用比例解决问题练习题
用比例解决问题练习题
用比例解决问题练习题
1. 小红使用电脑打字;3分钟打了400个字;照这样计算;打1200个字需要多少分钟
2. 一列火车经过一座大桥;以每秒3米的速度240秒可以完全通过;如果要在180秒内通过;速度应该是多少
3. 某制衣有限公司用一批布做服装;如果每套服装用布2米;可以做360套;如果每套服装用布节约0.2米;现在可以做多少套
4. 一种合金内铜和锌的比是2:3;现在有6克锌;必须用多少铜才能配制成符合要求的合金
5. 读一本书;每天读30页;20天可以读完;如果每天多读10页;多少天可以读完
6.生产一批课桌;每天加工20套;44天可以完成;如果工作效率提高10%;可以提前多少天完成
7.将19/55的分子、分母同时加上一个相同的数;所得到的新分数约分后是52;求分子和分母各加上多少
8.中国古代的“黑火药”配制中硝酸钾、硫磺、木炭的比例为15:2:3;今有木炭50千克;要配制“黑火药”1000千克;还需要木炭多少千克
9.某厂女工人数与全厂人数的比是3:4;若男、女工人各增加60人;这时女工与全厂人数的比是2:3;原来全厂共有多少人
10.A、B两个仓库储存粮食重量的比是8:7;如果从A仓库运走1/4;B仓库运进8吨;则B仓库的存粮比A仓库多17吨;A仓库存粮多少吨
11.甲、乙两人二月份存钱比是3:4;三月份甲又存钱300元;乙又存钱500元;这时两人存钱比是5:7;甲、乙二月份各存多少钱。
比例练习题及答案
比例练习题及答案在数学学科中,比例是一个重要的概念,经常用于解决实际问题。
本文将带您进行一些比例练习题,并附上详细的答案解析。
练习题一:某比例尺为1:2000的地图上,两个城市的实际距离为35公里。
请问在该地图上,这两个城市之间的距离是多少毫米?解析:比例尺表示地图上的1单位对应于实际距离的多少单位。
根据比例尺1:2000,1毫米对应2000米。
通过单位转换,35公里可以转换为35000米,所以在地图上的距离为35000 ÷ 2000 = 17.5毫米。
练习题二:甲队和乙队比赛,比分为3:4。
已知甲队得到了27分,求乙队得到的分数是多少?解析:根据比例关系,甲队的得分与乙队的得分之间的比例为3:4。
设乙队得分为x,则甲队得分为27,所以有3:4 = 27:x。
通过求解比例关系,可以得到x = 36,因此乙队得到的分数为36分。
练习题三:一根长为2.4米的绳子需要切成8段,每段的长度都相等。
请问每段绳子的长度是多少厘米?解析:根据题目条件,将绳子切成8段,每段长度相等,设每段长度为x,则有2.4米 = 240厘米 = 8x。
通过求解方程可以得到x = 30,因此每段绳子的长度为30厘米。
练习题四:某工厂中,甲班和乙班的男女比例分别是5:4和7:5。
如果甲班男生有45人,求乙班的男生人数。
解析:根据题目条件,甲班的男女比例为5:4,乙班的男女比例为7:5。
已知甲班男生有45人,设乙班男生为x人,则有5:4 = 45:x。
通过求解比例关系,可以得到x = 36,因此乙班的男生人数为36人。
练习题五:某材料由甲、乙、丙三种成分组成,甲的质量占总质量的30%,乙的质量占总质量的45%,丙的质量占总质量的25%。
如果总质量为400克,求甲、乙、丙三种成分各自的质量。
解析:根据题目条件,甲的质量占总质量的30%,乙的质量占总质量的45%,丙的质量占总质量的25%。
已知总质量为400克,设甲、乙、丙的质量分别为x、y、z克,所以有30:45:25 = x:y:z。
用比例解决问题的练习题
用比例解决问题的练习题1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?2、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?3、一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?4、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?5、某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?6、一个人骑自行车3小时行36千米,从家到达目的地共有48千米。
需要几小时?7、用火车运一批钢材,28节车厢共运840吨,照这样计算,50节车厢可运钢材多少吨?8、一台拖拉机4小时耕地480公亩,照这样计算,12小时可耕地多少公亩?9、一个装订小组要装2640本书,3小时装订240本,照这样计算,剩下的要多少小时才能装完?10、5辆大卡车共运沙土125吨,现有400吨沙土,需增加多少辆同样的大卡车?11、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?12、同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行?13、飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4小时的路程,汽车要行多少小时?14、修一条公路,每天修0.5千米,36天完成。
如果每天修0.6千米,多少天可修完?15、一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?16、一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?17、生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?18、.小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?19、小明买了4枝圆珠笔用了6元。
小刚想买3枝同样的圆珠笔,要用多少钱?20、学校小商店有两种圆珠笔。
用比例解决问题经典习题.带答案
用比例解决问题经典习题.带答案用比例解决问题1、张大妈家上个月用了8吨水,水费是元。
李奶奶家用了10吨水,李奶奶家的水费是多少钱2、有一批书,这批书如果每包20本,要捆18包。
如果每包30本,要捆多少包3、一根木料,锯3段需要9分钟,如果锯6段,需要多少分钟4、一辆汽车2小时行了140km,照这样的速度,甲地到乙地的距离是400km,需要行驶多少小时5、“万达”修路队修筑一条公路,原计划每天修400m,15天可以修完。
结果12天就完成了任务,实际每天修多少米6、学校用同样的方砖铺地,铺5㎡需要方砖120块,照这样计算,再铺32㎡,一共需要这种方砖多少块7、发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了多少天8、装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺地,需要多少块需要X块5*5:4*4=X:8016X=2000X=2000/16X=125需要125块9、制作一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4:3,那么乙单独完成要多长时间已知甲单独完成需要8小时,可以设甲的效率为每小时完成1/8批零件。
甲乙效率比4:3,。
设乙的效率为x。
则(1/8):x=4:3可求得x=(1/8)*3/4=3/32则乙单独工作需要时间为 32/3小时也就是10小时40分钟10、王明在100m赛跑冲到终点时领先李明10m,领先王亮15m。
如果李明和王亮按原来的速度继续冲向终点,那么当李明到达终点时,王亮还差多少米到达终点(100-10):(100-15)=100:x90x=8500x=850/9100-850/9=50/911、一辆汽车和一辆摩托车同时从A、B两地相对开出,相遇后两车继续向前行驶。
当摩托车到达A地、汽车到达B地后,两车立即返回,已知第二次相遇点距A地130km。
汽车和摩托车的速度比3:、B两地相距多少千米650km从汽车与摩托车的比是3:2开始汽车和摩托车第一次相遇到第二次相遇各行驶路程比也应该是3:2设全程距离为5x摩托车第二次行驶距离是:3x+130汽车第二次行驶距离是:第一次摩托车行驶距离与全程距离去掉130km的和也就是2x+5x-130=7x-130这样可以得到(7x-130):(3x+130)=3:2 x=150全程距离5x等于65012、明明家新购置了一套住房,装修时用方砖铺地,60块方砖铺地面18㎡。
比例的练习题
比例的练习题比例的练习题在数学中,比例是一种非常重要的概念。
它可以帮助我们理解和解决许多实际问题,例如商业交易、比较大小和计算比率等。
在本文中,我们将通过一些练习题来巩固对比例的理解和运用。
练习题一:购物比例小明去商店购买水果,他买了3个苹果和5个橙子,共花费18元。
如果苹果和橙子的价格相同,那么一个苹果和一个橙子各自的价格是多少?解答:设苹果和橙子的价格分别为x元。
根据题意,我们可以列出比例关系式:3/x = 5/x = 18/8。
通过求解这个比例关系式,我们可以得到x = 2。
因此,一个苹果和一个橙子各自的价格都是2元。
练习题二:速度比例甲乙两辆车同时从同一地点出发,甲车以每小时60公里的速度向东行驶,乙车以每小时50公里的速度向南行驶。
如果两辆车行驶了4小时后,它们之间的距离是多少?解答:设两辆车之间的距离为d公里。
根据题意,我们可以列出比例关系式:60/50 = d/4。
通过求解这个比例关系式,我们可以得到d = 4.8。
因此,两辆车行驶了4小时后,它们之间的距离是4.8公里。
练习题三:缩小比例一张长方形画纸的长是30厘米,宽是20厘米。
如果将这张画纸的长和宽都缩小为原来的1/3,那么缩小后的长和宽分别是多少?解答:设缩小后的长为x厘米,宽为y厘米。
根据题意,我们可以列出比例关系式:x/30 = y/20 = 1/3。
通过求解这个比例关系式,我们可以得到x = 10,y= 6.67。
因此,缩小后的长是10厘米,宽是6.67厘米。
练习题四:扩大比例一幅矩形画作的长是60厘米,宽是40厘米。
如果将这幅画作的长和宽都扩大为原来的1.5倍,那么扩大后的长和宽分别是多少?解答:设扩大后的长为x厘米,宽为y厘米。
根据题意,我们可以列出比例关系式:x/60 = y/40 = 1.5。
通过求解这个比例关系式,我们可以得到x = 90,y= 60。
因此,扩大后的长是90厘米,宽是60厘米。
通过以上的练习题,我们可以看到比例在解决实际问题中的重要性。
解比例计算题100道
解比例计算题100道
1、一千篇文章中有五百篇关于体育,求体育文章占比?
