圆锥曲线性质的探讨(人教A版)(含答案)
高三数学一轮复习必备:圆锥曲线方程及性质
~高三数学(人教版A 版)第一轮复习资料第33讲 圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
2022版新教材数学人教A版选择性必修第一册学案-圆锥曲线的方程-章末总结-含答案
章末总结体系构建题型整合题型1 圆锥曲线的定义及应用例1 (1)(2021黑龙江双鸭山一中高二期中)若椭圆或双曲线上存在点P,使得点P到两个焦点F1,F2的距离之比为2:1,且存在△PF1F2,则称此椭圆或双曲线存在“Ω点”,下列曲线中存在“Ω点”的是( )A.x236+y232=1 B.x216+y215=1C.x25−y24=1 D.x2−y215=1(2)已知点P是抛物线x2=4y上的动点,点P在x轴上的射影是点Q,点A的坐标是(8,7),求|PA|+|PQ|的最小值.答案:(1)C解析:(1)|PF1||PF2|=21,则|PF1|=2|PF2|,若是椭圆,则|PF1|+|PF2|=3|PF2|=2a,所以|PF2|=2a3,|PF1|=4a3;若是双曲线,则|PF1|−|PF2|=|PF2|=2a,|PF1|=4a .A中椭圆,a=6,c=2,|PF2|=4,|PF1|=8,|F1F2|=4,不存在△PF1F2,不存在“Ω点”;B中椭圆,a=4,c=1,|PF2|=83,|PF1|=163,|F1F2|=2,不存在△PF1F2,不存在“Ω点”;C中双曲线,a=√5,c=3,双曲线上的点到右焦点的距离的最小值是c−a=3−√5<2a,|PF2|=2√5,|PF1|=4√5,|F1F2|=6,构成△PF1F2,存在“Ω点”;D中双曲线,a=1,c=4,双曲线上的点到右焦点的距离的最小值是c−a=3>2a,|PF2|= 2,|PF1|=4,|F1F2|=8,不存在△PF1F2,不存在“Ω点”.故选C.答案:(2)抛物线的焦点为F(0,1),准线方程为y=−1,如图,设点P在准线上的射影是点M,根据抛物线的定义知,|PF|=|PM|=|PQ|+1,所以|PA|+|PQ|=|PA|+|PM|−1=|PA|+|PF|−1≥|AF|−1=√82+(7−1)2−1=10−1=9,当且仅当A,P,F三点共线时,等号成立.故|PA|+|PQ|的最小值为9.方法归纳(1)涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义并结合图象解题.(2)求抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.迁移应用1.已知A(−4,0),B是圆(x−1)2+(y−4)2=1上的点,点P在双曲线x29−y27=1的右支上,则|PA|+|PB|的最小值为( )A.9B.2√5+6C.10D.12答案:C解析:设点C(1,4),因为点B在圆上,所以|PB|≥|PC|−r=|PC|−1,设点A为双曲线的左焦点,A′为双曲线的右焦点,所以由双曲线定义知|PA|=|PA′|+2a=|PA′|+6,所以|PA|+|PB|=|PA′|+|PB|+6≥|PA′|+|PC|+6−1≥|A′C|+5=5+5=10 .2.已知抛物线C:y2=2px(p>0)的焦点为F,抛物线上的一点M(2,m)满足|MF|=6,则抛物线C 的方程为 .答案:y2=16x解析:∵抛物线C:y2=2px(p>0),∴抛物线的准线方程是x=−p2,∵抛物线上的一点M(2,m)到焦点F的距离是6,∴由抛物线的定义可得点M(2,m)到准线的距离也是6,即2+p2=6,解得p=8,∴抛物线C的方程是y2=16x .题型2 圆锥曲线的方程例2(1)(2021河南豫南九校高二联考)已知椭圆C:x 2m2+y2n2=1(m>0,n>0,m≠n),长轴长为4,离心率为√22,则椭圆C的标准方程为( )A.x24+y22=1 B.x24+y22=1或x22+y24=1C.x216+y28=1 D.x216+y28=1或x28+y216=1(2)已知抛物线C的顶点在坐标原点,焦点F在x轴的正半轴上,点M为圆O:x2+y2=12与C 的一个交点,且|MF|=3,则C的标准方程是( )A.y2=2xB.y2=3xC.y2=4xD.y2=6x答案:(1)B(2)C解析: (1)设椭圆的长半轴长为a ,短半轴长为b ,半焦距为c ,离心率为e . ∵ 长轴长为4,∴2a =4 ,∴a =2 ,a 2=4 , ∵e =√22,∴e 2=12=c 2a2=a 2−b 2a 2=4−b 24,∴b 2=2 ,∴ 当椭圆C 的焦点在x 轴上时,椭圆C 的标准方程为x 24+y 22=1 ;当椭圆C 的焦点在y 轴上时,椭圆C 的标准方程为x 22+y 24=1 ,故选B.(2)设抛物线C 的方程为y 2=2px(p >0) ,M(x M ,y M ) ,连接MO ,过M 作MM 1⊥ 准线,交y 轴于M 2 ,因为|MF|=3=x M +p2 ,所以|MM 2|=x M =3−p2 ,所以|M 2O|=y M =√2px M =√6p −p 2 ,在Rt △OMM 2 中,|M 2O|2+|MM 2|2=|MO|2 ,所以6p −p 2+(3−p2)2=12 ,解得p =2 ,所以抛物线C 的标准方程为y 2=4x ,故选C. 方法归纳求圆锥曲线方程的一般步骤:求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. 迁移应用3.(2021福建南平高级中学高二期中)已知双曲线C:x 2a2−y 2b 2=1(a >0,b >0) 的离心率e =32,且与椭圆x 212+y 23=1 有相同的焦点,则C 的标准方程为( )A.x 28−y 210=1 B.x 24−y 25=1 C.x 25−y 24=1 D.x 24−y 23=1答案:B解析:因为双曲线C 的离心率e =32,所以ca=32.又椭圆x 212+y 23=1 与双曲线C 有相同的焦点,所以双曲线C 的焦点为(±3,0) ,即c =3 ,则a =2 ,所以b 2=c 2−a 2=9−4=5 , 则双曲线C 的标准方程为x 24−y 25=1 .4.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的两条渐近线与抛物线y 2=2px(p >0) 的准线分别交于A ,B 两点,O 为坐标原点,若双曲线的离心率为2,△ABO 的面积为2√3 ,则抛物线的标准方程为 . 答案: y 2=4√2x解析: 因为ca=2 ,所以ba=√3 ,所以双曲线的渐近线方程为y =±√3x .又抛物线y 2=2px(p >0) 的准线方程为x =−p2 , 联立得{y =√3x,x =−p 2⇒y =−√32p ,所以|AB|=√3p . 因为S △ABO =12×√3p ×p2=2√3 ,所以p =2√2 或−2√2 (舍去),所以抛物线的标准方程为y2=4√2x .题型3 圆锥曲线的几何性质例3 (1)设椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,其焦距为2c,点Q(c,a2)在椭圆的外部,点P是椭圆C上的动点,且|PF1|+|PQ|<32|F1F2|恒成立,则椭圆的离心率的取值范围是( )A.(√22,56) B.(√22,34)C.(56,1) D.(34,1)(2)已知F1,F2分别为双曲线x2a2−y2b2=1(a>b>0)的左、右焦点,以F1F2为直径的圆与双曲线在第一象限和第三象限的交点分别为M,N,设四边形F1NF2M的周长为p,面积为S,且满足32S= p2,则该双曲线的渐近线方程为 .答案:(1)C(2)y=±√22x解析:(1)因为点Q(c,a2)在椭圆的外部,所以a2>b2a,即a2>2b2,所以e=√1−b2a2>√22,又|PF1|+|PQ|<32|F1F2|恒成立,所以|PF1|+|PQ|=2a+|PQ|−|PF2|≤2a+|QF2|=2a+a2=5 2a<3c,即a<6c5,所以e=ca>56.又e<1,所以e∈(56,1) .(2)由题意可得|MF1|−|MF2|=2a,|MF1|+|MF2|=p2,解得|MF1|=a+p4,|MF2|=p4−a,又F1F2为圆的直径,所以四边形F1NF2M为矩形,所以S=|MF1||MF2|=(p4)2−a2,即p232=p216−a2,即p2=32a2,由|MF1|2+|MF2|2=|F1F2|2得2a2+p28=4c2,即3a2=2c2,a2=2b2,所以ba=√22,所以该双曲线的渐近线方程为y=±√22x .方法归纳应用圆锥曲线的性质时,要注意数形结合、方程等思想的综合运用. 迁移应用5.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的一个焦点为F,点A,B是C的一条渐近线上关于原点对称的两点,以AB为直径的圆过F且与C的左支交于M,N两点,若|MN|=2,△ABF的面积为8,则C的渐近线方程为( )A.y=±√3xB.y=±√33xC.y=±2xD.y=±12x答案:B解析:设双曲线的另一个焦点为F′,由双曲线的对称性知,四边形AFBF′是矩形,所以S△ABF=S△AFF′,即bc=8,由{x2+y2=c2,x2a2−y2b2=1,得y=±b2c,所以|MN|=2b2c=2,所以b2=c,所以b=2,c=4,所以a=2√3,故C的渐近线方程为y=±√33x .6.已知抛物线C:y 2=2px(p >0) 的焦点为F ,点M(x 0,2√2)(x 0>p2) 是抛物线C 上一点,以点M 为圆心的圆与直线x =p 2 交于E,G 两点,若sin∠MFG =13 ,则p = . 答案: 2解析:作MD ⊥EG ,垂足为点D (图略).因为点M(x 0,2√2)(x 0>p2) 在抛物线上,所以8=2px 0 ,即px 0=4 .① 由抛物线的性质得|DM|=x 0−p2 ,因为sin∠MFG =13 ,所以|DM|=13|MF|=13(x 0+p 2) ,所以x 0−p 2=13(x 0+p2) ,解得x 0=p ,② 联立①②,解得x 0=p =−2 (舍去)或x 0=p =2 .题型4 圆锥曲线中的证明问题例4已知曲线C 上的任意一点P 到定点F(1,0) 的距离比它到定直线x =−2 的距离少1. (1)求曲线C 的方程;(2)已知A(−1,0) ,过点F 作直线l 与曲线C 交于M,N 两点.求证:直线AM ,AN 关于x 轴对称. 答案:(1)因为曲线C 上的任意一点P 到定点F(1,0) 的距离比它到定直线x =−2 的距离少1,所以点P 到定点F(1,0) 的距离和它到定直线x =−1 的距离相等,所以曲线C 的轨迹为抛物线,且p =2 ,故曲线C 的方程为y 2=4x .(2)证明:易知直线l 与x 轴不重合,所以可设l:x =my +1 ,M(x 1,y 1),N(x 2,y 2) , 由{x =my +1,y 2=4x, 消去x 得y 2−4my −4=0 ,因此y 1+y 2=4m ,y 1y 2=−4 . 因为k AM +k AN =y 1x 1+1+y 2x 2+1=y 1my 1+2+y 2my 2+2=2my 1y 2+2(y 1+y 2)(my 1+2)(my 2+2)=−8m+8m (my 1+2)(my 2+2)=0 ,所以k AM =−k AN ,即∠FAM =∠FAN ,故直线AM ,AN 关于x 轴对称.方法归纳解决证明问题时,主要根据直线与圆锥曲线的性质、位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明. 迁移应用 7.已知椭圆C:x 2a2+y 2b 2=1(a >b >0) 的长轴长是焦距的2倍,且过点(−1,32) .(1)求椭圆C 的方程;(2)设P(x,y) 为椭圆C 上的动点,F 为椭圆C 的右焦点,A ,B 分别为椭圆C 的左、右顶点,点P ′满足PP ′⃗⃗⃗⃗⃗⃗⃗ =(4−x,0) .证明:|PP ′⃗⃗⃗⃗⃗⃗⃗ ||FP ⃗⃗⃗⃗⃗ | 是常数. 答案:(1)由题意可得a =2c ,1a 2+94b 2=1 ,a 2=b 2+c 2 ,解得a 2=4 ,b 2=3 ,所以椭圆C的方程为x 24+y 23=1 .(2)证明:由(1)可得A(−2,0),B(2,0),F(1,0) , 因为P(x,y) 为椭圆C 上的动点,所以x 24+y 23=1 ,又点P ′ 满足PP′⃗⃗⃗⃗⃗⃗⃗ =(4−x,0) ,所以|PP ′⃗⃗⃗⃗⃗⃗⃗ |=|4−x| ,且|PF⃗⃗⃗⃗⃗ |=√(x −1)2+y 2=√(x −1)2+3(1−x 24) =√14x 2−2x +4=12√(x −4)2=12|x −4| ,所以|PP ′⃗⃗⃗⃗⃗⃗⃗ ||PF⃗⃗⃗⃗⃗ |=|4−x|12|x−4|=2 ,所以|PP′⃗⃗⃗⃗⃗⃗⃗ ||PF⃗⃗⃗⃗⃗ | 为常数2.题型5 圆锥曲线中的轨迹问题例5(2021重庆万州沙河中学高二月考)已知点A(−2,0) 和点B(2,0) ,动点P 满足AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0 . (1)求动点P 的轨迹方程;(2)过点P 作x 轴的垂线,垂足为Q ,求线段PQ 的中点M 的轨迹方程. 答案:(1)设P(x,y) ,则AP⃗⃗⃗⃗⃗ =(x +2,y) ,BP ⃗⃗⃗⃗⃗ =(x −2,y) , 由AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0 得(x +2)(x −2)+y 2=0 ,即x 2+y 2=4 , 所以动点P 的轨迹方程是x 2+y 2=4 . (2)设M(x 0,y 0) ,则P(x 0,2y 0) , 因为点P 在圆x 2+y 2=4 上,所以x 02+(2y 0)2=4 ,即x 024+y 02=1 ,所以线段PQ 的中点M 的轨迹方程是x 24+y 2=1 .方法归纳求圆锥曲线中的轨迹方程的三种方法:(1)直接法:把题设条件直接“翻译”成含x ,y 的等式就能得到轨迹方程.(2)定义法:运用解析几何中常用的定义(如圆锥曲线的定义),直接写出轨迹方程,或从圆锥曲线的定义出发建立关系式,从而求出轨迹方程.(3)相关点法:首先要有主动点和从动点,若主动点在已知曲线上运动,则可以采用此法. 迁移应用8.已知点A(1,0) ,E,F 为直线x =−1 上的两个动点,且AE ⃗⃗⃗⃗⃗ ⊥AF ⃗⃗⃗⃗⃗ ,动点P 满足EP ⃗⃗⃗⃗⃗ ∥OA ⃗⃗⃗⃗⃗ ,FO ⃗⃗⃗⃗⃗ ∥OP ⃗⃗⃗⃗⃗ (其中O 为坐标原点). (1)求动点P 的轨迹方程;(2)若直线l 与动点P 的轨迹曲线相交于M 、N 两点,OM ⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =−4 ,证明:直线l 必过一定点,并求出该定点的坐标.答案: (1)设P(x,y)、E(−1,a)、F(−1,b) ,则AE ⃗⃗⃗⃗⃗ =(−2,a) ,AF ⃗⃗⃗⃗⃗ =(−2,b) ,EP ⃗⃗⃗⃗⃗ =(x +1,y −a) ,OA ⃗⃗⃗⃗⃗ =(1,0) ,FO ⃗⃗⃗⃗⃗ =(1,−b) ,OP ⃗⃗⃗⃗⃗ =(x,y) . 由AE ⃗⃗⃗⃗⃗ ⊥AF ⃗⃗⃗⃗⃗ ,得AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =4+ab =0 ,且点E 、F 均不在x 轴上, 故ab =−4 ,且a ≠0,b ≠0 . 由EP ⃗⃗⃗⃗⃗ ∥OA ⃗⃗⃗⃗⃗ ,得y −a =0 ,即y =a . 由FO⃗⃗⃗⃗⃗ ∥OP ⃗⃗⃗⃗⃗ ,得bx +y =0 ,即y =−bx . 所以y 2=−abx =4x ,所以动点P 的轨迹方程为y 2=4x(x ≠0) .(2)若直线l 的斜率为0,则直线l 与动点P 的轨迹曲线至多有一个公共点,不符合题意, 当直线l 的斜率不为0时,可设直线l 的方程为x =ty +n(n ≠0) .由{x =ty +n,y 2=4x, 得y 2−4ty −4n =0 .设M(x 1,y 1)、N(x 2,y 2), 则y 1+y 2=4t ,y 1y 2=−4n .∴OM ⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=(y 1y 2)216+y 1y 2=n 2−4n =−4 ,解得n =2 ,∴ 直线l 的方程为x =ty +2, 即直线l 恒过定点(2,0).高考链接1.(2020北京,7,4分)设抛物线的顶点为O,焦点为F,准线为l,P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线( )A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP答案:B解析:如图所示:因为线段FQ的垂直平分线上的点到F,Q的距离相等,且点P在抛物线上,所以根据定义可知,|PQ|=|PF|,所以线段FQ的垂直平分线经过点P .2.(2020天津,7,5分)设双曲线C的方程为x2a2−y2b2=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l .若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为( )A.x24−y24=1 B.x2−y24=1C.x24−y2=1 D.x2−y2=1答案:D解析:由题可知,抛物线的焦点为(1,0),所以直线l的方程为x+yb=1,即直线l的斜率为−b,又双曲线C的渐近线方程为y=±ba x,所以−b=−ba,−b×ba=−1,因为a>0,b>0,所以a=1,b=1,故双曲线C的方程为x2−y2=1 .3.(多选题)(2020新高考Ⅰ,9,5分)已知曲线C:mx2+ny2=1 .( )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnxD.若m=0,n>0,则C是两条直线答案:A ; C ; D解析:若m>n>0,则mx2+ny2=1可化为x21m +y21n=1,因为m>n>0,所以0<1m<1n,即曲线C表示焦点在y轴上的椭圆,故A正确;若m=n>0,则mx2+ny2=1可化为x2+y2=1n,此时曲线C表示圆心在原点,半径为√nn的圆,故B不正确;若mn<0,则mx2+ny2=1可化为x21m +y21n=1,此时曲线C表示双曲线,由mx2+ny2=0可得y=±√−mnx,故C正确;若m =0,n >0 ,则mx 2+ny 2=1 可化为y =±√nn,此时C 表示平行于x 轴的两条直线,故D 正确.4.