泵的性能曲线测定实验汇总

合集下载

实验2 离心泵性能特性曲线测定实验

实验2 离心泵性能特性曲线测定实验

1.2离心泵性能特性曲线测定实验 1.2.1实验目的1).了解离心泵结构与特性,学会离心泵的操作。

2).测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

3).测定改变转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

4).测定串联、并联条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

5).掌握离心泵流量调节的方法(阀门、转速和泵组合方式)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。

6).学会轴功率的两种测量方法:马达天平法和扭矩法。

7).了解电动调节阀、压力传感器和变频器的工作原理和使用方法。

8).学会化工原理实验软件库(组态软件MCGS 和VB 实验数据处理软件系统)的使用。

1.2.2基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H 、轴功率N 及效率η与流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。

由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。

1 ) 流量V 的测定与计算采用涡轮流量计测量流量,智能流量积算仪显示流量值V m 3/h 。

2) 扬程H 的测定与计算在泵进、出口取截面列柏努利方程:gu u Z Z g p p H 221221212-+-+-=ρ (1—9) p 1,p 2:分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3u 1,u 2:分别为泵进、出口的流量m/s g :重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: gp p H ρ12-=(1—10)由式(1-10)可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。

本实验中,还采用压力传感器来测量泵进口、出口的真空度和压力,由16路巡检仪显示真空度和压力值。

离心泵性能实验实验报告

离心泵性能实验实验报告

离心泵性能实验实验报告一、实验目的1、了解离心泵的结构、工作原理和性能特点。

2、掌握离心泵性能参数的测量方法,包括流量、扬程、功率和效率。

3、绘制离心泵的性能曲线,分析其性能变化规律。

4、探究离心泵的运行工况对其性能的影响。

二、实验原理1、离心泵的工作原理离心泵依靠叶轮旋转时产生的离心力将液体甩出,在叶轮中心形成低压区,从而使液体不断被吸入和排出。

2、性能参数的定义及计算流量(Q):单位时间内泵排出的液体体积,通过流量计测量。

扬程(H):泵给予单位重量液体的能量,H =(P2 P1) /(ρg) +(Z2 Z1) + hf ,其中 P1、P2 为进出口压力,Z1、Z2 为进出口高度,hf 为管路阻力损失。

功率(P):包括轴功率和有效功率。

轴功率由功率表测量电机输入功率,有效功率 Pe =ρgQH 。

效率(η):η = Pe / P 。

三、实验装置1、离心泵:实验所用离心泵型号为_____,额定流量为_____,额定扬程为_____。

2、水箱:用于储存实验液体。

3、流量计:选用_____流量计,测量范围为_____,精度为_____。

4、压力表:分别安装在泵的进出口处,测量压力。

5、功率表:测量电机的输入功率。

6、管路系统:包括吸入管路和排出管路,管路上安装有调节阀用于调节流量。

四、实验步骤1、检查实验装置,确保各仪器仪表正常工作,管路连接紧密无泄漏。

2、向水箱中注入适量的实验液体(通常为清水)。

3、启动离心泵,待运行稳定后,记录初始的流量、扬程、功率等参数。

4、逐渐调节调节阀,改变流量,每次调节后待运行稳定,记录相应的流量、进出口压力和功率等数据。

5、重复步骤 4,测量多组数据,流量调节范围应涵盖离心泵的正常工作范围。

6、实验结束后,关闭离心泵,清理实验装置。

五、实验数据记录与处理|流量 Q(m³/h)|扬程 H(m)|轴功率 P(kW)|效率η(%)|||||||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____|根据实验数据,计算出不同流量下的有效功率和效率,并绘制离心泵的性能曲线,包括扬程流量曲线(HQ 曲线)、功率流量曲线(PQ 曲线)和效率流量曲线(ηQ 曲线)。

泵的特性曲线实验报告

泵的特性曲线实验报告

实验二:离心泵性能实验实验时间:2014年11月20 日星期四报告人:李睿健同组人:李泓睿李振宇杨敬王摘要:本实验采用WB 70/055 型号的离心泵装置,实验测定在一定转速下泵的特性曲线和管路特性曲线。

通过实验了解离心系的正常的操作过程,掌握离心泵各项主要特性及其相互关系,进而加深对离心泵的性能和操作原理的理解。

一、实验目的及任务⑴了解离心泵的构造,掌握其操作和调节方法。

⑵测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

⑶熟悉孔板流量计的构造,性能和安装方法。

⑷测定孔板流量计的孔流系数。

⑸测定管路特性曲线。

二、基本理论1. 离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。

其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图(1 )中的曲线。

由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。

另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据1) 泵的扬程 HeHe= H 压力表H 真空表 H 0式中 H 压力表 ——泵出口处的压力, m H2O;H 真空表——泵入口处的真空度, m H2O ; H 0——压力表和真空表测压口之间的垂直距离,2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失, 使泵的实际压头和流量较理论值为 低,而输入泵的功率又比理论值为高,所以泵的总效率为NeN轴Q ——流量, m 3/s ; He ——扬程, m ;ρ——流体密度, kg/ m由泵轴输入离心泵的功率 N 轴为式中 N 电——电机的输入功率, kW ; η电——电机效率,取 0.9 ; η轴——传动装置的传动效率,一般取 1.0 2、孔板流量计孔流系数的测定H 0=0.85m 。

式中 Ne ——泵的有效功率,Ne QHeρkW ;102N轴N 电η电η转在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端相连。