答案:50%
2、一块饼分成了八份,一份有四分之一,另一份有三分之一,求其他六份的比例?
答案:比例为1:1:1:1:1:1,每份占1/8
3、数字8和12的比例是多少?
答案:8:12,比例为2:3
4、一箱子共有20个苹果,已知有8个红苹果和12个青苹果,求红苹果和青苹果的比例?
答案:8:12,比例为2:3
5、一堆石子有100块,已知有35块大石头,求大石头的比例?
答案:35:100,比例为35%。
6、一堆钱有1000元,经分析得知有450元是硬币,求硬币的比例?
答案:450:1000,比例为45%。
7、数字16和24的比例是多少?
答案:16:24,比例为2:3
8、一根棍子长25厘米,其中有8厘米是绿色,求绿色棍子占比?
答案:8:25,比例为32%。
9、一箱子共有50个苹果,已知有25个红苹果和25个青苹果,求红苹果和青苹果的比例?
答案:25:25,比例为1:1,每种占50%。
10、一堆绿豆有100颗,已知有20颗是大绿豆,求大绿豆的比例?
答案:20:100,比例为20%。
六年级数学下册 《用比例解决问题》练习题
1.小亮半小时能打900个字,照这样的速度,往电脑里输入一篇1500字的文章,小亮需要多长时间?解:设小亮需要x分钟。
半小时=30分1500:x=900:30900x=1500×30x=50答:小亮需要50分钟。
2.某女裤工厂计划生产6500条女裤,3天已经生产了1500条,按照这样的工作效率,剩下的女裤还需要多少天能生产完?解:设剩下的女裤还需要x天能生产完。
6500-1500=5000(条)5000:x=1500:31500x=5000×3x=10答:剩下的女裤还需要10天能生产完。
3.100千克黄豆可以榨豆油13千克,按照这样的出油率,要榨豆油6.5吨,需黄豆多少吨?解:设需黄豆x吨。
100:13=x:6.513x=100×6.5x=50答:需黄豆50吨。
4.小明在100m短跑到达终点时领先小刚10m,领先小华15m。
如果小刚和小华按原来的速度继续跑向终点,那么当小刚到达终点时,小华还差多少米到达终点?解:设当小刚到达终点时,小华还差x米到达终点100-10 100-15=100 100-x18 17=100100-xx=50 9答:当小刚到达终点时,小华还差509米到达终点。
5.一张照片长4厘米,宽3厘米,如果按4∶1的比把这张照片放大,放大后照片的长、宽分别是多少厘米?如果要使放大后照片的宽是9厘米,那么放大后照片的长应是多少厘米?4×4=16(厘米)3×4=12(厘米)解:设放大后照片的长是x厘米4∶3=x∶93x=4×93x=363x÷3=36÷3x=12答:放大后照片的长是16厘米,宽是12厘米。
如果要使放大后照片的宽是9厘米,那么放大后照片的长应是12厘米。
6.客车和货车同时从甲,乙两地相向开出,客车每小时行全程的1 4,货车每小时行60千米,相遇时客车和货车所行路程的比是3∶2。
甲、乙两地相距多少?由分析可得:两车的速度比是3 2客车的速度是:60×32=90(千米/时)甲、乙两地相距:90÷14=360(千米)答:甲、乙两地相距360千米。
小学数学解比例问题练习题
小学数学解比例问题练习题解比例问题是小学数学中重要的内容之一,下面是一组关于解比例问题的练习题,希望对学生们的学习有所帮助。
一、填空题1. 若甲队需要 9 天完成一项工作,乙队需要 6 天完成相同的工作,那么乙队比甲队每天多完成的工作量是 ______。
2. 一桶苹果汁由苹果浓缩液与水按比例混合而成,若苹果浓缩液有3 升,水有 2 升,则这桶苹果汁一共有 ______ 升。
3. 一条铁链长 5 米,现将其分成相等的若干段,每段长 0.2 米,共分成了 ______ 段。
4. 一种饲料中混合了大米和小麦,其中大米和小麦的比例为 5:3。
若混合饲料共有 24 千克,其中大米的重量占 ______ 千克。
5. 某种酒精溶液中,酒精和水的比例是 7:3。
若有 100 毫升的这种溶液,其中酒精的体积占 ______ 毫升。
二、计算题1. 甲乙两队比赛,甲队的男生有 15 人,女生有 10 人。
乙队的男生有 18 人,女生有 12 人。
那么甲队男女生人数的比和乙队男女生人数的比相等吗?2. 三个苹果树分别需要 18 天、15 天和 30 天才能结出果实。
如果这三棵树同时开始结果,那么它们几天后能同时结出果实?3. 学校食堂做的冰激凌,酸奶和布丁的售价比为 4:3:2。
如果一份酸奶的价格为 8 元,那么一份冰激凌的价格是多少?4. 某电影院有 480 个座位,根据统计,男性观众与女性观众的比例为 4:3,男性观众的人数占全部观众人数的几分之几?5. 书店陈列了一堆书,其中语文书、数学书和英语书的比例为 2:3:4,如果数学书有 30 本,那么一共陈列了几本书?三、解决问题1. 小明去水果市场买苹果,商贩告诉他,这一籃苹果中,新鲜苹果和烂苹果的比例为3:1,如果小明打开籃子,发现有12 个苹果是烂的,那么苹果籃中共有几个苹果?2. 一艘河轮从 A 地到 B 地需要 3 小时,从 B 地继续到 C 地又需要2 小时,而且两段航程的速度是一样的。
小学数学比例应用题100道及答案(完整版)
小学数学比例应用题100道及答案(完整版)1. 小明用10 元钱买了5 个本子,照这样计算,16 元可以买几个本子?答案:8 个解析:先算出每个本子的价格10÷5 = 2 元,16÷2 = 8 个2. 工厂生产一种零件,3 小时生产了180 个,照这样计算,8 小时可以生产多少个?答案:480 个解析:每小时生产180÷3 = 60 个,8 小时生产60×8 = 480 个3. 一辆汽车5 小时行驶250 千米,照这样的速度,7 小时行驶多少千米?答案:350 千米解析:速度为250÷5 = 50 千米/时,7 小时行驶50×7 = 350 千米4. 4 头牛5 天吃草800 千克,照这样计算,7 头牛8 天吃草多少千克?答案:2240 千克解析:1 头牛1 天吃草800÷4÷5 = 40 千克,7 头牛8 天吃草40×7×8 = 2240 千克5. 用20 千克花生可以榨油8 千克,照这样计算,100 千克花生可以榨油多少千克?答案:40 千克解析:出油率为8÷20 = 0.4,100×0.4 = 40 千克6. 某工厂8 个工人6 天加工零件720 个,照这样计算,12 个工人15 天可以加工零件多少个?答案:2700 个解析:1 个工人1 天加工720÷8÷6 = 15 个,12 个工人15 天加工15×12×15 = 2700 个7. 5 台织布机8 小时织布480 米,照这样计算,7 台织布机12 小时织布多少米?答案:1008 米解析:1 台织布机1 小时织布480÷5÷8 = 12 米,7 台织布机12 小时织布12×7×12 = 1008 米8. 修一条路,3 人5 天可以修150 米,照这样计算,8 人10 天可以修多少米?答案:800 米解析:1 人1 天修150÷3÷5 = 10 米,8 人10 天修10×8×10 = 800 米9. 10 辆汽车12 次运货物600 吨,照这样计算,20 辆汽车15 次可以运货物多少吨?答案:1500 吨解析:1 辆汽车1 次运600÷10÷12 = 5 吨,20 辆汽车15 次运5×20×15 = 1500 吨10. 学校用同样的方砖铺地,铺5 平方米需要方砖120 块,照这样计算,铺30 平方米需要方砖多少块?答案:720 块解析:1 平方米需要120÷5 = 24 块,30 平方米需要24×30 = 720 块11. 小明2 分钟走120 米,照这样的速度,他从家到学校走了8 分钟,他家到学校有多远?