MAX6385XS38D3中文资料

合集下载

MAX6375XR30-T中文资料

MAX6375XR30-T中文资料

General DescriptionThe MAX6375–MAX6380 are ultra-low-power circuits used for monitoring battery, power-supply, and regulat-ed system voltages. Each detector contains a precision bandgap reference, comparator, and internally trimmed resistors that set specified trip threshold voltages.These devices provide excellent circuit reliability and low cost by eliminating external components and adjustments when monitoring nominal system voltages from 2.5V to 5V.These circuits perform a single function: they assert an output signal whenever the V CC supply voltage falls below a preset threshold. The devices are differentiated by their output logic configurations and preset thresh-old voltages. The MAX6375/MAX6378 (push-pull) and MAX6377/MAX6380 (open-drain) have an active-low output (OUT is logic low when V CC is below V TH ). The MAX6376/MAX6379 have an active-high push-pull out-put (OUT is logic high when V CC is below V TH ). All parts are guaranteed to be in the correct output logic state for V CC down to 1V. The detector is designed to ignore fast transients on V CC . The MAX6375/MAX6376/MAX6377 have voltage thresholds between 2.20V and 3.08V in approximately 100mV increments. The MAX6378/MAX6379/MAX6380 have voltage thresholds between 3.30V and 4.63V in approximately 100mV increments.Ultra-low supply current of 500nA (MAX6375/MAX6376/MAX6377) makes these parts ideal for use in portable equipment. All six devices are available in a space-sav-ing SC70 package or in a tiny SOT23 package.ApplicationsPrecision Battery Monitoring Load Switching/Power SequencingPower-Supply Monitoring in Digital/Analog Systems Portable/Battery-Powered EquipmentFeatureso Ultra-Low 500nA Supply Current (MAX6375/MAX6376/MAX6377)o Thresholds Available from 2.20V to 4.63V in Approximately 100mV Incrementso ±2.5% Threshold Accuracy Over Temperature o Low Costo Available in Three Versions: Push-Pull OUT ,Push-Pull OUT, and Open-Drain OUT o Power-Supply Transient Immunity o No External Components o Available in Either a 3-Pin SC70 or 3-Pin SOT23 PackageMAX6375–MAX63803-Pin, Ultra-Low-Power SC70/SOT23Voltage Detectors________________________________________________________________Maxim Integrated Products 1Pin Configuration19-1721; Rev 2; 2/03*The MAX6375/MAX6376/MAX6377 are available in factory-pre-set thresholds from 2.20V to 3.08V, in approximately 0.1V incre-ments. The MAX6378/MAX6379/MAX6380 are available infactory-preset thresholds from 3.30V to 4.63V, in approximately 0.1V increments. Choose the desired threshold suffix fromTable 1 and insert it in the blank spaces following R.There are 21 standard versions, with a required order increment of 2500pieces. Sample stock is generally held on the standard versions only (see the Selector Guide). The required order increment is 10,000 pieces for nonstandard versions (Table 2). Contact facto-ry for availability. All devices available in tape-and-reel only.Selector Guide appears at end of data sheet.For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering information continued at end of data sheetM A X 6375–M A X 63803-Pin, Ultra-Low-Power SC70/SOT23Voltage Detectors 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = full range, T A = -40°C to +85°C, unless otherwise noted. Typical values are at T A = +25°C and V CC = 3V.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Terminal Voltage (with respect to GND)V CC ...........................................................................-0.3V to +6V OUT, OUT (push-pull)................................-0.3V to (V CC + 0.3V)OUT (open-drain).....................................................-0.3V to +6V Input Current (V CC ).............................................................20mA Output Current (OUT, OUT )................................................20mAContinuous Power Dissipation (T A = +70°C)3-Pin SC70 (derate 2.17mW/°C above +70°C)...........174mW 3-Pin SOT23 (derate 4mW/°C above +70°C)..............320mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Junction Temperature......................................................+150°C Lead Temperature (soldering, 10s).................................+300°CNote 1:Production tested at +25°C only. Overtemperature limits are guaranteed by design, not production tested.MAX6375–MAX63803-Pin, Ultra-Low-Power SC70/SOT23Voltage Detectors__________________________________________Typical Operating Characteristics(V CC = 5V, T A = +25°C, unless otherwise noted.)00.30.20.10.40.50.60.70.80.91.0-40-2020406080SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )050100150200-40-2020406080PROPAGATION DELAY (FALLING)vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (µs )040208060120100140-4020-20406080PROPAGATION DELAY (RISING)vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (µs )50011001000MAXIMUM TRANSIENT DURATION vs. THRESHOLD OVERDRIVE100300400200THRESHOLD OVERDRIVEV TH - V CC (mV)M A X I M U M T R A N S I E N T D U R A T I O N (µs )10Pin DescriptionM A X 6375–M A X 63803-Pin, Ultra-Low-Power SC70/SOT23Voltage Detectors____________Applications InformationInterfacing to Different Logic Voltage ComponentsThe MAX6377/MAX6380 have an active-low, open-drain output. This output structure sinks current when OUT is asserted. Connect a pullup resistor from OUT to any supply voltage up to 5.50V (Figure 1). Select a resistor value large enough to allow a valid logic low (see Electrical Characteristics ), and small enough to register a logic high while supplying all input current and leakage paths connected to the OUT line.Negative-Going V CC TransientsThese devices are relatively immune to short-duration,negative-going V CC transients (glitches). The Typical Operating Characteristics show the Maximum Transient Duration vs. Threshold Overdrive graph, for which out-put pulses are not generated. The graph shows the maximum pulse width that a negative-going V CC tran-sient may typically have before the devices issue out-put signals. As the amplitude of the transient increases,the maximum-allowable pulse width decreases.Figure 1. Interfacing to Different Logic Voltage ComponentsTable 1. Factory-Trimmed Reset Thresholds ‡3-Pin, Ultra-Low-Power SC70/SOT23Voltage Detectors_______________________________________________________________________________________5Table 2. Device Marking Codes and Minimum Order IncrementsMAX6375–MAX6380M A X 6375–M A X 63803-Pin, Ultra-Low-Power SC70/SOT23Voltage Detectors 6___________________Chip InformationTRANSISTOR COUNT: 419Selector Guide**S ample stock is generally held on all standard versions.Contact factory for availability of nonstandard versions.Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600_____________________7©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.3-Pin, Ultra-Low-Power SC70/SOT23Voltage DetectorsMAX6375–MAX6380Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。

MAX038中文资料

MAX038中文资料

MAX038中⽂资料
MAX038 频率⾼、精度好,因此它被称为⾼频精密函数信号发⽣器IC。

在锁相环、压控振荡器、频率合成器、脉宽调制器等电路的设计上,MAX038 都是优选的器件。

其内部电路框图如图1 所⽰。

MAX038 的性能特点:
1)能精密地产⽣三⾓波、锯齿波、矩形波(含⽅波)、正弦波信号。

2)频率范围从0.1Hz~20MHz,最⾼可达40MHz,各种波形的输出幅度均为2V(P-P)。

3)占空⽐调节范围宽,占空⽐和频率均可单独调节,⼆者互不影响,占空⽐最⼤调节范围是10%~90%。

4)波形失真⼩,正弦波失真度⼩于0.75%,占空⽐调节时⾮线性度低于2%。

5)采⽤±5V 双电源供电,允许有5%变化范围,电源电流为80mA,典型功耗400mW,⼯作温度范围为0~70℃。

6)内设2.5V 电压基准,可利⽤该电压设定FADJ、DADJ 的电压值,实现频率微调和占空⽐调节。

MAX038 采⽤DIP-20 封装形式,引脚图如下图所⽰,各管脚的功能如表1 所⽰。

表1MAX038 的管脚功能
注:表中5 个地内部不相连,需外部连接。

MA038极限参数
应⽤电路设计请点击查看: 采⽤MAX038的信号发⽣器电路图具有三种输出波形的函数信号发⽣器电路图(10Hz-10MHz)。

MAX6385XS33D7-T中文资料

MAX6385XS33D7-T中文资料

General Description The MAX6381–MAX6390 microprocessor (µP) supervisory circuits monitor power-supply voltages from +1.8V to +5.0V while consuming only 3µA of supply current at +1.8V. Whenever V CC falls below the factory-set reset thresholds, the reset output asserts and remains assert-ed for a minimum reset timeout period after V CC rises above the reset threshold. Reset thresholds are available from +1.58V to +4.63V, in approximately 100mV incre-ments. Seven minimum reset timeout delays ranging from 1ms to 1200ms are available.The MAX6381/MAX6384/MAX6387 have a push-pull active-low reset output. The MAX6382/MAX6385/ MAX6388 have a push-pull active-high reset output, and the MAX6383/MAX6386/MAX6389/MAX6390 have an open-drain active-low reset output. The MAX6384/MAX6385/MAX6386 also feature a debounced manual reset input (with internal pullup resistor). The MAX6387/MAX6388/MAX6389 have an auxiliary input for monitoring a second voltage. The MAX6390 offers a manual reset input with a longer V CC reset timeout period (1120ms or 1200ms) and a shorter manual reset timeout (140ms or 150ms).The MAX6381/MAX6382/MAX6383 are available in 3-pin SC70 and6-pinµDFN packages and the MAX6384–MAX6390 are available in 4-pin SC70 andFeatures♦Factory-Set Reset Threshold Voltages Rangingfrom +1.58V to +4.63V in Approximately 100mVIncrements♦±2.5% Reset Threshold Accuracy OverTemperature (-40°C to +125°C)♦Seven Reset Timeout Periods Available: 1ms,20ms, 140ms, 280ms, 560ms, 1120ms,1200ms (min)♦3 Reset Output OptionsActive-Low Push-PullActive-High Push-PullActive-Low Open-Drain♦Reset Output State Guaranteed ValidDown to V CC= 1V♦Manual Reset Input (MAX6384/MAX6385/MAX6386)♦Auxiliary RESET IN(MAX6387/MAX6388/MAX6389)♦V CC Reset Timeout (1120ms or 1200ms)/ManualReset Timeout (140ms or 150ms) (MAX6390)♦Negative-Going V CC Transient Immunity♦Low Power Consumption of 6µA at +3.6Vand 3µA at +1.8V♦Pin Compatible withMAX809/MAX810/MAX803/MAX6326/MAX6327/MAX6328/MAX6346/MAX6347/MAX6348,and MAX6711/MAX6712/MAX6713♦Tiny 3-Pin/4-Pin SC70 and 6-Pin µDFN PackagesMAX6381–MAX6390 SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits ________________________________________________________________Maxim Integrated Products1Pin Configurations19-1839; Rev 4; 4/07Ordering InformationOrdering Information continued at end of data sheet.Typi cal Operati ng Ci rcui t appears at end of data sheet.Selector Guide appears at end of data sheet.after "XR", "XS", or "LT." Insert reset timeout delay (see ResetTimeout Delay table) after "D" to complete the part number.Sample stock is generally held on standard versions only (seeStandard Versions table). Standard versions have an orderincrement requirement of 2500 pieces. Nonstandard versionshave an order increment requirement of 10,000 pieces.Contact factory for availability of nonstandard versions.+Denotes a lead-free package.For pricing, delivery, and ordering information,please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .ComputersControllersIntelligent InstrumentsCritical µP and µCPower MonitoringPortable/Battery-Powered EquipmentDual Voltage SystemsM A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset CircuitsABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = full range, T A = -40°C to +125°C, unless otherwise specified. Typical values are at T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..........................................................-0.3V to +6.0V RESET Open-Drain Output....................................-0.3V to +6.0V RESET , RESET (push-pull output)..............-0.3V to (V CC + 0.3V)MR , RESET IN.............................................-0.3V to (V CC + 0.3V)Input Current (V CC ).............................................................20mA Output Current (all pins).....................................................20mAContinuous Power Dissipation (T A = +70°C)3-Pin SC70 (derate 2.9mW/°C above +70°C)..............235mW 4-Pin SC70 (derate 3.1mW/°C above +70°C)..............245mW 6-Pin µDFN (derate 2.1mW/°C above +70°C)..........167.7mW Operating Temperature Range .........................-40°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits_______________________________________________________________________________________3M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 4______________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)215436789-40-105-25203550658095110125SUPPLY CURRENT vs. TEMPERATURE(NO LOAD)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )25292735333137394143-40-105-25203550658095110125POWER-DOWN RESET DELAYvs. TEMPERATURETEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (µs )0.940.980.961.021.001.061.041.08-40-10520-253550658095110125NORMALIZED POWER-UP RESET TIMEOUTvs. TEMPERATUREM A X 6381/90 t o c 03TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T P E R I O D0.9900.9851.0150.9950.9901.0001.0051.0101.020-40-10520-253550958011065125M A X 6381/90 t o c 04TEMPERATURE (°C)N O R M A L I Z E D R E S E T TH R E S H O L D NORMALIZED RESET THRESHOLDvs. TEMPERATURE00.40.20.80.61.01.2063912OUTPUT-VOLTAGE LOW vs. SINK CURRENTI SINK (mA)V O L (V )01.00.52.01.52.53.00500750250100012501500OUTPUT-VOLTAGE HIGH vs. SOURCE CURRENTI SOURCE (µA)V O H (V )45001100010010MAXIMUM TRANSIENT DURATION vs. RESET COMPARATOR OVERDRIVE15050350250500200100400300RESET COMPARATOR OVERDRIVE, V TH - V CC (mV)M A X I M U M T R A N S I E N T D U R A T I O N (µs )3.53.93.74.54.34.14.74.95.35.15.5-40-105-25203550658095110125RESET IN TO RESET DELAYvs. TEMPERATUREM A X 6381/90 t o c 08TEMPERATURE (°C)R E S E T I N D E L A Y (µs )MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset CircuitsPin DescriptionM A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 6_______________________________________________________________________________________Detailed DescriptionRESET OutputA µP reset input starts the µP in a known state. These µP supervisory circuits assert reset to prevent code execution errors during power-up, power-down, or brownout conditions.Reset asserts when V CC is below the reset threshold;once V CC exceeds the reset threshold, an internal timer keeps the reset output asserted for the reset timeout period. After this interval, reset output deasserts. Reset output is guaranteed to be in the correct logic state for V CC ≥1V.Manual Reset Input (MAX6384/MAX6385/MAX6386/MAX6390)Many µP-based products require manual reset capabil-ity, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low,and for the reset active timeout period (t RP ) after MR returns high. This input has an internal 63k Ωpullup resistor (1.56k Ωfor MAX6390), so it can be left uncon-nected if it is not used. MR can be driven with TTL or CMOS logic levels, or with open-drain/collector outputs.Connect a normally open momentary switch from MR to G ND to create a manual-reset function; external debounce circuitry is not required. If MR is driven from long cables or if the device is used in a noisy environ-ment, connecting a 0.1µF capacitor from MR to G ND provides additional noise immunity.RESET IN Comparator(MAX6387/MAX6388/MAX6389)RESET IN is compared to an internal +1.27V reference.If the voltage at RESET IN is less than 1.27V, reset asserts. Use the RESET IN comparator as a user-adjustable reset detector or as a secondary power-sup-ply monitor by implementing a resistor-divider at RESET IN (shown in Figure 1). Reset asserts when either V CC or RESET IN falls below its respective threshold volt-age. Use the following equation to set the threshold:V INTH = V THRST (R1/R2 + 1)where V THRST = +1.27V. To simplify the resistor selec-tion, choose a value of R2 and calculate R1:R1 = R2 [(V INTH /V THRST ) - 1]Since the input current at RESET IN is 50nA (max),large values can be used for R2 with no significant loss in accuracy.___________Applications InformationNegative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, the MAX6381–MAX6390 are relatively immune to short dura-tion negative-going V CC transients (glitches).The Typical Operating Characteristics section shows the Maximum Transient Durations vs. Reset Comparator Overdrive, for which the MAX6381–MAX6390 do not generate a reset pulse. This graph was generated usinga negative-going pulse applied to V CC , starting above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the typical maximum pulse width a neg-ative-going V CC transient may have without causing a reset pulse to be issued. As the magnitude of the tran-sient increases (goes farther below the reset threshold),the maximum allowable pulse width decreases. A 0.1µF capacitor mounted as close as possible to V CC provides additional transient immunity.Ensuring a Valid RESET Output Down to V CC = 0VThe MAX6381–MAX6390 are guaranteed to operate properly down to V CC = 1V. In applications that require valid reset levels down to V CC = 0V, a pulldown resistor to active-low outputs (push/pull only, Figure 2) and a pullup resistor to active-high outputs (push/pull only)will ensure that the reset line is valid while the reset out-put can no longer sink or source current. This schemedoes not work with the open-drain outputs of the MAX6383/MAX6386/MAX6389/MAX6390. The resistor value used is not critical, but it must be small enough not to load the reset output when V CC is above the reset threshold. For most applications, 100k Ωis ade-quate.MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits_______________________________________________________________________________________7M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 8_______________________________________________________________________________________Selector GuideOrdering Information (continued)Note:Insert reset threshold suffix (see Reset Threshold table)after "XR", "XS", or "LT." Insert reset timeout delay (see Reset Timeout Delay table) after "D" to complete the part number.Sample stock is generally held on standard versions only (see Standard Versions table). Standard versions have an order increment requirement of 2500 pieces. Nonstandard versions have an order increment requirement of 10,000 pieces.Contact factory for availability of nonstandard versions.*MAX6390 is available with D4 or D7 timing only.+Denotes a lead-free package.MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits_______________________________________________________________________________________9Chip InformationTRANSISTOR COUNT: 647PROCESS: BiCMOSPin Configurations (continued)M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 10______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits______________________________________________________________________________________11Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 12______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset CircuitsMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600____________________13©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.MAX6381–MAX6390Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)Revision HistoryPages changed at Rev 4: Title on all pages, 1, 2, 5,7–13。