(2020新高考Ⅰ,13,5分)斜率为√3 的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|= . 答案: 163解析:设B(x 1,y 1),A(x 2,y 2) ,∵ 抛物线C 的方程为y 2=4x ,∴ 抛物线C 的焦点F 的坐标为(1,0),又∵ 直线AB 过焦点F 且斜率为√3 ,∴ 直线AB 的方程为y =√3(x −1) ,代入抛物线的方程消去y 并化简得3x 2−10x +3=0 ,解得x 1=13,x 2=3 ,∴|AB|=√1+k 2|x 1−x 2|=√1+3×|3−13|=163 .5.(2020天津,18,15分)已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的一个顶点为A(0,−3) ,右焦点为F ,且|OA|=|OF| ,其中O 为原点. (1)求椭圆的方程;(2)已知点C 满足3OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.答案:(1)∵ 椭圆x 2a 2+y 2b 2=1(a >b >0) 的一个顶点为A(0,−3) ,∴b =3 ,由|OA|=|OF| 得c =b =3 ,由a 2=b 2+c 2 得a 2=32+32=18 ,∴ 椭圆的方程为x 218+y 29=1 .(2)∵ 直线AB 与以C 为圆心的圆相切于点P ,∴CP ⊥AB , 根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的方程为y +3=kx ,即y =kx −3 ,联立得{y =kx −3,x 218+y 29=1, 消去y ,可得(2k 2+1)⋅x 2−12kx =0 ,解得x =0 (舍去)或x =12k 2k 2+1 .将x =12k 2k 2+1代入y =kx −3 ,得y =k ⋅12k 2k 2+1−3=6k 2−32k 2+1,∴ 点B 的坐标为(12k2k 2+1,6k 2−32k 2+1) ,∵P 为线段AB 的中点,点A 的坐标为(0,-3), ∴ 点P 的坐标为(6k 2k 2+1,−32k 2+1) , 由3OC⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ 得点C 的坐标为(1,0), ∴ 直线CP 的斜率k CP =−32k 2+1−06k2k 2+1−1=32k 2−6k+1,又CP ⊥AB ,∴k ⋅32k 2−6k+1=−1 ,整理得2k 2−3k +1=0 ,解得k =12 或k =1 . ∴ 直线AB 的方程为y =12x −3 或y =x −3 .6.(2020北京,20,15分)已知椭圆C:x 2a 2+y 2b 2=1 过点A(−2,−1) ,且a =2b . (1)求椭圆C 的方程;(2)过点B(−4,0) 的直线l 交椭圆C 于点M,N ,直线MA ,NA 分别交直线x =−4 于点P,Q .求|PB||BQ| 的值.答案:(1)由题意可得{4a2+1b2=1,a=2b, 解得{a2=8,b2=2,故椭圆C的方程为x28+y22=1 .(2)由题意得直线l的斜率存在,设直线l的斜率为k,则直线l的方程为y=k(x+4),当k≠0时,直线l与椭圆C交于M、N两点,设M(x1,y1),N(x2,y2),联立得{x28+y22=1,y=k(x+4),化简并整理得(4k2+1)x2+32k2x+(64k2−8)=0,则x1+x2=−32k24k2+1,x1x2=64k2−84k2+1,Δ=(32k2)2−4×(4k2+1)×(64k2−8)=32(1−4k2)>0,解得−12<k<12.直线MA的方程为y+1=y1+1x1+2(x+2),令x=−4,可得y P=−2×y1+1x1+2−1=−2×k(x1+4)+1x1+2−x1+2x1+2=−(2k+1)(x1+4)x1+2,同理可得y Q=−(2k+1)(x2+4)x2+2.∴y P+y Q=−(2k+1)(x1+4x1+2+x2+4x2+2)=−(2k+1)×(x1+4)(x2+2)+(x2+4)(x1+2)(x1+2)(x2+2),∵(x1+4)(x2+2)+(x2+4)(x1+2)=2[x1x2+3(x1+x2)+8]=2[64k2−84k2+1+3×−32k24k2+1+8]=0,∴y P+y Q=0,即y P=−y Q,从而|PB||BQ|=|y P||y Q|=1 .当k=0时,易得直线l与椭圆C的两个交点分别为(−2√2,0)和(2√2,0),不妨设M(−2√2,0),N(2√2,0) .则直线MA的方程为y=−√2+12(x+2√2),令x=−4,得y P=√2,同理可得y Q=−√2,此时也满足|PB||BQ|=1 .综上所述,|PB||BQ|=1 .。
2021_2022学年高中数学第2章圆锥曲线与方程测评含解析新人教A版选修2_1
第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.方程x 2+2y 2=4所表示的曲线是()A.焦点在x 轴的椭圆B.焦点在y 轴的椭圆C.抛物线D.圆 方程化为x 24+y 22=1,因此其表示焦点在x 轴的椭圆.2.已知椭圆x 2a 2+y 2b 2=1(a>b>0)分别过点A (2,0)和B (0,-1),则该椭圆的焦距为() A.√3 B.2√3 C.√5 D.2√5a=2,b=1,所以a 2=4,b 2=1,所以c=√a 2-b 2=√4-1=√3,所以2c=2√3.故选B .3.已知双曲线x 2a 2−y 2b 2=1(a>0,b>0)的渐近线方程为y=±2√33x ,则此双曲线的离心率为()A.√72B.√133C.53D.√213x 轴上,所以ba=2√33,于是e=ca=√1+(b a)2=√73=√213.4.已知抛物线C :y 2=8x 焦点为F ,点P 是C 上一点,O 为坐标原点,若△POF 的面积为2,则|PF|等于() A.5B.3C.72D.4F (2,0),设P (x 0,y 0),则12·2·|y 0|=2,所以|y 0|=2,于是x 0=12,于是|PF|=x 0+p2=52.5.已知一个动圆P 与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x+8=0内切,则动圆圆心P 的轨迹是() A.双曲线的一支 B.椭圆 C.抛物线D.圆R ,依题意有|PO|=R+1,|PC|=R-1,因此|PO|-|PC|=2,而|OC|=3,由双曲线定义知点P 的轨迹为双曲线的右支.6.已知点A 是抛物线y 2=2px (p>0)上一点,点F 是抛物线的焦点,O 为坐标原点,当|AF|=4时,∠OFA=120°,则抛物线的准线方程是()A.x=-1B.x=-3C.x=-1或x=-3D.y=-1∠BFA=∠OFA-90°=30°,过点A 作准线的垂线AC ,过点F 作AC 的垂线,垂足分别为C ,B.如图,A 点到准线的距离为d=|AB|+|BC|=p+2=4,解得p=2,则抛物线的准线方程是x=-1. 故选A.7.双曲线C :x 2-y 23=1的一条渐近线与抛物线M :y 2=4x 的一个交点为P (异于坐标原点O ),抛物线M 的焦点为F ,则△OFP 的面积为() A.2√33B.4√33C.23D.43解析双曲线C :x 2-y 23=1的一条渐近线方程为y=√3x ,将y=√3x 代入抛物线方程,可得3x 2=4x ,解得x=0(舍)或x=43,所以P 43,4√33,又抛物线y 2=4x 的焦点F (1,0),则△OFP 的面积为S=12×1×4√33=2√33.故选A .8.已知双曲线的中心在坐标原点,对称轴为坐标轴,若双曲线的一个焦点坐标为(0,√5),且圆x 2+(y-√5)2=1与双曲线的渐近线相切,则双曲线的方程是() A.x 24-y 2=1B.y 24-x 2=1C.x 26-y 2=1D.y 26-x 2=1(0,√5),则c=√5.由题意可知焦点在y 轴上, 设双曲线为y 2a2−x 2b 2=1,渐近线为by ±ax=0.焦点到渐近线的距离为1=√a 2+b 2=b ,即b=1,a=√c 2-b 2=2,则双曲线的方程是y 24-x 2=1,故选B.9.已知点P (x 0,y 0)在椭圆x 212+y 23=1上,其左、右焦点分别是F 1,F 2,若∠F 1PF 2为钝角,则x 0的取值X 围是() A.(-3,3)B.(-∞,-2√2)∪(2√2,+∞)C.(-∞,-3)∪(3,+∞)D.(-2√2,2√2)F 1(-3,0),F 2(3,0),所以PF 1⃗⃗⃗⃗⃗⃗⃗ =(-3-x 0,-y 0),PF 2⃗⃗⃗⃗⃗⃗⃗ =(3-x 0,-y 0),则PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =x 02+y 02-9,而y 02=3-14x 02, 所以PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =34x 02-6.又∠F 1PF 2为钝角,所以34x 02-6<0,解得-2√2<x 0<2√2.10.椭圆x 2a2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,上顶点为A ,若△AF 1F 2的面积为√3,且∠F 1AF 2=4∠AF 1F 2,则椭圆方程为() A.x 23+y 2=1B.x 23+y 22=1 C.x 24+y 2=1D.x 24+y 23=1△AF 1F 2中,AF 1=AF 2,∠F 1AF 2=4∠AF 1F 2,则∠AF 1F 2=30°,所以bc =√33. 又△AF 1F 2面积为√3, 即S=12×2c×b=√3,解得b=1,c=√3,则a=√b 2+c 2=2, 所以椭圆方程为x 24+y 2=1.11.直线y=k (x-1)与椭圆C :x 24+y 22=1交于不同的两点M ,N ,椭圆x 24+y 22=1的一个顶点为A (2,0),当△AMN 的面积为√103时,则k 的值为()A.±√2B.±√3C.±1D.±√5y=k (x-1)与椭圆C 联立{y =k (x -1),x 24+y 22=1消元可得(1+2k 2)x 2-4k 2x+2k 2-4=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,∴|MN|=√1+k 2·√(x 1+x 2)2-4x 1x 2=2√(1+k 2)(4+6k 2)1+2k 2.∵A (2,0)到直线y=k (x-1)的距离为d=√1+k 2, ∴△AMN 的面积S=12|MN|d=|k |√4+6k 21+2k 2.∵△AMN 的面积为√103, ∴|k |√4+6k 21+2k 2=√103, ∴k=±1,故选C .12.如图所示,过抛物线y 2=2px (p>0)的焦点F 的直线l ,交抛物线于点A ,B.交其准线于点C ,若|BC|=√2|BF|,且|AF|=√2+1,则此抛物线的方程为()A.y 2=√2xB.y 2=2xC.y 2=√3xD.y 2=3x,过点A 作AD 垂直于抛物线的准线,垂足为D ,过点B 作BE 垂直于抛物线的准线,垂足为E ,点P 为准线与x 轴的交点,由抛物线的定义,|BF|=|BE|,|AF|=|AD|=√2+1,因为|BC|=√2|BF|,所以|BC|=√2|BE|,所以∠DCA=45°, |AC|=√2|AD|=2+√2,|CF|=2+√2−√2-1=1, 所以|PF|=√2=√22,即p=|PF|=√22,所以抛物线的方程为y 2=√2x ,故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线C :y 2a 2−x 2b 2=1的焦距为4,点P (1,√3)在双曲线C 的渐近线上,则C 的方程为.C :y 2a2−x 2b2=1的渐近线方程为y=±a bx ,∵双曲线C :y 2a 2−x 2b 2=1的焦距为4,点P (1,√3)在C 的渐近线上,可得a=√3b ,∴2c=4, ∵c 2=a 2+b 2,∴a 2=3,b 2=1, ∴双曲线C 的方程为y 23-x 2=1.故答案为y 23-x 2=1.2=114.若直线x-my+m=0经过抛物线x 2=2py (p>0)的焦点,则p=.直线x-my+m=0可化为x-m (y-1)=0,所以直线x-my+m=0过点(0,1), 即抛物线x 2=2py (p>0)的焦点F 为(0,1),∴p2=1,则p=2,故答案为2.15.已知双曲线E :x 2a2−y 2b 2=1(a>0,b>0)与抛物线C :y 2=2px (p>0)有共同的一个焦点,过双曲线E 的左焦点且与抛物线C 相切的直线恰与双曲线E 的一条渐近线平行,则E 的离心率为.,所以c=p2,p=2c ,抛物线方程为y 2=4cx ,设双曲线的左焦点为F 1,F 1(-c ,0),过F 1与一条渐近线y=ba x 平行的直线方程为y=ba (x+c ), 由{y 2=4cx ,y =ba(x +c )得by 2-4acy+4bc 2=0, 所以Δ=16a 2c 2-16b 2c 2=0,所以a=b ,从而c=√a 2+b 2=√2a ,离心率为e=ca =√2. √216.已知椭圆方程为x 2a2+y 2b2=1(a>b>0),双曲线方程为x 2m2−y 2n 2=1(m>0,n>0),若该双曲线的两条渐近线与椭圆的四个交点以及椭圆的两个焦点恰为一个正六边形的六个顶点,则椭圆的离心率与双曲线的离心率之和为.椭圆方程为x 2a 2+y 2b 2=1(a>b>0),双曲线方程为x 2m 2−y 2n 2=1(m>0,n>0),若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标F 2(c ,0),F 1(-c ,0),正六边形的一个顶点Ac 2,√32c .|AF 1|+|AF 2|=(c2(√3c 2)(c2-c) (√3c 2)=2a , 因为√3c+c=2a ,所以椭圆离心率e 1=ca =√3-1,因为双曲线的渐近线的斜率为√3,即nm =√3,可得双曲线的离心率为e 2=√1+n 2m 2=2.所以e 1+e 2=√3-1+2=√3+1. 故答案为√3+1. √3+1三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知双曲线C 的一个焦点与抛物线C 1:y 2=-16x 的焦点重合,且其离心率为2. (1)求双曲线C 的方程;(2)求双曲线C 的渐近线与抛物线C 1的准线所围成三角形的面积.抛物线C 1:y 2=-16x 的焦点坐标为(-4,0),因此可设双曲线方程为x 2a2−y 2b 2=1(a>0,b>0),则依题意有{c =4,c a =2,解得a 2=4,b 2=12, 故双曲线C 的方程为x 24−y 212=1.(2)抛物线C 1的准线方程为x=4,双曲线C 的渐近线方程为y=±√3x , 于是双曲线C 的渐近线与抛物线C 1的准线的两个交点为(4,4√3),(4,-4√3), 所围成三角形的面积S=12×8√3×4=16√3.18.(本小题满分12分)已知抛物线x 2=-2py (p>0)上纵坐标为-p 的点到其焦点F 的距离为3. (1)求抛物线的方程;(2)若直线l 与抛物线以及圆x 2+(y-1)2=1都相切,求直线l 的方程.由已知得抛物线的准线方程为y=p2,则由抛物线的定义知p+p2=3,则p=2,所以抛物线的方程为x 2=-4y.(2)由题意知直线l 的斜率存在,设其方程为y=kx+b ,则有{y =kx +b ,x 2=-4y ,消去y 得x 2+4kx+4b=0,则有Δ=16k 2-16b=0,即k 2=b.又直线l 与圆x 2+(y-1)2=1都相切,所以√k 2+1=1.解方程组{√k 2+1=1,k 2=b ,得{k =0,b =0或{k =√3,b =3或{k =-√3,b =3,故所求直线l 的方程为y=0或y=√3x+3或y=-√3x+3. 19.(本小题满分12分)已知F 1,F 2是椭圆M :y 2a2+x 2b 2=1(a>b>0)的两个焦点,椭圆M 的离心率为√63,P (x 0,y 0)是M 上异于上下顶点的任意一点,且△PF 1F 2面积的最大值为2√2.(1)求椭圆M 的方程;(2)若过点C (0,1)的直线l 与椭圆C 交于A ,B 两点,AC ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,求直线l 的方程.据题意,得{ ca =√63,12×2c ×b =2√2,c 2=a 2-b 2,∴a 2=6,b 2=2.∴椭圆M 的方程为y 26+x 22=1.(2)据题设知,直线AB 的斜率存在,设直线l 的方程为y=kx+1. 据{y =kx +1,y 26+x 22=1,得(3+k 2)x 2+2kx-5=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2k3+k 2,x 1x 2=-53+k 2. ∵AC⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ , ∴(-x 1,1-y 1)=2(x 2,y 2-1). ∴x 1=-2x 2.∴x 1+x 2=-x 2=-2k3+k 2,则x 2=2k3+k 2.又x 1x 2=-2x 22=-53+k 2,∴(2k3+k 2)2=53+k 2×12, ∴k=±√5.故直线l 的方程为y=-√5x+1或y=√5x+1.20.(本小题满分12分)已知点F 是抛物线C :x 2=2py (p>0)的焦点,点M 是抛物线上的定点,且MF ⃗⃗⃗⃗⃗⃗ =(4,0). (1)求抛物线C 的方程;(2)直线AB 与抛物线C 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l 与AB 平行,且与抛物线C 相切,切点为N ,试问△ABN 的面积是否是定值.若是,求出这个定值;若不是,请说明理由. 设M (x 0,y 0),由题知F (0,p2),所以MF ⃗⃗⃗⃗⃗⃗ =(-x 0,p 2-y 0)=(4,0).所以{-x 0=4,p 2-y 0=0,即{x 0=-4,y 0=p 2. 代入x 2=2py (p>0)中,得16=p 2,解得p=4. 所以抛物线C 的方程为x 2=8y.(2)由题意知,直线AB 的斜率存在,设其方程为y=kx+b. 由{y =kx +b ,x 2=8y ,消去y ,整理得x 2-8kx-8b=0, 则x 1+x 2=8k ,x 1x 2=-8b.∴y 1+y 2=k (x 1+x 2)+2b=8k 2+2b ,设AB 的中点为Q , 则点Q 的坐标为(4k ,4k 2+b ). 