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告一、实验目的。

本实验旨在通过对离心泵进行特性曲线测定,了解离心泵的性能参数,并掌握离心泵的性能曲线绘制方法。

二、实验原理。

离心泵是利用离心力将液体输送到高处的一种泵,其工作原理是通过叶轮的旋转产生离心力,使液体产生压力并输送。

离心泵的性能参数通常包括扬程、流量、效率等,这些参数与泵的特性曲线息息相关。

三、实验仪器与设备。

1. 离心泵。

2. 流量计。

3. 压力表。

4. 水槽。

5. 测量工具。

四、实验步骤。

1. 将离心泵安装在水槽内,并连接好流量计和压力表。

2. 打开水泵,调节流量计阀门,使水泵处于稳定工作状态。

3. 逐步调节水泵的转速,记录不同转速下的流量和扬程数据。

4. 根据实验数据,绘制离心泵的性能曲线。

五、实验数据处理与分析。

根据实验记录的数据,我们得到了不同转速下的流量和扬程数据,利用这些数据可以绘制离心泵的性能曲线。

通过分析曲线,我们可以得到离心泵的最佳工作点,以及在不同工况下的性能表现。

六、实验结果与讨论。

根据实验测得的数据,我们成功绘制出了离心泵的性能曲线。

通过曲线分析,我们可以看到离心泵在不同转速下的流量和扬程的变化规律,这有助于我们选择合适的离心泵工作点,提高泵的效率和节能性能。

七、实验总结。

通过本次实验,我们深入了解了离心泵的特性曲线测定方法,掌握了离心泵的性能参数测定技术。

同时,我们也对离心泵的工作原理和性能特点有了更深入的认识,这对我们今后的工程实践具有重要的指导意义。

八、实验感想。

本次实验让我们对离心泵有了更加直观和深入的了解,同时也增强了我们对实验操作和数据处理的能力。

希望今后能够继续加强实验能力,为将来的工程实践做好充分准备。

以上就是本次离心泵特性曲线测定实验的实验报告,谢谢!。

离心泵性能综合实验(化工原理实验)

离心泵性能综合实验(化工原理实验)

离心泵性能综合实验一、实验目的1、观察离心泵汽蚀、气缚现象,了解汽蚀、气缚现象产生原因及其防止方法;2、学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解转子流量计的工作原理;3、测定离心泵特性曲线,绘制出扬程、功率和效率与流量的关系曲线图。

二、实验原理1、气缚现象离心泵靠离心力输送液体。

离心力大小,除与叶轮直径及叶轮旋转速度有关外,还与流体重度有关。

若离心泵启动时,泵壳内存在大量空气,则由于空气的重度远远低于液体的重度,叶轮旋转所造成的离心力也很小,导致泵入口与水池液面间的压差太小,不能把水池内液体抽压到叶轮中心,就会发生离心泵空转却送不出液体的状况,这种现象称“气缚”。

所以,离心泵若安装在液面上方时,启动前必须先使泵体及吸入管路中充满液体(所谓“灌泵”)。

同时,在运转过程中也要防止外界空气大量漏入,以免产生气缚。

2、汽蚀现象离心泵之所以能吸取液体,是由于泵的叶轮旋转时,将液体抛向外沿,而中心形成真空,而贮槽液面上的压力却为大气压,因此,泵就依靠此压差将液体压入泵内,如果输送的是水,并设叶轮进口处为绝对真空,管路阻力为零,液面上为一个标准大气压,那么最大几何吸上高度也不超过10.33米。

图1离心泵吸上真空度参照图1,列0~0,1~1截面间柏努利方程式:0120112s f p p u Z h g g g ρρ-⎛⎫=-++∑ ⎪⎝⎭(1)式中s Z 为几何安装高度。

设:01s p p H gρ-=,s H 为吸上真空高度,则012112o s s f p p u H Z h g gρ--==++∑(2)由此可知,1p 愈小,s H 愈大。

但当1p 低达v p (输送液体的饱和蒸汽压)时,液体就要汽化,就产生汽蚀现象,使泵无法工作,所以对1p 的降低幅度应有限制。

由上式可见,1p 随着泵的几何安装高度s Z 提高而降低,故最终应对泵的几何安装高度加以限制。

在离心泵的铭牌(性能表)上一般都列有允许吸上真空高度s H 允许和汽蚀余量h ∆允许,二者均是对泵的安装高度加以限制,以避免汽蚀现象发生。

离心泵特性曲线实验报告

离心泵特性曲线实验报告

离心泵特性曲线实验报告一、实验目的。

离心泵是一种常用的流体输送设备,其性能参数对于流体输送系统的设计和运行具有重要的影响。

本次实验旨在通过对离心泵的特性曲线进行测定,了解离心泵的性能特点及其在不同工况下的工作状态,为离心泵的选型和运行提供依据。

二、实验原理。

离心泵是利用离心力将流体加速并输送至出口的一种动能泵,其主要由叶轮、泵壳、轴承和密封等部件组成。

在离心泵运行时,叶轮受到驱动装置的转动,使流体产生离心力,从而加速流体并将其输送至出口。

离心泵的性能曲线通常包括流量、扬程、效率等参数,通过对这些参数的测定,可以全面了解离心泵在不同工况下的工作状态。

三、实验仪器与设备。

本次实验所使用的仪器设备包括离心泵、流量计、压力表、转速表等。

四、实验步骤。

1. 将离心泵与流量计、压力表、转速表等设备连接好,并按照实验要求进行调试和校准。

2. 开始进行实验测量,依次改变离心泵的转速,记录相应的流量、扬程和效率等参数。

3. 根据实验数据绘制出离心泵的特性曲线,并进行分析和讨论。

五、实验结果与分析。

通过实验测量和数据处理,得到了离心泵在不同转速下的特性曲线。

从曲线图中可以清晰地看出,随着转速的增加,离心泵的流量、扬程和效率等参数呈现出不同的变化规律。

具体分析如下:1. 流量与转速的关系,随着转速的增加,离心泵的流量呈现出逐渐增大的趋势。

当转速达到一定数值后,流量增长速度逐渐减缓。

2. 扬程与转速的关系,随着转速的增加,离心泵的扬程也呈现出逐渐增大的趋势。

但与流量不同的是,扬程的增长速度并不会随着转速的增加而减缓。

3. 效率与转速的关系,随着转速的增加,离心泵的效率呈现出先增大后减小的趋势。

在一定转速范围内,效率会达到最大值,超过这一范围后效率会逐渐下降。

六、实验结论。

通过本次实验,我们了解了离心泵特性曲线的测定方法,以及离心泵在不同工况下的性能特点。

实验结果表明,离心泵的流量、扬程和效率等参数与转速之间存在一定的关系,通过合理选择转速可以实现最佳的工作状态。

离心泵特性曲线的测定实验数据处理及相关分析结果

离心泵特性曲线的测定实验数据处理及相关分析结果

离心泵特性曲线的测定实验数据处理及相关分析结果离心泵特性曲线是评估离心泵性能的一种核心参数,通常需要进行实验测定并对数据进行处理分析。

本文将介绍对离心泵特性曲线测定实验数据的处理方法以及相关分析结果。

实验数据处理方法1. 绘制静态吸头曲线将泵出口阀门完全关闭,打开泵进口阀门,以每隔10mmHg为间隔连续测量泵入口总压和进口压差,记录数据并计算出对应的泵进口流量(Q)和压头(H),即可绘制静态吸头曲线。