max3485esa中文资料

max3485esa中文资料

General Description The MAX3483, MAX3485, MAX3486, MAX3488,MAX3490, and MAX3491 are 3.3V , low-power transceivers forRS-485 and RS-422 communication. Each part containsone driver and one receiver. The MAX3483 and MAX3488feature slew-rate-limited drivers that minimize EMI andreduce reflections caused by improperly terminatedcables, allowing error-free data transmission at data ratesup to 250kbps. The partially slew-rate-limited MAX3486transmits up to 2.5Mbps. The MAX3485, MAX3490, andMAX3491 transmit at up to 10Mbps.Drivers are short-circuit current-limited and are protectedagainst excessive power dissipation by thermal shutdowncircuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature thatguarantees a logic-high output if both inputs are opencircuit.The MAX3488, MAX3490, and MAX3491 feature full-duplex communication, while the MAX3483, MAX3485, andMAX3486 are designed for half-duplex communication.Applications ●Low-Power RS-485/RS-422 Transceivers ●Telecommunications ●Transceivers for EMI-Sensitive Applications ●Industrial-Control Local Area NetworksFeatures●Operate from a Single 3.3V Supply—No Charge Pump!●Interoperable with +5V Logic ●8ns Max Skew (MAX3485/MAX3490/MAX3491)●Slew-Rate Limited for Errorless Data Transmission (MAX3483/MAX3488)●2nA Low-Current Shutdown Mode (MAX3483/MAX3485/MAX3486/MAX3491)●-7V to +12V Common-Mode Input Voltage Range ●Allows up to 32 Transceivers on the Bus ●Full-Duplex and Half-Duplex Versions Available ●Industry Standard 75176 Pinout (MAX3483/MAX3485/MAX3486)●Current-Limiting and Thermal Shutdown for Driver Overload Protection 19-0333; Rev 1; 5/19Ordering Information continued at end of data sheet.*Contact factory for for dice specifications.PARTTEMP . RANGE PIN-PACKAGE MAX3483CPA0°C to +70°C 8 Plastic DIP MAX3483CSA0°C to +70°C 8 SO MAX3483C/D0°C to +70°C Dice*MAX3483EPA-40°C to +85°C 8 Plastic DIP MAX3483ESA-40°C to +85°C 8 SO MAX3485CPA0°C to +70°C 8 Plastic DIP MAX3485CSA0°C to +70°C 8 SO MAX3485C/D0°C to +70°C Dice*MAX3485EPA-40°C to +85°C 8 Plastic DIP MAX3485ESA -40°C to +85°C 8 SO PARTNUMBERGUARANTEED DATA RATE (Mbps)SUPPLY VOLTAGE (V)HALF/FULL DUPLEX SLEW-RATE LIMITED DRIVER/RECEIVER ENABLE SHUTDOWN CURRENT (nA)PIN COUNT MAX34830.25 3.0 to 3.6Half Yes Yes 28MAX348510Half No No 28MAX34862.5Half Yes Yes 28MAX34880.25Half Yes Yes —8MAX349010Half No No —8MAX349110Half No Yes 214MAX3483/MAX3485/MAX3486/MAX3488/MAX3490/MAX3491Selection TableOrdering Information找电子元器件上宇航军工Figure 1. MAX3483/MAX3485/MAX3486 Pin Configuration and Typical Operating Circuit Figure 2. MAX3488/MAX3490 Pin Configuration and Typical Operating Circuit Figure 3. MAX3491 Pin Configuration and Typical Operating CircuitMAX3486/MAX3488/MAX3490/MAX3491True RS-485/RS-422 TransceiversFigure 22. MAX3488/MAX3490/MAX3491 Full-Duplex RS-485 NetworkFigure 23. Line Repeater for MAX3488/MAX3490/MAX3491MAX3486/MAX3488/MAX3490/MAX3491True RS-485/RS-422 Transceivers。

MAX830中文资料

MAX830中文资料

STEP-DOWN CONVERTER
* CoilCraft DO3316-104
________________________________________________________________ Maxim Integrated Products
1
Call toll free 1-800-998-8800 for free samples or literature.
* THIS THERMAL RESISTANCE NUMBER IS WITH THE DEVICE WELL MOUNTED ON 1 oz. COPPER WITH THERMAL PASTE BETWEEN THE IC AND THE UNDERLYING GROUND PLANE. LOWER THERMAL RESISTANCE IS POSSIBLE (SEE APPLICATIONS SECTION).
NUAL KIT MA ATION U EET L H A S V A E T WS DA FOLLO
___________________________Features
o Input Range: Up to 30V o 1A On-Chip Power Switch o Adjustable Output (MAX830) Fixed Outputs: 5V (MAX831) 3.3V (MAX832) 3V (MAX833) o 100kHz Switching Frequency o Excellent Dynamic Characteristics o Few External Components o 8mA Quiescent Current o 16-Pin SO Package o Evaluation Kit Available

max3485中文资料

max3485中文资料

max3485中文资料max3485eesa + T概述Max3485eesa + T是3.3V电源±15kV ESD保护,真正的RS485 / RS422收发器,采用8引脚nsoic封装。

该低功耗收发器包含一个驱动器和一个接收器。

max3485e传输速率高达15Mbps。

它具有增强的静电保护。

所有发送器输出和接收器输入均具有±15kV保护,并通过IEC 1000-4-2气隙放电;±8Kv保护是通过IEC 1000-4-2接触放电,±15kV保护是通过人体模型。

驱动器受到短路电流的限制,并通过将驱动器输出置于高阻抗状态的热关断电路来防止过多的功耗。

接收器输入具有故障安全功能,如果两个输入均打开,则提供逻辑高电平输出。

Max3485e适用于EMI敏感应用,集成服务,数字网络和数据包交换电源电压范围:3V至3.6V工作温度范围-40°C至85°C半双工通讯该操作由单个+ 3.3V电源供电,无电荷泵兼容+ 5V逻辑2Na小电流关闭模式共模输入电压范围:-7V至+ 12V工业标准75176引脚输出驱动器/接收器启用功能工业控制LAN,ISDN,低功耗RS-485 / RS-422收发器;分组交换;电信;用于EMI敏感应用的收发器Max3483,max3485,max3486,max3488,max3490和max3491是用于RS-485和RS-422通信的3.3V低功耗收发器,每个收发器都有一个驱动器和一个接收器。

