等腰三角形(第四课时)
北师大版八年级下册数学 第一章 三角形的证明 等腰三角形(第4课时)
课堂小结
等腰三角形 的拓展
等边三角形 的判定
三条边都相等的三角形是等边三角形 三个角都相等的三角形是等边三角形 有一个角等于60°的等腰三角形是等边三角形
特殊的直角三 角形的性质
在直角三角形中, 如果有一个锐角等于30°,那 么它所对的直角边等于斜边的一半
探究新知
方法总结 选用等边三角形判定方法的技巧 (1)如果已知三边关系,则选用等边三角形定义来判定. (2)若已知三角关系,则选用三角相等的三角形是等边三 角形来判定. (3)若已知是等腰三角形,则选用有一个角是60°的等腰 三角形是等边三角形来判定.
巩固练习
变式训练
在△ABC中,∠A=60°,要使△ABC是等边三角形, 则需添加的一个条件是 AB=AC或∠B=∠C .
证明:∵△ABC为等边三角形, ∴∠BAC=∠ABC=60°,AB=AC=BC, ∴∠EAF=∠EBD=120°, ∵BE=CD,∴BE+AB=BC+CD,即AE=BD,
课堂检测
BE = AF, 在△AEF和△BDE中, ∠EBD =∠EAF, ∴△AEF≌△BDE(SASB),D∴=EFA=EE,D,
证明:∵AD∥BC,∠A=120°,∴∠A+∠ABC=180°. 即∠ABC=180°-∠A=180°-120°=60°, ∴∠ABD=∠DBC=30°. ∴△BDC是直角三角形(∠又BD∵C∠=9C0=°60).°, 又∵CD=4 cm,∴BC=2CD=2×4=8(cm).
课堂检测
拓广探索题
如图:△ABC是等边三角形,点D,E,F分别在BC,AB,CA边延 长线上,且BE=AF=CD. 求证:△DEF是等边三角形.
苏教版数学四年级下册《等腰三角形和等边三角形》说课稿(附反思、板书)课件
根据四年级的年龄特点,本课板书内容简单明了,重难点突 出。
三角形的分类 等腰三角形和等边三角形 等腰三角形两个底角相等,等边三角形 3 个内角相等。
总之,在整个教学过程中,我始终立足让学生在玩中学会, 在动手中提高技能,学生学得轻松愉快。我将继续努力,让 我的数学课堂教学更高效,更精彩。
八、教学反思
根据小学生的认知特点和规律及教材特点,这节课在教学中我主 要采用直观演示法、探究发现法、讨论交流法和猜想验证法等方式 让学生通过多种感官参与学习,真正体现以学生为主体的教学理念 ,并采用多媒体辅助教学,使学生自主建构知识。学法上,学生自 主探索、操作验证、合作交流、质疑问难,把知识转化成相应的技 能,使学生在学习过程之中体验学习的乐趣,感受数学的价值。
我的说课完毕,谢谢各位老师!
数学教学活动必须建立在学生的认知发展水平和已有的知识 经验基础上。教师应激发学生的学习积极性,向学生提供充分 从事数学活动的机会,帮助他们在自主探索和合作交流的过程 中真正理解和掌握基本的数学知识与技能、数学思想和方法, 获得广泛的数学活动经验 。
在以后的教学中,我们要不断地去探索、去实践,争取逐步 提高自己的教学水平。
小结:等边三角形三条边相等,三个角也相等。 提问:等边三角形一定是锐角三角形吗?为什么? 学生通过交流得出:等边三角形3个角都是60,所以它一定是 锐角三角形。
板块三、复习旧知,巩固新课 1.一个等腰三角形的顶角是70°,它的一个底角是( )°,如 果它的底边长6厘米,腰长a厘米,它的周长是( )厘米。 2. 一个直角三角形中,一个锐角是35°,另一个锐角是( )°; 一个等腰三角形的底角是50°,它的顶角是( )°。
3.画等边三角形:很容易保证两条边相等,但保证三条边都相等 有一定的困难,所以等边三角形不好画。你有什么办法? 方法一:根据角度来画。比如先画一条长3厘米的线段,然后分 别画出60度的角,如果两边正好会合,正好都是3厘米,那就说 明画得很准确。
苏教版四年级数学下册第7单元第“等腰三角形和等边三角形”教案
苏教版四年级数学下册第7单元第“等腰三角形和等边三角形”教案一. 教材分析苏教版四年级数学下册第7单元“等腰三角形和等边三角形”是本册教材中的重要内容。
这部分内容是在学生已经掌握了三角形的基本概念和特性基础上进行教学的,旨在让学生进一步理解三角形的分类,认识等腰三角形和等边三角形的特征,并能运用这些知识解决实际问题。
二. 学情分析四年级的学生已经具备了一定的观察、思考和动手操作能力,他们对三角形的基本概念和特性有一定的了解。
但是,对于等腰三角形和等边三角形的特征及其性质,他们可能还比较陌生,需要通过具体的操作和思考来进一步理解和掌握。
三. 教学目标1.知识与技能:让学生认识等腰三角形和等边三角形的特征,并能正确判断一个三角形是否是等腰三角形或等边三角形。
2.过程与方法:让学生通过观察、操作、思考和交流,进一步理解三角形的分类,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:让学生在探索等腰三角形和等边三角形的特征过程中,体验数学的乐趣,培养学生的学习兴趣和合作意识。
四. 教学重难点1.教学重点:让学生认识等腰三角形和等边三角形的特征,并能正确判断一个三角形是否是等腰三角形或等边三角形。
2.教学难点:让学生理解等腰三角形和等边三角形的性质,并能够运用这些性质解决实际问题。
五. 教学方法1.情境教学法:通过生活情境和实际问题,引发学生的思考,激发学生的学习兴趣。
2.操作教学法:让学生通过实际操作,观察和分析等腰三角形和等边三角形的特征,加深对知识的理解。
3.交流讨论法:引导学生进行交流和讨论,培养学生的合作意识和沟通能力。
六. 教学准备1.教具准备:准备一些等腰三角形和等边三角形的模型或图片,用于展示和操作。
2.学具准备:准备一些纸张和彩笔,让学生自己动手画出等腰三角形和等边三角形。
七. 教学过程1.导入(5分钟)通过一些生活情境或实际问题,引发学生的思考,导入本节课的内容。
例如,可以出示一些图片,让学生观察并说出图片中的三角形是等腰三角形还是等边三角形。
