Quantum statistics and Altarelli-Parisi evolution equations
2022年诺贝尔物理学奖量子纠缠
2022年诺贝尔物理学奖量子纠缠2022 年诺贝尔物理学奖授予阿兰·阿斯佩(Alain Aspect)、约翰·克劳泽(John F. Clauser)和安东·塞林格(Anton Zeilinger),表彰他们“用纠缠光子进行实验,确立了贝尔不等式的违背,开创了量子息科学”。
其中,安东·塞林格是中国科大“爱因斯坦讲席教授”,他也是中国量子息领军人物潘建伟在奥地利留学时的博士生导师。
塞林格长期关怀中国科大国际合作和人才培养工作,积极推动中奥学术交流。
他曾多次做客中国科大“大师论坛”以及“墨子沙龙”活动,鼓励和引领青年学子投身量子科技事业。
2020年,安东·塞林格被授予“中国政府友谊奖”。
塞林格做客“墨子沙龙”,给青年学子讲述量子科学与技术(拍摄于2019年)值得一提的是,诺贝尔奖授予量子息科学,中国科学家也做出了重要贡献。
早在上世纪90年代,潘建伟就和导师塞林格一起开展量子息实验研究。
诺贝尔奖新闻发布会和获奖工作的官方介绍文件中,都大量引用了潘建伟及其团队的成果与贡献。
例如,诺奖官方介绍中着重强调了量子隐形传态、纠缠交换的首次实现等工作,而在这一系列工作中,潘建伟都起到了核心作用;诺奖新闻发布会上还重点展示了“墨子号”的工作,正是这些后续优秀工作的推动,量子息从早期的梦想变为现实,量子息先驱荣获诺奖更众望所归。
量子息科学是正在快速发展的新兴学科。
对于一个初生的孩子,他的力量,就是生长的力量。
我们有理由期待,量子息科学将给人们带来更多惊喜,而中国科学家也将做出更重要的贡献。
以下文章翻译自诺贝尔奖委员会对获奖工作的官方介绍文件。
量子力学的基础不仅仅是一个理论或哲学问题。
利用单粒子系统的特殊性质来构建量子计算机、改进测量、建造量子网络和安全的量子保密通,这些研究和进展正在蓬勃发展之中。
量子纠缠许多应用依赖于量子力学的一个独特性质:允许两个或更多粒子存在于一个共享的状态,无论它们相距多远。
2023诺贝尔物理学奖 解读
2023年诺贝尔物理学奖解读2023年诺贝尔物理学奖近日揭晓,获奖者分别是法国科学家阿兰·阿斯佩、美国科学家约翰·克劳泽和奥地利科学家安东·蔡林格。
他们凭借在量子纠缠实验方面的开创性研究,为量子通信和量子计算领域的发展打下了坚实的基础。
量子纠缠,简单来说,就是两个或多个粒子之间存在一种特殊的关系,它们的状态是相互关联的,一旦测量其中一个粒子,另一个粒子的状态也会瞬间发生改变。
这种神奇的现象,让人们对量子力学的理解更加深入。
阿兰·阿斯佩、约翰·克劳泽和安东·蔡林格的研究,不仅证明了量子纠缠的存在,还通过实验手段对量子纠缠的性质进行了深入的探索和研究。
他们的研究成果,不仅对物理学的发展产生了深远的影响,也为其他领域的研究提供了新的思路和方法。
在过去的几十年里,随着计算机、通信等技术的快速发展,人们对于信息的处理和传输速度的要求越来越高。
而量子纠缠的研究成果,为解决这些问题提供了新的可能。
在量子通信领域,利用量子纠缠技术可以实现无条件安全的通信方式,保护信息的安全性和隐私性。
在量子计算领域,量子纠缠的研究成果也为实现高速、高效的计算提供了新的思路和方法。
除了在通信和计算领域的应用外,量子纠缠的研究还涉及到许多其他领域。
例如,在化学领域,量子纠缠的研究可以帮助人们更好地理解和控制化学反应的过程和结果;在生物学领域,量子纠缠的研究可以帮助人们更好地了解生命的本质和奥秘;在宇宙学领域,量子纠缠的研究也可以帮助人们更好地了解宇宙的起源和演化。
总之,阿兰·阿斯佩、约翰·克劳泽和安东·蔡林格的研究成果,不仅为物理学的发展做出了重要的贡献,也为其他领域的研究提供了新的思路和方法。
他们的成就将永远铭刻在科学史册上,激励着更多的科学家不断探索未知的领域和现象。
2023年诺贝尔化学奖发现和合成量子点简单介绍一下
2023年诺贝尔化学奖发现和合成量子点引言1. 量子点(Quantum Dots)是一种被广泛应用于物理、化学、生物学和材料科学等领域的纳米材料。
它们具有独特的光学和电学性质,因此在显示技术、生物成像、太阳能电池和光电子器件等方面具有巨大的应用潜力。
2. 2023年诺贝尔化学奖的获奖者对量子点的发现和合成做出了重要贡献,为相关领域的研究和应用带来了突破性进展。
第一部分:量子点的发现3. 量子点最早由美国物理学家Louis E. Brus在1984年提出,他发现了半导体纳米晶体在光激发下呈现出尺寸依赖的光学性质。
这一发现开启了量子点研究的大门,引起了科学界的广泛关注。
4. 随后,许多科学家对量子点进行了深入研究,发现了它们的量子限制效应和色调依赖性质,为量子点的合成和应用奠定了基础。
第二部分:量子点的合成5. 量子点的合成一直是科学家们关注的焦点之一。
早期的研究主要使用离子束沉积、化学气相沉积和溶液法等方法,但存在着合成难度大、成本高和产率低的问题。
6. 随着科学技术的发展,研究人员不断探索新的合成方法,如微乳液法、热分解法、离子交换法等,逐渐实现了高效、低成本的量子点合成,为量子点的大规模应用奠定了基础。
第三部分:2023年诺贝尔化学奖的获得者7. 2023年诺贝尔化学奖的获得者在量子点的研究和应用方面取得了重大突破,对其发明和发现做出了杰出贡献。
8. 他们的研究不仅推动了科学理论的发展,还为量子点在荧光标记、生物成像、光催化和电子器件等方面的广泛应用提供了重要技术支持。
结论9. 2023年诺贝尔化学奖的颁发,标志着量子点研究取得了巨大的成就,对于促进纳米材料科学和技术发展具有重要意义。
10. 量子点的发现和合成不仅丰富了人们对纳米材料的认识,还为未来的科研和应用提供了无限可能,有望在多个领域产生革命性的影响。
量子点(Quantum Dots)是一种具有独特光学和电学性质的纳米材料,是纳米技术领域的重要研究对象。
电影《2012》世界末日 完整 中英文对白
本文由王琳雨贡献doc文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
《2012》梅加登铜矿印度嗨,当心,当心。
Welcome,my friend. 欢迎,我的朋友。
Great to see you. 很高兴看到你。
Yeah,glad you made it. 很高兴你来了。
英文对白 2009)Remember my brother,Gurdeep?He's a student now. 记得我弟弟格帝吗?他现在是学生。
Namaste,Dr.Helmsley,sir. 你好,赫尔姆斯得博士。
Adrian,It's just Adrian. 艾德里安,叫我艾德里安。
Just don't pour too much,huh? 别一次倒太多,好吧? How do you work in this heat?你怎么能在这么热的地方工作? You've come on a good day,my friend. 今天算不错了,朋友。
Sometimes it can hit 120 degrees. 有时候温度会高达华氏 120 度(约 49 摄氏度)。
You have to come and meet Dr.Lokesh……a Fellow of quantum physics at the university in Chennai. 你得见见洛克西博士,他是钦奈大学的量子物理专家。
Dr.Helmsley. 赫尔姆斯利博士。
So,what are we looking at? 好了,你要给我看什么?These are neutrinos acting normally. 这些是正常的中微子。
Minuscule mass,no electrical charge. 没有质量,不带电荷。
They pass through ordinary matter almost (NAGA DENG COPPER MINE,INDIA 2009 年Hey,hey,watch out.Watch out.This can't be Ajit.He's a little man already. 那是阿吉特吧?他都长这么大了。
八卦一下量子机器学习的历史
八卦一下量子机器学习的历史人工智能和量子信息在讲量子机器学习之前我们先来八卦一下人工智能和量子信息。
1956,达特茅斯,十位大牛聚集于此,麦卡锡(John McCarthy)给这个活动起了个别出心裁的名字:“人工智能夏季研讨会”(Summer Research Project on Artificial Intelligence),现在被普遍认为是人工智能的起点。
AI的历史是非常曲折的,从符号派到联结派,从逻辑推理到统计学习,从经历70年代和80年代两次大规模的政府经费削减,到90年代开始提出神经网络,默默无闻直到2006年Hinton提出深层神经网络的层级预训练方法,从专注于算法到李飞飞引入ImageNet,大家开始注意到数据的重要性,大数据的土壤加上计算力的摩尔定律迎来了现在深度学习的火热。
量子信息的历史则更为悠久和艰难。
这一切都可以归结到1935年,爱因斯坦,波多尔斯基和罗森在“Can Quantum-Mechanical Description of Physical Reality be Considered Complete?”一文中提出了EPR悖论,从而引出了量子纠缠这个概念。
回溯到更早一点,1927年第五次索尔维会议,世界上最主要的物理学家聚在一起讨论新近表述的量子理论。
会议上爱因斯坦和波尔起了争执,爱因斯坦用“上帝不会掷骰子”的观点来反对海森堡的不确定性原理,而玻尔反驳道,“爱因斯坦,不要告诉上帝怎么做”。
这一论战持续了很多年,伴随着量子力学的发展,直到爱因斯坦在1955年去世。
爱因斯坦直到去世也还一直坚持这个世界没有随机性这种东西,所有的物理规律都是确定性的,给定初态和演化规律,物理学家就能推算出任意时刻系统的状态。
而量子力学生来就伴随了不确定性,一只猫在没测量前可以同时“生”和'死',不具备一个确定的状态,只有测量后这只猫才具备“生”和'死'其中的一种状态,至于具体是哪一种状态量子力学只能告诉我们每一种态的概率,给不出一个确定的结果。
2023诺贝尔物理学奖成果介绍
2023年诺贝尔物理学奖成果介绍一、概述2023年诺贝尔物理学奖颁发给了皮埃尔·阿戈斯蒂尼、费伦茨·克劳斯和安妮·吕利耶三位科学家,以表彰他们为研究物质中的电子动力学以及产生阿秒光脉冲的实验方法所做出的卓越贡献。
这一奖项的颁发再次证明了物理学领域在揭示宇宙奥秘、推动人类文明发展方面的重要作用。
二、关于阿秒阿秒是物理学中用于描述时间间隔的单位,它是10的负18次方秒,也就是十亿分之一秒的十亿分之一。
这一极短的时间间隔内,物质状态的变化以及相互作用过程可以被精确地捕捉和观测。
在本次获奖的研究中,阿秒级的光脉冲被成功产生和应用,为人类对物质内部电子动态过程的研究提供了前所未有的手段。
三、光的波长和频率光的波长和频率是描述光的两个重要物理量。
光的波长指的是光在空间中振动的长度,而频率则是指光在单位时间内振动的次数。
光的波长和频率成反比,即频率越高的光波长越短。
在本次研究中,科学家们通过将不同波长的激光脉冲进行组合,成功地产生了阿秒级的超短光脉冲,这一成果对于深入探讨物质内部的电子动态过程具有重要意义。
四、如何让光脉冲达到阿秒级要使光脉冲达到阿秒级,科学家们采取了一种被称为“啁啾”的技术。
这种技术的基本原理是通过将多个不同波长的激光脉冲组合在一起,形成一个具有特定形状的光脉冲。
通过精确控制各波长激光脉冲的相位和振幅,科学家们成功地产生了阿秒级的超短光脉冲。
这一成果的实现对于深入探讨物质内部的电子动态过程以及研究量子力学中的微观现象具有重要价值。
五、光的能量与波长光的能量与波长有关,越短波长的光能量越强。
激光作为一种具有高度单一波长和高度相干性的光源,其在穿过气体时可以产生强烈的谐波。
这些谐波的能量相当于紫外线,其波长比可见光短得多。
利用激光产生的谐波,科学家们可以对物质表面进行纳米级别的加工和改造,从而实现微纳制造和精密加工等应用。
此外,利用激光产生的谐波还可以用于探测物质内部的电子动态过程以及研究量子力学中的微观现象。
夸克禁闭和渐近自由-USTC,ICTS
14
• 1973年Kobayashi-Maskawa在日本学术刊物 ”理论物理进展”(Progress of Theoretical Physics)发文指出如果自然界中还存在(至 少)第三代夸克(顶夸克t和底夸克b ),微观 粒子系统中的CP破坏现象就可以得到解释。 从而预言了底夸克b和顶夸克t的存在并为实 验所证实。他们还认识到B介子(包含b夸克 的介子)有可能是研究CP对称性破坏的最理 想的场所。发现对称性破缺的来源并预言了 自然界至少存在三代夸克。
• quark-parton model 那些自旋为1/2的部 分子(点粒子)就是所有的价夸克和海夸克。
31
量子色动力学理论 (非阿贝尔规范场)
32
反屏蔽
33
34
1973年 Gross-Wilczek,Politzer奠定了量子色动力 学理论基础。证明了非阿贝尔规范场的渐近自由性
质。
35
屏 蔽
27
28
29
30
• 实验上的Scaling现象告诉我们,如果电 子-质子的非弹散射是由于电子与质子 内部的许多类点成分发生不相干的弹性 散射所引起的,那么Scaling现象就自然 发生。人们将这些类点组成分称为部分 子(Parton)。
• 这样,电子和质子内的点Parton相互作 用发生弹性散射就成为电子-质子深度 非弹散射的基本过程。
• 计算物质世界的重量:物理学家最新的计算数据表明,标 准模型非常准确地预测了质子和中子的质量。
• 更快、更廉价的基因组测序
2
3
2008年度诺贝尔物理学奖
南部阳一郎(1921年生)
小林诚(1944年生)
益川敏英(1940年生)
5
深层次物质结构两大特点
诺贝尔物理学奖2022
研究介绍——开创性试验
通过精密的工具和一系列的实验,Anton Zeilinger开始使用纠缠量 子态。此外,他的研究小组还展示了一种被称为量子隐形传态的现象, 使得在一定距离上将量子态从一个粒子移动到另一个粒子成为可能。
研究价值
这些研究和实验为当前量子信息科 学的密集研究奠定了基础。能够操纵和 管理量子态及其属性,使我们能够发展 出具有意想不到的潜力的工具。这是量 子计算、量子信息的传输和存储,以及 量子加密算法的基础。这些日益完善的 工具使我们更加接近那些现实的应用。