2. 绘制节点管路损失曲线3. 绘制系统特性曲线在绘制系统特性曲线之前,需要通过A/R泄流阀调节管道流量,并测量相应的流量、总压和压差数据。

然后,根据测得的数据计算出对应的流量和压头,并绘制系统特性曲线。

绘制离心泵特性曲线需要结合前面的三条曲线绘制。

首先,以节点管路损失曲线上的任意一点作为起点,在该点的纵坐标值处标记绘制一点。

接着,以该点的流量和压力值,到系统特性曲线上找到对应的点并标记绘制一个点。

然后,再以该点的流量和压力值到静态吸头曲线上找到对应的点并标记绘制一个点。

最后,将这三个点用一条平滑的曲线连接起来,即可得到离心泵特性曲线。

相关分析结果可以通过分析静态吸头曲线来评估离心泵的最大吸头高度,并判断泵是否出现气穴、空气泡等问题。

在曲线中,当吸头高度超过一定范围时,泵的效率会显著下降,严重时会导致泵的故障。

通过分析节点管路损失曲线,可以评估离心泵的出口压力损失和流量变化对泵的影响,以及找出出现管道阻塞、泄漏等故障的原因。

在曲线中,当流量增加时,管路损失也会随之增加,如果损失过大,就会导致泵出口压力不足,甚至出现反流等问题。

通过分析系统特性曲线,可以评估离心泵的运行能力和稳定性,并找出系统中供水主管道和回水主管道的配管是否合理。

在曲线中,当流量增加时,泵的工作点会向左上方移动,同时泵的效率和出口压力也会降低。

4. 离心泵特性曲线综合分析离心泵特性曲线可以评估离心泵的性能、流量范围、运行稳定性等指标,并进行泵的选型和运行参数设计。

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告
马达—天平测功仪测定轴功率P计算公式为:
P= = (3)
通过调节阀门开度调节流量,由式(3)求取的数据或扭矩测功仪可直接采集轴功率数据,就可得出泵的轴功率和流量的关系曲线。
3.离心泵效率的计算
离心泵的有效功率可用下式计算:
Pe=qv gH(4)
离心泵的效率为:
(5)
通过调节阀门开度调节流量,由式(5)求取的数据就可得出泵的效率和曲线流量。
=lgA+mlgRe
在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,即可得到系数A,即:
A=
用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到m、n。
(2)对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为:
(3)将出口调节阀开至最大,在流量范围内合理布置实验点,要求由大到小取10组以数据。
(4)将流量调节至某-数值,待系统稳定后读取并记录所需实验数据(包括流量为零时数据)。
(5)将泵出口调节阀关闭后,断开电源开关,停泵开启出口阀.开启进水阀。
(6)关闭各测试仪表,关闭总电源。
六、实验原始数据记录
水温:21.0℃转速:2900r/min
H=(pM-pV)/ρg=8.99(m)
P=2π*9.81Gnl/60=Gnl/0.974=58%
Pe=qvρgH=9.91m3/h×0.998(kg/m3)×8.99m=58%
η=Pe/P=23%/58%=39%
八、实验结果与分析讨论
离心泵有个重要特性:当压力(扬程)很低时,其流量会很大,这从泵的特性曲线上可以看出。而泵的功率与流量成正比,泵起动时,管道内没有压力,则造成泵的流量很大,则泵的功率很大,加上电机、泵的转动部分从静止到高速运转,需要很大的加速度,这样势必造成起动电流很大,因此采取关闭出口阀门的方法,使泵在起动时不输出水量,使泵的功率最小,当泵达到额定转速后,慢慢开启出口阀,逐渐增加水流量,使电机电流逐渐增加到额定电流。

泵性能实验报告

泵性能实验报告

液压传动实验报告
实验名称液压泵的性能实验
实验人姓名年级班级专业
实验地点实验日期
实验指导老师(签名)
实验报告
1.本实验目的:
2.实验原理:(包括实验数据处理过程)
3.实验记录:
(1)填写液压泵技术性能指标;
型号规格额定转速
额定压力理论流量
油液牌号
(2)填写试验记录表并进行数据处理:
表1 液压泵性能实验数据表
4.绘制液压泵工作特性曲线:用坐标纸绘制q-p,ηv-p,ηm-p和η-p 四条曲线。

(要求所有曲线绘制在同一坐标纸上)
5.实验结果及分析。

6.思考题
(1)实验台液压系统中溢流阀起什么作用?
(2)实验台液压系统中节流阀为什么能够对被试泵进行加载?(3)泵的理论流量和额定流量区别何在?。

实验实训2 离心泵性能曲线测定实验

实验实训2   离心泵性能曲线测定实验

实验实训2 离心泵性能曲线测定实验1、实验目的(1)测定离心泵的运行性能曲线,了解离心泵的运行特性;(2)了解泵性能曲线的实验测定方法,学习怎样结合理论对实验结果进行分析。

2、实验要求首先了解实验台的结构原理和操作方法,然后根据实验目的边调整流量边测定相关数据,通过计算获得有关参数,然后将参数在坐标图中标示出来。

在获得足够多组数据后,将坐标图中的数据点连接成曲线,观察曲线形状并进行分析。

3、实验设备离心泵性能曲线测定实验台一台(如图2-1所示)实验台配套测量工具一套(包括长尺一把,秒表一个)图2-1 离心泵性能曲线测定实验台4、离心泵的正确操作离心泵的正确启动、运行和停机是保证输水系统安全、经济供水的前提。

(1)、启动前的准备工作水泵启动前注意做好全面检查工作,检查轴承中润滑油是否足够、干净;出水闸阀是否处于关闭状态;装置各处连接螺栓有无松动现象;配电设备是否完好、正常。

然后,进行灌泵工作。

灌泵就是启动前向泵及吸水管中充水,以便启动后在泵的入口处造成抽吸液体必须的真空值。

对于首次启动的水泵,还应进行转向检查,检查其转向是否与泵厂规定的转向一致。

准备工作就绪之后,即可启动水泵。

启动应在闭阀情况下进行,运行一般不超过2~3min ,待水泵转速稳定后,发现压力表读数上升至水泵零流量时的空转扬程时,可逐渐打开出水管上的闸阀。

此时真空表读数逐渐增加,压力表读数逐渐下降,配电屏上电流表逐渐增大,待闸阀全开时,即告启动工作完成。

(2).运行中应注意的问题1)要随时注意检查各个仪表工作是否正常、稳定。

电流表上的读数应不超过电动机的额定电流,否则都应及时停车检查。

2)检查泵与电动机的轴承和机壳温度,轴承温度一般不得超过周围环境温度为35℃, 最高不超过75℃,否则应立即停车检查。

(3).停车时应注意的问题停车前先关出水闸阀,实行闭闸停车。

并把泵和电动机表面的水擦干净。

冬季停车后还应考虑水泵不致冻裂。

5、实验原理和方法利用泵I 相应阀门的开、闭和调节,形成泵I 的单泵工作回路,在泵I 出流阀门11的一定开度下,测量一组相应的压力表12、真空压力表9和孔板流量计7的压差计(图中未示出)的读数(或利用计量水箱和秒表未测量相应的流量),由此测得这个工况下泵的扬程H 和流量Q ;并利用电功率表15读出电机的输入功率P in ,由此可得出泵的相应实用功率P 。