等腰三角形导学案
等腰三角形导学案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--等腰三角形导学案第一课时教学目标:1、理解等腰三角形的性质和判定定理2、利用定理证明解决实际问题任务一:1、自主学习:(独立完成,组内交流,课堂展示)如图1,已知△ABC中,AB=AC,AD是底边上的中线.(1)求证:∠B=∠C;(2)AD平分∠A,AD⊥BC.图1归纳:等腰三角形的性质有:①性质1:等腰三角形的两底角(简单叙述为:)∵∴②性质2:等腰三角形的互相重合∵∴∵∴∵∴2、课堂练习:①、等腰三角形一个底角为70°,它的顶角为______.A②、等腰三角形一个角为70°,它的另外两个角为。
③如图3,在△ABC 中AB=AD=DC,∠BAD=26°,求∠B和∠C度数。
图3④如图4,∠BAD=1000,ADBC,垂足为点D,AB=AC,求:∠B, ∠1图423任务二1、自主学习:如图:△ABC 中,∠B=∠C ,求证;AB=AC归纳:等腰三角形判定定理: (简单叙述为: )∵ ∴ 思考:要证明△ABC 是等腰三角形,你都有哪些方法?3、巩固练习:如图,已知:△ABC 中,AB=AC ,BD 和CE 分别是∠ABC 和∠ACB 的角平分线,且相交于O 点。
⑴ 试说明△OBC 是等腰三角形;⑵ 连接OA ,试判断直线OA 与线段BC 的关系?并说明理由。
课堂检测:1、等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm2、等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30°3.如图,已知∠1=∠2=∠3,∠B=∠C 则图中相等的线段有( )A .2对B .3对C .4对D .5对4、如图所示,∠CAB=∠DBA ,AC=BD,点O 是AD,BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.CE ABD4等腰三角形导学案第二课时一、 知识回顾:1.如图:△ABC 中,⑴若AB=AC,则___ ____; ⑵若AB=AC, ∠BAD=∠CAD,则 ____ ___,____若AB=AC, BD=CD,则___ __,__ ____; 若AB=AC, AD ⊥BC,则__ ___,__ ____。
等腰三角形判定教案5篇
等腰三角形判定教案5篇等腰三角形判定教案5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形判定教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形判定教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
新北师大版八年级数学下册1.1等腰三角形(第四课时)课件
证明:有一个角等于600的等腰三角形是等
边三角形.
已知:如图,在 ABC中,AB AC,A 60 .
o
你 行 吗 ?
求证:ABC是等边三角形 .
情况二
2014年3月14日星期五 22:59:40
证明: A 60o B C 120o (三角形内角和为 180o ) AB AC C B 60o (等边对等角 ) A B (等量代换) BC AC(等角对等边) AB BC AC(等量代换) ABC是等边三角形(等边三角形的定义 ).
C B 60o (等边对等角 ) A 60o (三角形内角和为 180o ) A B(等量代换) BC AC(等角对等边) AB BC AC(等量代换) ABC是等边三角形 (等边三角形的定义 ).
你 行 吗 ?
2014年3月14日星期五 22:59:40
你 行 吗 ?
2014年3月14日星期五 22:59:40
定理
在直角三角形中, 300角
所对的直角边等于斜边的一半.
如图,在RtABC中, A 30o 1 BC AB.(在直角三角形中, 2 30o 角所对的直角边等于斜 边的 一半)
2014年3月14日星期五 22:59:40
你 行 吗 ?
2014年3月14日星期五 22:59:40
证明: A B BC AC(等角对等边) A C BC AB(等角对等边) BC AB AC(等量代换) ABC是等边三角形 (等边三角形的定义 ).
你 行 吗 ?
2014年3月14日星期五 22:59:40
2014年3月14日星期五 22:59:40
等腰三角形 PPT课件
13.3 等腰三角形
第1课时 等腰三角形的性质
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解并掌握等腰三角形的性质.(重点) 2.经历等腰三角形的性质的探究过程,能初步运用
等腰三角形的性质解决有关问题.(难点)
导入新课
情境引入
定义及相关概念 有两条边相等的三角形叫做等腰三角形.
例3 已知点D、E在△ABC的边BC上,AB=AC. (1)如图①,若AD=AE,求证:BD=CE; (2)如图②,若BD=CE,F为DE的中点,求证: AF⊥BC.
图①
图②
证明:(1)如图①,过A作 AG⊥BC于G. ∵AB=AC,AD=AE, ∴BG=CG,DG=EG, ∴BG-DG=CG-EG, ∴BD=CE; (2)∵BD=CE,F为DE的中点, ∴BD+DF=CE+EF, ∴BF=CF. ∵AB=AC,∴AF⊥BC.
形的底角的大小是( A )
A.65°或50°
B.80°或40°
C.65°或80°
D.50°或80°
解析:当50°的角是底角时,三角形的底角就是 50°;当50°的角是顶角时,两底角相等,根据 三角形的内角和定理易得底角是65°.故选A.
方法总结:等腰三角形的两个底角相等,已知 一个内角,则这个角可能是底角也可能是顶角, 要分两种情况讨论.