答案:480 米解析:速度为120÷2 = 60 米/分钟,8 分钟走60×8 = 480 米12. 工人师傅4 小时加工零件160 个,照这样计算,7 小时加工零件多少个?答案:280 个解析:每小时加工160÷4 = 40 个,7 小时加工40×7 = 280 个13. 6 台收割机8 天收割小麦240 公顷,照这样计算,10 台收割机12 天收割小麦多少公顷?答案:600 公顷解析:1 台收割机1 天收割240÷6÷8 = 5 公顷,10 台收割机12 天收割5×10×12 = 600 公顷14. 某服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套15. 15 头牛4 天吃草180 千克,照这样计算,8 头牛6 天吃草多少千克?答案:576 千克解析:1 头牛1 天吃草180÷15÷4 = 3 千克,8 头牛 6 天吃草3×8×6 = 144 千克16. 5 个工人6 小时加工零件300 个,照这样计算,8 个工人10 小时加工零件多少个?答案:480 个解析:1 个工人1 小时加工300÷5÷6 = 10 个,8 个工人10 小时加工10×8×10 = 800 个17. 一辆汽车3 小时行驶180 千米,照这样的速度,5 小时行驶多少千米?答案:300 千米解析:速度为180÷3 = 60 千米/时,5 小时行驶60×5 = 300 千米18. 用100 千克大豆可以榨油16 千克,照这样计算,400 千克大豆可以榨油多少千克?答案:64 千克解析:出油率为16÷100 = 0.16,400×0.16 = 64 千克19. 修一条路,5 人7 天可以修350 米,照这样计算,10 人14 天可以修多少米?答案:1400 米解析:1 人1 天修350÷5÷7 = 10 米,10 人14 天修10×10×14 = 1400 米20. 3 台抽水机4 小时抽水240 立方米,照这样计算,5 台抽水机6 小时抽水多少立方米?答案:600 立方米解析:1 台抽水机1 小时抽水240÷3÷4 = 20 立方米,5 台抽水机6 小时抽水20×5×6 = 600 立方米21. 某工厂6 个工人5 天生产零件900 个,照这样计算,15 个工人8 天可以生产零件多少个?答案:3600 个解析:1 个工人1 天生产900÷6÷5 = 30 个,15 个工人8 天生产30×15×8 = 3600 个22. 8 台印刷机10 小时印刷纸张48000 张,照这样计算,12 台印刷机15 小时印刷纸张多少张?答案:108000 张解析:1 台印刷机1 小时印刷48000÷8÷10 = 600 张,12 台印刷机15 小时印刷600×12×15 = 108000 张23. 5 辆汽车7 次运煤140 吨,照这样计算,8 辆汽车10 次运煤多少吨?答案:320 吨解析:1 辆汽车1 次运煤140÷5÷7 = 4 吨,8 辆汽车10 次运煤4×8×10 = 320 吨24. 服装厂2 天生产服装120 套,照这样计算,6 天可以生产服装多少套?答案:360 套解析:每天生产120÷2 = 60 套,6 天生产60×6 = 360 套25. 12 头牛5 天吃草300 千克,照这样计算,18 头牛8 天吃草多少千克?答案:864 千克解析:1 头牛1 天吃草300÷12÷5 = 5 千克,18 头牛8 天吃草5×18×8 = 720 千克26. 4 个工人3 小时加工零件120 个,照这样计算,7 个工人8 小时加工零件多少个?答案:560 个解析:1 个工人1 小时加工120÷4÷3 = 10 个,7 个工人8 小时加工10×7×8 = 560 个27. 一辆汽车4 小时行驶280 千米,照这样的速度,7 小时行驶多少千米?答案:490 千米解析:速度为280÷4 = 70 千米/时,7 小时行驶70×7 = 490 千米28. 用80 千克花生可以榨油32 千克,照这样计算,200 千克花生可以榨油多少千克?答案:80 千克解析:出油率为32÷80 = 0.4,200×0.4 = 80 千克29. 修一条路,4 人6 天可以修240 米,照这样计算,6 人9 天可以修多少米?答案:540 米解析:1 人1 天修240÷4÷6 = 10 米,6 人9 天修10×6×9 = 540 米30. 5 台拖拉机6 小时耕地150 亩,照这样计算,8 台拖拉机9 小时耕地多少亩?答案:216 亩解析:1 台拖拉机1 小时耕地150÷5÷6 = 5 亩,8 台拖拉机9 小时耕地5×8×9 = 360 亩31. 某工厂10 个工人8 天生产零件800 个,照这样计算,15 个工人12 天可以生产零件多少个?答案:1800 个解析:1 个工人1 天生产800÷10÷8 = 10 个,15 个工人12 天生产10×15×12 = 1800 个32. 6 台磨面机7 小时磨面粉2520 千克,照这样计算,9 台磨面机10 小时磨面粉多少千克?答案:3600 千克解析:1 台磨面机1 小时磨面粉2520÷6÷7 = 60 千克,9 台磨面机10 小时磨面粉60×9×10 = 5400 千克33. 4 辆卡车5 次运货物160 吨,照这样计算,7 辆卡车8 次运货物多少吨?答案:448 吨解析:1 辆卡车1 次运货物160÷4÷5 = 8 吨,7 辆卡车8 次运货物8×7×8 = 448 吨34. 服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套35. 18 头牛6 天吃草540 千克,照这样计算,12 头牛8 天吃草多少千克?答案:480 千克解析:1 头牛1 天吃草540÷18÷6 = 5 千克,12 头牛8 天吃草5×12×8 = 480 千克36. 5 个工人8 小时加工零件400 个,照这样计算,7 个工人12 小时加工零件多少个?答案:840 个解析:1 个工人1 小时加工400÷5÷8 = 10 个,7 个工人12 小时加工10×7×12 = 840 个37. 一辆汽车6 小时行驶360 千米,照这样的速度,8 小时行驶多少千米?答案:480 千米解析:速度为360÷6 = 60 千米/时,8 小时行驶60×8 = 480 千米38. 用120 千克大豆可以榨油24 千克,照这样计算,300 千克大豆可以榨油多少千克?答案:60 千克解析:出油率为24÷120 = 0.2,300×0.2 = 60 千克39. 修一条路,6 人8 天可以修480 米,照这样计算,9 人12 天可以修多少米?答案:864 米解析:1 人1 天修480÷6÷8 = 10 米,9 人12 天修10×9×12 = 1080 米40. 7 台织布机9 小时织布630 米,照这样计算,10 台织布机12 小时织布多少米?答案:960 米解析:1 台织布机1 小时织布630÷7÷9 = 10 米,10 台织布机12 小时织布10×10×12 = 1200 米41. 某工厂12 个工人10 天生产零件1200 个,照这样计算,18 个工人15 天可以生产零件多少个?答案:2700 个解析:1 个工人 1 天生产1200÷12÷10 = 10 个,18 个工人15 天生产10×18×15 = 2700 个42. 8 台收割机9 天收割小麦360 公顷,照这样计算,12 台收割机15 天收割小麦多少公顷?答案:900 公顷解析:1 台收割机1 天收割360÷8÷9 = 5 公顷,12 台收割机15 天收割5×12×15 = 900 公顷43. 5 辆汽车6 次运货物150 吨,照这样计算,8 辆汽车10 次运货物多少吨?答案:400 吨解析:1 辆汽车1 次运货物150÷5÷6 = 5 吨,8 辆汽车10 次运货物5×8×10 = 400 吨44. 