 1-x 2<0,x 1x 2>0, ∴x 1x 2-b <0恒成立,即x 1x 2<b 恒成立, 而x 1x 2<1,∴b ≥1.同理,f (x )在[1,+∞)上是增函数, 可得b ≤1,∴b =1.又∵a +b =2,∴a =1. 故存在a =1,b =1同时满足题中条件.能力拓展提升一、选择题11.(文)(2012·广东深圳市一调)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn(ln x )-ln 2x的零点个数为( )A .4B .3C .2D .1 [答案] C[解析] 由题意得f (x )=sgn(ln x )-ln 2x =⎩⎪⎨⎪⎧1-ln 2x , x >1,-ln 2x , x =1,-1-ln 2x , 0<x <1,则令1-ln 2x =0⇒x =e 或x =1e(舍去);令-ln 2x =0⇒x =1;当-1-ln 2x =0时,方程无解,所以f (x )=sgn(ln x )-ln 2x 有两个零点,故选C.(理)已知函数f (x )=(15)x -log 3x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值( )A .不小于0B .恒为正数C .恒为负数D .不大于0[答案] B[解析] 若实数x 0是方程f (x )=0的解,即x 0是函数y =(15)x 和y =log 3x 的图象的交点的横坐标,因为0<x 1<x 0,画图易知(15)x 1>log 3x 1,所以f (x 1)恒为正数.12.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2014x +log 2014x ,则方程f (x )=0的实根的个数为( )A .1B .2C .3D .5 [答案] C[解析] 当x >0时,f (x )=0即2014x =-log 2014x ,在同一坐标系下分别画出函数f 1(x )=2014x ,f 2(x )=-log 2014x 的图象(图略),可知两个图象只有一个交点,即方程f (x )=0只有一个实根,又因为f (x )是定义在R 上的奇函数,所以当x <0时,方程f (x )=0也有一个实根,又因为f (0)=0,所以方程f (x )=0的实根的个数为3.13.(2013·湖南张家界一模)若log m n =-1,则m +3n 的最小值是( ) A .2 2 B .2 3 C .2 D.52[答案] B[解析] 由log m n =-1,得m -1=n ,则mn =1.由于m >0,n >0,∴m +3n ≥23mn =2 3.故选B. 二、填空题14.(文)(2013·安徽师大附中、安庆一中联考)已知函数f (x )的定义域为A ,若其值域也为A ,则称区间A 为f (x )的保值区间.若g (x )=x +m +ln x 的保值区间是[e ,+∞),则m 的值为________.[答案] -1[解析] 由题意得,g (x )的值域为[e ,+∞),由x ≥e 时,g ′(x )=1+1x >0,所以当x ≥e 时,g (x )为增函数,由题意可得g (e)=e +m +1=e ,解得m =-1.(理)对任意实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,(a ≤b ),b ,(a >b ).则函数f (x )=log 12(3x -2)*log 2x的值域为________.[答案] (-∞,0][解析] 易知函数f (x )的定义域为(23,+∞),在同一直角坐标系中画出函数y =log 12 (3x -2)和y =log 2x 的图象,由a *b 的定义可知,f (x )的图象为图中实线部分,∴由图象可得f (x )=⎩⎨⎧log 2x ,(23<x ≤1),log 12(3x -2),(x >1).的值域为(-∞,0].15.(文)(2013·四川)lg 5+lg 20的值是________.[答案] 1[解析] lg 5+lg 20=lg 100=lg10=1.(理)(2013·北京)函数f (x )=⎩⎪⎨⎪⎧log 12 x ,x ≥12x , x <1的值域为________.[答案] (-∞,2)[解析] 当x ≥1时,log 12 x ≤log 12 1,即log 12 x ≤0;当x <1时,0<2x <21,即0<2x <2.故f (x )的值域为(-∞,2).三、解答题16.(文)已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.[解析] (1)由题意,3-ax >0对一切x ∈[0,2]恒成立,∵a >0且a ≠1,∴g (x )=3-ax 在[0,2]上是减函数,从而g (2)=3-2a >0得a <32.∴a 的取值范围为(0,1)∪⎝⎛⎭⎫1,32. (2)假设存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 由题设f (1)=1,即log a (3-a )=1,∴a =32,此时f (x )=log 32 ⎝⎛⎭⎫3-32x ,当x =2时,函数f (x )没有意义,故这样的实数a 不存在. (理)已知函数f (x )=log 12 2-axx -1(a 是常数且a <2).(1)求f (x )的定义域;(2)若f (x )在区间(2,4)上是增函数,求a 的取值范围. [解析] (1)∵2-axx -1>0,∴(ax -2)(x -1)<0,①当a <0时,函数的定义域为⎝⎛⎭⎫-∞,2a ∪(1,+∞); ②当a =0时,函数的定义域为(1,+∞); ③当0<a <2时,函数的定义域为⎝⎛⎭⎫1,2a .(2)∵f (x )在(2,4)上是增函数,∴只要使2-axx -1在(2,4)上是减函数且恒为正即可.令g (x )=2-axx -1,即当x ∈(2,4)时g ′(x )≤0恒成立且g (4)≥0. 解法一:g ′(x )=-a (x -1)-(2-ax )(x -1)2=a -2(x -1)2,∴当a -2<0,即a <2时,g ′(x )≤0.g (4)≥0,即1-2a ≥0,∴a ≤12,∴a ∈⎝⎛⎦⎤-∞,12. 解法二:∵g (x )=2-ax x -1=-a +2-ax -1,∴要使g (x )=-a +2-ax +1在(2,4)上是减函数,只需2-a >0,∴a <2,以下步骤同解法一.考纲要求1.理解对数的概念及其运算性质,会用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型.4.了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,且a ≠1). 补充说明1.掌握对数函数图象过定点(1,0)且过(a,1);熟悉对数的性质、运算法则和换底公式;会用对数函数单调性比较对数式的大小和解对数不等式;熟练进行指对互化;清楚对数函数图象的分布规律.2.恒成立问题一般与函数最值有关,要与方程有解区别开来. 3.忽视对数函数的定义域是解题过程中常犯的错误,要引起足够重视. [例] 函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(0,13)D .(3,+∞)[错解] 由于a >0,且a ≠1,∴y =ax -3是增函数,若函数f (x )为增函数,则y =log a x 必为增函数,所以a >1,故选A. [错因分析] 本题解答出错的根源就在于忽视了“函数在[1,3]上单调递增”这一条件,即要求函数f (x )在[1,3]上需有意义,也就是需使y =ax -3在[1,3]上恒大于零.[正确解答] 由于a >0,且a ≠1,∴y =ax -3为增函数,∴若函数f (x )为增函数,则y =log a x 必为增函数, 因此a >1.又y =ax -3在[1,3]上恒为正, ∴a -3>0,即a >3,故选D.4.(1)同底数的对数比较大小用单调性.(2)同真数的对数比较大小用图象或换底或转化为指数式. (3)作差或作商法(4)利用中间量0、1比较.5.对数函数图象在第一象限内底数越小,图象越靠近y 轴(逆时针底数依次变小),在直线x =1右侧,底大图低(区分x 轴上方与下方).6.在对数运算中,常常先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底和指对互化的运用.备选习题1.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为( )A .6B .7C .8D .9 [答案] C[解析] ∵函数y =log a (x +3)-1的图象恒过点(-2,-1),∴-2m -n +1=0,即2m +n =1,于是1m +2n =(1m +2n )(2m +n )=2+2+n m +4m n ≥8.等号在n =12,m =14时成立.2.(2013·湖南)函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( ) A .3 B .2 C .1 D .0 [答案] C[解析] 画出两函数的大致图象,可得两图象的交点个数为2. 3.已知函数f (x )=log a x 在[2,+∞)上恒有|f (x )|>1,则( ) A .0<a <12或1<a <2B .0<a <12或a >2C.12<a <1或1<a <2 D.12<a <1或a >2 [答案] C[解析] ①若a >1,则f (x )=log a x 在[2,+∞)上是增函数,且当x ≥2时,f (x )>0. 由|f (x )|>1得f (x )>1,即log a x >1. ∵当x ∈[2,+∞)时,log a x >1恒成立, ∴log a 2>1,∴log a 2>log a a ,∴1<a <2.②若0<a <1,则f (x )=log a x 在[2,+∞)上是减函数.11 同理可得12<a <1. [点评] 用数形结合法解更简便些.4.(2013·江西省七校联考)设a =0.64.2,b =70.6,c =log 0.67,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .a <c <bD .a <b <c[答案] B[解析] 依题意,0<0.64.2<0.60=1,70.6>70=1,log 0.67<log 0.61=0,因此c <a <b ,选B.5.设f (x )=lg(21-x+a )是奇函数,且在x =0处有意义,则该函数是( ) A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数[答案] D[解析] 由题意可知,f (0)=0,即lg(2+a )=0,解得a =-1,故f (x )=lg 1+x 1-x,函数f (x )的定义域是(-1,1),在此定义域内f (x )=lg 1+x 1-x =lg(1+x )-lg(1-x ),函数y 1=lg(1+x )是增函数,函数y 2=lg(1-x )是减函数,故f (x )=y 1-y 2是增函数.选D.。