相关链接——诺贝尔物理学奖
诺贝尔物理学奖是阿尔弗雷德·诺贝 尔在其遗嘱中提到的第一个奖项。从 1901年至2021年,诺贝尔物理学奖已 颁发过115次,其中47次授予单一获奖 者,32次由两位获奖者分享,36次由三 位获奖者分享。
截至2022年,共有222位诺贝尔奖 物理学奖获得者。其中,美国科学家约 翰·巴丁是唯一曾在1956年和1972年两 次获得诺贝尔物理学奖的获奖者,这意 味Leabharlann 共有221人曾获得诺贝尔物理学奖 。
相关链接——诺贝尔物理学奖
最年轻的诺贝尔物理学奖得主是劳伦斯· 布拉格,他1915年和父亲亨利·布拉格共同获 奖时年仅25岁。最年长的诺贝尔物理学奖得主 是亚瑟·阿斯金,他2018年获奖时已96岁。
在诺贝尔六大奖项中,物理学奖是女性获 奖人次第二少的奖项,只多于仅有2位女性获 奖的诺贝尔经济学奖。截至2021年,共有4名 女性曾获得诺贝尔物理学奖,分别是玛丽·居里 (1903年获奖,1911年获诺贝尔化学奖)、 玛丽亚·梅耶(1963年获奖)、唐娜·斯特里克 兰(2018年获奖)、安德烈娅·盖兹(2020年 获奖)。
获得者介绍
John F. Clauser(约翰·克劳瑟,美 国理论和实验物理学家。1942年出 生于美国加利福尼亚州帕萨迪纳。 1969年获得美国纽约哥伦比亚大学 博士学位。以对量子力学的研究而出 名,尤其是对CHSH不等式的研究贡 献。
天琴计划简介
参考源双星系统模型: 其他有关这个引力源的模型包括“中间极模型”(IP), “非极化感应体模型”(UI),IP模型所描述的系统并不是一个超高密度的双星
系统,而是一个轨道周期为几小时的双星系统,非常短的信号周期实际上来自于
磁白矮星的自旋,而UI模型描述的是一个能量更大的Jupiter-Io系统,非磁性白矮 星会绕着磁性白矮星公转,这样一个模型中5.4min的周期同样也是轨道周期,但 是双星是分离的。 在Keck-I上使用相位分辨光谱学,Roelofs等研究得到了一些 动力学证据【Roelofs G H A, Rau A, Marsh T R, Steeghs D, Groot P J and Nelemans G 2010 Astrophys. J.711 L138】发现J0806的平均光谱由离化的He发射谱线决定,这 些谱线的半高全宽度(full width at half maximum,FWHM)大约为 2500 km s1,在 时间分辨谱中,He I 4471线具有S型Doppler调制,它的强度随着不同的连续光通 量强度而变化,这意味着这些谱线源于相同的地区,使用线性投影Doppler X射线 断层摄影,可以测出相应的径向速度振幅的一半,对于He I 4471 (390 40)km s1 ,对于He II 4686 (260 40)km s1
旋周期性”预言的谱线变化并不一致,展宽而相当平稳的He II谱线是双星系统融 合的强烈信号,这与UI模型并不一致。 J0806的参数中具有最大不确定性的就是 到太阳的距离, 在基于X射线亮度【Roelofs G H A, Rau A, Marsh T R, Steeghs D, Groot P J and Nelemans G 2010 Astrophys. J.711 L138】对距离的估计和基于光学亮 度以及温度【Strohmayer T E 2005 Astrophys. J. 627 920】的大约差了1个因子10, 在【/grace】中甚至给出了更小的值(大约0.05kpc)。 J0806 具有相对较大的银河纬度(黄纬),大约 200【/grace】,认为 J0806到太阳的距离远大于5kpc几乎是不可能的。
等离子体环境中Kerr黑洞的暗影
上海师范大学硕士学位论文摘要摘 要自从广义相对论诞生以来,黑洞作为它的一个重要结论,一直是理论研究的一个热门对象。
长期以来人们从各个不同的角度对黑洞的性质进行了广泛而深入的讨论。
本文的研究内容是通过黑洞对光线的影响得到的观测结果即黑洞暗影,反向推出黑洞的性质参数。
随着事件视界望远镜项目(EHT)的进行,黑洞暗影的研究在最近几年掀起了又一波高潮。
我们通过一系列的调研,掌握了两种计算黑洞暗影的方法,即Hamilton-Jacobi方法和反向射线追踪法。
我们首先用Hamilton-Jacobi 方法计算了真空环境下的Kerr黑洞暗影的大小和形状,从得到的结果看出影响黑洞暗影的主要因素为黑洞的质量M和自旋a;然后用反向射线追踪法对等离子体环境中的Kerr黑洞进行了研究,并引入两个参数,即黑洞暗影半径R s和形变参数σ对黑洞暗影的形状进行描述。
我们看到通过增加黑洞的自旋参数,黑洞暗影的图像会发生改变,变得更加不规则。
在等离子体环境下,黑洞暗影的形状会因受到等离子体的影响而发生变化。
跟在真空环境下不同,等离子体环境下的黑洞暗影,其形状和大小都跟光子的频率相关,即在不同波段上观测到的黑洞暗影大小和形状都不同。
黑洞暗影进行深入研究不仅可以用来检验广义相对论,而且还可以通过对黑洞暗影的形状和大小的分析,得到黑洞周围的时空性质。
关键词:Hamilton-Jacobi方法,反向射线追踪法,黑洞暗影,等离子体Abstract Shanghai Normal University Master of PhilosophyAbstractBlack hole is one of the most popular object in theoretical study,since the general theory of relaticity was born.A lot of researchers studied the properties of block hole from different aspects in history.Of course a black hole itself cannot be seen directly but if it is in front of a luminous background or more generally,in the centre of a luminous asymptotically flat region(because of the bending of light it need not be behind the hole!)—it will cast a specific shadow.With the advance of the Event Horizon Telescope(EHT) project,the study of black hole shadow has stimulate a stirring of interest again.To study the shadow of black hole:,two methods usually be used:one is analytical,which use the Hamilton-Jacobi formalism of null geodesic;Another is numerical and a ray racing algorithm is applied.At first we use Hamilton-Jacobi Equation to research the shadow of Kerr black hole in vacuum environment,the size and the shape of the shadow depend on the mass and the angular momentum,and they can also depend on other parameters specific of the particular model adopted.Then we investigate the shadow of Kerr black hole with plasma by Ray-Tracing Algorithm.We discover that shape and size of shadow will effected by properties of plasma.The study of black hole shadow can not only used to explore the property of space-time in the vicinity of a black hole,but also to test the general theory of relativity.Keywords:the Hamilton-Jacobi formalism,Ray Tracing Algorithm,black hole shadow, plasma.目录第一章绪论 (1)1.1研究工作的背景与意义 (1)1.2黑洞暗影的国内外研究历史与现状 (2)1.3本文的主要贡献与创新 (3)1.4本论文的结构安排 (3)第二章黑洞基础简介 (4)2.1黑洞 (4)2.2Kerr黑洞 (5)第三章计算Kerr黑洞暗影:Hamilton-Jacobi方法 (6)3.1Hamilton-Jacobi方程 (6)3.2运动方程 (8)3.2.1Null测地线 (9)3.2.2光子的球形轨道 (9)3.3天球坐标 (9)3.4Kerr黑洞的暗影呈现 (12)第四章反向射线追溯法 (13)4.1在被等离子体包围的黑洞附近的光线 (13)4.2光线在等离子体的中的传播 (13)4.2.1应用到轴对称时空 (14)4.2.2观察者平面 (16)4.2.3初始条件 (17)4.3数值计算的结果 (18)4.3.1等离子体环境中Kerr黑洞暗影的刻画 (18)4.3.2等离子体对黑洞暗影影响的量化 (20)4.3.3黑洞暗影的四色渲染图 (21)第五章全文总结与展望 (23)5.1全文总结 (23)5.2后续工作展望 (23)参考文献 (24)攻读学位期间取得的研究成果 (28)致谢 (29)上海师范大学硕士学位论文第一章绪论第一章绪论1.1研究工作的背景与意义经过对太阳系和宇宙中各种现象的观测,广义相对论已经得到了很好的验证。
二次量子化英文文献
二次量子化英文文献An Introduction to Second Quantization in Quantum Mechanics.Abstract: This article delves into the concept of second quantization, a fundamental tool in quantum field theory and many-body physics. We discuss its historical development, mathematical formalism, and applications in modern physics.1. Introduction.Quantum mechanics, since its inception in the early20th century, has revolutionized our understanding of matter and energy at the atomic and subatomic scales. One of the key concepts in quantum theory is quantization, the process of assigning discrete values to physical observables such as energy and momentum. While first quantization focuses on the quantization of individual particles, second quantization extends this principle tosystems of particles, allowing for a more comprehensive description of quantum phenomena.2. Historical Development.The concept of second quantization emerged in the late 1920s and early 1930s, primarily through the works of Paul Dirac, Werner Heisenberg, and others. It was a natural extension of the first quantization formalism, which had been successful in explaining the behavior of individual atoms and molecules. Second quantization provided a unified framework for describing both bosons and fermions, two distinct types of particles that exhibit different quantum statistical behaviors.3. Mathematical Formalism.In second quantization, particles are treated as excitations of an underlying quantum field. This approach introduces a new set of mathematical objects called field operators, which act on a Fock space – a generalization of the Hilbert space used in first quantization. Fock spaceaccounts for the possibility of having multiple particles in the same