Max3483和max3488具有有限速率驱动器,可以降低EMI并减少由于端子匹配电缆不合适而引起的反射,从而实现高达250kbps的无错误数据传输。

由于其有限的摆幅速率,Max3486可以实现最大2.5mbps 的传输速率。

Max3485,max3490和max3491可以实现高达10Mbps的传输速率。

驱动器具有短路电流限制,并且可以通过热关断电路将驱动器的输出设置为高阻状态,以防止过多的功率损耗。

MAX6305中文资料

MAX6305中文资料

For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 408-737-7600 ext. 3468.General DescriptionThe MAX6305–MAX6313 CMOS microprocessor (µP)supervisory circuits are designed to monitor more than one power supply. Ideal for monitoring both 5V and 3.3V in personal computer systems, these devicesFeatureso Small 5-Pin SOT23 Packageo Precision Factory-Set V CC Reset Thresholds;Available in 0.1V Increments from 2.5V to 5V o Immune to Short V TransientsMAX6305–MAX63135-Pin, Multiple-Input,Programmable Reset ICs________________________________________________________________Maxim Integrated Products 119-1145; Rev 1; 8/98M A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSV CC = +2.5V to +5.5V for the MAX6305/MAX6308/MAX6311, V CC = (V TH + 2.5%) to +5.5V for the MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313; T A = 0°C to +70°C; unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC ...........................................................................-0.3V to +6V All Other Pins..............................................-0.3V to (V CC + 0.3V)Input/Output Current, All Pins.............................................20mA Rate of Rise, V CC ............................................................100V/µsContinuous Power Dissipation (T A = +70°C)SOT23-5 (derate 7.1mW/°C above +70°C).................571mW Operating Temperature Range...............................0°C to +70°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V CC = +2.5V to +5.5V for the MAX6305/MAX6308/MAX6311, V CC = (V TH + 2.5%) to +5.5V for the MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313; T A = 0°C to +70°C; unless otherwise noted. Typical values are at T A = +25°C.)Note 1: The MAX6305/MAX6308/MAX6311 switch from undervoltage reset to normal operation between 1.5V < V CC < 2.5V.Note 2: The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 monitor V CC through an internal factory-trimmed voltagedivider, which programs the nominal reset threshold. Factory-trimmed reset thresholds are available in approximately 100mV increments from 2.5V to 5V (Table 1).M A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 4_________________________________________________________________________________________________________________________________Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)5.05.56.06.57.07.58.08.59.09.5-60-40-2020406080100SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )01020304050607080-60-40-2020406080100V CC FALLING PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )010203040506070-60-40-20020406080100OVRST IN RISING PROPAGATION DELAY vs. TEMPERATURE (OVERVOLTAGE RESET INPUT)TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )020406080100120-60-40-2020406080100RST IN_ FALLING PROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)R S T I N _ P R O P A G A T I O N D E L A Y (n s )104001200800MAXIMUM TRANSIENT DURATION vs.V CC RESET THRESHOLD OVERDRIVE10OVERDRIVE, V TH - V CC (mV)T R A N S I E N T D U R A T I O N (µs )100100010,0000.900.920.940.960.981.001.021.041.061.081.10-60-40-20020406080100RESET TIMEOUT vs. TEMPERATURE6305 T O C 05TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T0.9900.9920.9940.9960.9981.0001.0021.0041.0061.0081.010-60-40-2020406080100RESET THRESHOLD vs. TEMPERATURE6305 T O C 06TEMPERATURE (°C)N O R M A L I Z E D R E S E T T H R E S H O L D (V /V )104001200800MAXIMUM TRANSIENT DURATION vs.OVRST IN THRESHOLD OVERDRIVE10OVERDRIVE, V OVRST IN - V REF (mV)T R A N S I E N T D U R A T I O N (µs )100100010,000104001200800MAXIMUM TRANSIENT DURATION vs.RST IN_ THRESHOLD OVERDRIVE10OVERDRIVE, V REF - V RST IN (mV)T R A N S I E N T D U R A T I O N (µs )100100010,000_______________Detailed DescriptionThe MAX6305–MAX6313 CMOS microprocessor (µP)supervisory circuits are designed to monitor more than one power supply and issue a system reset when any monitored supply falls out of regulation. The MAX6305/MAX6308/MAX6311 have two adjustable undervoltage reset inputs (RST IN1 and RST IN2). The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 mon-itor V CC through an internal, factory-trimmed voltage divider. The MAX6306/MAX6309/MAX6312 have, in addition, an adjustable undervoltage reset input and a manual-reset input. The internal voltage divider sets the reset threshold as specified in the device part number (Table 1). The MAX6307/MAX6310/ MAX6313 feature an adjustable undervoltage reset input (RST IN) and an adjustable overvoltage reset input (OVRST IN) in addition to the factory-trimmed reset threshold on the V CC moni-tor. Program the adjustable reset inputs with an external resistor divider (see Adjustable Reset Inputs section).Reset OutputsA µP’s reset input starts the µP in a known state. These µP supervisory circuits assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions.RESET (MAX6305–MAX6310) and RESET (MAX6311/MAX6312/MAX6313) are guaranteed to be asserted at a valid logic level for V CC > 1V (see Electrical Characteristics ). Once all monitored voltages exceed their programmed reset thresholds, an internal timer keeps reset asserted for the reset timeout period (t RP );after this interval, reset deasserts.If a brownout condition occurs (any or all monitored volt-ages dip outside their programmed reset threshold),reset asserts (RESET goes high; RESET goes low). Any time any of the monitored voltages dip below their reset threshold, the internal timer resets to zero and reset asserts. The internal timer starts when all of the moni-tored voltages return above their reset thresholds, and reset remains asserted for a reset timeout period. The MAX6305/MAX6306/MAX6307 feature an active-low,MAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________5______________________________________________________________Pin DescriptionM A X 6305–M A X 6313open-drain, N-channel output. The MAX6308/MAX6309/MAX6310 feature an active-low, complementary output structure that both sinks and sources current, and the MAX6311/MAX6312/MAX6313 have an active-high com-plementary reset output.The MAX6305/MAX6308/MAX6311 switch from under-voltage lockout operation to normal operation between 1.5V < V CC < 2.5V. Below 1.5V, V CC undervoltage-lockout mode asserts RESET . Above 2.5V, V CC normal-operation mode asserts reset if RST IN_ falls below the RST IN_ threshold.Manual-Reset Input(MAX6306/MAX6309/MAX6312)Many µP-based products require manual-reset capability,allowing an operator or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low, and for a reset active timeout period (t RP ) after MR returns high. This input has an inter-nal 63.5k Ωpull-up resistor, so it can be left open if it is not used. MR can be driven with TTL-logic levels in 5V sys-tems, with CMOS-logic levels in 3V systems, or with open-drain/collector output devices. Connect a normally open momentary switch from MR to GND to create a manual-reset function; external debounce circuitry is not required.If MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1µF capacitor from MR to ground provides additional noise immunity.The MR pin has internal ESD-protection circuitry that may be forward biased under certain conditions, drawing excessive current. For example, assume the circuitry driv-ing MR uses a +5V supply other than V CC . If V CC drops or browns out lower than +4.7V, MR ’s absolute maximum rat-ing is violated (-0.3V to (V CC + 0.3V)), and undesirable current flows through the ESD structure from MR to V CC .To avoid this, it is recommended that the supply for the MR pin be the same as the supply monitored by V CC . In this way, the voltage at MR will not exceed V CC .Adjustable Reset InputsThe MAX6305–MAX6313 each have one or more reset inputs (RST IN_ /OVRST IN). These inputs are com-pared to the internal reference voltage (Figure 1).Connect a resistor voltage divider to RST IN_ such that V RST IN_falls below V RSTH (1.23V) when the monitored voltage (V IN ) falls below the desired reset threshold (V TH ) (Figure 2). Calculate the desired reset voltage with the following formula:R1 + R2V TH = ________x V RSTHR25-Pin, Multiple-Input, Programmable Reset ICs 6_______________________________________________________________________________________Figure 1. Functional DiagramMAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________7The ±25nA max input leakage current allows resistors on the order of megohms. Choose the pull-up resistor in the divider to minimize the error due to the input leakage cur-rent. The error term in the calculated threshold is simply:±25nA x R1If you choose R1 to be 1M Ω, the resulting error is ±25 x 10-9x 1 x 106= ±25mV.Like the V CC voltage monitors on the MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313, the RST IN_inputs (when used with a voltage divider) are designed to ignore fast voltage transients. Increase the noise immunity by connecting a capacitor on the order of 0.1µF between RST IN and GND (Figure 2). This creates a single-pole lowpass filter with a corner frequency given by:f = (1/2π) / (R1 + R2)(R1 x R2 x C)For example, if R1 = 1M Ωand R2 = 1.6M Ω, adding a 0.1µF capacitor from RST IN_ to ground results in a lowpass corner frequency of f = 2.59Hz. Note that adding capacitance to RST IN slows the circuit’s overall response time.__________Applications InformationInterfacing to µPs with Bidirectional Reset PinsSince the RESET output on the MAX6305/MAX6306/MAX6307 is open drain, these devices interface easily with µPs that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the µP supervisor’s RESET output directly to the microcontroller’s RESET pin with a single pull-up resistor allows either device to assert reset (Figure 3).Negative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, these devices are relatively immune to short-duration, negative-going V CC transients (glitches).The Typical Operating Characteristics show the Maximum Transient Duration vs. V CC Reset Threshold Overdrive, for which reset pulses are not generated.The graph was produced using negative-going pulses,starting at V TH max, and ending below the pro-grammed reset threshold by the magnitude indicated (reset threshold overdrive). The graph shows the maxi-mum pulse width that a negative-going V CC transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e.,goes farther below the reset threshold), the maximum allowable pulse width decreases.RST IN_/OVRST IN are also immune to negative/positive-going transients (see Typical Operating Characteristics ).A 0.1µF bypass capacitor mounted close to the RST IN_,OVRST IN, and/or the V CC pin provides additional tran-sient immunity.Ensuring a Valid RESET /RESETOutput Down to V CC = 0VWhen V CC falls below 1V, push/pull structured RESET /RESET current sinking (or sourcing) capabilities decrease drastically. High-impedance CMOS-logic inputs connected to RESET can drift to undetermined voltages. This presents no problem in most applica-tions, since most µPs and other circuitry do not operate with V CC below 1V. In those applications where RESET must be valid down to 0V, adding a pull-down resistor between RESET and ground sinks any stray leakageFigure 2. Increasing Noise ImmunityFigure 3. Interfacing to µPs with Bidirectional Reset I/Ocurrents, holding RESET low (Figure 4). The pull-down resistor’s value is not critical; 100k Ωis large enough not to load RESET and small enough to pull RESET to ground. For applications where RESET must be valid to V CC , a 100k Ωpull-up resistor between RESET and V CC will hold RESET high when V CC falls below 1V (Figure 5).Since the MAX6305/MAX6306/MAX6307 have open-drain, active-low outputs, they typically use a pull-up resistor. With these devices and under these conditions (V CC < 1V), RESET will most likely not maintain an active condition, but will drift toward a nonactive level due to the pull-up resistor and the RESET output’s reduction in sinking capability. These devices are not recommended for applications that require a valid RESET output below 1V.