2020版高考数学二轮复习第2部分专题5解析几何第2讲圆锥曲线的定义、方程及性质教案(文)
第2讲 圆锥曲线的定义、方程及性质[做小题——激活思维]1.椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A ,B 两点,则△F 1AB 的周长为( )A .12B .16C .20D .24 C [△F 1AB 的周长为 |F 1A |+|F 1B |+|AB |=|F 1A |+|F 2A |+|F 1B |+|F 2B | =2a +2a =4a .在椭圆x 225+y 216=1中,a 2=25,a =5,∴△F 1AB 的周长为4a =20,故选C.]2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线D [由已知得|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.]3.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左、右两个焦点,若|PF 1|=9,则|PF 2|=________.17 [由题意知|PF 1|=9<a +c =10,所以P 点在双曲线的左支,则有|PF 2|-|PF 1|=2a =8,故|PF 2|=|PF 1|+8=17.]4.设e 是椭圆x 24+y 2k =1的离心率,且e =23,则实数k 的值是________.209或365[当k >4时,有e =1-4k =23,解得k =365;当0<k <4时,有e =1-k4=23,解得k =209.故实数k 的值为209或365.]5.双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.5 [∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3ax .又双曲线的一条渐近线方程为y =35x ,∴a =5.]6.抛物线8x 2+y =0的焦点坐标为________.⎝ ⎛⎭⎪⎫0,-132 [由8x 2+y =0,得x 2=-18y . ∴2p =18,p =116,∴焦点为⎝⎛⎭⎪⎫0,-132.][扣要点——查缺补漏]1.圆锥曲线的定义及标准方程(1)应用圆锥曲线的定义解题时,一定不要忽视定义中的隐含条件,如T 3.(2)凡涉及椭圆或双曲线上的点到焦点的距离、抛物线上的点到焦点距离,一般可以利用定义进行转化.如T 1,T 2.(3)求解圆锥曲线的标准方程的方法是“先定型,后计算”. 2.圆锥曲线的几何性质(1)确定椭圆和双曲线的离心率的值及范围,就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,如T 4.(2)要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.圆锥曲线的定义与标准方程(5年4考)[高考解读] 高考对圆锥曲线的定义及标准方程的直接考查较少,多对于圆锥曲线的性质进行综合考查.1.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 切入点:|AF 2|=2|F 2B |,|AB |=|BF 1|.关键点:挖掘隐含条件,确定点A 的位置,求a ,b 的值.B [设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|, ∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又∵|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴B ⎝ ⎛⎭⎪⎫32,-b 2.将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选B.]2.(2015·全国卷Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.切入点:△APF 的周长最小.关键点:根据双曲线的定义及△APF 周长最小,确定P 点坐标.126 [由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+662=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66,由⎩⎪⎨⎪⎧y =26x +66,x 2-y 28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去), 所以S △APF =S △AF 1F -S △PF 1F=12×6×66-12×6×26=12 6.] [教师备选题]1.[一题多解](2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.x 24-y 2=1 [法一:∵双曲线的渐近线方程为y =±12x , ∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3), ∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上,故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1.]2.(2018·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 23-y 29=1B.x 29-y 23=1C.x 24-y 212=1 D.x 212-y 24=1 A [设双曲线的右焦点为F (c,0).将x =c 代入x 2a 2-y 2b 2=1,得c 2a 2-y 2b 2=1,∴ y =±b 2a.不妨设A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a . 双曲线的一条渐近线方程为y =bax ,即bx -ay =0,则d 1=⎪⎪⎪⎪⎪⎪b ·c -a ·b 2a b 2+-a2=|bc -b 2|c=bc(c -b ),d 2=⎪⎪⎪⎪⎪⎪b ·c +a ·b 2a b 2+-a2=|bc +b 2|c=bc(c +b ),∴ d 1+d 2=bc·2c =2b =6,∴ b =3. ∵ c a=2,c 2=a 2+b 2,∴ a 2=3, ∴ 双曲线的方程为x 23-y 29=1.故选A.]1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d (d 为M 点到准线的距离).易错提醒:应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误. 2.求解圆锥曲线标准方程的方法是“先定型,后计算”(1)定型:就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程; (2)计算:即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线方程常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆方程常设为mx 2+ny 2=1(m >0,n >0,且m ≠n ),双曲线方程常设为mx 2-ny 2=1(mn >0).1.(椭圆的定义)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514 B.59 C.49 D.513D [如图,设线段PF 1的中点为M ,因为O 是F 1F 2的中点,所以OM ∥PF 2,可得PF 2⊥x 轴,|PF 2|=b 2a =53,|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=513.故选D.]2.(双曲线的标准方程)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为45,渐近线方程为2x ±y =0,则双曲线的方程为( )A.x 24-y 216=1 B.x 216-y 24=1 C.x 216-y 264=1 D.x 264-y 216=1 A [易知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点在x 轴上,所以由渐近线方程为2x ±y =0,得b a=2,因为双曲线的焦距为45,所以c =2 5.结合c 2=a 2+b 2,可得a =2,b =4,所以双曲线的方程为x 24-y 216=1.]3.(抛物线的定义)过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A ,B 两点,若|AF |=2|BF |=6,则p =________.4 [设直线AB 的方程为x =my +p2,A (x 1,y 1),B (x 2,y 2),且x 1>x 2,将直线AB 的方程代入抛物线方程得y 2-2pmy -p 2=0,所以y 1y 2=-p 2,4x 1x 2=p 2.设抛物线的准线为l ,过A 作AC ⊥l ,垂足为C (图略),过B 作BD ⊥l ,垂足为D ,因为|AF |=2|BF |=6,根据抛物线的定义知,|AF |=|AC |=x 1+p 2=6,|BF |=|BD |=x 2+p2=3,所以x 1-x 2=3,x 1+x 2=9-p ,所以(x 1+x 2)2-(x 1-x 2)2=4x 1x 2=p 2,即18p -72=0,解得p =4.]