HCPL0730中文资料
ic芯片大全
HCPL-0452-000E AVAGOHCPL-0452-300E AVAGOHCPL-0452-500E AVAGOHCPL-0453-000E AVAGOHCPL-0453-300E AVAGOHCPL-0453-500E AVAGOHCPL-0454-000E AVAGOHCPL-0454-300E AVAGOHCPL-0454-500E AVAGOHCPL-0466-000E AVAGOHCPL-0466-300E AVAGOHCPL-0466-500E AVAGOHCPL-0500-000E AVAGOHCPL-0500-300E AVAGOHCPL-0500-500E AVAGOHCPL-0501-000E AVAGOHCPL-0501-300E AVAGOHCPL-0501-500E AVAGOHCPL-050L-000E AVAGOHCPL-050L-300E AVAGOHCPL-050L-500E AVAGOHCPL-0530-000E AVAGOHCPL-0530-300E AVAGOHCPL-0530-500E AVAGOHCPL-0531-000E AVAGOHCPL-0531-300E AVAGOHCPL-0531-500E AVAGOHCPL-0534-000E AVAGOHCPL-0534-300E AVAGO SN74AHC541DW TIHCPL-0534-500E AVAGO SN74AHC573N TIHCPL-053L-000E AVAGO SN74HC125DBR TIHCPL-053L-300E AVAGO SN74HC148N TIHCPL-053L-500E AVAGO SN74HC373DWR TIHCPL-0601-000E AVAGO SN74LS612N TIHCPL-0601-300E AVAGO SN74LV373APWR TIHCPL-0601-500E AVAGO SN74LVC245APWR TIHCPL-060L-000E AVAGO SN74LVC257APWR TIHCPL-060L-300E AVAGO SN74LVC573APWR TIHCPL-060L-500E AVAGO SNJ5410W TIHCPL-0611-000E AVAGO SNJ5420W TIHCPL-0611-300E AVAGO SNJ5450W TIHCPL-0611-500E AVAGO SNJ5474W TIHCPL-061A-000E AVAGO SNJ5483AW TIHCPL-061A-300E AVAGO SNJ54H102W TIHCPL-061A-500E AVAGO SNJ54LS08W TIHCPL-061N-000E AVAGO SNJ54LS123J TIHCPL-061N-300E AVAGO SNJ54LS279W TIHCPL-061N-500E AVAGO SNJ54LS86W TIHCPL-0630-000E AVAGO SPX1585AU-2.5SPHCPL-0630-300E AVAGO SPX1585AU-3.3SPHCPL-0630-500E AVAGO SRFIC08K40R2MOTOROLA HCPL-0631-000E AVAGO SSM2166SZ ADI HCPL-0631-300E AVAGO SSM2250RU-REEL ADI HCPL-0631-500E AVAGO SST39SF010-70-4C-NH sst HCPL-063A-000E AVAGO SST39VF010-70-4C-NHE SST HCPL-063A-300E AVAGO SST39VF800A-70-4C-EK SST HCPL-063A-500E AVAGO SST39VF800A-70-4C-EK SST HCPL-063L-000E AVAGO STAC9766T SIGMATEL HCPL-063L-300E AVAGO STC809JEUR-T STC HCPL-063L-500E AVAGO STC809LEUR-T STC HCPL-063N-000E AVAGO STC809MEUR-T STC HCPL-063N-300E AVAGO STC809REUR-T STC HCPL-063N-500E AVAGO STC809SEUR-T STC HCPL-0661-000E AVAGO STC809TEUR-T STC HCPL-0661-300E AVAGO STC810JEUR-T STC HCPL-0661-500E AVAGO STC810LEUR-T STC HCPL-0700-000E AVAGO STC810MEUR-T STC HCPL-0700-300E AVAGO STC810REUR-T STC HCPL-0700-500E AVAGO STC810SEUR-T STC HCPL-0701-000E AVAGO STC810TEUR-T STC HCPL-0701-300E AVAGO STC811JEUS-T STC HCPL-0701-500E AVAGO STC811LEUS-T STC HCPL-0708-000E AVAGO STC811MEUS-T STC HCPL-0708-300E AVAGO STC811REUS-T STC HCPL-0708-500E AVAGO STC811SEUS-T STC HCPL-070A-000E AVAGO STC811TEUS-T STC HCPL-070A-300E AVAGO STC812JEUS-T STC HCPL-070A-500E AVAGO STC812LEUS-T STC HCPL-070L-000E AVAGO STC812MEUS-T STC HCPL-070L-300E AVAGO STC812REUS-T STC HCPL-070L-500E AVAGO STC812SEUS-T STC HCPL-0710-000E AVAGO STC812TEUS-T STC HCPL-0710-300E AVAGO STM809JWX6F STHCPL-0710-500E AVAGO STM809LWX6F STHCPL-0720-000E AVAGO STM809MWX6F STHCPL-0720-300E AVAGO STM809RWX6F STHCPL-0720-500E AVAGO STM809SWX6F STHCPL-0721-000E AVAGO STM809TWX6F STHCPL-0721-300E AVAGO STM810JWX6F STHCPL-0721-500E AVAGO STM810LWX6F STHCPL-0723-000E AVAGO STM810MWX6F STHCPL-0723-300E AVAGO STM810RWX6F STHCPL-0723-500E AVAGO STM810SWX6F STHCPL-0730-000E AVAGO STM810TWX6F STHCPL-0730-300E AVAGO STM811JW16F STHCPL-0730-500E AVAGO STM811LW16F STHCPL-0731-000E AVAGO STM811MW16F STHCPL-0731-300E AVAGO STM811RW16F STHCPL-0731-500E AVAGO STM811SW16F STHCPL-0738-000E AVAGO STM811TW16F STHCPL-0738-300E AVAGO STM812JW16F STHCPL-0738-500E AVAGO STM812LW16F STHCPL-073A-000E AVAGO STM812MW16F STHCPL-073A-300E AVAGO STM812RW16F STHCPL-073A-500E AVAGO STM812SW16F STHCPL-073L-000E AVAGOHCPL-073L-300E AVAGOHCPL-073L-500E AVAGOHCPL-0900-000E AVAGOHCPL-0900-300E AVAGOHCPL-0900-500E AVAGOHCPL-090J-000E AVAGOHCPL-090J-300E AVAGOHCPL-090J-500E AVAGOHCPL-091J-000E AVAGOHCPL-091J-300E AVAGOHCPL-091J-500E AVAGOHCPL-092J-000E AVAGOHCPL-092J-300E AVAGOHCPL-092J-500E AVAGOHCPL-0930-000E AVAGOHCPL-0930-300E AVAGOHCPL-0930-500E AVAGOHCPL-0931-000E AVAGOHCPL-0931-300E AVAGOHCPL-0931-500E AVAGOHCPL-181-000E AVAGOHCPL-181-00AE AVAGO TCM810TENB713MICROCHIP HCPL-181-00BE AVAGO TCM811JERCTR MICROCHIP HCPL-181-00CE AVAGO TCM811LERCTR MICROCHIP HCPL-181-00DE AVAGO TCM811MERCTR MICROCHIP HCPL-181-060E AVAGO TCM811RERCTR MICROCHIP HCPL-181-06AE AVAGO TCM811SERCTR MICROCHIP HCPL-181-06BE AVAGO TCM811TERCTR MICROCHIP HCPL-181-06CE AVAGO TCM812JERCTR MICROCHIP HCPL-181-06DE AVAGO TCM812LERCTR MICROCHIP HCPL2200-000E AVAGO TCM812MERCTR MICROCHIP HCPL-2200-000E AVAGO TCM812RERCTR MICROCHIP HCPL2200-300E AVAGO TCM812SERCTR MICROCHIP HCPL-2200-300E AVAGO TCM812TERCTR MICROCHIP HCPL2200-500E AVAGO TD1605C wearnes HCPL-2200-500E AVAGO TFDU2201-TR1VISHAY HCPL2201-000E AVAGO TFDU2201-TR3VISHAYHCPL-2201-000E AVAGO TFDU4100-TR3VISHAY HCPL2201-300E AVAGO TFDU4100-TT3VISHAY HCPL-2201-300E AVAGO TFDU4201-TR1VISHAY HCPL2201-500E AVAGO TFDU4201-TR3VISHAY HCPL-2201-500E AVAGO TFDU4202-TR1VISHAY HCPL-2202-000E AVAGO TFDU4202-TR3VISHAY HCPL-2202-300E AVAGO TFDU4203-TR1VISHAY HCPL-2202-500E AVAGO TFDU4203-TR3VISHAY HCPL-2211-000E AVAGO TISP4350H3BJR BOURNS HCPL-2211-300E AVAGO TJA1020T PHI HCPL-2211-500E AVAGO TJA1040TD PHI HCPL2212-000E AVAGO TL062IDR TI HCPL-2212-000E AVAGO TL064IDR TI HCPL2212-300E AVAGO TL071IDR TI HCPL-2212-300E AVAGO TL072IDR TI HCPL2212-500E AVAGO TL074IDR TI HCPL-2212-500E AVAGO TL081IP TIHCPL-2219-000E AVAGO TL082IDR TI HCPL-2219-300E AVAGO TL084IDR TI HCPL-2219-500E AVAGO TL431AIDR TIHCPL2231-000E AVAGO TL431BCLP TIHCPL-2231-000E AVAGO TL431IPK TIHCPL2231-300E AVAGO TLC0820AIDWR TIHCPL-2231-300E AVAGO TLC2254CD TIHCPL2231-500E AVAGO TLC27L2IDR TI HCPL-2231-500E AVAGO TLC3702CDR TIHCPL2232-000E AVAGO TLC542IDW TIHCPL-2232-000E AVAGO TLC5615CDR TIHCPL2232-300E AVAGO TLC5615IDR TIHCPL-2232-300E AVAGO TLE2062CDR TIHCPL-2232-500E AVAGO TLE2062IDR TIHCPL-2300-000E AVAGO TLV2211CDBVR TIHCPL-2300-300E AVAGO TLV2211IDBVR TIHCPL-2300-500E AVAGO TLV2231CDBVR TIHCPL-2400-000E AVAGO TLV2451IDBVR TIHCPL-2400-300E AVAGO TLV2471CDBVR TIHCPL-2400-500E AVAGO TLV2711IDBVR TIHCPL-2430-000E AVAGO TLV27L1IDBVR TIHCPL-2430-300E AVAGO TLV431AIDR TI HCPL-2430-500E AVAGO TMP82C79M-2TOSHIBA HCPL-2502-000E AVAGO TOIM4232-TR1VISHAY HCPL-2502-300E AVAGO TPA3008D2PHPRG4TI HCPL-2502-500E AVAGO TPS61042DRBR TI HCPL-2503-000E AVAGO UC2833N TI HCPL-2503-300E AVAGO UC2846DW TIHCPL-2503-500E AVAGO UC2846N TIHCPL-2530-000E AVAGO UC3833N TI HCPL-2530-300E AVAGO UC3846DWTR TIHCPL-2530-500E AVAGO UC3846N TIHCPL-2531-000E AVAGO UCC2818AADTRG4TI HCPL-2531-300E AVAGO UCC2818ADG4TI HCPL-2531-500E AVAGO UCC2818DG4TI HCPL-2601-000E AVAGO UCC2818DTRG4TI HCPL-2601-300E AVAGO UCC2895DWR TI HCPL-2601-500E AVAGO UCC3895DWR TI HCPL-2602-000E AVAGO UPC2758T-E3NECHCPL-2602-300E AVAGO uPD6453GT101NECHCPL-2602-500E AVAGO uPD6464AGT101NECHCPL-260L-000E AVAGO W78LE516-24WINBOND HCPL-260L-300E AVAGO W78LE516P-24WINBOND HCPL-260L-500E AVAGO W78LE52P-24WINBOND HCPL-2611-000E AVAGO W89C92WINBOND HCPL-2611-300E AVAGO X1227S8I XICOR HCPL-2611-500E AVAGO X25650S8I2.5XICOR HCPL-2612-000E AVAGO XEL22MICREL HCPL-2612-300E AVAGO XEL22L MICREL HCPL-2612-500E AVAGO XEL23MICREL HCPL-261A-000E AVAGO XEL23L MICREL HCPL-261A-300E AVAGO XPC850DSLZT50BU MOTOROLA HCPL-261A-500E AVAGO XR17C158CV MOTOROLA HCPL-261N-000E AVAGO TPS62220DDCR TIHCPL-261N-300E AVAGO TPS62222DDCR TIHCPL-261N-500E AVAGO HCPL-J314-000E AVAGO HCPL-2630-000E AVAGO HCPL-J314-300E AVAGO HCPL-2630-300E AVAGO HCPL-J314-500E AVAGO HCPL-2630-500E AVAGO HCPL-7860-300E AVAGO HCPL-2631-000E AVAGO HCPL-7860-500E AVAGO HCPL-2631-300E AVAGO MGA-87563-BLKG AVAGO HCPL-2631-500E AVAGO MGA-87563-TR1G AVAGO HCPL-263A-000E AVAGO MGA-87563-TR2G AVAGO HCPL-263A-300E AVAGO HLMP-6000AVAGO HCPL-263A-500E AVAGO OP42GSZ ADI HCPL-263N-000E AVAGO TLV5620IDR TI HCPL-263N-300E AVAGO DS1306EN+T DALLAS HCPL-263N-500E AVAGO TMS320F206PZA TI HCPL-2730-000E AVAGO AD8323ARUZ-REEL ADI HCPL-2730-300E AVAGO HCPL-3101-000E AVAGO HCPL-2730-500E AVAGO HCPL-3101-300E AVAGO HCPL-2731-000E AVAGO HCPL-3101-500E AVAGO HCPL-2731-300E AVAGO DS1338Z-33+DALLAS HCPL-2731-500E AVAGO DS1817R-10+TR DALLAS HCPL-273L-000E AVAGO HSMS-2825-TR2G AVAGO HCPL-273L-300E AVAGO HSMS-2825-TR1G AVAGO HCPL-273L-500E AVAGO HSMS-282C-TR1G AVAGO HCPL-3020-000E AVAGO HSMS-282C-BLKG AVAGO HCPL-3020-300E AVAGO HSMS-282C-TR2G AVAGOHCPL-3020-500E AVAGO HSMS-2820-TR1G AVAGO HCPL-3100-000E AVAGO HSMS-2820-BLKG AVAGO HCPL-3100-300E AVAGO HSMS-2820-TR2G AVAGO HCPL-3120-000E AVAGO HSMS-282F-TR1G AVAGO HCPL-3120-300E AVAGO HSMS-282F-BLKG AVAGO HCPL-3120-500E AVAGO HSMS-282F-TR2G AVAGO HCPL-3140-000E AVAGO AD712SQ/883B ADI HCPL-3140-300E AVAGO OPA2277PA TI HCPL-3140-500E AVAGO OPA2277UA TI HCPL-314J-000E AVAGO LM2675MX-ADJ NS HCPL-314J-300E AVAGO LTC1265CS Linear HCPL-314J-500E AVAGO LTC1265IS Linear HCPL-3150-000E AVAGO HSMS-2805-TR1G AVAGO HCPL-3150-300E AVAGO HSMS-2805-TR2G AVAGO HCPL-3150-500E AVAGO HSMP-3894-TR1G AVAGO HCPL-316J-000E AVAGO HSMP-3894-TR2G AVAGO HCPL-316J-300E AVAGO AT89C4051-24PU ATMEL HCPL-316J-500E AVAGO AT89C55WD-24JU ATMEL HCPL-3180-000E AVAGO MAX487ESA+T MAXIM HCPL-3180-300E AVAGO MAX487EEPA+MAXIM HCPL-3180-500E AVAGO MSP430F149IPMR TI HCPL-3700-000E AVAGO TPS65021RHAR TI HCPL-3700-300E AVAGO SSM2211SZ ADI HCPL-3700-500E AVAGO TLC3578IDW TI HCPL-3760-000E AVAGO AD9048SQ/883B ADI HCPL-3760-300E AVAGO AD9048TQ/883B ADI HCPL-3760-500E AVAGO AT89S52-24JU ATMEL HCPL-4100-000E AVAGO XC9536XL-7VQ64C XILINX HCPL-4100-300E AVAGO XTR101BG TI HCPL-4100-500E AVAGO MSC1210Y4PAGT TI HCPL-4200-000E AVAGO MSC1210Y4PAGR TI HCPL-4200-300E AVAGO ADS1178IPAPT TI HCPL-4200-500E AVAGO ACNW3190-300E AVAGO HCPL-4502-000E AVAGO MSP430F2418TPNR TI HCPL-4502-300E AVAGO MSP430F2418TPMR TI HCPL-4502-500E AVAGO XC95288XL-7TQ144C XILINX HCPL-4503-000E AVAGO TPS5100IPWR TI HCPL-4503-300E AVAGO EPM7128AETC144-10ALTERA HCPL-4503-500E AVAGO TMS320DM6446AZWTA TI HCPL-4504-000E AVAGO TMS320DM6446ZWT TI HCPL-4504-300E AVAGO UC3906N TI HCPL-4504-500E AVAGO UC3906DW TI HCPL-4506-000E AVAGO TPS54614PWPR TI HCPL-4506-300E AVAGO HCPL-0600-500E AVAGO HCPL-4506-500E AVAGO HEDS-9701#C54AVAGO HCPL-4534-000E AVAGO TLC04CP TI HCPL-4534-300E AVAGO X9313WSZ-3T1INTERSIL HCPL-4534-500E AVAGO TMS320LF2402APGA TIHCPL-4562-000E AVAGO TMS320LF2406APZA TI HCPL-4562-300E AVAGO AD9910BSVZ ADI HCPL-4562-500E AVAGO AD9957BSVZ ADI HCPL-4661-000E AVAGO TLV320AIC33IRGZ TI HCPL-4661-300E AVAGO TLV320AIC33IZQER TI HCPL-4661-500E AVAGO TPS54616PWPR TI HCPL-4731-000E AVAGO OPA551PA TI HCPL-4731-300E AVAGO DS1813R-15+DALLAS HCPL-4731-500E AVAGO TPS7333QDR TI HCPL-7510-000E AVAGO OPA277UA TI HCPL-7510-300E AVAGO LM1877MX-9NS HCPL-7510-500E AVAGO ISO7221BDR TI HCPL-7520-000E AVAGO TL16C550CIPTR TI HCPL-7520-300E AVAGO MAX9324EUP+MAXIM HCPL-7520-500E AVAGO MAX1706EEE-T MAXIM HCPL-7560-000E AVAGO TPS75733KTTR TI HCPL-7560-300E AVAGO LM2674MX-ADJ NS HCPL-7560-500E AVAGO ADS8321EB TI HCPL-7611-000E AVAGO ADS8320EB TI HCPL-7611-300E AVAGO W29C040T-90B WINBOND HCPL-7611-500E AVAGO ISO124U TI HCPL-7710-000E AVAGO FM25L04B-GTR RAMTRON HCPL-7710-300E AVAGO TLE2084CN TI HCPL-7710-500E AVAGO TL317CDR TI HCPL-7720-000E AVAGO MAX354CPE+MAXIM HCPL-7720-300E AVAGO MAX354EPE+MAXIM HCPL-7720-500E AVAGO DEI0429-WMB DEI HCPL-7721-000E AVAGO AT91SAM7SE512-AU atmel HCPL-7721-300E AVAGO EL1881CSZ-T7INTERSIL HCPL-7721-500E AVAGO SN74ACT2440FNR TI HCPL-7723-000E AVAGO MT4LC8M8C2P-5MICRON HCPL-7723-300E AVAGOHCPL-7723-500E AVAGOHCPL-7800-000E AVAGOHCPL-7800-300E AVAGOHCPL-7800-500E AVAGOHCPL-7800A-000E AVAGOHCPL-7800A-300E AVAGOHCPL-7800A-500E AVAGOHCPL-7840-000E AVAGOHCPL-7840-300E AVAGOHCPL-7840-500E AVAGOHCPL786J-000E AVAGOHCPL-786J-000E AVAGOHCPL786J-300E AVAGOHCPL-786J-300E AVAGOHCPL786J-500E AVAGOHCPL-786J-500E AVAGOHCPL788J-000E AVAGOHCPL-788J-000E AVAGOHCPL788J-300E AVAGOHCPL-788J-300E AVAGOHCPL788J-500E AVAGOHCPL-788J-500EHCPL-817-000EHCPL-817-00AEHCPL-817-00BEHCPL-817-00CEHCPL-817-00DEHCPL-817-00LEHCPL-817-060EHCPL-817-06AEHCPL-817-06BEHCPL-817-06CEHCPL-817-06DEHCPL-817-06LEHCPL-817-300EHCPL-817-30AEHCPL-817-30BEHCPL-817-30CEHCPL-817-30DEHCPL-817-30LEHCPL-817-360EHCPL-817-36AEHCPL-817-36BEHCPL-817-36CEHCPL-817-36DEHCPL-817-36LEHCPL-817-500EHCPL-817-50AEHCPL-817-50BEHCPL-817-50CEHCPL-817-50DEHCPL-817-50LEHCPL-817-560EHCPL-817-56AEHCPL-817-56BEHCPL-817-56CEHCPL-817-56DEHCPL-817-56LEHCPL-9000-000EHCPL-9000-300EHCPL-9000-500EHCPL-902J-000EHCPL-902J-300E AVAGO TLV320AIC3204IRHBR TI HCPL-902J-500E AVAGO TLV5625CDR TIHCPL-J312-000E AVAGO TLV5625IDR TIHCPL-J312-300E AVAGO TLV320AIC3104IRHBT TIHCPL-J312-500E AVAGO TLV320AIC3104IRHBR TIHCPL-J456-000E AVAGO AT45DB041D-SU ATMEL HCPL-J456-300E AVAGO MAX6657MSA+T MAXIM HCPL-J456-500E AVAGO HCPL-J454-000E AVAGO HCPL-M453-000E AVAGO HCPL-J454-300E AVAGO HCPL-M453-300E AVAGO HCPL-J454-400E AVAGO HCPL-M453-500E AVAGO HCPL-J454-500E AVAGO HCPL-M454-000E AVAGO HCPL-J454-600E AVAGO HCPL-M454-300E AVAGO TC7660IJA MICROCHIP HCPL-M454-500E AVAGO TC7660MJA MICROCHIP HCPL-M456-000E AVAGO ADT7460ARQZ ADIHCPL-M456-300E AVAGO ADSP-21065LKCA264ADIHCPL-M456-500E AVAGO ADSP-21065LKCAZ264ADI HCPL-M600-000E AVAGO AD7859ASZ ADI HCPL-M600-300E AVAGO MJD45H11G ONHCPL-M600-500E AVAGO TPD3E001DRLR TIHCPL-M601-000E AVAGO XTR116U TIHCPL-M601-300E AVAGO DS1233-5+DALLAS HCPL-M601-500E AVAGO TRU050GALGA32.0000/16.0000V ectron HCPL-M611-000E AVAGO TRU050GACCA28.7040/14.3520V ectron HCPL-M611-300E AVAGO AD9516-3BCPZ ADI HCPL-M611-500E AVAGO REF3125AIDBZT TIHCPL-M700-000E AVAGO REF3125AIDBZR TIHCPL-M700-300E AVAGO AD8592ARMZ ADI HCPL-M700-500E AVAGO QCPL-034H-500E AVAGOHD6413079F18HIT AD9865BCPZ ADI HDMP1636A AVAGO QCPL-312H-500E AVAGO HDMP-1636A AVAGO M74VHC1G135DFT1G ONHDMP-1637A AVAGO HSMD-A100-J00J1AVAGO HDMP1638AVAGO LT1587CT LTHDMP-1638AVAGO AD827JRZ-16ADI HEDS9710-R50AVAGO HSMP-389F-BLKG AVAGO HEDS-9710-R50AVAGO HSMP-389F-TR1G AVAGO HEL22MICREL HSMP-389F-TR2G AVAGO HEL23MICREL XC3064A-7PC84C XILINX HFBR-1414Z AVAGO XC3064A-7PC84I XILINX HFBR-1414TZ AVAGO Si7703EDN-T1-E3VISHAY HFBR-1521Z AVAGO Si7703EDN-T1-GE3VISHAYT-1521Z AVAGO Si7703EDN-T1-GE3ADIT-1521ETZ AVAGO AD605ARZ ADI HFBR-1521ETZ AVAGO MACH110-15JC AMDT-1522Z AVAGO MACH210-20JC AMDT-1522ETZ AVAGO LTC4213IDDB LINEAR HFBR-1522ETZ AVAGO DS1233-15+DALLAS HFBR1522Z AVAGO LTC3412EFE LINEAR HFBR-1522Z AVAGO MAX513ESD+T MAXIMHFBR1523Z AVAGO MAX3681EAG+MAXIM HFBR-1523Z AVAGO ICS1893CKILF IDT HFBR1528Z AVAGO TMS32C6416DGLZA5E0TI HFBR-1528Z AVAGO TMS32C6416EGLZ5E0TI HFBR-1531Z AVAGO TMS32C6416EGLZ6E3TI HFBR-1531ETZ AVAGO TMS32C6416EGLZ7E3TI HFBR-2531ETZ AVAGO TMS32C6416EGLZA5E0TI 1531ETZ AVAGO TMS32C6416EGLZA6E3TI 2531ETZ AVAGO AD829JRZ ADI HFBR1532Z AVAGO MAX14830ETM+MAXIM HFBR-1532Z AVAGO MX69GL128EAXGW-90G MXIC HFBR-1532ETZ AVAGO AD7811YRUZ ADI HFBR1533Z AVAGO TPS76318DBVR TI HFBR-1533Z AVAGO ADMP421ACEZ ADI HFBR-2412TZHFBR-2412ZHFBR2416TZHFBR-2416TZHFBR-2521Z AVAGO LT1304CS8Linear R-2521Z AVAGO MAX16801BEUA+T maxim R-2521ETZ AVAGO ACPL-M61L-500E AVAGO HFBR-2521ETZ AVAGO DS26503LN+DALLAS HFBR-2522Z AVAGO MAX9205EAI+T MAXIM R-2522Z AVAGO TMP105YZCT TIR-2522ETZ AVAGO TMP105YZCR TI HFBR-2522ETZ AVAGO AD5821BCBZ ADI HFBR-2523Z AVAGO PM5347-RI PMC HFBR-2528Z AVAGO PM73121-RI PMC HFBR-2531Z AVAGO TPA4411RTJT TI HFBR-2532Z AVAGO TPA4411RTJR TI HFBR-2532ETZ AVAGO LTC1438CG-ADJ Linear HFBR-2533Z AVAGO LTC1438IG-ADJ Linear HFBR-4501Z AVAGO DS1318E+DALLAS HFBR-4503Z AVAGO TMS320DM643AGDK5TI HFBR-4506Z AVAGO ACPL-M75L-000E AVAGO HFBR-4511Z AVAGO ACPL-M75L-060E AVAGO HFBR-4513Z AVAGO ACPL-M75L-500E AVAGO HFBR-4516Z AVAGO ACPL-M75L-560E AVAGO HFBR-4525Z AVAGO ACPL-T350-000E AVAGO HFBR-4526Z AVAGO ACPL-T350-060E AVAGO HFBR-4531Z AVAGO ACPL-T350-300E AVAGO HFBR-4532Z AVAGO ACPL-T350-360E AVAGO HFBR-4533Z AVAGO ACPL-T350-500E AVAGO HFBR-4535Z AVAGO ACPL-T350-560E AVAGO HFBR-4593Z AVAGO ADXRS620BBGZ ADI HFBR-4597Z AVAGO LT1521CS8Linear HFBR-EUD100Z AVAGO LT1521CS8-3.3Linear HFBR-EUD500Z AVAGO LT1521IS8LinearHFBR-EUS100Z AVAGO LT1521IS8-3.3Linear HFBR-EUS500Z AVAGO MAX6835VXSD3+T MAXIM HFBR-RUD100Z AVAGO AD9059BRSZ ADI HFBR-RUD500Z AVAGO HFBR-4515Z AVAGO