三角函数变换的技巧与方法
三角函数变换的技巧与方法
三角函数变换的技巧与方法三角函数是数学中非常重要的概念,在求解各类问题时都会用到。
而三角函数之间的变换则是解决三角函数相关问题的重要技巧之一、下面将介绍一些常见的三角函数变换方法。
方法一:和差角公式三角函数的和差角公式是非常重要的三角函数变换公式。
根据和差角公式,我们可以将一个三角函数的和差表达式转化为两个三角函数的乘积表达式。
具体公式如下:1. sin(A ± B) = sinAcosB ± cosAsinB2. cos(A ± B) = cosAcosB ∓ sinAsinB3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)通过使用和差角公式,我们可以将复杂的三角函数表达式转化为简单的三角函数乘积表达式,从而便于求解和化简。
方法二:倍角公式倍角公式是三角函数变换中另一个重要的公式。
根据倍角公式,我们可以将一个三角函数的角度变为原来的2倍。
具体公式如下:1. sin2A = 2sinAcosA2. cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A3. tan2A = (2tanA) / (1 - tan^2A)方法三:半角公式半角公式是将一个角的角度变为原来的1/2的公式。
具体公式如下:1. sin(A/2) = ±√[(1 - cosA) / 2]2. cos(A/2) = ±√[(1 + cosA) / 2]3. tan(A/2) = √[(1 - cosA) / (1 + cosA)]方法四:和差化积公式和差化积公式是将一个三角函数的和差化为积的公式。
具体公式如下:1. sinA + sinB = 2sin((A + B)/2)cos((A - B)/2)2. sinA - sinB = 2cos((A + B)/2)sin((A - B)/2)3. cosA + cosB = 2cos((A + B)/2)cos((A - B)/2)4. cosA - cosB = -2sin((A + B)/2)sin((A - B)/2)方法五:积化和差公式积化和差公式是将两个三角函数的积化为和差的公式。
三角函数的基本变换
三角函数的基本变换三角函数是数学中的重要内容,在数学、物理、工程等领域都有广泛的应用。
而三角函数的基本变换是理解和应用三角函数的基础。
本文将介绍三角函数的基本变换,包括正弦函数、余弦函数和正切函数的平移、伸缩和反射三种变换。
一、正弦函数的基本变换正弦函数的标准公式为:y = A*sin(Bx + C) + D,其中A、B、C、D 为常数,且A不等于0。
对于正弦函数的基本变换,可以通过调整A、B、C、D的值来实现平移、伸缩和反射。
1. 平移平移是指将函数图像沿x轴或y轴方向移动。
当C为正数时,正弦曲线向左平移;当C为负数时,正弦曲线向右平移。
平移的距离由C的绝对值决定,绝对值越大,平移的距离越远。
2. 伸缩伸缩是指将函数图像在x轴或y轴方向进行拉伸或压缩。
当A的绝对值变大时,正弦曲线在y轴方向上的振幅增大,即拉伸;当A的绝对值变小时,正弦曲线的振幅减小,即压缩。
当B的绝对值变大时,正弦曲线在x轴方向上的周期变短,即拉伸;当B的绝对值变小时,正弦曲线的周期变长,即压缩。
3. 反射反射是指将函数图像关于x轴或y轴进行翻转。
当A为负数时,正弦曲线关于x轴进行翻转;当B为负数时,正弦曲线关于y轴进行翻转。
二、余弦函数的基本变换余弦函数的标准公式为:y = A*cos(Bx + C) + D,其中A、B、C、D为常数,且A不等于0。
余弦函数的基本变换与正弦函数类似,分为平移、伸缩和反射三种变换。
1. 平移余弦函数的平移与正弦函数相同,通过调整C的值来实现。
当C为正数时,余弦曲线向左平移;当C为负数时,余弦曲线向右平移。
2. 伸缩余弦函数的伸缩与正弦函数类似,通过调整A和B的值来实现。
当A的绝对值变大时,余弦曲线在y轴方向上的振幅增大,即拉伸;当A 的绝对值变小时,余弦曲线的振幅减小,即压缩。
当B的绝对值变大时,余弦曲线在x轴方向上的周期变短,即拉伸;当B的绝对值变小时,余弦曲线的周期变长,即压缩。
3. 反射余弦函数的反射与正弦函数类似,通过调整A的值来实现。
三角函数图像变换方法
三角函数图像变换方法是数学和工程领域中非常重要的概念,其应用范围广泛,包括但不限于信号处理、图像处理、机械振动分析等领域。
下面将详细介绍三角函数图像变换的原理、方法和应用。
一、三角函数图像变换的基本原理三角函数图像变换的核心是通过调整三角函数的参数(如振幅、频率、相位等),从而改变其图像的形状和位置。
具体来说,可以通过以下几种方式来实现三角函数图像的变换:1. 振幅变换:通过改变三角函数的振幅参数,可以改变图像在垂直方向上的大小。
振幅增加时,图像的高度增加;振幅减小时,图像的高度减小。
2. 频率变换:通过改变三角函数的频率参数,可以改变图像在水平方向上的周期性。
频率增加时,图像的周期减小,图像变得更密集;频率减小时,图像的周期增加,图像变得更稀疏。
3. 相位变换:通过改变三角函数的相位参数,可以改变图像在水平方向上的平移。
相位增加时,图像向右平移;相位减小时,图像向左平移。
二、三角函数图像变换的常见方法1. 振幅变换法:通过直接调整三角函数的振幅参数,实现图像在垂直方向上的大小变化。
例如,将正弦函数y=sin(x)的振幅扩大2倍,得到y=2sin(x)的图像,其高度变为原来的2倍。
2. 频率变换法:通过调整三角函数的频率参数,实现图像在水平方向上的周期性变化。
例如,将正弦函数y=sin(x)的频率增加2倍,得到y=sin(2x)的图像,其周期变为原来的1/2。
3. 相位变换法:通过调整三角函数的相位参数,实现图像在水平方向上的平移。
例如,将正弦函数y=sin(x)的相位增加π/2,得到y=sin(x+π/2)的图像,其向右平移π/2个单位。
此外,还可以结合使用上述方法,实现更复杂的图像变换。
例如,可以同时调整振幅、频率和相位参数,得到不同形状和位置的三角函数图像。
三、三角函数图像变换的应用三角函数图像变换在各个领域有着广泛的应用。
以下是一些典型的应用示例:1. 信号处理:在信号处理中,三角函数图像变换常用于分析信号的频率成分和相位关系。