quantum state.The field operators, such as the creation and annihilation operators, allow us to represent particle creation and destruction processes quantum mechanically. These operators satisfy certain commutation or anticommutation relations depending on whether the particles are bosons or fermions.4. Applications of Second Quantization.Second quantization is particularly useful in studying systems with many particles, such as solids, gases, and quantum fields. It provides a convenient way to describe interactions between particles and the emergence of collective phenomena like superconductivity and superfluidity.In quantum field theory, second quantization serves as the starting point for perturbative expansions, allowing physicists to calculate the probabilities of particleinteractions and scattering processes. The theory has also found applications in particle physics, cosmology, and condensed matter physics.5. Conclusion.Second quantization represents a significant milestone in the development of quantum theory. It not only extends the principles of quantization to systems of particles but also provides a unified mathematical framework for describing a wide range of quantum phenomena. The impact of second quantization on modern physics is profound, and its applications continue to expand as we delve deeper into the quantum realm.This article has provided an overview of second quantization, its historical development, mathematical formalism, and applications in modern physics. The readeris encouraged to explore further the rich and fascinating world of quantum mechanics and quantum field theory.。
量子统计力学
量子统计力学量子统计力学是研究微观粒子的行为和性质的一门学科,它结合了量子力学和统计学的知识。
量子统计力学的主要研究对象是由大量粒子组成的系统,例如固体、液体和气体等。
在这些系统中,粒子之间的相互作用和运动方式都会影响整个系统的性质。
一、基本概念1.量子力学量子力学是描述微观世界中物质和辐射相互作用规律的理论。
它主要研究微观粒子(如电子、质子等)在极小尺度下的运动规律和相互作用规律。
2.统计学统计学是一门应用数学,研究收集、处理、分析数据并进行推断的科学。
它主要关注于如何收集样本数据,并从这些数据中推断出总体特征。
3.量子统计力学量子统计力学是将量子力学与统计学结合起来,研究由大量粒子组成的系统中微观粒子之间相互作用和运动方式对整个系统性质影响规律的理论。
二、基本原理1.泡利不相容原理泡利不相容原理是指两个或多个粒子不能处于相同的量子态。
这意味着,在一个系统中,每个粒子都必须占据不同的量子态。
2.玻色-爱因斯坦统计和费米-狄拉克统计玻色-爱因斯坦统计和费米-狄拉克统计是两种描述由大量粒子组成的系统性质的方法。
在玻色-爱因斯坦统计中,粒子是可以占据相同的量子态的,这种粒子称为玻色子。
而在费米-狄拉克统计中,每个粒子都必须占据不同的量子态,这种粒子称为费米子。
3.基态和激发态基态是指一个系统中所有粒子都处于最低能级状态时的状态。
而激发态则是指系统中至少有一个粒子处于高能级状态时的状态。
三、应用领域1.固体物理学固体物理学主要研究固体材料中电荷、自旋、声波等性质,并利用这些性质来解释材料的物理特性。
在固体物理学中,量子统计力学被广泛应用于描述电子在晶体中的行为和性质。
2.凝聚态物理学凝聚态物理学研究固体和液体中大量粒子的行为和性质。
在凝聚态物理学中,量子统计力学被广泛应用于描述玻色子(如超流体)和费米子(如超导体)的性质。
3.原子物理学原子物理学研究原子和分子的结构、性质以及它们与辐射相互作用的规律。
Peskin量子场论习题解答(第三学期)
Physics 332–Problem Set #2(due Wednesday,April 26)1.Peskin and Schroeder,Problem 11.1.2.Peskin and Schroeder,Problem 11.2.3.Peskin and Schroeder,Problem 11.3.1Physics 332–Problem Set #3(due Wednesday,May 3)1.Peskin and Schroeder,Problem 12.1.2.Peskin and Schroeder,Problem 12.2.You should show that,with this βfunction,the mass m ψof the ψfield satisfies the Callan-Symanzik equation M ∂∂M +∂g m 12(4π)4+(4π)4+Physics 332–Problem Set #4(due Wednesday,May 10)1.Peskin and Schroeder,Problem 12.3.2.Peskin and Schroeder,Problem 13.1.1Physics 332–Problem Set #5(due Wednesday,May 17)1.Consider scalar electrodynamics:L =−14(F 6(φ48π224π2(5λ6λ(ϕ 2.Apply the methods of this problem to the Glashow-Salam-Weinberg model of weak interactions.(a)Compute the effective potential for the Higgs field to 1-loop order,ignoring all effects of quark masses but including the contributions of gauge fields.(b)Show that the theory has a first-order phase transition as a function of the renor-malized Higgs mass parameter μ2.(c)Show that this result implies a lower bound on the physical mass of the Higgs boson (the ‘Linde-Weinberg bound’).Compute the bound to leading order in coupling constants.(d)Now add in the contribution of the top quark.Show that,when the top quark mass is sufficiently heavy,the symmetry-breaking effect found in part (b)goes away.However,another pathology develops,in which,when m t is sufficiently large,the effective potential becomes negative at very large field values and causes an instability of the model.Estimate the value of the top quark mass,as a function of the Higgs boson and W boson masses,at which this instability takes place.2Physics 332–Problem Set #6(due Wednesday,May 24)1.Peskin and Schroeder,Problem 17.1.2.In class,I sketched the derivation of the βfunction of a non-Abeliangauge theory from the renormalization counterterms δ1,δ2,and δ3.Work through this calculation in full e the Feynman-‘t Hooft gauge.3.Peskin and Schroeder,Problem 16.3.Please note:This is a long calculation.The solution set for this problem set is 50pages long,of which 35pages are devoted to this problem.I do assure you that you will learn a considerable amount about how to calculation in gauge theories by doing this problem to the end.(Of course,it might be true that these are things that you never wanted to know ...)1。
蔡司 Elyra 7 配备 Lattice SIM
揭示充满活力的生命亚细胞器网络配备Lattice SIM²的蔡司Elyra 7超高分辨率活细胞成像系统/elyra› 简介›优势›应用›系统›技术参数›售后服务现代生命科学界有一大共识,即对生物实体(无论是高分子、细胞器、细胞、还是有机体)结构的洞悉是理解其功能的关键。
对于刚性结构,关键只在于空间分辨率,但对于动态结构来说,要想在保护活体样品的同时实现所需时间分辨率,则更高的采集速度和低光毒性成为了不可避免的必要条件。
但是,当使用活体观察所需的最小曝光进行高速成像的时候,您是否必须牺牲分辨率?不一定!Lattice SIM²凭借其两倍于传统结构光照明显微镜(SIM)分辨率的性能,可以让您对苛刻条件下所采集到的精细图像细节进行重建。
使用SIM² Apotome,甚至可以实现无损的超高分辨率成像,这意味着以1:1的比例重建原始图像已经成为了现实——所有这些都具有出色的非焦平面光抑制和光学切面性能。
之前Lattice SIM和SIM Apotome的所有优势都保留在其后续的SIM²中。
因此,在实现双倍分辨率提升的同时,您仍然可以使用常用的染料和荧光蛋白,更好地分离不同标记的结构以获得双色同步成像,并在有需要时使用大视野。
成像模式(如Burst和Leap模式)可以无缝结合且无其它限制。
Lattice SIM²可以根据需要与Elyra 7平台上的TIRF、SIM、SMLM和Airyscan成像相结合。
配备Lattice SIM²和SIM² Apotome的Elyra 7:兼具高速与超高分辨率成像›简介› 优势›应用›系统›技术参数›售后服务更简单、更智能、更高度集成Lattice SIM²获得更出色的分辨率新的图像重建算法SIM²可以将SIM技术提升到一个新的水平,可以让您尽可能充分的利用光子。
现在您可以使传统的SIM分辨率翻倍,辨析出超精细的亚细胞结构,甚至是那些相距不超过60 nm的结构。
量子关联 面上项目检索
量子关联面上项目检索下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!量子关联是量子力学中的一个重要概念,指的是两个或多个量子系统之间存在的相关性,即使它们之间被隔离也会保持。
绝热量子计算的物理学原理和实现
绝热量子计算的物理学原理和实现摘要:绝热量子计算(Adiabatic Quantum Computation,简称AQC)是一种使用量子物理系统实现计算的方法,它的物理实现基于绝热定理和量子退相干的原理。
本文将介绍AQC的物理学原理、实现方法以及优缺点,并且讨论了AQC在量子计算领域中的应用前景和研究方向。
关键词:绝热量子计算,绝热定理,量子退相干,量子计算一、引言随着计算机技术的不断发展,人们对于计算速度和计算能力的要求也越来越高。
量子计算机作为一种全新的计算模型,由于其超越传统计算机的计算能力而备受关注。
绝热量子计算(Adiabatic Quantum Computation,简称AQC)是量子计算领域中的一种重要方法,它通过利用量子系统的演化来实现计算。