HFBR-RUS100Z AVAGO HFBR-57E0PZ AVAGO HFBR-RUS500Z AVAGO HFCT-53D5EMZ AVAGO HG88510MITEL HFCT-5611AVAGOHI1-508-5HAR LT1242CS8Linear HI1-509-5HAR LT1242IS8Linear HM628512ALFP-5日立LT1140ACSW LinearHM628512BLFP-5日立AFBR-2419TZ AVAGO HS1101HUMIREL AD7156BCPZ ADIHS6118MACONICS ADP151ACBZ-2.8ADI HSDL-3201#021AVAGO DS1805Z-010+MAXIM HSDL-3201#001AVAGO TLP285-4GB TOSHIBA HSDL-3209-021AVAGO AD421BRZ ADI HSDL-7001#100AVAGO OPA2336PA TI HSDL-7002AVAGO ADUC812BSZ ADI HSMP-3814-BLKG AVAGO STPS6045CW ST HSMP-3814-TR1G AVAGO SG-3030JF EPSON HSMP-3814-TR2G AVAGO MPC8313VRAFFB FREESCAL HSMP-3822-BLKG AVAGO MAX1617AMEE+T maxim HSMP-3822-TR1G AVAGO MCP809M3X-4.63NS HSMP-3822-TR2G AVAGO MCP809M3X-4.38NS HSMP-3823-BLKG AVAGO MCP809M3X-4.00NS HSMP-3823-TR1G AVAGO MCP809M3X-3.08NS HSMP-3823-TR2G AVAGO MCP809M3X-2.93NS HSMP-3824-BLKG AVAGO MCP809M3X-2.63NS HSMP-3824-TR1G AVAGO MCP810M3X-4.63NS HSMP-3824-TR2G AVAGO MCP810M3X-4.38NS HSMP-3832-BLKG AVAGO MCP810M3X-4.00NS HSMP-3832-TR1G AVAGO MCP810M3X-3.08NS HSMP-3832-TR2G AVAGO MCP810M3X-2.93NS HSMP-3860-BLKG AVAGO MCP810M3X-2.63NS HSMP-3860-TR1G AVAGO LT1317BCS8Linear HSMP-3860-TR2G AVAGO LT1317BIS8Linear HSMP-3862-BLKG AVAGO LTC1757A-1EMS8Linear HSMP-3862-TR1G AVAGO ACPL-K342-000E AVAGO HSMP-3862-TR2G AVAGO ACPL-K342-500E AVAGO HSMP-3880-BLKG AVAGO AFBR-57M5APZ AVAGO HSMP-3880-TR1G AVAGO CY7C144AV-25AIT CY HSMP-3880-TR2G AVAGO CY7C144AV-25ACT CY HSMP-3892-BLKG AVAGO CY7C144AV-25AXIT CY HSMP-3892-TR1G AVAGO CY7C144AV-25AXCT CY HSMP-3892-TR2G AVAGO ABA-54563-TR1G AVAGO HSMP-389L-BLKG AVAGO ABA-54563-TR2G AVAGO HSMP-389L-TR1G AVAGO ABA-54563-BLKG AVAGO HSMP-389L-TR2G AVAGO LT1138ACG LinearHSMS-2812-BLKG AVAGO LT1138AIG Linear HSMS-2812-TR1G AVAGO ISL8120IRZ INTERSIL HSMS-2812-TR2G AVAGO ISL8120CRZ INTERSIL HSMS-2817-BLKG AVAGO LTC1421IG-2.5Linear HSMS-2817-TR1G AVAGO LTC1421CG-2.5Linear HSMS-2817-TR2G AVAGO MSC1212Y5PAGT TI HSMS-282K-BLKG AVAGO MSC1212Y5PAGR TI HSMS-282K-TR1G AVAGO TPS7330QDR TI HSMS-282K-TR2G AVAGO ADP3110KRZ ADI HSMS-2850-BLKG AVAGO MAX3263CAG MAXIM HSMS-2850-TR1G AVAGO MAX1729EUB MAXIM HSMS-2850-TR2G AVAGO MAX1651CSA MAXIM HSMS-8202-BLKG AVAGO AD876JR ADI HSMS-8202-TR1G AVAGO MAX1701EEE MAXIM HSMS-8202-TR2G AVAGO Si4201-BMR silicon HT2012-PL SMAR DS12C887+DALLAS HY62256ALT1-70HY LM236DR-2.5TIHY628100BLLG-70HY DS1722U DALLAS HY628100BLLG-70I HY LM7372MRX NSHY628400ALLG-55HY MAX490ESA+T MAXIM HY628400ALLG-70HY HSMS-2822-TR1G AVAGO HY62WT08081E-DG70C HY HSMP-389C-TR1G AVAGO HY62WT08081E-DG70I HY HSMP-389C-BLKG AVAGO ICL232IPE HAR HSMP-389C-TR2G AVAGO ICS8432DY-101ICS MC33375D-3.3R2G ONICS85322AM ICS AFBR-1529Z AVAGO ICS9112M-16ICS AFBR-2529Z AVAGO IDT75K62134S200BB IDT AFBR-1629Z AVAGO ILX139K SONY HSMS-2828-TR1G AVAGO IMP560ESA IMP TPS7101QDR TIIMP809JEUR-T IMP AFBR-57R5APZ AVAGO IMP809LEUR-T IMP UC3875DWPTR TIIMP809MEUR-T IMP ASSR-1510-503E AVAGO IMP809REUR-T IMP ASSR-1510-003E AVAGO IMP809SEUR-T IMP CY7B9514V-AC CYIMP809TEUR-T IMP MAX4450EXK+T MAXIM IMP810JEUR-T IMP SN75976A1DLR TIIMP810LEUR-T IMP ADUC831BSZ ADIIMP810MEUR-T IMP LTC1348IG LINEAR IMP810REUR-T IMP MSA-2111-TR1G AVAGO IMP810SEUR-T IMP DS1621S+T DALLAS IMP810TEUR-T IMP MAX485EESA+T MAXIM IMP811JEUS-T IMP MAX9669ETI+T MAXIM IMP811LEUS-T IMP MSA-0711-TR1G AVAGO IMP811MEUS-T IMP ACPL-P480-500E AVAGO IMP811REUS-T IMP HSMS-2800-TR1G AVAGO IMP811SEUS-T IMP LTC1622IS8LINEAR IMP811TEUS-T IMP MAX2102CWI MAXIMACPL-312T-500E AVAGO X24165S-2.7T1XICOR ACPL-H342-560E AVAGO X84129SI-2.5T1XICOR ACPL-H342-500E AVAGO HCNW4502-500E AVAGO ACPL-H342-060E AVAGO HCNW4502-300E AVAGO ACPL-H342-000E AVAGO AD811ARZ-16ADI ACPL-K63L-500E AVAGO TOCP155TOSHIBA ACPL-K63L-560E AVAGO TOCP200TOSHIBA ACPL-K63L-000E AVAGO HFBR-14E4Z AVAGO AFBR-5803AQZ AVAGO HFBR-24E2Z AVAGO ASSR-4128-502E AVAGO ALM-2412-TR1G AVAGO HSMH-C680AVAGO TLV320DAC23GQER TIWS1403-TR1AVAGO CY2509ZXC-1T CYLST2825-T-SC AGILENT ACPL-312T-300E AVAGO MAX853ESA+T MAXIM MAX3814CHJ+T MAXIM。
HCPL-3120中文资料
2.0 Amp Output Current IGBT Gate Drive Optocoupler Technical DataHCPL-3120HCPL-J312HCNW3120Features• 2.0 A Minimum Peak Output Current• 15 kV/µs Minimum Common Mode Rejection (CMR) at V CM = 1500 V• 0.5 V Maximum Low Level Output Voltage (V OL )Eliminates Need for Negative Gate Drive• I CC = 5 mA Maximum Supply Current• Under Voltage Lock-Out Protection (UVLO) with Hysteresis• Wide Operating V CC Range:15 to 30 Volts• 500 ns Maximum Switching Speeds• Industrial Temperature Range: -40°C to 100°C • Safety Approval UL Recognized2500 Vrms for 1 min. for HCPL-31203750 Vrms for 1 min. for HCPL-J3125000 Vrms for 1 min. for HCNW3120CSA ApprovalVDE 0884 Approved V IORM = 630 Vpeak for HCPL-3120 (Option 060)V IORM = 891 Vpeak for HCPL-J312V IORM = 1414 Vpeak for HCNW3120BSI Certified (HCNW3120only) (Pending)Applications• IGBT/MOSFET Gate Drive • AC/Brushless DC Motor Drives• Industrial Inverters • Switch Mode Power SuppliesA 0.1 µF bypass capacitor must be connected between pins 5 and 8.CAUTION: It is advised that normal static precautions be taken in handling and assembly of this componentto prevent damage and/or degradation which may be induced by ESD.Functional DiagramTRUTH TABLEV CC - V EE V CC - V EE“POSITIVE GOING”“NEGATIVE GOING”LED (i.e., TURN-ON)(i.e., TURN-OFF)V O OFF 0 - 30 V 0 - 30 V LOW ON 0 - 11 V 0 - 9.5 V LOW ON 11 - 13.5 V 9.5 - 12 V TRANSITIONON13.5 - 30 V12 - 30 VHIGH13SHIELD 248675N /CCATHODE ANODE N/C V CC V O V O V EE13SHIELD248675N /CCATHODE ANODE N/C V CC N/C V O V EEHCNW3120HCPL-3120/J312DescriptionThe HCPL-3120 contains a GaAsP LED while the HCPL-J312 and the HCNW3120 contain an AlGaAs LED. The LED is optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of theoutput stage provides the drivevoltages required by gatecontrolled devices. The voltageand current supplied by theseoptocouplers make them ideallysuited for directly driving IGBTswith ratings up to 1200 V/100 A.For IGBTs with higher ratings,the HCPL-3120 series can beused to drive a discrete powerstage which drives the IGBT gate.The HCNW3120 has the highestinsulation voltage ofV IORM=1414Vpeak in theVDE0884. The HCPL-J312 has aninsulation voltage ofV IORM=891Vpeak and theV IORM=630Vpeak is alsoavailable with the HCPL-3120(Option060).Selection GuidePart Number HCPL-3120HCPL-J312HCNW3120HCPL-3150* Output Peak Current ( I O) 2.0 A 2.0 A 2.0 A0.5 AVDE0884 Approval V IORM=630 Vpeak V IORM=891 Vpeak V IORM=1414 Vpeak V IORM=630 Vpeak(Option 060)(Option 060)*The HCPL-3150 Data sheet available. Contact Agilent sales representative or authorized distributor.Ordering InformationSpecify Part Number followed by Option Number (if desired)Example:HCPL-3120#XXX060 = VDE0884, V IORM = 630 Vpeak (HCPL-3120 only)300 = Gull Wing Surface Mount Option500 = Tape and Reel Packaging OptionOption 500 contains 1000 units (HCPL-3120/J312), 750 units (HCNW3120) per reel.Other options contain 50 units (HCPL-3120/J312), 42 units (HCNW312) per tube.Option data sheets available. Contact Agilent sales representative or authorized distributor.(0.025 ± 0.005)MAX.(0.100)BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).+ 0.076 - 0.051+ 0.003) - 0.002)Package Outline DrawingsHCPL-3120 and HCPL-J312 Outline Drawing (Standard DIP Package)HCPL-3120 and HCPL-J312 Gull Wing Surface Mount Option 300 Outline DrawingDIMENSIONS IN MILLIMETERS AND (INCHES).+ 0.076 - 0.051(0.010+ 0.003)- 0.002)* MARKING CODE LETTER FOR OPTION NUMBERS. "V" = OPTION 060OPTION NUMBERS 300 AND 500 NOT MARKED.1.78 ± 0.15 MAX.BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).HCNW3120 Outline Drawing (8-Pin Wide Body Package)HCNW3120 Gull Wing Surface Mount Option 300 Outline Drawing1.78 ± 0.15 0.254+ 0.076 - 0.0051+ 0.003) - 0.002)Reflow Temperature ProfileRegulatory InformationAgency/StandardHCPL-3120HCPL-J312HCNW3120Underwriters Laboratory (UL)Recognized under UL 1577, Component RecognitionProgram, Category, File E55361Canadian Standards Association (CSA)File CA88324, per Component Acceptance Notice #5Verband Deutscher Electrotechniker (VDE)DIN VDE 0884 (June 1992)Option 060British Standards Institute (BSI)PendingCertification According to BS EN60065: 1994(BS415:1994), BS EN60950: 1992 (BS7002:1992)240TIME – MINUTEST E M P E R A T U R E – °C220200180160140120100806040200260MAXIMUM SOLDER REFLOW THERMAL PROFILE(NOTE: USE OF NON-CHLORINE ACTIVATED FLUXES IS RECOMMENDED.)Insulation and Safety Related SpecificationsValueHCPL-HCPL-HCNWParameter Symbol 3120J3123120Units ConditionsMinimum External L(101)7.17.49.6mmMeasured from input terminals to Air Gap (Clearance)output terminals, shortest distance through air.Minimum External L(102)7.48.010.0mmMeasured from input terminals to Tracking (Creepage)output terminals, shortest distance path along body.Minimum Internal 0.080.5 1.0mmInsulation thickness between emitter Plastic Gapand detector; also known as distance (Internal Clearance)through insulation.Tracking Resistance CTI >175>175>200VoltsDIN IEC 112/VDE 0303 Part 1(Comparative Tracking Index)Isolation GroupIIIa IIIa IIIaMaterial Group (DIN VDE 0110, 1/89,Table 1)VDE0884 Insulation Related CharacteristicsHCPL-3120DescriptionSymbolOption 060HCPL-J312HCNW3120UnitInstallation classification per DIN VDE 0110/1.89, Table 1for rated mains voltage ≤150 V rms I-IV I-IV I-IV for rated mains voltage ≤300 V rms I-IV I-IV I-IV for rated mains voltage ≤450 V rms I-IIII-III I-IV for rated mains voltage ≤600 V rms I-III I-IV for rated mains voltage ≤1000 V rms I-III Climatic Classification55/100/2155/100/2155/100/21Pollution Degree (DIN VDE 0110/1.89)222Maximum Working Insulation Voltage V IORM 6308911414V peak Input to Output Test Voltage, Method b*V PR118116702652V peakV IORM x 1.875 = V PR , 100% Production Test, t m = 1 sec, Partial Discharge < 5pC Input to Output Test Voltage, Method a*V PR 94513362121V peak V IORM x 1.5 = V PR , Type and SampleTest, t m = 60 sec, Partial Discharge < 5pC Highest Allowable Overvoltage*V IOTM600060008000V peak(Transient Overvoltage, t ini = 10 sec)Safety Limiting Values – maximum values allowed in the event of a failure,also see Figure 37. Case Temperature T S175175150°C Input Current I S INPUT 230400400mA Output PowerP S OUTPUT600600700mW Insulation Resistance at T S , V IO = 500 VR S≥109≥109≥109Ω*Refer to the VDE0884 section (page 1-6/8) of the Isolation Control Component Designer's Catalog for a detailed description of Method a/b partial discharge test profiles.Note: These optocouplers are suitable for “safe electrical isolation” only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A in accordance with CECC 00802.All Agilent data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions areneeded as a starting point for the equipment designer whendetermining the circuit insulation requirements. However, once mounted on a printed circuit board, minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creep-age, the shortest distance path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered. There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances will alsochange depending on factors such as pollution degree and insulation level.Absolute Maximum RatingsRecommended Operating ConditionsElectrical Specifications (DC)Over recommended operating conditions (T A = -40 to 100°C, I F(ON) = 7 to 16 mA, V F(OFF) = -3.0 to 0.8 V, V CC = 15 to 30 V, V EE = Ground) unless otherwise specified.*All typical values at T A = 25°C and V CC - V EE = 30 V, unless otherwise noted.Switching Specifications (AC)Over recommended operating conditions (T A = -40 to 100°C, I F(ON) = 7 to 16 mA, V F(OFF) = -3.0 to 0.8 V, V CC = 15 to 30 V, V EE = Ground) unless otherwise specified.*All typical values at T A = 25°C and V CC - V EE = 30 V, unless otherwise noted.Package CharacteristicsOver recommended temperature (T A = -40 to 100°C) unless otherwise specified.Parameter Symbol Device Min.Typ.Max.Units Test Conditions Fig.NoteInput-Output V ISO HCPL-31202500V RMS RH < 50%,8, 11Momentary HCPL-J3123750t = 1 min.,9, 11Withstand Voltage**HCNW31205000T A = 25°C 10, 11Resistance R I-O HCPL-31201012ΩV I-O = 500 V DC 11(Input-Output)HCPL-J312HCNW312010121013T A = 25°C1011T A = 100°CCapacitance C I-O HCPL-31200.6pF f = 1 MHz (Input-Output)HCPL-J3120.8HCNW31200.50.6LED-to-Case θLC 467°C/W Thermocouple 28Thermal Resistance LED-to-Detector θLD 442°C/W Thermal ResistanceDetector-to-Case θDC 126°C/W Thermal Resistance*All typicals at T A = 25°C.**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to your equipment level safety specification or Agilent Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”located at center underside ofpackage Notes:1. Derate linearly above 70°C free-air temperature at a rate of 0.3 mA/°C.2. Maximum pulse width = 10 µs,maximum duty cycle = 0.2%. This value is intended to allow forcomponent tolerances for designs with I O peak minimum = 2.0 A. See Applications section for additional details on limiting I OH peak.3. Derate linearly above 70°C free-air temperature at a rate of4.8 mW/°C.4. Derate linearly above 70°C free-air temperature at a rate of5.4 mW/°C.The maximum LED junction tempera-ture should not exceed 125°C.5. Maximum pulse width = 50 µs,maximum duty cycle = 0.5%.6. In this test V OH is measured with a dc load current. When driving capacitive loads V OH will approach V CC as I OH approaches zero amps.7. Maximum pulse width = 1 ms,maximum duty cycle = 20%.8. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥3000 Vrms for 1 second (leakage detection current limit, I I-O ≤ 5 µA).9. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 Vrms for 1 second (leakage detection current limit, I I-O ≤ 5 µA).10. In accordance with UL1577, eachoptocoupler is proof tested by applying an insulation test voltage ≥6000 Vrms for 1 second (leakage detection current limit, I I-O ≤ 5 µA).11. Device considered a two-terminaldevice: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8shorted together.12. The difference between t PHL and t PLHbetween any two HCPL-3120 parts under the same test condition.13. Pins 1 and 4 need to be connected toLED common.14. Common mode transient immunity inthe high state is the maximum tolerable dV CM /dt of the common mode pulse, V CM , to assure that the output will remain in the high state (i.e., V O >15.0V).15. Common mode transient immunity ina low state is the maximum tolerable dV CM /dt of the common mode pulse,V CM , to assure that the output will remain in a low state (i.e., V O <1.0V).16. This load condition approximates thegate load of a 1200 V/75A IGBT.17. Pulse Width Distortion (PWD) isdefined as |t PHL -t PLH | for any given device.Figure 7. I CC vs. Temperature.Figure 8. I CC vs. V CC .Figure 4. V OL vs. Temperature.Figure 5. I OL vs. Temperature.Figure 6. V OL vs. I OL .Figure 1. V OH vs. Temperature.Figure 2. I OH vs. Temperature.Figure 3. V OH vs. I OH .