服装厂4 天生产服装240 套,照这样计算,12 天可以生产服装多少套?答案:720 套解析:每天生产240÷4 = 60 套,12 天生产60×12 = 720 套45. 20 头牛7 天吃草700 千克,照这样计算,15 头牛10 天吃草多少千克?答案:750 千克解析:1 头牛1 天吃草700÷20÷7 = 5 千克,15 头牛10 天吃草5×15×10 = 750 千克46. 6 个工人7 小时加工零件210 个,照这样计算,9 个工人14 小时加工零件多少个?答案:630 个解析:1 个工人1 小时加工210÷6÷7 = 5 个,9 个工人14 小时加工5×9×14 = 630 个47. 一辆汽车5 小时行驶250 千米,照这样的速度,9 小时行驶多少千米?答案:450 千米解析:速度为250÷5 = 50 千米/时,9 小时行驶50×9 = 450 千米48. 用150 千克花生可以榨油60 千克,照这样计算,350 千克花生可以榨油多少千克?答案:140 千克解析:出油率为60÷150 = 0.4,350×0.4 = 140 千克49. 修一条路,7 人9 天可以修630 米,照这样计算,10 人18 天可以修多少米?答案:1800 米解析:1 人1 天修630÷7÷9 = 10 米,10 人18 天修10×10×18 = 1800 米50. 8 台拖拉机7 小时耕地280 亩,照这样计算,12 台拖拉机10 小时耕地多少亩?答案:600 亩解析:1 台拖拉机1 小时耕地280÷8÷7 = 5 亩,12 台拖拉机10 小时耕地5×12×10 = 600 亩51. 某工厂15 个工人12 天生产零件1800 个,照这样计算,20 个工人18 天可以生产零件多少个?答案:5400 个解析:1 个工人 1 天生产1800÷15÷12 = 10 个,20 个工人18 天生产10×20×18 = 3600 个52. 9 台印刷机11 小时印刷纸张49500 张,照这样计算,15 台印刷机16 小时印刷纸张多少张?答案:120000 张解析:1 台印刷机1 小时印刷49500÷9÷11 = 500 张,15 台印刷机16 小时印刷500×15×16 = 120000 张53. 7 辆汽车8 次运煤224 吨,照这样计算,10 辆汽车12 次运煤多少吨?答案:480 吨解析:1 辆汽车1 次运煤224÷7÷8 = 4 吨,10 辆汽车12 次运煤4×10×12 = 480 吨54. 服装厂5 天生产服装300 套,照这样计算,15 天可以生产服装多少套?答案:900 套解析:每天生产300÷5 = 60 套,15 天生产60×15 = 900 套55. 25 头牛8 天吃草1000 千克,照这样计算,18 头牛12 天吃草多少千克?答案:864 千克解析:1 头牛 1 天吃草1000÷25÷8 = 5 千克,18 头牛12 天吃草5×18×12 = 1080 千克56. 8 个工人9 小时加工零件360 个,照这样计算,12 个工人15 小时加工零件多少个?答案:900 个解析:1 个工人1 小时加工360÷8÷9 = 5 个,12 个工人15 小时加工5×12×15 = 900 个57. 一辆汽车7 小时行驶420 千米,照这样的速度,10 小时行驶多少千米?答案:600 千米解析:速度为420÷7 = 60 千米/时,10 小时行驶60×10 = 600 千米58. 用200 千克大豆可以榨油80 千克,照这样计算,450 千克大豆可以榨油多少千克?答案:180 千克解析:出油率为80÷200 = 0.4,450×0.4 = 180 千克59. 修一条路,9 人11 天可以修990 米,照这样计算,12 人20 天可以修多少米?答案:2400 米解析:1 人1 天修990÷9÷11 = 10 米,12 人20 天修10×12×20 = 2400 米60. 10 台收割机12 小时收割小麦600 公顷,照这样计算,15 台收割机18 小时收割小麦多少公顷?答案:1350 公顷解析:1 台收割机1 小时收割600÷10÷12 = 5 公顷,15 台收割机18 小时收割5×15×18 = 1350 公顷61. 某工厂18 个工人14 天生产零件2520 个,照这样计算,24 个工人21 天可以生产零件多少个?答案:6048 个解析:1 个工人 1 天生产2520÷18÷14 = 10 个,24 个工人21 天生产10×24×21 = 5040 个62. 11 台磨面机13 小时磨面粉5720 千克,照这样计算,16 台磨面机18 小时磨面粉多少千克?答案:11520 千克解析:1 台磨面机1 小时磨面粉5720÷11÷13 = 40 千克,16 台磨面机18 小时磨面粉40×16×18 = 11520 千克63. 9 辆卡车10 次运货物450 吨,照这样计算,12 辆卡车15 次运货物多少吨?答案:900 吨解析:1 辆卡车1 次运货物450÷9÷10 = 5 吨,12 辆卡车15 次运货物5×12×15 = 900 吨64. 服装厂6 天生产服装360 套,照这样计算,18 天可以生产服装多少套?答案:1080 套解析:每天生产360÷6 = 60 套,18 天生产60×18 = 1080 套65. 30 头牛10 天吃草1200 千克,照这样计算,24 头牛15 天吃草多少千克?答案:1440 千克解析:1 头牛1 天吃草1200÷30÷10 = 4 千克,24 头牛15 天吃草4×24×15 = 1440 千克66. 10 个工人12 小时加工零件600 个,照这样计算,15 个工人20 小时加工零件多少个?答案:1500 个解析:1 个工人1 小时加工600÷10÷12 = 5 个,15 个工人20 小时加工5×15×20 = 1500 个67. 一辆汽车8 小时行驶480 千米,照这样的速度,12 小时行驶多少千米?答案:720 千米解析:速度为480÷8 = 60 千米/时,12 小时行驶60×12 = 720 千米68. 用250 千克花生可以榨油100 千克,照这样计算,550 千克花生可以榨油多少千克?答案:220 千克解析:出油率为100÷250 = 0.4,550×0.4 = 220 千克69. 修一条路,11 人13 天可以修715 米,照这样计算,14 人22 天可以修多少米?答案:1638 米解析:1 人1 天修715÷11÷13 = 5 米,14 人22 天修5×14×22 = 1540 米70. 12 台拖拉机14 小时耕地504 亩,照这样计算,18 台拖拉机20 小时耕地多少亩?答案:1080 亩解析:1 台拖拉机1 小时耕地504÷12÷14 = 3 亩,18 台拖拉机20 小时耕地3×18×20 = 1080 亩71. 某工厂20 个工人16 天生产零件3200 个,照这样计算,25 个工人24 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产3200÷20÷16 = 10 个,25 个工人24 天生产10×25×24 = 6000 个72. 13 台印刷机15 小时印刷纸张78000 张,照这样计算,18 台印刷机20 小时印刷纸张多少张?答案:144000 张解析:1 台印刷机1 小时印刷78000÷13÷15 = 400 张,18 台印刷机20 小时印刷400×18×20 = 144000 张73. 11 辆汽车12 次运煤396 吨,照这样计算,15 辆汽车18 次运煤多少吨?答案:810 吨解析:1 辆汽车1 次运煤396÷11÷12 = 3 吨,15 辆汽车18 次运煤3×15×18 = 810 吨74. 