泵特性曲线实验报告数据处理

泵特性曲线实验报告数据处理

六、数据处理及结果分析
1.实验原始数据
离心泵型号:MS60/0.55SSC 额定流量:60L/min 额定扬程:19.5m 额定功率:0.55kW
3.一定转速下的曲线:(1)H’-q v’
(2)P’-q v’
(3)η’-q v’
4.实验结果分析
由泵的特性曲线可以看出,离心泵的轴功率P随着流量的增大而增大;离心泵的压头H随流量加大而下降;泵的效率η随流量增大而增大后面逐渐平滑。

理论上效率在流量范围广的情况下,会出现峰值,随流量先增大后减小;在实验过程中没有考虑到这方面因素,取值范围较窄没有体现出峰值。

通常,在额定流量下泵的效率最高。

该最高效率点称为泵的设计点,对应的各项参数称为最佳操作参数。

离心泵铭牌上的性能参数是最高效率点对应的数值。

泵的最佳工况点为离心泵效率最大处,从图中看出在q v=4.7m³/h时,效率η达到最大值55.08%。

离心泵的适宜工作范围在最高效率的92%范围内,即效率在50.67%-55.08%范围内为适宜工作范围。

水泵性能曲线测定试验指导书分析

水泵性能曲线测定试验指导书分析

实验、水泵性能曲线测定试验一、实验目的与要求1、掌握水泵的测试技术,了解实验设备及仪器仪表的性能和操作方法。

2、测定P-100自吸泵的工作特性,作出特性曲线。

二、实验装置实验装置如图5-1所示,是按国际“DB3216-82离心泵、混流泵、轴流泵试验方法”,并结合教学要求而设计的水泵实验装置,装置中备有循环供水系统,实验泵8为P-100型自吸式水泵,供电电压为220V,泵的最大输出功率为300W,最大吸程大于6m水柱,最大总扬程可达30m水柱。

本装置运行时采用电测量法测量泵的轴功率,即用电功率表1电动机3的输入功率,再根据电动机的效率确定电动机的输出功率。

因电动机与泵同轴连接,故传动机械效率为1.0,电动机的输出功率即为泵的轴功率。

泵的转速由非接触型光电转速表4测量。

泵的出水先经稳水压力罐5稳压后,再通过管道7送回蓄水箱13。

泵的流量由阀门9调节,并由文丘里流量计12和传感器11、电测仪16测量。

泵的进、出水管压力由真空表15和压力表10测量。

关小进水阀14可提高吸水扬程,直至泵体内产生汽化。

稳水压力罐5对该系统的压力稳定性起到了非常有益的作用,是本实验装置的特点之一。

三、实验原理对应某一额定转速n,泵的实际扬程H,轴功率 N,总效率η,与泵的出水流量Q之间的关系以曲线表示,称为泵的特性曲线,它反映出泵的工作性能,作为选择泵的依据。

即用三个函数关系表示:H= f1(Q); N=f2(Q);η=f3(Q)这些函数可以由实验测定,其测定方法如下:1、流量 Q(10-6m3/s)用文丘里流量计12、电测仪16测量,并由下式确定Q值:Q=A×(△h)B (1)式子中:A、B---经预先标定点得出的系数;△h---文丘里流量计的测压管水头差,由电测仪16读出(cm水柱)。

Q---流量(×10-6m3/s)2、实际扬程H(m水柱)泵的实际扬程系指泵出口断面与进口断面之间的总压头差,是在测得泵进、出口压强,流速和测压表表位差后,经计算取求得。

泵性能实验word

泵性能实验word

泵性能实验泵的性能实验一、实验目的1、绘制泵的工作性能曲线,了解泵的性能曲线的用途。

2、掌握泵的基本实验方法及其各参数的测试技术。

3、了解实验装置的整体结构,掌握主要设备和仪器仪表的性能及使用方法。

二、实验原理泵的性能曲线是指泵在一定转速n下的扬程H、轴功率Pa、效率与流量Q间的关系曲线。

理论和实践表明,水泵工作时,其扬程、轴功率、效率和流量之间有内在联系。

当流量变化时,其他参数会随之而变。

因此水泵性能实验可通过调节流量(即改变管路阻力)来调节工况,从而得到不同工况点的参数。

然后,再把它们换算到规定转速下的参数,在同一幅曲线图上绘制H-Q、Pa-Q、-Q关系曲线。

三、实验装置实验台采用开式倒灌式实验机组,它由水箱、管路、马达天平测功机、泵、流量表、压力表、阀门等组成。

四、实验参数的测量泵性能参数有H、Q、Pa、。

1、流量Q的测量本实验台采用LWZY型智能流量一体化流量仪13直接测量流量,流量参数可从表中直接读出。

流量大小通过调节阀12进行调节。

2、扬程H测量扬程为流体通过泵所获得的能量。

实验中水泵扬程是在测得泵的进、出口压力和流速后经计算得出。

进口压力通过真空压力表15测得,出口压力通过压力表16测得。

计算如下:gVVZZgPPHHH2)()()(2122121212(m)其中:p1:入口处压力(负压),Pa。

p2:出口处压力,Pa。

Z2、Z1:压力表中心到基准面的垂直距离,m。

2、1:进出口水管流体流速,m/s。

:水的密度,kg/m3。

g:重力加速度,m/s2。

由于水泵进出口管径相同、两压力表中心高一致,则2=1;Z2=Z1因此,扬程计算简化为H=H2-H1=(p2-p1)/g(m)3、转速n测量转速采用手持式电子转速表测量,转速表照射准粘有反光片的旋转联轴器,即可直接读取泵轴的实时转速。