(V O H – V C C ) – H I G H O U T P U T V O L T A G E D R O P – V-4T A – TEMPERATURE – °C -1-2-3I O H – O U T P U T HI G H C U R R E N T – AT A – TEMPERATURE – °C (V O H – V C C ) – O U T P U T H I G H V O L T A G E D R O P – VI OH – OUTPUT HIGH CURRENT – AV O L – O U T P U T L O W V O L T A G E – V0T A – TEMPERATURE – °C 0.250.050.150.200.10I O L – O U T P U T L O W C U R R E NT – AT A – TEMPERATURE – °CV O L – O U T P U T L O W V O L T A G E– VI OL – OUTPUT LOW CURRENT – A3412I C C – S U P P L Y C U R R E N T – m A1.5T A – TEMPERATURE – °C 3.02.53.52.0I C C – S U P P L Y C U R R E N T –m A1.5V CC – SUPPLY VOLTAGE – V3.02.53.52.0Figure 9. I FLH vs. Temperature.Figure 10. Propagation Delay vs. V CC .Figure 11. Propagation Delay vs. I F .Figure 12. Propagation Delay vs.Temperature.Figure 14. Propagation Delay vs. Cg.Figure 13. Propagation Delay vs. Rg.I F L H – L O W T O H I G H C U R R E N T T H R E S H O L D – m AT A – TEMPERATURE – °C 32415I F L H – L O W T O H I G H C U R R E N T T H R E S H O L D – m AT A – TEMPERATURE – °C HCPL-J312I F L H – L O W T O H I G H C U R R E N T T H R E S H O L D – m AT A – TEMPERATURE – °CHCNW3120T p – P R O P A G A T I O N D E L A Y – n s100V CC – SUPPLY VOLTAGE – V 400300500200T p – P R O P A G A T I O N D E L A Y – n s100I F – FORWARD LED CURRENT – mA 400300500200T p – P R O P A G A T I O N DE L A Y – n s100T A – TEMPERATURE – °C400300500200T p – P R O P A G A T I O N D E L A Y – n s100Rg – SERIES LOAD RESISTANCE – Ω400300500200T p – P R O P A G AT I O N D E L A Y – n s100Cg – LOAD CAPACITANCE – nF400300500200Figure 15. Transfer Characteristics.Figure 16. Input Current vs. Forward Voltage.Figure 17. I OH Test Circuit.V O – O U T P U T V O L T A G E – VI F – FORWARD LED CURRENT – mA5251513025342010HCPL-3120 / HCNW3120V O – O U T P U T V O L T A G E – V0I F – FORWARD LED CURRENT – mA1352551525341020HCPL-J31230I F – F O R W A R D C U R R E N T – m AV F – FORWARD VOLTAGE – VOLTSV F – FORWARD VOLTAGE – VOLTSI F – F O R W A R D C U R R E N T – m ACC = 15 to 30 VI F = 7 to 16 mAFigure 20. V OL Test Circuit.Figure 21. I FLH Test Circuit.Figure 19. V OH Test Circuit.Figure 18. I OL Test Circuit.Figure 22. UVLO Test Circuit.CC = 15 to 30 VCC = 15 to 30 VI F 16 mACC = 15 to 30 VCC = 15 to 30 VI FFigure 24. CMR Test Circuit and Waveforms.Figure 23. t PLH , t PHL , t r , and t f Test Circuit and Waveforms.CC = 15 to 30 V I= 30 VCM V OSWITCH AT B: I F = 0 mAV OSWITCH AT A: I F = 10 mA V OLV OHApplications InformationEliminating Negative IGBT Gate Drive (Discussion appliesto HCPL-3120, HCPL-J312, and HCNW3120)To keep the IGBT firmly off, the HCPL-3120 has a very low maximum V OL specification of 0.5V. The HCPL-3120 realizes this very low V OL by using a DMOS transistor with 1Ω(typical) on resistance in its pull down circuit. When the HCPL-3120 is in the low state, the IGBT gate is shorted to the emitter by Rg + 1Ω. Minimizing Rg and the lead inductance from the HCPL-3120 to the IGBT gate andemitter (possibly by mounting the HCPL-3120 on a small PC board directly above the IGBT) can eliminate the need for negative IGBT gate drive in many applica-tions as shown in Figure 25. Care should be taken with such a PC board design to avoid routing theIGBT collector or emitter traces close to the HCPL-3120 input as this can result in unwantedcoupling of transient signals into the HCPL-3120 and degrade performance. (If the IGBT drain must be routed near the HCPL-3120 input, then the LED should be reverse-biased when in the off state, to prevent the transient signals coupled from the IGBT drain from turning on the HCPL-3120.)Figure 25. Recommended LED Drive and Application Circuit.ACCONTROLINPUTSelecting the Gate Resistor (Rg) to Minimize IGBTSwitching Losses. (Discussion applies to HCPL-3120, HCPL-J312 and HCNW3120)Step 1: Calculate Rg Minimum from the I OL Peak Specifica-tion. The IGBT and Rg in Figure 26 can be analyzed as a simple RC circuit with a voltage supplied by the HCPL-3120.(V CC – V EE - V OL )Rg ≥–––––––––––––––I OLPEAK(V CC – V EE - 2 V )=–––––––––––––––I OLPEAK (15 V + 5 V - 2 V)=––––––––––––––––––2.5 A =7.2 Ω ≅ 8 ΩThe V OL value of 2V in the pre-vious equation is a conservative value of V OL at the peak current of 2.5A (see Figure 6). At lower Rg values the voltage supplied by the HCPL-3120 is not an ideal voltage step. This results in lower peak currents (more margin)than predicted by this analysis.When negative gate drive is not used V EE in the previous equation is equal to zero volts.Figure 26. HCPL-3120 Typical Application Circuit with Negative IGBT Gate Drive.AC- HVDCCONTROLINPUTStep 2: Check the HCPL-3120Power Dissipation and Increase Rg if Necessary. The HCPL-3120 total power dissipation (P T ) is equal to the sum of the emitter power (P E ) and the output power (P O ):P T = P E + P OP E = I F •V F •Duty CycleP O = P O(BIAS) + P O (SWITCHING)= I CC •(V CC - V EE )+ E SW (R G , Q G )•f For the circuit in Figure 26 with I F(worst case) = 16mA, Rg = 8Ω, Max Duty Cycle = 80%, Qg = 500 nC,f =20 kHz and T A max = 85C:P E = 16 mA •1.8 V •0.8 = 23 mW P O = 4.25 mA •20 V+ 5.2 µJ •20 kHz = 85 mW + 104 mW = 189 mW> 178 mW (P O(MAX) @ 85C = 250 mW −15C*4.8 mW/C)The value of 4.25 mA for I CC in the previous equation was obtained by derating the I CC max of 5 mA(which occurs at -40°C) to I CC max at 85C (see Figure 7).Since P O for this case is greater than P O(MAX), Rg must be increased to reduce the HCPL-3120 power dissipation.P O(SWITCHING MAX)= P O(MAX) - P O(BIAS)= 178 mW - 85 mW = 93 mWP O(SWITCHINGMAX)E SW(MAX)=–––––––––––––––f93 mW= ––––––– = 4.65 µW 20 kHzFor Qg = 500 nC, from Figure 27,a value of E SW = 4.65 µW gives a Rg = 10.3 Ω.P EParameterDescription I F LED Current V FLED On Voltage Duty CycleMaximum LED Duty CycleP O ParameterDescription I CC Supply Current V CC Positive Supply Voltage V EENegative Supply VoltageE SW (Rg,Qg)Energy Dissipated in the HCPL-3120 for eachIGBT Switching Cycle (See Figure 27)f Switching FrequencyFigure 27. Energy Dissipated in the HCPL-3120 for Each IGBT Switching Cycle.E s w – E N E R G Y P E R S W I T C H I N G C Y C L E – µJ0Rg – GATE RESISTANCE – Ω6144121082Thermal Model(Discussion applies to HCPL-3120, HCPL-J312and HCNW3120)The steady state thermal model for the HCPL-3120 is shown in Figure 28. The thermal resistance values given in this model can be used to calculate the tempera-tures at each node for a given operating condition. As shown by the model, all heat generated flows through θCA which raises the case temperature T Caccordingly. The value of θCAdepends on the conditions of the board design and is, therefore,determined by the designer. The value of θCA = 83°C/W wasobtained from thermal measure-ments using a 2.5 x 2.5 inch PCboard, with small traces (no ground plane), a single HCPL-3120 soldered into the center of the board and still air. The absolute maximum powerdissipation derating specifications assume a θCA value of 83°C/W.From the thermal mode in Figure 28 the LED and detector IC junction temperatures can be expressed as:T JE = P E • (θLC ||(θLD + θDC ) + θCA )θLC * θDC+ P D •(–––––––––––––––– + θCA )+ T AθLC + θDC + θLDθLC •θDCT JD = P E (––––––––––––––– + θCA)θLC + θDC + θLD+ P D •(θDC ||(θLD + θLC ) + θCA ) + T AInserting the values for θLC and θDC shown in Figure 28 gives:T JE = P E •(256°C/W + θCA ) + P D •(57°C/W + θCA ) + T A T JD = P E •(57°C/W + θCA )+ P D •(111°C/W + θCA ) + T A For example, given P E = 45 mW,P O = 250 mW, T A = 70°C and θCA = 83°C/W:T JE = P E •339°C/W + P D •140°C/W +T A= 45 mW •339°C/W + 250 m W•140°C/W + 70°C = 120°C T JD = P E •140°C/W + P D •194°C/W +T A= 45 mW •140C/W + 250 m W•194°C/W + 70°C = 125°CT JE and T JD should be limited to 125°C based on the board layout and part placement (θCA ) specific to the application.T JE =LED junction temperatureT JD =detector IC junction temperatureT C =case temperature measured at the center of the package bottom θLC =LED-to-case thermal resistance θLD =LED-to-detector thermal resistance θDC =detector-to-case thermal resistance θCA =case-to-ambient thermal resistance∗θCA will depend on the board design and the placement of the part.Figure 28. Thermal Model.θLD = 442 °C/W T JET JDθLC = 467 °C/WθDC = 126 °C/WθCA = 83 °C/W*T CT ALED Drive CircuitConsiderations for Ultra High CMR Performance.(Discussion applies to HCPL-3120, HCPL-J312, and HCNW3120)Without a detector shield, the dominant cause of optocoupler CMR failure is capacitivecoupling from the input side of the optocoupler, through the package, to the detector IC as shown in Figure 29. The HCPL-3120 improves CMR performanceby using a detector IC with an optically transparent Faraday shield, which diverts the capaci-tively coupled current away from the sensitive IC circuitry. How-ever, this shield does noteliminate the capacitive coupling between the LED and optocoup-ler pins 5-8 as shown in Figure 30. This capacitivecoupling causes perturbations in the LED current during common mode transients and becomes the major source of CMR failures forFigure 29. Optocoupler Input to OutputCapacitance Model for Unshielded Optocouplers.Figure 30. Optocoupler Input to OutputCapacitance Model for Shielded Optocouplers.a shielded optocoupler. The main design objective of a high CMR LED drive circuit becomes keeping the LED in the proper state (on or off) during common mode transients. For example,the recommended application circuit (Figure 25), can achieve 15kV/µs CMR while minimizing component complexity.Techniques to keep the LED in the proper state are discussed in the next two sections.CMR with the LED On (CMR H).A high CMR LED drive circuit must keep the LED on during common mode transients. This is achieved by overdriving the LED current beyond the input threshold so that it is not pulled below the threshold during a transient. A minimum LED cur-rent of 10 mA provides adequate margin over the maximum I FLH of 5mA to achieve 15kV/µs CMR.CMR with the LED Off(CMR L).A high CMR LED drive circuitmust keep the LED off (V F≤V F(OFF)) during common modetransients. For example, during a-dV cm/dt transient in Figure 31,the current flowing through C LEDPalso flows through the R SAT andV SAT of the logic gate. As long asthe low state voltage developedacross the logic gate is less thanV F(OFF), the LED will remain offand no common mode failure willoccur.The open collector drive circuit,shown in Figure 32, cannot keepthe LED off during a +dVcm/dttransient, since all the currentflowing through C LEDN must besupplied by the LED, and it is notrecommended for applicationsrequiring ultra high CMR Lperformance. Figure 33 is analternative drive circuit which,like the recommended applicationcircuit (Figure 25), does achieveultra high CMR performance byshunting the LED in the off state.CM • • •• • •Figure 33. Recommended LED Drive Circuit for Ultra-High CMR.Figure 31. Equivalent Circuit for Figure 25 During Common Mode Transient.Figure 32. Not Recommended Open Collector Drive Circuit.Under Voltage Lockout Feature. (Discussion applies toHCPL-3120, HCPL-J312, and HCNW3120)The HCPL-3120 contains an under voltage lockout (UVLO)feature that is designed to protect the IGBT under fault conditions which cause the HCPL-3120supply voltage (equivalent to thefully-charged IGBT gate voltage)to drop below a level necessary to keep the IGBT in a low resistance state. When the HCPL-3120output is in the high state and the supply voltage drops below the HCPL-3120 V UVLO– threshold (9.5<V UVLO– < 12.0) the opto-coupler output will go into the low state with a typical delay,UVLO Turn Off Delay, of 0.6µs.When the HCPL-3120 output is in the low state and the supply voltage rises above the HCPL-3120 V UVLO+ threshold (11.0 <V UVLO+ < 13.5) the optocoupler output will go into the high state (assumes LED is “ON”) with a typical delay, UVLO Turn On Delay of 0.8 µs.Figure 34. Under Voltage Lock Out.V O – O U T P U T V O L T A G E – V(V CC - V EE ) – SUPPLY VOLTAGE – V1014268412Figure 37. Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per VDE 0884.(DUE TO OPTOCOUPLER)= (t PHL MAX - t PHL MIN ) + (t PLH MAX - t PLH MIN ) = (t PHL MAX - t PLH MIN ) – (t PHL MIN - t PLH MAX ) = PDD* MAX – PDD* MIN*PDD = PROPAGATION DELAY DIFFERENCENOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATIONDELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.V OUT1I LED2V OUT2I LED1Figure 35. Minimum LED Skew for Zero Dead Time.Figure 36. Waveforms for Dead Time.*PDD = PROPAGATION DELAY DIFFERENCENOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYSARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.V OUT1I LED2V OUT2I LED1IPM Dead Time and Propagation DelaySpecifications. (Discussionapplies to HCPL-3120, HCPL-J312, and HCNW3120)The HCPL-3120 includes a Propagation Delay Difference (PDD) specification intended to help designers minimize “dead time” in their power inverterdesigns. Dead time is the time period during which both the high and low side powertransistors (Q1 and Q2 in Figure 25) are off. Any overlap in Q1and Q2 conduction will result in large currents flowing through the power devices between thehigh and low voltage motor rails.O U T P U T P O W E R – P S , I N P U T C U R R E N T – I S0T S – CASE TEMPERATURE – °C1000400600800200100300500700900O U T P U T P O W E R – P S , I N P U T C U R R E N T – I S0T S – CASE TEMPERATURE – °C 600400800200100300500700To minimize dead time in a given design, the turn on of LED2 should be delayed (relative to the turn off of LED1) so that under worst-case conditions, transistor Q1 has just turned off when transistor Q2 turns on, as shown in Figure 35. The amount of delay necessary to achieve this condi-tions is equal to the maximum value of the propagation delay difference specification, PDD MAX, which is specified to be 350ns over the operating temperature range of -40°C to 100°C.Delaying the LED signal by themaximum propagation delaydifference ensures that theminimum dead time is zero, but itdoes not tell a designer what themaximum dead time will be. Themaximum dead time is equivalentto the difference between themaximum and minimum propaga-tion delay difference specifica-tions as shown in Figure 36. Themaximum dead time for theHCPL-3120 is 700ns (= 350ns -(-350ns)) over an operatingtemperature range of -40°C to100°C.Note that the propagation delaysused to calculate PDD and deadtime are taken at equal tempera-tures and test conditions sincethe optocouplers under consider-ation are typically mounted inclose proximity to each other andare switching identical IGBTs.Data subject to change.Copyright © 1999 Agilent TechnologiesObsoletes 5965-4779E5965-7875E (11/99)。
HCPL-2430资料