三角函数变换的方法总结
三角函数变换的方法总结三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换。
三角恒等变换在整个初等数学中涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。
下面通过例题的解题说明,对三角恒等变换的解题技巧作初步的探讨研究。
(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。
【例1】已知θ同时满足和,且a、b均不为0,求a、b的关系。
解析:已知显然有:由①×cos2θ+②×cosθ,得:2acos2θ+2bcosθ=0即有:acosθ+b=0又 a≠0所以,cosθ=-b/a ③将③代入①得:a(-a/b)2-b(-b/a)=2a即a4+b4=2a2b2∴(a2-b2)2=0即|a|=|b|点评:本例是“化弦”方法在解有关问题时的具体运用,主要利用切割弦之间的基本关系式。
(2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。
【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。
解析:设θ+15°=α,则原式=sin(α+60°)+cos (α+30°)-cosα=(sinαcos60°+cosαsin60°)+(cosαcos30°-sinαsin30°)-cosα=sinα+cosα+cosα-sinα-cosα=0点评:本例选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”的和差关系,这也是角的拆变技巧之一。
三角函数的变换
三角函数的变换三角函数是数学中重要的概念,它描述了角度和三角形之间的关系。
在数学和物理领域,我们经常需要对三角函数进行变换,以便简化计算或者得到更加具体的结果。
以下将介绍三角函数的常见变换及其特点。
1. 平移变换平移变换是最常见的三角函数变换之一。
平移变换将函数图像沿着横轴或纵轴平移一定的单位。
对于正弦函数sin(x),平移变换可以表示为y = sin(x - c)或y = sin(x + c),其中c表示平移的单位。
这种变换改变了正弦函数的相位,使得图像在横向移动。
2. 伸缩变换伸缩变换是通过改变三角函数的振幅或周期来实现的。
对于正弦函数sin(x),伸缩变换可以表示为y = a*sin(bx),其中a和b分别表示振幅和周期的变化系数。
当a>1时,振幅增大;当0<a<1时,振幅减小。
当b>1时,周期缩短;当0<b<1时,周期延长。
伸缩变换可以使得函数图像在纵向或横向方向上发生变化。
3. 反转变换反转变换是将函数图像沿着横轴或纵轴进行镜像翻转。
对于正弦函数sin(x),反转变换可以表示为y = -sin(x)或y = sin(-x)。
这种变换改变了正弦函数的正负号,使得图像在纵向发生翻转。
4. 相位差变换相位差变换是通过改变角度值来实现的。
对于正弦函数sin(x),相位差变换可以表示为y = sin(x + d),其中d表示相位差。
相位差变换改变了正弦函数的起始位置,使得图像在横向发生移动。
5. 复合变换除了单独的平移、伸缩、反转和相位差变换,我们还可以将它们组合起来进行复合变换。
通过在函数的输入和输出上进行多次变换,可以得到更加复杂的函数图像。
例如,可以将平移和伸缩变换组合来实现在横向上平移并且改变振幅的效果。
三角函数的变换在数学和物理中有着广泛的应用。
它们可以用来描述周期性现象、波动传播以及信号处理等。
通过灵活运用变换的技巧,我们可以简化计算过程并得到更加准确的结果。
三角函数的变换与性质
三角函数的变换与性质三角函数是数学中常见的一类函数,它们在数学和物理等领域有着重要的应用。
本文将介绍三角函数的变换与性质,以帮助读者更好地理解和应用这些函数。
一、正弦函数的变换与性质正弦函数可以表示为f(x) = sin(x),其图像是一个周期性的波形。
正弦函数的变换包括平移、伸缩和翻转等操作。
1. 平移:当正弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。
例如,f(x) = sin(x + π/2)的图像将向左平移π/2个单位。
2. 伸缩:当正弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。
若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。
3. 翻转:当正弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。
即f(x) = sin(-x)的图像将关于y轴对称。
正弦函数的性质有:1. 周期性:正弦函数的图像以x轴为对称轴,其周期为2π。
即sin(x + 2π) = sin(x)。
2. 奇偶性:正弦函数是一个奇函数,即f(-x) = - f(x)。
这意味着正弦函数的图像关于原点对称。
二、余弦函数的变换与性质余弦函数可以表示为f(x) = cos(x),它与正弦函数是相互关联的。
余弦函数的变换与正弦函数类似,也包括平移、伸缩和翻转等操作。
1. 平移:当余弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。
例如,f(x) = cos(x + π/2)的图像将向左平移π/2个单位。
2. 伸缩:当余弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。
若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。
3. 翻转:当余弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。
即f(x) = cos(-x)的图像将关于y轴对称。
余弦函数的性质有:1. 周期性:余弦函数的图像以x轴为对称轴,其周期为2π。
即cos(x + 2π) = cos(x)。
进行三角恒等变换的三个技巧