由条件,设切线方程为y=kx+t , 由{y =kx +t ,x 2=8y ,消去y 整理得x 2-8kx-8t=0.∵直线与抛物线相切, ∴Δ=64k 2+32t=0. ∴t=-2k 2. ∴x 2-8kx+16k 2=0, ∴x=4k , ∴y=2k 2.∴切点N 的坐标为(4k ,2k 2). ∴NQ ⊥x 轴,∴|NQ|=(4k 2+b )-2k 2=2k 2+b. ∵x 2-x 1=m 2+1,又∵(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=64k 2+32b.∴2k 2+b=(m 2+1)232.∴S △ABN =12|NQ|·|x 2-x 1|=12·(2k 2+b )·|x 2-x 1|=(m 2+1)364.∵m 为常数,∴△ABN 的面积为定值,且定值为(m 2+1)364.21.(本小题满分12分)已知F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,点P -1,√22在椭圆E 上,且抛物线y 2=4x 的焦点是椭圆E 的一个焦点. (1)求椭圆E 的标准方程;(2)过点F 2作不与x 轴重合的直线l ,设l 与圆x 2+y 2=a 2+b 2相交于A ,B 两点,且与椭圆E 相交于C ,D 两点,当F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗⃗ =1时,求△F 1CD 的面积.y 2=4x 焦点为F (1,0),则椭圆E 的焦点F 1(-1,0),F 2(1,0). 2a=|PF 1|+|PF 2|=2√2. 解得a=√2,c=1,b=1,所以椭圆E 的标准方程为x 22+y 2=1.(2)由已知,可设直线l 方程为x=ty+1,A (x 1,y 1),B (x 2,y 2).联立{x =ty +1,x 2+y 2=3,得(t 2+1)y 2+2ty-2=0,易知Δ>0.则{y 1+y 2=-2tt 2+1,y 1y 2=-2t 2+1.F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B⃗⃗⃗⃗⃗⃗⃗ =(x 1+1)(x 2+1)+y 1y 2=(ty 1+2)(ty 2+2)+y 1y 2 =(t 2+1)y 1y 2+2t (y 1+y 2)+4=2-2t 2t 2+1.因为F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗⃗ =1, 所以2-2t 2t 2+1=1,解得t 2=13.联立{x =ty +1,x 22+y 2=1,得(t 2+2)y 2+2ty-1=0,Δ=8(t 2+1)>0.设C (x 3,y 3),B (x 4,y 4), 则{y 3+y 4=-2tt 2+2,y 3y 4=-1t 2+2.S △F 1CD =12|F 1F 2|·|y 3-y 4|=√8(1+t 2)t 2+2=√8×4373=4√67. 22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的长轴长为2√2,离心率为√22.(1)求椭圆C 的方程;(2)过动点M (0,m )(m>0)的直线交x 轴于点N ,交椭圆C 于点A ,P (P 在第一象限),且点M 是线段PN 的中点.过点P 作x 轴的垂线交椭圆C 于另一点Q ,延长QM 交椭圆C 于点B.①设直线PM 、QM 的斜率分别为k ,k',证明kk '为定值;②求直线AB 斜率取最小值时,直线PA 的方程.由题意得2a=2√2,ca =√22, 所以a=√2,c=1,b=√a 2-c 2=√2-1=1. 故椭圆方程为x 22+y 2=1.(2)①设P (x 0,y 0)(x 0>0,y 0>0),由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ), 所以直线PM 的斜率k=2m -m x 0=m x 0,直线QM 的斜率k'=-2m -m x 0=-3mx 0.此时kk '=-13,所以kk '为定值-13.②设A (x 1,y 1),B (x 2,y 2),直线PA 的方程为y=kx+m ,直线QB 的方程为y=-3kx+m.联立{y =kx +m ,x 22+y 2=1,整理得(2k 2+1)x 2+4kmx+2m 2-2=0, 由{Δ=16k 2m 2-8(m 2-1)(2k 2+1)>0,x 0x 1=2m 2-22k 2+1, 可得x 1=2m 2-2(2k 2+1)x 0, y 1=kx 1+m=k 2m 2-2(2k 2+1)x 0+m ,同理x 2=2m 2-2(18k 2+1)x 0,y 2=-3kx 2+m=-3k2m 2-2(18k 2+1)x 0+m.所以x 1-x 2=32k 2(m 2-1)(2k 2+1)(18k 2+1)x 0, y 1-y 2=3k 2m 2-2(18k 2+1)x 0+k2m 2-2(2k 2+1)x 0,y 1-y 2=2k (m 2-1)24p 2+4(2k 2+1)(18k 2+1)x 0=8k (m 2-1)6k 2+1(2k 2+1)(18k 2+1)x 0,所以k AB =y 1-y 2x 1-x 2=6k 2+14k=146k+1k ,由m>0,x 0>0,可知k>0,所以6k+1k≥2√6,当且仅当k=√66时取等号.由P (x 0,2m ),m>0,x 0>0在椭圆C :x 22+y 2=1上,得x 0=√2-8m 2, k=m x 0=√2-8m 2,此时√2-8m2=√66,即m=√77,word11 / 11 由Δ>0得,m 2<2k 2+1,所以k=√66时,m=√77符合题意.所以直线AB 的斜率最小时,直线PA 的方程为y=√66x+√77.。
新教材 人教A版高中数学选择性必修第一册 第三章 圆锥曲线的方程 讲义(知识点考点汇总及配套习题)
第三章 圆锥曲线的方程3.1 椭圆 ................................................................................................................................ - 1 -3.1.1 椭圆及其标准方程 .............................................................................................. - 1 - 3.1.2 椭圆的简单几何性质 ........................................................................................ - 12 -第1课时 椭圆的简单几何性质 ........................................................................ - 12 - 第2课时 椭圆的标准方程及性质的应用 ........................................................ - 23 -3.2 双曲线 .......................................................................................................................... - 35 -3.2.1 双曲线及其标准方程 ........................................................................................ - 35 - 3.2.2 双曲线的简单几何性质 .................................................................................... - 46 - 3.3 抛物线 .......................................................................................................................... - 60 -3.3.1 抛物线及其标准方程 ........................................................................................ - 60 - 3.3.2 抛物线的简单几何性质 .................................................................................... - 70 - 章末复习 ............................................................................................................................... - 82 -3.1 椭圆3.1.1 椭圆及其标准方程2008年9月25日211.椭圆的定义把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,焦距的一半称为半焦距.思考:(1)椭圆定义中将“大于|F1F2|”改为“等于|F1F2|”的常数,其他条件不变,点的轨迹是什么?(2)椭圆定义中将“大于|F1F2|”改为“小于|F1F2|”的常数,其他条件不变,动点的轨迹是什么?[提示](1)点的轨迹是线段F1F2.(2)当距离之和小于|F1F2|时,动点的轨迹不存在.2.椭圆的标准方程1.思考辨析(正确的打“√”,错误的打“×”)(1)平面内到两定点距离之和等于定长的点的轨迹为椭圆.()(2)已知椭圆的焦点是F1,F2,P是椭圆上的一动点,如果延长F1P到Q,使得|PQ|=|PF2|,则动点Q的轨迹为圆.()(3)方程x2a2+y2b2=1(a>0,b>0)表示的曲线是椭圆.()[提示](1)×(2)√(3)×2.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于( )A .4B .5C .8D .10D [由椭圆方程知a 2=25,则a =5,|PF 1|+|PF 2|=2a =10.]3.椭圆的两个焦点坐标分别为F 1(0,-8),F 2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为( )A .x 2100+y 236=1B .y 2400+x 2336=1C .y 2100+x 236=1D .y 220+x 212=1C [由条件知,焦点在y 轴上,且a =10,c =8, 所以b 2=a 2-c 2=36,所以椭圆的标准方程为y 2100+x 236=1.]4.方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.(-6,-2)∪(3,+∞) [由a 2>a +6>0得a >3或-6<a <-2.]【例1】 求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为F 1(-4,0),F 2(4,0),并且椭圆上一点P 与两焦点的距离的和等于10;(2)焦点坐标分别为(0,-2),(0,2),经过点(4,32); (3)经过两点(2,-2),⎝⎛⎭⎪⎫-1,142.[解] (1)因为椭圆的焦点在x 轴上,且c =4,2a =10,所以a =5,b =a 2-c 2=25-16=3,所以椭圆的标准方程为x 225+y 29=1.(2)因为椭圆的焦点在y 轴上,所以可设它的标准方程为y 2a 2+x 2b2=1(a >b >0).法一:由椭圆的定义知2a =(4-0)2+(32+2)2+(4-0)2+(32-2)2=12,解得a =6.又c =2,所以b =a 2-c 2=4 2.所以椭圆的标准方程为y 236+x 232=1.法二:因为所求椭圆过点(4,32),所以18a 2+16b 2=1. 又c 2=a 2-b 2=4,可解得a 2=36,b 2=32. 所以椭圆的标准方程为y 236+x 232=1.(3)法一:若焦点在x 轴上,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由已知条件得⎩⎪⎨⎪⎧4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎨⎧a 2=8,b 2=4.所以所求椭圆的标准方程为x 28+y 24=1.若焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).由已知条件得⎩⎪⎨⎪⎧4b 2+2a 2=1,1b 2+144a 2=1,解得⎩⎨⎧b 2=8,a 2=4.则a 2<b 2,与a >b >0矛盾,舍去. 综上可知,所求椭圆的标准方程为x 28+y 24=1.法二:设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).分别将两点的坐标(2,-2),⎝ ⎛⎭⎪⎫-1,142代入椭圆的一般方程,得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1, 解得⎩⎪⎨⎪⎧A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1.用待定系数法求椭圆标准方程的一般步骤(1)定位置:根据条件判断椭圆的焦点是在x 轴上,还是在y 轴上,还是两个坐标轴都有可能.(2)设方程:根据上述判断设方程x 2a 2+y 2b 2=1(a >b >0)或x 2b 2+y 2a 2=1(a >b >0)或整式形式mx 2+ny 2=1(m >0,n >0,m ≠n ).(3)找关系:根据已知条件建立关于a ,b ,c (或m ,n )的方程组. (4)得方程:解方程组,将解代入所设方程,写出标准形式即为所求.[跟进训练]1.求与椭圆x 225+y 29=1有相同焦点,且过点(3,15)的椭圆的标准方程.[解] 法一:因为所求椭圆与椭圆x 225+y 29=1的焦点相同,所以其焦点在x 轴上,且c 2=25-9=16.设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).因为c 2=16,且c 2=a 2-b 2,故a 2-b 2=16 ①. 又点(3,15)在所求椭圆上,所以32a 2+(15)2b 2=1,即9a 2+15b2=1 ②.由①②得a 2=36,b 2=20,所以所求椭圆的标准方程为x 236+y 220=1.法二:由题意可设所求椭圆的标准方程为x 225+λ+y 29+λ=1.又椭圆过点(3,15),将x =3,y =15代入方程得925+λ+159+λ=1,解得λ=11或λ=-21(舍去).故所求椭圆的标准方程为x 236+y 220=1.【例2】 (1)已知椭圆x 216+y 212=1的左焦点是F 1,右焦点是F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|∶|PF 2|=( )A .3∶5B .3∶4C .5∶3D .4∶3(2)已知椭圆x 24+y 23=1中,点P 是椭圆上一点,F 1,F 2是椭圆的焦点,且∠PF 1F 2=120°,则△PF 1F 2的面积为________.[思路探究] (1)借助PF 1的中点在y 轴上,且O 为F 1F 2的中点,所以PF 2⊥x 轴,再用定义和勾股定理解决.(2)利用椭圆的定义和余弦定理,建立关于|PF 1|,|PF 2|的方程,通过解方程求解.(1)C (2)335 [(1)依题意知,线段PF 1的中点在y 轴上,又原点为F 1F 2的中点,易得y 轴∥PF 2,所以PF 2⊥x 轴,则有|PF 1|2-|PF 2|2=4c 2=16,又根据椭圆定义知|PF 1|+|PF 2|=8,所以|PF 1|-|PF 2|=2,从而|PF 1|=5,|PF 2|=3,即|PF 1|∶|PF 2|=5∶3.(2)由x 24+y 23=1,可知a =2,b =3,所以c =a 2-b 2=1,从而|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos ∠PF 1F 2,即|PF 2|2=|PF 1|2+4+2|PF 1|.①由椭圆定义得|PF 1|+|PF 2|=2a =4. ②由①②联立可得|PF 1|=65.所以S △PF 1F 2=12|PF 1||F 1F 2|sin ∠PF 1F 2=12×65×2×32=335.]椭圆定义在焦点三角形中的应用技巧(1)椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .(2)涉及焦点三角形面积时,可把|PF 1|,|PF 2|看作一个整体,运用|PF 1|2+|PF 2|2=(|PF1|+|PF2|)2-2|PF1|·|PF2|及余弦定理求出|PF1|·|PF2|,而无需单独求解.1.本例(2)[探究问题]1.用定义法求椭圆的方程应注意什么?[提示]用定义法求椭圆的方程,首先要利用平面几何知识将题目条件转化为到两定点的距离之和为定值,然后判断椭圆的中心是否在原点、对称轴是否为坐标轴,最后由定义确定椭圆的基本量a,b,c.2.利用代入法求轨迹方程的步骤是什么?[提示] (1)设点:设所求轨迹上动点坐标为M (x ,y ),已知曲线上动点坐标为P (x 1,y 1).(2)求关系式:用点M 的坐标表示出点P 的坐标,即得关系式⎩⎨⎧x 1=g (x ,y ),y 1=h (x ,y ).(3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可.【例3】 (1)已知P 是椭圆x 24+y 28=1上一动点,O 为坐标原点,则线段OP中点Q 的轨迹方程为______________.(2)如图所示,圆C :(x +1)2+y 2=25及点A (1,0),Q 为圆上一点,AQ 的垂直平分线交CQ 于点M ,求点M 的轨迹方程.[思路探究] (1)点Q 为OP 的中点⇒点Q 与点P 的坐标关系⇒代入法求解. (2)由垂直平分线的性质和椭圆的定义进行求解.(1)x 2+y 22=1 [设Q (x ,y ),P (x 0,y 0),由点Q 是线段OP 的中点知x 0=2x ,y 0=2y ,又x 204+y 208=1, 所以(2x )24+(2y )28=1,即x 2+y 22=1.](2)[解] 由垂直平分线的性质可知|MQ |=|MA |, ∴|CM |+|MA |=|CM |+|MQ |=|CQ |, ∴|CM |+|MA |=5.