71234568ANODE 1CATHODE 1CATHODE 2ANODE 2GNDV CC V O1V O2HCPL-2430TRUTH TABLE (POSITIVE LOGIC)LED ON OFF V CCGNDNC71234568HCPL-2400NCLED ON OFF ON OFFENABLEL L H HOUTPUTL H Z ZTRUTH TABLE (POSITIVE LOGIC)OUTPUT L HV E V O ANODE CATHODE Features• High Speed: 40 MBd Typical Data Rate• High Common Mode Rejection:HCPL-2400: 10 kV/µs at V CM = 300 V (Typical)• AC Performance Guaranteed over Temperature• High Speed AlGaAs Emitter • Compatible with TTL, STTL,LSTTL, and HCMOS Logic Families• Totem Pole and Tri State Output (No Pull Up Resistor Required)• Safety ApprovalUL Recognized – 2500 V rms for 1 minute per UL1577VDE 0884 Approved with V IORM = 630 V peak (Option 060) for HCPL-2400CSA Approved• High Power Supply Noise Immunity• MIL-STD-1772 VersionAvailable (HCPL-5400/1 and HCPL-5430/1)20 MBd High CMR Logic Gate Optocouplers Technical DataHCPL-2400HCPL-2430Applications• Isolation of High Speed Logic Systems• Computer-Peripheral Interfaces• Switching Power Supplies • Isolated Bus Driver(Networking Applications)• Ground Loop Elimination • High Speed Disk Drive I/O • Digital Isolation for A/D,D/A Conversion • Pulse Transformer ReplacementFunctional DiagramCAUTION: It is advised that normal static precautions be taken in handling and assembly of this component toprevent damage and/or degradation which may be induced by ESD.A 0.1 µF bypass capacitor must be connected between pins 5 and 8.DescriptionThe HCPL-2400 and HCPL-2430high speed optocouplers combine an 820 nm AlGaAs light emitting diode with a high speedphotodetector. This combination results in very high data rate capability and low input current.The totem pole output (HCPL-2430) or three state output(HCPL-2400) eliminates the need for a pull up resistor and allows for direct drive of data buses.*Technical data for the Hermetic HCPL-5400/01, HCPL-5430/31, and HCPL-6430/31 are on separate Agilent publications.The detector has optical receiver input stage with built-in Schmitt trigger to provide logic compatible waveforms, eliminating the need for additional waveshaping. The hysteresis provides differential mode noise immunity and mini-mizes the potential for output signal chatter.The electrical and switchingcharacteristics of the HCPL-2400and HCPL-2430 are guaranteed over the temperature range of 0°C to 70°C.These optocouplers arecompatible with TTL, STTL,LSTTL, and HCMOS logicfamilies. When Schottky type TTL devices (STTL) are used, a data rate performance of 20 MBd over temperature is guaranteed when using the application circuit of Figure 13. Typical data rates are 40MBd.Ordering InformationSpecify Part Number followed by Option Number (if desired).Example:HCPL-2400#XXX060 = VDE 0884 V IORM = 630 V peak Option*300 = Gull Wing Surface Mount Option 500 = Tape and Reel Packaging Option*For HCPL-2400 only.SchematicV CC V OGNDV V CCV O1V V O2GNDANODECATHODEV E TRUTH TABLE (POSITIVE LOGIC)LED ON OFF LED ON OFF ON OFFENABLEL L H HOUTPUTL H Z ZTRUTH TABLE(POSITIVE LOGIC)OUTPUT L HPackage Outline Drawings8-Pin DIP Package (HCPL-2400, HCPL-2430)8-Pin DIP Package with Gull Wing Surface Mount Option 300(HCPL-2400, HCPL-2430)1.080 ± 0.320MAX.(0.100)BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).+ 0.076 - 0.051+ 0.003) - 0.002)DIMENSIONS IN MILLIMETERS AND (INCHES).+ 0.076 - 0.051(0.010+ 0.003) - 0.002)*MARKING CODE LETTER FOR OPTION NUMBERS "V" = OPTION 060OPTION NUMBERS 300 AND 500 NOT MARKED.Note: Use of nonchlorine activated fluxes is highly recommended.240TIME – MINUTEST E M P E R A T U R E – °C220200180160140120100806040200260Solder Reflow Temperature Profile(Gull Wing Surface Mount Option 300 Parts)Insulation and Safety Related SpecificationsParameter Symbol Value Units ConditionsMinimum External L(101)7.1mmMeasured from input terminals to output Air Gap (External terminals, shortest distance through air.Clearance)Minimum External L(102)7.4mmMeasured from input terminals to output Tracking (External terminals, shortest distance path along body.Creepage)Minimum Internal 0.08mmThrough insulation distance, conductor toPlastic Gapconductor, usually the direct distance between the (Internal Clearance)photoemitter and photodetector inside the optocoupler cavity .Tracking Resistance CTI 200VoltsDIN IEC 112/VDE 0303 Part 1(Comparative Tracking Index)Isolation GroupIIIa Material Group (DIN VDE 0110, 1/89, Table 1)Option 300 - surface mount classification is Class A in accordance with CECC 00802.Regulatory InformationThe HCPL-24XX has been approved by the following organizations:VDEApproved according to VDE 0884/06.92 (Option 060 only).ULRecognized under UL 1577,Component Recognition Program, File E55361.CSAApproved under CSA Component Acceptance Notice #5, File CA 88324.VDE 0884 Insulation Related Characteristics(HCPL-2400 OPTION 060 ONLY)*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884) for a detailed description.Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must ben ensured by protective circuits in application.Absolute Maximum Ratings(No derating required up to 70°C)Parameter Symbol Minimum Maximum Units Note Storage Temperature T S-55125°C Operating Temperature T A-4085°CAverage Forward Input Current I F(AVG)10mAPeak Forward Input Current I FPK20mA12 Reverse Input Voltage V R2VThree State Enable Voltage V E-0.510V(HCPL-2400 Only)Supply Voltage V CC07VAverage Output Collector Current I O-2525mAOutput Collector Voltage V O-0.510VOutput Voltage V O-0.518VOutput Collector Power Dissipation P O40mW(Each Channel)Total Package Power Dissipation P T350mW(Each Channel)Lead Solder Temperature260°C for 10 sec., 1.6 mm below seating plane(for Through Hole Devices)Reflow Temperature Profile See Package Outline Drawings section(Option #300)Recommended Operating ConditionsParameter Symbol Minimum Maximum Units Power Supply Voltage V CC 4.75 5.25V Forward Input Current (ON)I F(ON)48mA Forward Input Voltage (OFF)V F(OFF)0.8V Fan Out N5TTL Loads Enable Voltage (Low)V EL00.8V HCPL-2400 Only)Enable Voltage (High)V EH2V CC V HCPL-2400 Only)Operating Temperature T A070°CElectrical Specifications0°C ≤T A≤70°C, 4.75 V ≤V CC≤5.25 V, 4 mA ≤I F(ON)≤8 mA, 0 V ≤V F(OFF)≤0.8 V. All typicals at T A=25°C, V CC = 5 V, I F(ON) = 6.0 mA, V F(OFF) = 0 V, except where noted. See Note 11.*All typical values at T A = 25°C and V CC = 5 V, unless otherwise noted.Switching Specifications0°C ≤T A≤70°C, 4.75 V ≤V CC≤5.25 V, 4 mA ≤I F(ON)≤8 mA, 0 V ≤V F(OFF)≤0.8 V. All typicals at T A = 25°C, V CC = 5 V, I F(ON) = 6.0 mA, V F(OFF) = 0 V, except where noted. See Note 11.DeviceParameter Symbol HCPL-Min.Typ.*Max.Units Test Conditions Figure NotePropagation Delay t PHL55ns I F(ON) = 7 mA5, 6, 71, 4, Time to Logic Low5, 6 Output Level153360Propagation Delay t PLH55ns I F(ON) = 7 mA5, 6, 71, 4, Time to Logic High5, 6 Output Level153060Pulse Width|t PHL-t PLH|215ns I F(ON) = 7 mA5, 86 Distortion525Propagation Delay t PSK35ns Per Notes & Text15, 167 SkewOutput Rise Time t r20ns5Output Fall Time t f10ns5Output Enable Time t PZH240015ns9, 10to Logic HighOutput Enable Time t PZL240030ns9, 10to Logic LowOutput Disable Time t PHZ240020ns9, 10from Logic HighOutput Disable Time t PLZ240015ns9, 10from Logic LowLogic High Common|CM H|100010,000V/µs V CM = 300 V, T A = 25°C,119 Mode Transient I F = 0 mAImmunityLogic Low Common|CM L|100010,000V/µs V CM = 300 V, T A = 25°C,119 Mode Transient I F = 4 mAImmunityPower Supply Noise PSNI0.5V p-p V CC = 5.0 V,10 Immunity48 Hz ≤ = F AC≤50 MHz*All typical values at T A = 25°C and V CC = 5 V, unless otherwise noted.Package Characteristics*All typical values are at T A = 25°C.**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Agilent Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,” publication number 5963-2203E.Notes:1. Each channel.2. Duration of output short circuit timenot to exceed 10 ms.3. Device considered a two terminaldevice: pins 1, 2, 3, and 4 shortedtogether, and pins 5, 6, 7, and 8shorted together.4. t PHL propagation delay is measuredfrom the 50% level on the rising edgeof the input current pulse to the 1.5V level on the falling edge of the outputpulse. The t PLH propagation delay ismeasured from the 50% level on thefalling edge of the input current pulseto the 1.5 V level on the rising edge of the output pulse.5. The typical data shown is indicative ofwhat can be expected using theapplication circuit in Figure 13.6. This specification simulates the worstcase operating conditions of theHCPL-2400 over the recommendedoperating temperature and V CC rangewith the suggested application circuitof Figure 13.7. Propagation delay skew is discussedlater in this data sheet.8. Measured between pins 1 and 2shorted together, and pins 3 and 4shorted together.9. Common mode transient immunity in aLogic High level is the maximumtolerable (positive) dV CM/dt of thecommon mode pulse, V CM, to assurethat the output will remain in a LogicHigh state (i.e., V O > 2.0 V. Commonmode transient immunity in a LogicLow level is the maximum tolerable(negative) dV CM/dt of the commonmode pulse, V CM, to assure that theoutput will remain in a Logic Low state(i.e., V O < 0.8 V).10. Power Supply Noise Immunity is thepeak to peak amplitude of the ac ripplevoltage on the V CC line that the devicewill withstand and still remain in thedesired logic state. For desired logichigh state, V OH(MIN) > 2.0 V, and fordesired logic low state,V OL(MAX) < 0.8 V.11. Use of a 0.1 µF bypass capacitorconnected between pins 8 and 5adjacent to the device is required.12. Peak Forward Input Current pulsewidth < 50 µs at 1 KHz maximumrepetition rate.13. In accordance with UL 1577, eachoptocoupler is proof tested by applyingan insulation test voltage ≥3000V rmsfor one second (leakage detectioncurrent limit, I I-O≤ 5 µA). This test isperformed before the 100% Produc-tion test shown in the VDE 0884Insulation Related CharacteristicsTable, if applicable.Figure 4. Typical Diode Input Forward Current Characteristic.Figure 6. Typical Propagation Delay vs. Ambient Temperature.Figure 7. Typical Propagation Delay vs. Input Forward Current.Figure 8. Typical Pulse Width Distortion vs. Ambient Temperature.Figure 5. Test Circuit for t PLH , t PHL , t r , and t f .Figure 1. Typical Logic Low Output Voltage vs. Logic Low Output Current.Figure 2. Typical Logic High Output Voltage vs. Logic High Output Current.Figure 3. Typical Output Voltage vs.Input Forward Current.Figure 9. Test Circuit for t PHZ , t PZH , t PLZ and t PZL .Figure 10. Typical Enable Propagation Delay vs. Ambient Temperature.Figure 11. Test Diagram for Common Mode Transient Immunity and Typical Waveforms.Figure 12. Thermal Derating Curve,Dependence of Safety Limiting Value with Case Temperature per VDE 0884.O U T P U T P O W E R – P S , I N P U T C U R R E N T – I S0T S – CASE TEMPERATURE – °C400600800200100300500700VPULSE GENERATOROUTPUT V MONITORING NODE OFigure 15. Illustration of Propagation Delay Skew – t PSK .I FV OI FV OFigure 13. Recommended 20 MBd HCPL-2400/30 Interface Circuit.ApplicationsFigure 14. Alternative HCPL-2400/30Interface Circuit.Figure 16. Parallel Data Transmission Example.Figure 17. Modulation Code Selections.Figure 18. Typical HCPL-2400/30 Output Schematic.DATAINPUTSCLOCKDATAOUTPUTSCLOCKHCPL-2400HCPL-2400VPropagation Delay, Pulse-Width Distortion and Propagation Delay Skew Propagation delay is a figure of merit which describes how quickly a logic signal propagates through a system. The propaga-tion delay from low to high (t PLH) is the amount of time required for an input signal to propagate to the output, causing the output to change from low to high. Similarly, the propagation delay from high to low (t PHL) is the amount of time required for the input signal to propagate to the output, causing the output to change from high to low (see Figure 5).Pulse-width distortion (PWD) results when t PLH and t PHL differ in value. PWD is defined as the difference between t PLH and t PHL and often determines the maximum data rate capability of a transmission system. PWD can be expressed in percent by dividing the PWD (in ns) by the minimum pulse width (in ns) being transmitted. Typically, PWD on the order of 20-30% of the minimum pulse width is tolerable; the exact figure depends on the particular application (RS232,RS422, T-1, etc.).Propagation delay skew, t PSK, is an important parameter to consider in parallel data applica-tions where synchronization of signals on parallel data lines is a concern. If the parallel data is being sent through a group of optocouplers, differences in propagation delays will cause the data to arrive at the outputs of the optocouplers at different times. If this difference in propagation delays is large enough, it will determine the maximum rate atwhich parallel data can be sentthrough the optocouplers.Propagation delay skew is definedas the difference between theminimum and maximum propaga-tion delays, either t PLH or t PHL, forany given group of optocouplerswhich are operating under thesame conditions (i.e., the samedrive current, supply voltage,output load, and operating tem-perature). As illustrated inFigure15, if the inputs of a groupof optocouplers are switchedeither ON or OFF at the sametime, t PSK is the differencebetween the shortest propagationdelay, either t PLH or t PHL, and thelongest propagation delay, eithert PLH or t PHL.As mentioned earlier, t PSK candetermine the maximum paralleldata transmission rate. Figure 16is the timing diagram of a typicalparallel data application with boththe clock and the data lines beingsent through optocouplers. Thefigure shows data and clocksignals at the inputs and outputs ofthe optocouplers. To obtain themaximum data transmission rate,both edges of the clock signalsare being used to clock the data;if only one edge were used, theclock signal would need to betwice as fast.Propagation delay skew repre-sents the uncertainty of where anedge might be after being sentthrough an optocoupler.Figure16 shows that there will beuncertainty in both the data andthe clock lines. It is importantthat these two areas of uncertaintynot overlap, otherwise the clocksignal might arrive before all ofthe data outputs have settled, orsome of the data outputs maystart to change before the clocksignal has arrived. From theseconsiderations, the absoluteminimum pulse width that can besent through optocouplers in aparallel application is twice t PHZ.A cautious design should use aslightly longer pulse width toensure that any additionaluncertainty in the rest of thecircuit does not cause a problem.The HCPL-2400/30 optocouplersoffer the advantages of guaran-teed specifications for propaga-tion delays, pulse-width distortion,and propagation delay skew overthe recommended temperature,input current, and power supplyranges.Application CircuitA recommended LED drive circuitis shown in Figure 13. This circuitutilizes several techniques tominimize the total pulse-widthdistortion at the output of theoptocoupler. By using twoinverting TTL gates connected inseries, the inherent pulse-widthdistortion of each gate cancels thedistortion of the other gate. Forbest results, the two series-connected gates should be fromthe same package.The circuit in Figure 13 also usestechniques known as prebias andpeaking to enhance theperformance of the optocouplerLED. Prebias is a small forwardvoltage applied to the LED whenthe LED is off. This small prebiasvoltage partially charges thejunction capacitance of the LED,allowing the LED to turn on morequickly. The speed of the LED isfurther increased by applyingmomentary current peaks to the LED during the turn-on and turn-off transitions of the drive current. These peak currents help to charge and discharge the capacitances of the LED more quickly, shortening the time required for the LED to turn on and off.Switching performance of theHCPL-2400/30 optocouplers isnot sensitive to the TTL logicfamily used in the recommendeddrive circuit. The typical andworst-case switching parametersgiven in the data sheet can be metusing common 74LS TTL invert-ing gates or buffers. Use of fasterTTL families will slightly reducethe overall propagation delaysfrom the input of the drive circuitto the output of the optocoupler,but will not necessarily result inlower pulse-width distortion orpropagation delay skew. Thisreduction in overall propagationdelay is due to shorter delays inthe drive circuit, not to changes inthe propagation delays of theoptocoupler; optocoupler prop-agation delays are not affected bythe speed of the logic used in thedrive circuit. Data subject to change.Copyright © 1999 Agilent Technologies Obsoletes 5091-2922E, 5954-2140E 5965-3586E (11/99)。
高速光耦6N137HCPL2601,HCPL2611,HCPL2630,HCPL2631中文资料
高速光耦6N137HCPL2601,HCPL2611,HCPL2630,HCPL2631中文资料高速光耦6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631中文资料常用高速光电耦合器型号:单通道: 6N137 , HCPL2601 , HCPL2611双通道: HCPL2630 , HCPL2631高速10MBit / s的逻辑门光电作用:6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631是高速光电耦合器内部结构框图6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
引脚图原理如上图所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3输入,脚2接高电平。
6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631真值表真值表功能(正逻辑)高速光耦6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631参数绝对最大额定值(Ta= 25 ℃除非另有说明):建议操作条件:电学特性(Ta=0至70 ,除非另有规定)单独的组件特征:开关特性 (TA= -40℃ to 85℃, VCC= 5V, IF= 7.5mA 除非另有说明):电气特性(续)转移特性(TA = -40 to 85℃ 除非另有说明)隔离特性(Ta= -40 ℃至85 ℃ ,除非另有说明. ):波形图测试电路和波形 tPLH, tPHL, tr and tf测试电路tEHL和tELHTAG标签:HCPL26HCPL2631HCPL2630资料中文顶一下(1)100.00%踩一下(0)0.00%------分隔线----------------------------。
HCPL-3120中文资料
输出高达2A的IGBT驱动光耦
产品特点:
I2A最小峰值电流输出
I15KV绝缘耐压
I0.5V最大低电位输出(负偏压除外)
I5mA供电电流
I欠压锁定
I500nS最大开关时间
I15-30V宽压工作环境,-40-150度工作温
I工业级温度范围:-40-100度
I安全认证:UL,VDE0884
V
输入电容
CIN
60
pF
UVLO阈值
VUVLO
11.0
12.3
13.5
V
开关特性:
参数
符号
最小 值
典型 值
最大 值
单
位
输入到高电位输
出延时
