2.3 匀变速直线运动的位移与时间的关系
2.3 匀变速直线运动的位移与时间的关系
2.3 匀变速直线运动的位移与时间的关系
2021.09.16
学习目标
1、能利用v-t图像得出匀变速直线运动的位移与时间关系式 = 0 +
1
2 ,进一步体会利用物理图像分析物体运动规律的研究方法。
2
2、能推导出匀变速直线运动的速度与位移关系式 2 − 02 = 2,体
(2)飞机在航母上降落时,需用阻拦索使飞机迅速停下来。若某次
飞机着舰时的速度为 80 m/s,飞机钩住阻拦索后经过 2.5 s 停下来。将这
段运动视为匀减速直线运动,此过程中飞机加速度的大小及滑行的距离各
是多少?
上面这种分析问题的方法具有一般意义,原则上对于处理
拓
展 任意形状的 v-t 图像都适用。对于图 所示的运动物体的位移,
1
2 ,是一个二次函数。
2
2、公式的适用条件:只适用于匀变速直线运动。
3、公式的矢量性:
0 、 、 均为矢量,应用公式解决问题时,应先选取正方
向。一般以0 的方向为正方向,若物体做匀加速运动,a取正值,
若物体做匀减速运动,则a取负值。
4、公式的特殊情况:
1 2
(1)如果v0=0,则x= at ,物体做初速度为0的匀加速直线运动。
刚好减为0。
【特别提醒】如果在所研究的问题中,已知量和未知
量都不涉及时间,利用这个公式求解,往往会更简便。
【例题2】动车铁轨旁两相邻里程碑之间的距离是1km。某同学乘坐
动车时,通过观察里程碑和车厢内电子屏上显示的动车速度来估算动车
减速进站时的加速度大小。当他身边的窗户经过某一里程碑时,屏幕显
示的动车速度是126km/h。动车又前进了 3 个里程碑时,速度变为 54
匀变速直线运动的位移与时间的关系公式
匀变速直线运动的位移与时间的关系公式
匀变速直线运动的位移与时间的关系公式可以由运动学公式推导得到,具体分为两种情况:
1. 匀速直线运动的位移与时间的关系公式:
位移 = 速度 ×时间
其中,位移表示物体在运动过程中从起点到终点的距离,速度表示物体的运动速度,时间表示运动的时间长度。
2. 变速直线运动的位移与时间的关系公式:
位移 = 初速度 ×时间 + 0.5 ×加速度 ×时间²
其中,初速度表示运动开始时的速度,加速度表示运动过程中的加速度。
这个公式描述了的位移与时间的关系可以用来计算变速直线运动下物体在不同时间点的位置。
注意,这个公式的适用条件是运动过程中加速度是一个常量。
另外还有一种特殊情况,匀变速直线运动中,如果物体的位移与时间的关系符合二次函数的形式,可以使用二次函数公式来描述位移与时间的关系。
例如:位移 = a ×时间² + b ×时间 + c,其中a、b和c是常数。
教学设计1:2.3 匀变速直线运动的位移与时间的关系
教师姓名学生姓名年级学科课题名称第二章第3节匀变速直线运动的位移与时间的关系课型时间教学目标1.知道匀速直线运动的位移与时间的关系.2.理解匀变速直线运动的位移及其应用.3.理解匀变速直线运动的位移与时间的关系及其应用.4.理解v-t图象中图线与t轴所夹的面积表示物体在这段时间内运动的位移.教学重难点教学重点1.理解匀速直线运动的位移及其应用.2.理解匀变速直线运动的位移与时间的关系及其应用.教学难点1.v-t图象中图线与t轴所夹的面积表示物体在这段时间内运动的位移.2.微元法推导位移公式.A预习本节内容,了解本节内容基本概况B、新课教学前面我们学习了匀变速直线运动中速度与时间的关系,其关系式为v=v0+at.在探究速度与时间的关系时,我们分别运用了不同方法来进行.我们知道,描述运动的物理量还有位移,那位移与时间的关系又是怎样的呢?我们又将采用什么方法来探究位移与时间的关系呢?一、匀速直线运动的位移与时间的关系做匀速直线运动的物体在时间t内的位移x=vt.说明:取运动的初始时刻物体的位置为坐标原点,这样,物体在时刻t的位移等于这时的坐标x,从开始到t时刻的时间间隔为t.在坐标纸上作出匀速直线运动的v---t图象,猜想一下,能否在v---t图象中表示出做匀速直线运动的物体在时间t内的位移呢?探究1.作出匀速直线运动的物体的速度—时间图象.2.由图象可看出匀速直线运动的v-t图象是一条平行于t轴的直线.3.发现,从0——t时间内,图线与t轴所夹图形为矩形,其面积为vt.4.结论:对于匀速直线运动,物体的位移对应着v-t图象中一块矩形的面积,如图教学过程讨论了匀速直线运动的位移可用v-t图象中所夹的面积来表示的方法,匀变速直线运动的位移在v-t 图象中是不是也有类似的关系,下面我们就来学习匀变速直线运动的位移和时间的关系.二、匀变速直线运动的位移问题:对于匀变速直线运动的位移与它的v-t图象是不是也有类似的关系?思考,并阅读“思考与讨论”。
高一物理匀变速直线运动的位移与时间的关系
一、匀速直线运动的位移
匀速直线运动,物体的位移对应着v-t图 像中的一块矩形的面积。
二、匀变速直线运动的位移
1、 匀变速直线运动,物体的位移对 应着v-t图像中图线与时间轴之间包围 公式 v=(v0+v)/2
课堂训练
1、一辆汽车以1m/s2的加速度加速行驶了 12s,驶过了180m,求汽车开始加速时的 速度是多少? 9m/s 2、骑自行车的人以5m/s的初速度匀减速上 一个斜坡,加速度的大小为0.4m/s2,斜坡 长30m,骑自行车的人通过斜坡需要多少 时间? 10s
3、以10m/s的速度匀速行驶的汽车刹车后 做匀减速运动。若汽车刹车后第2s内的 位移为6.25m(刹车时间超过2s),则 刹车后6s内汽车的位移是多大? a=-2.5m/s2 20m 4、以10m/s的速度行驶的汽车关闭油门后 后做匀减速运动,经过6s停下来,求汽 车刹车后的位移大小。 30m
小结