服装厂7 天生产服装420 套,照这样计算,21 天可以生产服装多少套?答案:1260 套解析:每天生产420÷7 = 60 套,21 天生产60×21 = 1260 套75. 35 头牛12 天吃草1680 千克,照这样计算,28 头牛16 天吃草多少千克?答案:1792 千克解析:1 头牛1 天吃草1680÷35÷12 = 4 千克,28 头牛16 天吃草4×28×16 = 1792 千克76. 12 个工人14 小时加工零件720 个,照这样计算,18 个工人21 小时加工零件多少个?解析:1 个工人1 小时加工720÷12÷14 = 5 个,18 个工人21 小时加工5×18×21 = 1890 个77. 一辆汽车9 小时行驶540 千米,照这样的速度,15 小时行驶多少千米?答案:900 千米解析:速度为540÷9 = 60 千米/时,15 小时行驶60×15 = 900 千米78. 用300 千克大豆可以榨油120 千克,照这样计算,650 千克大豆可以榨油多少千克?答案:260 千克解析:出油率为120÷300 = 0.4,650×0.4 = 260 千克79. 修一条路,13 人15 天可以修780 米,照这样计算,16 人25 天可以修多少米?答案:1600 米解析:1 人1 天修780÷13÷15 = 4 米,16 人25 天修4×16×25 = 1600 米80. 14 台收割机16 小时收割小麦896 公顷,照这样计算,20 台收割机24 小时收割小麦多少公顷?答案:1536 公顷解析:1 台收割机1 小时收割896÷14÷16 = 4 公顷,20 台收割机24 小时收割4×20×24 = 1920 公顷81. 某工厂22 个工人18 天生产零件3960 个,照这样计算,28 个工人27 天可以生产零件多少个?答案:9072 个解析:1 个工人 1 天生产3960÷22÷18 = 10 个,28 个工人27 天生产10×28×27 = 7560 个82. 15 台磨面机17 小时磨面粉8500 千克,照这样计算,20 台磨面机25 小时磨面粉多少千克?答案:12500 千克解析:1 台磨面机1 小时磨面粉8500÷15÷17 = 100/3 千克,20 台磨面机25 小时磨面粉100/3×20×25 = 50000/3 千克≈16666.67 千克83. 13 辆卡车14 次运货物588 吨,照这样计算,18 辆卡车21 次运货物多少吨?答案:1134 吨解析:1 辆卡车1 次运货物588÷13÷14 = 3 吨,18 辆卡车21 次运货物3×18×21 = 1134 吨84. 服装厂8 天生产服装480 套,照这样计算,24 天可以生产服装多少套?答案:1440 套解析:每天生产480÷8 = 60 套,24 天生产60×24 = 1440 套85. 40 头牛15 天吃草1800 千克,照这样计算,32 头牛20 天吃草多少千克?解析:1 头牛1 天吃草1800÷40÷15 = 3 千克,32 头牛20 天吃草3×32×20 = 1920 千克86. 14 个工人16 小时加工零件896 个,照这样计算,20 个工人24 小时加工零件多少个?答案:1920 个解析:1 个工人1 小时加工896÷14÷16 = 4 个,20 个工人24 小时加工4×20×24 = 1920 个87. 一辆汽车10 小时行驶600 千米,照这样的速度,18 小时行驶多少千米?答案:1080 千米解析:速度为600÷10 = 60 千米/时,18 小时行驶60×18 = 1080 千米88. 用350 千克花生可以榨油140 千克,照这样计算,750 千克花生可以榨油多少千克?答案:300 千克解析:出油率为140÷350 = 0.4,750×0.4 = 300 千克89. 修一条路,15 人18 天可以修900 米,照这样计算,18 人30 天可以修多少米?答案:1800 米解析:1 人1 天修900÷15÷18 = 10 / 3 米,18 人30 天修10 / 3×18×30 = 1800 米90. 16 台拖拉机18 小时耕地864 亩,照这样计算,24 台拖拉机27 小时耕地多少亩?答案:1944 亩解析:1 台拖拉机1 小时耕地864÷16÷18 = 3 亩,24 台拖拉机27 小时耕地3×24×27 = 1944 亩91. 某工厂25 个工人20 天生产零件5000 个,照这样计算,30 个工人30 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产5000÷25÷20 = 10 个,30 个工人30 天生产10×30×30 = 9000 个92. 17 台印刷机19 小时印刷纸张96900 张,照这样计算,22 台印刷机25 小时印刷纸张多少张?答案:165000 张解析:1 台印刷机1 小时印刷96900÷17÷19 = 300 张,22 台印刷机25 小时印刷300×22×25 = 165000 张93. 15 辆汽车16 次运煤600 吨,照这样计算,20 辆汽车24 次运煤多少吨?答案:1200 吨解析:1 辆汽车 1 次运煤600÷15÷16 = 2.5 吨,20 辆汽车24 次运煤 2.5×20×24 = 1200 吨94. 服装厂9 天生产服装540 套,照这样计算,27 天可以生产服装多少套?答案:1620 套解析:每天生产540÷9 = 60 套,27 天生产60×27 = 1620 套95. 45 头牛18 天吃草2160 千克,照这样计算,36 头牛24 天吃草多少千克?答案:2592 千克解析:1 头牛1 天吃草2160÷45÷18 = 8 / 3 千克,36 头牛24 天吃草8 / 3×36×24 = 2592 千克96. 16 个工人18 小时加工零件960 个,照这样计算,24 个工人27 小时加工零件多少个?答案:2592 个解析:1 个工人1 小时加工960÷16÷18 = 10 / 3 个,24 个工人27 小时加工10 / 3×24×27 = 2160 个97. 一辆汽车11 小时行驶660 千米,照这样的速度,16 小时行驶多少千米?答案:960 千米解析:速度为660÷11 = 60 千米/时,16 小时行驶60×16 = 960 千米98. 用400 千克花生可以榨油160 千克,照这样计算,850 千克花生可以榨油多少千克?答案:340 千克解析:出油率为160÷400 = 0.4,850×0.4 = 340 千克99. 修一条路,17 人21 天可以修1020 米,照这样计算,20 人35 天可以修多少米?答案:2000 米解析:1 人1 天修1020÷17÷21 = 10 / 3 米,20 人35 天修10 / 3×20×35 = 2000 米100. 18 台收割机20 小时收割小麦960 公顷,照这样计算,27 台收割机30 小时收割小麦多少公顷?答案:2160 公顷解析:1 台收割机1 小时收割960÷18÷20 = 8 / 3 公顷,27 台收割机30 小时收割8 / 3×27×30 = 2160 公顷。
解比例10道题
解比例10道题比例是数学中非常重要的概念,我们可以通过比例来求解物品之间的关系,了解不同物品之间的数量关系,从而更好地理解和解决数学问题。
下面,我将介绍10道比例题,帮助大家更好地掌握比例的应用。
1. 小明有5个苹果,小红有15个苹果,他们两个人共有多少个苹果?答:小明和小红共有20个苹果。
解析:小明与小红的比例是1比3,将15个苹果分成4份,每份有3个苹果,因此小明有3个苹果,小红有9个苹果,两个人共有12个苹果,再加上小明的5个苹果,总共有20个苹果。
2. 15个苹果和20个香蕉的比例是什么?答:苹果与香蕉的比例是3比4。