解题宝典在解答三角函数问题时,经常需对三角函数式进行三角恒等变换,这就要求同学们熟练掌握一些进行三角恒等变换的技巧,以便能顺利化简三角函数式、求出三角函数式的值.那么怎样合理进行三角恒等变换呢?可以从以下三个方面进行.一、变换角当进行三角恒等变换时,首先要仔细观察已知角和所求角之间的差别,并建立两角之间的联系,如互余、互补、半角、倍角等,然后利用诱导公式、二倍角公式、两角的和差公式等求解.在进行角的变换时,还可将已知角、所求角与特殊角,如π6、π4、π3等建立联系,然后利用这些特殊角的函数值进行求解.例1.已知cos æèöøα+π4=35,π2≤α<3π2,求cos(2α+π4)的值.分析:先观察题目中的角可发现,已知角α+π4与所要求的角2α+π4之间相差一个α,可以找到一个关系:2æèöøα+π4−π4=2α+π4,用二倍角公式和诱导公式求出sin 2æèöøα+π4和cos 2æèöøα+π4的值,最后根据余弦的两角和公式cos ()α−β=cos α∙cos β+sin α∙sin β求出cos æèöø2α+π4的值.解:由于π2≤α<3π2,所以3π4≤α+π4<7π4,又因为cos æèöøα+π4=35>0,可知3π2≤α+π4<7π4,因此sin æèöøα+π4=−45,所以sin 2æèöøα+π4=2sin æèöøα+π4cos æèöøα+π4=−2425,cos 2æèöøα+π4=2cos 2æèöøα+π4−1=−725,因此cos æèöø2α+π4=cos éëêùûú2æèöøα+π4−π4=cos 2æèöøα+π4cos π4+sin 2æèöøα+π4sin π4=.二、变换函数名称有些三角函数式中的函数名称并不相同,此时,我们需变换函数的名称,如将正切、余切转化为正弦、余弦,将正弦化为余弦,将余弦化为正弦,等等,以达到统一函数名称的目的.在变换函数名称的过程中,常用到的公式有诱导公式sin ()2k π+α=sin α()k ∈Z 、cos ()2k π+α=cos α()k ∈Z 、tan ()2k π+α=tan α(k ∈Z),重要关系式tan α=sin αcos α、sin 2α+cos 2α=1、辅助角公式a sin α+b cos α=a 2+b 2sin (α+φ)等.例2.化简2cos 2α−12tan æèöøπ4−αsin 2æèöøπ4+α.分析:这个式子中既含有正切函数也有正弦、余弦函数,我们第一步就是要想办法将正切函数转变为正弦函数.观察式子中角的特点,可发现æèöøπ4−α+æèöøπ4+α=π2,根据角的特征,可以利用诱导公式将函数式转化成函数名称一致的式子.解:原式=cos 2α2sin æèöøπ4−αcos æèöøπ4−αsin 2éëêùûúπ2−æèöøπ4−α=cos 2α2sin æèöøπ4−αcos æèöøπ4−α=cos 2αsin æèöøπ2−2α=1.三、变换幂的次数有些三角函数式中幂的次数不相同,此时,我们要对其作升幂或者降幂处理,以便使函数式中的次数相同.“升幂”可以通过二倍角公式cos 2α=cos 2α−sin 2α=2cos 2α−1=1−2sin 2α、tan 2α=2tan α1−tan 2α来实现,“降幂”可以通过二倍角公式sin 2α=2sin αcos α及变形式sin 2α=1−cos 2α2,cos 2α=1+cos 2α2.sin 2α=1−cos 2α2,cos 2α=1+cos 2α2来达到目的.例3.已知tan α=−13,求sin α−cos 2α1+cos 2α的值.分析:由于已知tan α=−13,目标式中含有正弦函数和余弦函数,且含有二次式,可以先利用二倍角公式把2α转变为α,使幂的次数统一,即将所求的式子转化为关于sin α、cos α的齐次式,然后依据tan α=sin αcos α,将目标式中的分子、分母同时除以cos 2α,得到只含有tan α的分式,将tan α=−13代入求解即可得到答案.解:原式=2sin αcos α−cos 2α2cos 2α=2sin α−cos α2cos α=tan α−12=−56.总而言之,在进行三角恒等变换时最重要的就是要做到“变异为同”,灵活使用各种三角函数公式,将角、函数名称、幂的次数不同的式子转化为角、函数名称、次数相同的式子.在解题的过程中,同学们要熟记各种三角函数公式,并灵活使用,根据角、函数名称、幂的特点合理进行变换,以实现“变异为同”.(作者单位:山东省聊城第一中学)41Copyright©博看网 . All Rights Reserved.。
数学解决三角函数问题的六种方法
数学解决三角函数问题的六种方法在数学学习中,三角函数是一项基础而重要的内容。
解决三角函数问题,需要掌握不同的解题方法和技巧。
本文将介绍六种常用的数学解决三角函数问题的方法,以帮助读者更好地理解和应用三角函数。
方法一:利用定义和基本公式三角函数的定义和基本公式对于解决问题非常重要。
例如,正弦函数的定义是一个直角三角形的斜边与对边之比,可以表示为sinθ = a/c。
利用这个定义和基本公式,我们可以求解一些基本的三角函数值,如sin(30°) = 1/2。
方法二:利用三角函数图像特征三角函数的图像特征可以帮助我们更好地理解和应用它们。
例如,正弦函数的图像是一条连续的波形,取值范围在[-1, 1]之间。
利用这个特征,我们可以根据给定的角度,通过观察三角函数图像来确定函数值。
方法三:利用三角函数的周期性质三角函数具有周期性的特点,即sin(θ + 2π) = sinθ,cos(θ + 2π) =cosθ。
利用这个周期性质,我们可以将任意角度转换成特定区间范围内的角度,从而简化计算。
方法四:利用三角函数的恒等变换三角函数的恒等变换是一种将一个三角函数表示为其他三角函数的等价形式。
例如,sin(θ) = cos(π/2 - θ)。
利用这种恒等变换,我们可以将复杂的三角函数问题转化为简单的形式,从而更便于求解。
方法五:利用特殊角的三角函数值特殊角(如0°、30°、45°、60°、90°等)具有特殊的三角函数值,这些值是我们在计算过程中常常用到的。
例如,sin(0°) = 0,cos(90°) = 0,tan(45°) = 1等。
熟记这些特殊角的三角函数值,可以大大简化计算过程。
方法六:利用三角函数的性质和定理三角函数具有一系列的性质和定理,如和差化积公式、倍角公式、半角公式等。