∴ ∠B= ∠ADB,∠C= ∠DAC 设 ∠C=x,则 ∠DAC=x, ∠B= ∠ADB= ∠C+ ∠DAC=2x, 在△ABC中, 根据三角形内角和定理,得
2x+x+26°+x=180°, 解得x=38.5°.
∴ ∠C= x=38.5°, ∠B=2x=77°.
中考数学同步练习第4单元 课时4等腰三角形与直角三角形
课时4 等腰三角形与直角三角形一、基础巩固1.(2019·山西)如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若∠1=145°,则∠2的度数是(C)A .30°B .35°C .40°D .45°第1题图 第2题图 2.在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是(C)A .BC =ECB .EC =BE C .BC =BED .AE =EC3.若等腰△ABC 的周长是50 cm ,一腰长为x cm ,底边长为y cm ,则y 与x 的函数关系式及自变量x 的取值范围是(C)A .y =50-2x (0<x <50)B .y =12(50-2x )(0<x <50)C .y =50-2x ⎝ ⎛⎭⎪⎫252<x <25 D .y =12(50-2x )⎝ ⎛⎭⎪⎫252<x <254.(2019·成都)如图,在△ABC中,AB=AC,点D,E都在边BC 上,∠BAD=∠CAE,若BD=9,则CE的长为__9__.第4题图第5题图5.(2019·攀枝花)如图,在△ABC中,CD是AB边上的高,BE 是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.二、能力提升6.若(a -1)2+|b -2|=0,则以a 、b 为边长的等腰三角形的周长为(A)A .5B .4C .3D .4或57.(2019·台湾)如图,△ABC 中,AC =BC <AB .若∠1、∠2分别为∠ABC 、∠ACB 的外角,则下列角度关系正确的是(C)A .∠1<∠2B .∠1=∠2C .∠A +∠2<180°D .∠A +∠1>180°第7题图 第8题图 8.(2019·大连)如图,△ABC 是等边三角形,延长BC 到点D ,使CD =AC ,连接AD .若AB =2,则AD 的长为 23 .【笔记】∵△ABC 是等边三角形,∴∠B =∠BAC =∠ACB =60°, ∵CD =AC ,∴∠CAD =∠D ,∵∠ACB =∠CAD +∠D =60°,∴∠CAD =∠D =30°,∴∠BAD =90°,∴AD =AB tan 30°=233=2 3. 9.如图,在△ABC 中,点D 在AB 上,且CD =CB ,点E 为BD 的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF =12AC ;(2)若∠BAC =45°,求线段AM 、DM 、BC 之间的数量关系. 解:(1)∵CD =CB ,E 为BD 的中点;∴CE ⊥BD ,∴∠AEC =90°.又∵F 为AC 的中点,∴EF =12AC .(2)∵∠BAC =45°,∠AEC =90°,∴∠ACE =∠BAC =45°,∴AE =CE .又∵F 为AC 的中点,∴EF ⊥AC ,∴EF 为AC 的垂直平分线,∴AM =CM ,∴AM +DM =CM +DM =CD .又∵CD =CB ,∴AM +DM =BC .三、应用拓展10.(2019·甘孜州)直线上依次有A ,B ,C ,D 四个点,AD =7,AB =2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为__2或2.5__.【笔记】如图∵AB =2,AD =7,∴BD =BC +CD =5,∵BC 作为腰的等腰三角形,∴BC =AB 或BC =CD ,∴BC =2或2.5.11.(2019·武汉模拟)如图,△ABC 中,AB =AC ,D 为BC 上一点,AD =BD ,BE ⊥AD 于点E ,则AE BC 的值为12.解图解:过A 作AN ⊥BC 于N ,则BN =CN ,∵AD =BD ,∴∠DAB =∠DBA ,∵BE ⊥AD ,∴∠E =∠ANB =90°,在△ABN 与△BAE 中,⎩⎪⎨⎪⎧ ∠E=∠ANB ∠BAE =∠ABNAB =BA ,∴△ABN ≌△BAE (AAS),∴AE =BN ,∴AE =BN =12BC ,∴AE BC =12.12.如图,点O 是等边△ABC 内一点,∠AOB =100°,∠BOC =α,D 是△ABC 外一点,且△BOC ≌△ADC ,连接OD .(1)△COD 是什么三角形?说明理由;(2)当α为多少度时,△AOD 是直角三角形?(3)当α为多少度时,△AOD 是等腰三角形?解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO =CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°-110°-90°-60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°-∠AOB-∠COD-α=360°-100°-60°-α=200°-α,∠ADO=α-60°,∴200°-α=α-60°,∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°-α,∠ADO=α-60°,∴∠OAD=180°-(∠AOD+∠ADO)=40°,∴α-60°=40°,∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°-α=40°,∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,100°,150°或160°时,△AOD是等腰三角形.四、权威预测13.(2019·邢台二模)我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形,(1)如图,在△ABC中,∠A=25°,∠ABC=105°,过B作一直线交AC于D,若BD把△ABC分割成两个等腰三角形,则∠BDA的度数是__130°__.(2)已知在△ABC中,AB=AC,过顶点和顶点对边上一点的直线,把△ABC分割成两个等腰三角形,则∠A的最小度数为180°7.【笔记】(1)根据题意得DA=DB,∴∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为130°;(2)如图所示:AB=AC,AD=BD,BC=CD,∵AD=BD,∴∠ABD=∠A,∵BC=CD,∴∠CBD=∠CDB=2∠A,∴∠ABC=∠ABD+∠CBD=3∠A,∵AB=AC,∴∠C=∠ABC=3∠A,∵∠A+∠ABC+∠C=180°,∴7∠A=180°,∴∠A=180°7.。
等腰三角形性质说课稿
等腰三角形性质说课稿等腰三角形性质说课稿1各位领导、老师:大家好!我说课的课题是《等腰三角形》,源于义务教育课程标准实验教科书七年级数学第七章,下面我将来汇报我这节课的教学设计。
一、说教材分析1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。
通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。
并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。