注意转速表必须垂直对准反光片,否则没有读数或读数不准。

4、轴功率测量本实验台采用转矩法测量轴功率,测量装置俗称马达天平。

泵特性综合实验报告

泵特性综合实验报告

泵特性综合实验报告1. 引言泵是一种常用的流体机械设备,广泛应用于工业生产和日常生活中。

本次实验旨在通过对泵的特性参数进行测量和分析,掌握泵的工作原理和性能特点,进一步加深对流体机械的理论知识的理解,并为实际应用提供理论和实验依据。

2. 实验设备和方法2.1 实验设备本次实验所使用的设备有:- 泵:采用离心泵;- 流量计:用于测量泵流出液体的流量,并输出电压信号;- 压力计:用于测量泵的进口和出口处的压力差;- 电压表:用于测量流量计输出的电压。

2.2 实验方法步骤如下:1. 将泵连接到流量计和压力计,并确保连接牢固。

2. 打开泵和流量计的电源,确保各设备工作正常。

3. 调节泵的工作状态,记录不同条件下的流量计输出电压和进出口压力差.4. 根据记录的数据,计算泵的流量、扬程和效率等特性参数。

3. 实验结果与分析根据实验记录得到的数据,计算得到泵的流量、扬程和效率等特性参数如下:条件流量(m³/h) 扬程(m) 效率(%)-A 50 20 75B 55 18 72C 60 16 68D 65 14 65E 70 12 60从上表可以看出,随着流量的增加,泵的扬程逐渐下降,而效率也逐渐降低。

这是由于泵在工作过程中需要克服越来越大的摩擦力和流体惯性,使得扬程和效率随着流量的增大而逐渐降低。

另外,根据实验数据还可以绘制泵的性能曲线,如下图所示:![泵的性能曲线](performance_curve.png)从图中可以看出,泵的性能曲线呈现出一个递减的趋势,这是符合常理的。

在真实的工程应用中,通常需要选择二者兼顾的工作点,既要满足流量要求,又要节约能源和降低成本。

4. 结论与建议通过本次泵特性综合实验,我们深入了解了离心泵的工作原理和性能特点。

实验结果表明,随着流量的增大,泵的扬程逐渐降低,效率也逐渐降低。

在设计和选择泵的时候,需要根据实际需求平衡流量、扬程和效率等因素,并结合泵的性能曲线进行选择。

离心泵性能性能曲线的测定 实验报告

离心泵性能性能曲线的测定  实验报告

实验二 离心泵性能曲线的测定一、实验目的1. 熟悉离心泵的结构和操作方法。

2. 学会离心泵特性曲线的测定方法、表示方法,加深对离心泵性能的了解。

二、实验原理通过实验测出的Q 、N 、n 、P 的值算出H 、η并作H ~Q 、N ~Q 、η~Q 图。

1. 扬程H 的确定在泵的吸入口和压出口之间列伯努利方程∑-+++=+++)21(22221122f h gu g P Z H g u g P Z ρρ由于两点之间管路很短,摩擦阻力损失可以忽略。

又可认为流速相等。

故有g P P Z Z H ρ1221)(-+-= 其中m h Z Z 1.0021==-2. 功率N 的计算 0454.09241.0-=λN N3. 效率η的计算)(102KW HQ N eρ=NHQ N N e 102%ρη==4. 转速改变时的计算31121111)(:)(:nn N N n n H H n n QQ ===三、实验装置与流程 1. 实验装置实验装置主要由离心泵、流量计、各种阀门、不同管径、材质的管子以及突然扩大和突然缩小组合而成。

水由离心泵从水槽中抽出后,经过流量计被送至几根并联的管道,水流经管道和管件后返回水槽。

直管阻力损失用U 形压差计测定其压差。

管内水的流量用涡轮流量计测定。

用调节阀调节流量的大小。

2. 实验设备使用注意事项(1)离心泵在启动前应灌泵排气。

(2)离心泵要在出口阀关闭的情况下启动。

(3)停车前要先关出口阀。

四、实验原始记录实验日期 2012.4.18设备编号管径d 36.5 mm水温 14.5 ℃大气压 1.01×105 Pa表2-1 泵性能参数的实验值五、实验报告1. 对实验数据进行处理,处理过程必须有一组数据的计算实例;2.根据实验结果在直角坐标上描绘H~Q、N~Q、η~Q关系曲线;3.对实验结果进行讨论。

六、思考题1. 离心泵启动前为什么要灌水排气?2.离心泵的特性曲线是否与连接的管路系统有关?3.启动离心泵应注意哪些问题?数据处理如下:序号进口真空度P1(MPa)出口压力P2(MPa)流量Q(L/S)功率Nλ(KW)转速n(r.p.m)H1(m) H2(m) h0(m) H(m) Ne(W) η1 -0.04 0.045 3.40 0.43 2940 4.077 4.587 0.1 8.765 0.153 0.6802 -0.037 0.097 3.20 0.43 2940 3.772 9.888 0.1 13.760 0.310 1.0053 -0.034 0.125 3.00 0.43 2940 3.466 12.742 0.1 16.308 0.375 1.1164 -0.03 0.14 2.81 0.43 2942 3.058 14.271 0.1 17.429 0.393 1.1175 -0.026 0.156 2.61 0.43 2942 2.650 15.902 0.1 18.652 0.407 1.1116 -0.025 0.166 2.40 0.43 2942 2.548 16.922 0.1 19.570 0.398 1.0727 -0.022 0.176 2.20 0.43 2952 2.243 17.941 0.1 20.283 0.387 1.0188 -0.02 0.184 2.01 0.43 2952 2.039 18.756 0.1 20.895 0.370 0.9589 -0.017 0.194 1.80 0.43 2954 1.733 19.776 0.1 21.609 0.349 0.88710 -0.015 0.201 1.60 0.43 2959 1.529 20.489 0.1 22.118 0.322 0.80711 -0.014 0.207 1.40 0.43 2959 1.427 21.101 0.1 22.628 0.290 0.72312 -0.012 0.212 1.20 0.43 2961 1.223 21.611 0.1 22.934 0.254 0.62813 -0.01 0.216 1.00 0.43 2973 1.019 22.018 0.1 23.138 0.216 0.528思考题1.离心泵启动前为什么要灌水排气?泵内存有空气,由于空气密度很低,旋转后产生的离心力小,因而叶轮中心区所形成的低压不足以将储槽内的液体吸入泵内,虽启动离心泵也不能输送液体。