AQC具有对噪声和误差具有一定的容忍度等优点,因此在理论和实践中都受到了广泛的关注。
本文将介绍AQC的物理学原理和实现方法。
在第二部分中,我们将简要介绍AQC的基本原理。
在第三部分中,我们将详细讨论AQC的实现方法,包括量子比特的实现、哈密顿量的构造、演化时间的选择等。
在第四部分中,我们将讨论AQC的优缺点。
在第五部分中,我们将探讨AQC在量子计算领域中的应用前景和研究方向。
最后,我们将对本文进行总结。
二、AQC的物理学原理AQC的物理学原理基于绝热定理和量子退相干的原理。
绝热定理指的是,在物理系统的演化过程中,如果演化速度足够慢,那么系统将始终保持在一个能量本征态中。
因此,如果我们将系统从一个能量本征态演化到另一个能量本征态,只要演化速度足够慢,那么系统就可以保持在一个能量本征态中,从而实现量子计算。
量子退相干是另一个AQC的关键物理原理。
量子退相干指的是,在量子系统中,由于与环境的相互作用,系统的相位关系将会受到破坏。
这种相位关系的破坏可以被视为噪声,会对量子计算的准确性和稳定性造成影响。
为了避免这种噪声的影响,AQC使用了绝热演化,从而保持系统的相位关系不受干扰。
世界科技全景之伟大的实验改进化学测量
改进化学测量琼斯〃雅各布〃柏济力阿斯于1779 年出生在瑞典的奥斯特戈特兰。
他的父亲是一位教师,还在柏济力阿斯小时候就死了。
柏济力阿斯的母亲改嫁,但不久也死了。
柏济力阿斯只得由他母亲的姐姐弗罗拉大姨收养。
当她和一个再婚的男人结婚后,这孩子就不受欢迎了,只好把他送给一个叔叔去抚养。
柏济力阿斯12 岁时被送到林可宾念书,在那里他得到私人辅导,对他有极大的帮助,这时他对博物学产生了极大兴趣。
但他在学校学习有许多困难,他本来应该是一个奋发向上的学生,但他并没有这样做。
可能是根据校方的意思,他不得不离开了学校。
在1796 年,他在乌普萨拉开始学医。
他很幸运,跟一位优秀教师和著名的化学家(他发现了钛)埃克布格学了一段时间的化学。
他的叔叔帮助他解决了经济困难,让他跟一个药剂师当学徒,后来又跟一个矿泉疗养院的医生当学徒。
在这段时间,他学习了定量分析技术,因为需要知道矿泉水中所含的矿物成分,以便登广告,宣传矿泉治疗的奥妙。
这时他对医学特别感兴趣,他在这段时间所写的博士论文就是关于电疗法的研究,论述了电在医学中的应用。
1800 年他成为斯德哥尔摩外科教授的助手,但是同时他也和一位年轻的矿业主魏特森格共同进行一系列化学研究。
1805 年他被任命为斯德哥尔摩东区的“穷人医生”。
显然他在这段时间仍继续进行着化学研究。
1807 年他成为卡罗林斯卡医学院的化学教授。
他在这个岗位上的第一项研究工作是关于矿石的成分问题,但很快就转到了无机化学分析。
他建立了严格的崭新的化学实验标准,改变了当时的化学研究方法。
1832 年,由于瑞典教育委员会不同意学院和完全大学享有同等地位,他辞去了学院教授职务。
他在晚年,1835 年,才和伊丽莎白〃玻平斯结婚。
这时他已享有很高的国际声望,在他的婚礼上,他被封为男爵。
虽然他的名声很大,荣耀无比,但他在老年郁郁不乐,他曾说:“天知道,一旦老了会发生什么事!你工作呀,工作呀,忙碌一生,干了许多大事,可能总结结果是什么也没有。
太空安全的“公地悲剧 ”及其对策 3
二 、太空安全问题之一 : 轨道拥挤和碎片增多
由于 “公地 ”太空的重要性 , 吸引了许多牧羊人 ——— “主权国家 ”加入进来 , 竞相在太空 “放牧 ”, 而且努力增加 “各种羊群 ”, 即包括卫星在内的功能各异的航天器 。由此 , 产生了 “公 地 ”质量退化 , 即太空安全问题 : 太空轨道拥挤和碎片增多 , 影响航天器的正常运转 。
1967年的外层空间法明确规定任何采取行动以维护他们的集体利益想来是从理性的寻求自我利益的行为这一被广泛接受的前提而现会使所有集体成员的情况都比过去更好那么就可以合乎逻辑地推出只要那一集体中的个人是理性的和寻求自我利益的他们就会采取行动以实现那一目标
社会科学 2009年第 12期
程 群 : 太空安全的 “公地悲剧 ”及其对策
诺贝尔经济学奖获得者科斯教授在其 《社会成本问题 》一文中 , 从产权的角度 、以 “公地 悲剧 ”来阐释交易费用问题 。他认为 , 如果一块土地产权不清晰或者说产权公有 , 所有人都有 权利在公地上放牧 ; 在这种情况下 , 放牧的收益归自己 , 放牧的成本则由大家共同分摊 。在这种 成本收益分摊机制下 , 大家都会倾向于多放牧 、多获得收益 , 长此以往 , 最终会损害草地 , 使所 有的人都受损失 。
物理学中的量子统计研究
物理学中的量子统计研究量子统计在物理学中是一个重要的研究领域,它涉及到了微观粒子的组态分布和热力学行为。
在量子力学的框架下,物理学家们发现粒子的物理性质与其能量状态有一定的关联性,由此导致了一些奇特的量子统计现象。
本文将探讨量子统计的相关知识,包括玻色-爱因斯坦统计和费米-狄拉克统计等。
1. 玻色-爱因斯坦统计玻色-爱因斯坦统计是一种适用于玻色子(具有整数自旋的粒子)的统计学方法。
在此统计方法下,对所有可能的微观状态进行计数,并考虑它们之间的相互作用。
在低温下,玻色子的组态将趋向于聚集在单一能量状态中,且其关联性较强。
玻色-爱因斯坦统计具有一些特别的性质。
首先,该统计方法允许多个粒子同时占据同一个能级,这被称为玻色凝聚(或玻色-爱因斯坦凝聚)。
其次,在高能态下,玻色子之间的相互作用会导致排斥力的出现,从而限制了其组态的多样性,即存在着一个极限——玻色子最多只能占据一个能级。
玻色-爱因斯坦统计在许多物理问题的研究中都有应用,尤其是在介观尺度系统(如凝聚态物理、量子计算等)中。
同时,它也是Bose-Einstein凝聚(Bose-Einstein condensation)的基础,后者是指在极低的温度下,玻色子将聚集成一个宏观量级的波函数,从而展现出量子效应。
2. 费米-狄拉克统计费米-狄拉克统计是适用于费米子(具有半整数自旋的粒子)的统计学方法。
与玻色-爱因斯坦统计不同,费米-狄拉克统计要求系统中的不同粒子不能占据同一个能级,即被称为泡利不相容原理(Pauli exclusion principle)。
在费米-狄拉克统计下,如果所有粒子都处在能量状态$E_i$上,其总能量为:$$U=\sum\limits_i n_i E_i$$其中$n_i$表示占据能量状态$E_i$ 的粒子数,由于泡利不相容原理的存在,$n_i$仅可能取0或1。
所以,费米子的能量状态受到了限制,只能进行单粒子跃迁。
费米-狄拉克统计在理论物理和凝聚态物理中广泛应用。
量子统计与玻色-爱因斯坦凝聚
量子统计是描述微观世界中微粒行为的理论框架。
玻色-爱因斯坦凝聚是一种量子现象,描述了玻色子(具有整数自旋的粒子)在极低温度下聚集成宏观量子态的现象。
本文将介绍量子统计和玻色-爱因斯坦凝聚的基本原理和应用。
量子统计基于波尔兹曼分布和费米-迪拉克分布,分别适用于玻色子和费米子(具有半整数自旋的粒子)。
与经典统计不同,量子统计考虑了量子力学的波粒二象性和泡利不相容原理。
泡利不相容原理指出,同一量子态不能被两个或多个粒子占据,这导致了费米子遵循费米-迪拉克分布的特性:费米-迪拉克分布下,费米子倾向于填充能量较低的态,且不会同时存在于相同的能量态上。
而玻色子则不受泡利不相容原理的限制,具有自发地聚集在最低能级上的倾向。
玻色-爱因斯坦凝聚就是玻色子在低温下形成的凝聚态。
当玻色子的粒子数足够多时,在低于临界温度时,相互作用力将导致玻色子凝聚成一个量子态,称为玻色-爱因斯坦凝聚。
这种凝聚态具有很多奇特的性质,比如能够自发产生相干的超流动态,对量子信息处理和精密测量有着广泛的应用。
尽管玻色-爱因斯坦凝聚不同于传统的凝聚态物质(如液体或固体),但其在物质领域的研究中具有重要的实验和理论价值。
例如,可以用激光冷却技术将原子或分子冷却到极低的温度,使其形成凝聚相。
这种凝聚相中的玻色-爱因斯坦凝聚可用于研究超导、超流等现象,也有助于研究基本物理现象,如粒子间的相互作用和粒子统计。
此外,玻色-爱因斯坦凝聚还在量子信息领域有广泛的应用。
玻色凝聚态的一大特点是具有相干性,可以用来实现量子纠缠和量子计算。
量子计算利用量子比特(qubit)的超导性质进行计算,玻色-爱因斯坦凝聚则提供了一种实现和控制量子比特的新方法。
相较于传统的量子比特系统,利用玻色-爱因斯坦凝聚形成的量子比特不仅具有更稳定的性质,还具备更高的储存和计算速度。
正因为玻色-爱因斯坦凝聚的奇特性质和广泛应用,近年来对其的研究取得了许多重要进展。
例如,在超导电性、凝聚态物质以及量子计算等领域,玻色-爱因斯坦凝聚都显现出了巨大的潜力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :h e p -p h /9510430v 1 27 O c t 1995Quantum statistics and Altarelli-Parisi evolution equationsG.Mangano ,G.Miele and G.Migliore Dipartimento di Scienze Fisiche,Universit`a di Napoli -Federico II -,and INFN -Sezione di Napoli,Mostra D’Oltremare Pad.20,80125,Napoli,Italy.Abstract The phenomenological evidence of quantum statistical effects in parton physics is here briefly summarized,and the recent good results obtained by parameter-izing the parton distributions in terms of Fermi-Dirac and Bose-Einstein statis-tical functions are discussed.In this framework we study the modification of the scaling behaviour of parton distributions due to quantum statistical effects.In particular,by following a well-known formal analogy which holds between the Altarelli-Parisi evolution equations,at leading-log approximation,and a set of Boltzmann equations,we suggest a generalization of evolution equations to take into account Pauli exclusion principle and gluon induced emission.PACS number:13.60.-rpublished in Nuovo Cim.A108(1995)867-882.11IntroductionThe low x regime in deep inelastic processes has recently received much attention due,in particular,to the advent of the HERA electron-proton machine,which would provide precision measurements in the region Q2>10GeV2and x≥10−4[1].In the limit of very small momentum fraction one deals with a dense system of partons in a weak coupling limit,in which,however,interactions among partons cannot be neglected,being able to build up,as we know from many cases in condensed matter physics,a collective dynamics.The aim of this paper is to study the effect of statistical correlations among partons,due to their Fermi or Bose nature,in the Q2evolution of their distribution functions.These correlations,in fact,would be expected whenever the parton wave functions overlap.In terms of the two phase-space variables Q2and x,it is possible to distinguish three regions in which strong interactions among partons,dictated by QCD,behave quite differently:1)For high values of Q2and small densitiesρ,defined as the number N of partons per unit of rapidity y=log(1/x)in the transverse planeρ=dNπR2h(1)with R h the radius of the hadron,one can powerfully apply the perturbative QCD methods.In particular,the Q2evolution of structure functions can be evaluated at leading-log level in Q2by standard Altarelli-Parisi equations(AP)[2]when the follow-ing conditions are satisfied:αs<<1,αs