* Factory-trimmed reset thresholds are available in approximately 100mV increments with a ±1.5% room-temperature variance.M A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 8_______________________________________________________________________________________Figure 4. Ensuring RESET Valid to V CC = 0VFigure 5. Ensuring RESET Valid to V CC = 0VTable 1. Factory-Trimmed Reset Thresholds *MAX6305UK00D1-T ABAK MAX6306UK41D3-T ABCA MAX6306UK30D1-T ABDQ MAX6307UK46D3-T ABFG MAX6305UK00D2-T ABAL MAX6306UK41D4-T ABCB MAX6306UK30D2-T ABDR MAX6307UK46D4-T ABFH MAX6305UK00D3-T ABAM MAX6306UK40D1-T ABCC MAX6306UK30D3-T ABDS MAX6307UK45D1-T ABFI MAX6305UK00D4-T ABAN MAX6306UK40D2-T ABCD MAX6306UK30D4-T ABDT MAX6307UK45D2-T ABFJ MAX6306UK50D1-T ABAO MAX6306UK40D3-T ABCE MAX6306UK29D1-T ABDU MAX6307UK45D3-T ABFK MAX6306UK50D2-T ABAP MAX6306UK40D4-T ABCF MAX6306UK29D2-T ABDV MAX6307UK45D4-T ABFL MAX6306UK50D3-T ABAQ MAX6306UK39D1-T ABCG MAX6306UK29D3-T ABDW MAX6307UK44D1-T ABFM MAX6306UK50D4-T ABAR MAX6306UK39D2-T ABCH MAX6306UK29D4-T ABDX MAX6307UK44D2-T ABFN MAX6306UK49D1-T ABAS MAX6306UK39D3-T ABCI MAX6306UK28D1-T ABDY MAX6307UK44D3-T ABFO MAX6306UK49D2-T ABAT MAX6306UK39D4-T ABCJ MAX6306UK28D2-T ABDZ MAX6307UK44D4-T ABFP MAX6306UK49D3-T ABAU MAX6306UK38D1-T ABCK MAX6306UK28D3-T ABEA MAX6307UK43D1-T ABFQ MAX6306UK49D4-T ABAV MAX6306UK38D2-T ABCL MAX6306UK28D4-T ABEB MAX6307UK43D2-T ABFR MAX6306UK48D1-T ABAW MAX6306UK38D3-T ABCM MAX6306UK27D1-T ABEC MAX6307UK43D3-T ABFS MAX6306UK48D2-T ABAX MAX6306UK38D4-T ABCN MAX6306UK27D2-T ABED MAX6307UK43D4-T ABFT MAX6306UK48D3-T ABAY MAX6306UK37D1-T ABCO MAX6306UK27D3-T ABEE MAX6307UK42D1-T ABFU MAX6306UK48D4-T ABAZ MAX6306UK37D2-T ABCP MAX6306UK27D4-T ABEF MAX6307UK42D2-T ABFV MAX6306UK47D1-T ABBA MAX6306UK37D3-T ABCQ MAX6306UK26D1-T ABEG MAX6307UK42D3-T ABFW MAX6306UK47D2-T ABBB MAX6306UK37D4-T ABCR MAX6306UK26D2-T ABEH MAX6307UK42D4-T ABFX MAX6306UK47D3-T ABBC MAX6306UK36D1-T ABCS MAX6306UK26D3-T ABEI MAX6307UK41D1-T ABFY MAX6306UK47D4-T ABBD MAX6306UK36D2-T ABCT MAX6306UK26D4-T ABEJ MAX6307UK41D2-T ABFZ MAX6306UK46D1-T ABBE MAX6306UK36D3-T ABCU MAX6306UK25D1-T ABEK MAX6307UK41D3-T ABGA MAX6306UK46D2-T ABBF MAX6306UK36D4-T ABCV MAX6306UK25D2-T ABEL MAX6307UK41D4-T ABGB MAX6306UK46D3-T ABBG MAX6306UK35D1-T ABCW MAX6306UK25D3-T ABEM MAX6307UK40D1-T ABGC MAX6306UK46D4-T ABBH MAX6306UK35D2-T ABCX MAX6306UK25D4-T ABEN MAX6307UK40D2-T ABGD MAX6306UK45D1-T ABBI MAX6306UK35D3-T ABCY MAX6307UK50D1-T ABEO MAX6307UK40D3-T ABGE MAX6306UK45D2-T ABBJ MAX6306UK35D4-T ABCZ MAX6307UK50D2-T ABEP MAX6307UK40D4-T ABGF MAX6306UK45D3-T ABBK MAX6306UK34D1-T ABDA MAX6307UK50D3-T ABEQ MAX6307UK39D1-T ABGG MAX6306UK45D4-T ABBL MAX6306UK34D2-T ABDB MAX6307UK50D4-T ABER MAX6307UK39D2-T ABGH MAX6306UK44D1-T ABBM MAX6306UK34D3-T ABDC MAX6307UK49D1-T ABES MAX6307UK39D3-T ABGI MAX6306UK44D2-T ABBN MAX6306UK34D4-T ABDD MAX6307UK49D2-T ABET MAX6307UK39D4-T ABGJ MAX6306UK44D3-T ABBO MAX6306UK33D1-T ABDE MAX6307UK49D3-T ABEU MAX6307UK38D1-T ABGK MAX6306UK44D4-T ABBP MAX6306UK33D2-T ABDF MAX6307UK49D4-T ABEV MAX6307UK38D2-T ABGL MAX6306UK43D1-T ABBQ MAX6306UK33D3-T ABDG MAX6307UK48D1-T ABEW MAX6307UK38D3-T ABGM MAX6306UK43D2-T ABBR MAX6306UK33D4-T ABDH MAX6307UK48D2-T ABEX MAX6307UK38D4-T ABGN MAX6306UK43D3-T ABBS MAX6306UK32D1-T ABDI MAX6307UK48D3-T ABEY MAX6307UK37D1-T ABGO MAX6306UK43D4-T ABBT MAX6306UK32D2-T ABDJ MAX6307UK48D4-T ABEZ MAX6307UK37D2-T ABGP MAX6306UK42D1-T ABBU MAX6306UK32D3-T ABDK MAX6307UK47D1-T ABFA MAX6307UK37D3-T ABGQ MAX6306UK42D2-T ABBV MAX6306UK32D4-T ABDL MAX6307UK47D2-T ABFB MAX6307UK37D4-T ABGR MAX6306UK42D3-T ABBW MAX6306UK31D1-T ABDM MAX6307UK47D3-T ABFC MAX6307UK36D1-T ABGS MAX6306UK42D4-T ABBX MAX6306UK31D2-T ABDN MAX6307UK47D4-T ABFD MAX6307UK36D2-T ABGT MAX6306UK41D1-T ABBY MAX6306UK31D3-T ABDO MAX6307UK46D1-T ABFE MAX6307UK36D3-T ABGU MAX6306UK41D2-TABBZMAX6306UK31D4-TABDPMAX6307UK46D2-TABFFMAX6307UK36D4-TABGVMAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________9Table 2. Device Marking CodesDEVICECODE DEVICECODE DEVICECODE DEVICECODEM A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 10______________________________________________________________________________________Table 2. Device Marking Codes (continued)MAX6307UK35D1-T ABGW MAX6307UK25D3-T ABIM MAX6309UK41D1-T ABKC MAX6309UK31D3-T ABLS MAX6307UK35D2-T ABGX MAX6307UK25D4-T ABIN MAX6309UK41D2-T ABKD MAX6309UK31D4-T ABLT MAX6307UK35D3-T ABGY MAX6308UK00D1-T ABIO MAX6309UK41D3-T ABKE MAX6309UK30D1-T ABLU MAX6307UK35D4-T ABGZ MAX6308UK00D2-T ABIP MAX6309UK41D4-T ABKF MAX6309UK30D2-T ABLV MAX6307UK34D1-T ABHA MAX6308UK00D3-T ABIQ MAX6309UK40D1-T ABKG MAX6309UK30D3-T ABLW MAX6307UK34D2-T ABHB MAX6308UK00D4-T ABIR MAX6309UK40D2-T ABKH MAX6309UK30D4-T ABLX MAX6307UK34D3-T ABHC MAX6309UK50D1-T ABIS MAX6309UK40D3-T ABKI MAX6309UK29D1-T ABLY MAX6307UK34D4-T ABHD MAX6309UK50D2-T ABIT MAX6309UK40D4-T ABKJ MAX6309UK29D2-T ABLZ MAX6307UK33D1-T ABHE MAX6309UK50D3-T ABIU MAX6309UK39D1-T ABKK MAX6309UK29D3-T ABMA MAX6307UK33D2-T ABHF MAX6309UK50D4-T ABIV MAX6309UK39D2-T ABKL MAX6309UK29D4-T ABMB MAX6307UK33D3-T ABHG MAX6309UK49D1-T ABIW MAX6309UK39D3-T ABKM MAX6309UK28D1-T ABMC MAX6307UK33D4-T ABHH MAX6309UK49D2-T ABIX MAX6309UK39D4-T ABKN MAX6309UK28D2-T ABMD MAX6307UK32D1-T ABHI MAX6309UK49D3-T ABIY MAX6309UK38D1-T ABKO MAX6309UK28D3-T ABME MAX6307UK32D2-T ABHJ MAX6309UK49D4-T ABIZ MAX6309UK38D2-T ABKP MAX6309UK28D4-T ABMF MAX6307UK32D3-T ABHK MAX6309UK48D1-T ABJA MAX6309UK38D3-T ABKQ MAX6309UK27D1-T ABMG MAX6307UK32D4-T ABHL MAX6309UK48D2-T ABJB MAX6309UK38D4-T ABKR MAX6309UK27D2-T ABMH MAX6307UK31D1-T ABHM MAX6309UK48D3-T ABJC MAX6309UK37D1-T ABKS MAX6309UK27D3-T ABMI MAX6307UK31D2-T ABHN MAX6309UK48D4-T ABJD MAX6309UK37D2-T ABKT MAX6309UK27D4-T ABMJ MAX6307UK31D3-T ABHO MAX6309UK47D1-T ABJE MAX6309UK37D3-T ABKU MAX6309UK26D1-T ABMK MAX6307UK31D4-T ABHP MAX6309UK47D2-T ABJF MAX6309UK37D4-T ABKV MAX6309UK26D2-T ABML MAX6307UK30D1-T ABHQ MAX6309UK47D3-T ABJG MAX6309UK36D1-T ABKW MAX6309UK26D3-T ABMM MAX6307UK30D2-T ABHR MAX6309UK47D4-T ABJH MAX6309UK36D2-T ABKX MAX6309UK26D4-T ABMN MAX6307UK30D3-T ABHS MAX6309UK46D1-T ABJI MAX6309UK36D3-T ABKY MAX6309UK25D1-T ABMO MAX6307UK30D4-T ABHT MAX6309UK46D2-T ABJJ MAX6309UK36D4-T ABKZ MAX6309UK25D2-T ABMP MAX6307UK29D1-T ABHU MAX6309UK46D3-T ABJK MAX6309UK35D1-T ABLA MAX6309UK25D3-T ABMQ MAX6307UK29D2-T ABHV MAX6309UK46D4-T ABJL MAX6309UK35D2-T ABLB MAX6309UK25D4-T ABMR MAX6307UK29D3-T ABHW MAX6309UK45D1-T ABJM MAX6309UK35D3-T ABLC MAX6310UK50D1-T ABMS MAX6307UK29D4-T ABHX MAX6309UK45D2-T ABJN MAX6309UK35D4-T ABLD MAX6310UK50D2-T ABMT MAX6307UK28D1-T ABHY MAX6309UK45D3-T ABJO MAX6309UK34D1-T ABLE MAX6310UK50D3-T ABMU MAX6307UK28D2-T ABHZ MAX6309UK45D4-T ABJP MAX6309UK34D2-T ABLF MAX6310UK50D4-T ABMV MAX6307UK28D3-T ABIA MAX6309UK44D1-T ABJQ MAX6309UK34D3-T ABLG MAX6310UK49D1-T ABMW MAX6307UK28D4-T ABIB MAX6309UK44D2-T ABJR MAX6309UK34D4-T ABLH MAX6310UK49D2-T ABMX MAX6307UK27D1-T ABIC MAX6309UK44D3-T ABJS MAX6309UK33D1-T ABLI MAX6310UK49D3-T ABMY MAX6307UK27D2-T ABID MAX6309UK44D4-T ABJT MAX6309UK33D2-T ABLJ MAX6310UK49D4-T ABMZ MAX6307UK27D3-T ABIE MAX6309UK43D1-T ABJU MAX6309UK33D3-T ABLK MAX6310UK48D1-T ABNA MAX6307UK27D4-T ABIF MAX6309UK43D2-T ABJV MAX6309UK33D4-T ABLL MAX6310UK48D2-T ABNB MAX6307UK26D1-T ABIG MAX6309UK43D3-T ABJW MAX6309UK32D1-T ABLM MAX6310UK48D3-T ABNC MAX6307UK26D2-T ABIH MAX6309UK43D4-T ABJX MAX6309UK32D2-T ABLN MAX6310UK48D4-T ABND MAX6307UK26D3-T ABII MAX6309UK42D1-T ABJY MAX6309UK32D3-T ABLO MAX6310UK47D1-T ABNE MAX6307UK26D4-T ABIJ MAX6309UK42D2-T ABJZ MAX6309UK32D4-T ABLP MAX6310UK47D2-T ABNF MAX6307UK25D1-T ABIK MAX6309UK42D3-T ABKA MAX6309UK31D1-T ABLQ MAX6310UK47D3-T ABNG MAX6307UK25D2-TABILMAX6309UK42D4-TABKBMAX6309UK31D2-TABLRMAX6310UK47D4-TABNHDEVICECODE DEVICECODE DEVICECODE DEVICECODEMAX6305–MAX6313Programmable Reset ICs______________________________________________________________________________________11Table 2. Device Marking Codes (continued)MAX6310UK46D1-T ABNI MAX6310UK36D3-T ABOY MAX6310UK25D1-T ABQO MAX6312UK42D3-T ABSE MAX6310UK46D2-T ABNJ MAX6310UK36D4-T ABOZ MAX6310UK25D2-T ABQP MAX6312UK42D4-T ABSF MAX6310UK46D3-T ABNK MAX6310UK35D1-T ABPA MAX6310UK25D3-T ABQQ MAX6312UK41D1-T ABSG MAX6310UK46D4-T ABNL MAX6310UK35D2-T ABPB MAX6310UK25D4-T ABQR MAX6312UK41D2-T ABSH MAX6310UK45D1-T ABNM MAX6310UK35D3-T ABPC MAX6311UK00D1-T ABQS MAX6312UK41D3-T ABSI MAX6310UK45D2-T ABNN MAX6310UK35D4-T ABPD MAX6311UK00D2-T ABQT MAX6312UK41D4-T ABSJ MAX6310UK45D3-T ABNO MAX6310UK34D1-T ABPE MAX6311UK00D3-T ABQU MAX6312UK40D1-T ABSK MAX6310UK45D4-T ABNP MAX6310UK34D2-T ABPF MAX6311UK00D4-T ABQV MAX6312UK40D2-T ABSL MAX6310UK44D1-T ABNQ MAX6310UK34D3-T ABPG MAX6311UK50D1-T ABQW MAX6312UK40D3-T ABSM MAX6310UK44D2-T ABNR MAX6310UK34D4-T ABPH MAX6312UK50D2-T ABQX MAX6312UK40D4-T ABSN MAX6310UK44D3-T ABNS MAX6310UK33D1-T ABPI MAX6312UK50D3-T ABQY MAX6312UK39D1-T ABSO MAX6310UK44D4-T ABNT MAX6310UK33D2-T ABPJ MAX6312UK50D4-T ABQZ MAX6312UK39D2-T ABSP MAX6310UK43D1-T ABNU MAX6310UK33D3-T ABPK MAX6312UK49D1-T ABRA MAX6312UK39D3-T ABSQ MAX6310UK43D2-T ABNV MAX6310UK33D4-T ABPL MAX6312UK49D2-T ABRB MAX6312UK39D4-T ABSR MAX6310UK43D3-T ABNW MAX6310UK32D1-T ABPM MAX6312UK49D3-T ABRC MAX6312UK38D1-T ABSS MAX6310UK43D4-T ABNX MAX6310UK32D2-T ABPN MAX6312UK49D4-T ABRD MAX6312UK38D2-T ABST MAX6310UK42D1-T ABNY MAX6310UK32D3-T ABPO MAX6312UK48D1-T ABRE MAX6312UK38D3-T ABSU MAX6310UK42D2-T ABNZ MAX6310UK32D4-T ABPP MAX6312UK48D2-T ABRF MAX6312UK38D4-T ABSV MAX6310UK42D3-T ABOA MAX6310UK31D1-T ABPQ MAX6312UK48D3-T ABRG MAX6312UK37D1-T ABSW MAX6310UK42D4-T ABOB MAX6310UK31D2-T ABPR MAX6312UK48D4-T ABRH MAX6312UK37D2-T ABSX MAX6310UK41D1-T ABOC MAX6310UK31D3-T ABPS MAX6312UK47D1-T ABRI MAX6312UK37D3-T ABSY MAX6310UK41D2-T ABOD MAX6310UK31D4-T ABPT MAX6312UK47D2-T ABRJ MAX6312UK37D4-T ABSZ MAX6310UK41D3-T ABOE MAX6310UK30D1-T ABPU MAX6312UK47D3-T ABRK MAX6312UK36D1-T ABTA MAX6310UK41D4-T ABOF MAX6310UK30D2-T ABPV MAX6312UK47D4-T ABRL MAX6312UK36D2-T ABTB MAX6310UK40D1-T ABOG MAX6310UK30D3-T ABPW MAX6312UK46D1-T ABRM MAX6312UK36D3-T ABTC MAX6310UK40D2-T ABOH MAX6310UK30D4-T ABPX MAX6312UK46D2-T ABRN MAX6312UK36D4-T ABTD MAX6310UK40D3-T ABOI MAX6310UK29D1-T ABPY MAX6312UK46D3-T ABRO MAX6312UK35D1-T ABTE MAX6310UK40D4-T ABOJ MAX6310UK29D2-T ABPZ MAX6312UK46D4-T ABRP MAX6312UK35D2-T ABTF MAX6310UK39D1-T ABOK MAX6310UK29D3-T ABQA MAX6312UK45D1-T ABRQ MAX6312UK35D3-T ABTG MAX6310UK39D2-T ABOL MAX6310UK29D4-T ABQB MAX6312UK45D2-T ABRR MAX6312UK35D4-T ABTH MAX6310UK39D3-T ABOM MAX6310UK28D1-T ABQC MAX6312UK45D3-T ABRS MAX6312UK34D1-T ABTI MAX6310UK39D4-T ABON MAX6310UK28D2-T ABQD MAX6312UK45D4-T ABRT MAX6312UK34D2-T ABTJ MAX6310UK38D1-T ABOO MAX6310UK28D3-T ABQE MAX6312UK44D1-T ABRU MAX6312UK34D3-T ABTK MAX6310UK38D2-T ABOP MAX6310UK28D4-T ABQF MAX6312UK44D2-T ABRV MAX6312UK34D4-T ABTL MAX6310UK38D3-T ABOQ MAX6310UK27D1-T ABQG MAX6312UK44D3-T ABRW MAX6312UK33D1-T ABTM MAX6310UK38D4-T ABOR MAX6310UK27D2-T ABQH MAX6312UK44D4-T ABRX MAX6312UK33D2-T ABTN MAX6310UK37D1-T ABOS MAX6310UK27D3-T ABQI MAX6312UK43D1-T ABRY MAX6312UK33D3-T ABTO MAX6310UK37D2-T ABOT MAX6310UK27D4-T ABQJ MAX6312UK43D2-T ABRZ MAX6312UK33D4-T ABTP MAX6310UK37D3-T ABOU MAX6310UK26D1-T ABQK MAX6312UK43D3-T ABSA MAX6312UK32D1-T ABTQ MAX6310UK37D4-T ABOV MAX6310UK26D2-T ABQL MAX6312UK43D4-T ABSB MAX6312UK32D2-T ABTR MAX6310UK36D1-T ABOW MAX6310UK26D3-T ABQM MAX6312UK42D1-T ABSC MAX6312UK32D3-T ABTS MAX6310UK36D2-TABOXMAX6310UK26D4-TABQNMAX6312UK42D2-TABSDMAX6312UK32D4-TABTTDEVICECODE DEVICECODE DEVICECODE DEVICECODEM A X 6305–M A X 6313Programmable Reset ICs 12______________________________________________________________________________________Table 2. Device Marking Codes (continued)MAX6313UK49D2-T ABVB MAX6313UK49D3-T ABVC MAX6313UK49D4-T ABVD MAX6313UK48D1-T ABVE MAX6313UK48D2-T ABVF MAX6313UK48D3-T ABVG MAX6313UK48D4-T ABVH MAX6313UK47D1-T ABVI MAX6313UK47D2-T ABVJ MAX6313UK47D3-T ABVK MAX6313UK47D4-T ABVL MAX6313UK46D1-T ABVM MAX6313UK46D2-T ABVN MAX6313UK46D3-T ABVO MAX6313UK46D4-T ABVP MAX6313UK45D1-T ABVQ MAX6313UK45D2-T ABVR MAX6313UK45D3-T ABVS MAX6313UK45D4-T ABVT MAX6313UK44D1-T ABVU MAX6313UK44D2-T ABVV MAX6313UK44D3-T ABVW MAX6313UK44D4-T ABVX MAX6313UK43D1-T ABVY MAX6313UK43D2-T ABVZ MAX6313UK43D3-T ABWA MAX6313UK43D4-T ABWB MAX6313UK42D1-T ABWC MAX6313UK42D2-T ABWD MAX6313UK42D3-T ABWE MAX6313UK42D4-T ABWF MAX6313UK41D1-T ABWG MAX6313UK41D2-TABWHDEVICECODE DEVICECODE DEVICECODE DEVICECODE MAX6313UK33D4-T ABXP MAX6313UK32D1-T ABXQ MAX6313UK32D2-T ABXR MAX6313UK32D3-T ABXS MAX6313UK32D4-T ABXT MAX6313UK31D1-T ABXU MAX6313UK31D2-T ABXV MAX6313UK31D3-T ABXW MAX6313UK31D4-T ABXX MAX6313UK30D1-T ABXY MAX6313UK30D2-T ABXZ MAX6313UK30D3-T ABYA MAX6313UK30D4-T ABYB MAX6313UK29D1-T ABYC MAX6313UK29D2-T ABYD MAX6313UK29D3-T ABYE MAX6313UK29D4-T ABYF MAX6313UK28D1-T ABYG MAX6313UK28D2-T ABYH MAX6313UK28D3-T ABYI MAX6313UK28D4-T ABYJ MAX6313UK27D1-T ABYK MAX6313UK27D2-T ABYL MAX6313UK27D3-T ABYM MAX6313UK27D4-T ABYN MAX6313UK26D1-T ABYO MAX6313UK26D2-T ABYP MAX6313UK26D3-T ABYQ MAX6313UK26D4-T ABYR MAX6313UK25D1-T ABYS MAX6313UK25D2-T ABYT MAX6313UK25D3-T ABYU MAX6313UK25D4-TABYVMAX6313UK41D3-T ABWI MAX6313UK41D4-T ABWJ MAX6313UK40D1-T ABWK MAX6313UK40D2-T ABWL MAX6313UK40D3-T ABWM MAX6313UK40D4-T ABWN MAX6313UK39D1-T ABWO MAX6313UK39D2-T ABWP MAX6313UK39D3-T ABWQ MAX6313UK39D4-T ABWR MAX6313UK38D1-T ABWS MAX6313UK38D2-T ABWT MAX6313UK38D3-T ABWU MAX6313UK38D4-T ABWV MAX6313UK37D1-T ABWW MAX6313UK37D2-T ABWX MAX6313UK37D3-T ABWY MAX6313UK37D4-T ABWZ MAX6313UK36D1-T ABXA MAX6313UK36D2-T ABXB MAX6313UK36D3-T ABXC MAX6313UK36D4-T ABXD MAX6313UK35D1-T ABXE MAX6313UK35D2-T ABXF MAX6313UK35D3-T ABXG MAX6313UK35D4-T ABXH MAX6313UK34D1-T ABXI MAX6313UK34D2-T ABXJ MAX6313UK34D3-T ABXK MAX6313UK34D4-T ABXL MAX6313UK33D1-T ABXM MAX6313UK33D2-T ABXN MAX6313UK33D3-TABXOMAX6312UK31D1-T ABTU MAX6312UK31D2-T ABTV MAX6312UK31D3-T ABTW MAX6312UK31D4-T ABTX MAX6312UK30D1-T ABTY MAX6312UK30D2-T ABTZ MAX6312UK30D3-T ABUA MAX6312UK30D4-T ABUB MAX6312UK29D1-T ABUC MAX6312UK29D2-T ABUD MAX6312UK29D3-T ABUE MAX6312UK29D4-T ABUF MAX6312UK28D1-T ABUG MAX6312UK28D2-T ABUH MAX6312UK28D3-T ABUI MAX6312UK28D4-T ABUJ MAX6312UK27D1-T ABUK MAX6312UK27D2-T ABUL MAX6312UK27D3-T ABUM MAX6312UK27D4-T ABUN MAX6312UK26D1-T ABUO MAX6312UK26D2-T ABUP MAX6312UK26D3-T ABUQ MAX6312UK26D4-T ABUR MAX6312UK25D1-T ABUS MAX6312UK25D2-T ABUT MAX6312UK25D3-T ABUU MAX6312UK25D4-T ABUV MAX6313UK50D1-T ABUW MAX6313UK50D2-T ABUX MAX6313UK50D3-T ABUY MAX6313UK50D4-T ABUZ MAX6313UK49D1-TABVA。