利用这些性质和定理,我们可以根据已知条件,推导出新的关系式,从而求解三角函数问题。
9种常用三角恒等变换技巧总结
9种常用三角恒等变换技巧总结三角恒等变换是数学中常用的一种技巧,在解决三角函数相关问题时非常有用。
下面总结了九种常见的三角恒等变换技巧。
1.倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)这些公式可以用于将一个三角函数中的角度变为它的倍角,从而简化计算。
2.半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)cos(θ/2) = ±√((1 + cosθ) / 2)tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))这些公式可以用于将一个三角函数中的角度变为它的半角,从而简化计算。
3.和差公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以用于将两个角度的三角函数变成一个角度的三角函数,从而简化计算。
4.和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)这些公式可以用于将和或差的三角函数转化为乘积的三角函数,从而简化计算。
5.积化和差公式:sinAcosB = 1/2(sin(A+B) + sin(A-B))cosAsinB = 1/2(sin(A+B) - sin(A-B))cosAcosB = 1/2(cos(A+B) + cos(A-B))sinAsinB = -1/2(cos(A+B) - cos(A-B))这些公式可以用于将乘积的三角函数转化为和或差的三角函数,从而简化计算。
高中三角函数解题技巧
高中三角函数解题技巧
一、了解基本概念
在解题过程中,首先需要了解三角函数的基本概念,包括正弦、余弦、正切等。
熟悉三角函数的定义和性质,能够帮助我们理解和
解决相关的问题。
二、掌握基本公式
掌握三角函数的基本公式对于解题非常重要。
例如,正弦函数
的基本公式是sinθ = 对边/斜边,余弦函数的基本公式是cosθ = 邻
边/斜边。
熟练运用这些公式,可以更快速地求解三角函数的值。
三、利用特殊关系
在解题过程中,有时可以利用三角函数的特殊关系简化问题。
例如,利用正弦函数和余弦函数的关系sin(π/2-θ)= cosθ,可以将一
个三角函数转换为另一个三角函数,从而简化计算过程。
四、利用三角函数的周期性
三角函数具有周期性,即在一定范围内的值是重复的。
例如,
正弦函数和余弦函数的周期都是2π。
利用这一特性,我们可以根
据给定角度的范围,将角度转化为对应周期内的角度,便于计算和
比较。
五、解三角方程
解三角方程是高中三角函数解题的重要内容。
通过对方程两边
进行一系列变换和化简,可得到与角度相关的等式。
掌握解三角方
程的一般方法和技巧,能够解答各种类型的问题。
六、练和总结
要掌握三角函数解题技巧,需要进行大量的练。
通过多做题目,积累经验,总结规律,逐步提高解题能力。
总结:
通过了解基本概念、掌握基本公式、利用特殊关系和周期性、
解三角方程以及进行练习和总结,我们能够提高在高中数学中解决
三角函数相关问题的能力。
希望这些技巧能对你有所帮助!。
进行三角恒等变换的技巧
思路探寻步骤,不管是求三角函数的值、证明某个结论,都需要进行三角恒等变换.些进行三角恒等变换的技巧是很有必要的.角恒等变换主要是对三角函数式中的角、幂、常数进行变换.下面,三角变换的一些技巧.一、对角进行变换若题设中含有多个不同的角,换,建立已知角与所求角的之间的联系,用诱导公式、两角和差的正余弦公式、将已知角逐步朝着所求角靠拢.同时,角的范围和三角函数值,角函数值.例1.若cos(α-β)=-45,cos(α+β)=1213π),α+β∈(3π2,2π),求cos 2α的值.解析:观察所求角和已知角的差异,系2α=(α+β)+(α-β).和的余弦公式进行三角恒等变换.解:cos 2α=cos[(α+β)+(α-β)]=cos(α-β)cos(α-β)-sin(α+β)sin(α-β)又α-β∈(π2,π),α+β∈(3π2,2π),由已知易得sin(α-β)=35,sin(α+β)=-315代入上式可得cos 2α=-3365.二、对函数名称进行变换我们需要对函数的名称进行变换,同角的三角函数关系式:cos 2α+sin 2α=1、tan 二倍角公式、有“切化弦”或“弦化切”.例2.若3sin α+cos α=0,求cos 2解析:由于3sin α+cos α=0,可得tan α么我们需利用关系式sin2α+cos 2α=1和tan αcos 2α+sin2α用tan α表示出来.解:cos 2α+sin2α=cos 2α+sin 2αcos 2α+sin 2α,将上式的分子、分母同时除以cos 2α,得.三、对幂进行变换有些函数式中幂的次数不统一,一般需将高次的幂变换为低次的幂.常用到的公式有cos2α=2cos 2α-1=1-2sin 2α、tan 2α=2tan α1-tan 2α、cos 2α+sin 2α=1.例3.已知sinα-cosα=12,求sin 3α-cos 3α的值.解析:由于已知式与目标式的次数存在较大的差异,将目标式降次是首要任务.可利用cos 2α=2cos 2α-1=1-2sin 2α和cos 2α+sin 2α=1来进行变换.解:因为(sin α-cos α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α,所以sin αcos α=38,故sin 3α-cos 3α=(sin α-cos α)(sin 2α+cos 2α+sin αcos α)=(sin α-cos α)(1+sin αcos α)=12×(1+38)=1116.四、对常数进行变换对常数进行变换是进行三角恒等变换的常用技巧.常见的变换有1=cos 2α+sin 2α、sin30°=12、sin45°=、sin60°=、sin90°=tan45°=1.这样通过对常数进行变换,可将三角函数式转化为可利用公式进行化简的式子.例4.已知cos α=-13,α是第二象限角,且sin(α+β)=1,求cos(2α+β)的值.解:由cos α=-13,且α是第二象限角,可得sin α=,由于sin(α+β)=1,所以α+β=2k π+π2(k ∈Z ),故cos (2α+β)=cos[(α+β)+α]=cos (2k π+π2+α)=cos (π2+α)=-sin α=-.因为已知条件sin(α+β)=1比较特殊,所以可直接求出α+β的值,将其整体代入求解,便把复杂的三角求值问题变为求特殊角的值的问题.此解法与常规方法不同,但效果很好.总之,进行三角函数恒等变换,需要仔细分析三角函数式的结构特点,选择恰当的公式将三角函数式化成单角、项数尽可能少、次数尽可能低、结构尽可能简单的三角函数式,这样便能快速求得问题的答案.(作者单位:福建省龙岩市长汀县第一中学)Copyright©博看网 . All Rights Reserved.。