∴点M 的轨迹为椭圆,其中2a =5,焦点为C (-1,0),A (1,0),∴a =52,c =1 ,∴b 2=a 2-c 2=254-1=214.∴所求点M 的轨迹方程为x 2254+y 2214=1,即4x 225+4y 221=1.1.与椭圆有关的轨迹方程的求法常用方法有:直接法、定义法和代入法,本例(1)所用方法为代入法,例(2)所用方法为定义法.2.对定义法求轨迹方程的认识如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法.3.代入法(相关点法)若所求轨迹上的动点P (x ,y )与另一个已知曲线C :F (x ,y )=0上的动点Q (x 1,y 1)存在着某种联系,可以把点Q 的坐标用点P 的坐标表示出来,然后代入已知曲线C 的方程 F (x ,y )=0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法).[跟进训练]2.已知x 轴上一定点A (1,0),Q 为椭圆x 24+y 2=1上任一点,求线段AQ 中点M 的轨迹方程.[解] 设中点M 的坐标为(x ,y ),点Q 的坐标为(x 0,y 0). 利用中点坐标公式, 得⎩⎪⎨⎪⎧x =x 0+12,y =y 02,∴⎩⎨⎧x 0=2x -1,y 0=2y .∵Q (x 0,y 0)在椭圆x 24+y 2=1上,∴x 204+y 20=1. 将x 0=2x -1,y 0=2y 代入上式,得(2x -1)24+(2y )2=1.故所求AQ 的中点M 的轨迹方程是⎝ ⎛⎭⎪⎫x -122+4y 2=1.1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a ,当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.由椭圆的标准方程可以确定焦点坐标,或求参数的值(或取值范围). (1)求椭圆的焦点坐标时,若方程不为标准方程,应先将其化为标准方程,确定a 2,b 2的值和焦点所在的坐标轴,再利用关系式a 2=b 2+c 2求出c ,即可写出焦点坐标.(2)已知方程求参数的值(或取值范围)时,需注意:对于方程x 2m +y 2n =1,当m>n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.特别地,当n =m >0时,方程表示圆心在原点的圆.若已知方程不是标准方程,需先进行转化.3.椭圆上的点P 与两焦点F 1,F 2构成的三角形叫做焦点三角形,在焦点三角形中,令∠F 1PF 2=θ,如图.(1)当点P 与B 1或B 2重合时,∠F 1PF 2最大. (2)焦点△PF 1F 2的周长为2(a +c ). (3)|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ.(4)S △PF 1F 2=12|PF 1||PF 2|sin θ,且当P 与B 1或B 2重合时,面积最大.4.求与椭圆有关的轨迹方程的方法一般有:定义法、直接法和代入法(相关点法).1.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A .5B .6C .7D .8D [根据椭圆的定义知,P 到另一个焦点的距离为2a -2=2×5-2=8.] 2.已知椭圆4x 2+ky 2=4的一个焦点坐标是(0,1),则实数k 的值是( ) A .1 B .2 C .3D .4B [椭圆方程可化为x 2+y 24k =1,由题意知⎩⎪⎨⎪⎧4k >1,4k -1=1,解得k =2.]3.若方程x 2m +y 22m -1=1表示椭圆,则实数m 满足的条件是________.⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m >12且m ≠1[由方程x 2m +y22m -1=1表示椭圆,得⎩⎨⎧m >0,2m -1>0,m ≠2m -1,解得m >12且m ≠1.]4.椭圆的两焦点为F 1(-4,0),F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为________.x 225+y 29=1 [如图,当P 在y 轴上时△PF 1F 2的面积最大,∴12×8b =12,∴b =3. 又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆的标准方程为x 225+y 29=1.]5.设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,设椭圆C 上一点⎝⎛⎭⎪⎫3,32到两焦点F 1,F 2的距离和等于4,写出椭圆C 的方程和焦点坐标.[解] ∵椭圆上一点到两焦点的距离之和为4, ∴2a =4,a 2=4,∵点⎝ ⎛⎭⎪⎫3,32是椭圆上的一点,∴(3)24+⎝ ⎛⎭⎪⎫322b 2=1,∴b 2=3,∴c 2=1,∴椭圆C 的方程为x 24+y 23=1.焦点坐标分别为(-1,0),(1,0).3.1.2 椭圆的简单几何性质第1课时 椭圆的简单几何性质使用多媒体手段展示大小、扁圆程度等不同的椭圆,体现椭圆形状的美,然1.椭圆的简单几何性质焦点在x轴上焦点在y轴上(1)定义:椭圆的焦距与长轴长的比ca称为椭圆的离心率.(2)性质:离心率e的范围是(0,1).当e越接近于1时,椭圆越扁;当e越接近于0时,椭圆就越接近于圆.思考:离心率相同的椭圆是同一椭圆吗?[提示]不是,离心率是比值,比值相同不代表a,c值相同,它反映的是椭圆的扁圆程度.1.思考辨析(正确的打“√”,错误的打“×”)(1)椭圆x2a2+y2b2=1(a>b>0)的长轴长等于a. ()(2)椭圆上的点到焦点的距离的最小值为a-c. ()(3)椭圆的离心率e越小,椭圆越圆.()[提示](1)×(2)√(3)√2.经过点P(3,0),Q(0,2)的椭圆的标准方程为()A.x29+y24=1B.y29+x24=1C.x29-y24=1 D.y29-x24=1A[由题易知点P(3,0),Q(0,2)分别是椭圆长轴和短轴的一个端点,故椭圆的焦点在x轴上,所以a=3,b=2,故椭圆的标准方程为x29+y24=1.]3.椭圆的长轴长是短轴长的2倍,它的一个焦点为(0,3),则椭圆的标准方程是________.x2+y24=1[依题意得2a=4b,c=3,又a2=b2+c2,∴a=2,b=1,故椭圆的标准方程为x2+y24=1.]4.设椭圆x225+y2b2=1(0<b<5)的长轴长、短轴长、焦距成等差数列,则离心率的值为________.35[由条件知2×5+2c=4b,即2b=c+5,又a2-b2=c2,a=5解得b=4,c=3.∴离心率e=ca=35.]【例1】(1)椭圆x2a2+y2b2=1(a>b>0)与椭圆xa2+yb2=λ(λ>0且λ≠1)有()A.相同的焦点B.相同的顶点C.相同的离心率D.相同的长、短轴(2)求椭圆9x2+16y2=144的长轴长、短轴长、离心率、焦点坐标和顶点坐标.(1)C[在两个方程的比较中,端点a、b均取值不同,故A,B,D都不对,而a,b,c虽然均不同,但倍数增长一样,所以比值不变,故应选C.](2)[解]把已知方程化成标准方程为x216+y29=1,所以a=4,b=3,c=16-9=7,所以椭圆的长轴长和短轴长分别是2a=8和2b=6;离心率e=ca=74;两个焦点坐标分别是(-7,0),(7,0);四个顶点坐标分别是(-4,0),(4,0),(0,-3),(0,3).由标准方程研究性质时的两点注意(1)已知椭圆的方程讨论性质时,若不是标准形式的先化成标准形式,再确定焦点的位置,进而确定椭圆的类型.(2)焦点位置不确定的要分类讨论,找准a与b,正确利用a2=b2+c2求出焦点坐标,再写出顶点坐标.同时要注意长轴长、短轴长、焦距不是a,b,c,而应是2a,2b,2c.(1)椭圆过点(3,0),离心率e=6 3;(2)在x轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为8;(3)经过点M(1,2),且与椭圆x212+y26=1有相同的离心率.[思路探究](1)焦点位置不确定,分两种情况求解.(2)利用直角三角形斜边的中线等于斜边的一半求解.(3)法一:先求离心率,根据离心率找到a与b的关系,再用待定系数法求解.法二:设与椭圆x212+y26=1有相同离心率的椭圆方程为x212+y26=k1(k1>0)或y212+x26=k2(k2>0).[解](1)若焦点在x轴上,则a=3,∵e=ca=63,∴c=6,∴b2=a2-c2=9-6=3.∴椭圆的方程为x29+y23=1.若焦点在y轴上,则b=3,∵e=ca=1-b2a2=1-9a2=63,解得a2=27.∴椭圆的方程为y227+x29=1.∴所求椭圆的方程为x29+y23=1或y227+x29=1.(2)设椭圆方程为x2a2+y2b2=1(a>b>0).如图所示,△A1F A2为等腰直角三角形,OF 为斜边A 1A 2的中线(高), 且|OF |=c ,|A 1A 2|=2b , ∴c =b =4,∴a 2=b 2+c 2=32, 故所求椭圆的方程为x 232+y 216=1.(3)法一:由题意知e 2=1-b 2a 2=12,所以b 2a 2=12,即a 2=2b 2,设所求椭圆的方程为x 22b 2+y 2b 2=1或y 22b 2+x 2b2=1. 将点M (1,2)代入椭圆方程得12b 2+4b 2=1或42b 2+1b 2=1,解得b 2=92或b 2=3. 故所求椭圆的方程为x 29+y 292=1或y 26+x 23=1.法二:设所求椭圆方程为x 212+y 26=k 1(k 1>0)或y 212+x 26=k 2(k 2>0),将点M 的坐标代入可得112+46=k 1或412+16=k 2,解得k 1=34,k 2=12,故x 212+y 26=34或y 212+x 26=12,即所求椭圆的标准方程为x 29+y 292=1或y 26+x 23=1.利用椭圆的几何性质求标准方程的思路(1)利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:①确定焦点位置;②设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);③根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b 2=a 2-c 2,e =ca等.(2)在椭圆的简单几何性质中,轴长、离心率不能确定椭圆的焦点位置,因此仅依据这些条件求所要确定的椭圆的标准方程可能有两个.提醒:与椭圆x 2a 2+y 2b 2=1(a >b >0)有相同离心率的椭圆方程为x 2a 2+y 2b 2=k 1(k 1>0,焦点在x 轴上)或y 2a 2+x 2b2=k 2(k 2>0,焦点在y 轴上).[跟进训练]1.已知椭圆的长轴长是短轴长的3倍,且过点A (3,0),并且以坐标轴为对称轴,求椭圆的标准方程.[解] 法一:若椭圆的焦点在x 轴上,则设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b>0).由题意得⎩⎪⎨⎪⎧2a =3·2b ,9a 2+0b 2=1,解得⎩⎨⎧a =3,b =1.所以椭圆的标准方程为x 29+y 2=1.若椭圆的焦点在y 轴上,则设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧2a =3·2b ,0a 2+9b 2=1,解得⎩⎨⎧a =9,b =3.所以椭圆的标准方程为y 281+x 29=1.综上所述,椭圆的标准方程为x 29+y 2=1或y 281+x 29=1.法二:设椭圆方程为x 2m +y 2n =1(m >0,n >0,m ≠n ),则由题意得⎩⎪⎨⎪⎧9m=1,2m =3·2n 或⎩⎪⎨⎪⎧9m =1,2n =3·2m ,解得⎩⎨⎧ m =9n =1或⎩⎨⎧m =9,n =81.所以椭圆的标准方程为x 29+y 2=1或y 281+x 29=1.。
新课标人教A版高中数学知识点总结专题7解析几何之圆锥曲线
专题七解析几何之圆锥曲线【知识概要】●1.圆锥曲线的概念、标准方程与几何性质椭圆双曲线抛物线定义与两个定点1F,2F的距离(2)c之和等于常数(2)a的点的轨迹(22)a c>。
与两个定点1F,2F的距离(2)c之差的绝对值等于常数(2)a的点的轨迹(22)a c<。
与一个定点F和一条定直线l的距离相等()F l∉的点的轨迹。
标准方程①焦点在x轴上:22221x ya b+=②焦点在y轴上:22221x yb a+=①焦点在x轴上:22221x ya b-=②焦点在y轴上:22221y xa b-=①焦点在x轴上,开口向右:22y px=②焦点在x轴上,开口向左:22y px=-③焦点在y轴上,开口向上:22x py=④焦点在y轴上,开口向下:22x py=-图形①焦点在x轴上②焦点在y轴上①焦点在x轴上②焦点在y轴上①焦点在x轴上,开口向右:22y px=②焦点在x轴上,开口向左:22y px=-①②③焦点在y轴上,开口向上:22x py=④焦点在y轴上,开口向下:22x py=-③④O xyF1 F2PF1O xyF2PO xyF1F2PF1O xyF2PO xylFPO xylFPO xyP FOxyPF壹贰椭圆 双曲线 抛物线焦 点①(,0)c ± ②(0,)c ±①(,0)c ± ②(0,)c ±① (,0)2p ;②(,0)2p - ③ (0,)2p ;④(0,)2p - 顶 点 焦点在x 轴上:(,0)a ±,(0,)b ± 焦点在y 轴上: (0,)a ±, (,0)b ±焦点在x 轴上:(,0)a ± 焦点在y 轴上:(0,)a ±(0,0)关 系 222c a b =- (0a b >>) 222c a b =+ (0,0a b >>)p 为焦点到准线的距离离 心 率1ce a=< 1c e a=> 1e =准 线①焦点在x 轴上:2a x c =± ②焦点在y 轴上:2a y c =± ①焦点在x 轴上:2a x c=± ②焦点在y 轴上:2a y c =±①焦点在x 轴上,开口向右准线:2p x =-②焦点在x 轴上,开口向左准线:2p x =③焦点在y 轴上,开口向上准线:2p y =-④焦点在y 轴上,开口向下准线:2p y =渐 近 线①焦点在x 轴上:b y x a =±②焦点在y 轴上:ay x b =±统一定义 到定点F 的距离与到定直线l ()F l ∉的距离之比等于定值e 的点的集合.01e <<时,轨迹是椭圆;1>e 时,轨迹是双曲线,1=e 时,轨迹是抛物线。
专题3-3 圆锥曲线最值问题-(人教A版2019选择性必修第一册) (教师版)
圆锥曲线最值问题1 常见的几何模型①圆外点到圆上点的距离圆⊙O外一点A与圆上一点B的距离AB最小值是AB1=AO−r,最大值AB2=AO+r(r是圆的半径).②圆上点到圆外直线的距离圆上一动点P到圆外一定直线l的距离最小值是d−r,最大值d+r(r是圆的半径,d是圆心到直线l的距离);③三点共线模型一动点P到两定点A、B的距离分别为PA、PB,当P、A、B共线,且点P在A、B之间时,PA+PB取到最小值P1A+P1B=AB;当P、A、B共线,且点P在A、B同侧时,|PA−PB|取到最大值|P1A−P1B|=AB;其本质是三角形两边之和大于第三边,两边之差小于第三边;④将军饮马模型点A、B在直线l同侧,点P在直线l上,那(AP+BP)min=AP1+BP1;⑤垂线段最值模型点A是∠MON内外的一点,点P在OM上,PA与点P到射线ON的距离之和为PA+PB.(1) 点A是∠MON外,(PA+PB)min=AB1(2) 点A是∠MON内,(PA+PB)min=A′B1⑥胡不归模型如图,求k∙AC+BC(0<k<1),构造射线AE,使得角度sinα=k,则k∙AC+BC=CD+BC,问题转化为“垂线段模型”,则(k∙AC+BC)min=BF.⑦阿氏圆模型如图,圆O半径是r,点A,B在圆O外,点P是圆O上一动点,已知r=k∙OB,求k∙BP+AP的最小值.在线段OB上截取OC=k∙r,则COOP =OPOB=k⇒∆BPO∽∆PCO,即k∙PB=PC,则k∙BP+AP的最小值转化为PC+PA的最小值,当然是AC,即(k∙BP+AP)min=AC.2最值问题常见处理方法①几何法通过观察掌握几何量的变化规律,利用几何知识点找到几何量取到最值的位置,从而求出最值,这需要熟悉常见的几何模型.②代数法理解几何量之间的变化规律,找到“变化源头”,通过引入恰当的参数(一般与源头有关),把所求几何量表示成参数的式子,再利用求函数最值的方法(基本不等式、换元法、数形结合等)求得几何量的最值.【方法一】几何法【典题1】已知椭圆C:x225+y216=1内有一点M(2 ,3),F1 ,F2为椭圆的左、右焦点,P为椭圆C上的一点,求:(1)|PM|-|PF1|的最大值与最小值;(2)|PM|+|PF1|的最大值与最小值.【解析】(1)由椭圆C:x 225+y216=1可知a=5 ,b=4 ,c=3,则F1(-3 ,0) ,F2(3 ,0),则||PM|-|PF1||≤|MF1|=√34,当且仅当P、M、F1三点共线时成立,所以−√34≤|PM|-|PF1|≤√34,所以|PM|-|PF1|的最大值与最小值分别为√34和−√34;(2)2a=10 ,F2(3 ,0) ,|MF2|=√10,设P是椭圆上任一点,由|PF1|+|PF2|=2a=10 ,|PM|≥|PF2|-|MF2|,∴|PM|+|PF1|≥|PF2|-|MF2|+|PF1|≥2a-|MF2|=10−√10,等号仅当|PM|=|PF2|-|MF2|时成立,此时P、M、F2共线,由|PM|≤|PF2|+|MF2|,∴|PM|+|PF1|≤|PF2|+|MF2|+|PF1|=2a+|MF2|=10+√10,等号仅当|PM|=|PF2|+|MF2|时成立,此时P、M、F2共线,故|PM|+|PF1|的最大值10+√10与最小值为10−√10.【点拨】本题采取几何法,通过三点共线模型与椭圆的定义进行求解.【典题2】设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,记点P到点A(-1 ,1)的距离与点P到直线x=-1的距离之和的最小值为M,若B(3 ,2),记|PB|+|PF|的最小值为N,则M+N=.