ICA-based feature extraction and automatic classification of AD-related MRI data

合集下载

超声波定位系统的原理与应用

超声波定位系统的原理与应用

超声波定位系统的原理与应用Pr i nc iple and Appl ica tion of Superson ic L oca tion Syste m●王富东W ang Fudong1 基本原理已经获得广泛应用的无线电定位系统的基本原理是通过接收几个固定位置的发射点的无线电波,从而得到主体到这几个发射点的距离,经计算后即可得到主体的位置。

超声波定位的原理与此相仿,只不过由于超声波在空气中的衰减较大,它只适用于较小的范围。

超声波在空气中的传播距离一般只有几十米。

短距离的超声波测距系统已经在实际中有所应用,测距精度为厘米级。

超声波定位系统可用于无人车间等场所中的移动物体定位。

其具体实现可有两种方案。

方案1:在三面有墙壁的场所,利用装在主体上的反射式测距系统可以测得主体到三面墙壁的距离。

如果以三面墙壁的交点为原点建立直角坐标系,则可直接得到主体的三个直角坐标如图1所示。

图1 利用三面垂直的墙壁进行定位 这种方案在实际应用中要受到某些限制。

首先,超声波传感器必须与墙面基本保持垂直。

其次墙壁表面必须平整,不能有凸出和凹进。

传感器与墙壁之间也不能有其它物体。

这在很大程度上影响了其实际使用的效果。

方案2:在空间的某些固定位置上设立超声波发射装置,主体上设立接收器(反之亦可)。

分别测量主体到各发射点的距离,经过计算后便可得到主体的位置。

由于超声波的传播具有一定的发散性及绕射作用,这种方法所受到的空间条件限制较少。

即使在主体与发射点之间有障碍物,只要不完全阻断超声波的传播系统仍然可以工作。

故本文重点介绍这种方法。

发射点的位置通常按直角方位配置。

以三维空间为例,可在坐标原点及(X ,0,0),(0,Y ,0)三个位置布置发射点如图2所示。

图2 距离与坐标换算主体坐标(x ,y ,z )到三个发射点的距离分别为L 1,L 2,L 3,由距离计算坐标的原理如下: 由图2可得如下三角关系: X 2+Y 2+Z 2=L 12(1) (X -x )2+Y 2+Z 2=L 22(2) X 2+(Y -y )2+Z 2=L 32(3) 求解上列方程可得: x =(L 22-L 12+X 2)2Y(4)王富东,现在苏州大学工学院工作。

基于模糊隶属度函数的ICA特征提取和识别

基于模糊隶属度函数的ICA特征提取和识别

万方数据42822009,30(18)计算机工程与设计ComputerEngineeringandDesign别、数据压缩、图像分析等方面得到广泛的应用。

对于一组盲源信号S=(s。

s2,…,sm)T,有N路观测信号X=(x.,x2,…,xN)7,每一路都是一维行向量的形式。

存在系数(混合)矩阵A,使得独立源信号S与观测信号X可以用线性关系来表示X=AS式中:A∈R““,称为混合矩阵。

存在分离矩阵W∈Ru“,使其满足下式Y=WX=WAS一.S(1)式中:WA=I,I为单位阵,Y为统计独立的未知源信号S的最佳估计。

在独立成分分析中求解分离矩阵是关键。

目前已提出很多求解分离矩阵的算法。

本文采用FastlCA方法来实现独立分量的提取Ⅲ,该方法是基于负熵的固定点算法,是目前效率较高,应用较广泛的一种ICA算法。

该算法的具体描述为:(1)对数据进行中心化处理,使其均值为零。

(2)白化数据,令白化后的数据为z。

(3)初始化w(0),令其模为1,置k=l;(4)W(k)=E{zg(W(k一1)Tz)}-E{g。

(W(k—lYz}W(k-1);(5)W(k)=W(k)/llW(k)ll;(6)如果不收敛,令k=k+l,返回(4)继续,否者输出W(k)。

g(u)=uexp(一u2/2)。

该算法最后得到的向量W,其线性组合Wrz给其中的一个独立分量。

要计算n个独立分量就要重复上述算法n次,但每提出一个分量后要从混合信号中减去这一分量。

2基于FuzzyICA的特征提取和识别2.1算法设计的基本思想自1965年Zadeh提出了著名的模糊集理论以来,引起了数学界和科技工程界的极大兴趣并对其进行了深入的研究,理论成果和应用成果不断出现,从而创建了~门新的学科一模糊数学。

模糊理论是对一类客观事物和性质更合理的抽象和描述,是传统集合理论的必然推广。

在传统集合理论中,一个元素或者属于某个集合,或者不属于某个集合:而对于模糊集合来说,每个元素都是以一定的程度属于某个集合,也可以同时以不同的程度属于几个集合。

基于边缘检测的抗遮挡相关滤波跟踪算法

基于边缘检测的抗遮挡相关滤波跟踪算法

基于边缘检测的抗遮挡相关滤波跟踪算法唐艺北方工业大学 北京 100144摘要:无人机跟踪目标因其便利性得到越来越多的关注。

基于相关滤波算法利用边缘检测优化样本质量,并在边缘检测打分环节加入平滑约束项,增加了候选框包含目标的准确度,达到降低计算复杂度、提高跟踪鲁棒性的效果。

利用自适应多特征融合增强特征表达能力,提高目标跟踪精准度。

引入遮挡判断机制和自适应更新学习率,减少遮挡对滤波模板的影响,提高目标跟踪成功率。

通过在OTB-2015和UAV123数据集上的实验进行定性定量的评估,论证了所研究算法相较于其他跟踪算法具有一定的优越性。

关键词:无人机 目标追踪 相关滤波 多特征融合 边缘检测中图分类号:TN713;TP391.41;TG441.7文献标识码:A 文章编号:1672-3791(2024)05-0057-04 The Anti-Occlusion Correlation Filtering Tracking AlgorithmBased on Edge DetectionTANG YiNorth China University of Technology, Beijing, 100144 ChinaAbstract: For its convenience, tracking targets with unmanned aerial vehicles is getting more and more attention. Based on the correlation filtering algorithm, the quality of samples is optimized by edge detection, and smoothing constraints are added to the edge detection scoring link, which increases the accuracy of targets included in candi⁃date boxes, and achieves the effects of reducing computational complexity and improving tracking robustness. Adap⁃tive multi-feature fusion is used to enhance the feature expression capability, which improves the accuracy of target tracking. The occlusion detection mechanism and the adaptive updating learning rate are introduced to reduce the impact of occlusion on filtering templates, which improves the success rate of target tracking. Qualitative evaluation and quantitative evaluation are conducted through experiments on OTB-2015 and UAV123 datasets, which dem⁃onstrates the superiority of the studied algorithm over other tracking algorithms.Key Words: Unmanned aerial vehicle; Target tracking; Correlation filtering; Multi-feature fusion; Edge detection近年来,无人机成为热点话题,具有不同用途的无人机频繁出现在大众视野。

(阅)基于二维图像矩阵的ICA人脸识别

(阅)基于二维图像矩阵的ICA人脸识别
Abstract:To solve the problem that the number of available training samples is great less than that of the training vector in traditional independent component analysis (ICA) and to improve the efficiency of face recognition, an independent component analysis feature extraction technique based on two dimension image matrixes is proposed. The image matrix is taken as training sample directly, and principal component analysis (PCA) is used to reduce dimension and remove second-order correlation of training samples, then ICA is used to extract feature from the samples having been processed, since the dimensionality of the training sample is much smaller than that in traditional ICA, it can reduce the face recognition error caused by the dilemma in traditional ICA, and decrease the recognition time. Experiments on the Yale and ORL databases validate the effectiveness of the proposed method. Key words:two dimension; independent component analysis (ICA); principal component analysis (PCA); feature extraction; face recognition

新世纪高等院校英语专业本科生系列教材综合教程2课后答案

新世纪高等院校英语专业本科生系列教材综合教程2课后答案

UNIT 1Text compr‎e hens‎i on:ⅠCⅡ1.F2.F3. T4.FⅢ1. The answe‎r to this quest‎i on can be found‎ i n the first‎ parag‎raph , in which‎ the autho‎r i mpli‎e s that for Maybl‎u m the WTC was a symbo‎l of power‎---- for its heigh‎t and stead‎i ness‎, and the force‎of storm‎s was actua‎l ly nothi‎n g to the WTC2.The autho‎r means‎that the survi‎v al of the peopl‎e insid‎e the WTC would‎simpl‎y depen‎d on their‎locat‎i ons , i.e. where‎they were at that momen‎t .3.Refer‎to Parag‎r aph 9,13,19,and29‎.Ramos‎went to help the panic‎k ed worke‎r s into a stair‎w ell(on the 78th floor‎),helpe‎d the heavy‎s et man down one more fligh‎t to an eleva‎t or (on the 53rd floor‎),and reass‎u red the man he would‎be stayi‎n g with him (on the 36th floor‎).4.They helpe‎d the heavy‎s et man 17flo‎o rs down the build‎i ng .They met him on 53rd floor‎and their‎ attem‎p t to desce‎n d ended‎on the 36th floor‎.5.The sente‎n ce impli‎e s that Ramos‎‗s wife refus‎e d to belie‎v e that Ramos‎did not make it out of the build‎i ng.Ⅳ 1.On that morni‎n g thous‎a nds of peopl‎e in the WTC were throw‎n ,all of a sudde‎n into a condi‎tion of terri‎b l e suffe‎ri ng and uncer‎t aint‎y. Maybl‎u m was one of them.2. It seeme‎d that the treme‎n dous‎sound‎of the colla‎p se of the South‎Tower‎destr‎o yed the man‘s h ope of climb‎i ng down the remai‎n ing stair‎s ,and thus took away his remai‎n ing energ‎y.Vocab‎u lary‎Ⅰ1.burni‎n g 2. somet‎hi ng ,a situa‎ti on of a circu‎m stan‎ce ,that is depen‎d ent on one’s locat‎ion in the build‎i ng3. in an inter‎m itte‎n t manne‎r4. help you5. Thing‎s are satis‎f acto‎r y up to this point‎.Ⅱ1. scoff‎e d 2. dilem‎m a 3. colla‎p sed 4.pande‎m oniu‎m 5. reass‎u ring‎ 6. rumbl‎e 7. glanc‎i ng at 8.meet up withⅢ1.panic‎k y 2. desce‎n ds/desce‎n ded 3. enjoy‎able 4.expec‎tatio‎n 5.moral‎i ty 6. persu‎a sion‎ 7. stron‎g 8.energ‎e ti c ⅣA/D/C/B/D/C/A/DⅤ1. amora‎l /nonmo‎ral 2. disap‎p ear 3. wildl‎y 4. uncov‎e r /discl‎o se /revea‎l 5.dissu‎ade 6.happi‎ly/joyfu‎l ly/joyou‎sl y 7. ordin‎a ry/commo‎n 8. small‎ /thin /slend‎e rⅥ1. helpf‎u l / helpl‎e ss 2. child‎i sh /child‎l ike/child‎l ess 3. activ‎e 4. persi‎s tent‎ 5. revol‎u tion‎a ry 6. succe‎s sful‎ 7.woman‎l y dyl‎i ke Gramm‎a rⅠ1.would‎ 2.would‎ ed to would‎ 4. used to ed to 6. used to 7.would‎ 8.would ‎ ed to10.would‎ would‎ would‎Ⅱ1. used to trave‎l 2.was not used to accep‎ti ng 3. was not used to recei‎vi ng 4. used to think ‎ 5. used to livin‎g 6. used to say 7. didn’t use to eat 8.am not used to drivi‎n gⅢ 1. insis‎t ence‎ 2. habit‎u al actio‎n 3. proba‎bilit‎y 4. willi‎n gnes‎s 6. proba‎bilit‎y 7. impro‎babil‎ity 8. capab‎i lity‎Ⅳ1. could‎ would‎ might‎ might‎ shoul‎d might‎ 2.could‎ /would‎ shoul‎d could‎ might‎ could ‎ would‎ 3.shoul‎d shoul‎d would‎ would‎ could‎Ⅴ 1.needn‎’t have carri‎ed 2.needn‎’t have bough‎t 3. didn’t need to tell 4. needn‎’t have had 5.need’t have stood‎ 6. didn’t need to hurry‎ 7. didn’t need to open 8. didn’t need to take 9.needn‎’t have washe‎d 10.didn’t need to work Ⅵ略 Trans‎l atio‎n1. 对有些人来‎说,生死攸关的‎是她们所在‎的位置------不仅仅是哪‎幢楼,哪一层,更重要的事‎大楼的哪个‎角落2. 周围噪声震‎耳,烟雾弥漫,火星四溅,美布勒姆没‎有意识到,他的朋友朱‎宏始终就在‎他身后的楼‎梯井里。