三角函数变换的方法总结
三角函数变换的方法总结一、基础概念1.三角函数三角函数是以角度(x)作为自变量,单位圆上的坐标为函数值。
基本三角函数有正弦(sine)、余弦(cosine)、正切(tangent)、余切(cotangent)等。
定义域为实数集,值域为[-1,1]。
2.周期性三角函数都具有周期性,即函数值在一定范围内重复出现。
正弦和余弦的周期都为2π,正切和余切的周期为π。
3.基本关系三角函数之间有一系列基本关系:- 正弦、余弦关系:sin²(x)+cos²(x)=1- 正切、余切关系:tan(x)=1/cot(x)- 余弦、正切关系:cos(x)=1/sqrt(1+tan²(x))二、方法总结1.基本变换基本变换是通过改变角度的幅度和位置来改变三角函数的取值。
例如,sin(x)函数是以y轴为对称轴的偶函数,当角度发生变化时,sin(x)函数的值也会随之改变。
2.幅度变换幅度变换是通过改变系数a来改变函数的幅度。
在sin(ax)和cos(ax)中,a的取值决定了函数图像振动的频率和幅度,a越大,函数的振动越快,幅度越小。
3.位置变换位置变换是通过改变角度的平移来改变函数图像。
sin(x+b)和cos(x+b)中,b的取值决定了函数图像的位置,向右平移b单位,向左平移-b单位。
4.相关公式相关公式是一些常见的三角函数相互之间的变换式,它们可以简化计算,提高效率。
例如,sin(a+b)=sin(a)cos(b)+cos(a)sin(b)是常见的三角函数加法公式。
三、实际应用1.物理学2.电子工程3.统计学结论三角函数变换是解决三角函数关系和计算的一种重要方法,具有广泛的应用价值。
通过基本变换、幅度变换、位置变换和相关公式等方法,可以灵活地处理三角函数的计算和应用问题。
在物理学、电子工程和统计学等领域,三角函数变换对于解决实际问题起着重要的作用。
因此,熟练掌握三角函数变换的方法和技巧对于数学和实际应用都具有重要意义。
三角恒等变换技巧
三角恒等变换技巧三角恒等变换是一种重要的数学技巧,用于简化三角函数的表达式,求解三角方程和证明恒等式。
这种技巧通过将一个三角函数转化为另一个三角函数的形式,或者通过将多个三角函数组合成一个三角函数的和或积的形式,来实现简化和转化。
一、三角函数的基本恒等变换1.正弦函数和余弦函数的平方和公式sin²x + cos²x = 1这是最基本的三角恒等变换,它表示任何角的正弦函数平方加上余弦函数平方等于12.正弦函数和余弦函数的差积公式sin2x = 2sinx*cosx这个恒等变换表示正弦函数的二倍角等于两倍的正弦函数和余弦函数的乘积。
3.余弦函数的二倍角公式cos2x = cos²x - sin²x = 2cos²x - 1 = 1 - 2sin²x这个恒等变换表示余弦函数的二倍角可以表达为余弦函数和正弦函数的平方差。
4.正弦函数和余弦函数的和差公式sin(x ± y) = sinxcosy ± cosxsinycos(x ± y) = cosxcosy ∓ sinxsiny这个恒等变换描述了正弦函数和余弦函数的和差与它们的乘积之间的关系。
5.正切函数的和差公式tan(x ± y) = (tanx ± tany) / (1 ∓ tanxtany)这个恒等变换给出了正切函数和它们的和差之间的关系。
1.利用半角公式当要求解一些三角函数值的时候,可以使用半角公式将一个角度的三角函数值表示为另一个角度的三角函数值的形式,从而简化计算。
2.利用和差公式和平方和公式可以利用和差公式和平方和公式,将一个三角函数的和或差化简为一个三角函数的平方和或平方差,或者将一个三角函数的平方和或平方差化简为一个三角函数的和或差。
3.利用倍角公式可以使用倍角公式将一个三角函数的值表示为同一函数的两倍角的形式,或者将一个三角函数的两倍角的值表示为这个函数的值的形式,从而实现简化。
进行三角恒等变换的几个技巧
很多三角函数题目侧重于考查三角恒等变换的技巧.进行三角恒等变换的关键是选择合适的公式或变形式,将三角函数式中的角、函数名称、幂等进行灵活的转化,从而顺利化简三角函数式,求出三角函数式的值.下面,笔者介绍几个进行三角恒等变换的技巧,以供大家参考.一、拆角与补角有些三角函数式中的角不相同,就需要运用拆角与补角的技巧,将题目中的角进行转化.在转化角时,要先联系已知条件和所求目标,将角进行拆分、拼凑,再灵活运用诱导公式、二倍角公式、两角的和差公式等进行变换.例1.已知cos (α+π4)=35,π2≤α≤3π2,求cos (2α+π4)的值.解:由于π2≤α≤3π2,所以3π4≤α+π4≤7π4,因为cos (α+π4)=35>0,可知3π2≤α+π4≤7π4,因此sin (α+π4)=-45,所以sin 2(α+π4)=2sin (α+π4)cos (α+π4)=-2425,cos 2(α+π4)=2cos 2(α+π4)-1=-725,因此cos (2α+π4)=cos[2(α+π4)-π4]=cos 2(α+π4)cos π4+sin 2(α+π4)sin π4=.观察题目中的各个角,可以发现:已知角α+π4与所要求的角2α+π4之间相差一个α,可得2(α+π4)-π4=2α+π4,用二倍角公式和诱导公式求出sin 2(α+π4)和cos 2(α+π4)的值,最后根据余弦的两角和公式,即可求出cos(2α+π4)的值.二、降幂与升幂当三角函数式中出现高次或者次数不一的式子时,就要运用降幂与升幂的技巧来解题.