水泵的性能曲线图分析

水泵的性能曲线图分析

水泵的性能曲线图分析:泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。

水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。

注意其轴功率不应超过电机功率。

1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。

扬程--流量曲线以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。

每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。

扬程是随流量的增大而下降的。

Q-H(流量-扬程)是一条不规则的曲线。

相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。

它将是该水泵最经济工作的一个点。

在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。

在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。

因无法上图,请自找一幅水泵性能曲线图对照着看。

主要就这些了。

GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分)273L/h。

其中ft是英尺,表示扬程。

1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米.比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢转换公式是什么请大家告诉我一下!谢谢转换公式:高度H=P/(ρg)压力为P=0.2 Mpa=200000 Pa 高度H=P/(ρg)=200000/(1000*9.8)= 20.41 m以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。

泵的性能曲线测定实验

泵的性能曲线测定实验

离心泵的特性曲线的测定2010-11-28 00:12:33| 分类:默认分类|字号订阅实验四、离心泵的特性曲线的测定一、实验目的:1.掌握离心泵操作,了解离心泵的结构和性能;2.测定离心泵在一定转速下的特性曲线的测定。

3.测定离心泵的管路特性曲线4.了解离心泵的工作点与流量调节二、实验原理:1.离心泵的特性曲线离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论扬程与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图-23的曲线。

由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,例如摩擦损失、环流损失等,因此,实际扬程比理论扬程小,且难以通过计算求得,因此通常采用实验方法,直接测定扬程、功率、效率与流量的关系,并将测得:H e~Q、N~Q和η~Q三条曲线称为离心泵的特性曲线。

另外,根据此曲线可以得出离心泵的最佳操作范围,泵的高效率区作为选用离心泵的依据。

图2-23 离心泵的理论压头与实际压头(1)泵的扬程He在离心泵进出口管装设真空表和压力表的管截面列出柏努利方程式,(以单位重量液体为衡算标准)则:(2-23)由于两取压口紧靠离心泵进出口,因此直管段摩擦损失很小,其阻力损失归入离心泵的效率,故=0。

(2-24)若离心泵进出口管径相同,则 u1=u2上式可写成为:(2-25)(2-26)式中:H压强表、H真空表——分别为压强表和真空表所测得的表压和真空度,以(m液柱)表示的数值。

h0——压强表和真空表中心之垂直距离。

(2)泵的轴功率N轴离心泵从电机获得的实际功率(即单位时间内电机向离心泵输入的功)称离心泵的轴功率。

泵的轴功率和电机的电功率之间有如下的关系:N轴=N电·η电·η传(2-27)式中:N电——电动机的电功率,由功率表测得(KW);η电——电动机效率,取0.9;η传——传动效率,η传=1.0。

(3)泵的效率η离心泵的有效功率Ne与轴功率之比称为效率。

水泵的性能曲线实习报告

水泵的性能曲线实习报告

一、实习目的通过本次实习,使学生了解水泵的基本性能参数,掌握水泵性能曲线的绘制方法,熟悉水泵性能曲线的应用,从而提高学生对水泵性能的认识和实际操作能力。

二、实习内容1. 水泵性能参数的测定(1)测量水泵的流量:使用流量计对水泵在不同工况下的流量进行测量。

(2)测量水泵的扬程:使用压力表对水泵在不同工况下的扬程进行测量。

(3)测量水泵的轴功率:使用功率计对水泵在不同工况下的轴功率进行测量。

2. 水泵性能曲线的绘制(1)根据测量得到的数据,绘制流量-扬程曲线(Q-H曲线)。

(2)根据测量得到的数据,绘制流量-功率曲线(Q-N曲线)。

(3)根据测量得到的数据,绘制流量-效率曲线(Q-η曲线)。

3. 水泵性能曲线的应用(1)分析水泵在不同工况下的性能。

(2)确定水泵的最佳工况。

(3)选择合适的水泵型号。

三、实习过程1. 实习准备(1)准备实验设备:水泵、流量计、压力表、功率计、数据采集器等。

(2)熟悉实验操作步骤。

2. 实习实施(1)测量水泵在不同工况下的流量、扬程和轴功率。

(2)将测量得到的数据输入数据采集器。

(3)根据数据采集器中的数据,绘制水泵性能曲线。

3. 实习总结(1)分析水泵在不同工况下的性能。

(2)确定水泵的最佳工况。

(3)选择合适的水泵型号。

四、实习结果与分析1. 水泵性能曲线的绘制根据实验数据,绘制了水泵的Q-H曲线、Q-N曲线和Q-η曲线。

(1)Q-H曲线:水泵的扬程随着流量的增加而逐渐减小,呈现下降趋势。

(2)Q-N曲线:水泵的轴功率随着流量的增加而逐渐增加,呈现上升趋势。

(3)Q-η曲线:水泵的效率随着流量的增加而先增大后减小,呈现先上升后下降的趋势。

2. 水泵性能曲线的应用(1)分析水泵在不同工况下的性能:通过分析Q-H曲线、Q-N曲线和Q-η曲线,可以了解水泵在不同工况下的性能变化规律。

(2)确定水泵的最佳工况:水泵的最佳工况通常位于Q-η曲线的最高点附近,此时水泵的效率最高。

离心泵性能特性曲线测定实验实验报告.doc

离心泵性能特性曲线测定实验实验报告.doc

离心泵性能特性曲线测定实验实验报告.doc 离心泵性能特性曲线测定实验实验报告离心泵是利用转动轴心形成的一个压力容器,它在循环系统中起着输送介质的重要作用,广泛应用于工业领域。

该实验旨在通过对离心泵的性能特性曲线测量,明确泵的湍流产率和静态效率随着流量变化的规律,并根据测量结果确定离心泵的保护壁厚度以及最佳容积流量。

1.试验设备实验使用的离心泵为YBS224型,性能参数为:最高扬程 13.5 m,流量 1.62 m3/H,轴功率 P轴 5.07KW,介质为水。

实验中使用CX-451内置双量程流量表、LG-10多量程压力表以及DXK-5B扭矩表进行测量,并搭配其他必要的附件。

2.实验原理在不同的流量范围内,离心泵能够输出固定的扬程,同时湍流产率和静态效率随着流量的变化而不同,随着流量的减小,湍流产率逐渐减小,静态效率也会逐渐减小。

实验是在不同流量的情况下,测量并记录流量表的出口压力和入口压力,计算湍流产率和静态效率。

3.实验步骤(1)实验准备:清理离心泵房间内各部件;(2)正常连接泵节距,检查泵是否正常运行;(3)调节流量表,采集流量、温度、压力和扭矩等参数;(4)根据测量结果,得出流量随压力变化的曲线和湍流产率随流量变化的曲线,并记录流量和静态效率的最佳值;(5)根据实验技术,确定壁厚的合理范围。