圆锥曲线的性质(5年17考)[高考解读] 高考对圆锥曲线性质的考查主要涉及椭圆和双曲线的离心率、双曲线的渐近线,难度适中.1.(2019·全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p=( )A .2B .3C .4D .8 切入点:抛物线的焦点是椭圆的焦点. 关键点:正确用p 表示抛物线和椭圆的焦点.D [抛物线y 2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆x 23p +y 2p=1的焦点坐标为(±2p ,0).由题意得p2=2p ,∴p =0(舍去)或p =8.故选D.]2.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3 C .2 D. 5切入点:以OF 为直径的圆与圆x 2+y 2=a 2相交且|PQ |=|OF |.关键点:正确确定以OF 为直径的圆的方程.A [令双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c,0),则c =a 2+b 2.如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c2,由|OM |2+|MP |2=|OP |2,得⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫c 22=a 2,∴c a =2,即离心率e = 2.故选A.]3.[一题多解](2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)切入点:C 上存在点M 满足∠AMB =120°.关键点:求椭圆上的点与椭圆两端点连线构成角的范围建立关于m 的不等式. A [法一:设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0).故tan∠AMB =tan(∠AMN +∠BMN ) =3+x |y |+3-x |y |1-3+x |y |·3-x |y |=23|y |x 2+y 2-3. 又tan∠AMB =tan 120°=-3,且由x 23+y 2m =1可得x 2=3-3y 2m,则23|y |3-3y 2m+y 2-3=23|y |⎝ ⎛⎭⎪⎫1-3m y2=- 3. 解得|y |=2m3-m. 又0<|y |≤m ,即0<2m3-m ≤m ,结合0<m <3解得0<m ≤1.对于焦点在y 轴上的情况,同理亦可得m ≥9. 则m 的取值范围是(0,1]∪[9,+∞).故选A.法二:当0<m <3时,焦点在x 轴上, 要使C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°=3,即m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞). 故选A.] [教师备选题]1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x A [因为双曲线的离心率为3,所以c a=3,即c =3a .又c 2=a 2+b 2,所以(3a )2=a 2+b 2,化简得2a 2=b 2,所以b a = 2.因为双曲线的渐近线方程为y =±bax ,所以y =±2x .故选A.]2.(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32D [因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D.]3.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13A [由题意知以A 1A 2为直径的圆的圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2aba 2+b2=a ,解得a =3b ,∴b a=13,∴e =c a =a 2-b 2a=1-⎝ ⎛⎭⎪⎫b a 2=1-⎝ ⎛⎭⎪⎫132=63. 故选A.]1.椭圆、双曲线的离心率(或范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求ca的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值.②利用渐近线方程设所求双曲线的方程.1.(椭圆的离心率)[一题多解]直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34B [法一:如图,|OB |为椭圆中心到l 的距离,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b 2,所以e =c a =12.故选B.法二:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),由题意可取直线l 的方程为y =ba 2-b 2x +b ,椭圆中心到l 的距离为b a 2-b 2a ,由题意知b a 2-b 2a =14×2b ,即a 2-b 2a =12,故离心率e =12.] 2.(双曲线的离心率)设F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,M为双曲线右支上一点,N 是MF 2的中点,O 为坐标原点,且ON ⊥MF 2,3|ON |=2|MF 2|,则C 的离心率为( )A .6B .5C .4D .3B [连接MF 1(图略),由双曲线的定义得|MF 1|-|MF 2|=2a ,因为N 为MF 2的中点,O 为F 1F 2的中点,所以ON ∥MF 1,所以|ON |=12|MF 1|,因为3|ON |=2|MF 2|,所以|MF 1|=8a ,|MF 2|=6a ,因为ON ⊥MF 2,所以MF 1⊥MF 2,在Rt△MF 1F 2中,由勾股定理得(8a )2+(6a )2=(2c )2,即5a =c ,因为e =c a,所以e =5,故选B.]3.(椭圆与抛物线的综合)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12B [抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c=2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),因为离心率e =c a =12,所以a =4,所以b 2=a2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B.]直线与圆锥曲线的综合问题(5年5考)[高考解读] 直线与圆锥曲线的位置关系是每年高考的亮点,主要涉及直线与抛物线、直线与椭圆的综合问题,突出考查研究直线与圆锥曲线位置关系的基本方法,注意通性通法的应用,考查考生的逻辑推理和数学运算核心素养.角度一:直线与圆锥曲线的位置关系1.(2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .切入点:①直线l 过点A ;②l 与C 交于M ,N 两点;③l 与x 轴垂直. 关键点:将问题转化为证明k BM 与k BN 具有某种关系.[解] (1)当l 与x 轴垂直时,l 的方程为x =2,可得点M 的坐标为(2,2)或(2,-2).所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k x -2,y 2=2x 得ky 2-2y -4k =0,可知y 1+y 2=2k,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+2y 1+y 2x 1+2x 2+2.①将x 1=y 1k +2,x 2=y 2k+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k y 1+y 2k=-8+8k=0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .角度二:直线与圆锥曲线的相交弦问题2.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:2|FP →|=|FA →|+|FB →|. 切入点:①直线l 与椭圆C 相交;②AB 的中点M (1,m ).关键点:根据FP →+FA →+FB →=0及点P 在C 上确定m ,并进一步得出|FP →|,|FA →|,|FB →|的关系.[证明] (1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34,从而P 1,-32,|FP →|=32.于是|FA →|=x 1-12+y 21=x 1-12+31-x 214=2-x 12.同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|. [教师备选题](2018·北京高考)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(1)求椭圆M 的方程;(2)若k =1,求|AB |的最大值;(3)设P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若C ,D 和点Q ⎝⎛⎭⎪⎫-74,14共线,求k .[解] (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =63,2c =22,解得a =3,b =1.所以椭圆M 的方程为x 23+y 2=1. (2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =x +m ,x 23+y 2=1,得4x 2+6mx +3m 2-3=0,所以x 1+x 2=-3m 2,x 1x 2=3m 2-34.