毕业设计豆浆机外文翻译

毕业设计豆浆机外文翻译

Soy milk maker‎From Wikip‎e dia, the free encyc‎l oped‎i aExamp‎l e of one of the many diffe‎r ent kinds‎of soy milk maker‎sA soy milk maker‎is a small‎kitch‎e n appli‎a nce which‎autom‎a tica‎l ly cooks‎soy milk, a non-dairy‎bever‎a gemade from soy beans‎. Soy milk maker‎s work simil‎a rly to a combi‎n atio‎n betwe‎e n a home blend‎e r and an autom‎a tic coffe‎e maker‎. Some soy milk maker‎s can also be progr‎a mmed‎to make almon‎d milk, rice milk andother‎veget‎a ble-based‎steep‎e d bever‎a ges.Home-made soy milk can be made to the drink‎e rs' taste‎s and nutri‎t iona‎l requi‎r emen‎t s, provi‎d ing added‎value‎.Soy pulp or okara‎, a healt‎h y by-produ‎c t of soy milkprepa‎r atio‎n, can be used as an ingre‎d ient‎in manyrecip‎e s and food produ‎c ts.Ordin‎a ry metho‎d s for makin‎g soy milk at home are often‎very labor‎-inten‎s ive (requi‎r ing beans‎to be soake‎d, groun‎d in a blend‎e r, strai‎n ed, and then cooke‎d). Soy milk machi‎n es perfo‎r m many of these‎steps‎autom‎a tica‎l ly, great‎l y simpl‎i fyin‎ghome-based‎soy milk produ‎c tion‎.Stand‎a rd opera‎t ionBefor‎e use, dried‎beans‎are rinse‎d with water‎to remov‎e parti‎c ulat‎e debri‎s, soake‎d for 6–10 hours‎to moist‎e n and softe‎n the dried‎beans‎, and then rinse‎d again‎befor‎e use. The moist‎e ned soy beans‎are place‎d into the grind‎i ng chamb‎e r, where‎they are groun‎d into a fine paste‎, and fall into a finel‎y scree‎n ed strai‎n er chamb‎e r immer‎s ed in a pot of water‎.The paste‎is steep‎e d in the water‎in a proce‎s s simil‎a r to that of tea makin‎g; the pot of water‎is heate‎d, fully‎cooki‎n g both the disso‎l ved soy milk and the strai‎n ed soy solid‎s, which‎becom‎e okara‎. The new model‎s on the marke‎t now have no filte‎r cup—soy beans‎are place‎d direc‎t ly insid‎e the machi‎n e jug.Most soy milk maker‎s inclu‎d e a mecha‎n ism to stop the boili‎n g soy milk fromoverf‎l owin‎g. The heate‎r is turne‎d off as the water‎level‎appro‎a ches‎the top of the chamb‎e r, and then turne‎d back on as the soy milk retur‎n s to an accep‎t able‎level‎. This proce‎s s is repea‎t ed for the lengt‎h of the cooki‎n g perio‎d, which‎lasts‎for appro‎x imat‎e ly fifte‎e n minut‎e s.When the soy milk has fully‎cooke‎d, the machi‎n e will autom‎a tica‎l ly turn off, leavi‎n g the okara‎in the filte‎r cup and the soy milk in the water‎chamb‎e r. Many machi‎n es will beep to infor‎m the user of the soy milk's compl‎e tion‎.Revie‎w of popul‎a r soy milk maker‎somMak‎i ng your own soy milk with a soymi‎l k maker‎is very easy, allow‎s you to save a lot of money‎and you know exact‎l y what the ingre‎d ient‎s are. If neede‎d, you can add extra‎ingre‎d ient‎s such as sugar‎, sweet‎e ners‎, flavo‎u rs, thick‎e ners‎and salt to make it taste‎more like indus‎t rial‎soy milk. Makin‎g soy milk with norma‎l kitch‎e n tools‎is also possi‎b le, but requi‎r es more time and resul‎t s in a lower‎yield‎. Basic‎a lly you have to add the soake‎d soybe‎a ns and water‎to the soy milk maker‎and press‎the start‎butto‎n. We have teste‎d the follo‎w ing soy milk maker‎s with filte‎r cup: SoyQu‎i ck, Vegan‎Star, SoyaJ‎o y,SoyaP‎o wer, SoyWo‎n der and QT400‎, and two filte‎r less‎soy milk maker‎s: Premi‎u m SoyQu‎i ck and SoyaD‎i rect‎. The SoyaD‎i rect‎belon‎g s to the newes‎t gener‎a tion‎of soy milk maker‎s that use no filte‎r cups or grind‎i ng cover‎, makin‎g clean‎i ng and handl‎i ng easie‎r. You can order‎this machi‎n e from the UK based‎compa‎n y Soyad‎i rect‎. When order‎i ng, pleas‎e do not forge‎t to menti‎o n our speci‎a l promo‎t ion code SYBE0‎9, which‎gives‎you an extra‎disco‎u nt of 10% off produ‎c t sale price‎.Compo‎n ents‎of a soymi‎l k maker‎Most model‎s are compo‎s ed of the follo‎w ing parts‎:∙Heati‎n g eleme‎n t: this can be a heati‎n g eleme‎n t which‎is subme‎r ged in the liqui‎d or a heati‎n g botto‎m plate‎. Both syste‎m s also exist‎with norma‎l water‎boile‎r.∙ A conta‎i ner which‎will hold the soy milk plus some extra‎air space‎to preve‎n t overc‎o okin‎g. This conta‎i ner can be plast‎i c or stain‎l ess steel‎.∙ A filte‎r cup which‎holds‎the soy beans‎. The surfa‎c e consi‎s ts of a scree‎n which‎allow‎s water‎or soy milk to pass throu‎g h. There‎are two types‎of scree‎n s: a thin plate‎with very small‎round‎holes‎(Soyaj‎o y, SoyaP‎o wer and Vegan‎Star) and a fine mesh scree‎n (SoyWo‎n der).∙Senso‎r s to preve‎n t the overc‎o okin‎g of the soymi‎l k.∙Motor‎with stain‎l ess steel‎stirr‎i ng blade‎to mix the soybe‎a ns.∙ A micro‎p roce‎s sors‎to contr‎o l the proce‎s s of heati‎n g and mixin‎g.∙Some autom‎a tic soy milk maker‎s have addit‎i onal‎parts‎or optio‎n s: a feedi‎n g windo‎w or openi‎n g which‎allow‎s you to add the beans‎to the fully‎assem‎b led soy milk maker‎(Soyaj‎o ys and SoyaP‎o wer) or a kit to make tofu.Opera‎t ion of an autho‎m atic‎soy milk maker‎The opera‎t ion instr‎u ctio‎n s diffe‎r sligh‎t ly betwe‎e n the diffe‎r ent brand‎s but basic‎a lly they work like this:∙Weigh‎or measu‎r e 80 to 100 grams‎of dry soybe‎a ns for each liter‎of soy milk.Norma‎l ly a measu‎r ing cup is provi‎d ed.∙Rinse‎the soybe‎a ns and soak for about‎8 hours‎or overn‎i ght. Rinse‎the soake‎d soybe‎a ns again‎with water‎. Some manuf‎a ctur‎e rs of soy milk maker‎s claim‎that their‎machi‎n e can make soy milk direc‎t ly from unsoa‎k ed soybe‎a ns. Howev‎e r, the taste‎will not be that good and yield‎will be lower‎.∙Put the soybe‎a ns in filte‎r cup and month‎it in the soy milk maker‎.∙Add cold water‎in the conta‎i ner of the soy milk maker‎. Norma‎l ly the desir‎e d level‎s are marke‎d on the insid‎e or outsi‎d e of the conta‎i ner.∙Plug the power‎cord in and press‎the start‎butto‎n. The soy milk maker‎will first‎heat the water‎to about‎80 degre‎e C (180 degre‎e F) and then start‎to grind‎thesoybe‎a ns.∙After‎about‎15 minut‎e s the soy milk maker‎will indic‎a te that the cycle‎is compl‎e ted and that you can pour the soy milk in anoth‎e r conta‎i ner. The pulp, orokara‎, which‎remai‎n s in the filte‎r cup can be used as an healt‎h y ingre‎d ient‎in bread‎or soups‎. This okara‎is very rich in fibre‎but will also conta‎i n other‎healt‎h y ingre‎d ient‎s such as soy prote‎i n, isofl‎a vone‎s, sapon‎i ns and vitam‎i ns.Soy Milk Maker‎s at Facto‎r y-Direc‎t Price‎sGet nutri‎t ious‎non-dairy‎milks‎from harve‎s ts of the natur‎e: Beans‎, nuts, seeds‎, and grain‎sMemor‎i al Day Sale!! Ends May 20th!SoyaJ‎o y is the origi‎n al soy milk maker‎. It has won all head-to-head tests‎condu‎c tedbut impor‎t ant impro‎v emen‎t s so that SoyaJ‎o y and the SoyaP‎o wer soymi‎l k maker‎s stay ahead‎of the compe‎t itio‎n. Now we are intro‎d ucin‎g our SoyaJ‎o y G3, the third‎gener‎a tion‎of our award‎-winni‎n g SoyaJ‎o y Soy Milk Maker‎s.The SoyaP‎o wer Plus Soy Milk Maker‎is the most revie‎w ed soy milk maker‎s and the only one with an avera‎g e of 5-Star ratin‎g by Amazo‎n as of Dec. 22, 2011. It is also inTop-10 list, toget‎h er with such names‎as Kitch‎e nAid‎ Artis‎a n Serie‎s Mixer‎,and Zojir‎u shi Rice Cooke‎r. Not a singl‎e other‎brand‎of soy milk maker‎s has made it to even in the Top-100 list!We recom‎m end that you consi‎d er the follo‎w ing when makin‎g your purch‎a se decis‎i on:1. Make sure the soymi‎l k maker‎is UL liste‎d. UL has stric‎t requi‎r emen‎t s for produ‎c tdesig‎n and manuf‎a ctur‎i ng proce‎s s. It is no surpr‎i se that knock‎o ff manuf‎a ctur‎e rs can't meet UL quali‎t y and safet‎y requi‎r emen‎t s.2. Makin‎g soymi‎l k from soake‎d soybe‎a n is more healt‎h ier. Read why3. Pay atten‎t ion to the capac‎i ty of the machi‎n e - how much soymi‎l k it makes‎in one batch‎.4. Caref‎u lly read the featu‎r es of the soymi‎l k maker‎.5. Consi‎d er shipp‎i ng cost and warra‎n ty cost as part of total‎cost.6. Check‎out how long has the brand‎and the compa‎n y been aroun‎d. We have seen so many soymi‎l k maker‎brand‎s and marke‎t ers come and go over the years‎, you don't want to see the compa‎n y is alrea‎d y gone when you need their‎servi‎c e.You can find just about‎anyth‎i ng on soy milk, tofu, and soy milk maker‎s at this web site. Check‎out the subje‎c ts in the menu bar at the right‎.Featu‎r es and benef‎i ts of SoyaJ‎o y/SoyaP‎o wer soy milk maker‎sClick‎the pictu‎r e of each model‎to see more detai‎l s∙Micro‎p roce‎s sor-contr‎o lled‎cooki‎n g; no "beany‎" taste‎!∙Easy to use - add water‎and soybe‎a ns, press‎one butto‎n!∙Fully‎autom‎a tic plus manua‎l setti‎n gs for maxim‎u m flexi‎b ilit‎y, such as makin‎g raw milk (no heati‎n g), see detai‎l s of each model‎.∙Stain‎l ess steel‎const‎r ucti‎o n - lasti‎n g quali‎t y!∙Six-glass‎, 1.5-liter‎(50 oz) capac‎i ty - 6 glass‎e s in one batch‎!∙The best machi‎n e, best servi‎c e - read indep‎e nden‎t revie‎w s!∙90-day full refun‎d retur‎n polic‎y. One-year warra‎n ty!∙UL appro‎v ed with all safet‎y featu‎r es built‎into the machi‎n e.∙Five-year warra‎n ty on grind‎i ng blade‎and pitch‎e r!∙Free recip‎e bookl‎e t, clean‎i ng kit, sampl‎e soybe‎a ns,and more.About‎SoyaP‎o wer Plus:From the compa‎n y that pione‎e red soymi‎l k maker‎s with the best-selli‎n g SoyaJ‎o y soy milk maker‎comes‎this newes‎t, third‎-gener‎a tion‎milk maker‎! "SoyaP‎o wer Plus offer‎sa revol‎u tion‎a ry leap in milk makin‎g techn‎o logy‎" revie‎w ed by Vicki‎l ynnHaycr‎a ft Click‎to read full revie‎w.The only milk maker‎with four push-butto‎nopera‎t ions‎, each optim‎i zed for makin‎g milk from soybe‎a ns, grain‎s, seeds‎or unlim‎i ted combi‎n atio‎n s of beans‎, grain‎s and seeds‎.SoyaP‎o wer Plus is the most advan‎c ed and versa‎t ile milk maker‎today‎. It boast‎s thequiet‎e st opera‎t ion and highe‎s t energ‎y effic‎i ency‎thank‎s to its therm‎o-plast‎i c outli‎n erover the stain‎l ess steel‎body. With uniqu‎e safet‎y featu‎r es such as safet‎y latch‎andtherm‎o-isola‎t ion, the SoyaP‎o wer Plus is about‎the only UL appro‎v ed filte‎r-lesssoymi‎l k maker‎on the marke‎t. The SoyaP‎o wer Plus gets the highe‎s t user ratin‎g. Click‎here for detai‎l ed revie‎w s of SoyaP‎o wer Plus soy milk maker‎.The Torna‎d o Grind‎i ng Syste‎m (TM) enabl‎e s not only the highe‎s t milk yield‎andeasie‎s t soymi‎l k makin‎g opera‎t ion avail‎a ble, but also the capab‎i lity‎for makin‎gnon-dairy‎milks‎and porri‎d ges from any type of beans‎, rice, grain‎s, seeds‎and nuts,such as soybe‎a ns, mung beans‎, brown‎rice, white‎rice, oats, mille‎t, wheat‎groat‎s,almon‎d s, hazel‎n uts, hemp seeds‎, or any combi‎n atio‎n s of them. It can even makebroth‎s and soups‎like soy-pumpk‎i n soup and rice and sweet‎potat‎o es soup.For more detai‎l s, click‎the SoyaP‎o wer Plus pictu‎r e, or click‎hereSanli‎n x Retur‎n/Refun‎d Polic‎yAs the exclu‎s ive US whole‎s ale distr‎i buto‎r, Sanli‎n x Inc. will provi‎d e its custo‎m ers with warra‎n ty servi‎c e even if the SoyaJ‎o y is purch‎a sed from our resel‎l ers, provi‎d ed that the warra‎n ty is regis‎t ered‎with Sanli‎n x withi‎n 30 days of purch‎a se. If you buy the SoyaJ‎o y from a SoyaJ‎o y resel‎l er, the resel‎l er may have its own retur‎n and refun‎d polic‎y, in which‎case the resel‎l er must be conta‎c ted for retur‎n/refun‎d.If this same machi‎n e is sold with a resel‎l er's own brand‎, Sanli‎n x is NOT respo‎n sibl‎e for retur‎n/refun‎d or warra‎n ty servi‎c e. Refun‎d Polic‎y豆浆机来自Wik‎ipedi‎a,免费百科全‎书例如,众多不同种‎类的豆浆机‎制造商之一‎豆浆机是一‎种小的厨房‎设备用于自‎动研磨豆浆‎,是一种用黄‎豆制成的非‎乳制品家用‎电器。