常用到的公式有cos 2α=2cos 2α-1=1-2sin 2α、tan 2α=2tan α1-tan 2α、sin 2α+cos 2α=1.例2.证明cos 2α+cos 2(x +π3)+cos 2(x -π3)的值与x 的取值无关.证明:cos 2α+cos 2(x +π3)+cos 2(x -π3)=1+cos 2x 2+1+cos(2x +23π)2+1+cos(2x -23π)2=32+12[cos 2x +cos(2x +23π)cos(2x -2π3)]=32+12(cos 2x -12cos 2x -2x -12cos 2x +2x )=32.该式与x 无关,命题得证.该三角函数式较为复杂,cos 2α、cos 2(x +π3)、cos 2(x -π3)均为二次式,且各个角不相等,需先利用余弦函数的二倍角公式降幂,将其转化为一次式,然后再进行化简,这样运算起来就会容易很多.三、弦切互化当函数式中出现多种不同的三角函数名称时,就需要通过弦切互化,将不同名函数化为同名函数.常用的办法是利用tan α=sin αcos α或sin 2α+cos 2α=1将切化弦或将弦化切.例3.已知tan α=2,求4sin α-2cos α5cos α+3sin α的值.解:因为tan α=2,所以cos α≠0,所以4sin α-2cos α5cos α+3sin α=4sin α-2cos αcos α5cos α+3sin αcos α=4tan α-25+2tan α=611.解答本题,需挖掘题目中的隐含信息cos α≠0,将所求目标式的分子、分母同时除以cos α,利用tan α=sin αcos α,使所求目标式中的函数名称统一为正切函数,最后将已知值代入,求得目标函数式的值.无论是对函数名称、角,还是对幂进行转化,都需要灵活运用三角函数中的基本公式及其变形式,有时也要学会逆用公式.在进行三角恒等变换时,要注意仔细观察三角函数式,选择恰当的三角恒等变换技巧.(作者单位:江苏省射阳县高级中学)解题宝典40。
三角函数变换的技巧与方法
三角函数变换的方法与技巧 (1)一、角的变换在三角函数的求值、化简与证明题中,表达式往往出现较多的相异角,此时可根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解。
常见角的变换方式有:ββαα-+=)(;)()(2βαβαα-++=;αβαβα+-=-)(2;22αα=等等。
例1、已知1),tan()tan(-≠-=+n n βαβα,求证:112sin 2sin +-=n n αβ。
分析:在条件中的角βα+和 βα-与求证结论中的角βα2,2是有联系的,可以考虑配凑角。
解: )()(2βαβαβ--+=,)()(2βαβαα-++=,∴)]()sin[()]()sin[(2sin 2sin βαβαβαβααβ-++--+=)sin()cos()cos()sin()sin()cos()cos()sin(βαβαβαβαβαβαβαβα-++-+-+--+=)tan()tan()tan()tan(βαβαβαβα-++--+=11)tan()tan()tan()tan(+-=-+----=n n n n βαβαβαβα 二、函数名称的变换三角函数变换的目的在于“消除差异,化异为同”。
而题目中经常出现不同名的三角函数,这就需要将异名的三角函数化为同名的三角函数。
变换的依据是同角三角函数关系式或诱导公式。
如把正(余)切、正(余)割化为正、余弦,或化为正切、余切、正割、余割等等。
常见的就是切割化弦。
例2 、(2001年上海春季高题)已知k =++αααtan 12sin sin 22 )24(παπ<<,试用k 表示ααcos sin -的值。
分析:将已知条件“切化弦”转化为ααcos ,sin 的等式。
解:由已知k ==++=++ααααααααααcos sin 2cos sin 1)cos (sin sin 2tan 12sin sin 22;24παπ<<ααc o s s i n >∴∴ααcos sin -k -=-=-=1cos sin 21)cos (sin 2αααα。
三角函数的像变换规律总结
三角函数的像变换规律总结三角函数是数学中的重要概念,它们在数学和物理等领域中有广泛的应用。
像变换规律是描述三角函数在图像上的移动、拉伸和反转等变化规律。
在本文中,我们将总结常见的三角函数的像变换规律。
一、正弦函数的像变换规律正弦函数是最常见的三角函数之一,其一般式为y =A*sin(Bx+C)+D,其中A、B、C、D为常数参数。
1. 水平方向平移:当C改变时,函数图像在水平方向上发生平移。
当C>0时,向左平移;当C<0时,向右平移。
平移的距离等于C的绝对值除以B。
2. 垂直方向平移:当D改变时,函数图像在垂直方向上发生平移。
当D>0时,向上平移;当D<0时,向下平移。
平移的距离等于D。
3. 垂直方向拉伸或压缩:当A改变时,函数图像在垂直方向上发生拉伸或压缩。
当|A|>1时,发生纵向拉伸;当|A|<1时,发生纵向压缩。
拉伸或压缩的程度与|A|的大小有关。
二、余弦函数的像变换规律余弦函数也是常见的三角函数之一,其一般式为y =A*cos(Bx+C)+D,其中A、B、C、D为常数参数。
1. 水平方向平移:与正弦函数类似,余弦函数在改变C时在水平方向上发生平移。
当C>0时,向左平移;当C<0时,向右平移。
平移的距离等于C的绝对值除以B。
2. 垂直方向平移:与正弦函数类似,余弦函数在改变D时在垂直方向上发生平移。
当D>0时,向上平移;当D<0时,向下平移。
平移的距离等于D。
3. 垂直方向拉伸或压缩:与正弦函数类似,余弦函数在改变A时在垂直方向上发生拉伸或压缩。
当|A|>1时,发生纵向拉伸;当|A|<1时,发生纵向压缩。
拉伸或压缩的程度与|A|的大小有关。
三、正切函数的像变换规律正切函数是另一个常见的三角函数,其一般式为y =A*tan(Bx+C)+D,其中A、B、C、D为常数参数。
由于正切函数在某些点上无定义,因此在图像上会有一些特殊的性质。
三角函数中三角变换常用的方法和技巧
三角函数中三角变换常用的方法和技巧三角函数是数学中的重要分支,广泛应用于物理、工程、计算机科学等领域。
在求解问题时,我们常常需要对三角函数进行各种变换和化简。