所以|AB |= x 2-x 12+y 2-y 12= 2x 2-x 12= 2[x 1+x 22-4x 1x 2]=12-3m 22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6. (3)设A (x 1,y 1),B (x 2,y 2), 由题意得x 21+3y 21=3,x 22+3y 22=3. 直线PA 的方程为y =y 1x 1+2(x +2).由⎩⎪⎨⎪⎧y =y 1x 1+2x +2,x 2+3y 2=3,得[(x 1+2)2+3y 21]x 2+12y 21x +12y 21-3(x 1+2)2=0. 设C (x C ,y C ),所以x C +x 1=-12y 21x 1+22+3y 21=4x 21-124x 1+7. 所以x C =4x 21-124x 1+7-x 1=-12-7x 14x 1+7.所以y C =y 1x 1+2(x C +2)=y 14x 1+7. 设D (x D ,y D ),同理得x D =-12-7x 24x 2+7,y D =y 24x 2+7.记直线CQ ,DQ 的斜率分别为k CQ ,k DQ ,则k CQ -k DQ =y 14x 1+7-14-12-7x 14x 1+7+74-y 24x 2+7-14-12-7x 24x 2+7+74=4(y 1-y 2-x 1+x 2). 因为C ,D ,Q 三点共线,所以k CQ -k DQ =0. 故y 1-y 2=x 1-x 2. 所以直线l 的斜率k =y 1-y 2x 1-x 2=1.1.判断直线与圆锥曲线公共点的个数或求交点问题的两种常用方法(1)代数法:联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得到一个一元二次方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;(2)几何法:画出直线与圆锥曲线,根据图形判断公共点个数. 2.弦长公式设斜率为k 的直线l 与圆锥曲线C 的两交点为P (x 1,y 1),Q (x 2,y 2). 则|PQ |=|x 1-x 2|1+k 2=[x 1+x 22-4x 1x 2]1+k2.或|PQ |=|y 1-y 2|1+1k2=[y 1+y 22-4y 1y 2]⎝⎛⎭⎪⎫1+1k 2(k ≠0).3.弦的中点圆锥曲线C :f (x ,y )=0的弦为PQ .若P (x 1,y 1),Q (x 2,y 2),中点M (x 0,y 0),则x 1+x 2=2x 0,y 1+y 2=2y 0.1.(直线与椭圆的综合)已知离心率为12的椭圆x 2a 2+y2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,上顶点为B ,且BA 1→·BA 2→=-1.(1)求椭圆的标准方程;(2)过椭圆左焦点F 的直线l 与椭圆交于M ,N 两点,且直线l 与x 轴不垂直,若D 为x 轴上一点,|DM →|=|DN →|,求|MN ||DF |的值.[解] (1)A 1,A 2,B 的坐标分别为(-a,0),(a,0),(0,b ),BA 1→·BA 2→=(-a ,-b )·(a ,-b )=b 2-a 2=-1,∴c 2=1. 又e =c a =12,∴a 2=4,b 2=3.∴椭圆的标准方程为x 24+y 23=1.(2)由(1)知F (-1,0),设M (x 1,y 1),N (x 2,y 2), ∵直线l 与x 轴不垂直,∴可设其方程为y =k (x +1). 当k =0时,易得|MN |=4,|DF |=1,|MN ||DF |=4.当k ≠0时,联立⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +1,得(3+4k 2)x 2+8k 2x +4k 2-12=0,∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2, ∴|MN |=x 1-x 22+y 1-y 22=1+k 2|x 1-x 2|=1+k2x 1+x 22-4x 1x 2=12+12k 23+4k2. 又y 1+y 2=k (x 1+x 2+2)=6k3+4k2, ∴MN 的中点坐标为⎝ ⎛⎭⎪⎫-4k 23+4k 2,3k 3+4k 2,∴MN 的垂直平分线方程为y -3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x +4k 23+4k 2(k ≠0), 令y =0得,1k x +k 3+4k 2=0,解得x =-k23+4k2.|DF |=⎪⎪⎪⎪⎪⎪-k 23+4k 2+1=3+3k 23+4k 2,∴|MN ||DF |=4.综上所述,|MN ||DF |=4.2.(直线与抛物线的综合)过抛物线E :x 2=4y 的焦点F 的直线交抛物线于M ,N 两点,抛物线在M ,N 两点处的切线交于点P .(1)证明点P 落在抛物线E 的准线上; (2)设MF →=2FN →,求△PMN 的面积.[解] (1)抛物线x 2=4y 的焦点坐标为(0,1),准线方程为y =-1.设直线MN 的方程为y =kx +1,代入抛物线方程x 2=4y ,整理得x 2-4kx -4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 对y =14x 2求导,得y ′=12x ,所以直线PM 的方程为y -y 1=12x 1(x -x 1).①直线PN 的方程为y -y 2=12x 2(x -x 2).②联立方程①②,消去x ,得y =-1. 所以点P 落在抛物线E 的准线上.(2)因为MF →=(-x 1,1-y 1),FN →=(x 2,y 2-1),且MF →=2FN →.所以⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-1,得x 21=8,x 22=2.不妨取M (22,2),N (-2,12),由①②得P ⎝ ⎛⎭⎪⎫22,-1.易得|MN |=92,点P 到直线MN 的距离d =322,所以△PMN 的面积S =12×92×322=2728.。
专题05 开放性问题-2023年高考数学复习(二三轮)专题新构想
专题5 开放性问题开放性试题由于条件、方法与结果的不确定性,所以呈现岀条件开放、过程开放、结论开放等特点,且没有唯一固定答案,因此在教育和评价中有特定的功能.如果说封闭性试题在考査学生思维的严谨性、目标的客观性、方式的规范性上独具优势的话,那么开放性试题则在考査学生思维的灵活性、创造性上更为突出,甚至关注学习者情感、态度和价值观等非智力因素,关注探究性和生成性的考査,所以在评价研究与实践中发挥越来越重要的作用.一、数学开放题的特点除了一般开放题的特点,数学开放题还有独特的特征.传统数学试题的特点是条件都是给定的,而且不多不少,全部应用就可以解题.解题的思路是固定的,即使是一题多解的题目,每种解法的思路也是固定的,只要沿着固定的思路就能解题.解题的结果也是唯一、确定的,能得出确切的结论和数值.而数学开放题具有以下的特点:1.数学开放题的条件是不充分的,需要学生补充条件才能解题,补充的条件不同,解题的思路和解法也会不同.2.题目的结论不是事先给定的,有些问题的答案是不确定的,存在着多样的解答,但重要的还不是答案本身的多样性,而在于寻求解答过程中主体的认知结构的重建.3.没有现成的解题模式,有些答案可能易于直觉地被发现,但是在求解过程中往往需要从多个角度进行思考和探索.4.实际应用性的开放题,主体必须将生活语言用数学语言将其数学化,建立数学模型才能解决.在求解过程中往往可以引出新的问题,或将问题加以推广,找出更一般、更有概括性的结论.二、高考考查开放题的实践开放性试题以核心素养和关键能力为考查目标,在命制开放题时,可以从多方面进行探索尝试,如给出一系列事实或数据,要求考生从中发现问题并归纳结论或阐释原理;设置条件缺失试题,要求考生补充条件,解决问题;给出限制条件,列举满足条件的实例;综合开放等等.1.列举实例,考查学以致用举例题在2013年的高考新题型测试中已经引入,要求考生通过给出已知结论、性质和定理等条件,从题干中获取信息,整理信息,写出符合题干要求的结论或是具体实例.在2021年8省联考中又进一步的测试、考查.例1 (8省联考试卷第15题)写出一个最小正周期为2的奇函数f(x)= .解:根据奇函数性质可考虑正弦型函数f(x)= A sinωx,A≠0,再利用周期计算ω,选择一个作答即可.由最小正周期为2,可考虑三角函数中的正弦型函数f (x )= A sin ωx ,A ≠0,满足f (-x )=-A sin ωx =- f (x ),即是奇函数;根据最小正周期22==ωπT ,可得ω = π.故函数可以是f (x )= A sin πx ,A ≠0中任一个,可取f (x )= sin πx ,故答案为f (x )= sin πx .例2 (2021年新高考II 卷第14题)写出一个同时具有下列性质①②③的函数f(x ): .① f (x 1·x 2)= f (x 1)·f (x 2);② 当x ∈(0,+∞)时,)(x f '>0;③ )(x f '是奇函数.分析:根据幂函数的性质可得所求的f (x ).解:取f (x )= x 4,则f (x 1·x 2)=(x 1·x 2)4 = x 14·x 24 = f (x 1)·f (x 2),满足①; )(x f '= 4x 3,x >0时有)(x f '>0,满足②;)(x f '= 4x 3 的定义域为R ,又)(x f -'=-4x 3 =-)(x f ',故)(x f '是奇函数,满足③.故答案为:f (x )= x 4(答案不唯一,f (x )= x 2n ,x ∈N * 均满足)说明:熟悉常见基本初等函数的基本性质有利于进行构造.试题要求考生在理解函数性质①②③的基础上从抽象到具体构建出一个函数f (x ).解题的关键是理解函数性质,第①条为自变量积的函数等于函数的积.第②条是在x 轴正半轴为增函数.第③条导函数是奇函数.则原函数为偶函数.由于答案是开放的,可以有多个答案,例如f (x )=︱x ︱,f (x )= x 2 等.试题在考查思维的灵活性方面发挥了很好的作用,同时也给不同水平的考生提供了充分发挥自己数学能力的空间.举例题的特点是条件限定.而满足条件的结论或具体例子有很多,给了考生更大的发挥空间.举例题不同于一般的填空题,一般填空题的正确答案是唯一的,阅卷时与正确答案相同就给分,不相同就不给分.