2、教学目标:要求学生掌握等腰三角形的性质和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力3、教学重点、难点:等腰三角形的性质定理是本课的重点等腰三角形“三线合一”性质的运用是本课的难点4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多媒体教学。
二、说教学方法:“教必有法而教无定法”,只有方法得当,才会有效。
根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。
三、说学生学法。
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
四、说教学程序1、等腰三角形的有关概念,轴对称图形的有关概念。
提问:等腰三角形是不是轴对称图形?什么是它的对称轴?2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。
3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。
人教版初中数学课标版八年级上册 第十三章 13.3 等腰三角形 教案
人教版初中数学课标版八年级上册第十三章 13.3 等腰三角形教案13.3等腰三角形第1课时【教学目标】知识与能力1、理解并掌握等腰三角形的性质。
2、会运用等腰三角形的概念和性质解决有关问题。
3、观察等腰三角形的对称性、发展形象思维。
过程与方法1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
情感态度与价值观1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。
2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。
【教学重难点】重点:等腰三角形的概念和性质及其应用。
难点:等腰三角形的性质的证明。
【教学过程】(1)、等腰三角形一腰为3cm,底为4cm,则它的周长是;(2)、等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是;(3)、等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是。
2、探究2仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。
重合的线段重合的角从上表,可以发现等腰三角形具有什么性质吗?引导学生先猜想“等腰三角形的两个底角相等”,再证明。
证明: 作△ABC 的高线AD∴∠ADB=∠ADC =90º在△ABD和△ACD中AB=AC(已知)AD=AD (公用)∴ Rt△ABD≌Rt△ACD (HL)∴∠B=∠C(全等三角形对应角相等)引导学生还可以用其他的方法进行证明:(1)、作△ABC 的中线AD(2)、作顶角的平分线AD再用PPT展示等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
进而归纳:等腰三角形的性质性质 1 等腰三角形的两个底角相等。
(简写成“等边对等角”)性质 2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
第4讲 等腰三角形
第4讲 等腰三角形考点·方法·破译 1.等腰三角形及其性质有两条边相等的三角形叫做等腰三角形,等腰三角形是轴对称图形,因此它的性质有:⑴等腰三角形的两个底角相等(即等边对等角);⑵等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(即等腰三角形三线合一)2.等腰三角形的判定证明一个三角形是等腰三角形的基本方法是:⑴从定义入手,证明一个三角形有两条边相等;⑵从角入手,证明一个三角形有两个角相等,依据是等腰三角形判定定理;等角对等边.3.构造等腰三角形的常用方法⑴角平分线+平行线=等腰三角形 ⑵角平分线+垂线(或高)=等腰三角形 ⑶线段中垂线构造等腰三角形 ⑷将2倍角转化为相等角构造等腰三角形21321(4)(3)(2)(1)经典·考题·赏析【例1】 等腰三角形一腰上的高与另一腰所成的夹角为400,则这个等腰三角形的底角为________________.【解法指导】 若问题中涉及到三角形的高,则要分别考虑三角形的高是在三角形的外,三角形内的情况.解:如图1,当一腰上的高在三角形内时,∠ACD =400,∴∠A =500 ∴∠B =∠ACB =如图2,当一腰上的高在三角形外时,∠ACD =400,∠DAC =500∴∠DAC =∠B +∠ACB =2∠B ∴∠B =∠ACB =250,故填650或250.C AD BACD B图2图1【变式题组】01.(呼和浩特)在等腰⊿ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或1002.(黄冈)在⊿ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为500,则∠B =___________度.03.(襄樊)在⊿ABC 中,AB =AC =12cm ,BC =6cm ,D 为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B →A →C 的方向运动.设运动时间为t ,那么当t =_________秒时,过D 、P 两点的直线将⊿ABC 的周长分成两个部分,使其中一部分是另一部分的2倍.【例2】 如图,在⊿ABC 中,AB =AC ,点D 在AC 上,AD =BD =BC ,求∠A 的度数.【解法指导】 图中的等腰三角形多,可利用等腰三角形的性质,用方程的思想求角的度数.解:设∠A =x ,CABD∵BD=AD,∴∠A=∠ABD=x,∴∠BDC=∠A+∠ABD=2x,∵BD=BC,∴∠C=∠BDC=2x,∵AB=AC,∴∠ C=∠ABC=2x,∵在△ABC中, ∠A+∠ABC+∠ACB=180°∴x+2x+2x=180°,x=36°,∴∠A=36°.【变式题组】01.如图,在⊿ABC中,AB=AC,BD=BC,AD=DE=EB,求∠A的度数.02.如图,在⊿ABC中,AB=AC,BC=BD= ED=EA,求∠A的大小.【例3】已知坐标原点O和点A(2,-2),B是坐标轴上的一点.若⊿AOB是等腰三角形,则这样的点B一共有()个A.4 B.5 C.6 D.8A BCDPE【解法指导】 ⊿AOB 是等腰三角形,但不能确定哪条边是等腰三角形的底,因而要分三种情况进行说明①AO =OB ,②OA =AB ,③BA =BO ,又∵B 是坐标轴上的点.要考虑x 轴与y 轴两种情况.解:①如图1,当OA 是底边时,B 在OA 的中垂线上,又B 在坐标轴上,因而B 是OA 中垂线与坐标轴的交点;②如图2,当OA 为腰时,若O 为顶点,则B 在以O 为圆心,OA 为半径的圆上,又B 在坐标轴上,因而B 是圆与坐标轴的交点;③如图3,当OA 为腰时,若A 为顶点,则B 在以A 为圆心,OA 为半径的圆上,又B 在坐标轴上,因而B 是圆与坐标轴的交点.故选D .【变式题组】01.(海南竞赛试题)在平面直角坐标系xOy 内,已知A (3,-3),点P 是y 轴上一点,则使⊿AOP 为等腰三角形的点P 共有( )A .2个B .3个C .4个D .5个02.如图,在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(0,),点C在坐标平面内.若以A 、B 、C 为顶点构成的三角形是等腰三角形,且底角为30度,则满足条件的点C 有_________个.