4.实验结果测量结果显示,当流量为0.4 m3/h时,离心泵的湍流产率最大,为6.2;当流量为1.6 m3/h时,离心泵的静态效率最大,为45.2%。

5.结论通过离心泵性能特性曲线测定实验,实验结果表明,离心泵的湍流产率和静态效率随着流量的变化而不同。

实验中确定的湍流产率和静态效率的最佳参数有助于选择合适的保护壁厚度和最佳容积流量。

实验1离心泵性能曲线测定

实验1离心泵性能曲线测定

实验1:离心泵性能曲线测定一、实验原理:离心泵的主要性能参数有流量Q (也叫送液能力)、扬程H(也叫压头)、轴功率 N 和效率η。

在一定的转速下,离心泵的扬程H 、轴功率N 和效率η均随实际流量Q 的大小而改变。

通常用水经过实验测出:Q-H 、Q-N 及Q-η之间的关系,并以三条曲线分别表示出来,这三条曲线就称之为离心泵的特性曲线。

离心泵的特性曲线是确定泵适宜的操作条件和选用离心泵的重要依据。

但是,离心泵的特性曲线目前还不能用解析方法进行精确计算,仅能通过实验来测定,而且离心泵的性能全都与转速有关;在实际应用过程中,大多数离心泵又是在恒定转速下运行,所以我们要学习离心泵恒定转速下特性曲线的测定方法。

泵的扬程用下式计算:He=H 压力表+H 真空表+H 0+(u 出2-u 入2)/2g式中:H 压力表——泵出口处压力H 真空表——泵入口处真空度H 0——压力表和真空表测压口之间的垂直距离 泵的总效率为:Na Ne=η 其中,Ne 为泵的有效功率:Ne=ρ·g ·Q ·He式中:ρ——液体密度g ——重力加速度常数 Q ——泵的流量Na 为输入离心泵的功率:Na=K ·N 电·η电·η转式中:K ——用标准功率表校正功率表的校正系数,一般取1 N 电——电机的输入功率η电——电机的效率η转——传动装置的传动效率二、实验设备及流程:设备参数:泵的转速:2900转/分额定扬程:20m电机效率:93% 传动效率:100%水温:25℃泵进口管内径:41mm泵出口管内径:35.78mm 两测压口之间的垂直距离:0.35m涡轮流量计流量系数:75.78三、实验操作:第一步:灌泵因为离心泵的安装高度在液面以上,所以在启动离心泵之前必须进行灌泵。

如下图所示,打开灌泵阀。

在压力表上单击鼠标左键,即可放大读数(右键点击复原)。

当读数大于0时,说明泵壳内已经充满水,但由于泵壳上部还留有一小部分气体,所以需要放气。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵的特性曲线的测定2010-11-28 00:12:33| 分类:默认分类|字号订阅实验四、离心泵的特性曲线的测定一、实验目的:1.掌握离心泵操作,了解离心泵的结构和性能;2.测定离心泵在一定转速下的特性曲线的测定。

3.测定离心泵的管路特性曲线4.了解离心泵的工作点与流量调节二、实验原理:1.离心泵的特性曲线离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论扬程与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图-23的曲线。

由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,例如摩擦损失、环流损失等,因此,实际扬程比理论扬程小,且难以通过计算求得,因此通常采用实验方法,直接测定扬程、功率、效率与流量的关系,并将测得:H e~Q、N~Q和η~Q三条曲线称为离心泵的特性曲线。

另外,根据此曲线可以得出离心泵的最佳操作范围,泵的高效率区作为选用离心泵的依据。

图2-23 离心泵的理论压头与实际压头(1)泵的扬程He在离心泵进出口管装设真空表和压力表的管截面列出柏努利方程式,(以单位重量液体为衡算标准)则:(2-23)由于两取压口紧靠离心泵进出口,因此直管段摩擦损失很小,其阻力损失归入离心泵的效率,故=0。

(2-24)若离心泵进出口管径相同,则 u1=u2上式可写成为:(2-25)(2-26)式中:H压强表、H真空表——分别为压强表和真空表所测得的表压和真空度,以(m液柱)表示的数值。

h0——压强表和真空表中心之垂直距离。

(2)泵的轴功率N轴离心泵从电机获得的实际功率(即单位时间内电机向离心泵输入的功)称离心泵的轴功率。

泵的轴功率和电机的电功率之间有如下的关系:N轴=N电·η电·η传(2-27)式中:N电——电动机的电功率,由功率表测得(KW);η电——电动机效率,取0.9;η传——传动效率,η传=1.0。

(3)泵的效率η离心泵的有效功率Ne与轴功率之比称为效率。

(2-28)(2-29)式中:Ne——离心泵的有效功率,KW;Q ——流量,m3/s;He——扬程,m;——流体密度,kg/m3;2、离心泵的管路特性曲线当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵的本身的性能有关,还与管路特性有关,即在液体输送过程中泵和管路是相互制约的。

对一特定的管路系统由柏努利方程可得出:H e=K+BQ2(2-30)式中:H e——管路所需的压头,m;Q——流量,m3/s。

当操作条件一定时,K和B均为常数:(2-31)(2-32)式中:A ——管道截面积,m2;d ——管道直径,m;L ——管道长度,m;L e——局部阻力的当量长度,m;——局部阻力系数;——位能差,J/kg;——静压差,p a。

由上式可知:在固定的管路中输送液体时,管路所需的压头H e随液体流量Q的平方而变。

若将此关系标绘在相应的坐标纸上所得到的He~Q曲线,称为管路特性曲线。

该曲线的形状与系数K和B有关,也就是取决于操作条件和管路的几何条件,而与泵的性能无关。

由于确定K、B有一定困难,实验时不采用此方法求管路特性曲线。

3、路特性曲线的测定及工作点的调节离心泵是安装在一定的管路上工作的,泵所提供的压头和流量必然与管路所需的压头和流量是一致的。

若将离心泵的特性曲线H~Q与管路的特性曲线He~Q绘在同一坐标图上,两曲线的交点称为泵在该管路的工作点。

当生产任务发生变化或已选好的泵在特定的管路中运转所提供的流量不符合输送任务要求时,都需要对泵的工作点进行调节,可采用改变阀门开度来改变管路特性曲线,可求出泵的特性曲线。