参考手册NDXS和ND5XS网络音频播放器中文-NaimAudio

参考手册NDXS和ND5XS网络音频播放器中文-NaimAudio
2.10.1 有线网络连接 NDX/5XS在其后面板安装了标准以太网接口。为了有线网络连 接,在你的网络路由器上此接口应可以连接一个备用的以太网接 口。
注意: 可以使用以太网供电硬件,其提供了有线家庭网络连接的简 便方法。不过,根据每个家庭环境的电源配线因素,电源的网络 数据可能会影响整个系统的音响质量。如果受到影响的音响质量 令人无法接受,则应安装专用网络布线或应采用无线网络。
2.10 网络连接
4
5.5 存储电台预设
18
2.11 系统自动化
5
5.6 利用收音机预设
18
2.12 外部控制和更新
5
2.13 信号接地开关
5
6 NDX/5XS通用即插即用™音频接口
19
6.1 通用即插即用™服务器
19
3 NDX/5XS操作
6
6.2 音频文件的兼容性
19
3.1 前面板特点
6
6.3 扫描服务器和播放文件
21
3.8 n-Stream控制应用程序
9
iPod和iPhone是苹果公司在美国和其他国家注册的商标。 Windows媒体™ 是微软公司的商标。 UPnP™是UPnP™社区的商标。
NDX/5XS简介
1 NDX/5XS简介
NDX和ND5 XS(NDX/5XS)是能效非常高的网络和数字音频播放器,您花费在安装和设置上的时 间和精力将会得到回报。我们强烈建议您阅读本手册。
NDX/5XS有效地整合了四个不同的的音频元件,其中每一个均接入用于连接到相关前置扩音器输 入的模拟或数字输出。每一个元件均将在下面的段落中予以介绍,并依次在第5节到第8节中详细描 述。各元件如下:
多模式收音机 通用即插即用™音频接口 USB音频接口 数模转换器

MAX3841中文资料

MAX3841中文资料

PARAMETER
SYMBOL
CONDITIONS
MIN TYP MAX UNITS
Core Supply Current Data Rate
ICC
Excluding CML termination currents
(Note 1)
65
90
mA
0
12.5 Gbps
CML Input Differential CML Input Common Mode
Termination Currents)
Ordering Information
PART
TEMP RANGE
MAX3841ETG -40°C to +85°C
PINPACKAGE
24 Thin QFN
PKG. CODE
T2444-1
Pin Configuration appears at end of data sheet.
12
dB
CML Output Differential CML Output Termination
VOUT
(Note 2) Single ended
400
500
42.5
50
600 57.5
mVP-P Ω
CML Output Transition Time Deterministic Jitter Random Jitter Propagation Delay
Note 4: Measured at 9.953Gbps using a pattern of 100 ones, 27 - 1 PRBS, 100 zeros, 27 - 1 PRBS, and at 12.5Gbps using a ±K28.5 pattern. VCC_IN = VCC_OUT = 1.8V, and VIN = 400mVP-P differential.

MB3843资料

MB3843资料

DS04-27700-3EFUJITSU SEMICONDUCTORDATA SHEETASSP For Power Management Applications (Secondary battery)Lithium Ion Battery Charger DC/DC Converter IC (High Precision with Constant-current Function)MB3813A/MB3833A/MB3843s DESCRIPTIONThe FUJITSU MB3813A/33A/43 are pulse width modulation (PWM) DC/DC converter ICs with independent output voltage and current setting capability.The use of on-chip output setting resistance enables high precision output voltage control. Also, an output voltage switching feature for use with either graphite-electrode or coke-electrode lithium-ion batteries makes this IC ideal for internal battery chargers in notebook personal computers and similar applications.s FEATURES•Output setting resistance is on-chip for high precision output voltage: ±1.0%•SEL pin enables output voltage selection•High precision reference voltage source: 2.5 V ± 1.0%Cell count Output voltagePart number3-cell 12.6 V/12.3 VMB3813A 2-cell 8.4 V/8.2 V MB3833A 1-cell4.2 V/4.1 VMB3843MB3813A/MB3833A/MB3843 (Continued)•On-chip standby function•On-chip input voltage detector circuit•On-chip soft start control circuit•On-chip output overshoot protection circuit for rapid load changes •On-chip totem-pole output circuits for P-ch. MOS FET devices2MB3813A/MB3833A/MB3843 s PIN ASSIGNMENT3MB3813A/MB3833A/MB3843s PIN DESCRIPTIONPin no.Symbol I/O Descriptions1Vin1I Input voltage detector block (VLDET) input pin2IN1I Current detector amplifier (Current Amp.) input pin3IN2I Output voltage feedback input pin4-IN2I Error amplifier (Error Amp.2) inverted input pin5-IN1I Error amplifier (Error Amp.1) inverted input pin6FB O Error amplifier (Error Amp.1, 2 common) output pin7CTL I Power supply control pinAn “L” level signal input to the CTL pin sets the IC in standby mode.8Vin2I DC/DC converter charging current setting input pin9VREF O Reference voltage output pin10SEL I Output voltage switching pin“L” level output voltage: MB3813A 12.6 VMB3833A 8.4 VMB3843 4.2 V“H” level output voltage: MB3813A 12.3 VMB3833A 8.2 VMB3843 4.1 V11CS—Soft start capacitor connection pin12RT—Triangular wave frequency setting resistor connection pin13CT—Triangular wave frequency setting capacitor connection pin14V CC—Power supply pin15OUT O Totem-pole output pin16GND—Ground pin4MB3813A/MB3833A/MB3843 s BLOCK DIAGRAM56MB3813A/MB3833A/MB3843s ABSOLUTE MAXIMUM RATINGS* :When mounted on a 10 by 10 centimeters square dual-sided epoxy base boardWARNING:Semiconductor devices can be permanently damaged by application of stress (voltage, current,temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.s RECOMMENDED OPERATING CONDITIONSWARNING:The recommended operating conditions are required in order to ensure the normal operation of thesemiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges.Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.ParameterSymbol ConditionValue Unit Min.Max.Power supply voltage V CC ——20V Input voltage V IN Vin1, IN1, IN2—20V Control input voltage V CTL ——20V Select input voltage V SEL ——20V Output current I O ——50mA Peak output current I O Duty ≤ 5% (t = f OSC × Duty)—500mA Allowable dissipation P D T a ≤ +25°C—440*mW Storage temperatureTstg—–55+125°CParameterSymbolConditionValueUnit Min.Typ.Max.Power supply voltage V CCMB3813A121618V MB3833A 81618V MB384371618V Reference voltage output current I OR —–1—0mA Input voltage V IN Vin1, IN1, IN20—18V V IN Vin20— 2.5V Control input voltage V CTL —0—18V Select input voltage V SEL —0—18V Peak output current I O Duty ≤ 5% (t = f OSC × Duty)–300—300mA Oscillator frequency f OSC —10200500kHz Soft start capacitance C S ——0.1 1.0µF Timing resistance R T —1015100k ΩTiming capacitance C T —10033010000pF Operating temperatureTa–302585°C7MB3813A/MB3833A/MB3843s ELECTRICAL CHARACTERISTICS(V CC = Vin1 = +16 V , V SEL = 0 V , T a = +25°C)(Continued)ParameterSymbol Pinno.ConditionValueUnit RemarksMin.Typ.Max.Reference voltage block (Ref)Output voltageV REF 9—2.475 2.500 2.525V Input stability Line 9V CC = 12 V to 18 V — 1.010.0mV MB3813A Line 9V CC = 8 V to 18 V — 1.010.0mV MB3833A Line 9V CC = 7 V to 18 V — 1.010.0mV MB3843Load stabilityLoad 9VREF = –0 µA to –500 µA — 3.010.0mV Under voltage lockout circuit block (UVLO)Threshold voltage V TH 9VREF = “L” → “H”1.82.0 2.2V Hysteresis voltage V H 9——0.20.35V Input voltage detector block (VLDET)Threshold voltageV TH 1Vin1 = “L” → “H”10.211.011.8V MB3813A V TH 1 6.77.37.9V MB3833A V TH 1 5.8 6.3 6.8V MB3843Hysteresis voltageV H1—— 1.0 2.0V MB3813A V H 1—0.7 1.4V MB3833A V H 1—0.57 1.2V MB3843Input currentI IH1Vin1 = 16 V—150300µA MB3813A I IH 1—270540µA MB3833A I IH 1—310620µA MB3843I IL1Vin1 = 0 V–1.0— 1.0µA Soft start block (UVLO)Charge current I CS 11—–1.4–1.0–0.6µA T riangular wave oscillator block (OSC)Oscillator frequencyf OSC 15CT = 330 pF , RT = 15 k Ω180200220kHz Error amplifier (Error Amp.1)Threshold voltageVT13FB = 1.5 V , SEL = 0 V 12.47412.6012.726V MB3813A VT138.3168.408.484V MB3833A VT13 4.158 4.20 4.242V MB3843VT13FB = 1.5 V ,T a = –30°C to +85°C 12.4112.6012.79V MB3813A VT138.278.408.53V MB3833A VT134.134.204.26VMB38438MB3813A/MB3833A/MB3843(V CC = Vin1 = +16 V , V SEL = 0 V , T a = +25°C)* :Standard design value (Continued)ParameterSymbol Pinno.ConditionValueUnit Remarks Min.Typ.Max.Error amplifier (Error Amp.1)Threshold voltageVT23FB = 1.5 V , SEL = 5 V12.17712.3012.423V MB3813A VT238.1188.208.282V MB3833A VT23 4.059 4.10 4.141V MB3843VT23FB = 1.5 V ,T a = –30°C to +85°C 12.1112.3012.49V MB3813A VT238.078.208.33V MB3833A VT23 4.04 4.10 4.16V MB3843Input stabilityLine3V CC = 13 V to 18 V , output 12.6 V— 2.510.0mV MB3813A Line 3V CC = 9 V to 18 V , output 8.4 V— 2.510.0mV MB3833A Line 3V CC = 7 V to 18 V , output 4.2 V— 2.510.0mV MB3843Input currentIIN23IN1 = 12.7 V , IN2 = 12.6 V — 1.0 2.0mA MB3813A IIN23IN1 = 8.5 V , IN2 = 8.4 V — 1.0 2.0mA MB3833A IIN23IN1 = 4.3 V , IN2 = 4.2 V — 1.0 2.0mA MB3843IIN23Vin1 = 0 V , IN2 = 12.6 V –1.0— 1.0µA MB3813A IIN23Vin1 = 0 V , IN2 = 8.4 V –1.0— 1.0µA MB3833A IIN23Vin1 = 0 V , IN2 = 4.2 V –1.0— 1.0µA MB3843Input resistanceR13—7.010.113.2k ΩMB3813A R13 4.1 5.97.7k ΩMB3833A R13 1.2 1.7 2.3k ΩMB3843R25— 1.7 2.5 3.3k ΩError amplifier (Error Amp.2)Input bias current IB 8Vin2–400–30—nA Input offset voltage V IO 5FB = 1.5 V ——5mV Error amplifiers (Error Amp.1,2 common)Voltage gain AV —DC —100*—dB Frequency bandwidthBW —AV = 0 dB—800*—kHz Output voltage V OH 6— 2.3 2.5—V V OL 6——0.80.9V Output source current I SOURCE 6FB = 1.5 V —–120–60µA Output sink currentI SINK6FB = 1.5 V 0.62.0—mA9MB3813A/MB3833A/MB3843(V CC = Vin1 = +16 V , V SEL = 0 V , T a = +25°C)(Continued)ParameterSymbol PinNo.ConditionValueUnit Remarks Min.Typ.Max.Current detector amplifier block (Current Amp.)Threshold voltageVT12IN2 = 3 V to V CCVT1 = VTH – IN2Vin2 = 2.5 V90100110mV MB3813A VT12Vin2 =0.75 V 203040mV MB3813A VT12IN2 = 3 V to V CCVT1 = VTH – IN2Vin2 = 2.5 V90100110mV MB3833A VT12Vin2 =0.75 V 203040mV MB3833A VT12IN2 = 3 V to V CCVT1 = VTH – IN2Vin2 = 2.5 V90100110mV MB3843VT12Vin2 =0.75 V 203040mV MB3843VT22IN2 = 0 VVT2 = VTH – IN2Vin2 = 2.5 V50100150mV VT22Vin2 =0.75 V53055mV Input current IIN12IN1 = 12.7 V , IN2 = 12.6 V —1734µA MB3813A IIN12IN1 = 8.5 V , IN2 = 8.4 V —1734µA MB3833A IIN12IN1 = 4.3 V , IN2 = 4.2 V—1734µA MB3843In-phase input voltage range V CM 2—0—V CC VVoltage gainA V 2IN1 = 12.7 V , IN2 = 12.6 V 212529V/V MB3813A A V 2IN1 = 8.5 V , IN2 = 8.4 V 212529V/V MB3833A A V 2IN1 = 4.3 V , IN2 = 4.2 V 212529V/V MB3843PWMcomparator block(PWM)ThresholdvoltageVT015Duty cycle = 0%0.9 1.0V VT10015Duty cycle = 100%— 2.0 2.1VOutput block (OUT)ONresistanceR ON 15OUT = –30 mA —1218ΩOutput voltage V OL 15OUT = 100 mA — 1.0 1.4V Standby leak current I LO 15V CC = 18 V , OUT = 18 V ,CTL = 0 V –1.0— 1.0µA Power supply control block (CTL)CTL input voltageV ON 7Active mode 2.0—18V Standby mode V OFF 7Standby mode 0—0.8V Input currentI IH 7CTL = 5 V —100200µA I IL7CTL = 0 V–1.0—1.0µA—MB3813A/MB3833A/MB3843(Continued) (V CC = Vin1 = +16 V, V SEL = 0 V, T a = +25°C)Parameter Symbol Pinno.ConditionValueUnit Remarks Min.Typ.Max.Output voltage selection block (SEL)SEL voltageV ON1012.3 V output mode 2.0—18V MB3813AV ON108.2 V output mode 2.0—18V MB3833AV ON10 4.1 V output mode 2.0—18V MB3843 SEL voltageV OFF1012.6 V output mode0—0.8V MB3813AV OFF108.4 V output mode0—0.8V MB3833AV OFF10 4.2 V output mode0—0.8V MB3843 InputcurrentI IH10CTL = 5 V–1.0— 1.0µAI IL10CTL = 0 V–1.0— 1.0µAInputcurrentwhen powersupply OFFI IL10V CC = 0 V, SEL = 5 V–1.0— 1.0µAGeneral StandbycurrentI CCS14CTL = 0 V—260390µAPowersupplycurrentI CC14at output voltage “H” level— 3.4 5.4mA10s TYPICAL CHARACTERISTICS(Continued)(Continued)(Continued)s FUNCTIONAL DESCRIPTION1.Switching Regulator Block(1)Reference voltage circuit (Ref)The reference voltage circuit uses the voltage supply from the V CC pin (pin 14) to generate a temperature compensated, stable voltage ( := 2.50 V) for use as the reference voltage for the internal circuits of the IC chip.It is also possible to supply a reference voltage output of up to 1 mA to external circuits through the VREF pin (pin 9).(2)Triangular wave oscillator circuit (OSC)By connecting the CT pin (pin 13) and RT pin (pin 12) respectively to a capacitance and resistance for timing,a triangular oscillator waveform can be generated.The triangular wave is input to the PWM comparator circuits on the IC. At the same time, it can also be supplied to an external device from the CT terminal.(3)Error amplifier circuit (Error Amp.1)The error amplifier circuit is used to detect the output voltage from the switching regulator and produces the PWM control signal. No external resistance is required at the error amplifier inversion input pin, because the output voltage setting resistance is connected within the IC. The output voltage settings are defined as: MB3813A 12.6 V/12.3 V, MB3833A 8.4 V/8.2 V, MB3843 4.2 V/4.1 V, the optimum levels respectively for use with 3-cell, 2-cell and 1-cell lithium-ion batteries.Also, by connecting feedback resistance and capacitance between the error amplifier FB pin (pin 6) and -IN pin (pin 5), it is possible to set the desired level of loop gain to provide stabilized phase compensation to the system.The CS pin (pin 11) can be connected to a soft start capacitor to prevent current surges at startup. The soft start is detected by the error amplifier, which provides a constant soft start time independent of output load.(4)Current detector amplifier circuit (Current Amp.)The current detector amplifier provides 25 × amplification of the voltage drop between the two ends of the output sensor resistor (RS) in the switching regulator, that occurs due to the flow of the charging current. This voltage drop is compared to the voltage at the Vin2 pin (pin 8) in the next stage error amplifier circuit (Error Amp.2), and used to control the charging current.(5)Power supply control circuit (CTL)An “L” level signal input to the CTL pin (pin 7) places the IC in standby mode. In standby mode, all circuits other than input detection circuits are switched off.(6)PWM comparator circuit (PMW Comp.)This is a voltage-pulse width conversion circuit that controls the output duty of the error amplifier circuits (Error Amp.1, 2) according to the output voltage.During intervals when the triangular waveform is lower than the eror amplifier output voltage, an external output transistor is switched on.(7)Output circuit (OUT)The output circuit uses a totem-pole configuration and is capable of driving an external P-ch. MOS FET device.2.Output Voltage Switching FunctionThe SEL pin (pin 10) is capable of output levels of 4.2 V or 4.1 V per battery cell.•Output voltage settings by model 3.Protection Functions(1)Input voltage detector circuit (VIDET)When the input voltage supply from the AC adapter or other source detected at the Vin1 pin (pin 1) falls below 11 V (MB3813A), or below 7.3 V (MB3833A), or below 6.3 V (MB3843), the internal reference voltage circuit switches off.(2)Under voltage lockout circuit (UVLO)Power surges at power-on, or momentary under-voltage situations can cause abnormal operation in a control IC, which may lead to damage or deterioration in systems. This circuit prevents abnormal peration during times of low voltage by using the supply voltage to detect the level of the internal reference voltage, and switching off the external output transistor to create a 100% rest interval. Once the supply voltage recovers to a level above the threshold voltage of the under voltage lockout circuit, operation is restored.SEL pin voltage levelModel Output voltageUnits L MB3813A 12.6V H 12.3V L MB3833A 8.4V H 8.2V L MB38434.2V H4.1Vss••s ERROR AMP. BLOCK OVERSHOOT PROTECTION CIRCUITThis built-in circuit responds to rapid fluctuations in charging current such as can occur when inserting or removinga chargeable battery, by clamping an inverted input signal (-IN1 or -IN2) from the error amps (Error Amp.1 orError Amp.2) to suppress changes in output voltage.s CTL, SEL PIN EQUIVALENT CIRCUITSs APPLICATION EXAMPLEs REFERENCE DATA(Continued)(Continued)s USAGE PRECAUTION•Printed circuit board ground lines should be designed in consideration of common impedance values.•Observe precautions against static electricity.•Containers in which semiconductors are placed should either be protected against static electricity, or be of conductive material.•After devices are mounted, use conductive bags or conductive containers when storing or transporting printed circuit boards.•Working surfaces, tools and instruments should be properly rounded.•Workers should be grounded by a ground line with 250 kΩ to 1 MΩ resistance in series between the worker and ground.•Do not apply negative voltages.The use of negative voltages below -0.3 V may create parasitic transistors on LSI lines, which can cause abnomal operation.s ORDERING INFORMATIONPart number Package RemarksMB3813APFV MB3833APFV MB3843PFV 16-pin plastic SSOP (FPT-16P-M05)MB3813A/MB3833A/MB3843 s PACKAGE DIMENSION21MB3813A/MB3833A/MB3843FUJITSU LIMITEDFor further information please contact:JapanFUJITSU LIMITEDCorporate Global Business Support Division Electronic DevicesKAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi,Kanagawa 211-8588, JapanT el: +81-44-754-3763Fax: +81-44-754-3329http://www.fujitsu.co.jp/North and South AmericaFUJITSU MICROELECTRONICS, INC.3545 North First Street,San Jose, CA 95134-1804, U.S.A.T el: +1-408-922-9000Fax: +1-408-922-9179Customer Response CenterMon. - Fri.: 7 am - 5 pm (PST)T el: +1-800-866-8608Fax: +1-408-922-9179/EuropeFUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,D-63303 Dreieich-Buchschlag,GermanyT el: +49-6103-690-0Fax: +49-6103-690-122/Asia PacificFUJITSU MICROELECTRONICS ASIA PTE. L TD.#05-08, 151 Lorong Chuan,New T ech Park,Singapore 556741T el: +65-281-0770Fax: +65-281-0220.sg/KoreaFUJITSU MICROELECTRONICS KOREA L TD.1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280KoreaT el: +82-2-3484-7100Fax: +82-2-3484-7111F0006©FUJITSU LIMITED Printed in Japan All Rights Reserved.The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).CAUTION:Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.24。