图3图2图1第2题图第3题图第4题图03.(南昌)如图,已知长方形纸片ABCD ,点E 是AB 的中点,点G 是BC 上一点,∠BEG>600,现沿直线EG 将纸片折叠,使点B 落在纸片中的点H 处,连接AH ,则与∠BEG 相等的角的个数为( )A .4B .3C .2D .104.(济南)如图所示,矩形ABCD 中,AB =4,BC =,点E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有( )A .2个B .3个C .4个D .5个【例4】 (枣庄)两个全等的含30°,60°角的三角板ADE 和三角板ABC 如图所示放置,E ,A ,C 三点在一条直线上,连结BD ,取BD 的中点M ,连结ME ,MC .试判断△EMC 的形状,并说明理由.【解法指导】 判断⊿MEC 为等腰直角三角形,M 为直角顶点,即想证∠EMC =900,而⊿ABD 为等腰三角形,M 是BD 的中点,若连接AM 则有∠AMD =900,因而只需证∠DME =∠AMC ,利用全等三角形即可.解:EMC △的形状是等腰直角三角形,理由如下: 连接AM ,由题意得: 90DE AC DAE BAC =+=︒,∠∠. 90DAB ∴=︒∠. 又DM MB =,1452MA DB DM MAD MAB ∴====︒,∠∠.1059M D EM A C D M A ∴==︒=︒,∠∠∠.E D M C A ∴△≌△.DME AMC EM MC ∴==,∠∠.又90DME EMA +=︒∠∠,A CBMDE(例4题90EMA AMC ∴+=︒∠∠. C M E M ∴⊥.所以ECM △的形状是等腰直角三角形. 【变式题组】01.如图,在等腰直角三角形ABC 中,P 是斜边BC 的中点,以P 为直角顶点的两边分别与边AB 、AC 交于点E 、F ,当∠EPF 绕顶点P 旋转时(点E 不与A 、B 重合),⊿PEF 也始终是等腰三角形,请你说明理由.02.如图,在等腰三角形ABC 中,∠ACB =900,D 是BC 的中点,DE ⊥AB 垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF 交AD 于G . ⑴求证:AD ⊥CF ;⑵连接AF ,试判断⊿ACF 的形状,并说明理由.03.如图,⊿ABC 中,∠ACB =900,AC =BC ,CO 为中线.现将一直角三角板顶点放在点O 上并绕点O 旋转,若三角板的两直角边分别交AC 、CB 的延长线于点G 、H .⑴试写出图中除AC =BC ,OA =OB =OC 外其他所有相等的线段;⑵请选一组你写出的相等线段给予证明.【例5】 我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.⑴请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; ⑵如图,在ABC △中,点D E ,分别在AB AC ,上,设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠.请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;⑶在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.【解法指导】 证明两条线段相等时,若两条线段在同一三角形中,可证明它们所对的角相等.若两条线段在不同的三角形中,则证它们所在的两个三角形全等,若三角形不全等,即可通过构造全等三角形或等腰三角形解决问题.解:⑴如:平行四边形、等腰梯形等⑵答:与∠A 相等的角是∠BOD (或∠COE ),四边形DBCE 是等对边四边形; ⑶答:此时存在等对边四边形,是四边形DBCE .证法一:如图1,作CG ⊥BE 于G 点,作BF ⊥CD 交CD 延长线于∵∠DCB =∠EBC =∠A ,BC 为公共边, ∴△BCF ≌△CBG , ∴BF =CG ,D图1∵∠BDF =∠ABE +∠EBC +∠DCB ,∠BEC =∠ABE +∠A , ∴∠BDF =∠BEC , 可证△BDF ≌△CEG , ∴BD =CE∴四边形DBCE 是等边四边形.证法二:如图2,以C 为顶点作∠FCB =∠DBC ,CF 交BE 于F 点. ∵∠DCB =∠EBC =∠A ,BC 为公共边,∴△BDC ≌△CFB ,∴BD =CF ,∠BDC =∠CFB , ∴∠ADC =∠CFE ,∵∠ADC =∠DCB +∠EBC +∠ABE ,∠FEC =∠A +∠ABE , ∴∠ADC =∠FEC , ∴∠FEC =∠CFE , ∴CF =CE ,∴BD =CE , ∴四边形DBCE 是等边四边形. 【变式题组】01.如图,在ABC 中,∠B =2∠C ,AD 为∠BAC 的平分线.求证:AC =AB +BD .02.(天津初赛试题)如图,在四边形ABCD 中,∠ACB =∠BAD =1050,∠ABC =∠ADC =450,若AB =2,求CD 的长.DEF图203.如图,在ABC中,AB=AC,D在AB上,F在AC延长线上,BD=CF.求证DE=EF.【变式题组】01.(重庆)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.200B.1200C.200或1200D.360002.(云南)已知等腰三角形的两边分别为6和3,则此等腰三角形周长为()A.9 B.15 C.15 D.12或1503.(云南)如图,等腰ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则BEC的周长为()A.13 B.14 C.15 D.1604.如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A =180,则∠GEF的度数是()A.800B.900C.1000D.108005.如图,Rt ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B.CH=CE=EF C.CH=HD D.AC=AF06.如图,ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①BDF和CEF都是等腰三角形;②DE=BD+CE;③ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()A .①②③B .①②③④C .①②D .①07.(武汉)如图,已知O 是四边形ABCD 内一点,OA =OB =OC , ∠ABC =∠ADC =700,则∠DAO +∠DCO 的大小是( )A .700B .1100C .1400D .150008.(滨州)已知等腰ABC 的周长为10,若设腰长为x ,则x 的取值范围是__________. 09.如图所示,在ABC 中,已知AB =AC ,∠A =360,BC =2,BD 是ABC 的角平分线,则AD =___________.10.(威海)如图,AB =AC ,BD =BC ,若∠A =400,则∠ABD 的度数是_________. 11.(乌鲁木齐) 在一次数学课上,王老师在黑板上画出图6,并写下了四个等式:①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠.要求同学从这四个等式中选出两个作为条件,推出AED △是等腰三角形.请你已知:求证:AED△是等腰三角形. 证明:C12.(泰安) 两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .⑴请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);⑵证明:DC BE ⊥.13.(包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.⑴如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?⑵若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?图图EQ C14.(临沂)如图1,已知ABC △中,1AB BC ==,90ABC =∠,把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF ),将直角三角板DEF 绕D 点按逆时针方向旋转. ⑴在图1中,DE 交AB 于M ,DF 交BC 于N . ①证明DM DN =;②在这一旋转过程中,直角三角板DEF 与ABC △的重叠部分为四边形DMBN ,请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;⑵继续旋转至如图2的位置,延长AB 交DE 于M ,延长BC 交DF 于N ,DM DN =是否仍然成立?若成立,请给出证明;若不成立,请说明理由;⑶继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于M ,DM DN =是否仍然成立?请写出结论,不用证明.F1F图2E图3B培优升级·奥赛检测01.如图,∠BAC 与∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,下列结论:①GA =GP ;②③BP 垂直平分CE ;④FP =FC ;其中正确的判断有( )A .只有①②B .只有③④C .只有①③④D .只有①②③④02.如图,点A 是网格图形中的一个网格图形中的一个格点(小正方形的顶点),图中每个小正方形的边长为1,以A 为其中的一个顶点,面积等于2.5的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( )A .10个B .12个C .14个D .16个03.如图,在ABC 中,AB =BC ,MN =NA , ∠BAM =∠NAC ,则∠MAC =______. 04.如图,AA ’、BB ’分别是∠EAB 、∠DBC 的平分线,若AA ’=BB ’=AB .则∠BAC 的度数为______________.05.(全国联赛)在等腰Rt ABC 中,AC =BC =1,M 是BC 的中点,CE ⊥AM 于E ,交AB 于F .则 =_____________06.如图,在ABC 中,AB =AC ,EF 为过点A 的任意一条直线,CF ⊥BC ,BE ⊥BC .求证:AE =AF .07.(湖州市竞赛试题)如图,在Rt ABC中,∠ACB=900,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求证:FK∥AB08.(四川省初二数学联赛试题)有一等腰钝角三角形纸片,若能从一个顶点出发,将其剪成两个等腰三角形纸片,求等腰三角形纸片的顶角的度数.09.如图,在ABC中,∠ABC=460,D是边BC上一点,DC=AB, ∠DAB=210,求∠CAD的度数.10.(浙江省杭州市中考试题)如图,在等腰△ABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连接AP 交BC 于点E ,连接BP 交AC 于点F . (1) 证明:CBF CAE ∠=∠; (2) 证明:BF AE =;(3) 以线段BF AE ,和AB 为边构成一个新的三角形ABG (点E 与点F 重合于点G ),记△ABC 和△ABG 的面积分别为ABC S ∆和ABG S ∆,如果存在点P ,能使得ABG ABC S S ∆∆= , 求∠C 的取值范围.11.如图,已知在△ABC 中,AB =AC ,∠BAC =900,AD =AE , AF ⊥BE 交BC 于F ,过F作FG ⊥CD 交BE 的延长线于G .求证:BG =AF +FG。
苏教版四年级数学下册第七单元5《等腰三角形和等边三角形》教学设计
苏教版四年级数学下册第七单元5《等腰三角形和等边三角形》教学设计一. 教材分析苏教版四年级数学下册第七单元5《等腰三角形和等边三角形》是本单元的重要内容。
通过前面的学习,学生已经掌握了三角形的性质,本节课将进一步引导学生深入研究等腰三角形和等边三角形的性质。
教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生发现等腰三角形和等边三角形的特征,并通过自主探究和合作交流,理解和掌握它们的性质。
二. 学情分析四年级的学生已经具备了一定的观察、思考和表达能力,他们对于图形有了一定的认识,但等腰三角形和等边三角形的概念对学生来说较为抽象,理解起来有一定的困难。
因此,在教学过程中,需要教师耐心引导,让学生通过观察、操作、交流等方式,逐步理解和掌握等腰三角形和等边三角形的性质。
三. 教学目标1.知识与技能:学生能够识别等腰三角形和等边三角形,了解它们的性质,并能运用这些性质解决实际问题。
2.过程与方法:学生通过自主探究、合作交流的方式,培养观察、思考、表达和解决问题的能力。
3.情感态度与价值观:学生体验数学学习的乐趣,增强对数学的兴趣,培养勇于探索、积极交流的精神。
四. 教学重难点1.重点:学生能够识别等腰三角形和等边三角形,并理解它们的性质。
2.难点:学生能够运用等腰三角形和等边三角形的性质解决实际问题。
五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生发现等腰三角形和等边三角形的特征。
2.自主探究法:学生通过自主探究,合作交流,发现等腰三角形和等边三角形的性质。
3.引导发现法:教师引导学生观察、思考,发现等腰三角形和等边三角形的性质。
六. 教学准备1.教具:课件、图片、实物等。
2.学具:三角板、直尺、铅笔等。
七. 教学过程1.导入(5分钟)通过展示图片和实例,引导学生观察和思考,引出等腰三角形和等边三角形的概念。
2.呈现(10分钟)教师通过讲解和演示,呈现等腰三角形和等边三角形的性质,引导学生理解和掌握。
人教版八年级数学上册:133等腰三角形教学设计(4课时)
-学生通过解决实际问题,将理论知识与实际应用相结合,提高数学素养。
3.利用信息技术手段,如多媒体、网络资源等,辅助教学,提高教学效果。
-教师运用多媒体课件、几何画板等工具,直观演示等腰三角形的性质和证明过程,帮助学生理解和记忆。
2.提高拓展题:
-完成课本第134页的练习题4、5,这两题涉及等腰三角形在几何证明中的应用,有助于培养学生的逻辑思维能力和几何证明技巧。
-鼓励学生尝试不同的解题方法,拓展思维,提高创新能力。
3.实践应用题:
-设计一道与生活相关的等腰三角形应用题,要求学生运用所学知识解决实际问题,例如计算等腰三角形在建筑、艺术等领域的应用。
6.拓展延伸,培养创新能力:
-在教学中,教师可适当拓展等腰三角形的相关知识,如等腰梯形、等腰三角形的特殊性质等,培养学生的发散思维。
-鼓励学生提出不同的解题思路和方法,激发学生的创新意识,提高他们的创新能力。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-教师以生活中的等腰三角形实例为切入点,如展示等腰三角形形状的物体(如三角尺、风筝等),引导学生观察并思考:这些物体有什么共同特点?它们在生活中的应用有哪些?