一、匀速直线运动的位移 1、匀速直线运动,物体的位移对应着v-t图像中 的一块矩形的面积。 2、公式:S = v t 二、匀变速直线运动的位移与时间的关系 1、 匀变速直线运动,物体的位移对应着v- t图 像 中图线与时间轴之间包围的梯形面积。 2、公式 3、平均速度公式
v=(v0+v)/2
[课堂探究]
三、匀变速直线运动的位移与 速度的关系
v2 - v02 = 2 a s
匀变速直线运动公式
1、速度公式 v = v0 + at
2、位移公式 S = v0 t+1/2 at2 3、推论
v2 - v02 = 2 a s
4、平均速度公式 v=(v0+v)/ 2
课堂训练
1、射击时,火药在枪筒里燃烧。燃气膨胀, 推动弹头加速运动。我们把子弹在枪筒里 的运动看做是匀加速直线运动,假设子弹 的加速度是a=5×105m/s,枪筒长 x= 0.64m,我们计算子弹射出枪口时的速度。
高中物理:2.3匀变速直线运动的位移与时间的关系
第3节 匀变速直线运动的位移与时间的关系学习目标核心提炼1.知道匀速直线运动的位移与v -t 图象中矩形面积的对应关系。
1种方法——极限思想解决问题的方法 1个公式——位移与时间关系式x =v 0t +12at 22种图象——x -t 和v -t 图线的特点及应用 2个重要推论——⎩⎨⎧v =v t 2=v 0+v 2Δx =aT 22.了解位移公式的推导方法,感受利用极限思想解决物理问题的科学思维方法。
3.理解匀变速直线运动的位移与时间的关系式。
会应用此关系式对匀变速直线运动问题进行分析和计算。
4.知道什么是x -t 图象,能应用x -t 图象分析物体的运动。
一、匀速直线运动的位移阅读教材第37~38页“匀速直线运动的位移”部分,知道匀速直线运动的位移x 与v -t 图象中矩形面积的对应关系。
1.位移公式:x =v t 。
2.在v -t 图象中的表示位移:对于匀速直线运动,物体的位移在数值上等于v -t 图线与对应的时间轴所包围的矩形的面积。
如图所示阴影图形面积就等于物体t 1时间内的位移。
思维拓展如图1所示,质点在5 s 内的位移是多大?图1★答案★ 0~3 s 位移x 1=v 1t 1=9 m 3~5 s 位移x 2=-v 2t 2=-4 m 故0~5 s x =x 1+x 1=5 m 。
二、匀变速直线运动的位移分析教材第38~40页图2.3-2的甲、乙、丙、丁的图解过程,了解位移公式的推导方法,从中感受极限思维方法的应用。
1.在v -t 图象中的表示位移: (1)微元法推导①把物体的运动分成几个小段,如图2甲,每段位移≈每段起始时刻速度×每段的时间=对应矩形面积。
所以,整个过程的位移≈各个小矩形面积之和。
②把运动过程分为更多的小段,如图乙,各小矩形的面积之和可以更精确地表示物体在整个过程的位移。
图2③把整个过程分得非常非常细,如图丙,小矩形合在一起成了一个梯形,梯形的面积就代表物体在相应时间间隔内的位移。
匀变速直线运动的位移与时间的关系
匀变速直线运动的位移与时间的关系【考点归纳】(1)匀变速直线运动的位移与时间的关系式:x=v0t+at2。
(2)公式的推导①利用微积分思想进行推导:在匀变速直线运动中,虽然速度时刻变化,但只要时间足够小,速度的变化就非常小,在这段时间内近似应用我们熟悉的匀速运动的公式计算位移,其误差也非常小,如图所示。
②利用公式推导:匀变速直线运动中,速度是均匀改变的,它在时间t内的平均速度就等于时间t内的初速度v0和末速度v的平均值,即=.结合公式x=vt和v=v t+at可导出位移公式:x=v0t+at2(3)匀变速直线运动中的平均速度在匀变速直线运动中,对于某一段时间t,其中间时刻的瞬时速度v t/2=v0+a×t=,该段时间的末速度v=v t+at,由平均速度的定义式和匀变速直线运动的位移公式整理加工可得===v0+at====v t/2。
即有:==v t/2。
所以在匀变速直线运动中,某一段时间内的平均速度等于该段时间内中间时刻的瞬时速度,又等于这段时间内初速度和末速度的算术平均值。
(4)匀变速直线运动推论公式:任意两个连续相等时间间隔T内,位移之差是常数,即△x=x2﹣x1=aT2.拓展:△x MN=x M﹣x N=(M﹣N)aT2。
推导:如图所示,x1、x2为连续相等的时间T内的位移,加速度为a。
【命题方向】例1:对基本公式的理解汽车在平直的公路上以30m/s的速度行驶,当汽车遇到交通事故时就以7.5m/s2的加速度刹车,刹车2s内和6s内的位移之比()A.1:1B.5:9C.5:8D.3:4分析:求出汽车刹车到停止所需的时间,汽车刹车停止后不再运动,然后根据位移时间公式求出2s内和6s内的位移。
解:汽车刹车到停止所需的时间>2s所以刹车2s内的位移=45m。
t0<6s,所以刹车在6s内的位移等于在4s内的位移。
=60m。
所以刹车2s内和6s内的位移之比为3:4.故D正确,A、B、C错误。
2.3_匀变速直线运动的位移与时间的关系(笔记上传)
特别提醒(非常实用):末速度为零的 匀减速直线运动可看成初速度为零,加速度 同原来相同的反方向匀加速直线运动。
A
v0
a
0
B
v0
A
a
0
B
又v=v0+at
1 2 得: x v 0 t at 2
1 2 2.对位移公式 x v 0 t at 的理解: 2
⑴反映了位移随时间的变化规律。
⑵因为υ 0、a、x均为矢量,使用公式时应先规定正
方向。(一般以υ 0的方向为正方向,若物体做匀加速 运动,a取正值,若物体做匀减速运动,则a取负值)。 (3)特别提醒:t是指物体运动的实际时间,要将位 移与发生这段位移的时间对应起来。
示
思考: 1、这个过程体现了什么科学思想方法?