解析:将苹果和香蕉的数量同时除以5,可以得到它们的简化比例为3比4。
3. 20米的绳子分成4份,每份长多少米?答:每份绳子长度为5米。
解析:将20米的绳子平均分成4份,每份绳子长度为5米。
4. 甲、乙两人分别走了30公里和40公里的路程,它们的比例是什么?答:甲与乙的路程比例是3比4。
解析:将甲的路程和乙的路程同时除以10,可以得到它们的简化比例为3比4。
5. 一根长20厘米的线段,减去2厘米以后,与原线段的比例是多少?答:线段的比例是9比10。
解析:将线段的长度分别减去2厘米得到18厘米,将18厘米与20厘米同时除以2,可以得到它们的简化比例为9比10。
6. A、B两个瓶子的容量比是5比3,A瓶全部倒入B瓶后,B瓶容量的百分之多少被填满?答:B瓶容量被填满的百分比是62.5%。
解析:由题目知道,A瓶全部倒入B瓶后,B瓶的容量变成了8份,其中5份来自A瓶,将5和8分别乘以100,可以得到B瓶容量被填满的百分比为62.5%。
7. 10个人共花费600元,如果要平均分摊花费,每个人应该支付多少钱?答:每个人应支付60元。
解析:将600元花费平均分摊给10个人,每个人应支付60元。
8. 一个矩形的边长比是3比4,它的面积是60平方米,求矩形的长和宽。
答:矩形长为12米,宽为9米。
用比例解决问题
1、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?2、甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?3、在一幅地图上,用3厘米的线段表示实际距离600千米。
量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?4、运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?(用比例解)5、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是1 2厘米,高是8厘米,这块菜地的实际面积是多少公顷?6、修一条公路,原计划每天修360米,30天可以修完。
如果要提前5天修完,每天要修多少米?(用比例解)7、修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例解)8、修一条公路,总长12千米,开工3天修了1.5千米。
照这样计算,修完这条路还要多少天?(用比例解答)9、工厂有一批煤,计划每天烧2.4吨,42天可以烧完。
实际每天节约12. 5%,实际可以烧多少天?(比例解)10、解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)11、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?(用比例解)12、6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?(用比例方法解)13、用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?(用比例方法解)14、一种农药,药液与水重量的比是1:1000。
(1)20克药液要加水多少克?(2)在6000克水中,要加多少克药液?(3)现在要配制这种农药500.5千克,需要药液和水各多少千克?15、一种稻谷每1000千克能碾出大米720千克。
照这样计算,要得到180吨大米,需要稻谷多少吨?(用比例解)。
小学三年级简单比例练习题
小学三年级简单比例练习题
题目一:
小明每天骑自行车上学,他发现骑车上学需要30分钟,而走路上
学需要60分钟。
如果他想早点到学校,他应该骑车上学多久?
题目二:
小华每天放学后会花30分钟做作业,而小明每天只花15分钟做作业。
如果他们一起做作业,他们需要花多长时间?
题目三:
某商店正在进行打折促销活动,某商品原价是120元,现价是90
元。
如果小红买了一件商品,她需要支付多少钱?
题目四:
小明每天读书50页,小亮每天读书30页。
如果他们每天一起读书,他们一起读完一本200页的书需要多少天?
题目五:
某公交车每分钟能载客25人,而出租车每分钟能载客10人。
如果
某时刻两种交通工具都到了,载客人数最多能达到多少人?
题目六:
小红有2本书和4本报纸,小明有3本书和6本报纸。
他们一共有
多少本书和报纸?
题目七:
甲乙两个学校的学生比例是2:3。
如果甲校有150人,那么乙校有
多少人?
题目八:
甲校的学生人数是乙校学生人数的3倍,乙校学生人数是丙校学生
人数的2倍。
如果甲校有180人,那么丙校有多少人?
题目九:
某市有男性25万人,女性30万人。
如果想按比例平均分配,那么
每100个人中,男性和女性各有多少人?
题目十:
小明今年10岁,他的爸爸30岁。
那么爸爸与儿子的年龄比是多少?。
用比例解决问题 练习题
用比例解决问题练习题1.XXX打字的速度是400个字/3分钟,所以每分钟可以打400÷3个字。
要打1200个字,需要的时间是1200÷(400÷3)=9分钟。
2.火车通过大桥的速度是240秒/3米=80秒/米。
要在180秒内通过,需要的速度是180秒/3米=60秒/米。
所以火车的速度应该是60÷80=0.75米/秒。
3.每套服装用的布的长度是2米或1.8米。
用2米的布可以做360套,所以总共用了2×360=720米的布。
现在用的是1.8米的布,所以可以做720÷1.8=400套。
4.锌和铜的比是3:2,所以铜和锌的质量比是2:3.如果有6克锌,那么铜的质量是4克。
所以需要用4÷2×3=6克铜来配制合金。
5.每天读30页,20天可以读完,所以总共需要读的页数是30×20=600页。
如果每天多读10页,需要的天数是600÷40=15天。
6.每天加工的课桌数量是20,44天可以完成,所以总共需要加工的课桌数量是20×44=880个。
如果工作效率提高10%,每天加工的数量变成了22个,需要的天数是880÷22=40天,提前4天完成。
7.设加上的数为x,那么原来的分数是19/55,新的分数是(19+x)/(55+x)。
约分后得到(19+x)/5(11+x)=52/100.解方程得到x=3,所以分子和分母各加3.8.木炭的比例是3/20,现在需要1000千克,所以需要的木炭是1000×3/20=150千克。
已经有50千克,所以还需要100千克的木炭。
9.设原来女工人数为3x,全厂人数为4x。
增加60人后,女工人数变成3x+60,全厂人数变成4x+120.根据题意得到3x+60=2/3(4x+120),解方程得到x=60,所以原来全厂共有4x=240人。
10.A仓库和B仓库存储粮食的重量比是8:7,设A仓库存储的粮食重量为8x,B仓库存储的粮食重量为7x。
解比例练习题及答案
解比例练习题及答案【练习题1】题目:如果3个苹果的总价是15元,那么1个苹果的价格是多少?【答案】解:设1个苹果的价格为x元。
根据题意,我们可以得到比例关系:3x = 15。
通过简单的除法,我们可以解出x = 15 ÷ 3 = 5。
所以,1个苹果的价格是5元。
【练习题2】题目:在一次数学竞赛中,小明的得分是小红的3倍。
如果小明得了90分,小红得了多少分?【答案】解:设小红的得分为y分。
根据题意,我们有比例关系:小明的得分 : 小红的得分 = 3 : 1。
已知小明得了90分,可以列出等式:90 = 3y。
通过除以3,我们得到y = 90 ÷ 3 = 30。
所以,小红得了30分。
【练习题3】题目:如果4千克的大米价格是24元,那么1千克大米的价格是多少?【答案】解:设1千克大米的价格为z元。