举例题需要阅卷人员逐一验证结论.因此对阅卷人员的要求有所提高,阅卷的工作量也相应增大,这要求阅卷机构配合高考内容改革,增加阅卷的人员投入,提高阅卷人员的业务水平.例3 (2021年高考乙卷文、理科第16题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 ②⑤或③④ (写出符合要求的一组答案即可).分析:通过观察已知条件正视图,确定该三棱锥的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.解:观察正视图,推出三棱锥的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.本题不同于举例题,不是要学生构造实例,而是给出实例要求学生选择.但试题没有给岀一个“几何体”的空间图形,只给出这个“几何体”的正视图①,要求考生在所给的图②③④⑤四个图中选出两个分别作为侧视图和俯视图,与①组成这个“几何体”的三视图.试题的正确答案有二种:②⑤或③④,具有一定的开放性.考生可以先从侧视图入手,借助于空间线面关系,确定相应的俯视图;也可以先从俯视图入手,然后选定相应的侧视图.本题不要求学生选岀全部的符合要求的答案,而是选出一个即可,不同的答案对应着不同的思考方案,其思维的灵活性体现在方案的选择上,试题全面考查了考生的空间想象能力,具有较好的选拔性.2.主动选择,鼓励独立思考2020年新高考中考查的结构不良试题是根据高考的特点,考虑到考生付出的劳动进行改造的试题,即不是让考生自己寻找条件,而是给出三个条件,让考生选择.“这样既保持了结构不良试题的特点,又保证了考试的公平性.3侦在新高考的命题实践中,对结构不良试题进行了进一步的研究,命制了改良版的结构不良试题,要求考生自己选择结论成立的条件.例4 (2021年高考甲卷理科第18题)已知数列{ a n }的各项均为正数,记S n 为{ a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.① 数列{ a n }是等差数列;② 数列{n S }是等差数列;③ 213a a =.注:若选择不同的组合分别解答,则按第一个解答计分.分析:首先确定条件和结论,然后结合等差数列的通项公式和前n 项和公式证明结论即可.解:选择①③为条件,②结论.证明过程如下:由题意可得:a 2 = a 1 + d = 3a 1,∴ d = 2a 1,数列的前n 项和21111(1)(1)222n n n n n S na d na a n a ++=+=+⨯=, 故1111)1(a a n a n S S n n =--=--,据此可得数列{n S }是等差数列.选择①②为条件,③结论:设数列{ a n }的公差为d 1121113111,()2,()(2)S a S a a d a d S a a d a d ==++=+=++++=,21113111()2,()(2)S a S a a d a d S a a d a d ==++=+=++++=, 11131111()2()(2)3()a a d a d S a a d a d a d ++=+=++++=+.因为数列{n S }1322S S S =即22111(3())(22)a a d a d +=+,整理可得 d = 2a 1,∴ a 2 = a 1 + d = 3a 1. 选择③②为条件,①结论:由题意可得S 2 = a 1 + a 2 = 4a 1,∴212S a ={n S }的公差为211d S S a ==11(1)n S S n d n a =+-=,据此可得,当n ≥2时,221111(1)(21)n n n a S S n a n a n a -=-=---=,当n = 1时上式也成立,故数列的通项公式为a n =(2n -1)a 1,由1111[2(1)1](21)2n n a a n a n a a ++--=--=,可知数列{ a n }是等差数列.本题给岀部分已知条件,要求考生根据试题要求构建个命题,并证明命题成立.试题设计了三个不同的组合方案,组成三个真命题,给考生充分的选择空间.选择什么样的条件和结论,直接影响到问题的思维和证明过程,考生选什么样的条件和结论组成命题,体现了考生不同的数学思维角度和方式.这种结构不良试题的适度开放不仅有益于考生在不同层面上发挥自己的数学能力,而且也有益于对中学数学教学的积极导向,引导中学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象,充分考查学生对数学本质的理解.3.判断存在问题,考查批判性思维例5 (2021年新高考Ⅱ卷第18题)在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,b = a + 1,c = a + 2.(1)若2 sin C = 3 sin A ,求△ABC 中的面积;(2)是否存在正整数a ,使得△ABC 中为钝角三角形?若存在,求出a 的值;若不存在,说明理由.分析:(1)由正弦定理可得出2c = 3a ,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果;(2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值. 解:(1)因为2 sin C = 3 sin A ,则()2223c a a =+=,则a = 4,故b = 5,c = 6, 2221cos 28a b c C ab ,所以C 锐角,则237sin 1cos 8C C =-=,因此1137157sin 4522ABC S ab C ==⨯⨯=△ (2)显然c >b >a ,若△ABC 中为钝角三角形,则C 为钝角, 由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++, 解得-1<a <3,则0<a <3,由三角形三边关系可得a + a + 1>a + 2,可得a >1,故整数a = 2.本题背景取材于教材,内容贴近学生.试题题干中已知△ABC 的对边分别为a ,a + 1,a + 2,第(2)问要求考生判断是否存在正整数a ,使得△ABC 为钝角三角形,并运用数学推理说明理由.试题进行开放性设计,直觉上会发现a = 3时,△ABC 是直角三角形,且∠C 是直角.进一步发现△ABC 是钝角三角形时,cos C <0,由此推理可得正整数a = 2.试题命制基于课程标准,重点考查考生的逻辑推理能力和运算求解能力.问题在体现开放性的同时也体现了思维的准确性与有序性.4.综合性问题例6 在我国江汉平原上,有四个村庄恰好座落在边长为2千米的正方形顶点上,为此需要建立一个使得任何两个村庄都可有通道的道路网.请设计一个合理的道路网,使它的总长度不超过5.5千米.(取2= 1.4142,7312.13=)解:这是一道策略开放题.题目给出了实际问题的情景(条件)及基本要求(结论),要求考生根据题意应对一些常见的可能设计进行列举、试算、取舍,然后逐渐逼近题目的本质解法.这种解答、推理过程没有现成的模式可套,有较强的开放性. 设四个村庄分别为A 、B 、C 、D .(1)沿正方形四条边ABCDA 修建道路网,总长度是8千米,不符合要求.(2)连结两条对角线可作通道,但算出总长度是5.524>,也不符合要求.(3)由平面几何的知识知道,在正方形ABCD 所在平面上任取一点P ,连结PA 、PB 、PC 、PD 所修成的道路网,当点P 重合于BD AC O =时,此种道路网必最短,但由(2)知也不符合要求.(4)要减少总长度,必须增加公共部分(即在平面ABCD 上取两点E 、F ).注意到正方形既有轴对称、又有中心对称的性质,故过中心O 修一段公共道路EF (如图),使EF ⊥AB ,OE = OF = x (0≤x ≤1),则道路网的总长度 2)1(142x x y -++=.(*) 由y ≤5.5,得5.5)1(1422≤-++x x ,化简,得 48x 2-40x + 7≤0,D P O A B O FE M N A D解得12741≤≤x . 此时]1,0[]127,41[⊂∈x .据此可有无数种道路网设计方案满足要求. 根据函数关系式(*),我们不难算出当333-=x 时,y 有最小值4642.5)31(2≈+千米.例7 如图所示,有一条河MN ,河岸的一侧有一很高的建筑物AB ,一人位于河岸另一侧P 处,手中有一个测角器(可以测仰角)和一个可以测量长度的皮尺(测量长度不超过5米).请你设计一种测量方案(不允许过河),并给出计算建筑物的高度AB 及距离PA 的公式,希望在你的方案中被测量数据的个数尽量少.解:本题有相当的不确定性,是一道综合开放题.题目给出了问题的情境及基本要求,要求考生根据这些情境及基本要求收集信息,将问题数学化:自行假定与设计一些已知条件,提出多种多样的解决方案,进而得出或繁或简的结论.这完全能测试出考生运用既有知识分析和解决问题的能力.常见的测量方案有:方案一 如图P 位于开阔地域,被测量的数据为PC (测角器的高)和PQ (Q 为在PA 水平直线上选取的另一测量点)的长度,仰角α 和β.设AB = x ,PA = y ,则计算公式为⎩⎨⎧+=-=-.tan )(,tan βαPQ y PC x y PC x ∴ βαβαtan tan tan tan -+=PQ PC x ,βαβtan tan tan -=PQ y . 方案二 如图P 位于开阔地域,被测量的数据为PR (PR 在水平线上,且PR <5米).在P 、Q (Q 是PR 的中点)、R 处测得筑物AB 的仰角分别为α、β、γ.设AB = x ,PA = y ,则αtan x y =,AQ =βtan x ,AR =γtan x . 在△APR 中,由中线公式,得)21(21222PR AR AP AQ -+=. 代值,可得计算公式为γβα222tan 2tan 4tan 2+-=PRx ,γβαα222tan 2tan 4tan 2tan +-⋅=PR y . 方案三若 P 处是一可攀建筑物(如楼房),则可在同一垂 B O AC P DQ β α P BA Q α β γ R .P A N MB BO OA DCP β α线上选两个测量点,被测数据为PC 和CD 的长度,仰角α 和β.