基于独立分量分析方法的闪光视觉诱发电位的提取及无创颅内压检测仪的研制

基于独立分量分析方法的闪光视觉诱发电位的提取及无创颅内压检测仪的研制

*重庆市自然科学基金资助项目(3);重庆市科委重点攻关资助项目(3)通信作者x @6基于独立分量分析方法的闪光视觉诱发电位的提取及无创颅内压检测仪的研制*吴西,季忠(重庆大学生物工程学院,重庆400030)摘要:我们研究了独立分量分析方法在闪光视觉诱发电位有效提取中的应用,并在此基础上研制出一种方便、准确的基于闪光视觉诱发电位的无创颅内压检测仪。

通过该仪器的无创颅内压检测值与有创颅内压检测值的比较,证明了基于闪光视觉诱发电位无创检测颅内压方法的可行性和准确性。

关键词:独立分量分析(ICA);闪光视觉诱发电位(FVEP);颅内压;无创颅内压;有创颅内压中图分类号:R318.6文献标识码:A文章编号:1672-6278(2011)01-0031-04Effectively Extraction of Flash Visual Evoked Potentialbased on Independent Component Analysis and Development for Non-Invasive Intracranial Pressure Detection InstrumentWU Xi,JI Zhong(College o f Boimedical Enginee rin g ,Chongqing U niv isity,Cho ngqing 400030,China )Abstr act:In the paper,effective ex traction of flash visual evoked potential based upon independent co mpo nent analysis(ICA )w as studied and a convenience ,exactly non-invasive ICP detection instru ment based o n FV EP w as develo ped.In further clinical application,feasibility and veraci ty o f non-invasive ICP measurement methods based upon FVEP has been appraised by co mparing the ICP values of the no n -invasive and invasive ICP detection methods.Key wor ds:Independent co mpo nent analysis(ICA);Flash visual evo ked potential(FV EP );In tracranial pressure (ICP);Non-invasive ICP;Invasive ICP1引言颅内高压是引起颅内疾病患者死亡的常见原因,及时、准确地掌握患者颅内压(intracranial pressure,ICP)的水平和定量诊断,是临床治疗至关重要的一步[1-2]。

数据降维(特征提取)和特征选择有什么区别?

数据降维(特征提取)和特征选择有什么区别?

数据降维(特征提取)和特征选择有什么区别?Feature extraction和feature selection 都同属于Dimension reduction。

要想搞清楚问题当中⼆者的区别,就⾸先得知道Dimension reduction 是包含了feature selection这种内在联系,再在这种框架下去理解各种算法和⽅法之间的区别。

和feature selection不同之处在于feature extraction是在原有特征基础之上去创造凝练出⼀些新的特征出来,但是feature selection则只是在原有特征上进⾏筛选。

Feature extraction有多种⽅法,包括PCA,LDA,LSA等等,相关算法则更多,pLSA,LDA,ICA,FA,UV-Decomposition,LFM,SVD等等。

这⾥⾯有⼀个共同的算法,那就是⿍⿍⼤名的SVD。

SVD本质上是⼀种数学的⽅法,它并不是⼀种什么机器学习算法,但是它在机器学习领域⾥有⾮常⼴泛的应⽤。

PCA的⽬标是在新的低维空间上有最⼤的⽅差,也就是原始数据在主成分上的投影要有最⼤的⽅差。

这个是⽅差的解释法,⽽这正好对应着特征值最⼤的那些主成分。

有⼈说,PCA本质上是去中⼼化的SVD,这可以看出PCA内在上与SVD的联系。

PCA的得到是先将原始数据X的每⼀个样本,都减去所有样本的平均值,然后再⽤每⼀维的标准差进⾏归⼀化。

假如原始矩阵X的每⼀⾏对应着每⼀个样本,列对应着相应的特征,那么上述去中⼼化的步骤对应着先所有⾏求平均值,得到的是⼀个向量,然后再将每⼀⾏减去这个向量,接着,针对每⼀列求标准差,然后再把每⼀列的数据除以这个标准差。

这样得到的便是去中⼼化的矩阵了。

我在整理相关⽂档的时候,有如下体会:我们的学习是什么,学习的本质是什么?其实在我看来就是⼀种特征抽取的过程,在学习⼀门新知识的时候,这⾥⼀个知识点,那⼉⼀个知识点,你头脑⾥⼀篇混乱,完全不知所云,这些知识点在你的⼤脑中也纯粹是杂乱⽆章毫⽆头绪的,这不正是⾼维空间⾥数据的特征么?最本质的数据完全湮没在太多太多的扰动中,⽽我们要做的就是提炼,从⼀堆毫⽆头绪的扰动中寻找到最本质的真理。

ICA在视觉诱发电位的少次提取与波形分析中的应用.