MAX31855热电偶芯片的中文翻译

MAX31855热电偶芯片的中文翻译

MAX3855冷端补偿热电偶至数字输出转换器概述MAX31855具有冷端补偿,将K、J、N、T或E型热电偶信号转换成数字量(如果使用S和R 型热电偶,请联系工厂)。

器件输出14位带符号数据,通过SPI TM 兼容接口、以只读格式输出。

转换器的温度分辨率为0.25℃,最高温度读数为+1800℃,最低温度读数为-270℃,对于K型热电偶,温度范围为-200℃至+700℃,保持±2℃精度。

对于整个量程范围的精度及其它类型的热电偶,请参考ThermalCharacteristics 规格。

应用工业电器设备HVAC 汽车特性S 冷端补偿S 14位、0.25℃分辨率S 提供K、J、N、T和E型热电偶器件版本(如果使用S和R型热电偶,请联系工厂) (见表1) S 简单的SPI兼容接口(只读)S 检测热电偶对GND或V CC 短路S 检测热电偶开路典型应用电路SPI是Motorola,Inc.的商标。

对于价格,供货及订购信息,请联络Maxim在1-888-629-4642,或访问Maxim的网站。

绝对最大额定值范围电源电压范围(VCC和GND)..................-0.3V to +4.0V所有其他引脚............................................-0.3V到(V CC+ 0.3V)连续功率耗散(T A =+70℃)SO(减免5.9mW/ ℃以上+70℃).......................470.6mWESD保护(所有引脚,人体模型).............±2000kV工作温度范围........................-40℃至+125°C连接点温度................................................ .....+150°C存储温度范围..........................-65℃至+150°清除温度(焊接,10秒) (300)焊接温度(回流) (260)强调超出“绝对最大额定值”,即可能对器件造成永久性损坏。

max3485中文资料

max3485中文资料

max3485中文资料MAX3483,MAX3485,MAX3486,MAX3488,MAX3490以及MAX3491是用于RS-485与RS-422通信的3.3V,低功耗收发器,每个器件中都具有一个驱动器和一个接收器。

MAX3483和MAX3488具有限摆率驱动器,可以减小EMI,并降低由不恰当的终端匹配电缆引起的反射,实现最高250kbps的无差错数据传输。

MAX3486的驱动器摆率部分受限,可以实现最高2.5Mbps的传输速率。

MAX3485,MAX3490和MAX3491则可以实现最高10Mbps 的传输速率。

驱动器具有短路电流限制,并可以通过热关断电路将驱动器输出置为高阻状态,防止过度的功率损耗。

接收器输入具有失效保护特性,当输入开路时,可以确保逻辑高电平输出。

特性●半双工●速率:10Mbps●限摆率:NO●接收允许控制:YES●关断电流:2nA●引脚数:8这些收发器在驱动器禁用的空载或满载状态下,吸取的电源电流在120&micro;A至500&micro;A之间。

另外,MAX481、MAX483与MAX487具有低电流关断模式,仅消耗0.1&micro;A。

所有器件都工作在5V单电源下。

采用单一电源+5 V工作,额定电流为300 μA,采用半双工通讯方式。

它完成将TTL电平转换为RS-485电平的功能。

MAX485芯片的结构和引脚都非常简单,内部含有一个驱动器和接收器。

RO和DI 端分别为接收器的输出和驱动器的输入端,与单片机连接时只需分别与单片机的RXD和TXD相连即可;/RE和DE端分别为接收和发送的使能端,当/RE为逻辑0时,器件处于接收状态;当DE为逻辑1时,器件处于发送状态,因为MAX485工作在半双工状态,所以只需用单片机的一个管脚控制这两个引脚即可;A端和B端分别为接收和发送的差分信号端,当A引脚的电平高于B时,代表发送的数据为1;当A的电平低于B端时,代表发送的数据为0。

max3485中文资料

max3485中文资料

max3455可以代替MAX485吗?否,MAX485是3.3V电源,MAX485是5V电源,其他都是相同的,包括它们的封装和电路结构,它们都是半双工的。

max3485和MAX485之间的区别图1引脚图max3485和MAX485之间的区别max3485和MAX485之间的区别A端和B端分别是接收和发送差分信号端。

当引脚的电平高于B时,发送的数据为1;否则,发送的数据为1。

当a的电平低于B时,发送的数据为0。

下图显示了485的抗干扰原理max3485和MAX485之间的区别MAX485接口芯片是Maxim公司的一种RS-485芯片它采用单电源+ 5V,额定电流为300uA,并采用半双工通信模式。

它可以将TTL电平转换为RS-485电平。

引脚结构如图1所示。

从图中可以看出,MAX485芯片的结构和引脚非常简单,包括驱动器和接收器。

RO 和di分别是接收器的输出和驱动器的输入。

与MCU连接时,只需分别与MCU的RXD和TXD连接。

/ re和de分别是接收和发送的启用端。

当/ re为逻辑0时,设备处于接收状态。

当De为逻辑1时,设备处于发送状态。

由于MAX485工作在半双工状态,因此仅需要单片机的一个引脚即可控制这两个引脚。

a端和b端分别是接收和发送差分信号的端。

当引脚的电平高于B时,发送的数据为1;当a的电平低于B时,发送的数据为0。

连接到制片机时,接线非常简单。

只需一个信号即可控制MAX485的接收和发送。

同时,在A和B端子之间添加一个匹配电阻,通常选择1002电阻。

max485esa中文资料

max485esa中文资料

General DescriptionThe MAX481, MAX483, MAX485, MAX487–MAX491, andMAX1487 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and onereceiver. The MAX483, MAX487, MAX488, and MAX489feature reduced slew-rate drivers that minimize E MI andreduce reflections caused by improperly terminated cables,thus allowing error-free data transmission up to 250kbps.The driver slew rates of the MAX481, MAX485, MAX490,MAX491, and MAX1487 are not limited, allowing them totransmit up to 2.5Mbps.These transceivers draw between 120µA and 500µA ofsupply current when unloaded or fully loaded with disableddrivers. Additionally, the MAX481, MAX483, and MAX487have a low-current shutdown mode in which they consumeonly 0.1µA. All parts operate from a single 5V supply.Drivers are short-circuit current limited and are protectedagainst excessive power dissipation by thermal shutdowncircuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature thatguarantees a logic-high output if the input is open circuit.The MAX487 and MAX1487 feature quarter-unit-loadreceiver input impedance, allowing up to 128 MAX487/MAX1487 transceivers on the bus. Full-duplex communi-cations are obtained using the MAX488–MAX491, whilethe MAX481, MAX483, MAX485, MAX487, and MAX1487are designed for half-duplex applications.________________________Applications Low-Power RS-485 Transceivers Low-Power RS-422 Transceivers Level Translators Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks__Next Generation Device Features o For Fault-Tolerant Applications MAX3430: ±80V Fault-Protected, Fail-Safe, 1/4Unit Load, +3.3V, RS-485 Transceiver MAX3440E–MAX3444E: ±15kV ESD-Protected,±60V Fault-Protected, 10Mbps, Fail-Safe, RS-485/J1708 Transceivers o For Space-Constrained Applications MAX3460–MAX3464: +5V, Fail-Safe, 20Mbps,Profibus RS-485/RS-422 Transceivers MAX3362: +3.3V, High-Speed, RS-485/RS-422Transceiver in a SOT23 Package MAX3280E–MAX3284E: ±15kV ESD-Protected,52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422,True Fail-Safe Receivers MAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,SOT23, RS-485/RS-422 Transmitters o For Multiple Transceiver Applications MAX3030E–MAX3033E: ±15kV ESD-Protected,+3.3V, Quad RS-422 Transmitters o For Fail-Safe Applications MAX3080–MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422Transceiverso For Low-Voltage ApplicationsMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V Powered, ±15kVESD-Protected, 12Mbps, Slew-Rate-Limited,True RS-485/RS-422 Transceivers For pricing, delivery, and ordering information, please contact Maxim Direct at1-888-629-4642, or visit Maxim Integrated’s website at .______________________________________________________________Selection Table19-0122; Rev 10; 9/14PARTNUMBERHALF/FULL DUPLEX DATA RATE (Mbps) SLEW-RATE LIMITED LOW-POWER SHUTDOWN RECEIVER/DRIVER ENABLE QUIESCENT CURRENT (μA) NUMBER OF RECEIVERS ON BUS PIN COUNT MAX481Half 2.5No Yes Yes 300328MAX483Half 0.25Yes Yes Yes 120328MAX485Half 2.5No No Yes 300328MAX487Half 0.25Yes Yes Yes 1201288MAX488Full 0.25Yes No No 120328MAX489Full 0.25Yes No Yes 1203214MAX490Full 2.5No No No 300328MAX491Full 2.5No No Yes 3003214MAX1487 Half 2.5No No Yes 2301288Ordering Information appears at end of data sheet.找电子元器件上宇航军工MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-LimitedRS-485/RS-422 TransceiversPackage Information For the latest package outline information and land patterns, go to . Note that a “+”, “#”, or “-”in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.16Low-Power, Slew-Rate-Limited RS-485/RS-422 TransceiversMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-100017©2014 Maxim Integrated Products, Inc.Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.。