【解析】如图所示,过点P作PG垂直于直线x=-1,垂足为点G,由抛物线的定义可得|PG|=|PF|,所以点P到直线x=-1的距离为|PG|,所以|PA|+|PG|=|PA|+|PF|≥|AF|=√5,(三点共线模型)当且仅当A、P、F三点共线时,|PA|+|PG|取到最小值,即M=√5.如图所示,过点P作直线PH垂直于直线x=-1,垂足为点H,由抛物线的定义可得|PH|=|PF| ,点B到直线x=-1的距离为d=4,所以|PB|+|PF|=|PB|+|PH|≥4,当且仅当B、P、H三点共线时,等号成立,即N=4,(垂线段最值模型)因此M+N=√5+4.【点拨】①本题采取几何法,通过几何模型与抛物线的定义进行求解;②处理抛物线类似的题目,注意点在抛物线之内还是之外,比如本题点A在抛物线外,点B在抛物线内.=1,如图,点A的坐标为(−√5 ,0),B是圆x2+(y−√5)2=1上的点,【典题3】已知双曲线方程为x2−y24点M在双曲线的右支上,求|MA|+|MB|的最小值.【解析】设点D的坐标为(√5,0),则点A ,D是双曲线的焦点,由双曲线的定义,得|MA|-|MD|=2a=2.∴|MA|+|MB|=2+|MB|+|MD|≥2+|BD|,(此时相当于把点B看成“定点”看待,当M,B,D三点共线时|MB|+|MD|取到最小值,这是处理两动点的常规方法)又B 是圆x 2+(y −√5)2=1上的点,圆心为C(0,√5), 半径为1,故|BD|≥|CD|-1=√10−1, 从而|MA|+|MB|≥2+|BD|≥√10+1,当点M ,B 在线段CD 上时取等号,即|MA|+|MB|的最小值为√10+1.【点拨】本题眨眼一看,存在两动点M 、B ,有些头疼.题中通过双曲线的定义把|MA|+|MB|的最小值转化为|BD|最小值问题,这就是圆外一点到圆上最短距离问题,即|BD|≥|CD|-1=√10−1.注意两动点最值问题处理的方式.【典题4】 椭圆x 24+y 23=1上的点到直线l :2x +√3y -9=0的距离的最大值为 .【解析】 设与直线2x +√3y -9=0平行的直线2x +√3y +m =0与椭圆x 24+y 23=1相切,由{2x +√3y +m =0x 24+y 23=1得25x 2+16mx +4m 2−36=0, 由∆=0得m =±5,设直线2x +√3y +m =0与直线2x +√3y -9=0的距离为d , 当m =5时,d =4√77; 当m =−5时,d =2√7.椭圆x 24+y 23=1上的点到直线2x +√3y -9=0的距离的最大值为2√7.【点拨】通过观察,可知与直线l 平行且与椭圆相切的直线与椭圆的切点即是取到最小距离的点,最小距离为两平行线的距离.【方法二】代数法【典题1】 求点A(a ,0)到椭圆x 22+y 2=1上的点之间的最短距离. 【解析】设椭圆x 22+y 2=1上的点P(x ,y),其中−√2≤x ≤√2,则PA 2=(x −a )2+y 2=(x −a)2+1−x 22=x 22−2ax +a 2+1 (曲线消元)设f (x )=x 22−2ax +a 2+1, −√2≤x ≤√2,其对称轴为x =2a ,(构造函数,问题转化为二次函数定区间动轴最值问题) ① 当2a <−√2,即a <−√22时,y =f(x)在[−√2 ,√2]上递增,则f (x )min =f(−√2)=a 2+2√2a +2=(a +√2)2,即PA 的最小值为|a +√2|; ②当−√2≤2a ≤ √2,即−√22≤a ≤√22时,y =f(x)在[−√2 ,√2]上先递减再递增,则f (x )min =f (2a )=2a 2−4a 2+a 2+1=1−a 2,即PA 的最小值为√1−a 2; ③当2a > −√2,即a >−√22时,y =f(x)在[−√2 ,√2]上递减,则f (x )min =f(√2)=a 2−2√2a +2=(a −√2)2,即PA 的最小值为|a −√2|; 综上,当a <−√22时,|PA|最小为|a +√2|;−√22≤a ≤√22时,|PA|最小为√1−a 2;a >−√22时,|PA|最小为|a −√2|.【点拨】① 两点A 、B 距离AB 往往用两点距离公式√(x A −x B )2+(y A −y B )2表示;② 本题把求距离最值问题转化为函数的最值问题,函数问题优先讨论定义域x ∈[−√2 ,√2],函数含有参数a ,则按照“二次函数动轴定区间最值问题”的解题套路根据对称轴x =2a 与区间[−√2 ,√2]的相对位置进行分类讨论;③ 本题还是利用椭圆的参数方程{x =acosθy =bsinθ,设椭圆上点P(√2cosθ ,sinθ),从而构造函数|PA|=√cos 2θ−2√2acosθ+a 2+1进行分析,相当引入变量θ表示PA ,而解析中是引入变量x .【典题2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,左顶点为A ,离心率为√22,点B 是椭圆上的动点,△ABF 1的面积的最大值为√2−12. (1)求椭圆C 的方程;(2)设经过点F 1的直线l 与椭圆C 相交于不同的两点M ,N ,线段MN 的中垂线为l′.若直线l′与直线l 相交于点P ,与直线x =2相交于点Q ,求|PQ||MN|的最小值.【解析】(1)过程略,椭圆C 的方程为x 22+y 2=1. (2)(采取代数法,思路很直接,引入变量表示|PQ||MN|再求其最值,而|PQ |,|MN|是线段,用两点距离公式和弦长公式求出,由于它们是由直线l 引起,故该变量与直线方程有关) 由题意知直线l 的斜率不为0,故设直线l 的方程为x =my -1, 设M(x 1 ,y 1) ,N(x 2 ,y 2) ,P(x P ,y P ) ,Q(2 ,y Q ). 联立{x 2+2y 2=2x =my −1,得(m 2+2)y 2-2my -1=0.此时△=8(m 2+1)>0.∴y 1+y 2=2mm 2+2,y 1y 2=−1m 2+2.由弦长公式,得|MN |=√1+m 2|y 1−y 2|=√1+m 2√4m 2+4m 2+8m 2+2=2√2⋅m 2+1m 2+2,(用m 表示|MN |,弦长公式求得) 又y P =y 1+y 22=m m 2+2,∴x P =my P -1=−2m 2+2.∴P(−2m 2+2,mm 2+2),∵直线l 与直线l′相互垂直,∴k PQ ∙k l =−1 ∴y Q −m m 2+22+2m 2+2⋅1m=−1⇒y Q =−2m −mm 2+2, 即Q(2 ,−2m −mm 2+2),∴|PQ|=√1+m 2⋅2m 2+6m 2+2,∴|PQ||MN|=22√2√m 2+1=√22⋅2√m 2+1=√22(√m 2+1√m 2+1)≥2,当且仅当√m 2+1=√m 2+1m =±1时等号成立.∴当m =±1,即直线l 的斜率为±1时,|PQ||MN|取得最小值2. 【点拨】 ① 本题中求|PQ||MN|的最小值,用代数法,则可把|PQ|、|MN|表示出来,|MN|用到了弦长公式,而|PQ|用两点距离公式,最后|PQ||MN|=√222√m 2+1,则问题就转化为求函数f (m )=√22⋅2√m 2+1的最小值,利用了基本不等式求解;② 求|PQ|时,也可以|PQ |=√1+m 2|x P −2|=√1+m 2⋅2m 2+6m 2+2.【典题3】P是抛物线x2=2y上的动点,过P(x0 ,y0)作圆C:x2+(y-1)2=1的两条切线l1,l2交x轴于A,B 两点,(1)若两条切线l1,l2的斜率乘积为1,求P点的纵坐标;(2)求当4<y0<8时,△PAB面积的取值范围.【解析】(1)设点直线PA ,PB的斜率分别为k1 ,k2,记P(x0 ,y0)∴PA的方程:y-y0=k1(x-x0),则由直线l1与圆相切得:010√1+k1=1⇒(x02−1)k12+2x0(1−y0)k1+y02−2y0=0同理直线l2与圆相切可得(x02−1)k22+2x0(1−y0)k2+y02−2y0=0所以k1 ,k2是(x02−1)k2+2x0(1−y0)k+y02−2y0=0的两根,∴k1k2=y02−2y0 x02−1又∵k1k2=1.∴y02−2y0=x02−1,又x02=2y0,∴y02−4y0+1=0,∴y0=2±√3.(2)由(1)得x A=x0−y0k1,x B=x0−y0k2,∴S△PAB=12|AB||y P|=12y02|1k1−1k2|=12y02|k2−k1k1k2|由(1)知:|k1k2|=|y02−2y0x02−1| ,|k1−k2|=|2√y02−2y0+x02x02−1|=|2√y02x02−1|=|2y0x02−1|;∴S△PAB=12y02|k2−k1k1k2|=12y02|2y0y02−2y0|=y02|y0−2|=y02y0−2,故令t=y0-2∈(2 ,6),∴S△PAB=y02y0−2=(t+2)2t=t+4t+4∵f(t)=t+4t+4在(2 ,6)上递增,故函数值域为(8 ,323),即△PAB 面积的取值范围为(8 ,323).【点拨】① 若x 1、x 2满足ax 12+bx 2+c =0 ,ax 22+bx 2+c =0(a ≠0),则x 1、x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根;② 本题求△PAB 面积的取值范围,则先求出S △PAB =y 02y 0−2(本题给出了y 0的范围,用y 0作为变量表示面积很自然),则问题就变成求函数f (y 0)=y 02y 0−2, y 0∈(4 ,8)的值域问题,用到了换元法与对勾函数f (t )=t +4t的性质.【典题4】 如图,已知抛物线C :y 2=2px(p >0),G 为圆H :(x +2)2+y 2=1上一动点,由G 向C 引切线,切点分别为E ,F ,当G 点坐标为(-1 ,0)时,△GEF 的面积为4. (1)求C 的方程;(2)当点G 在圆H :(x +2)2+y 2=1上运动时,记k 1,k 2,分别为切线GE ,GF 的斜率,求|1k 1−1k 2|的取值范围.【解析】(1)设切线方程为:y =k(x +1),不妨设k >0. 联立{y =k(x +1)y 2=2px ,化为k 2x 2+(2k 2-2p)x +k 2=0,则△=(2k 2-2p)2-4k 4=0,化为p =2k 2.方程k 2x 2+(2k 2-2p)x +k 2=0化为(x -1)2=0,解得x =1. ∴E(1 ,2k),由对称性可知F(1,−2k),∵△GEF 的面积为4,∴12×2×4k =4,解得k =1. ∴p =2.∴C 的方程为:y 2=4x .(2)设G(x 0 ,y 0) ,(-3≤x 0≤-1),则y 02=1−(x 0+2)2.设切线方程为:y -y 0=k(x -x 0),联立{y −y 0=k(x −x 0)y 2=4x ,化为ky 2-4y +4(y 0-kx 0)=0,△1=16-16k(y 0-kx 0)=0.∴x 0k 2-ky 0+1=0,∴k 1+k 2=y 0x 0,k 1k 2=1x 0,∴|k 1-k 2|=√(k 1+k 2)2−4k 1k 2=√y 02x 02−4x 0=√y 02−4x 0|x 0|.∴|1k 1−1k 2|=|k 1−k 2||k 1k 2|=√y 02−4x 0=√1−(x 0+2)2−4x 0=√−(x 0+4)2+13∈[2 ,2√3].∴|1k 1−1k 2|的取值范围是[2 ,2√3].【点拨】理解到本题的变化源头在点G(x 0 ,y 0),利用直线与抛物线相切把|1k 1−1k 2|用x 0 ,y 0表示,由于y 02+(x 0+2)2=1,想到消元y 0,得到|1k 1−1k 2|=√−(x 0+4)2+13,把问题转化为求函数f (x 0)=√−(x 0+4)2+13的值域,注意到x 0的取值范围. 巩固练习1(★★) 已知抛物线y 2=4x 的焦点为F ,定点A(2 ,2),在此抛物线上求一点P ,使|PA|+|PF|最小,则P 点坐标为( ) A .(-2,2) B .(1,√2)C .(1,2)D .(1,-2)【答案】 C【解析】根据抛物线的定义,点P 到焦点F 的距离等于它到准线l 的距离, 设点P 到准线l :x =-1的距离为PQ,则所求的|PA|+|PF|最小值,即|PA|+|PQ|的最小值;根据平面几何知识,可得当P 、A 、Q 三点共线时|PA|+|PQ|最小, ∴|PA|+|PQ|的最小值为A 到准线l 的距离;此时P 的纵坐标为2,代入抛物线方程得P 的横坐标为1,得P(1,2) 故选:C .2(★★) F 是椭圆x 29+y 25=1的左焦点,P 是椭圆上的动点,A(1 ,1)为定点,则|PA|+|PF|的最小值是( ) A .9−√2B .3+√2C .6−√2D .6+√2 【答案】 C【解析】椭圆x 29+y 25=1的a =3,b =√5,c =2,如图,设椭圆的右焦点为F′(2,0),则|PF|+|PF′|=2a =6;∴|PA|+|PF|=|PA|+6-|PF′| =6+|PA|-|PF′|;由图形知,当P 在直线AF′上时,||PA |-|PF ′||=|AF ′|=√2,当P 不在直线AF′上时,根据三角形的两边之差小于第三边有,||PA|-|PF′||<|AF′|=√2;∴当P 在F′A 的延长线上时,|PA|-|PF′|取得最小值−√2,∴|PA|+|PF|的最小值为6−√2.故选:C .3(★★) 点P 是双曲线x 24−y 2=1的右支上一点,M 、N 分别是(x +√5)2+y 2=1和(x −√5)2+y 2=1上的点,则|PM|-|PN|的最大值是( )A .2B .4C .6D .8 【答案】C【解析】双曲线x 24−y 2=1中,如图:∵a =2,b =1,c =√5,∴F 1(−√5,0),F 2(√5,0),∴|MP|≤|PF 1|+|MF 1|,…①∵|PN|≥|PF 2|-|NF 2|,可得-|PN|≤-|PF 2|+|NF 2|,…②∴①②相加,得|PM|-|PN|≤|PF 1|+|MF 1|-|PF 2|+|NF 2|=(|PF 1|-|PF 2|)+|MF 1|+|NF 2|∵|PF 1|-|PF 2|=2a =2×2=4,|MF 1|=|NF 2|=1∴|PM|-|PN|≤4+1+1=6故选:C .4(★★★) 【多选题】已知抛物线x 2=2py(p >0)的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB 为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q .若抛物线C 上存在一点E(t ,2)到焦点F 的距离等于3.则下列说法正确的是( )A .抛物线的方程是x 2=2yB .抛物线的准线是y =-1C .sin∠QMN 的最小值是12D .线段AB 的最小值是6【答案】BC【解析】(1)抛物线C :x 2=2py(p >0)的焦点为F (0,p 2),得抛物线的准线方程为y =−p 2, 点点E(t,2)到焦点F 的距离等于3,可得2+p 2=3,解得p =2, 则抛物线C 的方程为x 2=4y ;所以A 不正确;抛物线的准线方程:y =-1,所以B 正确;(2)由题知直线l 的斜率存在,F(0,1),设A(x 1,y 1),B(x 2,y 2),直线l 的方程为y =kx +1,由{y =kx +1x 2=4y,消去y 得x 2-4kx -4=0,所以x 1+x 2=4k,x 1x 2=-4,所以y 1+y 2=k(x 1+x 2)+2=4k 2+2,所以AB 的中点Q 的坐标为(2k,2k 2+1),|AB|=y 1+y 2+p =4k 2+2+2=4k 2+4,所以圆Q 的半径为r =2k 2+2,在等腰△QMN 中,sin∠QMN =|y Q |r =2k 2+12k 2+2=1−12k 2+2≥1−12=12, 当且仅当k =0时取等号.所以sin∠QMN 的最小值为12.所以C 正确; 线段AB 的最小值是:y 1+y 2+2=4k 2+4≥4.所以D 不正确;故选:BC .5(★★) 设P ,Q 分别为圆x 2+(y −6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是 .【答案】 6√2【解析】设椭圆上的点为(x,y),则∵圆x 2+(y -6)2=2的圆心为(0,6),半径为√2, ∴椭圆上的点(x,y)到圆心(0,6)的距离为√x 2+(y −6)2=√10(1−y)2+(y −6)2=√−9(y +23)2+50≤5√2∴P,Q 两点间的最大距离是5√2+√2=6√2.6(★★★) E 、F 是椭圆x 24+y 22=1的左、右焦点,点P 在直线x =2√2上,则∠EPF 的最大值是 .【答案】π6 【解析】设P(2√2,t)(t >0),则tan∠EPF =tan(∠EPM -∠FPM)=3√2t −√2t 1+3√2×√2t 2=2√2t+6t ≤√33(当且仅当t =√6时取等号) 此时tan∠EPF =√33,∠EPF =π6. 7(★★★) 已知过抛物线C :y 2=4x 焦点的直线交抛物线C 于P,Q 两点,交圆x 2+y 2-2x =0于M ,N 两点,其中P ,M 位于第一象限,则1|PM|+4|QN|的最小值为 .【答案】4【解析】设P(x 1,y 1),Q(x 2,y 2),再设PQ 的方程为x =my +1,联立{x =my +1y 2=4x,得y 2-4my -4=0. ∴y 1+y 2=4m ,y 1y 2=-4,则x 1x 2=(y 1y 2)216=1.|PM|∙|QN|=(|PF|-1)(|QF|-1)=(x 1+1-1)(x 2+1-1)=x 1x 2=1,则1|PM|+4|QN|≥2√1|PM|⋅4|QN|=4. ∴1|PM|+4|QN|的最小值为4.8(★★★) 如图,抛物线C :x 2=2py(p >0)的焦点为F ,以A(x 1 ,y 1)(x 1≥0)为直角顶点的等腰直角△ABC 的三个顶点A ,B ,C 均在抛物线C 上.(1)过Q(0 ,-3)作抛物线C 的切线l ,切点为R ,点F 到切线l 的距离为2,求抛物线C 的方程;(2)求△ABC 面积的最小值.【答案】 (1) x 2=4y (2) 4p 2【解析】(1)设过点Q(0,-3)的抛物线C 的切线l :y =kx -3,联立抛物线C :x 2=2py(p >0),得x 2-2pkx +6p =0,则△=4p 2k 2-4×6p =0,得pk 2=6,∵F(0,p 2),F 到切线l 的距离为d =|p 2+3|√k 2+1=2, 化简得(p +6)2=16(k 2+1),∴(p +6)2=16(6p +1)=16(p+6)p∵p >0,∴p +6>0,得p 2+6p -16=(p +8)(p -2)=0,∴p=2.∴抛物线方程为x2=4y.(2)已知直线AB不会与坐标轴平行,设直线AB:y-y1=t(x-x1)(t>0),联立抛物线方程,得x2-2ptx+2p(tx1-y1)=0,则x1+x B=2pt,则x B=2pt-x1,同理可得x C=−2pt−x1.∵|AB|=|AC|,即√1+t2|x B-x1|=√1+1t2|x C-x1|,∴t(x B-x1)=x1-x C,即x1=p(t 2−1t)t+1.∴|AB|=√1+t2|x B-x1|=√1+t2(2pt-2x1)=2p√1+t2(t2+1)t(t+1).∵t2+1t≥2(当且仅当t=1时,等号成立),√t2+1 t+1=√t2+1t2+2t+1≥√t2+1t2+1+(t2+1)=√22(当且仅当t=1时等号成立),所以|AB|≥2√2p,△ABC面积的最小值为4p2.9(★★★★) 已知抛物线C:y2=2px(p>0),焦点为F,直线l交抛物线C于A(x1 ,y1),B(x2 ,y2)两点,D(x0 ,y0)为AB的中点,且|AF|+|BF|=1+2x0.(1)求抛物线C的方程;(2)若x1x2+y1y2=-1,求x0|AB|的最小值.【答案】(1) y2=2x(2) √24【解析】(1)根据抛物线的定义知|AF|+|BF|=x1+x2+p,x1+x3=2x D,∵|AF|+|BF|=1+2x D,∴p=1,∴y2=2x.(2)设直线l的方程为x=my+b,代入抛物线方程,得y2-2my-2b=0,∵x1x2+y1y2=-1,即y12y124+y1y2=−1,∴y1y2=-2,即y1y2=-2b=-2,∴b=1,∴y1+y2=2m,y1y2=-2,|AB|=√1+m2|y1−y2|=√1+m2⋅√(y1+y2)2−4y1y2=2√1+m2⋅√m2+2x D=x1+x22=y12+y124=14[(y1+y2)2−2y1y2]=m2+1,∴x0|AB|=22√m2+1⋅√m2+2令t=m2+1,t∈[1,+∞),则x0|AB|=2√t⋅√t+1=2√1+1t≥√24;即x0|AB|的最小值为√24.。