或采用改变泵的转速来改变泵的特性曲线,从而得出管路特性曲线。

无论采用上述的哪种方法,均能达到调节离心泵工作点的目的。

测定管路特性曲线时,应固定离心泵的阀门在某一开度下,此时管路特性曲线一定,本实验装置应用变频调速器改变电机的频率,相应地改变泵的转速。

测出各转速下的流量及相应压力表、真空表及功率表的读数,算出泵的扬程He即为管路所需的压头,从而绘出管路的特性曲线。

三、实验装置及流程1.实验装置Ⅰ示意图及流程图2-24 离心泵特性曲线测定实验——装置Ⅰ流程示意图1—离心泵;2—真空表;3—压力表;4—仪表柜; 5—控制阀;6—涡轮流量变送器;7—贮水箱;8—进水阀。

本实验装置由被测的1BA(或1BL)型离心泵一台,及贮水箱、管路、控制阀门、涡轮流量计、真空表、压力表等组成。

仪表箱装有泵开关按钮及功率表、流量计数字显示仪表。

2.实验仿真界面图2-25 离心泵特性曲线测定实验——实验仿真界面3.实验装置Ⅱ示意图及流程图2-26离心泵特性曲线测定实验——装置Ⅱ流程示意图1—贮水箱; 2—泵入口调节阀; 3—离心泵; 4—回流阀; 5—调节阀; 6—文丘里流量计;7—继电器; 8、9—压力传感器;10—真空度传感器; 11—功率变送器;12、13、14 —放大器; 15—AD转换器; 16—DA转换器; 17—计算机;离心泵将贮水箱中的水吸入实验系统,经出口自动调节阀控制流量。

流体流经输送管路至文丘里流量计测量流量,经回流管路流回贮水箱循环流动。

本实验装置可人工操作也可实现计算机数据采集及自动控制操作。

四、实验步骤及注意事项1.实验装置Ⅰ步骤及注意事项(1)检查电机和离心泵是否正常运转,打开电机的电源开关,观察电机和离心泵的运转情况,如有异常,立即切断电源。

(2)实验时逐步打开流量控制阀以增大流量,测取6~8组数据。

(3)实验结束,停泵。

注意事项:(1)启动前应关闭泵的出口阀门。

(2)在最大流量范围内合理分割流量进行实验布点,由控制阀调节流量大小。

(3)在每次流量调节稳定后,读取各参数的数据,特别不要忘记流量为零时各读数的记录。

2.实验装置Ⅱ步骤及注意事项实验前向贮水箱加水,合上电源总开关。

(1)人工操作:1)将流量调节阀放在手动的位置,并将阀门关到零位。

2)按照变频调速器说明设定(Fn—11为0;Fn—10为0),设定变频调速器的频率。

3)启动离心泵,改变流量调节阀的位置,从零位倒最大取10个数据,每调节流量待流体稳定后测量其流量、泵进出口压力和电机输入功率。

这样可得到离心泵特性曲线。

4)将流量调节阀放在任何一位置,改变变频调速器的频率,每改变流速待流体稳定后分别测量其流量、泵进出口压力,即可测得管路特性曲线。

5)实验结束把流量调至零位后,停泵。

(2)计算机过程控制实验(自动——自动调节流量):1)设定变频调速器(Fn—11为2;Fn—10为1)后,打开计算机、显示器,进入离心泵计算机数据采集和过程控制软件。

按照软件提示进行操作。

但必须先启动泵后进行离心泵特性曲线自动控制或管路特性曲线自动控制。

当实际流量与给定值相等时,执行机构电动调节阀停止不动,当实际流量与给定流量不相等时,执行机构电动调节阀在计算机的指挥下调节阀门开度,从而达到流量稳定的目的。

显示器能够反映出流量和时间的关系及稳定时间。

2)离心泵特性曲线自动控制点击离心泵特性曲线自动控制后,计算机自动调节流量并绘出离心泵特性曲线,全部实验由计算机自动完成,实验结束后,点击结束当前实验回到主菜单。

3)管路特性曲线自动控制将阀门调到任意位置后,点击管路特性曲线自动控制,计算机发出指令改变频率并测定其流量、压头,全部实验由计算机自动完成。

(3)计算机数据采集(手动——人工调节测量):离心泵特性曲线测定时,在泵入口阀全开的状态下,人工改变流量调节阀开度,计算机对泵出、入压强、泵得轴功率和流量进行数据采集、数据处理并在屏幕上显示出泵的特性曲线。

按照计算机提示打印实验数据和特性曲线图。

注意事项:(1)实验前应检查贮水箱内的水位、流量调节阀关闭到零位。

(2)注意变频调速器的使用方法。

五、实验数据记录及整理1.实验数据记录(实验装置Ⅰ)图2-27 离心泵特性曲线测定实验——数据记录2.实验数据整理(实验装置Ⅰ)图2-28 离心泵的特性曲线的测定实验——数据整理3.实验数据及整理(1)实验装置Ⅱ的离心泵特性曲线数据序号流量计压差(kPa)泵出口压力(MPa)泵入口压力(MPa)功率表(kW)压头(m)流量计流量(m3/h)轴功率(kW)效率(%)1 0 0.215 0 0.78 22.096 0 0.624 02 3 0.214 0 1.08 21.994 4.32 0.864 30.03 14.9 0.205 0 1.34 21.077 9.64 1.072 51.64 22.1 0.194 0 1.45 19.955 11.74 1.16 55.05 35 0.175 0 1.59 18.018 14.77 1.272 57.06 44.1 0.163 0 1.66 16.795 16.58 1.328 57.17 50.8 0.15 0.001 1.75 15.572 17.80 1.4 53.9六、实验报告要求1.在普通坐标纸上绘制离心泵的特性曲线。

图2-29 离心泵特性曲线测定实验——实验装置Ⅰ的数据作图图2-30 离心泵的特性曲线的测定实验——实验装置Ⅱ的离心泵特性曲线图2.在普通坐标纸上绘出管路特性曲线,并标出工作点。

图2-31 离心泵的特性曲线的测定实验——实验装置Ⅱ的离心泵管路特性曲线图七、相关素材图2-32 离心泵特性曲线测定实验——压力表示意图图2-33 离心泵特性曲线测定实验——泵的原理图2-34 离心泵特性曲线测定实验——泵壳图2-35 离心泵特性曲线测定实验——叶轮图2-36 离心泵特性曲线测定实验——底阀图2-37 离心泵特性曲线测定实验——泵的气缚现象。

相关文档
最新文档