答:把过程先微分后再累加(积分)的思想。 (无限分割,逐渐逼近)
2、是否是任何运动的位移仍都可以用V-t图中图
线与坐标轴所围的面积表示呢? 答:是的
1.由图可知:梯形OABC的面积S=(OC+AB)×OA/2
1 代入各物理量得: x (v0 v)t 2
位置X0出发。
d为匀加速直线运动的x-t图像。想想这 是数学上的哪种函数呢?那么匀减速直
线运动呢?
二次函数,抛物线。
交点M所代表的物理意义是什么?
X0
a、b、c、d三个物体在t1时刻相遇 0
t1
t
【问题思考】
如果一位同学问:“我们研究的是直线运动,为
什么画出来的匀变速直线运动的x-t图像不是直线?”
三、用图像表示位移(拓展)
复习:你还能画出静止的x-t图像吗?那么匀速直线运动呢?匀变速直线 运动呢?试试试看。 a为静止物体的x-t图像:平行于时间轴的直线。 b为匀速直线运动的x-t图像:一条倾斜的直线。 c也为匀速直线运动的x-t图像:只不过 在0时刻时不在0位置出发,而是在某一
2.3_匀变速直线运动的位移与时间的关系
1 x v t at 得 2
答:汽车开始加速时的速度是9m/s。
2-3匀变速直线运动的位移和时间的关系
计算题演算规范要求
一般应该先用字母代表物理量进行 运算,得出用已知量表示未知量的关系式, 然后再把数值和单位代入式中,求出未知 量的值。 这样做能够清楚地看出未知量与已知 量的关系,计算也简便。
思想方法:用简单模型来研究复杂问题
思考与讨论
2-3匀变速直线运动的位移和时间的关系
在“探究小车的运动规律”的测量记录中,某同学得到了小 车在0,1,2,3,4,5几个位置的瞬时速度.如下表:
位置编号
时间t/s 速度v/(m· s—1)
0
0 0.38
1
0.1 0.63
2
0.2 0.88
3
0.3 1.11
2-3匀变速直线运动的位移和时间的关系
四、用图像表示位移:x-t图
x/m
80
O
2.5 3.0 t/min
本课小结
2-3匀变速直线运动的位移和时间的关系
2-3匀变速直线运动的位移与时间的关系
一、用v-t图象研究运动的位移
位移=“面积” 二、匀变速直线运动的位移与时间的关系
1 v v x t x v t at 2 2
2-3匀变速直线运动的位移和时间的关系
回顾
在初中时,我 们曾经用“以直代曲” 的方法,估测一段曲 线的长度。 将复杂问题抽象成一个我们熟悉的 简单模型,利用这个模型的规律进行近 似研究,能得到接近真实值的研究结果。 这是物理思想方法之一。
研究方法的探讨
2-3匀变速直线运动的位移和时间的关系
要研究变速运动的 位移规律 我们已知匀速运动 的位移规律 能否借鉴匀速 运动的规律来研究 变速运动?
必修一 2.3匀变速直线运动的位移与时间的关系
二、匀变速直线运动的位移
1、从v-t图象中探究匀变速直线运动的位移
vቤተ መጻሕፍቲ ባይዱ
v – t 图线与t轴所夹
v
v0
面
积
的梯形“面积”是否匀变
t
t
速直线运动的位移呢?
位移
数值
梯形面积
V/m/s
V
将△t 取小,匀变速直线运动在△t时间
内可等效为匀速直线运动,各匀速直线运
动位移之和,就近似等于匀变速直线运动
的位移,在v-t图像中,即各小矩形面积之
间的关系式和速度与时间的关系式,那么速度与
位移有什么关系,你能推导吗?
位移与时间的关系式:x = v0t +
2
at
速度与时间的关系式:v = v0 + at
v2 - v0 2 = 2ax
这就是匀变速直线运动的速度与位移的关系
式。如果在所研究的问题中,已知量和未知量都
不涉及时间,利用这个公式求解,往往会更简便。
和近似等于匀变速直线运动的位移,显然
梯形的面积就代表做匀变速直线运动物体
V0
0
在0~t这段时间的位移。
t/s
t
v
v
v0
v0
0
0
t
t
t
结论:物体的位移对应着v-t图象与t
轴围成的的“面积”。
t
1 2
匀变速直线运动的位移公式: x v0t 2 at
(1)t是指物体运动的实际时间(刹车问题)
(2)使用公式时应先规定正方向
前进,2.4 s后离舰升空。飞机匀加速滑行的距离是多少?