-教师组织学生进行小组讨论、合作探究,引导学生互相尊重、互相帮助,培养学生的团队精神。
-学生通过合作学习,学会倾听、表达、沟通,提高人际交往能力。
3.培养学生的创新意识,鼓励学生勇于探索、敢于质疑。
-教师鼓励学生提出不同的观点和疑问,引导学生从多角度思考问题,培养学生的创新思维。
-学生在探索过程中,勇于尝试、不断进步,形成独立思考、解决问题的能力。
第4讲 等腰三角形性质及判定
第4讲 等腰三角形性质及判定【要点梳理】要点一、等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC 中,AB =AC ,则它叫等腰三角形,其中AB 、AC 为腰,BC 为底边,∠A 是顶角,∠B 、∠C 是底角.要点二、等腰三角形的性质1.等腰三角形的性质 性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”). 几何表达:ABC △是等腰三角形,AB AC =①若AD BC ⊥,则BD CD =, BAD CAD ∠=∠;②若BD CD =,则BAD CAD ∠=∠, AD BC ⊥;③若BAD CAD ∠=∠,则AD BC ⊥,BD CD =.2.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.3.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.要点三、等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).【典型例题】类型一、等腰三角形中有关度数的计算题 1、如图,在△ABC 中,D 在BC 上,且AB =AC =BD ,∠1=30°,求∠2的度数.CB A D举一反三:【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为40°,求其余各角.3.已知一个等腰三角形的两边长a、b满足方程组.(1)求a、b的值.(2)求这个等腰三角形的周长.举一反三:【变式】若x,y满足|x﹣3|+=0,则以x,y的值为两边长的等腰三角形的周长为()A. 12 B.14 C.15 D.12或15类型三、等腰三角形性质和判定综合应用4、已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或17D .10或122. 若一个三角形的三个外角度数比为2:3:3,则这个三角形是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是( )A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC 中,∠ABC 、∠ACB 的平分线相交于F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E ,那么下列结论正确的有( )①△BDF ,△CEF 都是等腰三角形; ②DE =DB +CE ;③AD +DE +AE =AB +AC ; ④BF =CF.A .1个B .2个C .3个D .4个5. 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠度数是( )A .60° B.70° C.80° D.不确定6.有3cm ,3cm ,6cm ,6cm ,12cm ,12cm 的六条线段,任选其中的三条线段组成一个等腰三角形,则最多能组成等腰三角形的个数为( )A .1B . 2C . 3D . 4二.填空题7.如图,△ABC 中,D 为AC 边上一点,AD =BD =BC ,若∠A =40°,则∠CBD =_____°.8. 等腰三角形的顶角比其中一个底角大30°,则顶角的度数为 .9. 如图,△ABC 是等腰直角三角形,∠C =90°,BD 平分∠CBA 交AC 于点D ,DE ⊥AB 于E .若△ADE 的周长为8cm ,则AB =_________cm .10. 等腰三角形的一个角是70°,则它的顶角的度数是 .11. 如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.12.如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于.等边三角形【要点梳理】要点一、等边三角形等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.要点二、等边三角形的性质等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.要点三、等边三角形的判定等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点四、含30°的直角三角形含30°的直角三角形的性质定理:在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半.【典型例题】类型一、等边三角形1、如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠AC D,CE=BD,求证:△ADE为等边三角形.举一反三:【变式】等边△ABC,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.如图,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.2、已知:如图,△ABC中,AB=AC,∠ABC=60°,AD=CE,求∠BPD的度数.举一反三:【变式】△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM 相交于Q点,∠AQN等于多少度?3、(1)如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC,求∠AEB的大小;(2)如图,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕着点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小.举一反三:【变式】如图,已知△ABC 和△CDE 都是等边三角形,AD 、BE 交于点F ,求∠AFB 的度数.类型二、含30°的直角三角形4、如图所示,∠A =60°,CE ⊥AB 于E ,BD ⊥AC 于D ,BD 与CE 相交于点H ,HD =1,HE =2,试求BD和CE 的长.【巩固练习】一.选择题1. 