设AB = x ,PA = y ,则计算公式为⎩⎨⎧=--=-.tan ,tan βαy CD PC x y PC x ∴ βααtan tan tan -+=CD PC x ,βααtan tan tan -=CD y . 说明:无论哪个方案都至少要测4个数据.例8 已知集合B = {(x ,y )∣(x -1)2 +(y -2)2 = 4 },且集合A 、C 满足:A ⊂B ⊂C ,试用列举法写出一个集合A ,用描述法写出一个集合C .解:首先应注意到集合B 表示的是点集,在直角坐标系下表示的是圆周,要求A 是B 的子集,B 是C 的子集,所以集合A 表示的是圆周的一部分,而B 表示的圆是C 的一部分,这样A 、C 可以是:A = {(1,4),(-1,2)} 等,C = {(x ,y )∣(x + 1)[(x -1)2 +(y -2)2-4 ] = 0 } 等.例9 α,β 是两个不同的平面,m ,n 是平面α 及β 之外的两条不同的直线.给出四个论断:① m ⊥n ; ② α⊥β; ③ n ⊥β; ④ m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: .解:本题既是一个条件开放题,也是一个结论开放题.按题意要求,要以题中三个论断作为条件,余下一个论断作为结论,来组成命题,实际上只有四种组成的方法,因此其开放度不是很大.再者,由于题中所给字母的对称性,以③作为结论与以作④为结论,所组成的命题,其真伪性是相同的,所以实际上只要考虑三种组成的方法.本题答案是下列两个命题之一:(1)m ⊥α,n ⊥β,α⊥β ⇒ m ⊥n .(2)m ⊥α,n ⊥β,m ⊥n ⇒ α⊥β.例10 若椭圆的一个焦点和它的两个顶点,共三个点所组成的三角形是直角三角形.求这样的椭圆的离心率.解:我们以椭圆C :12222=+by a x (a >b >0)为例来加以说明.大家知道,椭圆C 有左右两个焦点;长轴、短轴上各有2个顶点,共4个顶点.所以本题的求解具有较强的探索性和开放性.注意到椭圆良好的对称性,设F 是椭圆C 的左焦点,显然要构成三角形,两个顶点不能都取自于长轴.(1)显然F 、A 1、A 2不能组成三角形.(2)由于△FOB 1是直角三角形,有∠OFB 1是锐角,故∠A 1FB 1是钝角,即F 、A 1、B 1不能构成直角三角形.(3)若△FB 1A 2是直角三角形,则只有∠FB 1A 2 = 90°,从而FB 12 + A 2B 12 = FA 22,∴(b 2 + c 2)+(a 2 + b 2)=(a + c )2,∴ 2b 2 + a 2 + c 2 = a 2 + 2ac + c 2 ⇒ b 2 = ac ,结合b 2 = a 2-c 2 得 a 2-ac -c 2 = 0 ⇒ 215-==a c e . (4)若△FB 1B 2是直角三角形,则应有b = c ,∴ a 2 = b 2 + c 2 = 2c 2,∴ 22==a c e . 综上所述,满足条件的椭圆的离心率为22,215-. 例11 已知以坐标原点为中心的椭圆,满足条件:(1)焦点F 1的坐标为(3,0);(2)半长轴为5.则可求得此椭圆方程为1162522=+y x .① 若去掉条件(2),问可添加其他什么条件,才能使所求椭圆方程仍为①?解:由于以坐标原点为中心,焦点在x 轴上的椭圆标准方程为12222=+by a x ,其中a 为半长轴,b 为半短轴,设椭圆的右焦点F 1的坐标为(c ,0),则有a 2-b 2 = c 2;由已知c = 3,得a 2-b 2 = 9.因此只要给出b = 4,或者给出一个适当的关于a ,b ,c 的等量关系,使它能解得a = 5,b = 4,那么这个关于a ,b ,c 的等量关系,就是满足本题要求的一个答案,于是可得本题的一些解答:(1)短半轴b = 4.(2)与点F 1(3,0),F 2(-3,0)距离的和为10的动点的轨迹方程.(3)离心率53=e . (4)右准线l 1的方程为325=x .(5)椭圆上一点P 的坐标为)5214,2(-. (6)设椭圆的短轴两端点分别为B ,B ',且tan ∠BF 1B '=724. (7)过F 1作x 轴的垂线交椭圆于Q ,∣QF 1∣较椭圆半短轴短54. 像上述这样的“条件”,我们还可构想很多,一般的思考方法是“执果索因”. 例12 已知关于x ,y 的二元二次方程 x 2 +(k -1)y 2-3ky + 2k = 0. (*)(1)当k = 1时,方程(*)表示什么曲线?(2)试再写出几个k 的不同取值,要求对每个不同的k ,方程(*)表示不同类型的曲线.解:(1)当k = 1时,方程(*)表示抛物线x 2 = 3y -2.(2)当k ≠1时,方程(*)可化为 )1(48)1(23)1(222-+=⎥⎦⎤⎢⎣⎡---+k k k k k y k x . ① 当k <-8时,方程表示焦点在y 轴上的双曲线;当-8<k <0时,方程表示焦点在平行于x 轴的直线上的双曲线;当0<k <1时,方程表示焦点在y 轴上的双曲线.② 当k =-8时,方程表示两条相交直线;当k =0时,方程表示两条相交直线(第一、第三象限和第二、第四象限的角平分线).③ 当k = 2时,方程表示圆x 2 + y 2-6y + 4 = 0.④ 当1<k <2时,方程表示长轴在y 轴上的椭圆;当k >2时,方程表示长轴平行于x 轴的椭圆.在以上各类情况中分别取不同的实数作为k 的值,即可达到题意要求.例13 某地区某种病的发病人数呈上升趋势,统计近四年这种病的新发病的人数如下表所示: 年份 该年新发病的人数2018年 24002019年 24912020年 25862021年 2684年初到2025年底的四年里,该地区这种病的新发病人数总共有多少?解:预测一 从新发病增长率入手2018年到2019年新发病增长率为(2491-2400)÷2400≈3.792%;2019年到2020年新发病增长率为(2586-2491)÷2491≈3.814%;2020年到2021年新发病增长率为(2684-2586)÷2586≈3.790%;可见,新发病增长率基本一致,取其平均数为3.799%,以此作为以后新发病增长率的预测.2684(1 + 3.799%)+ 2684(1 + 3.799%)2 + 2684(1 + 3.799%)3 + 2684(1 +3.799%)4=117951%)799.31(]1%)799.31%)[(799.31(26844≈-+-++,即为所求. 预测二 从数据处理来考察2491÷2400≈1.038,2586÷2491≈1.038,2684÷2586≈1.038.可见,连续几年新发病的人数的比值近似于一个常数1.038,以此作为以后的预测. 117951038.1)1038.1(038.126844≈--⨯,即为所求.说明:这与以指数型函数y = 2400(1 + a )x -2018来拟合是一样的,其中a 为常数. 预测三 x 轴上表示年份,y 轴上表示新发病的人数,将表格中的四组数据描点.观察这些点的位置,它们的分布大致在一条直线附近,所以用直线拟合.设拟合直线为y = kx + b ,其中k ,b 为常数.以x = 1时,y = 2400,x = 4时,y = 2684代入,得⎩⎨⎧==⇒⎩⎨⎧+=+=.33.2305,67.9442684,2400b k b k b k ∴(5k + b )+(6k + b )+(7k + b )+(8k + b )= 26k + 4b = 26×94.67 +4×2305.33≈11683.。
2020年高考理科数学新课标第一轮总复习练习:5_2等差数列及其前n项和
课时规范练(授课提示:对应学生用书第269页)A 组 基础对点练1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( B ) A .-1 B .0 C .1D .62.设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=( B ) A .18 B .20 C .22D .243.(2018·湖南期末)在等差数列{a n }中,a 3,a 8是函数f (x )=x 2-3x -18的两个零点,则{a n }的前10项和等于( B ) A .-15 B .15 C .30D .-30解析:a 3,a 8是函数f (x )=x 2-3x -18的两个零点, 由韦达定理可知a 3+a 8=3,∴a 1+a 10=a 3+a 8=3, ∴S 10=12×10(a 1+a 10)=15.4.(2018·和县期末)《九章算术》卷第六《均输》中有“金箠”问题,意思是:有一个金箠(金杖)长五尺,截成五段,每段一尺,从本到末各段质量依次成等差数列.现知第一段重4斤,第五段重2斤,则第三段重为( C ) A .1斤 B .2.5斤 C .3斤D .3.5斤解析:由题意可知⎩⎪⎨⎪⎧a 1=4,a 5=a 1+4d =2,解得d =-12,∴第三段重为a 3=a 1+2d =4+2×⎝ ⎛⎭⎪⎫-12=3.5.已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( D ) A .18B .12C .9D .66.设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为( B ) A .9 B .10 C .11D .127.(2018·永定区校级月考)若等差数列{a n }满足a 1+a 8+a 9>0,a 3+a 10<0,则当{a n }的前n 项和最大时,n 的值为( A ) A .6 B .7 C .8D .9解析:∵等差数列{a n }满足a 1+a 8+a 9>0,a 3+a 10<0,∴3a 6>0,a 6+a 7<0,∴a 6>0,a 7<0.则当n =6时,{a n }的前n 项和最大.8.(2017·宜春期末)设数列{a n }是等差数列,S n 是其前n 项和,且S 6=S 7>S 8,则下列结论中错误的是( D ) A .d <0 B .a 7=0 C .S 9>S 5D .S 6和S 7均为S n 的最大值解析:∵数列{a n }是等差数列,S n 是其前n 项和,且S 6=S 7>S 8,∴d <0,故A 正确;a 7=S 7-S 6=0,故B 正确;S 9-S 5=⎝ ⎛⎭⎪⎫9a 1+9×82d -⎝ ⎛⎭⎪⎫5a 1+5×42d =4⎝ ⎛⎭⎪⎫a 1+132d <4a 7=0,∴S 9<S 5,故C 错误;S 6和S 7均为S n 的最大值,故D 正确. 9.