(2)飞机在航母上降落时,需用阻拦索使飞机迅速停下来。若某
2.3匀变速直线运动位移与时间的关系
得:0
8:0.0384m,与真实值的差距更小了。
在第一节探究小车速度与时间变化的规律,我们得到的纸带:
0.0416m
012 3 4 5
6
7
8
9
取每四个计时点为一个计数点: 0.0288m
0
4
8
取每两个计时点为一个计数点: 0.0352m
02
4
6
8
以原始计时点作为计数点:
0.0384m
01 2 3 4 5
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
如果把运动无限分割,每小段运动持续的时间趋于零,无数个非常小的 矩形面积之和(无数段匀速运动的位移之和)刚好是梯形的面积。
由此可得: 匀变速直线运动的位移=无数段匀速运动的位移之和
=无数个非常小的矩形面积之和=梯形的面积 即:匀变速直 线运动的位移大小等于速度图线与坐标轴所围成 的面积大小
02
4
6
8
0 4 得:0
2:0.10 0.04=0.004m 2 6:0.26 0.04=0.0104m 6
4:0.18 0.04=0.0072m 8:0.34 0.04=0.0136m
8:0.0352m,与真实值的差距减小了一点。
在第一节探究小车速度与时间变化的规律,我们得到的纸带:
0.0416m
6
7
8
方法总结:可以把匀加速直线运动分成几段运动,把各 段运动看成匀速直线运动(以各段运动的初速度)。我们 可以看出, 把整个运动分的段数越多,每段运动持续的 时间越短,位移的计算结果就越接近真实值。我们再从 图象来看。
对上述过程分别用图像表达:
v(m/s)
2-3匀变速直线运动的位移与时间的关系(考点解读)-2023-2024学年高中(002)
2.3匀变速直线运动的位移与时间的关系(考点解读)(原卷版)考点1 匀变速直线运动位移与时间的关系1、匀变速直线运动的位移与时间的关系式:x =v 0t +12at 2。
2、公式的推导(1)利用微积分思想进行推导:在匀变速直线运动中,虽然速度时刻变化,但只要时间足够小,速度的变化就非常小,在这段时间内近似应用我们熟悉的匀速运动的公式计算位移,其误差也非常小,如图所示。
(2)利用公式推导:匀变速直线运动中,速度是均匀改变的,它在时间t 内的平均速度就等于时间t 内的初速度v 0和末速度v 的平均值,即x =12(v 0+v )t 。
结合公式v =v 0+at 可导出位移公式:x =v 0t +12at 2,当初速度为0时,x =12at 2。
3、技巧归纳(1)在v -t 图像中,图线与t 轴所围的面积对应物体的位移,t 轴上方面积表示位移为正,t 轴下方面积表示位移为负。
(2)位移公式x =v 0t +12at 2只适用于匀变速直线运动。
(3)公式中x 、v 0、a 都是矢量,应用时必须选取正方向;一般选v 0的方向为正方向.当物体做匀减速直线运动时,a 取负值,计算结果中,位移x 的正负表示其方向。
(4)当v 0=0时,x =12at 2,即由静止开始的匀加速直线运动的位移公式,位移x 与t 2成正比。
4、匀变速直线运动中的平均速度该段时间的末速度v=v t +at ,由平均速度的定义式和匀变速直线运动的位移公式整理加工可所以在匀变速直线运动中,某一段时间内的平均速度等于该段时间内中间时刻的瞬时速度,又等于这段时间内初速度和末速度的算术平均值。
5、匀变速直线运动推论公式:任意两个连续相等时间间隔T 内,位移之差是常数,即△x=x 2-x 1=aT 2.拓展:△x MN =x M -x N =(M-N )aT 2。
推导:如图所示,x 1、x 2为连续相等的时间T 内的位移,加速度为a 。
考点2 匀变速直线运动速度与位移的关系 1、匀变速直线运动位移与速度的关系。
2.3匀变速直线运动的位移与时间的关系-教师用
2.3匀变速直线运动的位移与时间的关系1.能运用位移公式解决有关问题.2.会推导速度与位移的关系式,知道式中各物理量的含义,会用公式v 2-v 20=2ax 进行分析和计算.3.会推导Δx =aT 2并会用它解决相关问题.一、匀变速直线运动的位移匀变速直线运动的位移与时间的关系:x =v 0t +12at 2. 1.两种特殊形式(1)当v 0=0时,x =12at 2(由静止开始的匀加速直线运动). (2)当a =0时,x =v 0t(匀速直线运动).2.公式的矢量性 公式中x 、v 0、a 都是矢量,应用时必须选取统一的正方向.若选v 0的方向为正方向,则:(1)物体加速,a 取正值;物体减速,a 取负值.(2)若位移为正值,位移的方向与正方向相同;若位移为负值,位移的方向与正方向相反.1.一物体由静止开始做匀变速直线运动,在时间t 内通过的位移为x ,则它从出发开始经过4x 的位移所用的时间为( )A.t 4B.t 2 C .2tD .4t【答案】C【解析】由位移公式得x =12at 2,4x =12at ′2,所以t 2t ′2=14,故t ′=2t ,C 正确. 2. 某物体运动的v -t 图象如图所示,根据图象可知,该物体( )A .在0到2s 末的时间内,加速度为1m/s 2B .在0到5s 末的时间内,位移为10mC .在0到6s 末的时间内,位移为7.5mD .在0到6s 末的时间内,位移为6.5m【答案】AD【解析】在0到2s 末的时间内物体做匀加速直线运动,加速度a =Δv Δt =22m/s 2=1 m/s 2,故A 正确.0到5s 内物体的位移等于梯形面积x 1=(12×2×2+2×2+12×1×2) m =7m ,故B 错误.在5s 到6s 内物体的位移等于t 轴下面三角形面积x 2=-(12×1×1) m =-0.5m ,故0到6s 内物体的位移x =x 1+x 2=6.5m ,C 错误,D 正确.3. 一滑块在水平面上以10m/s 的初速度做匀减速直线运动,加速度大小为2 m/s 2.求:(1)滑块3s 时的速度;(2)滑块10s 时的速度及位移.【答案】(1)4m/s (2)0 25m【解析】取初速度方向为正方向,则v 0=10m/s ,a =-2m/s 2由t =Δv a 得滑块停止所用时间t =0-10-2s =5s (1)由v =v 0+at 得滑块经3s 时的速度v 1=10m/s +(-2)×3 m/s =4m/s(2)因为滑块5s 时已经停止,所以10s 时滑块的速度为0,10s 时的位移也就是5s 时的位移,由x =v 0t +12at 2得x =(10×5-12×2×52) m =25m二、速度与位移的关系1.匀变速直线运动的位移速度公式:v 2-v 20=2ax ,此式是矢量式,应用解题时一定要先选定正方向,并注意各量的符号.