高中数学人教a版教材中圆锥曲线内容的比较研究
高中数学人教a版教材中圆锥曲线内容的比较研究近年来,圆锥曲线的研究受到了越来越多的关注,有不少学者对它进行了深入的研究。
圆锥曲线是数学中一种重要的曲线,它具有特殊的几何形状,同时也由有重要的数学意义。
本文主要以高中数学人教a版教材中圆锥曲线内容的比较研究为研究对象,探讨不同版本的教材中圆锥曲线的相关内容及其对比。
首先,本文分析了不同版本的教材中圆锥曲线的定义、性质和求解法。
定义方面,人教a版教材将圆锥曲线定义为以圆锥的双曲线的投影,而新课改后的教材则将圆锥曲线定义为曲面上三维曲线的投影,比起之前的定义更加精确。
性质方面,人教a版教材只将它的性质列举出来,并没有进行进一步的解析与详细说明,而新课后的教材则对这些性质进行了详细解释,使读者能够更好地理解这些性质。
至于求解法,人教a版教材在此处只是简单地介绍了直线经过圆锥曲线上两点的方法,而新课后的教材则更进一步的提出了曲线的选点法,以及圆锥曲线上取点的精确求解法,使得学生能够熟练掌握求解圆锥曲线的方法。
其次,本文还分析了不同的教材中圆锥曲线的应用。
在新课后的教材中,圆锥曲线的应用范围较前有了显著的扩大,它不仅可以用于求解三维几何问题,而且可以用于确定立体图形的投影,以及解决微积分中复杂的函数分析问题。
这些新增的应用方面为学生掌握圆锥曲线的应用提供了更多的思路。
最后,根据本文的分析结果,可以发现新课改后的教材中圆锥曲线的内容要比人教a版教材更加全面丰富。
它不仅在理论部分添加了更多更精确的定义和性质,同时也进行了更细致的描述,提供了更丰富的求解方法;而在实际应用方面,它也将圆锥曲线的应用范围扩大到了几何、微积分等多个方面,使得学生能够更好地掌握圆锥曲线的内容。
综上所述,不同版本的教材中圆锥曲线的内容有了显著的改变,新的教材让其内容更加全面丰富,为学生掌握圆锥曲线提供了更多的理论与实际知识。
因此,圆锥曲线的学习应加强理论概念的掌握,把握相关性质及求解方法,同时灵活运用到实际中去,拓展应用范围,获得更多的知识收获。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
新教材高中数学第三章圆锥曲线的方程章末复习练习含解析新人教A版选择性必修第一册
章末复习一、圆锥曲线的定义及标准方程 1.求圆锥曲线方程的常用方法(1)直接法:动点满足的几何条件本身就是几何量的等量关系,只需把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程.(2)定义法:动点满足已知曲线的定义,可先设定方程,再确定其中的基本量.(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,再根据条件确定待定的系数. 2.求圆锥曲线方程体现了逻辑推理和数学运算、直观想象的数学素养.例1 (1)已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .以上都不对答案 C解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点的距离与它到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.(2)在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .求曲线C 的方程.解 方法一 由PD →=2MD →,知点M 为线段PD 的中点,设点M 的坐标为(x ,y ),则点P 的坐标为(x ,2y ).因为点P 在圆x 2+y 2=4上, 所以x 2+(2y )2=4,所以曲线C 的方程为x 24+y 2=1.方法二 设点M 的坐标为(x ,y ),点P 的坐标是(x 0,y 0), 由PD →=2MD →,得x 0=x ,y 0=2y , 因为点P (x 0,y 0)在圆x 2+y 2=4上, 所以x 20+y 20=4,(*)把x 0=x ,y 0=2y 代入(*)式,得x 2+4y 2=4, 所以曲线C 的方程为x 24+y 2=1.反思感悟 (1)应用定义解题时注意圆锥曲线定义中的限制条件.(2)涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.跟踪训练1 (1)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________. 答案 x 2-y 23=1解析 由题意得⎩⎪⎨⎪⎧c =2,ca=2,解得⎩⎪⎨⎪⎧a =1,c =2,则b 2=c 2-a 2=3,因此双曲线方程为x 2-y 23=1.(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.解 抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如图所示,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小, 且最小值为|MD |=2-(-2)=4, 所以|PM |+|PF |的最小值是4.此时点P 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3. 二、圆锥曲线的几何性质1.本类问题主要有两种考查类型:(1)已知圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考查重点. (2)已知圆锥曲线的性质求其方程,基本方法是待定系数法,其步骤可以概括为“先定位、后定量”.2.圆锥曲线的性质的讨论和应用充分体现了直观想象和逻辑推理的数学素养.例2 (1)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4, 所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8, 所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62.(2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 答案 x ±2y =0解析 设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a.因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝ ⎛⎭⎪⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±ba x =±22x , 即x ±2y =0.反思感悟 求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =c a,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.跟踪训练2 (1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距是c ,A ,B 分别是长轴、短轴的一个端点,O 为原点,若△ABO 的面积是3c 2,则此椭圆的离心率是( ) A.12 B.32 C.22 D.33 答案 A解析 12ab =3c 2,即a 2(a 2-c 2)=12c 4,所以(a 2+3c 2)(a 2-4c 2)=0,所以a 2=4c 2,a =2c ,故e =c a =12.(2)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|FA |=c ,则双曲线的渐近线方程为_________.答案 x ±y =0 解析 c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知, 双曲线过点⎝⎛⎭⎪⎫c ,-p 2,即c 2a 2-p 24b2=1.② 由|FA |=c ,得c 2=a 2+p 24,③由①③得p 2=4b 2.④将④代入②,得c 2a 2=2.∴a 2+b 2a 2=2,即ba=1,故双曲线的渐近线方程为y =±x ,即x ±y =0. 三、直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式.2.借用直线与圆锥曲线问题培养数学运算的数学核心素养.例 3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1, ∴椭圆的方程为x 24+y 23=1. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5, 由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4m 2-3]=1524-m 2. 由|AB ||CD |=534,得 4-m25-4m2=1, 解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.反思感悟 (1)直线与圆锥曲线的位置关系可以通过代数法判断. (2)一元二次方程的判别式Δ、弦长公式是代数法解决问题的常用工具.跟踪训练3 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),其焦点为F 1,F 2,离心率为22,直线l :x +2y-2=0与x 轴,y 轴分别交于点A ,B .(1)若点A 是椭圆E 的一个顶点,求椭圆的方程;(2)若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,求a 的取值范围. 解 (1)由椭圆的离心率为22,得a =2c , 由A (2,0),得a =2, ∴c =2,b =2, ∴椭圆方程为x 24+y 22=1.(2)由e =22,设椭圆方程为x 2a 2+2y2a2=1,联立⎩⎪⎨⎪⎧x 2a 2+2y 2a2=1,x +2y -2=0,得6y 2-8y +4-a 2=0,若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,则线段AB 与椭圆E 有公共点,等价于方程6y 2-8y +4-a 2=0在y ∈[0,1]上有解. 设f (y )=6y 2-8y +4-a 2,∴⎩⎪⎨⎪⎧Δ≥0,f 0≥0,即⎩⎪⎨⎪⎧a 2≥43,4-a 2≥0,∴43≤a 2≤4, 故a 的取值范围是⎣⎢⎡⎦⎥⎤233,2. 四、圆锥曲线的综合问题1.圆锥曲线的综合问题包括位置关系证明及定值、最值问题,解决的基本思路是利用代数法,通过直线与圆锥曲线的方程求解.2.圆锥曲线的综合问题的解决培养学生的逻辑推理和数学运算素养.例4 已知抛物线C :y 2=2px (p >0)经过点P (2,2),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)若OA ⊥OB ,求△AOB 面积的最小值.解 (1)由抛物线C :y 2=2px 经过点P (2,2)知4p =4,解得p =1. 则抛物线C 的方程为y 2=2x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12.(2)由题意知,直线AB 不与y 轴垂直,设直线AB :x =ty +a ,由⎩⎪⎨⎪⎧x =ty +a ,y 2=2x ,消去x ,得y 2-2ty -2a =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a . 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即y 21y 224+y 1y 2=0,解得y 1y 2=0(舍去)或y 1y 2=-4. 所以-2a =-4,解得a =2.所以直线AB :x =ty +2. 所以直线AB 过定点(2,0).S △AOB =12×2×||y 1-y 2=y 21+y 22-2y 1y 2=y 21+y 22+8≥2||y 1y 2+8=4. 当且仅当y 1=2,y 2=-2或y 1=-2,y 2=2时,等号成立. 所以△AOB 面积的最小值为4.反思感悟 (1)解决最值问题常见的题型,可用建立目标函数的方法求解.(2)圆锥曲线的综合问题可以从分析问题的数量关系入手,利用直线系或曲线系方程或函数方程思想,通过联想与类比,使问题获解.跟踪训练4 已知动圆P 与圆O 1:x 2-x +y 2=0内切,且与直线x =-1相切,设动圆圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过曲线C 上一点M (2,y 0)(y 0>0)作两条直线l 1,l 2与曲线C 分别交于不同的两点A ,B ,若直线l 1,l 2的斜率分别为k 1,k 2,且k 1k 2=1.证明:直线AB 过定点.(1)解 由题意可知,动圆圆心P 到点⎝ ⎛⎭⎪⎫12,0的距离与到直线x =-12的距离相等,所以点P 的轨迹是以⎝ ⎛⎭⎪⎫12,0为焦点,直线x =-12为准线的抛物线,所以曲线C 的方程为y 2=2x .(2)证明 易知M (2,2),设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +b ,联立⎩⎪⎨⎪⎧x =my +b ,y 2=2x ,得y 2-2my -2b =0,所以⎩⎪⎨⎪⎧y 1+y 2=2m ,y 1y 2=-2b ,所以⎩⎪⎨⎪⎧x 1+x 2=2m 2+2b ,x 1x 2=b 2,因为k 1k 2=y 1-2x 1-2·y 2-2x 2-2=1, 即y 1y 2-2(y 1+y 2)=x 1x 2-2(x 1+x 2), 所以b 2-2b -4m 2+4m =0, 所以(b -1)2=(2m -1)2, 所以b =2m 或b =-2m +2.当b =-2m +2时,直线AB 的方程为x =my -2m +2过定点(2,2)与M 重合,舍去; 当b =2m 时,直线AB 的方程为x =my +2m 过定点(0,-2),所以直线AB 过定点(0,-2).1.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin 40° B .2cos 40° C.1sin 50°D.1cos 50°答案 D解析 由题意可得-b a=tan 130°, 所以e =1+b 2a2=1+tan 2130° =1+sin 2130°cos 2130° =1|cos 130°|=1cos 50°.2.(2019·全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p 等于( )A .2B .3C .4D .8 答案 D解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆的焦点坐标为(±2p ,0), 所以p2=2p ,解得p =8,故选D.3.(2019·全国Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 B解析 由题意设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.令∠OAF 2=θ(O 为坐标原点),则sin θ=c a=1a.在等腰三角形ABF 1中,cos 2θ=2m2+3m 2-3m 22×2m ·3m=13,因为cos 2θ=1-2sin 2θ,所以13=1-2⎝ ⎛⎭⎪⎫1a 2,得a 2=3.又c 2=1,所以b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1,故选B.4.(2019·北京)已知椭圆C :x 2a 2+y 2b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k t -1x 1+x 2+t -12=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).。
高中数学新人教A版选修2-1课件:第二章圆锥曲线与方程2.4.2抛物线的简单几何性质
> 0.
即 A=0(直线与抛物线的对称轴平行,即相交);
≠ 0,
(2)直线与抛物线相切⇔有一个公共点,即
= 0.
≠ 0,
(3)直线与抛物线相离⇔没有公共点,即
< 0.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练2设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l
③当Δ<0时,即k>1时,l与C没有公共点,此时直线l与C相离.