XC6385中文资料

XC6385中文资料

概 要
XC6383系列是PFM(频率)工作模式升压型DC/DC转换器。采用 COMS工艺和激光微调技术,达到了低电流消耗、高精度。 该器件降低了应用于传呼器时多成为问题的转换时的高频噪 声。在2.0V~7.0V范围内,能以0.1V间隔设定输出电压。最大 工作频率为100kHz。 由于内置开关晶体管,只需外置线圈、二极管、电容器3种元 件,可构建升压电路。 此外,还备有具备用以停止工作以此抑制电流消耗的CE(停机 控制)功能、以及可用于反激电路的、有独立VDD端(将电源和 检测电压端分开)的产品。 备有SOT-89-5以及超小型的SOT-23和SOT-25封装。
引脚排列
3
SOT-23 (TOP VIEW)
1
2
5
4
SOT-25 (TOP VIEW)
123
SOT-89 (TOP VIEW)
1
2
3
5
4
SOT-89-5 (TOP VIEW)
1
2
3
引脚说明
ቤተ መጻሕፍቲ ባይዱ
(2) XC6385C
引脚序号
SOT-25 SOT-89-5
4
5
2
2
5
4
1
3
3
1
符号
VSS VOUT LX CE NC
元器4件.交D易C/网DCw转ww换.c器ecb2_b__._c_o_m____________________________________________________________________________________
XC6385系列 传呼器用PFM(频率)控制DC/DC控制器/转换器
选择指南
开始
3 管脚型 内置晶体管

MAX8533_cn

MAX8533_cn

___________________________________概述MAX8533是一款单端口、12V、InfiniBand ®兼容(IB) 的通用热插拔控制器。

该器件可应用于IB I类(非隔离型)和IB II类(隔离型) 电源拓扑应用。

此外,MAX8533能够在12V 总线供电的可热插拔刀片式服务器、RAID卡和网络交换机或路由器中充当可靠的电源控制器。

MAX8533内部集成有多种功能,允许电路板可靠地插入和拔出,同时还可实时监视异常事件。

开启输入电压时,MAX8533实现可调的软启动斜率,并提供过流保护。

该器件可在一段用户设定的时间内提供精确、稳定的电流调节输出,用于在过流情况(OC) 下完成闭锁和软启动。

此外,MAX8533还提供了第二级严重过流(SOC) 保护功能,在100ns内能够对短路故障做出响应。

MAX8533还具有可调的过压保护功能。

MAX8533具有欠压锁定(UVLO)功能,以及可连接至DC-DC转换器的电源就绪信号(POK),以确认工作时电源输出电压的状态。

两个使能输入引脚EN (逻辑使能)和LPEN (本地电源使能) 提供灵活的上电顺序。

MAX8533可工作在扩展级温度范围,能在电路板拔出时承受最高额定值为16V的电感感生电压。

MAX8533采用节省空间的10引脚µMAX封装。

___________________________________应用12V热插拔InfiniBand电路供电热插拔/插头/坞站电源管理刀片式服务器RAID网络路由器和交换机___________________________________特性♦12V热插拔控制器,用于25W或50W InfiniBand端口♦可编程过流保护电流调节输出♦EN和LPEN输入引脚可实现灵活的上电顺序♦电源就绪信号♦可承受最高16V的电感感生电压♦开启过程中提供软启动过流保护♦定时的电流调节周期(可调)♦输出完全短路时100ns IC响应时间♦可调过压保护♦欠压锁定♦可调启动斜率MAX8533尺寸最小、高可靠性、12V、InfiniBand兼容的热插拔控制器________________________________________________________________Maxim Integrated Products 119-2849; Rev 0; 4/03本文是Maxim正式英文资料的译文,Maxim不对翻译中存在的差异或由此产生的错误负责。

XC61CN替换MAX6377和MAX6380及MAX6808

XC61CN替换MAX6377和MAX6380及MAX6808

XC61CN替换MAX6377和MAX6380及MAX6808例:XC61CN 替换MAX6377XC61CN 替换MAX6380XC61CN 替换MAX6808系列名称:【XC61CN/XC61CC】特点:低功耗(0.8V)输入电压(V):最小--0.8V;最大--6V输出电压(V):最小--0.7V;最大--10V最大输出电流(mA):400mA消耗电流(μA):0.7A封装:SOT-23,SOT-89,SSOT-24,TO-92【TOREX-XC61CN系列】描述:1.XC61CN系列是一款高精度,低功耗的电压检测器芯片,并采用了CMOS生产工艺和激光微调技术。

2.XC61CN系列受温度漂移特性的影响很小,电压检测精度很高。

3.XC61CN系列有CMOS和N沟道开漏两种输出模式供选择。

【TOREX-XC61CN系列】特点:●高精度:±2%, ±1% (VDF=2.6V~5.1V)●低消耗电流:0.7μA(TYP.)[VIN=1.5V]●检测电压范围:能够在0.8V~6.0V范围内以0.1V间隔设定●工作电压范围:0.7V~6.0V(低检测电压0.8V~1.5V), 0.7V~10.0V(一般检测电压1.6V~6.0V)●检测电压温度特性:±100ppm/℃(TYP.)●輸出形式:N沟道开漏/CMOS輸出●封装:SSOT-24, SOT-23, SOT-89, TO-92TOREX日本IC均可完全替代下列型号:XC6221Bxx2MR 替代MIC5253 XC6115xxxxMR 替代LTC699CN8 XC6221BXX2MR 替代MIC5255-xxBM5 XC6116x0xxMR 替代LTC2915xxS8 XC6221BXX2MR 替代MIC5259 XC6121 替代MAX6320XC6204Bxx2DR 替代MIC5305-xxYML XC6122 替代MAX6320XC6419 替代MIC5371 XC6123 替代MAX6320XB1086 替代MIC39100-xxBS XC6124 替代MAX6320XC6205 替代MIC5203 XC6113 替代MAX823XC6411 替代MIC5371 XC6103 替代MAX823XC6412 替代MIC5371 XC6112 替代MAX823XC6415 替代MIC5371 XC6102 替代MAX823XCM406 替代MIC5264 XC6115 替代MAX824XC8101 替代MIC94060 XC6105 替代MAX824XC6601 替代MCP1727 XC6114xxxxMR 替代DS1819BRXC6213 替代TC1014-xxVCT713 XC6104xxxxMR 替代DS1819BRXC6212 替代TC1014-xxVCT713 XC61H 替代MAX809/803XC62KNxx02PR 替代TC59xx02EMBTR XC6101xxxxMR 替代DS1819ARXC62KNxx02MR 替代TC59xx02ECB XC6106xxxxER 替代MAX6335XC62EPxxxxMR 替代TC57xx02ECT XC6106xxxxER 替代MAX6402XC6206Pxx2TB替代TC55RPxx02EZB XC6107 替代MAX825XC6206Pxx2PR 替代TC55RPxx02EMB XC6116xxxxER 替代MAX6402XC6206Pxx2MR 替代TC55RPxx01ECB XC612 替代MAX6779XC6203Pxx2FR 替代TC1264-xxVDB XC61CNxx02NR 替代MAX6377XRxx XC6207 替代TC1014-xxVCT713 XC61CNxx02NR 替代MAX6380XRxx XC6217 替代TC1014-xxVCT XC61CNxx02MR 替代MAX6808URxx XC6206Pxx2PR 替代MCP1700T-xx02E/TT XC61FC 替代MAX809XC6209Bxx2MR 替代TC1014-xxVCT713 XC61FC2912MR 替代MAX809SEUR XC6209Bxx2MR 替代TC1015xxVCT XC61CCxx02NR 替代MAX6375XRxx XC6209Bxx2MR 替代TC1185xxVCT XC61CCxx02NR 替代MAX6378XRxx XC6203Pxx2FR 替代TC1262-xxVDB XC61CCxx02MR 替代MAX6806URxx XC6204Bxx2MR 替代LX8211-xxISE XC6111xxxxMR 替代DS1819ARXC6215Pxx2NR 替代MC78LC00 XC6101 替代MAX823XC6210Bxx2 替代MC78M00 XC6111 替代MAX823XC6401CHxxMR 替代LP3988IMX-xx XC6104 替代MAX824XC6403DHxxMR 替代LP3988IMF-xx XC6114 替代MAX824XC6210B122DR 替代LP3990TL-xx XC6106 替代MAX825XC6210B122DR 替代LP3990MF-xx XC6116 替代MAX825XC6221A182MR 替代LP3990MF-xx XC6107xxxxMR 替代MAX6337USxxD3 XC6202Pxx2TH 替代LM2931AZxx XC6117xxxxMR 替代MAX6337USxxD3 XC6214 替代LM1117MPX-xx XC6107xxxxMR 替代MAX6841/2XC6419 替代LP5996 XC6117xxxxMR 替代MAX6841/2XC6411 替代LP5996 XC61FNxxx2MR 替代MAX803XC6412 替代LP5996 XC61CNxx02MR 替代MAX6380URXC6415 替代LP5996 XC61CCxx02MR 替代MAX6375URXB1086Pxx1JR 替代LM1086CS XC6117 替代MAX825XB1117K12BFR 替代LM1117S XC6106 替代MIC2775XB1117PxxxFR 替代LM1117MPX-xx XC6116 替代MIC2775XC6203Pxx2FR 替代LM1117MPX-xx XC612 替代MIC2777XC6202Pxx2TH 替代LM2936Z-xx XCM410 替代MIC2774XB1117Pxx1FR 替代LM340S XC61CCxx02PR 替代TC54VCxx02EMB XC6202Pxx2TH 替代LM340LAZ-xx XC61CCxx02TB 替代TC54VCxx02EZB XC6202Pxx2MR 替代LM3480IM3-xx XC61H 替代TCM809XC6203P332FR 替代LM3940IMP-3.3 XCM410 替代TC52XC6202Pxx2TH 替代LM78LxxACZ XC6120 替代TC54XC6404DHxxMR 替代LMS5258MF-xx XC612 替代TC52XC6202Pxx2MR 替代LP2950 XC61CNxx02MR 替代TC53Nxx02ECTTR XC6204Bxx2MR 替代LP2978 XC61CNxx02NR 替代TC53Nxx02EVCTR XC6204Bxx2MR 替代LP2980AIM5-xx XC61CN 替代TC54VNXC6204Bxx2MR 替代LP2980IM5-xx XC6202Pxx2TH 替代L4931ABZxxXC6204Axx2MR 替代LP2980IM5X-xx XC6202Pxx2TH 替代L4931CZxxXC6204Bxx2MR 替代LP2981AIM5-xx XC6202Pxx2PR 替代L78LxxABUTRXC6204Bxx2MR 替代LP2981IM5-xx XC6202Pxx2TH 替代L78LxxABZXC6204Bxx2MR 替代LP2982AIM5-xx XC6202Pxx2PR 替代L78LxxACUXC6204Bxx2MR 替代LP2982IM5-xx XC6202Pxx2TH 替代L78LxxACZXC6204Bxx2MR 替代LP2985AIM5-xx XC6202Pxx2TH 替代L78LxxCZXC6204Bxx2MR 替代LP2985IM5-xx XC6203Pxx2FR 替代LD1117SXC6204Bxx2MR 替代LP3984IBP-xx XC6204Bxx2MR 替代LD2979MxxXC6403 替代LP3982 XC6202Pxx2TH 替代LD2979ZxxXC6204Bxx2DR 替代LP3985IBL-xx XC6204Bxx2MR 替代LD2980ABMxxXC6204Bxx2MR 替代LP3985IM5-x.x XC6201Pxx2PR 替代LD2980ABUxxTR XC62H 替代NCP584HSNxxT1G XC6204Bxx2MR 替代LD2980ACMxxXC62E 替代NCP584HSNxxT1G XC6201Pxx2PR 替代LD2980ACUxxXC6404 替代NCP400FCT2G XC6204Bxx2MR 替代LD2981ABMxxXB1086 替代LM317MBDTRK XC6201Pxx2PR 替代LD2981ABUxxXC6202 series 替代LM2931CD XC6204Bxx2MR 替代LD2981ACMxxXC6202Pxx2TH 替代LM2931Z-xx XC6201Pxx2PR 替代LD2981ACUxxXC6202Pxx2MR 替代LP2950 XC6202Pxx2TH 替代LExxABZ/CZXC6202Pxx2TH 替代LP2950CZ-xx XC6401 替代NCP583XVxxT2G XB1086 替代MC33269DTRK XC6214 替代MC78LCxxHT1XC6203Pxx2FR 替代MC33275ST-xxT3 XC6219 替代NCP584HSNxxT1G XC6204Bxx2MR 替代MC33761 XC6219Bxx2MR 替代BAxxxLBSGXC6206Pxx2PR 替代MC78FCxxHT1 XC6219 替代BA0xxLBSGXC6203xxx2PR 替代MC78LCxxHT1 XC6206Pxx2TB 替代RE5RExxACXC6202Pxx2TH 替代MC78LxxACP/BCP XC6206Pxx2PR 替代RH5RLxxAAXC6204Bxx2MR 替代MC78PCxxNTR XC6206Pxx2TH 替代RE5RLxxAAXC6206Pxx2PR 替代MC78RCxxHT1 XC6206Pxx2TB 替代RE5RLxxACXC6217Axx2MR 替代NCP584HSNxxT1G XC62EPxx02MR 替代RN5RGxxAATR XC6203Pxx2FR 替代SC5201-1GSTR3 XC62H 替代RN5RGxxAATR XC6402 替代NCP400FCT2G XC6419 替代R5325XC6403/04 替代NCP400FCT2G XB1086 替代RN5RGxxAATR XC6405 替代NCP400FCT2G XC6411 替代R5325XC6204Bxx2MR 替代R1111Nxx1A/B XC6412 替代R5325XC6204Bxx2MR 替代R1112Nxx1A/B XC6415 替代R5325XC6204Bxx2MR 替代R1112Nxx1B-TR XC8101 替代R5520HXC6206Pxx2PR 替代RH5RExxAA XC6204Bxx2MR 替代R1110Nxx1A/BXC6206Pxx2TH 替代RE5RExxAA。

max3485中文资料

max3485中文资料

MAX3485ESA品牌厂家:Maxim Integrated(美信),MAX3485ESA 渠道分销商:2家,现货库存数量:1542 PCS,MAX3485ESA价格参考:¥8.042元。