log Q2≈1,andαs log(1/x)<<1.Alterna-tively,in the kinematical region:αs log Q2<<1,andαs log(1/x)≈1and still with αs<<1,the approach of extracting the contribution of the order[αs log(1/x)]n,leads to Fadin-Kuraev-Lipatov equations(FKL)[3].2)The low Q2regime,or equivalently the long-distance interaction region,is typically the realm of non-perturbative QCD.In this case,the value of the strong coupling constant is large and one is dealing with the confinement problem.3)Finally,for high Q2and large densities,as already mentioned,we are still in non-perturbative conditions,but in this case,the latter are rather due to the large number of partons which interact each other.This high density QCD regime is particularly in-teresting from a theoretical point of view,since the small value of the coupling constant2gives us a chance to successfully face the problem.Many attempts have been already addressed to understand the main characteristics of this parton-plasma dynamics.In particular,due to interactions among partons,one should expect nonlinear effects in the Q2evolution of distribution functions:stated differently,microscopical processes with two or more partons in the initial state become relevant in changing their resulting number.This point of view is at the basis of Gribov-Levin-Ryskin equations(GLR) [4],where besides parton decays,whose probability is proportional toαsρ,parton an-nihilation processes are explicitly taken into account.These introduce in the scaling equations a quadratic term in the distribution functions of the formα2sρ2/Q2.Hence, one gets for the particle balance in a cell of the phase-space a Vlasov equation∂2ρπρ−α2sshown to be equivalent to a set of Boltzmann transport equations,which,as well-known,describe the approach towards equilibrium conditions of a thermodynamical system,where a simple function of Q2plays the role of time.In this sense one can guess,in strict analogy with H-Boltzmann theorem,that parton distributions would asymptotically reach equilibrium shape at infinite Q2.The good agreement with the data of equilibrium-like distributions at Q2=4GeV2,could therefore suggest that thermalization process is quite rapid.The stated analogy between transport equations and AP straightforwardly leads to a generalization of the latter in a regime of quite large densities[12].In fact,AP are strictly equivalent only to a set of Boltzmann equations for a very dilute system,where all quantum statistical effects,namely Pauli blocking and induced gluon emission, are negligible.These can be simply introduced by adding in the collisional integral appropriate factors of the form(1±f),where f are parton statistical functions,namely their distributions once the level degeneracy has been subtracted out(see section3). This procedure leads to a set of generalized nonlinear AP equations,which recover the usual AP in the low density region,but whose validity is quite wider,since the effects originated by quantum statistics have been explicitly taken into account.The paper is organized as follow:in section2we briefly review main experimental results leading to the conclusion that quantum statistics may play a role in parton dy-namics inside hadrons.The thermodynamical model proposed in[5]is also described. In section3we will show,following[11],that AP equations can be formally viewed as transport equations:this can be achieved by considering non regularized splitting functions and by explicitly computing infrared virtual gluon contributions.The gen-eralization of AP to a new set of nonlinear equations which contain quantum statistics effects is the subject of section4.Finally in section5we give our conclusions and remarks.2Pauli exclusion principle in deep inelastic scat-tering2.1Experimental resultsDeep inelastic experiments seem to be an inexhaustible source of information on the hadronic structure and continue to considerably improve our understanding of strong interaction dynamics.A measurement of proton and neutron F2(x)structure function performed by the NMC Collaboration at CERN[8]suggests a rather large SU(2)flavour4breaking in the sea quark[13].In particular they have obtained a determination for the differenceI G= 10dy3(u+¯u−d−¯d)=13(¯u−¯d).(4)This result,which represents a relevant violation of the Gottfried sum rule[7],yields¯d−¯u= 10dx[¯d(x)−¯u(x)]=0.15±.04.(5)The inequality¯d>¯u,however,was already argued many years ago by Field and Feyn-man[14]on pure statistical basis.They suggested that in the proton the production from gluon decays of u¯u-pairs with respect to d¯d-pairs would be suppressed by Pauli principle because of the presence of two valence u quarks but of only one valence d quark.Assuming this point of view,the experimental result(3)naturally leads to the conclusion that quantum statistical effects would play a sensible role in parton dynam-ics and that,in particular,parton distribution functions are affected by them.In this picture one may also easily account for the known dominance at high x of u-quarks over d-quarks,whose characteristic signature is the fast decreasing of the ratio F n2(x)/F p2(x) in this regime.Fermi statistics imply,in fact,a broader distribution for u quarks,due to their larger abundance.Another evidence for the effect of the Pauli principle on the parton structure follows from the double helicity asymmetry for polarized muon(electron)-polarized proton deep inelastic scattering A p1(x).By denoting with q+(x)(q−(x))quark distributions with helicity parallel(antiparallel)to the proton helicity,A p1(x)is defined asA p1(x)≡g p1(x)4u(x)+d(x).(6)Experimentally this quantity increases towards unity for high x[9],thus in this regime u+(x)dominates over u−(x),d+(x),and d−(x).This interesting behaviour can be in-terpreted reminding that at Q2=0thefirst momenta of the valence quark distributions are related to the axial couplings F and D through the following relationsu+val=1+F,u−val=1−F,d+val=1+F−D2.