ICA在视觉诱发电位的少次提取与波形分析中的应用.

ICA在视觉诱发电位的少次提取与波形分析中的应用本文提出一种基于扩展的独立分量分析(ICA)算法的视觉诱发响应少次提取方法。

经与目前临床通用的相干平均法比较,只经三次平均,在波形整体和P100潜伏期的提取上,效果显著,获得医师欢迎,很有进一步开发潜力。

关键词:独立分量分析;少次提取;人工神经网络分类号:R318.19ICA IN THE SINGLE-TRIAL ESTIMATION AND ANALYSIS OF VEPHong Bo, Tang Qingyu, Yang Fusheng(Department of Electrical Engineering, Tsinghua University, Beijing100084)Pan Yinfu, Chen Kui, Tei Yanmei(Beijing Friendship Hospital, Beijing 100050)ABSTRACTA novel method based on the Extended Infomax of ICA (Independent Component Analysis) was proposed for single-trial estimation of multichannel Visually Evoked Potential (VEP). Its encouraging results were illustrated by both computer simulation and clinical data application. The number of trials needed was reduced to three, but the result was clearer than that obtained by 50 times conventional coherent averaging. By analyzing the time course and spatial pattern of the independent components, a certain component was found to be closely related with the P100 peak in the VEP complex.Key words: Independent component analysis (ICA); Single-trial estimation; Artificial neural network0 引言视觉诱发电位(VEP)是指出于外部视觉刺激而在视觉通路上产生的可以在头皮上测量到的电活动。

微弱信号调理电路的设计及研究

微弱信号调理电路的设计及研究

第25卷 第1期 2010年3月 西 南 科 技 大 学 学 报 Journa l o f South w est U n i versity o f Sc i ence and T echnology V o.l 25N o .1 M a r .2010收稿日期:2009-09-20基金项目:四川省安监局基金资助项目(2007-21),四川省教育厅基金资助项目(07z d1102)。

作者简介:赵亮(1984-),女,在读研究生,主要研究方向:气体检测、硬件电路设计与调试。

E -m a i :l 79536348@qq .co m微弱信号调理电路的设计及研究赵 亮 刘先勇 袁长迎 李驹光 蒙 瑰(西南科技大学光声检测研究室 四川绵阳 621010)摘要:精确的信号调理技术是测控领域发展的重要方向。

基于开关电容滤波器和程控放大器设计了一种新的信号调理电路,采用ATm ega 128单片机自适应地调整开关电容的滤波参数和程控放大器的放大倍数。

微音器微弱信号检测的实验结果表明,该电路能达到动态范围几微伏到几十毫伏、灵敏度1 V 、响应时间优于1m s 的技术指标,具有性能稳定,可靠性高、灵活性强、可编程等特点。

关键词:微弱信号 自动跟踪滤波器 可编程增益 动态范围中图分类号:TN402 文献标识码:A 文章编号:1671-8755(2010)01-0064-04Design and Study ofW eak Signal Conditi oni ng C ircuitZ HAO L i ang ,LI U X i an yong ,YUAN Chang y i n g ,LI Ju guang ,MENG G u i(R esearch Laborator y of Photoacoustic Detection ,Southw est Un iversit y of Science and Technology,M ianyang 621010,S ichuan,Ch i n a)Abstract :Precise Signal Cond ition i n g techno l o gy i s an i m portant d irection that the fie l d ofm on itor i n g de ve l o ps .Based on Sw itch Capacitor F ilters and Dyna m ic Range I nstr um entation Am plifier ,t h is article pr o posed a ne w S i g na lCond ition i n g circui,t adopting the 128ATm egaM icr ocontr o ller auto m atica ll y ad j u st fil ter i n g para m eters of Sw itch C apac itor F ilters and m agn ify i n g mu lti p le o f Dyna m ic Range I nstr um entation Am plifi e r .The experi m ents ofW eak S ignal Detection on M icrophone sho w that the c ircu its ach ieves the fo llo w i n g technical standard :(1)Dyna m ic Ranges fro m several V to tens o fmV ;(2)Sensitiv ity :1;(3)Rresponse ti m e :excel 1m s .K ey w ords :W eak S igna;l Au to track i n g F ilter ;Progra mm able G ai n ;Dyna m ic Range精确的信号调理是微弱信号检测[1](W eak S i g na l Detection)中的关键技术,使得微弱量(如弱光、小位移、微振动、弱声及微电流等)的检测成为可能,大大提高了微弱信号检测的精度。

基于骨架的玉米植株三维点云果穗分割与表型参数提取

基于骨架的玉米植株三维点云果穗分割与表型参数提取

第37卷第6期农业工程学报 V ol.37 No.62021年3月Transactions of the Chinese Society of Agricultural Engineering Mar. 2021 295 基于骨架的玉米植株三维点云果穗分割与表型参数提取朱超,苗腾※,许童羽,李娜,邓寒冰,周云成(1. 沈阳农业大学信息与电气工程学院,沈阳 110866;2. 辽宁省农业信息化工程技术研究中心,沈阳 110866)摘要:当前三维点云处理技术难以在玉米植株点云上对果穗进行识别和表型参数提取。

针对该问题,该研究采用基于骨架的玉米植株器官分割流程对植株三维点云的果穗器官进行分割和表型参数提取。

首先,优化基于骨架的玉米植株茎叶分割方法,在成熟期植株点云上实现植株骨架的提取、器官子骨架的分解以及器官点云的分割;再根据器官高度、子骨架长度、圆柱特征和点云数量4个约束条件从器官点云中识别出果穗点云;最后提取果穗相关的表型参数。

试验结果表明,该研究方法对玉米果穗的识别率为91.3%;果穗点云分割的平均F1分数、精确度、召回率分别为0.73、0.82和0.70;穗位高、穗长、穗粗、株高穗位高比4个表型参数的提取值与人工实测值线性关系显著,决定系数分别为0.97、0.78、0.85和0.96,均方根误差分别为3.23 、4.98、 0.73 cm和0.07。

该研究方法具备提取果穗器官点云和表型参数的能力,可为玉米高通量表型检测、玉米三维重建等研究和应用提供技术支持。

关键词:植物;表型;机器视觉;玉米果穗;点云分割;骨架提取doi:10.11975/j.issn.1002-6819.2021.06.036中图分类号:TP391.4 文献标志码:A 文章编号:1002-6819(2021)-06-0295-07朱超,苗腾,许童羽,等. 基于骨架的玉米植株三维点云果穗分割与表型参数提取[J]. 农业工程学报,2021,37(6):295-301. doi:10.11975/j.issn.1002-6819.2021.06.036 Zhu Chao, Miao Teng, Xu Tongyu, et al. Ear segmentation and phenotypic trait extraction of maize based on three-dimensional point cloud skeleton[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 295-301. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.036 0 引 言玉米是世界上最重要的粮食作物之一,其产量对保障全球粮食供应至关重要。

ica特征值提取的公式和原理

ica特征值提取的公式和原理

ica特征值提取的公式和原理English Answer:Independent Component Analysis (ICA) is a statistical technique used to extract independent sources from a set of mixed signals. It is widely used in signal processing, image processing, and data analysis. The ICA algorithm assumes that the source signals are statistically independent and that the mixing process is linear.The ICA algorithm works by finding a transformation matrix that separates the mixed signals into independent components. The transformation matrix is determined by minimizing the mutual information between the components. Once the transformation matrix is found, the independent components can be extracted by multiplying the mixed signals by the inverse of the transformation matrix.The eigenvalue decomposition of the covariance matrix of the mixed signals can be used to find the transformationmatrix. The eigenvectors of the covariance matrix are the directions of maximum variance in the data. The transformation matrix is formed by the eigenvectors of the covariance matrix.The formula for the eigenvalue decomposition of the covariance matrix is:C = VΛV^T.where:C is the covariance matrix.V is the matrix of eigenvectors.Λ is the diagonal matrix of eigenvalues.The principle behind the eigenvalue decomposition is that the covariance matrix can be decomposed into a set of eigenvectors and eigenvalues. The eigenvectors are the directions of maximum variance in the data, and theeigenvalues are the variances in those directions.Chinese Answer:独立成分分析 (ICA) 是一种从一组混合信号中提取独立源的统计技术。

基于视觉的旋翼无人机地面目标跟踪(英文)

基于视觉的旋翼无人机地面目标跟踪(英文)
scale-space extrema detection
I. INTRODUCTION UAV is one of the best platforms to perform dull, dirty or dangerous (3D) tasks [1]. UAV can be used in various applications where human is impossible to intervene. It greatly expands the application space of visual tracking. Research on the technology of vision based ground target tracking for UAV has been a great concern among cybernetic experts and robotic experts, and has become one of the most active research directions in UAV applications. Currently, researchers from America, Britain, France and Sweden are on the cutting edge in this field [2]. Typical visual tracking platforms for UAV include Scan Eagle, GTMax, RQ-11, RQ-16, DragonFly, etc. Because of many advantages, such as small size, light weight, flexible, easy to carry and low cost, rotor UAV has a broad application prospect in the fields of traffic monitoring, resource exploration, electricity patrol, forest fire prevention, aerial photography, atmospheric monitoring, etc [3]. Vision based ground target tracking system for rotor UAV is such a system that gets images by the camera installed on a low-flying rotor UAV, then recognizes the target in the images and estimates the motion state of the target, and finally according to the visual information regulates the pan-tilt-zoom (PTZ) camera automatically to keep the target at the center of the camera view. In view of the current situation of international researches, the study of ground target tracking system for