若v 0方向为正方向,则:(1)物体做加速运动时,加速度a 取正值;做减速运动时,加速度a 取负值.(2)位移x>0说明物体通过的位移方向与初速度方向相同,x<0说明物体通过的位移方向与初速度方向相反. 2.当v 0=0时,v 2=2ax.3.公式特点:不涉及时间.推导补充公式:1.中间时刻的瞬时速度2t v =v 0+v 2. 2.中间位置的瞬时速度2x v =v 20+v 22. 3.平均速度公式总结:v =x t,适用条件:任意运动. v =v 0+v 2,适用条件:匀变速直线运动. v =2t v ,适用条件:匀变速直线运动.重要推论Δx =aT 2的推导及应用1.匀变速直线运动中,在连续相等的时间T 内的位移之差为一恒定值,即Δx =x 2-x 1=aT 2.2.应用(1)判断物体是否做匀变速直线运动如果Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2成立,则a 为一恒量,说明物体做匀变速直线运动.(2)求加速度利用Δx =aT 2,可求得a =Δx T 2.1. A 、B 、C 三点在同一条直线上,一物体从A 点由静止开始做匀加速直线运动,经过B 点的速度是v ,到C 点的速度是3v ,则x AB ∶x BC 等于( )A .1∶8B .1∶6C .1∶5D .1∶3【答案】A【解析】由公式v 2-v 20=2ax ,得v 2=2ax AB ,(3v)2=2a(x AB +x BC ),联立两式可得x AB ∶x BC =1∶8.2.一质点做匀变速直线运动,初速度v 0=2m/s,4s 内位移为20m ,求:(1)质点4s 末的速度;(2)质点2s 末的速度.【答案】(1)8m/s (2)5 m/s【解析】利用平均速度公式4 s 内的平均速度v =x t =v 0+v 42, 代入数据解得,4 s 末的速度v 4=8 m/s2 s 末的速度v 2=v 0+v 42=2+82m/s =5 m/s. 3.做匀加速直线运动的物体,从开始计时起连续两个4s 的时间间隔内通过的位移分别是48m 和80m ,则这个物体的初速度和加速度各是多少?【答案】8m/s 2 m/s 2【解析】根据关系式Δx =aT 2,物体的加速度a =Δx T 2=80-4842 m/s 2=2 m/s 2.由于前4 s 内的位移48=v 0×4+12a ×42,故初速度v 0=8 m/s.1.一个物体由静止开始做匀加速直线运动,第1s 末的速度达到4m/s ,物体在第2s 内的位移是( )A .6mB .8mC .4mD .1.6m【答案】A【解析】根据速度时间公式v 1=at 1,得a =v 1t 1=41m/s 2=4 m/s 2.第1s 末的速度等于第2s 初的速度,所以物体在第2s 内的位移x 2=v 1t 2+12at 22=4×1m +12×4×12m =6m .故选A. 2.—质点沿x 轴做直线运动,其v -t 图象如图所示.质点在t =0时位于x =0处,开始沿x 轴正向运动.当t =8s 时,质点在x 轴上的位置为( )A .x =3mB .x =8mC .x =9mD .x =0【答案】A【解析】在v -t 图象中图线与时间轴所围的面积表示了质点的位移,由v -t 图象可知,在0~4s 内图线位于时间轴的上方,表示质点沿x 轴正方向运动,其位移为正,x 1=2+4×22m =6m ,在4~8s 内图线位于时间轴的下方,表示质点沿x 轴负方向运动,其位移为负,x 2=-2+4×12m =-3m,8s 内质点的位移为:6m +(-3m)=3m ,故A 正确.3.汽车以10m/s 的速度在平直公路上匀速行驶,刹车后做匀减速运动经2 s 速度变为6 m/s ,求:(1)刹车后2s 内前进的距离及刹车过程中的加速度;(2)刹车后前进9m 所用时间;(3)刹车后8s 内前进的距离.【答案】(1)16m -2m/s 2 (2)1s (3)25m【解析】 (1)取初速度方向为正方向,汽车刹车后做匀减速直线运动,由v =v 0+t 1得a =v 1-v 0t 1=6-102m/s 2=-2 m/s 2, 负号表示加速度方向与初速度方向相反.再由x =v 0t +12at 2可求得x 1=16m , (2)由位移公式x =v 0t +12at 2 可得9=10t +12×(-2)t 2,解得t 2=1s(t 3=9s ,不符合实际,舍去),即前进9m 所用时间为1s. (3)设汽车刹车过程所用时间为t ′,则汽车经过时间t ′速度变为零.由速度公式v =v 0+at 可得t ′=5s ,即刹车5s 后汽车就已停止运动,在8s 内位移即为5s 内位移,故x ′=v 0t ′+12at ′2=(10×5) m +[12×(-2)×52] m =25m. 4..战机起飞前从静止开始做匀加速直线运动,达到起飞速度v 所需时间为t ,则起飞前的运动距离为( )A .vtB.vt 2 C .2vtD .不能确定【答案】B【解析】因为战机在起飞前做匀加速直线运动,则x =v t =0+v 2t =v 2t ,B 正确. 5.从斜面上某一位置每隔0.1s 释放一个相同的小球,释放后小球做匀加速直线运动,在连续释放几个后,对在斜面上滚动的小球拍下如图3所示的照片,测得x AB =15cm ,x BC =20cm.试问:(1)小球的加速度是多少?(2)拍摄时小球B 的速度是多少?(3)拍摄时x CD 是多少?【答案】(1)5m/s 2 (2)1.75 m/s (3)0.25m【解析】小球释放后做匀加速直线运动,且每相邻的两个小球的时间间隔相等,均为0.1s ,可以认为A 、B 、C 、D 是一个小球在不同时刻的位置.由推论Δx =aT 2可知,小球加速度为a =Δx T 2=x BC -x AB T 2=20×10-2-15×10-20.12m/s 2=5 m/s 2. (2)由题意知B 点对应AC 段的中间时刻,可知B 点的速度等于AC 段上的平均速度,即v B =v AC =x AC 2T =20×10-2+15×10-22×0.1m/s =1.75 m/s. (3)由于连续相等时间内位移差恒定,所以x CD -x BC =x BC -x AB所以x CD =2x BC -x AB =2×20×10-2m -15×10-2m =25×10-2m =0.25m.。
2.3匀变速直线运动的位移与时间的关系
2、某物体做直线运动,物体的速度-时间图象如 图所示,若初速度的大小为v0,末速度的大小为v,则在 时间t1内物体的平均速度( C ) v v A 等于 v 0
B 小于
C 大于
2 0 v 2 0 v 2
v0
o
(横轴上方的面积与横轴下方的面积有什么分别?)