根据题意,我们有比例关系:4千克大米的价格 : 1千克大米的价格= 24元 : z元。
可以列出等式:4z = 24。
通过除以4,我们得到z = 24 ÷ 4 = 6。
所以,1千克大米的价格是6元。
【练习题4】题目:一个班级有40名学生,其中女生占总数的40%,求男生人数。
【答案】解:设男生人数为m,女生人数为f。
根据题意,我们有比例关系:女生人数 : 总人数 = 40% : 100%。
已知女生人数为40% × 40 = 16。
因为班级总人数是40,所以男生人数m = 40 - 16 = 24。
所以,男生人数是24人。
【练习题5】题目:在一次植树活动中,如果每棵树需要浇2升水,那么100棵树需要多少升水?【答案】解:设100棵树需要浇x升水。
根据题意,我们有比例关系:每棵树需要的水 : 总树数 = 2升 : 1。
可以列出等式:2 × 100 = x。
通过乘法,我们得到x = 2 × 100 = 200。
所以,100棵树需要200升水。
【结束语】通过以上练习题,我们可以看到比例关系在日常生活中的应用非常广泛,无论是购物、竞赛还是活动组织,掌握比例关系有助于我们快速准确地解决问题。
四年级数学下册用比例解决问题练习题
四年级数学下册用比例解决问题练习题1. 小明买了5本故事书,总共花了25元。
他发现,每本书的售价都是相同的。
现在他想要知道,如果他想要买10本书,需要多少钱?解答:设每本书的售价为x元。
根据题意,可以得到一个等式:5x = 25。
解这个方程可以得到x = 5。
所以每本书的售价为5元。
如果要买10本书,总共需要花费10 * 5 = 50元。
2. 某商店里有苹果和橘子两种水果。
小红花了25元买了5个苹果和3个橘子,小明花了35元买了7个苹果和4个橘子。
问苹果和橘子的单价各是多少?解答:设苹果的单价为x元,橘子的单价为y元。
根据题意,可以建立如下的等式组:5x + 3y = 257x + 4y = 35通过使用比例代入法或者消元法可以求解这个方程组。
最终解得x = 3,y = 4。
所以苹果的单价为3元,橘子的单价为4元。
3. 一辆长途汽车每小时行驶80千米,小明乘坐这辆汽车从A市到B市总共花费6小时。
现在他想要知道从A市到B市的距离是多少千米?解答:设从A市到B市的距离为x千米。
根据题意,可以得到一个等式:80 * 6 = x。
所以从A市到B市的距离为480千米。
4. 某种商品的原价为200元,现在打折8折出售。
小华想要购买该商品,但是她只带了160元。
请问她是否有足够的钱购买该商品?解答:原价为200元,打折8折,即折后价格为200 * 0.8 = 160元。
小华带了160元,正好等于商品的折后价格,所以她有足够的钱购买该商品。
5. 某校学生总数为600人,其中男生数为400人,女生数为200人。
根据学校的统计,每5个男生中有1个会篮球,每10个女生中有1个会篮球。
现在学校要开展篮球比赛,问参加比赛的男生和女生各有多少人?解答:根据题意,每5个男生中有1个会篮球,所以会篮球的男生人数为400 / 5 = 80人。
每10个女生中有1个会篮球,所以会篮球的女生人数为200 / 10 = 20人。
所以参加比赛的男生有80人,女生有20人。
比例的应用练习题
比例的应用练习题一、买菜比例题小明去市场买菜,他买了500克的土豆,花费了5元。
如果按照同样的价格,他要买1千克土豆,需要花费多少元?解析:设小明要花费的金额为x元。
根据比例关系,500克土豆所需金额与1千克土豆所需金额的比例为500:1000,即5:x。
根据比例的性质,比例两边乘以相同的数得到的比例仍然相等,因此有5/500=x/1000,通过交叉相乘得到x=10。
所以,小明要花费10元才能买到1千克的土豆。
二、图书阅读比例题某图书馆共有5000本图书,其中小说类书籍占总数的40%,科学类书籍占总数的25%,其他类书籍占总数的35%。
求小说类书籍的数量。
解析:设小说类书籍的数量为x本。
根据比例关系,小说类书籍的数量与总图书数量5000的比例为x:5000,即40:100。
同样根据比例的性质,可得到40/100=x/5000,通过交叉相乘得到x=2000。
所以,小说类书籍的数量为2000本。
三、地图比例问题地图上的一个城市与实际大小的比例为1:5000,如果在地图上距离两个城市之间的直线距离是8厘米,那么两个城市之间的实际距离是多少?解析:设实际距离为x千米。
根据比例关系,地图上的距离与实际距离的比例为8:5000,即8/5000=x/1。
通过交叉相乘可得到x=0.016。
所以,两个城市之间的实际距离是0.016千米。
四、工作时间比例问题某公司工人A和B同时从事一项工作,工作时间比例为2:3,A工作8小时后完成任务,那么B需要工作多少小时才能完成同样的任务?解析:设B工作的小时数为x小时。
根据比例关系,A和B两人的工作时间比例为2:3,A工作8小时后完成任务,相应地,B工作x小时才能完成任务。
根据比例的性质,可以得到2/8=3/x,通过交叉相乘可得到x=12。
所以,B需要工作12小时才能完成同样的任务。
五、面积比例问题一个正方形花坛的面积是36平方米,如果将花坛的边长缩小为原来的一半,那么新花坛的面积是多少平方米?解析:设新花坛的面积为x平方米。
用比例解决问题练习题
用比例解决问题练习题1.XXX开车从甲地到乙地,前2小时行了100千米。
根据比例,3小时行程的距离为:frac{100\text{千米}}{2\text{小时}}\times3\text{小时}=150\text{千米}所以甲地到乙地的距离为150千米。
2.XXX开车从甲地到乙地一共用了3小时,每小时行50千米,返回时每小时行60千米。
设返回时需要$x$小时,则根据比例:frac{50\text{千米}}{1\text{小时}}\times(3-x)\text{小时}=\frac{60\text{千米}}{1\text{小时}}\times x\text{小时}解得$x=1$,所以返回需要1小时。
3.用面积9平方分米的砖铺地要96块,如果改用面积为4平方分米的方砖铺地,需要多少块?设需要$x$块,则根据比例:frac{9\text{平方分米}}{1\text{块}}=\frac{4\text{平方分米}}{1\text{块}}\times x解得$x=22.5$,所以需要23块。
4.有一批纸,可以装订24页的练本216本,如果装订成18页的练本,每本可以装订多少页?设每本装订$x$页,则根据比例:frac{24\text{页}}{1\text{本}}\times216\text{本}=\frac{x\te xt{页}}{1\text{本}}\times y\text{本}其中$y$为新的练本数量。
解得$y=288$,所以每本可以装订18页。
5.XXX的身高1.5米,她的影长0.5米,同一时间学校的宿舍楼的影长是3米,设宿舍楼高为$x$米,则根据比例:frac{1.5\text{米}}{0.5\text{米}}=\frac{x\text{米}}{3\text{米}}解得$x=9$,所以学校宿舍楼高9米。
6.工程队修一条路,每天工作6小时,12天完成。
如果每天工作8小时,可以几天完成?设需要$x$天,则根据比例:frac{6\text{小时}}{1\text{天}}\times12\text{天}=\frac{8\text{小时}}{1\text{天}}\times x\text{天}解得$x=9$,所以可以在9天内完成。
小学数学比例练习题及答案
小学数学比例练习题及答案在小学数学学习中,比例是一个非常重要的概念。
它不仅能够帮助我们解决实际问题,还能够提高我们的数学思维能力。