航空发动机叶片磨抛加工刀纹特征提取

航空发动机叶片磨抛加工刀纹特征提取

收稿日期:2020-04-03;修回日期:2020 -08 - 14 *基金项目:国家重点研发计划(2017YFB1301501);国家自然科学基金(91748114,51535004,52090054)
作者简介:李振(1997—),男,黑龙江集贤人,华中科技大学硕士研究生,研究方向为机器人智能加工,(E-mail) 17863123192@ ;通讯作 者:赵欢(1983—),男,河南漯河人,华中科技大学教授,博士生导师,博士,研究方向为机器人智能化加工装备与技术,(E - mail) huo
灰度相机所采集的叶片图像整体偏白,采用暗通道 方法进行图片增强处理[11] &该方法可以使得叶片图像更 加接近人眼的视觉习惯,视觉效果更加真实,具体方法见 公式(4):
・152・
组合机床与自动化加工技术
第6期
7(')
/(') -5
mvx(= '),=)
(4)
式中,7(')表示有雾图像对应的无雾图像,1(')表示 有雾图像,具体为 1(') = 7(') = ') +5(1 -=')); =')表示透射率,5表示全局大气光值。
0引言
航空发动机叶片是航空发动机的核心零件,其质量 决定了发动机的工作性能和使用寿命[1]。叶片长期在高 温、高压等条件下进行高速运动,恶劣的工况对叶片轮廓 度和表面质量有着很高的要求②。随着航空发动机的发 展,结构更趋于复杂,叶片表面粗糙度和轮廓度精度的要 求更高[3] &人工打磨通过人眼对叶片表面进行观察,结合 自身经验对叶片加工余量做出判断,进而使用磨抛工具 对叶片型面进行修整,存在打磨一致性差、叶片成品率低 与叶片整体加工成本高等问题⑷&

猪场中常用到的英语专业术语

猪场中常用到的英语专业术语

猪场中常用‎到的英语专‎业术语一、不同阶段的‎猪专业词汇‎boar(公猪)gilt(后备母猪)sow(经产母猪)pigle‎t(乳猪):特指尚没有‎断奶的小猪‎,国内称为仔‎猪的实际上‎包括未断奶‎的和已经断‎奶的,分别称为“哺乳仔猪”和“断奶仔猪”,用“仔培猪”这样的名称‎更是少见。

weani‎n g(断奶)weane‎r(断奶猪):断奶后的猪‎只——一般是18‎-24日龄直‎到30公斤‎。

Pre-start‎e r (断奶前仔猪‎)Start‎e r(断奶仔猪)growe‎r(生长猪):指大于30‎公斤的猪只‎——也称为fe‎e der pigfinis‎h er(育成猪):指大于60‎公斤的猪只‎,故称为肥育‎猪或育肥猪‎是不恰当的‎。

mummi‎f ied pigle‎t(木乃伊猪):在怀孕期间‎死亡的胎儿‎以木乃伊的‎状态被产出‎。

有些文献上‎称“产木乃伊”是不正确的‎,应该是“产木乃伊胎‎”。

Yorks‎h ire 大白Duroc‎杜洛克Hamps‎h ire 汉普夏Landr‎a ce 长白Farro‎w to wean出‎生到断奶Wean to feede‎r断奶到育‎肥Farro‎w to feede‎r出生到育‎肥Feede‎r to finis‎h育肥到育成‎Farro‎w to finis‎h出生到育‎成二、养繁殖中常‎用专业词汇‎farro‎w ing(产仔):母猪产小猪‎的过程-即分娩(partu‎r itio‎n)。

Intro‎d ucin‎g contr‎o l 引种控制Segre‎g ated‎early‎weani‎n g 早期断奶lacta‎t ing(泌乳):母猪产生乳‎汁的过程。

gesta‎t ing(怀孕期):从断奶后配‎种到产仔的‎一段时间(即干乳期)。

litte‎r(窝):从同一头母‎猪一次产出‎的一群仔猪‎。

parit‎y(胎次):每个胎次就‎是指每一次‎分娩——如:第三胎是指‎母猪产的第‎三窝。

基于独立成分分析的人脸图像特征提取与识别

基于独立成分分析的人脸图像特征提取与识别

基于独立成分分析的人脸图像特征提取与识别李丙春【期刊名称】《新疆师范大学学报(自然科学版)》【年(卷),期】2014(000)004【摘要】Feature extraction is one of the key steps of face recognition. It first outlined the basic models and principles of the independent component analysis ( ICA) and described the general process of using fast independ⁃ent component analysis ( FastICA) for feature extraction. Then gave a parallel computing algorithms of FastICA for separation matrix. At last, it conducted a simulation experiment using ORL face image database in Matlab environ⁃ment. The experimental results show that, this method of FastICA is an effective method for feature extraction. In addition, it also discussed several factors that affect the classification and recognition in the end.%特征提取是人脸识别的关键环节之一。

文章首先简述了独立成分分析( Independent Component Analysis,ICA)的基本模型和原理,介绍了快速独立成分分析FastICA方法特征提取的一般过程。

基于ICA与GA的语音特征提取方法

基于ICA与GA的语音特征提取方法

基于ICA与GA的语音特征提取方法刘婷;史继飞【期刊名称】《现代计算机(专业版)》【年(卷),期】2013(000)021【摘要】为了提高噪声环境中的语音识别率,将独立成分分析(ICA)方法用于语音信号特征提取,并使用遗传算法(GA)将提取出来的高维特征进行选择,最后得到的语音特征被用于基于高斯混合模型的语音识别应用中,并与传统的Mel倒谱系数(MFCC)特征进行比较。

实验结果表明基于ICA与GA的语言特征优于传统的MFCC特征。

%In order to improve the speech recognition in noisy environment, applies Independent Compo-nent Analysis (ICA) to obtain speech feature extraction. And uses Genetic Algorithm (GA) to select feature from the high-dimensional features. Uses the obtained feature in speech recogni-tion which is based on Gaussian Mixed Model (GMM). Compared with normal Mel-Frequency Cepstral Cofficients(MFCC). The experimental results show that the proposed ICA is better than normal MFCC.【总页数】5页(P24-28)【作者】刘婷;史继飞【作者单位】重庆邮电大学自动化学院,重庆 400060;重庆邮电大学计算机与技术学院,重庆 400060【正文语种】中文【相关文献】1.基于Kalman的语音特征参数提取方法研究 [J], 黄禹胜;张丕状;金东泽2.基于听觉特性的语音特征参数提取方法研究 [J], 白燕燕;苏静3.基于AWS_VFR的语音特征提取方法 [J], 谈会星;陈福才;李邵梅4.车内环境下基于高信噪比频带的语音特征提取方法 [J], 吴紫剑5.基于RBM的语音特征提取方法研究 [J], 赵从健; 雷菊阳; 李明明因版权原因,仅展示原文概要,查看原文内容请购买。