本文将介绍一些常用的三角变换方法和技巧。
一、和差化积与积化和差1.1和差化积和差化积是一种常用的三角函数变换方法,能够将两个三角函数的和(或差)表示为一个(或两个)三角函数的积。
具体公式如下:sin(a ± b) = sin a cos b ± cos a sin bcos(a ± b) = cos a cos b ∓ sin a sin btan(a ± b) = (tan a ± tan b) / (1 ∓ tan a tan b)1.2积化和差积化和差则是和差化积的逆运算,能够将一个三角函数的积表示为两个三角函数的和(或差)。
具体公式如下:sin a sin b = (1 / 2) [cos(a - b) - cos(a + b)]cos a cos b = (1 / 2) [cos(a - b) + cos(a + b)]sin a cos b = (1 / 2) [sin(a + b) + sin(a - b)]二、倍角公式和半角公式2.1倍角公式倍角公式是将一个角的三角函数表示为另一个角的三角函数的公式。
具体公式如下:sin 2a = 2sin a cos acos 2a = cos² a - sin² a = 2cos² a - 1 = 1 - 2sin² atan 2a = (2tan a) / (1 - tan² a)2.2半角公式半角公式是将一个角的三角函数表示为另一个角的三角函数的公式。
具体公式如下:sin (a / 2) = ±√[(1 - cos a) / 2]cos (a / 2) = ±√[(1 + cos a) / 2]tan (a / 2) = ±√[(1 - cos a) / (1 + cos a)]三、和差化积与和差化积的扩展3.1和差化积的扩展除了上述提到的基本的和差化积公式外,还存在一些扩展的和差化积公式。
三角函数的像变换利用三角函数解决像变换问题的方法与技巧
三角函数的像变换利用三角函数解决像变换问题的方法与技巧三角函数是数学中一个重要的分支,广泛应用于几何学、物理学、计算机图形学等领域。
其中,像变换是指通过对三角函数的参数进行调整来改变函数图像在坐标平面上的位置、形状和大小。
本文将介绍一些利用三角函数解决像变换问题的方法与技巧。
一、平移变换平移变换是指通过改变三角函数的参数来移动函数图像在坐标平面上的位置。
对于正弦函数sin(x)而言,平移变换可以通过改变函数参数中的常数项实现。
具体来说,对于函数y = A*sin(x - B),其中A和B 分别表示振幅和相位角,改变相位角B可以实现图像在水平方向上的平移。
当B为正时,图像向右移动;当B为负时,图像向左移动。
例如,在处理图像变换问题时,常常需要将函数图像沿x轴或y轴平移一定距离。
可以通过调整三角函数的相位角来实现。
如果需要将函数y = sin(x)向右平移2个单位,可以通过改变函数参数为y = sin(x - 2)来实现。
同样地,如果需要将函数y = cos(x)向上平移3个单位,可以通过改变函数参数为y = 3 + cos(x)来实现。
二、伸缩变换伸缩变换是指通过改变三角函数的参数来改变函数图像在坐标平面上的形状和大小。
对于正弦函数sin(x)而言,伸缩变换可以通过改变函数参数中的振幅A和频率k来实现。
具体来说,通过改变振幅A,可以改变函数图像的纵向拉伸或压缩;而通过改变频率k,可以改变函数图像的横向拉伸或压缩。
例如,在图像处理中,常常需要将函数图像沿x轴或y轴方向进行拉伸或压缩。
可以通过调整三角函数的振幅A和频率k来实现。
如果需要将函数y = sin(x)在x轴方向上拉伸为原来的两倍,可以通过改变函数参数为y = sin(2x)来实现。
同样地,如果需要将函数y = cos(x)在y 轴方向上压缩为原来的一半,可以通过改变函数参数为y = 0.5*cos(x)来实现。
三、翻折变换翻折变换是指通过改变三角函数的参数来改变函数图像在坐标平面上的对称性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数变换的方法与技巧 1一、角的变换在三角函数的求值、化简与证明题中,表达式往往出现较多的相异角,此时可根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解。
常见角的变换方式有:ββαα-+=)(;)()(2βαβαα-++=;αβαβα+-=-)(2;22αα=等等。
例1、已知1),tan()tan(-≠-=+n n βαβα,求证:112sin 2sin +-=n n αβ。
分析:在条件中的角βα+和 βα-与求证结论中的角βα2,2是有联系的,可以考虑配凑角。
解: )()(2βαβαβ--+=,)()(2βαβαα-++=, ∴)]()sin[()]()sin[(2sin 2sin βαβαβαβααβ-++--+=)sin()cos()cos()sin()sin()cos()cos()sin(βαβαβαβαβαβαβαβα-++-+-+--+=)tan()tan()tan()tan(βαβαβαβα-++--+=11)tan()tan()tan()tan(+-=-+----=n n n n βαβαβαβα二、函数名称的变换三角函数变换的目的在于“消除差异,化异为同”。
而题目中经常出现不同名的三角函数,这就需要将异名的三角函数化为同名的三角函数。
变换的依据是同角三角函数关系式或诱导公式。
如把正(余)切、正(余)割化为正、余弦,或化为正切、余切、正割、余割等等。
常见的就是切割化弦。
例2 、(2001年上海春季高题)已知k =++αααtan 12sin sin22)24(παπ<<,试用k 表示ααcos sin -的值。
分析:将已知条件“切化弦”转化为ααcos ,sin 的等式。
解:由已知k ==++=++ααααααααααcos sin 2cos sin 1)cos (sin sin 2tan 12sin sin22;24παπ<<ααc o s s i n >∴∴ααcos sin -k -=-=-=1cos sin 21)cos (sin 2αααα。