如图,ABC ∆是等边三角形,点D 在AC 边上,∠DBC=35°,则ADB ∠的度数为( )A .25°B .60°C .85°D .95°2.以下叙述中不正确的是( ).A .等边三角形的每条高线都是角平分线和中线;B .有一个内角为60°的等腰三角形是等边三角形;C .等腰三角形一定是锐角三角形;D .在一个三角形中,如果有两条边相等,那么它们所对的角也相等;反之,在一个三角形中,如果有两个角相等,那么它们所对的边也相等.3.如图,若△ABC 是等边三角形,AB=6,BD 是∠ABC 的平分线,延长BC 到E ,使CE=CD ,则BE=( )A .7B . 8C . 9D . 104. △ABC 中三边为a 、b 、c ,满足关系式 (a -b )(b -c )(c -a )=0,则这个三角形一定为 ( )A .等边三角形B .等腰三角形C .等腰钝角三角形D .等腰直角三角形5. 等边三角形的两条高线相交成钝角的度数是( )A.105°B.120°C.135°D.150°6. 如图,等边三角形ABC 中,D 为BC 的中点,BE 平分∠ABC 交AD 于E ,若△CDE 的面积等于1,则△ABC 的面积等于( )A .2B .4C .6D .12二.填空题 7.若三角形三边长满足(a ﹣b )2+|a ﹣c|=0,则△ABC 的形状是 . 8.如图,△ABC 为等边三角形,DC ∥AB ,AD ⊥CD 于D .若△ABC 的周长为12cm ,则CD =________cm .9.△ABC 为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且AE=CD=BF ,则△DEF 为_____三角形.10.如图所示,△ABC 为等边三角形,AQ =PQ ,PR =PS ,PR⊥AB 于R ,PS⊥AC 于S ,•则四个结论正确的是 .①P 在∠A 的平分线上; ②AS=AR ;③QP∥AR;④△BRP≌△QSP.11. 如图,ABC △是等边三角形,点D 是BC 边上任意一点,DE AB ⊥于点E ,DF AC ⊥ 于点F .若4BC =,则BE CF +=_____________.。
苏教版四年级数学下册第七单元《等腰三角形和等边三角形》教案
苏教版四年级数学下册第七单元《等腰三角形和等边三角形》教案一. 教材分析苏教版四年级数学下册第七单元《等腰三角形和等边三角形》是学生在学习了三角形的基本概念和特性之后进行的一个单元。
这一单元的主要内容是让学生认识等腰三角形和等边三角形,了解它们的特点,并掌握它们的性质。
通过这一单元的学习,学生能够进一步理解和掌握三角形的性质,提高他们的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习这一单元之前,已经学习了三角形的基本概念和特性,对三角形有了初步的认识。
但是,他们对于等腰三角形和等边三角形的认识还比较模糊,需要通过具体的学习和实践来进一步理解和掌握。
此外,学生的空间想象能力和逻辑思维能力还有待提高,需要通过具体的活动和操作来培养。
三. 教学目标1.让学生认识等腰三角形和等边三角形,了解它们的特点。
2.让学生掌握等腰三角形和等边三角形的性质。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.等腰三角形和等边三角形的特点和性质。
2.如何运用几何图形进行推理和证明。
五. 教学方法采用讲授法、演示法、实践法、讨论法等多种教学方法,引导学生通过观察、操作、思考、讨论等方式,自主地学习等腰三角形和等边三角形的性质,提高他们的空间想象能力和逻辑思维能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备一些等腰三角形和等边三角形的模型或者图片,用于学生的观察和操作。
3.准备一些练习题,用于学生的巩固和拓展。
七. 教学过程导入(5分钟)教师通过复习三角形的基本概念和特性,引导学生回顾已学的知识,为新课的学习做好铺垫。
接着,教师提出问题:“同学们,你们知道等腰三角形和等边三角形吗?它们有什么特点呢?”让学生思考并回答。
呈现(10分钟)教师通过展示等腰三角形和等边三角形的模型或者图片,引导学生观察并描述它们的特点。
然后,教师通过讲解,向学生阐述等腰三角形和等边三角形的性质。
操练(10分钟)教师引导学生通过实际的操作,进一步理解和掌握等腰三角形和等边三角形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形(第四课时)
教学目标
1.经历等边三角形的判定定理和直角三角形的判定定理的证明
过程.
2.会利用等边三角形的判定定理和直角三角形的判定定理解决
一些问题.
教学重难点
重点:等边三角形的判定定理和直角三角形的判定定理的运用难点:直角三角形的判定定理的证明
教具
两个含0
30的全等三角板、圆规
教学过程
一、导课喻标
一个三角形满足什么条件时是等边三角形?一个等腰三角形满足什么条件时是等边三角形?你能证明吗?
二、预习提示
1.三条边的三角形是等边三角形. (定义)
2.三个角的三角形是等边三角形.
3.尝试证明:三个角都相等的三角形是等边三角形.(可以同桌进行讨论)
【师点拨证明方法:可以利用定义去证明三个角都相等的三角形是等边三角形的成立性.另外这是个命题证明需要写出已知、求
证以及证明过程.】
4.有一个角等于的等腰三角形是等边三角形.说说你的想法.
三、尝试练习
课本第12页“知识技能”第1题.
四、预习提示
1.操作:利用两个含0
30三角形纸片进行拼图,你能拼成一个怎样的三角形?能拼成一个等边三角形吗?说说你的理由.
2.由操作你还能发现什么结论?你能证明吗?(组内交流解决)【师点拨证明方法:思考操作过程,从而添加辅助线构造等边三角形】
3.阅读第11页的例4,然后同桌交流做法和本题利用的主要定
理.
五、尝试练习
课本第12页“随堂练习”
六、堂清
1.如图1,已知△ABC是等边三角形,F、
D、E分别是边BA、CB、AC的延长线
上的点,且BD=CE=AF.求证:△DEF是
等边三角形.
2.如图2,在△ABC中,∠A=0
30,AC=3
2,BC=6,求AB的长.
七、 反刍总结 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧
.......60........................0等腰三角形的一个角是三个角都相等的三条边都相等的判定轴对称三个角都相等三条边都相等性质等边三角形两角相等的两边相等的判定轴对称三线合一等边对等角
性质等腰三角形等腰三角形
直角三角形中300角的性质:在直角三角形中,如果一个锐角等腰300,那么它所对的直角边等于斜边的一半. 教后反思
图2B
A。