V 匀 B 变 v 速 S 直 V0C 线 o A 运 0 t t 动 的 位 移 匀变速直线运动位 移与时间的关系式 (简称位移公式)
思考:能否利用上 述结论找出匀变速 1 ( OC + AB ) ×OA =— 2直线运动的位移与 时间的关系式呢?
1 v0 + v ) x= 2 v = v0 + a t
D条件不足,无法比较
t1
t
小 结 一、匀速直线运动的位移公式:
x=vt
二、匀变速直线运动的位移公式:
1a t2 x = v0 t + — 2
三、匀变速直线运动的平均速度公式 0 v t 2
四、在 v-t 图象中,物体的位移 x 在数值上 等于图线与坐标轴所围的面积。 (其中横轴上方的面积代表位移为正方向, 横轴下方的面积代表位移为负方向。)
的位移 x 在数值上等于图线与坐标轴所围的 矩形面积。 (其中横轴上方的面积代表位移为正方向, 横轴下方的面积代表位移为负方向)
思 考 与 讨 论 :
对于匀变速直线运动,它的位移与 它的 v-t 图象,是不是也有类似的关系 呢?
阅读课本P37-38"思考与讨论",思考并发 表你的意见
匀 V 变 V4 速 V3 V2 直 V1 V0 线 运 0 t1 t2 t3 t4 t t 动 的 位 结论:在匀变速直线运动的 v-t 图象中,物体的位移 移 x 在数值上等于图线与坐标轴所围的面积。
专题2.3 匀变速直线运动的位移与时间的关系
第二章匀变速直线运动的研究第3节匀变速直线运动的位移与时间的关系一、匀速直线运动的位移1.做匀速直线运动的物体在时间t内的位移x=vt2.做匀速直线运动的物体,其v–t图象是一条平行于时间轴的直线,其位移在数值上等于v–t图线与对应的时间轴所围的矩形的面积。
二、匀变速直线运动的位移1.位移公式:x=__________(1)公式中x、v0、a均是矢量,应用公式解题前应先规定_________,明确各物理量的正负,一般规定初速度方向为正方向。
(2)当v0=0时,x=12at2,表示初速度为零的匀加速直线运动的位移与时间的关系。
2.做匀变速直线运动的物体的位移,对应其v–t图象中_________________________________。
三、匀变速直线运动的两个重要推论1.平均速度做匀变速直线运动的物体,在一段时间t内的平均速度等于这段时间内___________的瞬时速度,还等于这段时间初、末速度矢量和的一半。
即v=xt=v t/2=02tv v+z/x*xk2.逐差相等在任意两个连续相等的时间间隔T内,位移之差是一个常量,即Δx=_______v0t+12at2正方向图线与时间轴所围的面积中间时刻aT2一、匀变速直线运动的位移与时间的关系【例题1】(2017江苏南通通州区东社学校高一学情检测)某物体做匀变速直线运动,其位移与时间的关系为x =0.5t +t 2(m),则当物体的速度为3 m/s 时,物体已运动的时间为A .1.25 sB .2.5 sC .3 sD .6 s 参考答案:A二、匀变速直线运动的两个重要推论【例题2】(2017山东锦泽高二期末)甲、乙两汽车在一平直公路上同向行驶。
在t =0到t =t 1时间内,它们的v –t 图象如图所示。
在这段时间内A .汽车甲的平均速度比乙大B .汽车乙的平均速度等于122v v + C .甲、乙两汽车的位移相同D .甲、乙两汽车的加速度都逐渐减大 参考答案:A试题解析:平均速度等于位移与时间的比值,在v t -图象中,图线与时间轴所围的面积代表位移的大小,根据图象可知,甲的位移大于乙的位移,由于时间相同,所以汽车甲的平均速度比乙的大,A 正确,C 错误;如图所示,直线表示匀减速直线运动,其平均速度为122v v +,而匀减速直线运动的位移大于该变减速运动的位移,则汽车乙的平均速度小于122v v +,B 错误;因为切线的斜率等于物体的加速度,汽车甲和乙的加速度大小都逐渐减小,D错误。
第2.3课 匀变速直线运动的位移与时间的关系(解析版)
第2.3课 匀变速直线运动的位移与时间的关系一、匀速直线运动的位移 1.位移公式:x = .2.位移在v -t 图象中的表示:对于匀速直线运动,物体的位移在数值上等于v -t 图线与对应的时间轴所包围的矩形的_____.如图1所示,阴影图形的面积就等于物体在t1时间内的_____.二、匀变速直线运动的位移1.位移在v -t 图象中的表示:做匀变速直线运动的物体的位移对应着v -t 图线与时间轴所包围的_________.如图所示,阴影图形的面积等于物体在t1时间内的_____.2.公式:x =_________.三、位移—时间图象(x -t 图象)1.x -t 图象:以______为横坐标,以______为纵坐标,描述位移随时间的变化规律.2.常见的x -t 图象:(1)静止:一条______________的直线. (2)匀速直线运动:一条_____的直线. 3.x -t 图象的斜率等于物体的 .答案:vt 面积 位移 梯形面积 位移 2021at t v 时间t 位移x 平行于时间轴 倾斜 速度考点一 对位移公式2012x v t at =+的进一步理解(1)反映了位移随时间的变化规律。
(2)因为0v 、a 、x 均为矢量,使用公式时应先规定正方向。
一般以0v 的方向为正方向。
若a 与0v 同向,则a 取正值;若a 与0v 反向,则a 取负值; 若位移计算结果为正值,说明这段时间内位移的方向为正;若位移计算结果为负值,说明这段时间内位移的方向为负。
(3)因为位移公式是关于t 的一元二次函数,故x t -图象是一条抛物线(一部分)。
但它不表明质点运动的轨迹为曲线。
(4)对于初速度为零(00v =)的匀变速直线运动,位移公式为21122x vt at ==,即位移x 与时间t 的二次方成正比。
【注意】(1)2012x v t at =+是矢量式,应用时x 、0v 、a 都要根据选定的正方向带上“+”、“—”号。
2.3匀变速直线运动的位移与时间的关系
解之得:t1=10s,t2=15s 讨论:
2
答案:t=10s
把两个时间代入速度公式可算出对应的末速度: v1=1m/s,v2=-1m/s 与实际情况不符,舍去!
x x1 x2 x3 (10 0.5 11 0.5 12 0.5 )m 54m
v/m/s
18
运算结果与前两 次有何不同?