(2016·高考北京卷)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= 6 .解析:设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.10.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 5 .解析:设数列首项为a 1,则a 1+2 0152=1 010.故a 1=5.11.(2016·高考江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 20 .解析:设等差数列{a n }的公差为d ,则a 1+a 22=a 1+(a 1+d )2=-3,S 5=5a 1+10d=10,解得a 1=-4,d =3,则a 9=a 1+8d =-4+24=20.12.已知S n 是等差数列{a n }的前n 项和,若S 5=5a 4-10,则数列{a n }的公差为 2 .解析:由S 5=5a 4-10,得5a 3=5a 4-10,则公差d =2.13.(2016·高考全国卷Ⅱ)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解析:(1)设数列{a n }的公差为d ,由题意有2a 1+5d =4,a 1+5d =3. 解得a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.14.已知等差数列{a n }的前n 项和为S n ,n ∈N *,且点(2,a 2),(a 7,S 3)均在直线x -y +1=0上.(1)求数列{a n }的通项公式a n 及前n 项和S n ; (2)设b n =12(S n -n ),求数列{b n }的前n 项和T n .解析:(1)设等差数列{a n }的公差为d .由点(2,a 2),(a 7,S 3)均在直线x -y +1=0上得⎩⎪⎨⎪⎧a 2=3,a 7-S 3+1=0,又S 3=a 1+a 2+a 3=3a 2,解得⎩⎪⎨⎪⎧a 2=3,a 7=8,∴⎩⎪⎨⎪⎧ a 1+d =3,a 1+6d =8,解得⎩⎪⎨⎪⎧a 1=2,d =1, ∴a n =n +1,S n =n (n +3)2. (2)b n =12(S n -n )=1n (n +1)=1n -1n +1.∵T n =b 1+b 2+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1. ∴T n =nn +1.B 组 能力提升练1.(2018·赤峰期末)《张丘建算经》卷上有“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布6尺,30天共织布540尺,则该女子织布每天增加( C ) A.12尺 B .1631尺 C.2429尺D .1629尺解析:织布的数据构成等差数列,设公差为d ,第一天织的数据为a 1,第30天织的数据为a 30,则540=30(6+a 30)2,解得a 30=30,则a 30=a 1+(30-1)d ,解得d =2429.2.已知等差数列{a n }的前n 项和为S n ,若S 10=1,S 30=5,则S 40=( B ) A .7 B .8 C .9D .103.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =( C ) A .n (3n -1) B .n (n +3)2C .n (n +1)D .n (3n +1)24.(2018·萍乡期末)等差数列{a n }中,a 2=4,它的前n 项和S n =n 2+kn ,则1S 1+1S 2+…+1S 100=( A )A.100101 B .1101 C.101100D .99100解析:∵等差数列{a n }中,a 2=4,它的前n 项和S n =n 2+kn , ∴a 1=S 1=1+k ,a 2=S 2-S 1=4+2k -1-k =3+k =4,解得k =1,∴a 1=1+1=2,d =a 2-a 1=4-2=2, ∴S n =2n +n (n -1)2×2=n (n +1), ∴1S n =1n (n +1)=1n -1n +1, 1S 1+1S 2+…+1S 100=11-12+12-13+…+1100-1101=100101.5.(2018·南平期末)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:今有五人分六钱,令前三人所得与后二人等,各人所得均增,问各得几何?其意思是:已知A ,B ,C ,D ,E 五个人分重量为6钱(“钱”是古代的一种重量单位)的物品,A ,B ,C 三人所得钱数之和与D ,E 二人所得钱数之和相同,且A ,B ,C ,D ,E 每人所得钱数依次成递增等差数列,问五人各分得多少钱的物品?在这个问题中,C 分得物品的钱数是( C ) A.25钱 B .45钱 C.65钱D .75钱解析:设A ,B ,C ,D ,E 五个人所得钱数依次为a 1,a 2,a 3,a 4,a 5,由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3=a 4+a 5,d >0,5a 1+5×42d =6,解得a 1=45,d =15,∴C 分得物品的钱数是a 3=45+2×15=65(钱).6.(2016·高考浙江卷)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( A )A .{S n }是等差数列B .{S 2n }是等差数列C .{d }是等差数列D .{d 2n }是等差数列7.(2018·上杭县校级月考)已知数列{a n }中,a 1=1,a n =a n -1+3(n ≥2),则数列{a n }的前6项和等于 51 .8.设等差数列{a n }的前n 项和为S n ,若S 8=32,则a 2+2a 5+a 6= 16 . 解析:∵S 8=32,∴8(a 1+a 8)2=32,可得a 4+a 5=a 1+a 8=8.则a 2+2a 5+a 6=2(a 4+a 5)=2×8=16.9.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,若S n +1+S n -1=2(S n +S 1),n ≥2,则S 15= 211 .解析:由题意得S n +1-S n =S n -S n -1+2,即a n +1=a n +2(n ≥2),故{a n }从第二项起是公差为2的等差数列,则S 15=1+14×2+14×132×2=211.10.等差数列{a n }前n 项和为S n .已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m = 10 .解析:因为a m -1+a m +1-a 2m =0,数列{a n }是等差数列,所以2a m -a 2m =0,解得a m =0或a m =2.又S 2m -1=38,所以a m =0不符合题意,所以a m =2.所以S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38,解得m =10.11.(2017·菏泽期末)已知S n 为等差数列{a n }的前n 项和,S 2=2,S 3=-6. (1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在n ,使S n ,S n +2+2n ,S n +3成等差数列,若存在,求出n ,若不存在,请说明理由.解析:(1)设等差数列{a n }的公差为d ,∵S 2=2,S 3=-6.∴2a 1+d =2,3a 1+3d =-6,联立解得a 1=4,d =-6. ∴a n =4-6(n -1)=10-6n , S n =n (4+10-6n )2=7n -3n 2.(2)假设存在n ,使S n ,S n +2+2n ,S n +3成等差数列, 则2(S n +2+2n )=S n +S n +3,∴2[7(n +2)-3(n +2)2+2n ]=7n -3n 2+7(n +3)-3(n +3)2,解得n =5. 因此存在n =5,使S n ,S n +2+2n ,S n +3成等差数列. 12.在数列{a n }中,a n +1+a n =2n -44(n ∈N *),a 1=-23. (1)求a n ;(2)设S n 为{a n }的前n 项和,求S n 的最小值. 解析:(1)当n =1时,a 2+a 1=-42,a 1=-23, ∴a 2=-19.同理得,a 3=-21,a 4=-17.故a 1,a 3,a 5,…是以a 1为首项,2为公差的等差数列,a 2,a 4,a 6,…是以a 2为首项,2为公差的等差数列. 从而a n =⎩⎪⎨⎪⎧n -24,n 为奇数,n -21,n 为偶数.(2)当n 为偶数时,S n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=(2×1-44)+(2×3-44)+…+[2·(n -1)-44]=2[1+3+…+(n-1)]-n2·44=n22-22n,故当n=22时,S n取得最小值为-242.当n为奇数时,S n=a1+(a2+a3)+(a4+a5)+…+(a n-1+a n) =a1+(2×2-44)+…+[2×(n-1)-44]=a1+2[2+4+…+(n-1)]+n-1 2·(-44)=-23+(n+1)(n-1)2-22(n-1)=n 22-22n-32.故当n=21或n=23时,S n取得最小值-243.综上所述:当n为偶数时,S n取得最小值为-242;当n为奇数时,S n取最小值为-243.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学 2.5 等比数列的前n 项和
双基达标
(限时20分钟) 1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为 ( ). A .63 B .64 C .127 D .128
解析 设公比为q (q >0),
由a 5=a 1q 4及题设,知16=q 4.