综上所述,(1)当k=1或k=0时,直线l与C有一个公共点;
(2)当k<1,且k≠0时,直线l与C有两个公共点;
(3)当k>1时,直线l与C没有公共点.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
反思感悟方程思想解决直线与抛物线的位置关系
题,通过我们学过的数学知识进行求解.利用抛物线模型解决问题
时,关键是建立坐标系得到抛物线的标准方程,一般都是将抛物线
的顶点作为坐标原点,将对称轴作为x轴或y轴建立坐标系,其次要注
意抛物线上关键点的坐标,并善于运用抛物线的对称性进行求解.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练3如图是抛物线形拱桥,当水面到直线l时,拱顶离水面2
图形
对称轴
x轴
焦点
F
顶点
原点(0,0)
准线
x=-2
离心率
e=1
p
2
x轴
,0
p
开口方向 向右
p
F - ,0
2
p
y轴
F 0,
p
y轴
新教材高考数学第三章圆锥曲线的方程2-2第2课时双曲线的标准方程及性质的应用练习含解析新人教A版选择
第2课时 双曲线的标准方程及性质的应用学习目标 1.了解双曲线在实际生活中的应用.2.进一步掌握双曲线的方程及其性质的应用.知识点一 直线与双曲线的位置关系 设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),②把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线C 的渐近线平行,直线与双曲线相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2).Δ>0⇒直线与双曲线有两个公共点; Δ=0⇒直线与双曲线有一个公共点; Δ<0⇒直线与双曲线有0个公共点.思考 直线与双曲线只有一个交点,是不是直线与双曲线相切?答案 不是.当直线与双曲线的渐近线平行时,直线与双曲线只有一个交点 知识点二 弦长公式若斜率为k (k ≠0)的直线与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=1+k2[x 1+x 22-4x 1x 2].1.已知双曲线的两个焦点为F 1(-5,0),F 2(5,0),P 是其上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=1答案 C2.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.答案8333.过双曲线x 2-y 23=1的左焦点F 1作倾斜角为π6的弦AB ,则|AB |=________.答案 3解析 易得双曲线的左焦点F 1(-2,0), ∴直线AB 的方程为y =33(x +2), 与双曲线方程联立,得8x 2-4x -13=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=12,x 1x 2=-138,∴|AB |=1+k 2·x 1+x 22-4x 1x 2=1+13×⎝ ⎛⎭⎪⎫122-4×⎝ ⎛⎭⎪⎫-138=3.一、直线与双曲线的位置关系例1 已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;(2)若直线l 与双曲线C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.解 (1)由⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1,消去y 整理,得(1-k 2)x 2+2kx -2=0.由题意,知⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+81-k2>0,解得-2<k <2且k ≠±1.所以实数k 的取值范围为(-2,-1)∪(-1,1)∪(1,2).(2)设A (x 1,y 1),B (x 2,y 2),由(1),得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.又直线l 恒过点D (0,-1),则①当x 1x 2<0时,S △OAB =S △OAD +S △OBD =12|x 1|+12|x 2|=12|x 1-x 2|= 2.②当x 1x 2>0时,S △OAB =|S △OAD -S △OBD |=⎪⎪⎪⎪⎪⎪12|x 1|-12|x 2|=12|x 1-x 2|= 2.所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2,即⎝ ⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62.由(1),知上述k 的值符合题意,所以k =0或k =±62. 反思感悟 直线与双曲线(1)位置关系的判定方法:代数法(注意二次项系数为0的情况). (2)弦长公式设直线y =kx +b 与双曲线交于A (x 1,y 1),B (x 2,y 2), 则|AB |=1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2.跟踪训练1 已知双曲线焦距为4,焦点在x 轴上,且过点P (2,3). (1)求该双曲线的标准方程;(2)若直线m 经过该双曲线的右焦点且斜率为1,求直线m 被双曲线截得的弦长.解 (1)设双曲线方程为x 2a 2-y 2b2=1(a ,b >0),由已知可得左、右焦点F 1,F 2的坐标分别为(-2,0),(2,0), 则|PF 1|-|PF 2|=2=2a ,所以a =1, 又c =2,所以b =3, 所以双曲线方程为x 2-y 23=1.(2)由题意可知直线m 的方程为y =x -2, 联立双曲线及直线方程消去y 得2x 2+4x -7=0, 设两交点为A (x 1,y 1),B (x 2,y 2), 所以x 1+x 2=-2,x 1x 2=-72,由弦长公式得|AB |=1+k 2|x 1-x 2| =1+k2x 1+x 22-4x 1x 2=6.二、与双曲线有关的轨迹问题例2 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其它两观测点晚 4 s .已知各观测点到该中心的距离是1 020 m .则该巨响发生在接报中心的(假定当时声音传播的速度为340 m/s ,相关各点均在同一平面上)( )A .北偏西45°方向,距离68010 mB .南偏东45°方向,距离68010 mC .北偏西45°方向,距离680 5 mD .南偏东45°方向,距离680 5 m 答案 A解析 如图,以接报中心为原点O ,正东、正北方向为x 轴,y 轴正向,建立直角坐标系.设A ,B ,C 分别是西、东、北观测点,则A (-1 020,0),B (1 020,0),C (0,1 020). 设P (x ,y )为巨响发生点.由已知|PA |=|PC |,故P 在AC 的垂直平分线PO 上,PO 的方程为y =-x , 又B 点比A 点晚4 s 听到爆炸声,故|PB |-|PA |=340×4=1 360,可知P 点在以A ,B 为焦点的双曲线x 2a 2-y 2b2=1上,依题意得a =680,c =1 020, ∴b 2=c 2-a 2=1 0202-6802=5×3402, 故双曲线方程为x 26802-y 25×3402=1,将y =-x 代入上式,得x =±6805, ∵|PB |>|PA |,∴x =-6805,y =680 5 , 即P (-6805,6805), 故PO =68010 .故巨响发生在接报中心的北偏西45°距中心68010 m 处. 反思感悟 和双曲线有关的轨迹(1)定义法.解决轨迹问题时利用双曲线的定义,判定动点的轨迹就是双曲线. (2)直接法.根据点满足条件直接代入计算跟踪训练2 若动圆P 经过定点A (3,0),且与定圆B :(x +3)2+y 2=16外切,试求动圆圆心P 的轨迹.解 设动圆圆心P (x ,y ),半径为r . 则依题意有|PA |=r ,|PB |=r +4, 故|PB |-|PA |=4.即动圆圆心P 到两个定点B (-3,0),A (3,0)的距离之差等于常数4,且4<|AB |,因此根据双曲线定义,点P 的轨迹是以A ,B 为焦点的双曲线的右支.设其方程为x 2a 2-y 2b2=1(a >0,b >0),则c =3,2a =4,b 2=5,所以动圆圆心P 的轨迹方程为x 24-y 25=1(x ≥2).所以动圆圆心P 的轨迹是双曲线x 24-y 25=1的右支.1.已知双曲线方程为x 2-y 24=1,过点P (1,0)的直线l 与双曲线只有一个公共点,则l 共有( )A .4条B .3条C .2条D .1条 答案 B解析 因为双曲线方程为x 2-y 24=1,则P (1,0)是双曲线的右顶点,所以过P (1,0)并且和x轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外两条就是过P (1,0)分别和两条渐近线平行的直线,所以符合要求的有3条.2.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围为( ) A .(-2,2) B .[-2,2) C .(-2,2] D .[-2,2]答案 A解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0, 由Δ>0可得-2<k <2.3.过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于( )A. 3 B .2 3 C .3 3 D .4 3 答案 D解析 由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,所以|AB |=4 3.4.已知等轴双曲线的中心在原点,焦点在x 轴上,与直线y =12x 交于A ,B 两点,若|AB |=215,则该双曲线的方程为( )A .x 2-y 2=6 B .x 2-y 2=9 C .x 2-y 2=16 D .x 2-y 2=25答案 B解析 设等轴双曲线的方程为x 2-y 2=a 2(a >0),与y =12x 联立,得34x 2=a 2,∴|AB |=1+⎝ ⎛⎭⎪⎫122×433a =215,∴a =3,故选B.5.已知直线l :x -y +m =0与双曲线x 2-y 22=1交于不同的两点A ,B ,若线段AB 的中点在圆x 2+y 2=5上,则实数m 的值是________. 答案 ±1解析 由⎩⎪⎨⎪⎧x -y +m =0,x 2-y 22=1,消去y 得x 2-2mx -m 2-2=0.则Δ=4m 2+4m 2+8=8m 2+8>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2m ,y 1+y 2=x 1+x 2+2m =4m , 所以线段AB 的中点坐标为(m ,2m ). 又点(m ,2m )在x 2+y 2=5上, 所以m 2+(2m )2=5,得m =±1.1.知识清单:(1)判断直线与双曲线交点个数. (2)弦长公式. 2.方法归纳: 定义法,直接法. 3.常见误区:直线与双曲线的位置关系可以通过联立直线方程与双曲线方程得到的方程来判断,首先看二次项系数是否为零,若不为零,再利用Δ来判断直线与双曲线的位置关系.代数计算中的运算失误.1.若直线x =a 与双曲线x 24-y 2=1有两个交点,则a 的值可以是( )A .4B .2C .1D .-2 答案 A解析 因为在双曲线x 24-y 2=1中,x ≥2或x ≤-2,所以若x =a 与双曲线有两个交点, 则a >2或a <-2,故只有A 符合题意.2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 B解析 易知选项B 正确.3.等轴双曲线x 2-y 2=a 2与直线y =ax (a >0)没有公共点,则a 的取值范围是( ) A .a =1 B .0<a <1 C .a >1 D .a ≥1答案 D解析 等轴双曲线x 2-y 2=a 2的渐近线方程为y =±x ,若直线y =ax (a >0)与等轴双曲线x 2-y 2=a 2没有公共点,则a ≥1.4.直线l :y =kx 与双曲线C :x 2-y 2=2交于不同的两点,则斜率k 的取值范围是( ) A .(0,1) B .(-2,2) C .(-1,1) D .[-1,1]答案 C解析 由双曲线C :x 2-y 2=2与直线l :y =kx 联立,得(1-k 2)x 2-2=0.因为直线l :y =kx与双曲线C :x 2-y 2=2交于不同的两点,所以⎩⎪⎨⎪⎧1-k 2≠0,81-k 2>0,解得-1<k <1,即斜率k 的取值范围是(-1,1).5.设点F 1,F 2分别是双曲线C :x 2a 2-y 22=1(a >0)的左、右焦点,过点F 1且与x 轴垂直的直线l 与双曲线C 交于A ,B 两点.若△ABF 2的面积为26,则该双曲线的渐近线方程为( )A .y =±3xB .y =±33xC .y =±2xD .y =±22x 答案 D解析 设F 1(-c ,0),A (-c ,y 0),则c 2a 2-y 202=1, ∴y 202=c 2a 2-1=c 2-a 2a 2=b 2a 2=2a2, ∴y 20=4a2,∴|AB |=2|y 0|=4a.又2ABF S=26,∴12·2c · |AB |=12·2c ·4a =4ca =26, ∴c a =62, ∴b a =c 2a 2-1=22. ∴该双曲线的渐近线方程为y =±22x . 6.若直线y =kx +2与双曲线x 2-y 2=6的左支交于不同的两点,则k 的取值范围为________. 答案 ⎝ ⎛⎭⎪⎫1,153 解析 联立方程⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6得(1-k 2)x 2-4kx -10=0,①若直线y =kx +2与双曲线x 2-y 2=6的左支交于不同的两点,则方程①有两个不等的负根.所以⎩⎪⎨⎪⎧Δ=16k 2+401-k 2>0,x 1x 2=-101-k 2>0,x 1+x 2=4k1-k2<0,解得1<k <153. 7.直线y =x +1与双曲线x 22-y 23=1相交于A ,B 两点,则|AB |=________.答案 4 6解析 由⎩⎪⎨⎪⎧y =x +1,x 22-y23=1,得x 2-4x -8=0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧Δ>0,x 1+x 2=4,x 1·x 2=-8,∴|AB |=1+k 2[x 1+x 22-4x 1x 2]=2×16+32=4 6.8.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以线段F 1F 2为边作正△MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率e =________.答案3+1解析 以线段F 1F 2为边作正△MF 1F 2,则M 在y 轴上,可设|F 1F 2|=2c ,M 在y 轴正半轴,则M (0,3c ),又F 1(-c ,0),则边MF 1的中点为⎝ ⎛⎭⎪⎫-c2,32c ,代入双曲线方程,可得c 24a 2-3c 24b 2=1,由于b 2=c 2-a 2,e =c a ,则有e 2-3e 2e 2-1=4,即有e 4-8e 2+4=0,解得e 2=4±23,由于e >1,即有e =1+ 3.9.已知双曲线的方程为x 2-y 22=1,直线l 过点P (1,1),斜率为k . 当k 为何值时,直线l与双曲线有一个公共点?解 设直线l :y -1=k (x -1),即y =kx +(1-k ).由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得 (k 2-2)x 2-2k (k -1)x +k 2-2k +3=0. 当k 2-2=0,即k =±2时,方程只有一个解;当k 2-2≠0,且Δ=24-16k =0,即k =32时,方程只有一个解.综上所述,当k =±2或k =32时,直线l 与双曲线只有一个公共点.10.斜率为2的直线l 在双曲线x 23-y 22=1上截得的弦长为6,求直线l 的方程.解 设直线l 的方程为y =2x +m ,由⎩⎪⎨⎪⎧y =2x +m ,x 23-y22=1,得10x 2+12mx +3(m 2+2)=0.(*)设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 由根与系数的关系,得x 1+x 2=-65m ,x 1x 2=310(m 2+2).于是|AB |2=(x 1-x 2)2+(y 1-y 2)2=5(x 1-x 2)2=5[(x 1+x 2)2-4x 1x 2]=5⎣⎢⎡⎦⎥⎤3625m 2-4×310m 2+2.因为|AB |=6, 所以365m 2-6(m 2+2)=6.则m 2=15,m =±15. 由(*)式得Δ=24m 2-240, 把m =±15代入上式,得Δ>0, 所以m 的值为±15,故所求l 的方程为y =2x ±15.11.已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点,则a 的取值范围是____________. 答案 -6<a <6且a ≠± 3解析 由⎩⎪⎨⎪⎧y =ax +13x 2-y 2=1得(3-a 2)x 2-2ax -2=0.∵直线与双曲线相交于两点,∴⎩⎪⎨⎪⎧3-a 2≠0,Δ>0⇒-6<a <6且a ≠± 3.∴a 的取值范围是-6<a <6且a ≠± 3.12.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l 与双曲线的右支有且只有一个交点,则双曲线的离心率e 的取值范围是________. 答案 [2,+∞)解析 由题意,知b a ≥3,则b 2a2≥3,所以e =1+⎝ ⎛⎭⎪⎫b a 2≥2.13.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________. 答案3215解析 双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215, 所以B ⎝ ⎛⎭⎪⎫175,-3215. 所以S △AFB =12|AF ||y B |=12(c -a )·|y B |=12×(5-3)×3215=3215. 14.双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,左、右顶点为A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线斜率为________.答案 ±1解析 由题意知F (c ,0),A 1(-a ,0),A 2(a ,0),其中c =a 2+b 2. 联立⎩⎪⎨⎪⎧x =c ,x 2a 2-y2b2=1, 解得B ⎝ ⎛⎭⎪⎫c ,b 2a ,C ⎝ ⎛⎭⎪⎫c ,-b 2a , 所以A 1B —→=⎝ ⎛⎭⎪⎫c +a ,b 2a , A 2C —→=⎝ ⎛⎭⎪⎫c -a ,-b 2a . 因为A 1B ⊥A 2C ,所以A 1B —→·A 2C —→=(c +a )(c -a )-b 4a2=0, 解得a =b ,所以渐近线的斜率为±1.15.设双曲线x 2-y 22=1上有两点A ,B ,AB 中点M (1,2),则直线AB 的方程为________________. 答案 y =x +1解析 方法一 (用根与系数的关系解决)显然直线AB 的斜率存在.设直线AB 的方程为y -2=k (x -1), 即y =kx +2-k ,由⎩⎪⎨⎪⎧ y =kx +2-k ,x 2-y 22=1, 得(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0,当Δ>0时,设A (x 1,y 1),B (x 2,y 2),则1=x 1+x 22=k 2-k 2-k 2,所以k =1,满足Δ>0,所以直线AB 的方程为y =x +1.方法二 (用点差法解决)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 21-y 212=1,x 22-y 222=1,两式相减得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2).因为x 1≠x 2,所以y 1-y2x 1-x 2=2x 1+x2y 1+y 2,所以k AB =2×1×22×2=1,所以直线AB 的方程为y =x +1,代入x 2-y 22=1满足Δ>0.所以直线AB 的方程为y =x +1.16.已知直线l :x +y =1与双曲线C :x 2a 2-y 2=1(a >0).(1)若a =12,求l 与C 相交所得的弦长;(2)若l 与C 有两个不同的交点,求双曲线C 的离心率e 的取值范围. 解 (1)当a =12时,双曲线C 的方程为4x 2-y 2=1,联立⎩⎪⎨⎪⎧x +y =1,4x 2-y 2=1,消去y , 得3x 2+2x -2=0.设两交点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-23,x 1x 2=-23,则|AB |=x 1-x 22+y 1-y 22=x 1-x 22+x 1-x 22=2·x 1+x 22-4x 1x 2=2×289=2143.(2)将y =-x +1代入双曲线x 2a 2-y 2=1,得(1-a 2)x 2+2a 2x -2a 2=0,∴⎩⎪⎨⎪⎧ 1-a 2≠0,4a 4+8a 21-a 2>0, 解得0<a <2且a ≠1. ∵双曲线的离心率e =1+a 2a =1a 2+1,∴e >62且e ≠ 2.即离心率e 的取值范围是⎝ ⎛⎭⎪⎫62,2∪(2,+∞).。
阅读与思考圆锥曲线的光学性质及其应用-人教A版选修1-1教案
阅读与思考圆锥曲线的光学性质及其应用-人教A版选修1-1教案前言圆锥曲线是高中数学中的一大重点,也是应用广泛的数学知识之一。
在学习过程中,我们不仅应该掌握其基本概念和性质,还需要了解它在物理、工程等领域的应用。
本文将以人教A版选修1-1教案中“圆锥曲线的光学性质及其应用”为主题,简要介绍圆锥曲线的光学性质及其实际应用。
正文1. 圆锥曲线的光学性质1.1 入射角等于反射角圆锥曲线在光学中具有很重要的作用,因为它们是反射和折射实验的理论基础。
一条光线与圆锥曲线相交,它将会被反射和折射成一条新的光线。
入射光线与法线的夹角称为入射角,反射光线与法线的夹角称为反射角。
由于圆锥曲线的对称性,可以证明入射角等于反射角。
1.2 焦点和焦距我们知道,圆锥曲线由一个动点和一个定点(焦点)间距离等于它到一条定直线(准线)距离的所有点构成。
当一个光线垂直射入一个圆锥曲线形状的物体(如球面镜或抛物线反射器)时,它会通过反射或折射聚焦成一个点(焦点)。
焦点到反射面的距离称为焦距。
1.3 光的反射和折射定律当光线由一种介质射向另一种介质时,它会发生折射和反射。
反射和折射定律是描述这种现象的基本规律。
反射定律指出,入射角等于反射角;折射定律指出,入射角、折射角和两种介质中的光线折射率的比例成正比。
2. 圆锥曲线在实际应用中的应用2.1 反光镜反光镜就是利用圆锥曲线的反射性质来反射光线的光学器具。
常见的反光镜有球面镜和柏松反射镜,它们都是利用焦距和反射定律来实现反射的。
2.2 折射仪折射仪是用来测定透明物质的折射率的光学仪器。
其中的半圆柱形高折射率棱镜就是一个圆锥曲线,在入射光线的作用下,通过折射和反射来测量物质的光学性质,如折射率。
2.3 显微镜显微镜是一种利用透镜对小物体放大的光学设备。
其中凸透镜的形状是一个球面镜,它是一个圆锥曲线。
通过聚焦光线,将其聚集到一个点上,然后再利用透镜将光线放大,就可以看到微小的物体。
结论综上所述,圆锥曲线在光学中有广泛的应用。
【课件】圆锥曲线光学性质的数学原理及应用(说课)课件 高二数学人教A版(2019)选择性必修第一册
动时,点的轨迹是什么?你能给出证明吗?你还有什么发现? 实验探究
点Q的轨迹为椭圆.