(7)5Reminding that F=0.477±.011≈1/2and D=.755±.011≈3/4[15],weget forthe valencequark abundances u+val≈3/2,u−val≈1/2,d+val≈3/8and d−val≈5/8.The fact that dominant distributions correspond to highest values of the valence abundances gives the abundance-shape correlation,which is the typical property of the Fermi-Dirac distribution function:larger abundances correspond to broader distributions.In particular,from the previously obtained values for thefirst momenta one can extrapolate the useful relation valid for the quark distributions[6]u−(x)=13(F p2(x)−F n2(x)) u+d.(10) Then,neglecting the d quarks term in g p1(x)(∆d val=−1/4∆u val and e2d=1/4e2u), we getxg p1(x)≈2¯x +1−1.(12)6Here˜x(q a)plays the role of the thermodynamical potential,¯x of the temperature and f(x)is the level-density in the x variable.This function is ultimately related to the non perturbative dynamics responsible for the binding of quarks and gluons inside the hadrons,so it is theoretically undetermined.Analogously for the gluons(we neglect their polarization)the Bose-Einstein relation has been assumedG(x)=16¯x −1−1,(13)where now the factor16/3is due to the colour degeneracy with respect to the quarks case and to the sum over the two helicity states.Notice that the weight function f(x) has been assumed universal,being the same in(12)and(13).Moreover,the previous considerations allow also to assume the relationd(x)=u−(x)¯xexp x−˜x(u−)and Q 2regime,AP equations provide a reliable description for scaling [2].As already mentionedintheIntroduction,the low x region is characterized by an overdense parton medium,so one has to expect nonlinear effects in the evolution equations due to the overlapping of parton wave-functions.Thus,a quite natural conclusion is that a set of generalized AP equations which would describe the evolution in the moderately low x region,should take into account quantum statistical effects.A way to approach this problem is to start from the analogy showed in [11]occurring between standard leading-log AP equations and Boltzmann transport equations.3Altarelli-Parisi evolution equations as a set ofBoltzmann equationsAs well-known,the logarithmic dependence on Q 2of the parton distribution momenta,predicted in the framework of perturbative QCD ,has a simple and beautiful inter-pretation in terms of evolution equations for parton distribution functions [2].At leading-log level,the AP equations can be written in the following wayd2π 1x dy y ,(17)where t =ln(Q 2/µ2),µis some renormalization scale and p A (x,t )denote the parton distribution functions (A,B =quarks,antiquarks and gluons).By definingτ≡1αs (t ),(18)with b ≡(33−2n f )/(12π)(n f is the number of flavours),Eq.(17)becomes d y B p B (y,τ)P AB x1The integrals are defined in this prescription by10[f (z )/(1−z )+]dz ≡ 10[f (z )−f (1)]/(1−z )dz8and virtual soft gluons emissions.In this way one getsP qq=4(1−z)++32[z2+(1−z)2],(21)P gq=4z,(22)P gg=6 z(1−z)+1−z(1−z)+ +2πbδ(1−z).(23)The microscopic picture beyond the scaling violation equations(19),however,has one main difficulty:the splitting functions(20)-(23)cannot be all interpreted,strictly speaking,as probability densities,since they are not positive definite(e.g. 10P qq(z)dz= 0).This,in particular,is the reason for not having explicitly,in the r.h.s.of(19),terms corresponding to inverse processes,in which a parton with x momentum fraction ends up in others with smaller momenta.An alternative representation of(19)has been developed in[11],where their mi-croscopical interpretation is more clear.According to this,instead of using direct 1/(1−z)+regularization,it is shown how the virtual diagrams,responsible for par-ton wave function renormalization,are equivalent to real diagrams with negative sign. Using in fact Mueller cut-vertices technique[20],in addition to the ordinary real di-agrams,leading to positive contribution to parton distributions variation,a negative term arises,corresponding to virtual gluon emission diagrams with exactly the same form for the unregularized parton splitting function as that of the real ones.By helicity conservation at the quark-gluon vertex,and assuming n f different flavours for quarks(j=1,...,n f)with two helicity states(λ=+,−),the evolution equations for polarized quark distribution functions can be cast in the following form dz γqq(z)q jλx2γqg(z)G xone hasdzγgg(z)Gx z,τ +¯q jλ x2G(x,τ) 10dz[γgg(z)+2n fγqg(z)].(25) In the previous equations the splitting functionsγAB are defined byγqq=41−z,(26)γqg=131+(1−z)2z +z4Statistical effects on parton distribution scaling behaviourAs well-known,the Boltzmann set of equations describes the evolution to equilibrium states of systems composed by many particles of several species(i specie-index i= 1,..,n)mutually interacting[21].Assuming for simplicity particles homogeneously and isotropically distributed,we can define the numerical distribution functions asn i(ǫ,t)≡g i(ǫ)f i(ǫ,t),(30) withǫdenoting the energy,f i(ǫ,t)the statistical functions(they recover the usual Bose/Einstein or Fermi/Dirac at the thermal equilibrium),and g i(ǫ)the level-densities (weights)corresponding toǫ.These last quantities should befixed from the beginning, by studying the hamiltonian of the system.From(30)follows the expression for the total number-density of i-particlesN i(t)= d3 p2ǫA d3 p C(2π)2×δ3( p A− p B− p C)n A(ǫA,t)g B(ǫB)[1±f B(ǫB,t)]g C(ǫC)[1±f C(ǫC,t)] − d3 p A2ǫC |M(B→A+C)|2δ(ǫB−ǫA−ǫC)where|M|2are the squared moduli of transition amplitudes and the sign in thefinal state factors is positive/negative depending on the bosonic/fermionic nature of parti-cles.In the limit of very small f i one has(1±f i)∼1and the collisional term for very dilute systems is recovered.Coming back to the analogy between AP equations and Boltzmann equations out-lined in the previous section,it is physically reasonable to imagine that the AP evolu-tion equations have to be modified for sufficiently low x.In this regime the nucleons arefilled with a large number of quark-antiquark pairs and gluons(the sea)and thus, to take into account in the correct way the presence of this large number of partons, the decay processes should be considered in presence of a surrounding plasma of both Fermi and Bose particles.Corrections induced by quantum statistical effects to the scaling behaviour dictated