14
10
将运动分成等时的八段, 即⊿t=0.5s内为匀速运动。
2 4
t/s
0
v/m/s
v/m/s
18 14 10
1 2 x v0t at 2
t/s
t
匀变速直线运动的位移是时间的二次函数。
例1:一辆汽车以1m/s2的加速度行驶了12s,驶过了 180m。汽车开始加速时的速度是多少? 先用字母代表物 理量进行运算
1 2 解:由 x v0t at 2
得汽车开始加速时的速度为: 1 2 1 x at 180m 1m / s 2 (12s) 2 2 2 v0 9m / s t 12s
结论 ⊿t 越小,估算
x=58m
2
4
t/s
10
值就越接近真实值!
0
进一步的探究数据 55.75m<x<56.25m
分16段 ⊿t=0.25s
分32段 ⊿t=0.125s 分64段 ⊿t=0.0625s 初速度 末速度 初速度 末速度 初速度 末速度 探究过程
⊿t内速度取值 运算结果 误差分析
x=55m x=57m x=55.5m x=56.5m x=55.75m x=56.25m 偏小 偏大 偏小 偏大 偏小 偏大
2.3匀变速运动的位移和时间关系
1 1 x1 v1 t1 5 m s 2s 5m 2 2
后2s内的位移为
1 x2 v2 t 2 2
前4s内的位移为
1 (5 m s) 2s 5m 2
第三节 匀变速直线运动的位移 与时间的关系
匀速直线运动的位移
取运动的初始时刻(t=0)物体的位置为坐 标原点,做匀速直线运动的物体在时间t内 的位移为 x vt。
v /(m s )
1
v
o
t
t/s
对于匀速直线运动,物体的位移对应着v-t 图象下面的“面积”。
匀变速直线运动的位移
v
v0
o
t
质点距坐标原点最远。
⑶从t=0到t=20s内质点的位移
4
o
4
10
20
0 是___________;
40 m 通过的路程是___________。
t/s
例4:某一做直线运动 的物体的v-t图象如右 图所示,根据图象求: (1)物体距出发点的最 远距离;
v /(m s )
4 2
1
o
1 2 3
4
两条直线的交点表示两物体在此时刻相遇。
思考:物体是在做匀速直线运动
吗?
x/m
t
x'
x
t
o
t/s
物体不是在做匀速直线运动,而是在 做速度不断变小的直线运动。
x/m
x/m
o
x/m
t/s
o
t/s
思考:这几个物 体在做什么运动 呢?
o
t/s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 因为 x (v0 vt ) t 2 x 由平均速度公式 v 可知: t
匀变速直线运动在一段时间内的平均速度为:
v 0 vt v 2
【要点归纳1】
1、匀变速直线运动的位移与时间的关系: v0 vt 1 2 x v t t v0t at 2 2 (1)匀加速直线运动,加速度取正值; (2)匀减速直线运动,加速度取负值。 (3)如果初速度为0,上述公式可以简化为 1 2 x at 2
t
0
v v 2ax
2 t 2 0
2 2 v0 vt vt v v v0 vt 2 2 2 2 x2 x1 x3 x2 xn xn1 aT
第四节 匀变速直线运动的 速度与位移的关系
复习回顾:匀变速直线运动的基本规律
v vt v0 a t t
vt v0 t a
v0 vt 1 2 x v t t v0t at 2 2 x v0 vt v t 2
vt v0 at
v vt v0 a t
x v0 vt v (矢量式) t 2
3、用图象表示位移(x-t图象)
x/m x1
x0 o
t1 t/s
思考:考察上图中的图象中一个点有何意 义?一段线有何含义?整段图线反映什么 物理现象?
【要点归纳2】
x/m
x/m x0
t/s
O
x1 x0 o Δt
Δx
t1
t1
t/s
1、图象的物理意义:物体的位置(或位移)随 时间的变化规律。形状反映物体的运动状态。 2、图象反映的信息:某时刻的位置坐标(可求 某段时间内的位移),斜率反映物体的速度大小 (利用两个点的坐标可求物体的速度)。
用运动学量表示上式可以变成
1 x (v0 vt ) t 2
根据上节我们得到的运动学公式
vt v0 at
得到:匀变速直线运动的位移与时间的关系: v0 vt 1 2 x t v0t at 2 2 同理:对于匀加速直线运动,加速度取正值; 对于匀减速直线运动,加速度取负值。
思考:下列图象表示物体做什么运动?
x x0 -x0
x
思考:下列图象表示物体做什么运动?
x/m
思考:如图是一辆汽车做直线运动的x-t 图象,分析线段OA、AB、BC、CD所表 示的运动。
x
思考、如图所示,两条直线表示两个物体的 运动特点,试分析两物体各做什么运动,两 条直线的交点有什么含义. x/m v/ms-1
0 0.1 0.2 0.3 0.4 0.5 速度(m/s) 0.4 0.6 0.8 1.0 1.2 1.4
思考:0~0.5s内的位移可否近似估算为: x=0.4×0.1+0.6×0.1+0.8×0.1+1.2×0.1+ 1.4×0.1= ……
时间t/s
上述方法的思想是把物体在0~0.1s内看作是速度 为0.4m/s的一段匀速运动; 0.1~0.2s内看作是速 度为0.6m/s的一段匀速运动; 0.1~0.2s内看作是 速度为0.8m/s的一段匀速运动,……然后多个小段 匀速运动的位移之和为0~0.5s内位移。
v
v0
v
v0
o
t
t
v
o
t
t
粗略地表示位移
较精确地表示位移
如果把时间 轴分割成无限 小的时间段, 情况又会怎么 样呢?
v0
o
t
t
精确地表示位移
v
v0
o
t
t
对于匀变速直线运 动,物体的位移也 对应着v-t图象下面 的“面积”。
v
vt
C
B
v0
o
t
A
t
上图,CB斜线下梯形OABC的面积是
1 S (OC AB ) OA 2
v
v0
o
t
t
思考与讨论
下面是某一物体在 0~0.5s内做匀加速直线 运动的情况(见下表),表中“速度”一行是 物体在0、1、2……5几个位置的瞬时速度。
位置编号 0
1
2
3
4
5
时间t/s
0 0.1 0.2 0.3 0.4 0.5 速度(m/s) 0.4 0.6 0.8 1.0 1.2 1.4 能不能根据表中的数据,用最简 便的方法估算这一物体在0到0.5s内的 位移?