Maxim Integrated(美信)MAX3485ESA参数(SOIC 8Pin 3V 10Mbps,封装:SOIC),MAX3485ESA中文资料和引脚图及功能表说明书PDF下载(17页,409KB),您可以在MAX3485ESA接口芯片规格书Datesheet数据手册中,查到MAX3485ESA引脚图及功能的应用电路图电压和使用方法,MAX3485ESA典型电路教程。

MAX3485ESA可以用什么代替?代换型号如:MAX3485CSA+T、MAX3485CSA替代换,MAX3485ESA芯片系列中文手册中包含MAX3485ESA各引脚定义说明介绍及MAX3485ESA引脚功能图解,用户中文手册MAX3485ESA芯片手册PDF下载(17页,409KB)。

您可在采芯网下载MAX3485ESA产品选型手册,MAX3485ESA产品设计参考手册,MAX3485ESA用户编程技术手册,MAX3485ESA开发手册(3个文件)。

MAX3485ESA 代替型号更多代替型号器件图型号制造商品名代替类型描述对比MAX3485ESASOIC 8Pin 3V 10MbpsMaxim Integrated (美信)接口芯片当前型号3.3V供电,10Mbps的和摆率限制真RS - 485 / RS -422收发器3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers当前型号MAX3485CSA+TNSOIC 8Pin 3V接口芯片完全替代MAXIM INTEGRATED PRODUCTS MAX3485CSA+T 芯片, RS422/RS485 收发器, 10MBPS, 3.6V, NSOIC-8MAX3485ESA和MAX3485CSA+T区别MAX3485CSANSOIC 8Pin 3V 10Mbps美信接口芯片完全替代3.3V供电,10Mbps的和摆率限制真RS - 485 / RS -422收发器3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 TransceiversMAX3485ESA和MAX3485CSA区别SN75HVD11DRSOIC 8Pin德州仪器接口芯片类似代替3.3 V RS - 485收发器3.3-V RS-485 TRANSCEIVERS MAX3485ESA和SN75HVD11DR区别MAX3485ESA 相关器件器件图型号制造商品名封装描述价格(RMB)PDFSN65HVD1780DRSOIC 8Pin 3.3V德州仪器接口芯片SOIC, PDIPTEXAS INSTRUMENTS SN65HVD1780DR 芯片, 收发器, RS-485, 10MBPS, SOIC-8, 整卷¥ 6.637ISL83485IBZ-TSOIC 8Pin 3.6V 10Mbps英特矽尔接口芯片SOICRS-485 线路驱动器和接收器,Intersil 可靠的数据传输应用,使用长双绞线连接,带Intersil 半双工和全双工RS - 485 收发器,提供各种速度等级。

MAX5385中文资料

MAX5385中文资料

PIN-
SOT
PACKAGE TOP MARK
6 SOT23
AADF
6 SOT23-Thin AAAH
6 SOT23
AADH
6 SOT23-Thin AAAI
6 SOT23
AADJ
6 SOT23-Thin AAAJ
PART MAX5383 MAX5384 MAX5385
Selector Guide
INTERNAL REFERENCE 2V 4V
Typical Operating Circuit
+2.7V TO +5.5V
Features
o 8-Bit Resolution in a Miniature 6-Pin SOT23 Package
o Wide +2.7V to +5.5V Supply Range (MAX5385) o <1µA Shutdown Mode o Software-Selectable Output Resistance During
ELECTRICAL CHARACTERISTICS
(VDD = +2.7V to +3.6V (MAX5383), VDD = +4.5V to +5.5V (MAX5384), VDD = +2.7V to +5.5V (MAX5385), RL = 10kΩ, CL = 50pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are TA = +25°C.)
6-Pin SOT23 (derate 8.7mW/°C above +70°C)..........696mW
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

General Description The MAX6381–MAX6390 microprocessor (µP) supervisory circuits monitor power-supply voltages from +1.8V to +5.0V while consuming only 3µA of supply current at +1.8V. Whenever V CC falls below the factory-set reset thresholds, the reset output asserts and remains assert-ed for a minimum reset timeout period after V CC rises above the reset threshold. Reset thresholds are available from +1.58V to +4.63V, in approximately 100mV incre-ments. Seven minimum reset timeout delays ranging from 1ms to 1200ms are available.The MAX6381/MAX6384/MAX6387 have a push-pull active-low reset output. The MAX6382/MAX6385/ MAX6388 have a push-pull active-high reset output, and the MAX6383/MAX6386/MAX6389/MAX6390 have an open-drain active-low reset output. The MAX6384/MAX6385/MAX6386 also feature a debounced manual reset input (with internal pullup resistor). The MAX6387/MAX6388/MAX6389 have an auxiliary input for monitoring a second voltage. The MAX6390 offers a manual reset input with a longer V CC reset timeout period (1120ms or 1200ms) and a shorter manual reset timeout (140ms or 150ms).The MAX6381/MAX6382/MAX6383 are available in 3-pin SC70 and6-pinµDFN packages and the MAX6384–MAX6390 are available in 4-pin SC70 andFeatures♦Factory-Set Reset Threshold Voltages Rangingfrom +1.58V to +4.63V in Approximately 100mVIncrements♦±2.5% Reset Threshold Accuracy OverTemperature (-40°C to +125°C)♦Seven Reset Timeout Periods Available: 1ms,20ms, 140ms, 280ms, 560ms, 1120ms,1200ms (min)♦3 Reset Output OptionsActive-Low Push-PullActive-High Push-PullActive-Low Open-Drain♦Reset Output State Guaranteed ValidDown to V CC= 1V♦Manual Reset Input (MAX6384/MAX6385/MAX6386)♦Auxiliary RESET IN(MAX6387/MAX6388/MAX6389)♦V CC Reset Timeout (1120ms or 1200ms)/ManualReset Timeout (140ms or 150ms) (MAX6390)♦Negative-Going V CC Transient Immunity♦Low Power Consumption of 6µA at +3.6Vand 3µA at +1.8V♦Pin Compatible withMAX809/MAX810/MAX803/MAX6326/MAX6327/MAX6328/MAX6346/MAX6347/MAX6348,and MAX6711/MAX6712/MAX6713♦Tiny 3-Pin/4-Pin SC70 and 6-Pin µDFN PackagesMAX6381–MAX6390 SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits ________________________________________________________________Maxim Integrated Products1Pin Configurations19-1839; Rev 4; 4/07Ordering InformationOrdering Information continued at end of data sheet.Typi cal Operati ng Ci rcui t appears at end of data sheet.Selector Guide appears at end of data sheet.after "XR", "XS", or "LT." Insert reset timeout delay (see ResetTimeout Delay table) after "D" to complete the part number.Sample stock is generally held on standard versions only (seeStandard Versions table). Standard versions have an orderincrement requirement of 2500 pieces. Nonstandard versionshave an order increment requirement of 10,000 pieces.Contact factory for availability of nonstandard versions.+Denotes a lead-free package.For pricing, delivery, and ordering information,please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .ComputersControllersIntelligent InstrumentsCritical µP and µCPower MonitoringPortable/Battery-Powered EquipmentDual Voltage SystemsM A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset CircuitsABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = full range, T A = -40°C to +125°C, unless otherwise specified. Typical values are at T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..........................................................-0.3V to +6.0V RESET Open-Drain Output....................................-0.3V to +6.0V RESET , RESET (push-pull output)..............-0.3V to (V CC + 0.3V)MR , RESET IN.............................................-0.3V to (V CC + 0.3V)Input Current (V CC ).............................................................20mA Output Current (all pins).....................................................20mAContinuous Power Dissipation (T A = +70°C)3-Pin SC70 (derate 2.9mW/°C above +70°C)..............235mW 4-Pin SC70 (derate 3.1mW/°C above +70°C)..............245mW 6-Pin µDFN (derate 2.1mW/°C above +70°C)..........167.7mW Operating Temperature Range .........................-40°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits_______________________________________________________________________________________3M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 4______________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)215436789-40-105-25203550658095110125SUPPLY CURRENT vs. TEMPERATURE(NO LOAD)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )25292735333137394143-40-105-25203550658095110125POWER-DOWN RESET DELAYvs. TEMPERATURETEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (µs )0.940.980.961.021.001.061.041.08-40-10520-253550658095110125NORMALIZED POWER-UP RESET TIMEOUTvs. TEMPERATUREM A X 6381/90 t o c 03TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T P E R I O D0.9900.9851.0150.9950.9901.0001.0051.0101.020-40-10520-253550958011065125M A X 6381/90 t o c 04TEMPERATURE (°C)N O R M A L I Z E D R E S E T TH R E S H O L D NORMALIZED RESET THRESHOLDvs. TEMPERATURE00.40.20.80.61.01.2063912OUTPUT-VOLTAGE LOW vs. SINK CURRENTI SINK (mA)V O L (V )01.00.52.01.52.53.00500750250100012501500OUTPUT-VOLTAGE HIGH vs. SOURCE CURRENTI SOURCE (µA)V O H (V )45001100010010MAXIMUM TRANSIENT DURATION vs. RESET COMPARATOR OVERDRIVE15050350250500200100400300RESET COMPARATOR OVERDRIVE, V TH - V CC (mV)M A X I M U M T R A N S I E N T D U R A T I O N (µs )3.53.93.74.54.34.14.74.95.35.15.5-40-105-25203550658095110125RESET IN TO RESET DELAYvs. TEMPERATUREM A X 6381/90 t o c 08TEMPERATURE (°C)R E S E T I N D E L A Y (µs )MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset CircuitsPin DescriptionM A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 6_______________________________________________________________________________________Detailed DescriptionRESET OutputA µP reset input starts the µP in a known state. These µP supervisory circuits assert reset to prevent code execution errors during power-up, power-down, or brownout conditions.Reset asserts when V CC is below the reset threshold;once V CC exceeds the reset threshold, an internal timer keeps the reset output asserted for the reset timeout period. After this interval, reset output deasserts. Reset output is guaranteed to be in the correct logic state for V CC ≥1V.Manual Reset Input (MAX6384/MAX6385/MAX6386/MAX6390)Many µP-based products require manual reset capabil-ity, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low,and for the reset active timeout period (t RP ) after MR returns high. This input has an internal 63k Ωpullup resistor (1.56k Ωfor MAX6390), so it can be left uncon-nected if it is not used. MR can be driven with TTL or CMOS logic levels, or with open-drain/collector outputs.Connect a normally open momentary switch from MR to G ND to create a manual-reset function; external debounce circuitry is not required. If MR is driven from long cables or if the device is used in a noisy environ-ment, connecting a 0.1µF capacitor from MR to G ND provides additional noise immunity.RESET IN Comparator(MAX6387/MAX6388/MAX6389)RESET IN is compared to an internal +1.27V reference.If the voltage at RESET IN is less than 1.27V, reset asserts. Use the RESET IN comparator as a user-adjustable reset detector or as a secondary power-sup-ply monitor by implementing a resistor-divider at RESET IN (shown in Figure 1). Reset asserts when either V CC or RESET IN falls below its respective threshold volt-age. Use the following equation to set the threshold:V INTH = V THRST (R1/R2 + 1)where V THRST = +1.27V. To simplify the resistor selec-tion, choose a value of R2 and calculate R1:R1 = R2 [(V INTH /V THRST ) - 1]Since the input current at RESET IN is 50nA (max),large values can be used for R2 with no significant loss in accuracy.___________Applications InformationNegative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, the MAX6381–MAX6390 are relatively immune to short dura-tion negative-going V CC transients (glitches).The Typical Operating Characteristics section shows the Maximum Transient Durations vs. Reset Comparator Overdrive, for which the MAX6381–MAX6390 do not generate a reset pulse. This graph was generated usinga negative-going pulse applied to V CC , starting above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the typical maximum pulse width a neg-ative-going V CC transient may have without causing a reset pulse to be issued. As the magnitude of the tran-sient increases (goes farther below the reset threshold),the maximum allowable pulse width decreases. A 0.1µF capacitor mounted as close as possible to V CC provides additional transient immunity.Ensuring a Valid RESET Output Down to V CC = 0VThe MAX6381–MAX6390 are guaranteed to operate properly down to V CC = 1V. In applications that require valid reset levels down to V CC = 0V, a pulldown resistor to active-low outputs (push/pull only, Figure 2) and a pullup resistor to active-high outputs (push/pull only)will ensure that the reset line is valid while the reset out-put can no longer sink or source current. This schemedoes not work with the open-drain outputs of the MAX6383/MAX6386/MAX6389/MAX6390. The resistor value used is not critical, but it must be small enough not to load the reset output when V CC is above the reset threshold. For most applications, 100k Ωis ade-quate.MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits_______________________________________________________________________________________7M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 8_______________________________________________________________________________________Selector GuideOrdering Information (continued)Note:Insert reset threshold suffix (see Reset Threshold table)after "XR", "XS", or "LT." Insert reset timeout delay (see Reset Timeout Delay table) after "D" to complete the part number.Sample stock is generally held on standard versions only (see Standard Versions table). Standard versions have an order increment requirement of 2500 pieces. Nonstandard versions have an order increment requirement of 10,000 pieces.Contact factory for availability of nonstandard versions.*MAX6390 is available with D4 or D7 timing only.+Denotes a lead-free package.MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits_______________________________________________________________________________________9Chip InformationTRANSISTOR COUNT: 647PROCESS: BiCMOSPin Configurations (continued)M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 10______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits______________________________________________________________________________________11Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 12______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset CircuitsMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600____________________13©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.MAX6381–MAX6390Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)Revision HistoryPages changed at Rev 4: Title on all pages, 1, 2, 5,7–13。

相关文档
最新文档