by standard AP equations are therefore generally present, and in particular we expect that:a)Pauli blocking will suppress the production of quarks and antiquarks with fractionx corresponding to filled levels;b)the gluon emission probability through bremsstr¨a hlung processes,considered inthe standard picture leading to AP equations,will be enhanced by the contribu-tion of induced-emission in presence of a rather relevant number of gluons in the sea.These effects would favour the production of gluon-quark pairs with larger values of x for the quarks and a smaller one for the gluon.Moreover the gluon conversion processes in q−¯q pairs are expected to be reduced.As shown in(32),(33)in non-equilibrium statistical mechanics all these effects are simply included by multiplying the amplitudes modulus squared of the relevant processes,appearing in the collisional integral,by the factors1−f or1+f for each Fermi or Bose particle in thefinal state,with f denoting the particle distribution functions without any level-density factor.In equilibrium conditions these f reach the standard stationary Fermi-Dirac or Bose-Einstein form,while in general they depend on time.Thus,it is reasonable to expect that similar factors should be introduced in the generalized AP equations.In other words,standard AP equations correspond to a set of Boltzmann equations for a dilute system of partons,where statistical effects can be neglected:for higher parton densities,if we assume that this analogy still holds2,itfollows that these effects,which are present in transport equations,should be present in scaling equations as well.In the same spirit of(12)and(13)[5],we will parametrize the quark,antiquark and gluon distributions asq jλ(x,τ)=g jλ(x)fλj(x,τ),(34)¯q jλ(x,τ)=¯g jλ(x)¯fλj(x,τ),(35)G(x,τ)=g G(x)f G(x,τ),(36) where g jλ(x),¯g jλ(x)and g G(x)are weight functions,whereas fλj(x,τ),¯fλj(x,τ)and f G(x,τ)are purely statistical distributions,which depending onτcannot be assumed in principle to have equilibrium form.The explicit form for g-functions,which contains the divergency at x=0,should befitted from experimental data,as in[5],or deduced from theoretical expected behaviour,like,for example,Regge theory.We stress that the factorized form(34)-(36),in particular the hypothesis that the singular functions g jλ,¯g jλand g G do not depend onτis compatible with predictions of both Regge theory and QCD for the behaviour of parton distributions at the end-point x=0.As it is well-known,in this regime one hasp A(x,Q2)∼ξA(Q2)x−αA,(37) withαA not depending on Q2,at least for large Q2[22].Within the factorized expression(34)-(36)thefinal state factors are written in the form1−fλj,1−¯fλj and1+f G for quarks,antiquarks and gluons respectively.We are now able to introduce a set of generalized scaling equations for quarks and gluons.Here we will consider for simplicity the case in which the gluons are supposed not to have a significant net polarization in the nucleons with respect to the one carried by quarks.We will assume,therefore G+(x,τ)=G−(x,τ)=G(x,τ)/2.It should be pointed out that this approximation is consistent with the results obtained in[5]and [6],where it is argued that Pauli principle plays the essential role to generate the polarization of the quark sea.This approximation is instead less satisfactory in the framework of the different interpretation of the violation of Ellis-Jaffe sum rule based on the axial-vector current anomaly[23].This latter case,in fact,would require a very large gluon polarization,i.e.∆G=G+−G−∼3÷4.Notice however that,as shown in[5],gluons are expected to be more numerous than quarks,due to their Bose nature, so in any case one has∆G/G<<∆q/q,which supports our approximation.By helicity conservation at the quark-gluon vertex,it is easily seen that generalized evolution equations for polarized quark distribution functions get the following form13[12]d z γqq (z )q jλxz −1 ,τ+1z ,τ 1−f λj (x,τ) 1−¯f −λj x 1dτG (x,τ)= 1x dzz ,τ [1+f G (x,τ)] 1+f G x1z ,τ 1−f λj x 1z,τ 1−¯f λj x 12G (x,τ)10dz {γgg (z )[1+f G (xz,τ)][1+f G (x (1−z ),τ)]+n f j =1 λ=+,−γqg (z ) 1−f λj (xz,τ) 1−¯f −λj (x (1−z ),τ) .(39)Note that also in this case,as in (24)and (25)the divergent contributions due to γAB exactly cancel.These generalized equations predict also a different,more com-plicated,evolution for momenta.By taking Mellin transform of both sides of (38)and (39),in fact,one sees that the standard scaling behaviour should be corrected by terms quadratic and cubic in distribution functions,which are not simply products of momenta of quarks and gluon densities.Finally,as for the standard AP equations,the scaling behaviour for unpolarized quark distributions can be obtained by simply considering the sum q j (x,τ)=q j +(x,τ)+q j −(x,τ)(the same holds for antiquarks).Notice,however,that since the introduction of final state statistical factors spoils the linearity of the equations,the evolution of q j (x,τ)will depend on both the polarized distribution functions and not simply on their sum.145Conclusions and remarksAs suggested by some experimental results[8],[9],the Fermi/Bose nature of partons could sensibly affect the observable quantities in deep inelastic scattering on nucleons. This idea,already successfully applied in[5]and[6],mainly motivates our paper,in which a set of generalized scaling-law equations for parton distributions which take into account quantum statistics effects are suggested.It is quite natural to think that quantum statistics may modify the scaling be-haviour of parton distribution functions for rather small x and high Q2.This regime is in fact characterized by a large number of partons,which partially overlap their wave-functions,thus to correctly treat it one has to think in terms of parton-plasma dynamics,and the expected modifications to the standard AP evolution equations should have both dynamical(different processes)and/or statistical nature(statistical correlation between the wave functions).The Gribov-Lipatov-Ryskin equations[4]represents a successful attempt to describe this system.It focus the attention only on the dynamical aspect