tPLH
0.10
0.30
0.50
输入到低电位输
出延时
tPHL
0.10
0.30
0.50
脉宽失真
PWD
0.30
10%-90%上升时
间
tr
0.1
90%-10%下降时
间
tf
100
C
输入信号电流
IF
7
16
mA
输入电压(关)
VF
-3.0
0.8
V
输出侧正电压
VCC2-VE
15
30(VE-VEE)
V
电气特性:
参数
符号
最小 值
典型
值
最大值
单位
高电位输出电流
IOH
0.5
1.5
A
低电位输出电流
IOL
0.5
2.0
A
高电位输出电压
VOH
7310胶水成分
7310胶水成分全文共四篇示例,供读者参考第一篇示例:7310胶水是一种常见的工业胶水,广泛用于木工、装修、手工和制作等领域。
它具有极强的粘合力和耐磨性,能够粘合多种材料。
而7310胶水的成分对于其性能和用途起着至关重要的作用。
本文将深入探讨7310胶水的成分及其特性。
7310胶水的主要成分包括合成胶、填料、软化剂、固化剂和稳定剂。
合成胶是7310胶水的主要粘合组分,它们能够通过聚合反应形成具有粘结性的聚合物结构。
填料通常用于增强胶水的机械性能,如硬度、拉伸强度和耐磨性。
软化剂可以增加胶水的柔软度和粘度,以便更好地涂覆和粘接。
固化剂是7310胶水的关键组分,它能够促使胶水在接触后形成牢固的连接。
稳定剂则能够延长胶水的使用寿命和稳定性。
除了这些主要成分外,7310胶水还可能含有一些辅助成分,如溶剂、防腐剂和着色剂。
溶剂可以帮助胶水更好地润湿和渗透被粘材料表面,以促使粘接。
防腐剂可以延长胶水的保存时间,避免霉菌和细菌的生长。
着色剂则用于染色胶水,以便于区分不同类型的胶水和方便使用。
7310胶水的成分对于其性能有着至关重要的影响。
合成胶和固化剂决定了胶水的粘合力和耐久性。
合成胶的种类和粘着剂的配比会影响胶水的黏度和承受力,固化剂的影响则在于胶水的固化速度和质量。
填料和软化剂能够调节胶水的硬度和粘性,使其适应不同的粘合场合和材料。
辅助成分则可以提高胶水的使用性能和寿命,保证其在各种环境中都能够稳定粘结。
7310胶水的成分是多种多样的,每一种均起着特定的作用。
通过了解各种成分的功能和特性,我们可以更好地选择和使用7310胶水,以满足不同的粘接需求。
希望本文的介绍能够帮助大家更好地了解7310胶水的成分及其作用,为广大用户提供参考和指导。
第二篇示例:7310胶水是一种常用的胶水,广泛应用于家庭、学校和办公室等场所。
关于7310胶水的成分,我们有必要了解一些基本信息,以便更好地使用和存放这种胶水。
7310胶水的主要成分包括:1. 合成树脂:合成树脂是7310胶水的主要粘合剂,能够牢固地粘合各种材料,如纸张、布料、木材等。
HCPL3120中文资料
DESAT到保护输出延时
tdesat(fault)
3
7
20
复位信号
PWRESET
0.1
UVLO到输出高延时
tuvlo on
0.8
UVLO到输出低延时
tuvlo off
0.6
典型电路连接:
HCPL-3120
输出高达2A的IGBT驱动光耦
产品特点:
l 2A最小峰值电流输出
l 15KV绝缘耐压
l 0.5V最大低电位输出(负偏压除外)
l 5mA供电电流
l欠压锁定
l 500nS最大开关时间
l 15-30V宽压工作环境,-40-150度工作温
l工业级温度范围:-40-100度
l安全认证:UL,VDE0884
应用:
IGBT/MOSFET驱动
交流电机直流无刷驱动
变频器
开关电源
真值表:
LED发光管
VCC-VEE正偏压
VCC-VEE负偏压
输出VO
OFF
0-30V
0-30V
低电位
ON
0-11V
0-9.5V
低电位
ON
11-13.5V
9.5-12V
转换
ON
13.5-30V
12-30V
高电位
封装图:
最大额定值:
参数
符号
最小值
最大值
单位
储存温度
TS
-55
125
℃
工作温度
TA
-40
100
℃
平均输入电流
IF
25
mA
瞬时峰值电流输入
IP
1
A
反响输入电压
HCPL-0731中文资料
A 0.1 µF bypass capacitor connected between pins 5 and 8 is recommended.
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage HCPL-2730 Functional Diagram and/or degradation which may be induced by ESD.
[1] [1]
Hermetic Single and Dual Channel Packages HCPL-
2731 2730 4731
[1]
0701[1] 0700
[1]
0731 0730
[1]
HCNW139[1] HCNW138
[1]
0.5 mA 1.6 mA 40 µA
The SO-8 does not require “through holes” in a PCB. This package occupies approximately one-third the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes. Functional Diagram
ANODE 1 1 CATHODE 1 2 CATHODE 2 3 ANODE 2 4 8 VCC 7 VO1 6 VO2 5 GND
HCPL中文资料
IGBT/MOSFET驱动
交流电机直流无刷驱动
变频器
开关电源
真值表:
LED发光管
VCC-VEE正偏压
VCC-VEE负偏压
输出VO
OFF
0-30V
0-30V
低电位
ON
0-11V
0-9.5V
低电位
ON
11-13.5V
9.5-12V
转换
ON
13.5-30V
12-30V
高电位
封装图:
最大额定值:
参数
符号
V
输入电容
CIN
60
pF
UVLO阈值
VUVLO
11.0
12.3
13.5
V
开关特性:
参数
符号
最小值
典型值
最大值
单位
输入到高电位输出延时
tPLH
0.10
0.30
0.50
uS
输入到低电位输出延时
tPHL
0.10
0.30
0.50
脉宽失真
PWD
0.30
10%-90%上升时间
tr
0.1
90%-10%下降时间
tf
HCPL-3120
输出高达2A的IGBT驱动光耦
产品特点:
l2A最小峰值电流输出
l15KV绝缘耐压
l0.5V最大低电位输出(负偏压除外)
l5mA供电电流
l欠压锁定
l500nS最大开关时间
l15-30V宽压工作环境,-40-150度工作温
l工业级温度范围:-40-100度
l安全认证:UL,VDE0884
0.1
DESAT到保护输出延时
无触点开关工作原理
描述什么是无触点开关无触点开关,是一种由微控制器和电力电子器件组成的新型开关器件,依靠改变电路阻抗值,阶跃地改变负荷电流,从而完成电路的通断。
无触点开关的主要特点是没有可运动的触头部件,导通和关断时不出现电弧或火花,动作迅速,寿命长,可靠性高,适合防火、防爆、防潮等特殊环境使用。
无触点开关的优点无触点开关在电磁兼容性、可靠性、安全性等方面的优越性是触点开关无法比拟的。
无触点开关是用可控硅来控制的,因此它是在PN结内部完成导通和截流的,不会有火花,弥补了触点开关复合时有火花的不足,避免因电流过大出现火花或在高电压电路中击穿空气,造成误动作。
无触点开关的耐高压性也很好,如一些大型电机在起动时,由于转子由静止变为转动的惯性非常大,造成起动电流超大(基本相当短路电流),停机时由于惯性继续运转,会造成非常高的电压,无触点开关便可应用于此。
无触点开关常见类型1.以三端稳压器实现的无触点开关三端稳压器是设计者十分熟悉的常用廉价器件之一,图1是利用三端稳压器设计的开关电路。
从控制端加入的信号决定是否将三端稳压器与地导通,若导通则输出端上电,否则输出端相当于断开。
此电路十分简单,也容易调试,且有多种电压的稳压器供选用,适用于直流负载的控制。
缺点是稳压器的管压降使输出电压有所降低,不适合电池供电的设备。
选用低压差三端稳压器可有所改善。
2.基于可控硅器件的无触点开关目前有很多这类的器件供选择,如意法半导体公司(ST)的ACS 系列产品。
该产品可以直接用来控制风扇、洗衣机、电机泵等设备,隔离电压可达到500V-1000V以上。
图2是其典型应用电路。
此类器件价格低廉,但只能用于交流负载的开关控制。
3.基于光耦三极管和达林顿管的无触点开关基于光电三极管的无触点开关被称为光电耦合器(photocoupler),其工作原理如图3所示。
当输入端加正向电压时发光二极管(LED)点亮,光敏三极管会产生光电流从集电极供给负载;当输入端加反向电压时,LED不发光,使光敏三极管处于截止状态,相当于负载开路。
HCPL-063A中文资料
1-146HHigh CMR, High Speed TTL Compatible Optocouplers Technical Data6N137HCNW137HCNW2601HCNW2611HCPL-0600HCPL-0601HCPL-0611HCPL-0630CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.Features• 5 kV/µs Minimum Common Mode Rejection (CMR) at V CM = 50 V for HCPL-X601/X631, HCNW2601 and10kV/µs Minimum CMR at V CM = 1000 V for HCPL-X611/X661, HCNW2611• High Speed: 10 MBd Typical • LSTTL/TTL Compatible • Low Input Current Capability: 5 mA• Guaranteed ac and dcPerformance over Temper-ature: -40°C to +85°C • Available in 8-Pin DIP,SOIC-8, Widebody Packages • Strobable Output (Single Channel Products Only)• Safety ApprovalUL Recognized - 2500 V rms for 1 minute and 5000V rms*for 1 minute per UL1577CSA ApprovedVDE 0884 Approved with V IORM = 630 V peak forHCPL-2611 Option 060 and V IORM =1414 V peak for HCNW137/26X1BSI Certified(HCNW137/26X1 Only)• MIL-STD-1772 Version Available (HCPL-56XX/66XX)Functional Diagram*5000 V rms/1 Minute rating is for HCNW137/26X1 and Option 020 (6N137, HCPL-2601/11/30/31, HCPL-4661) products only.HCPL-0631HCPL-0661HCPL-2601HCPL-2611HCPL-2630HCPL-2631HCPL-4661Applications• Isolated Line Receiver • Computer-Peripheral Interfaces• Microprocessor System Interfaces• Digital Isolation for A/D,D/A Conversion• Switching Power Supply • Instrument Input/Output Isolation• Ground Loop Elimination • Pulse Transformer Replacement• Power Transistor Isolation in Motor Drives• Isolation of High Speed Logic SystemsDescriptionThe 6N137, HCPL-26XX/06XX/4661, HCNW137/26X1 are optically coupled gates that combine a GaAsP light emitting diode and an integrated high gain photo detector. An enable input allows the detector to be strobed.The output of the detector IC isA 0.1 µF bypass capacitor must be connected between pins 5 and 8.CATHODEANODE GNDV V CC O ANODE 2CATHODE 2CATHODE 1ANODE 1GNDV V CC O2V E V O16N137, HCPL-2601/2611 HCPL-0600/0601/0611 HCPL-2630/2631/4661 NC NCLED ON OFF ON OFF ON OFFENABLEH H L L NC NCOUTPUTL H H H L HTRUTH TABLE (POSITIVE LOGIC)LED ON OFFOUTPUTL HTRUTH TABLE (POSITIVE LOGIC)5965-3594Ean open collector Schottky-clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of 5,000 V/µs for the HCPL-X601/X631 and HCNW2601, and 10,000 V/µs for the HCPL-X611/X661 and HCNW2611.This unique design providesmaximum ac and dc circuitisolation while achieving TTLcompatibility. The optocoupler acand dc operational parametersare guaranteed from -40°C to+85°C allowing troublefreesystem performance.The 6N137, HCPL-26XX, HCPL-06XX, HCPL-4661, HCNW137,and HCNW26X1 are suitable forhigh speed logic interfacing,input/output buffering, as linereceivers in environments thatconventional line receiverscannot tolerate and are recom-mended for use in extremely highground or induced noiseenvironments.Selection GuideNotes:1. Technical data are on separate HP publications.2. 15 kV/µs with V CM = 1 kV can be achieved using HP application circuit.3. Enable is available for single channel products only, except for HCPL-193X devices.1-1471-148Ordering InformationSpecify Part Number followed by Option Number (if desired).Example:HCPL-2611#XXX020 = 5000 V rms/1 minute UL Rating Option*060 = VDE 0884 V IORM = 630 Vpeak Option**300 = Gull Wing Surface Mount Option†500 = Tape and Reel Packaging OptionOption data sheets available. Contact Hewlett-Packard sales representative or authorized distributor for information.*For 6N137, HCPL-2601/11/30/31 and HCPL-4661 (8-pin DIP products) only.**For HCPL-2611 only. Combination of Option 020 and Option 060 is not available.†Gull wing surface mount option applies to through hole parts only.SchematicV FUSE OF A 0.1 µF BYPASS CAPACITOR CONNECTEDBETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 5).V CC V OGNDE6N137, HCPL-2601/2611 HCPL-0600/0601/0611V V CC V O1V V O2GNDHCPL-2630/2631/4661 HCPL-0630/0631/0661+ 0.076- 0.051(0.010+ 0.003)- 0.002)DIMENSIONS IN MILLIMETERS AND (INCHES).*MARKING CODE LETTER FOR OPTION NUMBERS"L" = OPTION 020"V" = OPTION 060OPTION NUMBERS 300 AND 500 NOT MARKED. Package Outline Drawings8-pin DIP Package** (6N137, HCPL-2601/11/30/31, HCPL-4661)8-pin DIP Package with Gull Wing Surface Mount Option 300(6N137, HCPL-2601/11/30/31, HCPL-4661)**JEDEC Registered Data (for 6N137 only).(0.025 ± 0.005)1.080 ± 0.320MAX.(0.100)BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).+ 0.076- 0.051+ 0.003)- 0.002)1-1491-150Small-Outline SO-8 Package (HCPL-0600/01/11/30/31/61)8-Pin Widebody DIP Package (HCNW137, HCNW2601/11)(0.012)MIN.DIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).1.78 ± 0.15 + 0.076 - 0.0051+ 0.003) - 0.002)1-1518-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300(HCNW137, HCNW2601/11)Note: Use of nonchlorine activated fluxes is highly recommended.Solder Reflow Temperature Profile (HCPL-06XX and Gull Wing Surface Mount Option 300 Parts)240TIME – MINUTEST E M P E R A T U R E – °C2202001801601401201008060402002601.78 ± 0.15 MAX.BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).Regulatory Information The 6N137, HCPL-26XX/06XX/ 46XX, and HCNW137/26XX have been approved by the following organizations:ULRecognized under UL 1577, Component Recognition Program, File E55361.CSAApproved under CSA ComponentAcceptance Notice #5, File CA88324.VDEApproved according to VDE0884/06.92. (HCPL-2611 Option060 and HCNW137/26X1 only)BSICertification according toBS415:1994(BS EN60065:1994),BS7002:1992(BS EN60950:1992) andEN41003:1993 for Class IIapplications. (HCNW137/26X1only)Insulation and Safety Related Specifications8-pin DIP Widebody(300 Mil)SO-8(400 Mil)Parameter Symbol Value Value Value Units Conditions Minimum External L(101)7.1 4.99.6mm Measured from input terminals Air Gap (External to output terminals, shortest Clearance)distance through air. Minimum External L(102)7.4 4.810.0mm Measured from input terminals Tracking (External to output terminals, shortest Creepage)distance path along body. Minimum Internal0.080.08 1.0mm Through insulation distance, Plastic Gap conductor to conductor, usually (Internal Clearance)the direct distance between thephotoemitter and photodetectorinside the optocoupler cavity. Minimum Internal NA NA 4.0mm Measured from input terminals Tracking (Internal to output terminals, along Creepage)internal cavity.Tracking Resistance CTI200200200Volts DIN IEC 112/VDE 0303 Part 1 (ComparativeTracking Index)Isolation Group IIIa IIIa IIIa Material Group(DIN VDE 0110, 1/89, Table 1) Option 300 - surface mount classification is Class A in accordance with CECC 00802.1-1521-153VDE 0884 Insulation Related Characteristics (HCPL-2611 Option 060 Only)*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description.Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.VDE 0884 Insulation Related Characteristics (HCNW137/2601/2611 Only)*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description.Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.Absolute Maximum Ratings* (No Derating Required up to 85°C)*JEDEC Registered Data (for 6N137 only).**Ratings apply to all devices except otherwise noted in the Package column.†0°C to 70°C on JEDEC Registration.Recommended Operating ConditionsParameter Symbol Min.Max.Units Input Current, Low Level I FL*0250µAInput Current, High Level[1]I FH**515mA Power Supply Voltage V CC 4.5 5.5VLow Level Enable Voltage†V EL00.8VHigh Level Enable Voltage†V EH 2.0V CC V Operating Temperature T A-4085°CFan Out (at R L = 1 kΩ)[1]N5TTL Loads Output Pull-up Resistor R L330 4 kΩ*The off condition can also be guaranteed by ensuring that V FL≤0.8 volts.**The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be used for best performance and to permit at least a 20% LED degradation guardband.†For single channel products only.1-154Electrical SpecificationsOver recommended temperature (T A = -40°C to +85°C) unless otherwise specified. All Typicals at V CC = 5 V, T A = 25°C. All enable test conditions apply to single channel products only. See note 5.*JEDEC registered data for the 6N137. The JEDEC Registration specifies 0°C to +70°C. HP specifies -40°C to +85°C.1-155Switching Specifications (AC)Over Recommended Temperature (T A = -40°C to +85°C), V CC = 5 V, I F= 7.5 mA unless otherwise specified. All Typicals at T A = 25°C, V CC = 5 V.*JEDEC registered data for the 6N137.**Ratings apply to all devices except otherwise noted in the Package column.1-156Package Characteristics= 25°C.All Typicals at T**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification or HP Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”†For 6N137, HCPL-2601/2611/2630/2631/4661 only.Notes:1. Each channel.2. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current doesnot exceed 20 mA.3. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current doesnot exceed 15 mA.4. Derate linearly above 80°C free-air temperature at a rate of 2.7 mW/°C for the SOIC-8 package.5. Bypassing of the power supply line is required, with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as illustrated inFigure 17. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm.6. The JEDEC registration for the 6N137 specifies a maximum I OH of 250 µA. HP guarantees a maximum I OH of 100 µA.7. The JEDEC registration for the 6N137 specifies a maximum I CCH of 15 mA. HP guarantees a maximum I CCH of 10 mA.8. The JEDEC registration for the 6N137 specifies a maximum I CCL of 18 mA. HP guarantees a maximum I CCL of 13 mA.9. The JEDEC registration for the 6N137 specifies a maximum I EL of –2.0 mA. HP guarantees a maximum I EL of -1.6 mA.10. The t PLH propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on therising edge of the output pulse.11. The t PHL propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on thefalling edge of the output pulse.12. t PSK is equal to the worst case difference in t PHL and/or t PLH that will be seen between units at any given temperature and specifiedtest conditions.13. See application section titled “Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew” for more information.14. The t ELH enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 Vpoint on the rising edge of the output pulse.15. The t EHL enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V pointon the falling edge of the output pulse.16. CM H is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state(i.e., V O > 2.0 V).17. CM L is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state(i.e., V O < 0.8 V).18. For sinusoidal voltages, (|dV CM | / dt)max = πf CM V CM(p-p).1-1571-158I O H – H I G H L E V E L O U T P U T C U R R E N T – µAT A – TEMPERATURE – °C1015519. No external pull up is required for a high logic state on the enable input. If the V E pin is not used, tying V E to V CC will result inimproved CMR performance. For single channel products only.20. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.21. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 3000 V rms for one second(leakage detection current limit, I I-O ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the VDE 0884 Insulation Characteristics Table, if applicable.22. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V rms for one second(leakage detection current limit, I I-O ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the VDE 0884 Insulation Characteristics Table, if applicable.23. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel productsonly.24. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only.Figure 2. Typical Output Voltage vs. Forward Input Current.Figure 3. Typical Input Threshold Current vs. Temperature.Figure 1. Typical High Level Output Current vs. Temperature.1623I F – FORWARD INPUT CURRENT – mA 0V O – O U T P U T V O L T A G E – V8-PIN DIP, SO-81623I F – FORWARD INPUT CURRENT – mAV O – O U T P U T V O L T A G E – VWIDEBODY6360T A – TEMPERATURE – °C 20I T H – I N P U T T H R E S H O L D C U R R E N T – m A1458-PIN DIP, SO-86360T A – TEMPERATURE – °C20I T H – I N P U T T H R E S H O L D C U R R E N T – m A145WIDEBODY1-159706060T A – TEMPERATURE – °C5020I O L – L O W L E V E L O U T P U T C U R R E N T – m A400.80.460T A – TEMPERATURE – °C 0.20V O L – L O W L E V E L O U T P U T V O L T A G E – V0.10.50.7WIDEBODY0.30.6Figure 7. Typical Temperature Coefficient of Forward Voltage vs. Input Current.Figure 4. Typical Low Level Output Voltage vs. Temperature.Figure 5. Typical Low Level Output Current vs. Temperature.Figure 6. Typical Input Diode Forward Characteristic.0.80.4T A – TEMPERATURE – °C 0.20V O L – L O W L E V E L O U T P U T V O L T A G E – V0.10.50.78-PIN DIP, SO-80.30.6I F – F O R W A R D C U R R E N T – m A0.001V F – FORWARD VOLTAGE – V 1.010000.010.110100I F – F O R W A R D C U R R E N T – m A0.001V F – FORWARD VOLTAGE – V1.01100.010.110100d V F /d T – F O R W A R D V O L T A G E T E M P E R A T U R E C O E F F I C I E N T – m V /°C0.1110100I F – PULSE INPUT CURRENT – mA -1.4-2.2-2.0-1.8-1.6-1.2-2.48-PIN DIP, SO-8d V F /d T – F O R W A R D V O L T A G E T E M P E R A T U R E C O E F F I C I E N T – m V /°C0.1110100I F – PULSE INPUT CURRENT – mA-1.9-2.2-2.1-2.0-1.8-2.3WIDEBODY1-1604030T A – TEMPERATURE – °C 20P W D – P U L S E W I D T H D I S T O R T I O N – n s10-10Figure 8. Test Circuit for t PHL and t PLH .Figure 9. Typical Propagation Delay vs. Temperature.Figure 10. Typical Propagation Delay vs. Pulse Input Current.Figure 11. Typical Pulse Width Distortion vs. Temperature.Figure 12. Typical Rise and Fall Time vs. Temperature.10590I F – PULSE INPUT CURRENT – mA7530t P – P R O P A G A T I O N D E L A Y – n s6045OUTPUT V MONITORING NODEOOUTPUT V MONITORING NODEOI V FF*C L IS APPROXIMATELY 15 pF WHICH INCLUDES PROBE AND STRAY WIRING CAPACITANCE.10080T A – TEMPERATURE – °C600t P – P R O P A G A T I O N D E L A Y – n s4020t r , t f – R I S E , F A L L T I M E – n sT A – TEMPERATURE – °C1-161OUTPUT V MONITORING NODEOV V*C IS APPROXIMATELY 15 pF WHICH INCLUDES PROBE AND STRAY WIRING CAPACITANCE.LFigure 13. Test Circuit for t EHL and t ELH .Figure 14. Typical Enable Propagation Delay vs. Temperature.Figure 15. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.V O0.5 VOV (MIN.)5 V0 V FSWITCH AT B: I = 7.5 mA FCM V HCM CM L OV (MAX.)CMV (PEAK)V Ot E– E N A B L E P R O P A G A T I O N D E L A Y – n sT A – TEMPERATURE – °C901203060+5 VOUTPUT V MONITORING NODE O PULSE GENERATOR Z = 50 ΩO+5 VOUTPUT V MONITORING NODEO PULSE GENERATOR Z = 50 ΩO1-162Figure 16. Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per VDE 0884.Figure 17. Recommended Printed Circuit Board Layout.O U T P U T P O W E R – P S , I N P U T C U R R E N T – I S0T S – CASE TEMPERATURE – °C400600800200100300500700ENABLE(SEE NOTE 5)OUTPUTDEVICE ILLUSTRATED.O U T P U T P O WE R – P S , I N P U T C U R R E N T – I S0T S – CASE TEMPERATURE – °C 4006008002001003005007001-163VDUAL CHANNEL DEVICE CC2*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.VCC2Figure 18. Recommended TTL/LSTTL to TTL/LSTTL Interface Circuit.Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew Propagation delay is a figure of merit which describes how quickly a logic signal propagates through a system. The propaga-tion delay from low to high (t PLH) is the amount of time required for an input signal to propagate to the output, causing the output to change from low to high. Similarly, the propagation delay from high to low (t PHL) is the amount of time required for the input signal to propagate to the output causing the output to change from high to low (see Figure8).Pulse-width distortion (PWD) results when t PLH and t PHL differ in value. PWD is defined as the difference between t PLH and t PHL and often determines the maximum data rate capability of a transmission system. PWD can be expressed in percent by dividing the PWD (in ns) by the minimum pulse width (in ns) being transmitted. Typically, PWD on the order of 20-30% of the minimum pulse width is tolerable; the exact figure depends on the particular application (RS232,RS422, T-l, etc.).Propagation delay skew, t PSK, is an important parameter to consider in parallel data applica-tions where synchronization ofsignals on parallel data lines is aconcern. If the parallel data isbeing sent through a group ofoptocouplers, differences inpropagation delays will cause thedata to arrive at the outputs of theoptocouplers at different times. Ifthis difference in propagationdelays is large enough, it willdetermine the maximum rate atwhich parallel data can be sentthrough the optocouplers.Propagation delay skew is definedas the difference between theminimum and maximumpropagation delays, either t PLH ort PHL, for any given group ofoptocouplers which are operatingunder the same conditions (i.e.,the same drive current, supplyvoltage, output load, andoperating temperature). Asillustrated in Figure 19, if theinputs of a group of optocouplersare switched either ON or OFF atthe same time, t PSK is thedifference between the shortestpropagation delay, either t PLH ort PHL, and the longest propagationdelay, either t PLH or t PHL.As mentioned earlier, t PSK candetermine the maximum paralleldata transmission rate. Figure 20is the timing diagram of a typicalparallel data application with boththe clock and the data lines beingsent through optocouplers. Thefigure shows data and clocksignals at the inputs and outputsof the optocouplers. To obtain themaximum data transmission rate,both edges of the clock signal arebeing used to clock the data; ifonly one edge were used, theclock signal would need to betwice as fast.Propagation delay skew repre-sents the uncertainty of where anedge might be after being sentthrough an optocoupler. Figure20 shows that there will beuncertainty in both the data andthe clock lines. It is importantthat these two areas of uncertaintynot overlap, otherwise the clocksignal might arrive before all ofthe data outputs have settled, orsome of the data outputs maystart to change before the clocksignal has arrived. From theseconsiderations, the absoluteminimum pulse width that can besent through optocouplers in aparallel application is twice t PSK. Acautious design should use aslightly longer pulse width toensure that any additionaluncertainty in the rest of thecircuit does not cause a problem.The t PSK specified optocouplersoffer the advantages ofguaranteed specifications forpropagation delays, pulsewidthdistortion and propagation delayskew over the recommendedtemperature, input current, andpower supply ranges.1-1641-165Figure 19. Illustration of Propagation Delay Skew - t PSK .Figure 20. Parallel Data Transmission Example.I FV OI FVODATAINPUTSCLOCKDATAOUTPUTSCLOCK。
HCPL-073A资料
NC ANODE CATHODE NC V CC V B V O GNDHCPL-4701/070AV O2V O1V CC GNDANODE 1CATHODE 1CATHODE 2ANODE 275682341TRUTH TABLE LED ON OFF V O LOW HIGH75682341HCPL-4731/073AVery Low Power Consumption High Gain Optocouplers Technical DataApplications• Battery Operated Applications• ISDN Telephone Interface • Ground Isolation between Logic Families – TTL,LSTTL, CMOS, HCMOS,HL-CMOS, LV-HCMOS • Low Input Current Line ReceiverFeatures• Ultra Low Input Current Capability - 40 µA• Specified for 3 V Operation Typical Power Consumption:<1 mWInput Power: <50 µW Output Power: <500 µW • Will Operate with V CC as Low as 1.6 V• High Current TransferRatio – 3500% at I F = 40 µA • TTL and CMOS Compatible Output• Specified AC and DC Performance overTemperature: 0°C to 70°C • Safety ApprovalUL Recognized - 2500 V rms for 1 Minute and5000V rms* for 1 minute per UL1577CSA ApprovedVDE 0884 Approved with V IORM = 630 V peak(Option 060) for HCPL-4701• 8-Pin Product Compatible with 6N138/6N139 and HCPL-2730/HCPL-2731• Available in 8-Pin DIP and SOIC-8 Footprint• Through Hole and Surface Mount Assembly Available• EIA RS-232C Line Receiver • Telephone Ring Detector • AC Line Voltage StatusIndicator - Low Input Power Dissipation• Low Power Systems –Ground Isolation • Portable System I/O InterfaceHCPL-4701HCPL-4731HCPL-070A HCPL-073ACAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.Functional Diagram*5000 V rms/1 Minute rating is for Option 020 (HCPL-4701 and HCPL-4731) products only.A 0.1 µF bypass capacitor connected between pins 8 and 5 is recommended.DescriptionThese devices are very low power consumption, high gain single and dual channel optocouplers. The HCPL-4701 represents the single channel 8-Pin DIP configu-ration and is pin compatible with the industry standard 6N139. The HCPL-4731 represents the dual channel 8-Pin DIP configuration and is pin compatible with the popular standard HCPL-2731. The HCPL-070A and HCPL-073A are the equivalent single and dual channel products in an SO-8 footprint. Each channel can be driven with an input current as low as 40 µA and has a typical current transfer ratio of 3500%.These high gain couplers use anAlGaAs LED and an integratedhigh gain photodetector toprovide an extremely highcurrent transfer ratio betweeninput and output. Separate pinsfor the photodiode and outputstage results in TTL compatiblesaturation voltages and highspeed operation. Where desired,the V CC and V O terminals may betied together to achieve conven-tional Darlington operation(single channel package only).These devices are designed foruse in CMOS, LSTTL or other lowpower applications. They areespecially well suited for ISDNtelephone interface and batteryoperated applications due to thelow power consumption. A 700%minimum current transfer ratio isguaranteed from 0°C to 70°Coperating temperature range at40 µA of LED current andV CC≥3V.The SO-8 does not require“through holes” in a PCB. Thispackage occupies approximatelyone-third the footprint area of thestandard dual-in-line package.The lead profile is designed to becompatible with standard surfacemount processes.Selection GuideWidebody8-Pin DIP Package Hermetic (300 Mil)Small Outline SO-8(400 mil)Single and Dual Single Dual Minimum Absolute Dual Single Channel Channel Channel Single Input ON Maxi-Channel Channel Package Package Package Channel Current Minimum mum Packages Package HCPL-HCPL-HCPL-Package(I F)CTR V CC HCPL-6N139[1]2731[1]0701[1]0731[1]HCNW139[1]0.5 mA400%18 V6N138[1]2730[1]0700[1]0730[1]HCNW138[1] 1.6 mA300% 7 VHCPL-47014731070A0730A40 µA800%18 V0.5 mA300%20 V5701[1]5700[1]5731[1]5730[1] Notes:1. Technical data are on separate Agilent publication.Ordering InformationSpecify Part Number followed by Option Number (if desired).Example:HCPL-4701#XXX020 = 5000 V rms/1 minute UL Rating Option.**060 = VDE 0884 V IORM = 630 V peak Option†300 = Gull Wing Surface Mount Option.*500 = Tape and Reel Packaging Option.*Gull wing surface mount option applies to through hole parts only.**For HCPL-4701 and HCPL-4731 (8-Pin DIP products) only.†For HCPL-4701 only. Combination of Option 020 and Option 060 is not available.Option data sheets available. Contact your Agilent sales representative or authorized distributor for information.GNDV O2V V CCV O1I CCVUSE OF A 0.1 µF BYPASS CAPACITOR CONNECTEDBETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 8)SchematicHCPL-4701 and HCPL-070AHCPL-4731 and HCPL-073AANODECATHODEGNDOPackage Outline Drawings8-Pin DIP Package (HCPL-4701, HCPL-4731)8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4701, HCPL-4731)(0.025 ± 0.005)MAX.(0.100)BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).+ 0.076 - 0.051+ 0.003) - 0.002)DIMENSIONS IN MILLIMETERS AND (INCHES).0.254+ 0.076 - 0.051(0.010+ 0.003) - 0.002)*MARKING CODE LETTER FOR OPTION NUMBERS "L" = OPTION 020 "V" = OPTION 060OPTION NUMBERS 300 AND 500 NOT MARKED.Small-Outline SO-8 Package (HCPL-070A, HCPL-073A)240TIME – MINUTEST E M P E R A T U R E – °C220200180160140120100806040200260Figure 1. Solder Reflow Thermal Profile (HCPL-070A, HCPL-073A, and Gull Wing Surface Mount Option 300 Parts).Note: Use of nonchlorine activated fluxes is highly recommended.Solder Reflow Temperature Profile0.228 ± 0.025 (0.012)MIN.5.207 ± 0.254 (0.205 ± 0.010) DIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.*Regulatory Information The HCPL-4701/4731 and HCPL-070A/073A have been approved by the following organizations: ULRecognized under UL 1577, Component Recognition Program, File E55361.CSAApproved under CSA Component Acceptance Notice #5, File CA 88324.VDEApproved according to VDE 0884/06.92 (Option 060 only).Insulation Related Specifications8-Pin DIP(300 Mil)SO-8Parameter Symbol Value Value Units ConditionsMinimum External Air L(101)7.1 4.9mm Measured from input terminals toGap (External output terminals, shortest distance Clearance)through air.Minimum External L(102)7.4 4.8mm Measured from input terminals to Tracking (External output terminals, shortest distance Creepage)path along body.Minimum Internal Plastic0.080.08mm Through insulation distance, conductor Gap (Internal Clearance)to conductor, usually the directdistance between the photoemitter andphotodetector inside the optocouplercavity.Tracking Resistance CTI200200Volts DIN IEC 112/ VDE 0303 Part 1 (Comparative TrackingIndex)Isolation Group IIIa IIIa Material Group DIN VDE 0110,1/89, Table 1)Option 300 – surface mount classification is Class A in accordance with CECC 00802.VDE 0884 Insulation Related Characteristics (HCPL-4701 OPTION 060 ONLY)*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, (VDE 0884) for a detailed description.Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.Absolute Maximum Ratings(No Derating Required up to 70°C)Parameter Symbol Minimum Maximum Units Storage Temperature T S-55125°C Operating Temperature T A-4085°C Average Forward Input Current (HCPL-4701/4731)I F(AVG)10mA Average Forward Input Current (HCPL-070A/073A)I F(AVG)5mA Peak Transient Input Current (HCPL-4701/4731)I FPK20mA (50% Duty Cycle, 1 ms Pulse Width)Peak Transient Input Current (HCPL-070A/073A)I FPK10mA (50% Duty Cycle, 1 ms Pulse Width)Reverse Input Voltage V R 2.5V Input Power Dissipation (Each Channel)P I15mW Output Current (Each Channel)I O60mA Emitter Base Reverse Voltage (HCPL-4701/070A)V EB0.5V Output Transistor Base Current (HCPL-4701/070A)I B5mA Supply Voltage V CC-0.518V Output Voltage V O-0.518V Output Power Dissipation (Each Channel)P O100mW Total Power Dissipation (Each Channel)P T115mW Lead Solder Temperature (for Through Hole Devices)260°C for 10 sec., 1.6 mm below seating plane Reflow Temperature Profile See Package Outline Drawings section (for SOIC-8 and Option #300)Recommended Operating ConditionsParameter Symbol Min.Max.Units Power Supply Voltage V CC* 1.618V Forward Input Current (ON)I F(ON)405000µA Forward Input Voltage (OFF)V F(OFF)00.8V Operating Temperature T A070°C*See Note 1.Electrical Specifications0°C ≤T A≤70°C, 4.5 V ≤V CC≤20 V, 1.6 mA ≤I F(ON)≤5 mA, 0 V ≤V F(OFF)≤0.8 V, unless otherwise specified. All Typicals at T A = 25°C. See note 8.*All typical values at T A = 25°C and V CC = 5 V, unless otherwise noted.Package Characteristics*All typical values at T A = 25°C and V CC = 5 V.**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if appli-cable), your equipment level safety specification or Agilent Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”Switching Specifications (AC)Over Recommended Operating Conditions T = 0°C to 70°C, V = 3 V to 18 V, unless otherwise specified.*All typical values at T A = 25°C and V CC = 5 V , unless otherwise noted.Notes:1. Specification information is available form the factory for 1.6 V operation.Call your local field sales office for further information.2. DC CURRENT TRANSFER RATIO is defined as the ratio of outputcollector current, I O , to the forward LED input current, I F , times 100%.3. Device considered a two terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8shorted together.4. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥3000 V RMS for 1 second (leakage detection current limit, I I-O ≤5 µA.4a. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 V RMS for 1 second (leakagedetection current limit, I I-O ≤5 µA.This test is performed before the 100% production test for partial discharge (Method b) shown in the VDE 0884 Insulation Characteristics Table.5. Measured between pins 1 and 2shorted together, and pins 3 and 4shorted together.6. Common transient immunity in a Logic High level is the maximum tolerable (positive) dV CM /dt on the leading edge of the common mode pulse, V CM , to assure that the output will remain in a Logic High state (i.e.,V O > 2.0 V). Common transient immunity in a Logic Low level is he maximum tolerable (negative)dV CM /dt on the trailing edge of the common mode pulse, V CM , to assure that the output will remain in a Logic Low state (i.e., V O < 0.8 V).7. In applications where dV/dt may exceed 50,000 V/µs (such as static discharge) a series resistor, R CC ,should be included to protect the detector IC form destructively high surge currents. The recommended value is R CC = 220 Ω.8. Use of a 0.1 µF bypass capacitor con-nected between pins 8 and 5 adjacent to the device is recommended.9. Pin 7 open for single channel product.10. Use of resistor between pins 5 and 7will decrease gain and delay time.Significant reduction in overall gain can occur when using resistor values below 47 k Ω for single channel product.11. The Applications Information sectionof this data sheet references the HCPL-47XX part family, but applies equally to the HCPL-070A and HCPL-073A parts.Figure 2. DC Transfer Characteristics (I F = 0.5 mA to 2.5 mA).Figure 3. DC Transfer Characteristics (I F = 50 µA to 250 µA).Figure 4. Current Transfer Ratio vs.Forward Current.Figure 5. Output Current vs. Input Diode Forward Current.Figure 6. Input Diode Forward Current vs. Forward Voltage.Figure 7. Propagation Delay vs.Temperature.I O – O U T P U T C U R R E N T – m AV O – OUTPUT VOLTAGE – VI F – F O R W A R D C U R R E N T – m AV F – FORWARD VOLTAGE I O – O U T P U T C U R R E N T – m AV O – OUTPUT VOLTAGE – VN O R M A L I Z E D C U R R E N T T R A N S F E R R A T I OI F – FORWARD CURRENT – mAI O – O U T P U T C U R R E N T – m AI F – INPUT DIODE FORWARD CURRENT – mAI P – P R O P A G A T I O N D E L A Y – µsT A – TEMPERATURE – °CFigure 9. Switching Test Circuit.Applications Information Low-Power OperationCurrent GainThere are many applications where low-power isolation is needed and can be provided by the single-channel HCPL-4701, or the dual-channel HCPL-4731 low-power optocouplers. Either or both of these two devices are referred to in this text as HCPL-47XX product(s). These opto-couplers are Agilent’s lowest input current, low-power optocouplers. Low-power isolation can be defined as less than a milliwatt of input power needed to operate the LED of an optocoupler (generally less than500 µA). This level of inputforward current conductingthrough the LED can control aworst-case total output (I ol) andpower supply current (I ccl) of twoand a half milliamperes. Typically,the HCPL-47XX can control atotal output and supply current of15 mA. The output current, I O isdetermined by the LED forwardcurrent multiplied by the currentgain of the optocoupler,I O=I F(CTR)/100%. In particularwith the HCPL-47XX opto-couplers, the LED can be drivenwith a very small I F of 40 µA tocontrol a maximum I O of 320 µAwith a worst case design CurrentTransfer Ratio (CTR) of 800%.Typically, the CTR and thecorresponding I ol, are 4 timeslarger. For low-power operation,Table 1 lists the typical powerdissipations that occur for boththe 3.3 Vdc and 5 VdcHCPL-47XX optocoupler applica-tions. These approximate powerdissipation values are listedrespectively for the LED, for theoutput V CC and for the open-collector output transistor. Thosevalues are summed together for acomparison of total power dissi-pation consumed in either the 3.3Vdc or 5Vdc applications.OFL = 15 pF tVI FFigure 8. Test Circuit for Transient Immunity and Typical Waveforms.O OVOLVOVSWITCH AT A: I = 0 mAFSWITCH AT B: I = 0.5 mAFCMV5 VPropagation DelayWhen the HCPL-47XX optocoup-ler is operated under very low input and output current condi-tions, the propagation delay times will lengthen. When lower input drive current level is used to switch the high-efficiency AlGaAs LED, the slower the charge and discharge time will be for the LED. Correspondingly, the propa-gation delay times will become longer as a result. In addition, the split-Darlington (open-collector) output amplifier needs a larger, pull-up load resistance to ensure the output current is within a controllable range. Applications that are not sensitive to longer propagation delay times and that are easily served by this HCPL-47XX optocoupler, typically 65 µs or greater, are those of status monitoring of a telephone line, power line, battery condition of a portable unit, etc. For faster HCPL-47XX propagation delay times, approximately 30 µs, this optocoupler needs to operate at higher I F (≥500 µA) and I o(≥1mA) levels.ApplicationsBattery-Operated EquipmentCommon applications for theHCPL-47XX optocoupler arewithin battery-operated, portableequipment, such as test ormedical instruments, computerperipherals and accessories whereenergy conservation is required tomaximize battery life. In theseapplications, the optocouplerwould monitor the battery voltageand provide an isolated output toanother electrical system toindicate battery status or the needto switch to a backup supply orbegin a safe shutdown of theequipment via a communicationport. In addition, the HCPL-47XXoptocouplers are specified tooperate with 3 Vdc CMOS logicfamily of devices to provide logic-signal isolation between similar ordifferent logic circuit families.Telephone Line InterfacesApplications where the HCPL-47XX optocoupler would be bestused are in telephone line inter-face circuitry for functions of ringdetection, on-off hook detection,line polarity, line presence andsupplied-power sensing. Inparticular, Integrated ServicesDigital Network (ISDN) applica-tions, as illustrated in Figure 10,can severely restrict the inputpower that an optocoupler inter-face circuit can use (approxi-mately 3 mW). Figure 10 showsthree isolated signals that can beserved by the small input LEDcurrent of the HCPL-47XX dual-and single-channel optocouplers.Very low, total power dissipationoccurs with these series ofdevices.Switched-Mode PowerSuppliesWithin Switched-Mode PowerSupplies (SMPS) the less powerconsumed the better. Isolation formonitoring line power, regulationstatus, for use within a feedbackpath between primary andsecondary circuits or to externalcircuits are common applicationsfor optocouplers. Low-powerHCPL-47XX optocoupler can helpkeep higher energy conversionefficiency for the SMPS. The blockdiagram of Figure 11 shows wherelow-power isolation can be used.Table 1. Typical HCPL-4701 Power Dissipation for 3 V and 5 V ApplicationsNotes:1. R L of 11 kΩ open-collector (o-c) pull-up resistor was used for both 3.3 Vdc and 5 Vdc calculations.2. For typical total interface circuit power consumption in3.3 Vdc application, add to P TOTAL approximately 80 µW for 40 µA(1,025µW for 500 µA) LED current-limiting resistor, and 960 µW for the 11 kΩ pull-up resistor power dissipations. Similarly, for 5 Vdc applications, add to P TOTAL approximately 150 µW for 40 µA (1,875 µW for 500 µA) LED current-limiting resistor and 2,230µW for the 11 kΩ pull-up resistor power dissipations.Figure 12. Recommended Power Supply Filter for HCPL-47XX Optocouplers.RECOMMENDED VFILTERV CC V OFigure 10. HCPL-47XX Isolated Monitoring Circuits for 2-Wire ISDN Telephone Line.Figure 11. Typical Optical Isolation Used for Power-Loss Indication and Regulation Signal Feedback.ISDN LINEVAC TELEPHONE LINE NOTE: THE CIRCUITS SHOWN IN THIS FIGURE REPRESENT POSSIBLE, FUNCTIONAL APPLICATION OF THE HCPL-47XX OPTOCOUPLER TO AN ISDN LINE INTERFACE. THIS CIRCUIT ARRANGEMENT DOES NOT GUARANTEE COMPLIANCE, CONFORMITY, OR ACCEPTANCE TO AN ISDN, OR OTHER TELECOMMUNICATION STANDARD, OR TO FCC OR TO OTHER GOVERNMENTAL REGULATORY AGENCY REQUIREMENTS. THESE CIRCUITS ARE RECOMMENDATIONS THAT MAY MEET THE NEEDS OF THESE APPLICATIONS. Agilent DOES NOT IMPLY, REPRESENT, NOR GUARANTEE THAT THESE CIRCUIT ARRANGEMENTS ARE FREE FROM PATENT INFRINGEMENT.Data Communication andInput/Output InterfacesIn data communication, the HCPL-47XX can be used as a line receiver on a RS-232-C line or this optocoupler can be part of a proprietary data link with low input current, multi-drop stations along the data path. Also, thislow-power optocoupler can be used within equipment that monitors the presence of high-voltage. For example, a benefit of the low input LED current (40µA) helps the input sections of a Programmable Logic Controller (PLC) monitor proximity and limit switches. The PLC I/O sections can benefit from low input current optocouplers because the total input power dissipation when monitoring the high voltage (120 Vac - 220 Vac) inputs is minimized at the I/O connections. This is especially important when many input channels are stacked together.Circuit Design IssuesPower Supply FilteringSince the HCPL-47XX is a high-gain, split-Darlington amplifier, any conducted electrical noise on the V CC power supply to this optocoupler should be minimized.A recommended V CC filter circuit is shown in Figure 12 to improve the power supply rejection (psr) of the optocoupler. The filter should be located near the combination of pin 8 and pin 5 to provide best filtering action. This filter will drastically limit any sudden rate of change of V CC with time to a slower rate that cannot interfere with the optocoupler. Common-Mode Rejection & LED Driver CircuitsWith the combination of a high-efficiency AlGaAs LED and ahigh-gain amplifier in the HCPL-47XX optocoupler, a few circuit techniques can enhance the common-mode rejection (CMR) of this optocoupler. First, use goodhigh-frequency circuit layoutpractices to minimize coupling ofcommon-mode signals betweeninput and output circuits. Keepinput traces away from outputtraces to minimize capacitivecoupling of interference betweeninput and output sections. Ifpossible, parallel, or shunt switchthe LED current as shown inFigure 13, rather than seriesswitch the LED current asillustrated in Figure 15. Not onlywill CMR be enhanced with thesecircuits (Figures 13 and 14), butthe switching speed of the opto-coupler will be improved as well.This is because in the parallelswitched case the LED current iscurrent-steered into or away fromthe LED, rather than being fullyturned off as in the series switchedcase. Figure 13 illustrates thistype of circuit. The Schottkydiode helps quickly to dischargeand pre-bias the LED in the offstate. If a common-mode voltageacross the optocoupler suddenlyattempts to inject a current intothe off LED anode, the Schottkydiode would divert the interferingcurrent to ground. The combina-tion of the Schottky diode forwardvoltage and the Vol saturationvoltage of the driver output stage(on-condition) will keep the LEDvoltage at or below 0.8V. This willprevent the LED (off-condition)from conducting any significantforward current that might causethe HCPL-47XX to turn on. Also,if the driver stage is an activetotem-pole output, the Schottkydiode allows the active outputpull-up section to disconnect fromthe LED and pull high.As shown in Figure 14, mostactive output driver integratedcircuits can source directly theforward current needed to operatethe LED of the HCPL-47XXoptocoupler. The advantage ofusing the silicon diode in thiscircuit is to conduct charge out ofthe LED quickly when the LED isturned off. Upon turn-on of theLED, the silicon diode capaci-tance will provide a rapidcharging path (peaking current)for the LED. In addition, thissilicon diode prevents common-mode current from entering theLED anode when the driver IC ison and no operating LED currentexists.In general, series switching the lowinput current of the HCPL-47XXLED is not recommended. This isparticularly valid when in a highcommon-mode interferenceenvironment. However, if seriesswitching of the LED current mustbe done, use an additional pull-upresistor from the cathode of theLED to the input V CC as shown inFigure 15. This helps minimize anydifferential-mode current fromconducting in the LED while theLED is off, due to a common-modesignal occurring on the input V CC(anode) of the LED. The common-mode signal coupling to the anodeand cathode could be slightlydifferent. This could potentiallycreate a LED current to flow thatwould rival the normal, low inputcurrent needed to operate theoptocoupler. This additionalparallel resistor can help shunt anyleakage current around the LEDshould the drive circuit, in the offstate, have any significant leakagecurrent on the order of 40 µA.With the use of this parallelresistor, the total drive currentconducted when the LED is on isthe sum of the parallel resistor andLED currents. In the series circuitof Figure 15 with the LED off, if acommon-mode voltage were tocouple to the LED cathode, therecan be enough imbalance ofcommon-mode voltage across theLED to cause a LED current toflow and, inadvertently, turn on theoptocoupler. This series, switchingcircuit has no protection against anegative-transition, input common-mode signal.Figure 15. Series LED Driver Circuit for HCPL-4701/-4731.O U T P U T P O W E R – P S , I N P U T C U R R E N T – I S0T S – CASE TEMPERATURE – °C 400600800200100300500700Figure 16. Thermal Derating Curve,Dependence of Safety Limiting Value with Case Temperature per VDE 0884.V CCOROPEN COLLECTORR1 =V CC – V F – V OL I F F = 40 µA = 100 µA R2 =0.8 V I OH MAXI TOTAL =TOTAL DRIVE CURRENT USED:+VCC – V F – V OL R1V CC– V OL R2Figure 13. Recommended Parallel LED Driver Circuit for HCPL-4701/-4731.Figure 14. Recommended Alternative LED Driver Circuit for HCPL-4701/-4731 .V CC* USE ANY STANDARD SCHOTTKY DIODE., I F = 40 µA R1 =V OH – V F I FF = 40 µA Data subject to change.Copyright © 1999 Agilent Technologies Obsoletes 5965-6116E 5968-1086E (11/99)。
HCPL-7840中文资料
线性光耦器件A7840的引脚功能图:A7840(HCPL-7840)功能方框图A7840(HCPL-7840)的工作参数:输入侧、输出侧的供电典型值为5V,输入电阻480kΩ,最大输入电压320mV;差分信号输出方式。
内部输入电路有放大作用,且为高阻抗输入,能不失真传输mV级交、直流信号,输出信号作为后级运算放大器差分输入信号。
具有1000倍左右的电压放大倍数。
典型应用,常与后级运算放大器配合,对微弱(交、直)电压信号进行放大和处理。
2、3脚为信号输入脚,1、4脚为输入侧供电端;6、7脚为差分信号输出脚,8、5脚为输出侧供电端。
在线检测方法:可将内部电路看作是一只“整体的运算放大器”,2、3脚为同相、反相输入端,7、6脚为信号输出端。
当短接2、3脚(使输入信号为零)时,6、7脚之间输出电压也为零。
当2、3脚有mV级电压输入时,6、7脚之间有“放大了的”比例电压输出。
3、由A7840构成的电流信号检测电路:英威腾G9/P9小功率变频器的输出电流采样电路部分小功率变频器机型,对输出电流的采样,省掉了电流互感器。
在U、V输出电路中直接串接了mΩ级的电流采样电阻,将输出电流信号由采样电阻转化为mV级电压信号,将此电阻上的电压信号经R1、R2引入到U3、U4(A7840)R的信号输入端,由U3、U4进行光电隔离和线性传输,再经U5(TL082)进行放大(阻抗变换)后,送后级电流检测与保护电路进一步处理,再送入CPU。
U4、U3输入侧的供电是由驱动电路供电(隔离电源)再经U1、U2(L7805稳压器)稳压成5V来提供的,此电源必须是与控制电路相隔离的。
U4、U5的输出侧供电,则是由CPU主板供电的+5V电源提供的。
A7840将输入百mV级电压信号放大输出为V级表征着输出电流大小的差分电压信号,再经后级U5运算放大器反相输出正电压信号,送后后级电流信号处理电路。
分别被处理成一定幅度的模拟信号送入CPU,用作输出电流显示及输出控制;被处理成开关量信号,用于故障报警,停机保护等。
陶氏导光柱硅橡胶组成
陶氏导光柱硅橡胶组成
陶氏导光柱硅橡胶是由陶氏化学公司生产的硅橡胶材料,其主要组成成分包括聚硅氧烷、填料、增塑剂、催化剂和抑制剂等。
聚硅氧烷是硅橡胶的主要成分,它是由硅和氧原子交替组成的线性高分子聚合物。
在陶氏导光柱硅橡胶中,聚硅氧烷与其他组分配合使用,赋予硅橡胶独特的物理和化学性质。
填料是硅橡胶中的重要组成部分,用于调节硅橡胶的硬度、耐磨性、耐高温性和耐腐蚀性等性能。
陶氏导光柱硅橡胶中常用的填料包括白炭黑、硅酸盐、玻璃纤维和石英粉等。
增塑剂用于增加硅橡胶的塑性和流动性,使其易于加工成型。
在陶氏导光柱硅橡胶中,常用的增塑剂包括石油溶剂油、酯类和酮类等。
催化剂是促进硅橡胶交联反应的重要组分,有助于提高硅橡胶的硬度和耐热性。
常用的催化剂包括有机锡化合物和有机铝化合物等。
抑制剂的作用是抑制硅橡胶在加工和储存过程中的交联反应,保持硅橡胶的稳定性和可加工性。
常用的抑制剂包括酚类和胺类化合物等。
总之,陶氏导光柱硅橡胶是由多种组分组成的复合材料,通过合理的配方设计和加工工艺,可实现优异的导光性能和物理机械性能。
阳离子电沉积涂料(灰)
组成
阳离子电沉积涂料俗称阴极电泳漆。
由乳液及色浆两组分组成。
环氧树脂、异氰酸酯交联剂和增韧剂构成主体树脂,经酸中和形成乳液。
环氧树脂、异氰酸酯交联剂构成分散树脂,配有颜料、填料经研磨制成色浆。
特点
具有良好的泳透力、电沉积施工性能及优异的防腐蚀性能。
应用领域
广泛用于汽车、家用电器、轻工产品、机械产品和各类钢铁件的耐蚀涂装,或底面合一涂装。
原漆指标
漆膜性能指标
*标准磷化钢板,单向扩蚀≤2mm。
槽液配制:
色浆:乳液=1:5.7(重量比)
施工工艺:
预脱脂→脱脂→水洗→水洗→纯水洗→硅烷→水洗→纯水洗→电泳→UF水洗→烘干
包装与贮存:
包装规格:包装规格:(乳液)50升的塑料桶50kg/桶、200升的大小口塑料桶200kg/桶、
1000升塑料桶1000kg/桶.