为了帮助同学们更好地掌握比例的概念和运用,本文将提供一些小学数学比例练习题及答案。
练习题一:1. 25辆自行车需要5个小时完成修理工作,那么15辆自行车需要多长时间才能完成同样的工作呢?解答:我们可以将辆数和时间的关系表示为比例。
25辆自行车:5小时 = 15辆自行车:x小时根据比例的性质,我们可以得到:25 × x = 5 × 15解方程可得:x = (5 × 15)/25计算可得:x = 3所以,15辆自行车需要3个小时完成同样的工作。
2. 一个矩形花坛的长和宽的比例是3:2,如果长是15米,那么宽是多少米?解答:我们可以将长和宽的关系表示为比例。
长:宽 = 3:2已知长为15米,代入比例可得:15:宽 = 3:2解方程可得:15 × 2 = 3 ×宽计算可得:宽 = (15 × 2)/3所以,宽为10米。
练习题二:1. 某班级男生和女生的比例是4:5,如果班级一共有36名学生,那么男生和女生分别有多少人?解答:将男生和女生的关系表示为比例。
男生:女生 = 4:5已知学生总数为36人,代入比例可得:4:5 = x:36解方程可得:4 × 36 = 5 × x计算可得:x = (4 × 36)/5所以,男生有(4 × 36)/5 = 28.8 ≈ 29人,女生有 36 - 29 = 7人。
因为学生数不能为小数,所以男生应该是29人,女生是7人。
2. 一架飞机飞行了1800千米,耗油量为240升,那么这架飞机每飞行1千米需要多少升油?解答:将飞行里程和油量的关系表示为比例。
飞行里程:油量 = 1800:240每飞行1千米需要多少升油即为:1:x = 1800:240解方程可得:1 × 240 = 1800 × x计算可得:x = (1 × 240)/1800所以,每飞行1千米需要的油量为(1 × 240)/1800 = 0.1333 ≈ 0.13升。
用比例解决问题练习题
1、张大妈家上个月用了8吨水,水费是12.8元。
李奶奶家用了10吨水。
李奶奶家上个月的水费是多少钱?2、有一批书,如果每包20本,要捆18包。
如果要捆15包,每包多少本?3、小明买了4枝圆珠笔用了6元。
小刚想买3枝同样的圆珠笔,要用多少钱?4、学校小商店有两种圆珠笔。
小明带的钱刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?5、小兰的身高1.5米,她的影长是2.4米。
如果同一时间、同一地点测得一棵树的影子长4米,这棵树有多高?6、工程队修一条水渠,每天工作6小时12天可以完成。
如果工作效率不变,每天工作8小时,多少天可以完成任务?7、我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周要用多少小时?8、一个晒盐场用100g海水可以晒出3g盐。
照这样计算,如果一块盐田一次放入585000吨海水,可以晒出多少吨盐?多少吨海水可以晒出9吨盐?1、车队向灾区运送一批救灾物资,去时每小时行60km ,6.5小时到达灾区。
回来时每小时行78km ,多长时间能够返回出发地点?2、王叔叔开车从甲地到乙地,前2小时行了100千米。
照这样的速度,从甲地到乙地一共要用3小时,甲乙两地相距多远?3、在一幅比例尺是1:2000000的地图上,量得甲、乙两个城市之间高速公路的距离是5.5厘米。
在另一幅比例尺是1:5000000的地图上,这条公路的图上距离是多少?4、学校举行团体操表演,如果每列25人,要排24列。
如果每列20人,要排多少列?5、一批零件,共4500个,3天加工900个,照这样的工作效率,几天可以加工完?6、某车间要生产一批零件,计划每天生产80个,15天完成。
实际要10天完成,平均每天应生产多少个?7、一道砖墙,砖的层数是90。
如果量得20层砖的高度为45米,这道砖墙高是多少米?1、王叔叔开车从甲地到乙地一共用了3小时,每小时行50千米,返回时每小时行60千米,返回时用了多长时间?2、机器上有两个相互咬全的齿轮,主动轮有100个齿,每分钟转90转。
比例习题含答案
比例习题含答案比例习题含答案比例是数学中常见的概念,也是我们日常生活中经常遇到的问题。
比例习题是培养我们分析和解决问题能力的重要训练。
本文将为大家提供一些常见的比例习题,并附上详细的解答,希望能帮助大家更好地理解和应用比例。
1. 甲乙两地相距120公里,甲地到乙地的车程是3小时。
如果以相同的速度继续行驶,那么甲地到乙地的车程需要多长时间?解答:根据题意,车速是不变的,所以车程与时间成正比。
设甲地到乙地的车程为x公里,根据比例关系可得:120/3 = x/时间解得时间为2小时。
2. 一桶水装满需要10分钟,如果用两个水龙头一起放水,那么装满一桶水需要多长时间?解答:设用两个水龙头一起放水时,装满一桶水的时间为x分钟。
根据题意可得:1/10 + 1/10 = 1/x解得x为5分钟。
3. 甲乙两个人一起工作,甲单独完成一项工作需要6天,乙单独完成同样的工作需要9天。
如果甲乙一起工作,那么完成这项工作需要多少天?解答:设甲乙一起工作完成这项工作需要x天。
根据题意可得:1/6 + 1/9 = 1/x解得x为3.6天,即3天12小时。
4. 一辆汽车以每小时80公里的速度行驶,行驶了3小时后,汽车的行驶距离是多少?解答:根据题意可得:行驶距离 = 速度× 时间= 80 × 3 = 240公里。
5. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后,汽车的行驶距离是多少?解答:根据题意可得:行驶距离 = 速度× 时间= 60 × 4 = 240公里。
通过以上的例题,我们可以看到比例习题的解答过程是基于比例关系的计算。
在解答过程中,我们需要根据题意设定变量,建立比例关系,然后通过计算求解未知数。
比例习题的解答过程可以培养我们的逻辑思维和数学运算能力。
除了以上的例题,比例习题还可以涉及到购物打折、图形相似等实际问题。
通过解答这些习题,我们可以更好地理解比例的概念,并将其应用到实际生活中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用比例解决问题练习题
1. 小红使用电脑打字,3分钟打了400个字,照这样计算,打1200个字需要多少分钟?
2. 一列火车经过一座大桥,以每秒3米的速度240秒可以完全通过,如果要在180秒内通过,速度应该是多少?
3. 某制衣有限公司用一批布做服装,如果每套服装用布2米,可以做360套;如果每套服装用布节约0.2米,现在可以做多少套?
4. 一种合金内铜和锌的比是2:3,现在有6克锌,必须用多少铜
才能配制成符合要求的合金?
5. 读一本书,每天读30页,20天可以读完,如果每天多读10页,多少天可以读完?
6.生产一批课桌,每天加工20套,44天可以完成,如果工作效率提高10%,可以提前多少天完成?
7.将19/55的分子、分母同时加上一个相同的数,所得到的新分数约分后是52,求分子和分母各加上多少?
8.中国古代的“黑火药”配制中硝酸钾、硫磺、木炭的比例为15:2:3,今有木炭50千克,要配制
“黑火药”1000千克,还需要木炭多少千克?
9.某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?
10.A、B两个仓库储存粮食重量的比是8:7,如果从A仓库运走1/4,B仓库运进8吨,则B仓库的存粮比A仓库多17吨,A仓库存粮多少吨?
11.甲、乙两人二月份存钱比是3:4,三月份甲又存钱300元,乙又存钱500元,这时两人存钱比是
5:7,甲、乙二月份各存多少钱?
(注:文档可能无法思考全面,请浏览后下载,供参考。
)。