∴q =2.∴S 7=a 1(1-q 7)1-q =1-27
1-2
=127. 答案 C
2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2
等于 ( ). A .2 B .4 C.152 D.172
解析 S 4a 2=a 1(1-q 4)
1-q a 1q =a 1(1-16)-a 1·2
=152. 答案 C
3.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( ).
A .33
B .72
C .84
D .189
解析 由S 3=a 1(1+q +q 2)=21且a 1=3,得q +q 2-6=0.∵q >0,∴q =2.
∴a 3+a 4+a 5=q 2(a 1+a 2+a 3)=22·S 3=84.
答案 C
4.设等比数列{a n }的前n 项和为S n ,a 1=1,S 6=4S 3,则a 4=________.
解析 由a 1=1,S 6=4S 3,
∴a 1(1-q 6)1-q =4·a 1(1-q 3)1-q
, ∴1-q 6=4(1-q 3).得q 3=3,
故a 4=a 1q 3=1×3=3.
答案 3
5.在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2.则该数列前15项的和S 15=
________.
解析 由性质知:a 1+a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9,…成等比数列,其公比q =-21
=-2,首项为a 1+a 2+a 3=1,其前5项和就是数列{a n }的前15项的和S 15=1·[1-(-2)5]1-(-2)
=11.
答案 11
6.已知数列{a n }是等比数列,其中a 7=1,且a 4,a 5+1,a 6成等差数列.
(1)求数列{a n }的通项公式;
(2)数列{a n }的前n 项和记为S n ,证明:S n <128(n =1,2,3,…).
(1)解 设等比数列{a n }的公比为q (q ∈R ),
由a 7=a 1q 6=1,得a 1=q -6,
从而a 4=a 1q 3=q -3,a 5=a 1q 4=q -
2,
a 6=a 1q 5=q -1.
因为a 4,a 5+1,a 6成等差数列,
所以a 4+a 6=2(a 5+1),
即q -3+q -1=2(q -2+1),q -1(q -2+1)=2(q -2+1).
所以q =12.
故a n =a 1q n -1=q -6·q n -1=64⎝⎛⎭⎫12n -1.
(2)证明 S n =a 1(1-q n )1-q =
64⎣⎡⎦
⎤1-⎝⎛⎭⎫12n
1-12
=128⎣⎡⎦⎤1-⎝⎛⎭⎫12n <128.
综合提高 (限时25分钟)
7.在等比数列{a n }中,已知前4项和为1,前8项和为17,则此等比数列的公比q 为 (
). A .2 B .-2
C .2或-2
D .2或-1
解析 已知⎩⎪⎨⎪⎧ S 4=1,
S 8=17,
即S 4=1,S 8-S 4=16.
∴⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=1,
a 5+a 6+a 7+a 8=16,
即⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=1,
(a 1+a 2+a 3+a 4)·q 4=16.
两式相除得q 4=16,∴q =±2.
答案 C
8.在等比数列{a n }中,已知a 1+a 2+…+a n =2n -1,则a 12+a 22+…+a n 2等于 ( ).
A .(2n -1)2 B.13
(2n -1)2 C .4n -1 D.13
(4n -1) 解析 设等比数列{a n }的前n 项和为S n ,则S n =2n -1.易知等比数列{a n }的公比q =2,
首项a 1=1,∴a n =2n -1,于是a n 2=4n -1,∴a 12+a 22+…+a n 2=1+4+42+…+4n -1=13
(4n -1).故选D.
答案 D
9.S n =112+314+518
+…+⎣⎡⎦⎤(2n -1)+12n =________. 解析 S n =[1+3+5+…+(2n -1)]+
⎝⎛⎭⎫12+14+18
+…+12n =n [1+(2n -1)]2+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12
=n 2+1-12n . 答案 n 2+1-12n 10.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等
比数列,那么a n 等于________.
解析 a n -a n -1=a 1q n -1=2n -
1 即⎩⎪⎨⎪⎧ a 2-a 1=2,a 3-a 2=22,…a n -a n -1=2n -1.
相加得a n -a 1=2+22+…+2n -
1=2n -2, 故a n =a 1+2n -2=2n -1.
答案 2n -1
11.已知数列{a n }的前n 项和为S n ,且S n =2a n -2(n ∈N *),在数列{b n }中,b 1=1,点P (b n ,
b n +1)在直线x -y +2=0上.
(1)求数列{a n },{b n }的通项公式;
(2)记T n =a 1b 1+a 2b 2+…+a n b n ,求T n .
解 (1)由S n =2a n -2,得S n -1=2a n -1-2(n ≥2),
两式相减得a n =2a n -2a n -1,即a n a n -1
=2(n ≥2), 又a 1=2a 1-2,∴a 1=2,
∴{a n }是以2为首项,以2为公比的等比数列,∴a n =2n .
∵点P (b n ,b n +1)在直线x -y +2=0上,
∴b n -b n +1+2=0,即b n +1-b n =2,
∴{b n }是等差数列,∵b 1=1,∴b n =2n -1.
(2)∵T n =1×2+3×22+5×23+…+(2n -3)2n -
1+(2n -1)2n ① ∴2T n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)·2n +
1② ①-②得:
-T n =1×2+2(22+23+…+2n )-(2n -1)·2n +
1 =2+2·22-2n ·21-2
-(2n -1)2n +1 =2+4·2n -8-(2n -1)2n +1=(3-2n )·2n +
1-6 ∴T n =(2n -3)·2n +
1+6. 12.(创新拓展)n 2(n ≥4)个正数排成n 行n 列:
a 11 a 12 a 13 a 14 … a 1n
a 21 a 22 a 23 a 24 … a 2n
a 31 a 32 a 33 a 34 … a 3n
… … … … … …
a n 1 a n 2 a n 3 a n 4 … a n n
其中第一行的数成等差数列,每一列中的数成等比数列,并且所有公比相等,已知a 24
=1,a 42=18,a 43=316
,求a 11+a 22+a 33+…+a n n . 解 设第1行的公差为d ,各列公比为q ,则得
a 1k =a 11+(k -1)d ,a 24=a 14q =(a 11+3d )q =1①
a 42=a 12q 3=(a 11+d )q 3=18
② a 43=a 13q 3=(a 11+2d )q 3=316
③ 由①②③,解得a 11=d =q =12
. ∴a kk =a 1k q k -1=[a 11+(k -1)d ]q k -1=k 2k . 设S n =a 11+a 22+a 33+…+a n n ,则
S n =12+222+323+…n 2n ④ 12S n =122+223+324+…+n 2n +1⑤ ④-⑤得,
12S n =12+122+123+…+12n -n 2n +1=1-n +22
n +1. ∴S n =2-n +22n . 即a 11+a 22+a 33+…+a n n =2-n +22n .。