城市轨道交通专业词汇缩写总汇

城市轨道交通专业词汇缩写总汇

城市轨道交通专业词汇缩写AC:信标/计轴Axle CounterACS:计轴系统Axle Counter SystemADC:自动关门Auto Door CloseADO:自动开门Auto Door OpenADM:系统管理器ADU:特征显示单元AF:音频AFC:自动售检票系统Auto Fare CollectionAM:列车自动运行驾驶模式Automatic ModelAMU:ATO匹配单元AP:接入点、轨旁无线单元/应用模块Application P……APAM:ATO功率放大板块API:应用程序接口APR:绝对位置参考应答器、信标AR:自动折返驾驶/列车自动折返模式ARS:列车进路设定AS:管理服务器/接入交换机Access SwitchASK:数字调幅、幅移键控ATB:自动折返按钮Automatic Turnback ButtonATC:列车自动控制系统ATI:列车到达时刻显示器ATO:列车自动运行ATP:列车自动防护ATR:列车自动调整‘ATS:列车自动监控Automatic Train SupervisionAXC:计轴器B&A:操作和显示BAS:环境与设备监控系统Bd:波特bond:棒BS:骨干交换机Backbone SwitchBUMA:总线控制板CA:控制中心自动控制模、中央自动模式CAN:现场总线CAZ:冲突防护区域’CBI:计算机联锁Computer Based InterlockingCBN:通信系统CBTC:基于通信的列车控制Communication Based Train Control CC:车载控制器Carborne ControllerCCTE:车载安全计算机(包括ATP/ATO子系统)CCTV:闭路电视/电视监视器CD:载频检测模块CDM:电码检测模块CDTA:中央数据传输系统CE:控制设备CENELEC:欧洲电工标准委员会CESB:中央紧急停车按钮CER:控制室CG:编码发生器CH:校核信号CI:计算机联锁Computer Based InterlockingCLC:线路控制器CLOW:中央联锁工作站Center Locking WorkstationCM:编码人工驾驶模式COAST:惰行COM:通信服务器COTS:可购买的商用产品CPL:耦合器模块CouplerCPISA:通信处理器CPS:条件电源块CPU:中央处理单元CRC:循环冗余校验CRT:阴极射线显示器CS:中央服务器Center ServerCSEX:电码系统模拟器扩展CTC:调度集中CTS:光数据传输系统DAB:报警按钮(为了及时处理意外或临时事故而设置在车厢里的乘客报警按钮)DB:轨道数据库Data BaseDCC;元件接口模块/车辆段、停车场控制中心Depot Contral CenterDCS:数据通信系统Data Communication SubsystemDCU:数据储存单元DCR:车站综合控制室DDS:数字频率合成技术、DDU:诊断和数据上载单元、诊断和数据更新单元DEBLIMO:闪光元件接口模块DEM:调节器DESIMO:信号机元件接口模块DEWEMO:道岔元件接口模块DI:列车发车时刻显示器DID:目的地号Destination IdentificationDIOM:离散输入、输出板块DOC:驱动输出模块DOT:倒换方向DPU:车辆段程序单元DS:模拟MMI、演示系统、数据服务器DSP:数字信号处理技术DSIT:接口控制模块DSU:数据服务单元Data Service UnitDT:VCC数据传输DTC:数字轨道电路DTI:发车计时器、发车时间表示显示器Departure Time Indicator DTM:现场LDTS分机DTRO:无人驾驶列车折返运行DTS:光纤网、数据传输系统、光纤通信系统读点EBR:紧急制动继电器EB:紧急制动ECC:元件接口模块EFAST:列车控制元件接口模块EFID:入口馈电设备EPROM:只读储存器ERC:人工取消进路E……Route CancelESB、ESP:紧急关闭按钮Emergency Stop ButtonESS:紧急车站停车系统ESIT:电子元件接口模块EU:电子单元FAS:火灾自动报警系统FEC:非向前纠错FEP:前端处理器FFT:快速傅立叶变换FID:馈电设备FOTL:光纤传输线FRONTAM:数据存储单元FSB:全常用制动Full Service BrakingFSK:数字调频、频移键控FTGS:西门子公司的遥供无绝缘音频轨道电路/音频无绝缘轨道电路GEBR:可保证的紧急制动率Guaranteed Emergency Brake RateGO:ATP速度命令选择和核准电路HMI:人机接口/人机界面Human-Machine InterfaceIBP:综合后备盘Integrated Backup PanelI/O:输入/输出Input/OutputICM:输入控制模板、输入模块ICU:区域控制中心、控制单元、计算模块ID:识别IEC:国际电工委员会IFS:接口服务器Interface ServerILC:联锁控制器InterLocking ControllerIRU:接口继电器单元JTC;无绝缘轨道电路KOMDA:开关量输出板LAN:局域网Local area NetLC:车站控制LCC:本地控制台LCD:液晶显示器Liquid Crystal DisplayLCP:局域控制板(设于站控室内墙LCP控制盘上,需要扣车或取消时,按压按钮扣车或取消扣车,当站台的紧急停车按钮被按动时,在LCP上报警应按取消报警按钮)LCW:本地控制工作站Local Control WorkstationLDTS:现场数据传输系统LED:发光二极管Light Emitting DiodeLEU:轨旁电子单元、信号接口LFU:环路馈送单元LISTE:信号机元件接口板块LIU:环线调谐单元LMM:环路调制解调器板块LOM:逻辑输出板块LPU;车站程序单元LZB:连续式列车自动控制系统MAL:移动授权Movement Authority Limit MAZ:移动授权区域Movement Authority Zone MD:调频检测板块MDC:手动关门Manual Door CloseMDO:手动开门Manual Door OpenME:存储互换模块Memory Exchange MELDE:开关量输入板MI:联锁单元MicroLok:微机联锁/联锁设备MMI:人机界面MMS;维护管理系统MODEM:调制解调器MPM:主处理器板块MR:车载无线设备MSK:最小移频键控MSS:最大安全速度MWS:维护工作站Maintenance Work Station MT:轨道联锁、城市轨道交通、MTIB:移动列车初始化信标MTO:无人驾驶MUX:接口电机NDO:非安全数字输出板NFS:网络文件系统NIC:网络接口卡NISAL:数字集成安全保障逻辑NMS:网管系统/网络管理工作站NRM:非限制人工驾驶模式NRZI:不归零倒置NSS:网络支撑系统NVI:非安全型输入NVLE:非安全逻辑模拟器工作站NVO:非安全型输出OBE:车载设备OCC:运营控制中心Operational Contral Center OCM:输出控制模块ODI:操作/显示接口OLM;通信模块、光连接模块OLP:光连接插头OPG:速度脉冲发生器OTN:开放的传输网OVW:全线表示盘子系统PAC:环路调制解调器PAL:逻辑处理模块PAS:车站广播系统PB:停车制动PC:道岔控制PCB:控制器、印路电路板PCU:协议传输单元PD:多项式除法器PEB:站台紧急按钮、PF:工频PI:站台显示器PID:乘客导向系统PIIS:乘客信息显示器PIS:乘客导向系统PL:运行等级/站到站的运行时间PM:道岔转辙机PROFI BUS:过程现场总线PROM:课编程计数器PSA:远方报警盘PSC:远台屏蔽门中央控制盘PSD:站台屏蔽门PSL:就地控制盘PSU:电源单元PTI:列车识别系统PVID:永久性车辆标识Permernent Vehicle IdentificationPWD:梯形波调幅RAMS:安全性RB:重定位信标RC:进路控制RCC;远程通信控制器RCM:远程通信控制模块RI:继电器接口Relay Interface/接口设备RM:限制人工驾驶RMO:限速模式RTOS:实时操作系统RTU:车站远程终端单元Remote Terminal UnitRX:接收器SAN:存储区域网络SB:脚踏阀、常用闸,行驶制动器Servicebrake/常用制动Service Braking SBD:安全制动距离Safe Braking DistanceSBO:安全型单断输出SC;运行图编辑子系统SCADA:电力监控系统SCC:车站控制计算机/车站引导控制计算机SCEG:车站控制器紧急通路SCI:计算机联锁SCR:车站控制室S&D:诊断服务、检修和诊断SD:安全装置SDM:联锁系统维护工作站SDT:站停时间Station Dwell TimeSER:信号设备室SICAS:西门子计算机辅助信号/微机联锁设备SIL:安全完整度等级SIOM:串行输入、输出模块SIR:安全联锁继电器SISIG:烙断器板SLC:同步环线盒SLM:速度和位置模块SM:列车自动防护驾驶、系统维护台、系统维护模块SMC:系统管理中心SMSS:维护监测子系统SNMP:简单网络管理协议SNOOPER:列车和事件监控器SO:维护操作台S—PC:模拟PCSPDI:瞬间接触开关SQL:结构化查询语言SRS:运行图STA;天线STC:车站控制器STEKOP:现场接口计算机STIB:静态列车初始化信标STS:厂家测试成套设备SYN:同步天线TAC;测速电机出来模块TC:轨道区段、轨道电路TCM:轨道编码模块TCP/IP;远程控制协议/国际协议TD:列车位置检测TDB:线路数据库TDT;列车发车计时器TID:列车输入数据模块/列车追踪号Tracking Identification TM:室内控制柜TMT:列车监督和追踪TOD:司机显示盘、列车输出数据模块/司机操作显示单元TR:分线柜/接口设备TRC:列车进路计算机TS:目标速度Target Speed/终端服务器Terminal Server TSR:临时限速Temporary Speed RestrictionTTE:时刻表编辑器TTF:时刻表TTT:列车跟踪Train Tracking T……TU:调谐单元、轨道电路控制单元TVP:轨道空闲处理TWC:车-地通信Traffic Wayside CommunicationTX:发送器UPS:不间断电源URM:非限制人工驾驶模式VAS:车辆报告系统VCC;车辆控制中心VCS:车辆通信系统VDI:安全数字输入板VDO:安全数字输出板VENUS:处理器板中断板VESUV:同步比较板VHM:车况监视器VICOS:车辆和基础集中控制操作系统VO:表决器模块VoterVOBC:车载计算机、车载控制设备VPI:安全型计算机联锁VR:列车调整Vehicle RegulationVRD:安全继电器驱动器VSC:安全型串行控制器WEEZ Bond:小型调谐阻抗连接变压器WCC:轨旁通信控制器WE;轨旁设备WESTE:道岔接口模块ZC:区域控制器Zone Controler名称全称中文意义FAS 1.1 Fire Alarm System 火灾报警系统BAS Building Automation System 建筑设备自动化系统AFC Auto Fare Collection 自动售检票系统ATP Automatic Train Protection 列车自动防护ATS Automatic Train Supervision 列车自动监控ATC Automatic Train Control 列车自动控制ATO Automatic Train Operation 列车自动运行SCADA Scan Control Alarm Database 供电系统管理自动化OCC Operated Control Center 控制中心MMI Man Machine Interface 人机接口UPS Uninterrupted Power Supply 不间断电源供给MOC Ministry Of construction 建设部IDC Intermodality Data Center 清结算数据中心LAN Local Area Network 局域网WAN Wide Area Network 广域网OTN Open Transport Network 开放传输网络Tc (A) Trailer Car 拖车Mp (B) Motor Car With Pantograph 带受电弓的动车M (C) Motor Car 动车AW0 空载AW1 每位乘客都有座位AW2 每平方米6人AW3 每平方米9人CSC Contactless Smart Card 非接触智能卡CST Contactless Smart Token 非接触智能筹码EOD Equipment Operating Data 设备运行参数专业:车辆专业名称全称中文意义LRU Line Replaceable Unit 线路可替换单元TBD To be Defined 待定义,待规定TBEx Trailer Bogie -External 拖车外转向架TBIn Train Bogie -Intermediate 拖车中间转向架TBU Tread Brake Unit 踏面制动单元WSP Wheel Speed Sensor 轮速传感器PB Powered Bogie 动车转向架FDU Frontal Display Unit 前部显示单元IDU Internal Display Unit 内部显示单元TIMS Train Integrated Management System 列车综合管理系统DVA Digital and Audio Announcements 数字语音广播器MPU Main Processor Unit 主控单元APU Audio Power Unit 放大器单元VPI Visual Passenger Information 可视乘客信息VVVF Variable voltage Variable Frequency 变压变频专业:信号系统名称全称中文意义PTI Positive Train Identification 列车自动识别SICAS Siemens Computer Aided Signaling 西门子计算机辅助信号DTI Departure Time Indicator 发车计时器PIIS Passenger Information and Indication System 旅客向导系统ADM Administrator Workstation 系统工作管理站RM Restricted Manual Mode ATP限制允许速度的人工驾驶AR Automatic Reversal 自动折返ATT Automatic Train Tracking 列车自动跟踪SIC Station Interface Case 车站接口箱LCP Local Control Panel 局部控制台ARS Automatic Route Setting 列车自动进路排列ATR Automatic Train Regulation 列车自动调整专业:通信系统名称全称中文意义MDF Multiplex Distribution Frame 综合配线架TBS TETRA Base Station TETRA基站PABX Private Automatic Branch Exchange 专用自动小交换机DDF Digital Distribution Frame 数字配线架ODF Optical Distribution Frame 光配线架VDF Audio Distribution Frame 音频配线架DxTiP Digital Exchange for TETRA TETRA数字交换机ISDN Integrated Services Digital Network 综合业务数字网OMS OTN Management System OTN管理系统NCC Network Control Center 网络控制中心名称全称中文意义PCM Pulse Code Modulation 脉冲编码调制TETRA Terrestial trunked Radio 欧洲数字集群标准TDM Time Division Multiplexing 时分复用PSTN Public Switched Telephone Network 公用电话交换网CDD Configuration and Data Distribution Server 配置及数字分配服务器专业:自动售检票系统名称全称中文意义2 2.1 File Transfer Protocol 文件传输协议TCP/IP Transmission Control Protocol/ Internet Protocol传输控制/网络协议CPS Central Processing System 中央计算机系统SPS Station Processing System 车站计算机系统PIN Personal Identification Number 个人身份号码MCBF Mean Cycles Between Failure 运行设备两次损坏之间的次数MTTR Mean Time To Repair 维修耗时平均值TVM Ticket Vending Machine 自动售票机SEMI-TVM Manually Operated Ticket Vending Machine 半自动售票机PVU Portable Verifying Unit 便携式验票机GATE 闸机专业:火灾报警名称全称中文意义GCC Graphic Control Computer 图形监视计算机MTBF Mean Time Between Failures 平均无故障运行时间EMC Electro Magnetic Compliance 电磁兼容性FAC 消防专项合格证书I/O Input/Output 输入/输出专业:环境监控名称全称中文意义EMCS Electrical and Mechanical Control System 车站设备监控系统ECS Environment Control System 环境控制系统DDC Dircct Digital Controller 数字直接控制器PLC Programmable Logic Controller 可编程逻辑控制器API Application Programming interfac 应用程序接口Tc (A) Trailer Car 拖车Mp (B) Motor Car With Pantograph 带受电弓的动车M (C) Motor Car 动车AW0 空载AW1 每位乘客都有座位AW2 每平方米 6人AW3 每平方米 9人。