证明过程:由于点在线段的垂直平分线
上,由图可知, + = + =
= , 且 > ||,根据椭圆的定义,点
的延长线会经过1 .
探究活动3 如图,为一定点,为不经过点的定直线,在直线上任
取一点,过点作的垂线,连接,设线段的垂直平分线交的垂线
于点, 点的轨迹是什么?你能给出证明吗?你还有什么发现? 实验探究
的轨迹为抛物线
发现的垂直平分线是双曲线的切线,
切点为 , 且切线平分∠.
为过点且与双曲线相切的直线,
则平分∠1 1 .
你能否利用这个性质解释说明双曲线的光学性质?
如图,当光线从2 射入经双曲线
上的点反射时,过点作双曲线的切
线,过点作切线的垂线,则该垂线就
是光线反射的法线,根据性质2,该切
线平分∠1 2 ,故根据光的反射原理,
光线从2 射入经点反射后的反射光线
设计意图
通过这三个探究活
动,借助于信息技
术,构造几何图形,
让学生逐步自主探
究圆锥曲线光学性
质的数学原理,提升
学生自主探究和分
析问题、解决问题
的能力,培养学生
的直观想像和逻辑
推理素焦点发出的光
线,经双曲线反射后,反
射光线的的延长线会交于
双曲线的另一个焦点.
从抛物线焦点发出的
光线,经抛物线反射
后,反射光线会平行
于抛物线的对称轴.
我们把上述性质称为圆锥曲线的光学性质,你能否从数学角度来
解释圆锥曲线的光学性质呢?
人教A版数学【选修4-1】ppt课件:3-1第三讲-圆锥曲线性质的探讨
①矩形的平行射影可以是矩形、平行四边形或线段,因而 一定是矩形不成立;②矩形的正射影也有矩形、平行四边形、 线段三种情况,因而矩形的正射影一定是矩形不正确;③梯形 的平行射影可以是梯形、线段,因而梯形的平行射影一定是梯 形不正确;④梯形的正射影也可能是梯形、线段,因而说梯形 的正射影一定是梯形的说法是错误的,故选A.
2.平行射影
设直线l与平面α________(如图),称直线l的方向为投影方 向.过点A作________l的直线(称为投影线)必交α于一点A′, 称________为A沿l的方向在平面α上的平行射影.一个图形上 ________在平面α上的平行射影所组成的________,叫做这个 图形的平行射影. 显然,正射影是________的特例.
规律技巧 余弦定理.
①画准图形的正射影;②三角形的判定应利用
变式3
P为△ABC所在平面外一点,PA,PB,PC与平面
ABC所成角均相等,又PA与BC垂直,那么△ABC的形状可能 是________.(将你认为正确的序号全填上) ①正三角形 角三角形 ②等腰三角形 ③非等腰三角形 ④等腰直
解析
设点P在底面ABC上的射影为O,由PA,PB,PC与
平面ABC所成角均相等,得OA=OB=OC,即点O为△ABC的 外心,又由PA⊥BC,得OA⊥BC,又OB=OC,得直线AO垂直 平分BC,∴AB=AC,即△ABC必为等腰三角形,故应填①② ④.
答案 ①②④Biblioteka 【答案】 A变式2
下列说法正确的是(
)
A.正射影和平行射影是两种截然不同的射影 B.投影线与投影平面有且只有一个交点 C.投影方向可以平行于投影平面 D.一个图形在某个平面的平行射影是唯一的
解析 错误;
人教A版高中数学选择性必修第一册第3章探究课3圆锥曲线的光学性质及其应用课件
将点A的坐标代入方程y2=2px(p>0),解得p≈70, 此时焦点F的坐标约为(35,0). 因此,灯泡应安装在对称轴上距顶点约35 mm 处.
第三章ቤተ መጻሕፍቲ ባይዱ圆锥曲线的方程
探究课3 圆锥曲线的光学性质及其 应用
1.抛物线的光学性质 (1)焦点:光线的聚集点. (2) 抛 物 面 : 由 抛 物 线 绕 它 的 对 称 轴 旋 转 所 得 到 的 曲 面 , 叫 做 抛 物 面. (3)抛物线的性质:从焦点发出的光线,经过抛物线上的一点反射后, 反射光线平行于抛物线的轴. (4)抛物线性质的实际应用: 一束平行于抛物线的轴的光线,经过抛物面的反射集中于它的焦 点.人们应用这个原理,设计了太阳灶等生活用具.
A.0.72 m √B.1.44 m C.2.44 m D.2.88 m
2.汽车前灯的反光曲面与轴截面的交线为抛物线,灯口直径为197 mm,反光曲面的顶点到灯口的距离是69 mm.由抛物线的性质可知, 当灯泡安装在抛物线的焦点处时,经反光曲面反射后的光线是平行 光线.为了获得平行光线,应怎样安装灯泡?(精确到1 mm)
[解] 如图,在反光镜的轴截面内建立平面直角坐标系,使反光镜 的顶点(即抛物线的顶点)与原点重合,x轴垂直于镜口圆的直径.
1.(2022·河南省开封市模拟)一种卫星接收天线如图1所示,其曲 面与轴截面的交线为抛物线.在轴截面内的卫星波束呈近似平行状 态射入形为抛物线的接收天线,经反射聚集到焦点F处,如图2所 示.已知接收天线的口径AB为4.8 m,深度为1 m.若P为接收天线 上一点,则点P与焦点F间的最短距离为( )
2.椭圆的光学性质 从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭 圆的另一个焦点上.胶片放映机的聚光灯反射镜的形状是旋转椭圆 面. 3.双曲线的光学性质 从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是 散开的,它们好像是从另一个焦点射出的.
高中数学同步讲义(人教A版选择性必修一):圆锥曲线的方程(弦长问题)(教师版)
【典例2】(2023春·广西·高二校联考阶段练习)在直角坐标系动点,且直线PA和直线PB(1)求曲线C的方程;(2)若直线l与曲线C相交于(法二)易知直线斜率存在,设直线方程为联立方程组221255x yy kx b,消去y整理得2222Δ1004(51)(525)500 k b k b则210525,kb bx x x x(1)求椭圆1C的方程;(2)如图,以椭圆1C的长轴为直径作圆B,若直线AB与椭圆1C交于不同的两点【答案】(1)221 42x y;(2)||[2,4)CD .【详解】(1)设半焦距为c,由使得动点P到焦点1F的距离的最大值为2所以椭圆1C的方程是221 42x y.因为直线AT 为切线,故10y ,否则直线若10x ,则11OA y k x ,故11AT x k y ,故直线AT 的方程为: 111x y y y 整理得到:2211114x x y y x y ;当10x 时,若(0,2)A ,直线AT 的方程为:满足114x x y y .故直线AT 的方程为114x x y y ,同理直线【典例2】(2023春圆 2222:1x y C a a b (1)求椭圆C 的方程;(2)若斜率为k 的直线8则211mk ,得221m k ,联立22142y kx m x y 得 2221k x 则 2222164212k m k m【变式1】(2023春·上海浦东新·高二统考期末)椭圆(1)求椭圆C的离心率;【变式3】(2023春·四川内江22221(0)x y a b a b,短轴长为(1)求椭圆E 的方程;(2)若直线l :(0)y kx m k 与圆的方程.)设椭圆方程为22221x ym n,则2m故椭圆方程为22194x y,联立方程222 648036288016t t t(1)求C 的方程;(2)若P 为直线:2l x 上的一动点,过F 作AB 的垂线交l 于点N ,当【答案】(1)24y x(2)4703【详解】(1)由题知,2p C 的方程为24y x .(2)抛物线2:4C y x 的焦点设 2,P t ,过P 点的抛物线242y x x m y t 消去x 得:y 2Δ161620m mt 即此时①可化为2244y my m 设直线 1:2PA x m y t ,直线则12,m m 为方程②的两根,故且122,2A B y m y m ,可得A 由②知,2211220,m tm m 则直线AB 方程为:22t x y 因为直线NF 与直线AB 垂直,则直线NF 方程为: 2t y x故832,,2,2M N t t,(1)求证:A ,M ,B 三点的横坐标成等差数列;(2)已知当M 点的坐标为【答案】(1)证明见解析(2)22x y 或24x y【详解】(1)证明:由题意设。
(新人教A版)探究圆锥曲线中离心率的问题
探究圆锥曲线中离心率的问题离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现,下面给同学们介绍常用的四种解法。
一、直接求出a 、c ,求解e已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解。
例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是( )A. 10B.5 C.310 D.25 二、变用公式,整体求出e例2. 已知双曲线)0b ,0a (1by a x 2222>>=-的一条渐近线方程为x 34y =,则双曲线的离心率为( )A. 35 B.34 C.45 D.23三、第二定义法由圆锥曲线的统一定义(或称第二定义)知离心率e 是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。
例3. 在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为( )A.2 B.22 C.21 D.42 四. 构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造出a 、c 的齐次式,进而得到关于e 的方程,通过解方程得出离心率e 的值,这也是常用的一种方法。
例 4. 已知1F 、2F 是双曲线)0b ,0a (1by a x 2222>>=-的两焦点,以线段F 1F 2为边作正21F MF ∆,若边1MF 的中点在双曲线上,则双曲线的离心率是( )A. 324+B. 13-C.213+ D. 13+练一练设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若21PF F ∆为等腰直角三角形,则椭圆的离心率是( D )A.22 B.212- C. 22- D. 12-高考试题分析1.(2009全国卷Ⅰ)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于( )(A (B )2 (C (D2.(2009浙江理)过双曲线22221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12A B B C =,则双曲线的离心率是 ( )A B C D 3.(2009浙江文)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( )A B .2C .13D .124.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ). A.45 B. 5 C. 25D.55.(2009(A )22124x y -= (B )22142x y -= (C )22146x y -= (D )221410x y -=6.(2009江西卷文)设1F 和2F 为双曲线22221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为A .32 B .2 C .52D .3 7.(2009江西卷理)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为A B C .12 D .138.(2009全国卷Ⅱ理)已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜率C 于A B 、两点,若4AF FB =,则C 的离心率 ( )A .65 B. 75 C. 58 D. 959. (2008福建理11)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞10.(2008湖南理8)若双曲线22221x y a b-=(a >0,b >0)上横坐标为32a 的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( )A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)11.(2008江西理7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1)B .1(0,]2 C . D . 12.(2008全国二理9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A. B. C .(25), D.(213.(2008陕西理8)双曲线22221x y a b -=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( ) ABCD.314.(2008浙江理7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )(A )3 (B )5 (C )3 (D )515.(2008全国二文11)设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+16.(2008湖南文10)双曲线)0,0(12222>>=-b a by a x 的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A. B.)+∞ C.(11] D.1,)+∞17.(2007全国2理)设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AFAF =,则双曲线的离心率为( ) A.2B.2C.2D解1222221222()()(2)AF AF AF a a e AF AF c ì-==ïï??íï+=ïî18(07全国2文).已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( ) A .13BC .12D19(07江苏理3).在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为20x y -=,则它的离心率为( )A B C D .2 20.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )A .0⎛ ⎝⎦B .0⎛ ⎝⎦C .1⎫⎪⎪⎣⎭ D .1⎫⎪⎪⎣⎭21(07湖南文).设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,P 是其右(c 为半焦距)的点,且122||||F F F P =,则椭圆的离心率是( )A B .12C D .222(07北京文4).椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤ ⎥⎝⎦,B.02⎛ ⎝⎦,C.112⎡⎫⎪⎢⎣⎭,D.12⎫⎪⎪⎣⎭23.(2009重庆卷文)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a cPF F PF F =,则该椭圆的离心率的取值范围为 ..24.(2009湖南卷理)已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60o,则双曲线C 的离心率为25.(2008全国一理15)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .26(2010辽宁文数)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A (B (C (D 27(2010四川理数)(9)椭圆22221()x y a b a b+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是(A )⎛⎝⎦ (B )10,2⎛⎤ ⎥⎝⎦ (C ) )1,1 (D )1,12⎡⎫⎪⎢⎣⎭28(2010广东文数)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A.54 B.53 C. 52 D. 51(2010全国卷1文数)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D , 且BF 2FD =uu r uu r,则C 的离心率为 .(2010辽宁理数)(20)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B两点,直线l 的倾斜角为60o ,2AF FB =.(I) 求椭圆C 的离心率; (II)如果|AB|=154,求椭圆C 的方程.(2010全国卷2文数)(22)(本小题满分12分)已知斜率为1的直线1与双曲线C :22221(0,0)x y a b a b-=>>相交于B 、D 两点,且BD 的中点为M (1.3) (Ⅰ)(Ⅰ)求C 的离心率; (Ⅱ)(Ⅱ)设C 的右顶点为A ,右焦点为F ,|DF|·|BF|=17证明:过A 、B 、D 三点的圆与x 轴相切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线性质的探讨(人教A版)
一、单选题(共5道,每道20分)
1.已知在△ABC中∠B为直角,若边AB在平面α内,顶点C在平面α外,则△ABC在平面α上的射影是( )
A.一条线段或锐角三角形
B.一条线段或直角三角形
C.一条线段或钝角三角形
D.任意三角形
答案:B
解题思路:
试题难度:三颗星知识点:射影
2.用一个平面去截一个圆柱,所截得的截面不可能为( )
A.椭圆
B.圆
C.矩形
D.梯形
答案:D
解题思路:
试题难度:三颗星知识点:截图
3.如图,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,则线段DO的长等于( )
A.2
B.3
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:射影
4.如图,已知圆柱的底面半径为2,高为3,用一个与底面不平行的平面去截,若所截得的截面为椭圆,则椭圆的离心率的最大值为( )
A.1
B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:圆柱的截面
5.如图,一个底面半径为R的圆柱被与其底面所成角为θ(0°<θ<90°)的平面所截,截面是一个椭圆.当θ为30°时,这个椭圆的离心率为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:圆柱的截面。