思考2:列车长为L,铁路桥长也是L,列车沿 平直轨道匀加速过桥,车头过桥头时,列车速 度为v1,车尾过桥尾时,列车速度为v2,求: 1)列车通过桥的加速度 2)车头过桥尾时速度
2、证明:时间中点的瞬时速度等于这段时间 的平均速度;
t v0 v0 at v0 vt v t v0 a v 2 2 2 2
2、匀变速直线运动在一段时间内的平均速度为:
x v0 vt v (矢量式) t 2
例1:以 18m/s 的速度行驶的汽车,紧急 刹车后做匀减速直线运动,加速度大小为 6m/s2 ,求刹车后5s内汽车行驶的距离。
v v0 0 18 汽车做匀减速直线运动的时间为 t 3( s ) a 6
【课堂小结】 1、匀变速直线运动的位移与时间的关系: v0 vt 1 2 x v t t v0t at 2 2 (1)匀加速直线运动,加速度取正值; (2)匀减速直线运动,加速度取负值。 (3)如果初速度为0,上述公式可以简化为 1 2 x at 2
2、匀变速直线运动在一段时间内的平均速度为:
2
【课堂小结】:匀变速直线运动的基本规律 vt v0 t v vt v0 a a t t v v v a t
v0 vt 1 2 x v t t v0t at 2 2 x v0 vt v t 2
vt v0 at
思考1、有些航空母舰上装有帮助飞机起飞的 弹射系统,已知某型号的战斗机在跑道上加速 时可能产生的最大加速度为5.0m/s2,当飞机的 速度达到50m/s时才能离开航空母舰起飞。设 航空母舰处于静止状态。问: 1)若要求该飞机滑行160m后起飞,弹射系统 必须使飞机具有多大的初速度? 2)若某舰上不装弹射系统,要求该种飞机仍 能此舰上正常起飞,问该舰身长至少为多长?
用法:选初速度方向为正方向,进行矢 量运算,统一单位,注意时间间隔或时 刻,注意实际问题。
思考:上述公式中都涉及到运动的时间 问题,如果没有时间能否在匀变速直线 运动中求位移、速度或加速度呢? v v v v t 0 t 0 t 由a 可知: a t
v0 vt t 可知: 由x 2
v0 vt v0 vt vt v0 v v x t 2 2 a 2a
2 t
2 0
2 可得: t
Байду номын сангаас
v v 2ax
2 0
【要点归纳1】 1、匀变速直线运动的速度与位移的关系:
v v 2ax
2 t 2 0
(1)v0表示某段位移x的起点位置的速度 (2)vt表示某段位移x的末位置的速度 (3)匀加速直线运动,加速度取正值; 匀减速直线运动,加速度取负值。 (4)位移x的方向与正方向相同取正, 相反则取负
v
在图象上观 察,时间中 点的瞬时速 度
vt
v0
o
t
t
v v 3、证明:位移中点的瞬时速度 v 2
2 0
2 t
x v v 2a 2 x 2 2 vt v 2a 2
2 2 0
2 v0 vt2 两式相等得:v 2
4、证明:连续相邻且相等时间内的位移差 是一个常数
x2 x1 x3 x2 xn xn1 aT
t/s
t/s
思考:物体是在做匀速直线运动吗?
x/m
t
x '
x
t
o
t/s
物体不是在做匀速直线运动,而是在 做速度不断变小的直线运动。
思考:甲、乙、丙三个物体同时同地出发做 直线运动,它们的位移一时间图像如图所示 ,试定性分析: (1)甲、乙、丙分别做何种运动? (2)比较甲、乙、丙的平均速度大小; (3)比较甲、乙、丙的平均速率 x/m
解:由v=v0 +at 可知:
可见,3s~5s内汽车处于静止状态。 1 2 由 x v0t at 可知: 2 所以,刹车后5s内汽车行驶的距离为
1 2 x 18 3 (6) (3) 27 (m) 2
变式与思考:用两种不同方法求下 问题: 变式1 :求汽车在刹车后的第2s内 的位移? 变式2:求汽车在刹车过程中的最 后1s的位移?
v
在图象上 的几何特 征是什么 样子呢?
0
0.1 0.2 0.3 0.4 0.5 t
思考:1)如果要提高估算的精确程 度,有什么更好的方法吗? 2)如果当初实验时的时间间隔不是 取0.1 s,而是取得更小些,比如 0.02 s,同样用这个方法计算,误差 是不是会小一些? 3)如果取0.002 s、0.0002 s …… 误 差又会怎样?误差是不是会小一些?
思考:利用初中学过的二次函数,画出初速 度为0的某一匀加速直线运动的x-t图象,应该 是什么样子?
x/m
o
t/s
思考:我们研究的是匀加速直线运动,为什么 画出来的x-t图象不是直线而是曲线呢?你是怎 样想的?
【课堂小结】
1、 x-t图象物体的位置(或位移)随时间的变 化规律。图线形状反映了物体的运动性质和运 动过程,而不是物体的运动轨迹。 如:匀速直线运动的x-t图象是一条倾斜直线 。静止物体的x-t图象是一平行t轴的直线。变 速直线运动的x-t图象是一条曲线。匀变速直 线运动的x-t图象是一条二次曲线。 2、图象反映的信息:某时刻的位置坐标(可 求某段时间内的位移),斜率反映物体的速度 大小(利用两个点的坐标可求物体的速度)。