基于多参考信号ICA的目标语音提取方法

基于多参考信号ICA的目标语音提取方法

基于多参考信号ICA的目标语音提取方法王青云;宗慧【期刊名称】《微计算机信息》【年(卷),期】2012(000)008【摘要】为了能够在强噪声、干扰声等复杂环境下提取干净的目标语音,提高输出信号的信噪比和信干比,本文提出了一种基于多参考信号ICA算法的语音提取方案。

该方法利用声源定位、波束形成和小波分解等算法结果作为参考信号,应用基于负熵的FastICA算法估计目标语音。

使用麦克风阵实测语音信号的仿真实验证明,本文提出的算法能有效地抑制背景噪声和干扰声,恢复目标语音波形和语谱图。

与常规波束形成和ICA算法相比较,本文的处理方法有更好的性能,输出信号的信噪比和信干比更高。

%In order to improve the signal noise ratio (SNR) and signal interference ratio (SIR) of the output speech signal and extract pure target speech in the environment with strong noises and interferences, a novel target speech extraction method based on multiple reference signals independent component analysis ~(ICA) algorithm is proposed in this paper. Firstly, reference signals are acquired by source localization, beamforming and wavelet translation algorithms. Then the target speech is estimated by FastlCA algorithm based on the negative entropy combined with the reference signals. Simulations and experiments using microphone array signals demonstrated that background noises and interference speech were reduced and pure target speech waveform and spectrogram were recovered effectively. Compared to traditionalbeamforming and ICA algorithms, the proposed method achieved better performance such as higher SNR and SIR.【总页数】3页(P14-16)【作者】王青云;宗慧【作者单位】南京工程学院通信工程学院,211116;东南大学信息科学与工程学院,江苏南京210096【正文语种】中文【中图分类】TN912【相关文献】1.基于ICA的EEG参考信号去除 [J], 陈士辉;胡三清2.基于中值滤波和ICA的军事目标特征提取方法 [J], 唐兴佳;张秀方3.基于ICA与GA的语音特征提取方法 [J], 刘婷;史继飞4.一种基于多参考信号ICA的重力信号提取方法 [J], 罗骋;李宏生;赵立业5.基于ICA的雷达目标二维结构提取方法研究 [J], 李晓辉;黎湘;郭桂蓉因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010 Sixth International Conference on Natural Computation (ICNC 2010) ICA-Based Feature Extraction and Automatic Classification of AD-Related MRI DataWenlu Yang,Halei Xia,Bin Xia Information Engineering CollegeShanghai Maritime UniversityShanghai,200135,Chinawenluyang@Lok Ming LuiDepartment of MathematicsHarvard UniversityBoston,MA,USAmalmlui@Xudong HuangDepartment of RadiologyBrigham and Women’s Hospitaland Harvard Medical SchoolBoston,MA,USAxhuang3@Abstract—There is an unmet medical need for identifying neuroimaging biomarkers for Alzheimer’s disease(AD),the most common form of senile dementia.These biomarkers are essential for early and accurate diagnosis of AD,monitoring of AD progression,and assessment of AD-modifying therapies.In volumetric studies of the medial temporal lobe and hippocampus, magnetic resonance imaging(MRI),as a technique that can detect changes in cerebral bloodflow and blood oxygenation,has shown its powerful ability to distinguish AD and mild cognitive impairment(MCI)subjects from normal controls.However, how to identify potential AD neuroimaging biomarkers from magnetic resonance(MR)images is still a very challenging task. We have thus proposed a novel method based on independent component analysis(ICA),an increasingly important biomedical signal processing technique that enables separation of blindly observed signals into original independent signals for identifying potential AD neuroimaging biomarker(s).The ICA-based method has three steps.First,all MRI scans are aligned and normalized by SPM.Then,ICA was applied to the images for extracting a potential neuroimaging biomarker.Finally,the separated in-dependent component coefficients were fed into a classifying machine that is able to discrinate AD and MCI from control subjects.The experimental results on the MRI data from the Open Access Series of Imaging Studies showed that that our ICA-based method can discern AD and MCI cases from age-matched controls.I.I NTRODUCTIONAlzheimer’s Disease(AD)is by far the most common cause of dementia associated with aging and a neurodegenerative disorder.Many studies of AD showed that three typical lesions in AD’s brain have been recognized such as the intraneuronal neurofibrillary tangles,extracellular deposits of senile amyloid plaques,and the loss of neurons[1].To clinically diagnose AD patients at the early stage,many biomedical imaging techniques have been used,such as structural and functional magnetic resonance imaging(sMRI/fMRI),positron emission tomorgraphy(PET),and so on.Structural MRI promises to aid diagnosis and treatment monitoring of mild cognitive impairment(MCI)and AD,of-fering the potential for easily obtainable surrogate biomarkers of diagnostic status and disease progression.The studies of analyzing sMRI brain scans can be generally categorized into two classes:region-of-interest(ROI)analysis[2]and whole brain analysis[1][3].ROI analysis focuses on specific brain regions,especially the hippocampus and the entorhinal cortex [4][5],which show histopathogical changes at early stages of AD[6].ROI analysis of the brain structure is considered as the gold standard,but it has some drawbacks such as operator-dependency,being labor-consuming and time-intensive,and requiring a priori choice of regions to be investigated[7]. To overcome these shortcomings,some automated methods of measuring whole brain atrophy have been developed, such as voxel-based morphometry(VBM)[8],tensor-based morphometry[9],source-based morphometry[10],etc.On the other hand,sMRI researches can be divided by analysis techniques into volume statistics[4][2],cortex shape analysis [5],and blind signal separation/machine learning techniques [3][10][11][12].Independent component analysis(ICA),as one of important techniques of blind signal separation,has been shown to provide a powerful method for neuroimaging data[13][17]. It is one of multivariate data-driven techniques that enable an exploratory analysis of MRI datasets to provide useful information about the relationship between voxels in local substructures of the brain.For diagnosis or classification of patients with AD and MCI,support vector machines(SVM) as one of machine learning techniques has been paid more attentions[3][11].In the current study,we will propose a novel method that applies ICA to extracting features from sMRI images and performs support vector machine for classifying AD and MCI patients from normal control subjects.The rest of the paper is organized as the follows.Section II proposed our novel method based on ICA.In this section, we will explain the framework of the method and the key techniques used in this study.In section III,we will present our experimental results including learned basis functions, representation on the ICA subspace,classification of AD and normal controls.Finally discussions and conclusions will be made in section IV.II.M ETHODA.The framework of the proposed methodThe framework of our ICA-based method is shown in Fig.1. First of all,all MRI data are normalized into a template[14], and then reconstruct the brain images in which all nonbrain voxels are masked out.Next,the normalized brain images are decomposed into MRI basis functions and the correspondingFig.1.The framework of the method for analysis of structural MRIdata.Fig.2.An example of the atlas-registered gainfield-corrected and brain-masked images.coefficients using the FastICA algorithm[15].Finally,the separated coefficients are fed into a SVM-based classifier for diagnosis of individuals with or without AD.B.Overview of the Data SetThe Open Access Series of Imaging Studies(OASIS)is a series of magnetic resonance imaging data set that is publicly available for study and analysis.The data set consists of a cross-sectional collection of416subjects aged18to96years, including218subjects aged18to59years and198subjects aged60to96years.Of the older subjects,98had CDR score of0,indicating no dementia,and100had a CDR score greater than zero(70CDR=0.5,28CDR=1,2CDR=2),indicating a diagnosis of very mild to moderate AD.The detailed statistics of the data set was described in the literature[14].To alleviate our computing burden,we used the processed image data in the OASIS database,that is,the atlas-registered gainfield-corrected and brain-masked image in the processed directory.An example is shown in Fig.2.Fig.3.A spatial ICA model for decomposing MRIimages.Fig.4.An example of reconstruction of MRI images.C.Spatial ICA model for MRI dataThe basic goal of independent component analysis is to solve the blind signal separation problem by expressing a set of random variables(observations)as linear combinations of statistically independent component variables(source signals). According assumptions of sources independent over space or time,ICA can be further described as spatial ICA(sICA)and time ICA(tICA).SICA seeks a set of mutually independent component source images and a corresponding set of uncon-strained time courses.By contrast,tICA seeks a set of IC source time courses and a corresponding set of unconstrained images.In concrete sMRI data,sICA embodies the assumption that each image in X is composed of a linear combination of spatially and statistically independent images.The spatial ICA model for MRI images is shown in Fig.3.In Fig.3, the data X denotes voxels of all MRI images,The voxels in each MRI image are arranged into one row in X.S and A are unsupervisedly and simultaneously learned from X.Each row in A denotes a base,also called a basis function,or a feature.In this study,these bases also are considered as potential neuroimaging biomarkers.After ICA computation,any MRI image can be recon-structed by linearly combining the set of basis functions and corresponding coefficients,for example,shown in Fig.4. D.Classification Using Support Vector MachineSupport vector machine(SVM)[16]is one of very popular classifiers and recently has been used to help distinguish AD subjects from elderly control subjects using anatomical MR imags[3].SVM conceptually implements the idea that vectors are nonlinearly mapped to a very high dimension feature space. In this feature space,a linear separation surface is created to separate the training data by minimizing the margin between the vectors of the two classes.In this study we will use the LIBSVM toolbox (.tw/cjlin/libsvm)as the classifier to diagnose AD subjects from normal controls.Fig.5.Examples of learned MRI image bases from MRI data with AD and NC using a spatial ICA algorithm built-in the FastICA toolbox.III.EXPERIMENTAL RESULTSA.Feature extraction using ICAUsing the FastICA algorithm to decompose the brain im-ages,we can obtain MRI image basis functions shown in Fig.5.From these bases,we can easily notice that each base has only coded a local part of a brain MRI image.Differently bases locally code different parts of the brain image.If a corresponding coefficient is bigger,we can say the base is more important in the individual MRI scans.B.Experimental DatasetThe whole data set is divided four groups:Group1(100 subjects with the CDR score greater than0),and Group2, 3,and4respectively included116,100,and100subjects divided from the316control subjects without dementia in the descending order.Ages in Group2are in the range from18 to19,averaged18.44±0.56;Group3form25to59,averaged42.16±17.16;Group4from59to94,averaged75.58±18.42.C.Experimental Results1)Representation on the ICA feature subspace:After using the FastICA tool to separate all MRI images with AD and normal subjects,the dimensionality of all independent com-ponents is reduced using principal component analysis(PCA). Next,we project all MRI scan samples onto the ICA feature subspace.The Fig.6shows distribution of MRI data on the3D subspace spanned by Age,principle component(PC1),and PC2.Here,PC1and PC2are reconstructed from decomposed components using principle component analysis(PCA).And the Fig.7denotes distribution in3D subspace of PC1,PC2, and PC3,same as the meaning in the Left.These twofigures indicate that brains are different,gradually changing with ages. The results are consistent with that presented by Marcus et al.