三、常数的变换在三角函数的、求值、证明中,有时需要将常数转化为三角函数,例如常数“1”的变换有:αααααα222222c o t c s c t a n s e c c o s s i n 1-==+=,045sin 90sin 1==,ααααsin csc 1,cos sec 1=⋅=等等。
例3、(2004年全国高考题)求函数xxx x x x f 2sin 2cossincossin)(2244-++=的最小正周期,最大值和最小值。
分析:由所给的式子x x x x 2244cossincossin++可联想到222)cos(sin1x x +=。
解:xxx x x x f 2sin 2cossincos sin)(2244-++=)cos sin 1(2cossin122x x xx --=212sin 41+=x 。
所以函数)(x f 的最小正周期是π,最大值为43,最小值为41。
四、公式的变形与逆用在进行三角变换时,我们经常顺用公式,但有时也需要逆用公式,以达到化简的目的。
通常顺用公式容易,逆用公式困难,因此要有逆用公式的意识。
教材中仅给出每一个三角公式的基本形式,如果我们熟悉其它变通形式,常可以开拓解题思路。
如由αααc o s s i n 22s i n =可以变通为αααsin 2sin cos =与αααsin 2sin cos =;由αααc o s si n ta n =可变形为αααcos tan sin =等等。
例4、求212cos412csc )312tan 3(020--的值。
分析:先看角,都是012,再看函数名,需要切割化弦,最后在化简过程中再看变换。
解:原式212cos 4121312cos 12sin 30000-⋅⎪⎪⎭⎫ ⎝⎛-=(切割化弦))112cos 2(12cos 12sin 212cos 312sin 30200--=24cos 24sin )12cos 2312sin 21(32-=(逆用二倍角公式)24cos 24sin )60sin 12cos 60cos 12(sin 32-=(常数变换)24cos 24sin 2)6012sin(34-=(逆用差角公式)3448sin )48sin(340-=-(逆用二倍角公式)。
这里我们给出了四种三角函数的变换方法与技巧,在处理三角函数问题的过程中若能注意到这些变换的方法与技巧,将有利于我们对三角函数这一章内容的理解。
三角函数变换的方法与技巧(2)在上一部分我们介绍了部分三角函数的娈换技巧与方法,下面我们再介绍四种变换的方法与技巧:五、引入辅助角x b x a cos sin +可化为)sin(22ϕ++x ba,这里辅助角ϕ所在的象限由b a ,的符号确定,ϕ角的值由ab =ϕtan 确定。
例5、求7cos 30sin 202sin 6cos52+-+-=x x x x y 的最大值与最小值。
分析:求三角函数的最值问题的方法:一是将三角函数化为同名函数,借助三角函数的有界性求出;二是若不能化为同名,则应考虑引入辅助角。
解:3cos 30sin 20)sin4cos sin 12cos9(22+-++-=x x x x x x y3)c o s 3s i n 2(10)sin 2cos 3(2+-+-=x x x x 22)5sin 2cos 3(2-+-=x x 22)5cos 3sin 2(2-+-=x x 22]5)sin(13[2-+-=ϕx 其中,23tan =ϕ,当1)sin(=-ϕx 时,13101622)513(2max +=-+=y ; 当1)sin(-=-ϕx 时,13101622)513(2min -=-+-=y 。
注:在求三角函数的最值时,经常引入辅助角,然后利用三角函数的有界性求解。
六、幂的变换降幂是三角变换时常用的方法,对于次数较高的三角函数式,一般采用降幂处理的方法。
常用的降幂公式有:22cos 1sin 2αα-=,22cos 1cos 2αα+=和αα22cos sin 1+=αααα2222cot csc tan sec-==等等。
降幂并非绝对,有时也需要升幂,如对于无理式αcos 1+常用升幂化为有理式。
例6、化简βαβαβα2cos 2cos 21coscossinsin 2222-+。
分析:从“幂”入手,利用降幂公式。
解:原式βαβαβα2cos 2cos 21)2cos 1)(2cos 1(41)2cos 1)(2cos 1(41-+++--=)2cos 2cos 2cos 2cos 1(41)2cos 2cos 2cos 2cos 1(41βαβαβαβα+++++--=βα2cos 2cos 21-212cos 2cos 21)2cos 2cos 1(21=-+=βαβα七、消元法如果所要证明或要求解的式子中不含已知条件中的某些变量,可以使用消元法消去此变量,然后再求解。
例7、求函数xx y cos 2sin 2--=的最值。
解:原函数可变形为:y x y x 22cos sin -=-,即2122)sin(yy x +-=-ϕ,1|)sin(|≤-ϕx 11222≤+-∴yy解得:374max +=y ,374min -=y 。
八、变换结构在三角变换中,常常对条件、结论的结构施行调整,或重新分组,或移项,或变乘为除,或求差等等。
在形式上有时须和差与积互化,分解因式,配方等。
例8、化简xx x x cos sin 1cos sin 1++-+。
分析:本题从“形式”上看,应把分析式化为整式、故分子分母必有公因式,只需把分子分母化成积的形式。
解:2cos2sin22sin2sin cos 1cos sin 12x x x x x x x +=+-=-+)2cos2(sin 2sin 2x x x +=2cos 2sin 22cos2sin cos 1cos sin 12x x x x x x x +=++=++)2cos 2(sin 2cos 2x x x +=所以xx x x cos sin 1cos sin 1++-+2tan x =。
九、思路变化对于一道题,思路不同,方法出随之不同。
通过分析,比较,才能选出思路最为简例9、求函数xx y cos 2sin +=)0(π<<x 的最大值。
解:由于xx y cos 2sin +=)2(cos 0sin ---=x x ,则y 为点)sin ,(cos x x 与点(0,2-)连线的斜此时,33max =y )32(时π=x 。
捷的方法。