of the problem,con-sidering new interactions among partons which introduce in tha scaling-law nonlinear terms of the parton distribution functions.These processes,which become relevant with the increasing of the density,differently from the one considered in the standard AP approach involve two or more partons in the initial state(annihilation processes). In this paper we have stressed a different but complementar aspect,trying to introduce only the modifications to the evolution equation which are of genuine quantum statis-tical origine.Hence,a complete description of this region in the x−Q2plane should take into account both the results.At low x,but still at high Q2(perturbative QCD regime),the bremsstr¨a hlung processes,responsible at leading-log level for scaling breaking,are likely supposed to occur in presence of such an overdense gas of partons.In this case Pauli blocking and gluon stimulated emission play a relevant role in parton distributions dynamics and thus in their scaling-law.We have introduced both this statistical effects to obtain a generalized evolution law,starting from the observation that an intriguing analogy holds between AP equations,at leading-log,and a set of Boltzmann transport equations for a dilute gas of partons[11],where a simple function of the scale variable Q2in AP equations plays the role of time parameter.Extending this analogy also to the case of a dense system,which is the case for the x−Q2region under study,one is naturally led to a new set of evolution equations in which statistical factors(1−f jλ(x,τ))or (1+f G(x,τ))appear in the r.h.s.of the evolution equation(collisional integral)to take into account thefinal state of the emitted parton.This approach implicitely suggests to15consider a parton distribution q jλ(x,τ)as the product of a pure weight factor g jλ(x,τ) connected to the level-density and independent of Q2,like for example suggested at low x by the Regge theory[22],times the statistical distributions f jλ(x,τ).According to this analogy and by virtue of Boltzmann H theorem,one would naturally expect that the normalized parton distributions f jλ(x,τ),¯f jλ(x,τ)and f G(x,τ)should approach stationary Fermi and Bose expressions as Q2increases.Remarkably,these conclusions seem to agree with the phenomenological results obtained in[5]and suggest that the thermalization process is rapid enough to essentially reach the equilibrium conditions at Q2=4GeV2.This question,together with the new equation for momenta of distributions(no more linear and simple like in AP equations)will be the subject for further publications.Finally,we want to stress the difference of this approach with respect to the way in which the occurrence of Pauli blocking effects are perturbatively studied in the litera-ture[24].The single,independent parton picture,which is at the basis of the improved parton model,is only possible for quite large x,where the low density partonfluid whichfills the hadron,allows to neglect the statistical correlations between partons due to the overlapping of their wave functions.This is not the case when we move to the low x regime,and thus in this region this treatment is not completely justi-fied.Alternative approaches,even if heuristic,as the one presented here,have to be investigated,analyzingfirst of all their predictions.AcknowledgementsWe thank Prof.Franco Buccella for encouraging this work and for his valuable comments.16References[1]G.Wolf,Preprint DESY94-022(February1994).[2]G.Altarelli and G.Parisi,Nucl.Phys.B126(1977),298.V.N.Gribov and L.N.Lipatov,Sov.Jour.Nucl.Phys.15(1972),438,675.L.N.Lipatov,Sov.Jour.Nucl.Phys.20(1975),94.Y.L.Dokshitzer,Sov.Phys.JETP46(1977),641.[3]E.A.Kuraev,L.N.Lipatov and V.S.Fadin,Sov.Phys.JETP45(1977),199.Ya.Ya.Balitskii and L.N.Lipatov,Sov.J.Nucl.Phys.28(1978),822.[4]L.V.Gribov,E.M.Levin and M.G.Ryskin,Phys.Rep.100(1983),1.[5]C.Bourrely,F.Buccella,G.Miele,G.Migliore,J.Soffer and V.Tibullo,Zeit.Phys.C62(1994),431.[6]F.Buccella and J.Soffer,Mod.Phys.Lett.A8(1993),225;Europh.Lett.24(1993)165;Phys.Rev.D48(1993),5416.[7]K.Gottfried,Phys.Rev.Lett.18(1967),1174.[8]M.Arneodo et al.(New Muon Coll.),Phys.Rev.D50(1994),R1.[9]J.Ashman,et al.(European Muon Coll.),Phys.Lett.B206(1988),364;Nucl.Phys.B328(1989),1.[10]P.L.Anthony et al.(E142Coll.),Phys.Rev.Lett.71(1993),959.[11]J.C.Collins and Jianwei Qiu,Phys.Rev.D39(1989),1398.[12]G.Mangano,G.Miele and G.Migliore,Preprint FERMILAB-Pub-93/380-A(December1993).[13]G.Preparata,P.Ratcliffe and J.Soffer,Phys.Rev.Lett.66(1991),687.[14]R.D.Field and R.P.Feynman,Phys.Rev.D15(1977),259.[15]M.Bourquin et al.,Zeit.Phys.C21(1983),27.P.Ratcliffe,Phys.Lett.B242(1990),271.17[16]J.Ellis and R.L.Jaffe,Phys.Rev.D9(1974),1444.[17]C.Foudas et al.,Phys.Rev.Lett.64(1990),1207.S.R.Mishra et al.,Phys.Rev.Lett.68(1992),3499.S.A.Rabinowitz et al.,Phys.Rev.Lett.70(1993),134.[18]G.Balocchi et al.,(UA6Coll.)preprint CERN-PPE/93-129,to appear in Phys.Lett.B.P.Oberson et al.,talk at the28th Recontres de Moriond,Les Arcs,March 1993.M.Werlen et al.,talk at the International Europhysics Conference on HEP, Marseille,July1993.[19]M.Shaevitz et al.,(CCFR Coll.)talk at the Recontres de Physique de la Valled’Aoste,La Thuile,March1993,preprint NEVIS R-1491.[20]A.H.Mueller,Phys.Rev.D18(1978),3705.S.Gupta and A.H.Mueller,Phys.Rev.D20(1979),118.[21]See,for example:R.C.Tolman,The Principles of Statistical Mechanics(1938),Oxford University Press.[22]F.J.Yndur´a in,The Theory of Quark and Gluon Interactions(1993),SpringerVerlag.[23]A.V.Efremov and O.V.Teryaev,Preprint JINR-EL-88-287.G.Altarelli and G.G.Ross,Phys.Lett.B212(1988),391.R.Carlitz,J.C.Collins and A.H.Mueller,Phys.Lett.214(1988),229. [24]D.A.Ross and C.T.Sachrajda,Nucl.Phys.B149(1979),497.18Figure CaptionsFig.1.The difference F p2(x)−F n2(x)at Q2=4GeV2versus x.The experimental data are taken from[8]and the solid line represents thefit[5].Fig.2.The ratio F n2(x)/F p2(x)at Q2=4GeV2versus x.The experimental data are taken from[8]and the solid line represents thefit[5].Fig.3.x g p1(x)versus x.Data are from[9]and solid line from[5].Fig.4.x g n1(x)versus x.Data are from[10]and solid line from[5].19。