[14].2)Classification of AD and normal controls:After feature extraction and representation on independent subspace,all MRI data will be diagnosed and clustered into two groups-AD and normal controls-using a classifier based on support vector machine.We have made two experiments on the data.Fig.6.Distribution of MRI data on the3D subspace spanned by Age,PC1, and PC2.Fig.7.Distribution in3D subspace of PC1,PC2,and PC3.TABLE IA CCURACY BY RANDOM METHOD(%)Mean Sensitivity SpecificityGroup1-298.497.499.4Group1-393.389.996.1Group1-462.856.968.7One is random training and testing method,and other is leave-one-out method.Thefirst method randomly selects half of the data as the training set,the rest as testing data.And more experiments with90%training dataset have improved the classification accuracy.This is because the classifier is based on statical learning theory.The more samples there are, the more reliable the classification result is.The leave-one-out method means leaving one data as the testing data,the rest as the training data.The classification accuracy is shown as tables I,II,and III.In the table I,the mean accuracy was averagely obtainedTABLE IIA CCURACY BY RANDOM METHOD(%)Mean Sensitivity SpecificityGroup1-299.198.399.8Group1-394.893.596.0Group1-465.460.670.4TABLE IIIA CCURACY BY LEAVE-ONE-OUT METHOD(%)Mean Sensitivity SpecificityGroup1-299.098.0100Group1-395.094.096.0Group1-467.562.073.0after we repeated over100times the experiments using usual training and testing method.In the same way,the mean accuracy in the table III was averagely obtained after each sample was tested.We also quantified the specificity related to AD patients and sensitivity related to control subjects. Given TP the number of true positives:number of AD pa-tients correctly classified,TN the number of true negatives, FP the number of false positives,and FN the number of false negatives,the classification accuracy can be definedas accuracy=T P+T NT P+F P+T N+F N ,the specificity can bedefined as specificity=T PT P+F P ,and the sensitivity assensivity=T NT N+F N .From these tables,it is obvious that the differences between group1and other groups are more remarkable with increasing age gap.In group1,there are100subjects of age over60, and in groups2,3,4,the average ages are18.44,42.16,and 75.58,respectively.IV.DISCUSSIONS AND CONCLUSIONSA.Why ICA to structural imaging analysis?ICA is one of the data-driven,multivariate,and unsuper-vised methods with an advantage of no any a priori in-formation.It has become an increasing popular biomedical data-mining technique,also for processing functional and structural MRI data[17].To our knowledge,there are few reports about application of ICA to structural MRI data of AD patients.However,ICA might also be a useful tool for early AD diagnosis of structural MRI data analysis because it has shown its powerful ability of processing sMRI data with schizophrenia[17].Therefore,in this study,we tried to apply ICA to analysis of AD-related MRI data.The results we have presented show that the proposed method based on ICA is very useful for classification of AD and normal controls. B.Dimensionality reduction of the MRI dataDue to the high dimensionality of the MRI data in OASIS database,say XYZ178×208×178,there are a problem with computing resources.To solve it,dimensionality reduction step is needed.Wefirst cut MRI images to160×208×160because the deleted voxels are outermost in the MRI images with gray values about zero.Then resize them to40×52×40using a bilinear method.Even so,the total voxels in one image are still83200.Finally we calculate the standard variances of the voxels in each image and select the voxels with variances over a threshold.In other words,these voxels are strongly related to different kinds of subjects and they are useful for classification of AD and normal controls as the proof of this study.As abovementioned,we used spatial ICA model to separate the MRI data into image bases and independent components.Be-fore ICA computation,PCA was used to reduce dimensionality and noisy information including in the MRI data.Finally,we separated out200independent components as the input to SVM-based classifier distinguishing AD subjects from normal control subjects.C.Related worksMarcus et al.[14]used the FAST program in the FSL soft-ware suite(/fsl)to compute normalized whole-brain volume(nWBV)and plotted nWBV distribution line across the adult life span.Our result shown in Fig.6is similar to that presented in the paper.This indicates that the feature extraction method based on ICA preserves the usefully changing information with the development of Alzheimer’s disease.Therefore,there are same manifolds on both originally statistical space(nWBV-ages)and ICA subspace.Magnin et al.[3]presented a method based on SVM to classify16AD and22elderly control subjects and showed their promising results.Theyfirst parcellated MR images into regions of interest(ROIs)and then apply an SVM algorithm to the characteristics of gray matter extracted from each ROI for distinguishing patients with AD from elderly controls. Savio et al.[18]applied four different models of ANNs to classification of98female patients of AD vs.control subjects. They reported the result of83%accuracy based on VBM analysis.Garcia-Sebastian et al.[19]studied feature extraction processes based on VBM analysis to classify MRI volumes of AD patients and normal subjects.They applied SVM to perform classification on MRI volumes of98females and obtained better results with80.6%accuracy.Unlike their less samples,we processed total416MR images and presented the more reliable and statistical results. Our more results showed that if we classified100AD and316 control subjects we would obtain the average92.4%accuracy.D.Future workAlthough we have presented the acceptable classification results of AD and normal control subjects,there are still have a lot of work to ing spatial ICA model,the locality of MRI data in the original image space has been extracted.However, some questions should befigured out.For example,which ICA base is more important for diagnosis of AD?What is the relationship between ICA bases and substructures in the brain? Which ICA base is a potential neuroimaging biomarker for identifying AD subjects?We will further study these questions in order to discover AD-related neuroimaging biomarkers.A CKNOWLEDGMENTThe authors would like to express their gratitude for the sup-ports from Shanghai Maritime University Foundation(Grant No.20080471,20090175),the Science and Technology Com-mission of Shanghai Municipality(Grant No.0951*******), the national natural science foundation of China(Grant No. 60905056)the NIA/NIH(5R21AG028850),Alzheimer’s As-sociation(IIRG-07-60397),and the research funds from BWH Radiology Department.R EFERENCES[1]Katz,B.and S.Rimmer,Ophthalmologic manifestations of alzheimers-disease.Survey of Ophthalmology,1989,34(1):31-43.[2]Jack CR,Petersen RC,Obrien PC,Tangalos EG.MR-based hip-pocampal volumetry in the diagnosis of Alzheimers-disease.Neurology, 1992;42(1):183-8.[3]Magnin B,Mesrob L,Kinkingnehun S,Pelegrini-Issac M,Colliot O,Sarazin M,Dubois B,Lehericy S,Benali H.Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI.Neuroradiology2009;51(2):73-83.[4]Chupin M,Gerardin E,Cuingnet R,Boutet C,Lemieux L,Lehericy S,Be-nali H,Garnero L,Colliot O.Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI.Hippocampus2009;19(6):579-87.[5]Zhou L,Lieby P,Barnes N,Reglade-Meslin C,Walker J,Cherbuin N,Hartley R.Hippocampal shape analysis for Alzheimer’s disease using an efficient hypothesis test and regularized discriminative deformation.Hippocampus2009;19(6):533-40.[6]Braak H,Braak E.Staging of Alzheimer-related cortical destruction.IntPsychogeriatr1997;9Suppl1:257-61;discussion69-72.[7]Giesel FL,Thomann PA,Hahn HK,et al.,Comparison of manual directand automated indirect measurement of hippocampus using magnetic resonance imaging.European Journal of Radiology,2008,(66):268-273.[8]Ashburner J,Friston KJ.V oxel-based morphometry-The methods.Neuroimage2000;11(6):805-21.[9]Hua X,Leow AD,Parikshak N,Lee S,Chiang MC,Toga AW,JackCR,Jr.,Weiner MW,Thompson PM.Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease:an MRI study of676 AD,MCI,and normal subjects.Neuroimage2008;43(3):458-69. [10]Xu L,Groth KM,Pearlson G,Schretlen DJ,Calhoun VD.Source-basedmorphometry:the use of independent component analysis to identify gray matter differences with application to schizophrenia.Hum Brain Mapp 2009;30(3):711-24.[11]Kloppel S,Stonnington CM,Chu C,Draganski B,Scahill RI,RohrerJD,Fox NC,Jack CR,Jr.,Ashburner J,Frackowiak RS.Automatic classification of MR scans in Alzheimer’s disease.Brain2008;131(Pt3):681-9.[12]Walhovd KB,Fjell AM,Brewer J,McEvoy LK,Fennema-NotestineC,Hagler DJ,Jr.,Jennings RG,Karow D,Dale bining MR Imaging,Positron-Emission Tomography,and CSF Biomarkers in the Diagnosis and Prognosis of Alzheimer Disease.AJNR Am J Neuroradiol 2010.[13]McKeown MJ,Sejnowski TJ.Independent component analysis of fMRIdata:Examining the assumptions.Human Brain Mapping1998;6(5-6):368-72.[14]Marcus D.S.,et al.,Open access series of imaging studies(OASIS):Cross-sectional MRI data in young,middle aged,nondemented,and demented older adults.Journal of Cognitive Neuroscience,2007,19(9): 1498-1507.[15]Hyvarinen A.,Fast and robustfixed-point algorithms for independentcomponent analysis.Ieee Transactions on Neural Networks,1999,10(3): 626-634.[16]Cortes C.and Vapnik V.SUPPORT-VECTOR NETWORKS.MachineLearning,1995,20(3):273-297.[17]Xu L.,Pearlson G.,and Calhoun V.D.Joint source based morphometryidentifies linked gray and white matter group differences.Neuroimage, 2009,44(3):777-789.[18]Savio A.,Garcia-Sebastian M.,et al.Classification results of artificialneural networks for Alzheimer’s Disease Detection.Lecture Notes in Computer Science,2009,5788:641-648.[19]Garcia-Sebastian M.,Savio A.,Grana M.,Villanua J.On the Use ofMorphometry Based Features for Alzheimers Disease Detection on MRI.Lecture Notes in Computer Science,2009,5517:957-964.。

相关文档
最新文档