(色浆)50升的塑料桶65kg/桶、200升内衬防腐层的大口钢桶或200升的大口塑料桶
250kg/桶.
贮存条件:5-35℃,密封贮存于阴凉干燥处。
贮存时间:乳液6个月、色浆6个月(超过保质期应按标准经检验确认,若合格可继续使用)
安全、卫生规定:
本品不属于《GB6944-2005危险货物分类和品名编号》中所列的货物材料。
施工现场注意通风。
防止溅入眼睛及误入口中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-108HDual Channel Low Input Current, High Gain Optocouplers Technical DataFeatures• High Current Transfer Ratio – 1800% Typical • Low Input CurrentRequirements – 0.5 mA • Low Output Saturation Voltage – 0.1 V• High Density Packaging • Performance Guaranteed over Temperature 0°C to 70°C• LSTTL Compatible • High Output Current –60mA• Safety ApprovalUL Recognized - 2500 V rms for 1 Minute and5000V rms* for 1 minute CSA Approved• Available in 8 Pin DIP and SO-8 Footprint• MIL-STD-1772 VersionAvailable (HCPL-5730/5731)• Surface Mount Gull Wing Option Available for 8-Pin DIP (Option 300)Applications• Digital Logic Ground Isolation• Telephone Ring Detector • Level Shifting• EIA RS-232C Line Receiver • Polarity Sensing• Low Input Current LineReceiver - Long Line or Party Line• Microprocessor Bus Isolation• Current Loop Receiver• Line Voltage Status Indicator -Low Input Power DissipationHCPL-2730 HCPL-0730HCPL-2731 HCPL-0731DescriptionThese dual channel optocouplers contain a separated pair of GaAsP light emitting diodes optically coupled to a pair of integrated high gain photo detectors. They provide extremely high current transfer ratio and excellent input-output common mode transient immunity. A separate pin for the photodiodes and first gain stages (V CC ) permits lower output satura-tion voltage and higher speed operation than possible with conventional photodarlington type optocouplers. In addition,V CC may be as low as 1.6VFunctional DiagramCAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.*5000 V rms/1 minute withstand voltage rating is for Option 020 (HCPL-2730, HCLP-2731) products only.A 0.1 µF bypass capacitor connected between pins 5 and 8 is recommended.V O2V O1V CC GNDANODE 1CATHODE 1CATHODE 2ANODE 2TRUTH TABLE LED ON OFF V O LOW HIGH5965-3597Ewithout adversely affecting the parametric performance.These dual channel optocouplers are available in an 8-Pin DIP and in an industry standard SO-8 package. The following is a cross reference table listing the 8-Pin DIP part number and the electrically equivalent SOIC-8 part number.8-Pin DIP SO-8HCPL-2730HCPL-0730HCPL-2731HCPL-0731The SO-8 does not require “through holes” in a PCB. This package occupies approximately one-third the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.Guaranteed operation at low inputcurrents and the high currenttransfer ratio (CTR) reduce themagnitude and effects of CTRdegradation.The outstanding high temperatureperformance of this splitDarlington type output amplifierresults from the inclusion of anintegrated emitter-base bypassresistor which shunts photodiodeand first stage leakage currents toground.The HCPL-2731/0731 have a400% minimum CTR at an inputcurrent of only 0.5 mA making itideal for use in low input currentapplications such as MOS, CMOS,and low power logic interfacing orRS232C data transmissionsystems. In addition, the highCTR and high output currentcapability make this deviceextremely useful in applicationswhere a high fanout is required.Compatibility with high voltageCMOS logic systems is guaranteedby the 18V V CC and V O specifica-tions and by testing output highleakage (I OH) at 18 V.The HCPL-2730/0730 are speci-fied at an input current of 1.6 mAand have a 7 V V CC and V O rating.The 300% minimum CTR allowsTTL to TTL interfacing at thisinput current.Important specifications such asCTR, leakage current, and outputsaturation voltage are guaranteedover the 0°C to 70°C temperaturerange to allow trouble-free systemoperation. Selection for lowerinput currents down to 250 µA isavailable upon request.Selection GuideWidebody8-Pin DIP Package Hermetic (300 Mil)Small Outline SO-8(400 mil)Single and Dual Single Dual Minimum Absolute Dual Single Channel Channel Channel Single Input ON Maxi-Channel Channel Package Package Package Channel Current Minimum mum Packages Package HCPL-HCPL-HCPL-Package(I F)CTR V CC HCPL-6N139[1]27310701[1]0731HCNW139[1]0.5 mA400%18 V6N138[1]27300700[1]0730HCNW138[1] 1.6 mA300% 7 VHCPL-4701[1]4731[1]070A[1]073A[1]40 µA800%18 V0.5 mA300%20 V5701[1]5700[1]5731[1]5730[1] Note:1. Technical data are on separate HP publications.1-1091-110Ordering InformationSpecify Part Number followed by Option Number (if desired).Example:HCPL-2731#XXX020 = 5000 V rms/1 Minute UL Rating Option.*300 = Gull Wing Surface Mount Option, 50 per tube.**500 = Tape and Reel Packaging Option, 1000 per reel.Option data sheets available. Contact your Hewlett-Packard sales representative or authorized distributor for information.*For HCPL-2731 and HCPL-2730 only.**Gull wing surface mount option applies to through hole parts only.SchematicGNDV O2V V CCV O1I V USE OF A 0.1 µF BYPASS CAPACITOR CONNECTEDBETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 8)DIMENSIONS IN MILLIMETERS AND (INCHES).0.254+ 0.076- 0.051(0.010+ 0.003)- 0.002)*MARKING CODE LETTER FOR OPTION NUMBERS"L" = OPTION 020OPTION NUMBERS 300 AND 500 NOT MARKED.Package Outline Drawings8-Pin DIP Package (HCPL-2731/HCPL-2730)8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-2731/HCPL-2730)(0.025 ± 0.005)MAX.(0.100)BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).+ 0.076- 0.051+ 0.003)- 0.002)1-1111-112Small Outline SO-8 Package (HCPL-0731/HCPL-0730)Note: Use of nonchlorine activated fluxes is highly recommended.Regulatory InformationThe HCPL-2731/2730 have been approved by the following organizations:ULRecognized under UL 1577,Component Recognition Program, File E55361.240TIME – MINUTEST E M P E R A T U R E – °C2202001801601401201008060402002600.228 ± 0.025 (0.012)MIN.DIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).Solder Reflow Temperature Profile (HCPL-073X and Gull Wing Surface Mount Option 300 Parts).CSAApproved under CSA Component Acceptance Notice #5, File CA 88324.Insulation Related Specifications (HCPL-2731/2730/0731/0730)8-Pin DIP(300 Mil)SO-8Parameter Symbol Value Value Units ConditionsMinimum External Air L(101)7.1 4.9mm Measured from input terminals toGap (External output terminals, shortest distance Clearance)through air.Minimum External L(102)7.4 4.8mm Measured from input terminals to Tracking (External output terminals, shortest distance Creepage)path along body.Minimum Internal Plastic0.080.08mm Through insulation distance, conductor Gap (Internal Clearance)to conductor, usually the directdistance between the photoemitter andphotodetector inside the optocouplercavity.Tracking Resistance CTI200200Volts DIN IEC 112/ VDE 0303 Part 1 (Comparative TrackingIndex)Isolation Group IIIa IIIa Material Group DIN VDE 0110Option 300 – surface mount classification is Class A in accordance with CECC 00802.Absolute Maximum Ratings (No Derating Required up to 85°C)Parameter Symbol Min.Max.Units Storage Temperature T S-55125°C Operating Temperature T A-4085°C Average Forward Input Current I F(AVG)20mA Peak Forward Input Current I FPK40mA (50% Duty Cycle, 1 ms Pulse Width)Reverse Input Voltage (Each Channel)V R5V Input Power Dissipation (Each Channel)P I35mW Output Current (Each Channel)I O60mA Supply Voltage and Output Voltage V CC-0.518V (HCPL-2731, HCPL-0731)(V CC - Pin 8-5, V O - Pin 7,6-5) -Note 1Supply Voltage and Output Voltage V CC-0.57V (HCPL-2730, HCPL-0730)(V CC - Pin 8-5, V O - Pin 7,6-5) -Note 1Output Power Dissipation (Each Channel) -Note 12P O100mW Total Power Dissipation (Each Channel)P T135mW Lead Solder Temperature (for Through Hole Devices)260°C for 10 sec., 1.6 mm below seating plane Reflow Temperature Profile See Package Outline Drawings section(for SOIC-8 and Option #300)1-113Recommended Operating ConditionsParameter Symbol Min.Max.Units Power Supply Voltage (HCPL-2731/HCPL-0731)V CC 4.518V Power Supply Voltage (HCPL-2730/HCPL-0730)V CC 4.57V Forward Input Current (ON)I F(ON)0.512mA Forward Input Voltage (OFF)V F(OFF)00.8V Operating Temperature T A070°C1-1141-115Electrical Specifications0°C ≤T A ≤70°C, 4.5 V ≤V CC ≤18 V, 0.5 mA ≤I F(ON) ≤12 mA, 0 V ≤V F(OFF) ≤0.8 V, unless otherwise specified. All Typicals at T A = 25°C. (See note 8.)Device Parameter Sym.HCPL-Min.Typ.*Max.Units Test Conditions Fig.Note Current CTR273140018005000%I F = 0.5 mA V CC = 4.52, 32Transfer 0731V O = 0.4 V50016002600I F = 1.6 mA 2730/073030016002600I F = 1.6 mALogic Low V OL27310.10.4V I F = 1.6 mA, V CC = 4.5 V 1Output 0731I O = 8 mA Voltage0.10.4I F = 5.0 mA,I O = 15 mA 0.20.4I F = 12 mA,I O = 24 mA 2730/07300.10.4I F = 1.6 mA,I O = 4.8 mALogic High I OH2731/0731 0.05100µA V O = V CC = 18 V I F = 0 mA 2Output Current 2730/07310.1250V O = V CC = 7 VLogic Low I CCL 2731/07311.23mA V CC = 18 V I F1 = I F2 = 1.6 mA5Supply V 01 = V 02 = OpenCurrent 2730/07300.9V CC = 7 VLogic High I CCH 2731/07310.00520µAV CC = 18 V I F1 = I F2 = 0 mA,5Supply V 01 = V 02 = OpenCurrent 2730/0730 0.004V CC = 7 V Input V F1.41.7VT A = 25°C4Forward Voltage 1.75I F = 1.6 mAInput BV R5.0V I R = 10 µA, T A = 25°C2Reverse Breakdown Voltage Temperature ∆V F -1.8mV/°C I F = 1.6 mACoefficient ∆T Aof Forward Voltage InputC IN60pFf = 1 MHz, V F = 02Capacitance*All typical values at T A = 25°C and V CC = 5 V, unless otherwise noted.Ratio1-116DeviceParameter Sym.HCPL-Min.Typ.*Max.Units Test Conditions Fig.Note Propagation Delay t PHL273125100µsT A = 25°C 6, 7,2Time to Logic 07318, 9Low at Output120I F = 0.5 mA Rl = 4.7 k Ω2730520T A = 25°C27310730073125I F = 1.6 mA, Rl = 2.2 k Ω0.52T A = 25°C3I F = 12 mA, Rl = 270 ΩPropagation Delay t PLH27311060µsT A = 25°C7, 8,2Time to Logic 07319High at Output90I F = 0.5 mA, Rl = 4.7 k Ω27301035T A = 25°C27310730073150I F = 1.6 mA, Rl = 2.2 k Ω110T A = 25°C15I F = 12 mA, Rl = 270 ΩCommon Mode |CM H |100010000V/µsI F = 0 mA, T A = 25°C,102, 6,Transient Immunity Rl = 2.2 k Ω7at Logic High |V CM | = 10 V p-pOutputCommon Mode |CM L 100010000V/µsI F = 1.6 mA, T A = 25°C,Transient Immunity Rl = 2.2 k Ωat Logic Low Level |V CM | = 10 V p-pOutput*All typical values at T A = 25°C and V CC = 5 V, unless otherwise noted.Switching Specifications (AC)Over recommended operating conditions (T A = 0°C to 70°C), V CC = 5 V , unless otherwise specified.(See note 8.)Package Characteristics*All Typical values at TA = 25°C unless otherwise noted.**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if appli-cable), your equipment level safety specification or HP Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”Notes:1. Pin 5 should be the most negativevoltage at the detector side.2. Each channel.3. DC CURRENT TRANSFER RATIO(CTR) is defined as the ratio of outputcollector current, I O, to the forwardLED input current, I F, times 100%. 4. Device considered a two-terminaldevice: pins 1, 2, 3, and 4 shortedtogether, and pins 5, 6, 7, and 8shorted together.5. Measured between pins 1 and 2shorted together, and pins 3 and 4shorted together.6. Common mode transient immunity in aLogic High level is the maximumtolerable (positive) dV CM/dt of thecommon mode pulse, V CM, to assurethat the output will remain in a LogicHigh state (i.e., V O > 2.0 V). Commonmode transient immunity in a LogicLow level is the maximum tolerable(negative) dV CM/dt of the commonmode pulse, V CM, to assure that theoutput will remain in a Logic Low state(i.e., V O < 0.8 V).7. In applications where dV/dt mayexceed 50,000 V/µs (such as staticdischarge) a series resistor, R CC,should be included to protect thedetector IC from destructively highsurge currents. The recommendedvalue is R CC = 110 Ω.8. Use of a 0.1 µF bypass capacitorconnected between pins 5 and 8adjacent to the device isrecommended.9. In accordance with UL 1577, eachoptocoupler is proof tested byapplying an insulation test voltage>3000 V rms for 1 second (leakagedetection current limit, I I-O < 5 µA).10. In accordance with UL 1577, eachoptocoupler is proof tested byapplying an insulation test voltage>6000 V rms for 1 second (leakagedetection current limit, I I-O < 5 µA).11. Measured between the LED anode andcathode shorted together and pins 5through 8 shorted together.12. Derate linearly above 65°C free-airtemperature at a rate of 2.3 mW/°C forthe SO-8 package.1-1171-118Figure 7. Propagation Delay vs.Temperature.Figure 8. Propagation Delay vs. Input Diode Forward Current.Figure 6. Propagation Delay to Logic Low vs. Pulse Period.Figure 4. Input Diode ForwardCurrent vs. Forward Voltage.Figure 5. Supply Current perChannel vs. Input Diode Forward Current.Figure 1. DC Transfer Characteristics.Figure 2. Current Transfer Ratio vs.Forward Current.Figure 3. Output Current vs. Input Diode Forward Current.V O – OUTPUT VOLTAGE – VI O – O U T P U T C U R R E N T – m A6030I F – FORWARD CURRENT – mA C T R – C U R R E N T T R A N S F E R R A T I O – %I F – INPUT DIODE FORWARD CURRENT – mA100100.10.1110I O – O U T P UT C U R R E N T – m A1.0T A = 85° C T A = 25° C T A = -40° CV CC = 5.0 V V O= 0.4 V I F – INPUT DIODE FORWARD CURRENT – mA50402010 t P – P R O P A G A T I O N D E L A Y – µs3006070T A – TEMPERATURE – °Ct P – P R O P A G A T I O N D E L A Y – µsV F – FORWARD VOLTAGE – VI F – F O R W A R D C U R R E N T – m A1000I F – INPUT DIODE FORWARD CURRENT – mA10010I C C (P E R C H A N N E L ) – S U P P L Y C U R R E N T – m A1.00.1T – INPUT PULSE PERIOD – mst P H L – P R O P A G A T I O N D E L A Y T O L O G I C L O W – µs1.01-119Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.Figure 9. Switching Test Circuit.V OV I OLOIO+5 VO V 5 VOL V OV SWITCH AT A: I = 0 mA F SWITCH AT B: I = 1.6 mA FCM V t , t = 16 ns r f。